A Simple Approach for Monitoring Process
Mean and Variance Simultaneously

Su-Fen Yang and Barry C. Arnold

Abstract Control charts are effective tools for signal detection in both manu-
facturing processes and service processes. Much of the data in service industries
comes from a process having non-normal or unknown distributions. The commonly
used Shewhart variable control charts, which depend heavily on the normality
assumption, are not appropriately used here. In this paper, we propose a new
EWMA-V Chart and EWMA-M Chart based on two simple independent statistics
to monitor process mean and variance shifts simultaneously. Further, we explore
the sampling properties of the new monitoring statistics, and calculate the average
run lengths when using both of the proposed EWMA Charts. A numerical example
involving non-normal service times from the service system of a bank branch in
Taiwan is used to illustrate the applications of the new EWMA-M and EWMA-
V' Charts, and to compare them with the existing mean and variance (or standard
deviation) charts. The proposed new EWMA-M and EWMA-V Charts show
superior detection performance compared to the existing mean and variance charts.
The new EWMA-M and EWMA-V Charts are thus recommended.

Keywords Arcsine transformation « EWMA charts

1 Introduction

Control charts are commonly used tools in process signal detection to improve the
quality of manufacturing processes and service processes. In the past few years,
more and more statistical process control techniques are applied to the service
industry, and control charts are also becoming an effective tool in improving service
quality. There have been a few studies in this area, like those of Tsung et al.
(2008) and Ning et al. (2009). Much service process data comes from processes
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with variables having non-normal or unknown distributions so the commonly used
Shewhart variables control charts, which depend on the normality assumption, are
not suitable. Hence the question arises: “How to monitor a process with non-normal
or unknown distribution data?”’” Some research has been done to deal with such a
situation; see, for example, Ferrell (1953), Amin et al. (1995), Chakraborti et al.
(2001), Altukife (2003), Bakir (2004, 2006), Li et al. (2010), Zou and Tsung
(2010), and Graham et al. (2011). Little research has been done to deal with process
variability monitoring; see, for example, Das and Bhattacharya (2008) and Jones-
Farmer and Champ (2010).

A major drawback of the previous nonparametric approaches is that they are
not easy for practitioners to apply because they are not statisticians and do not
quite understand the proper way to implement the schemes. Yang et al. (2011)
proposed a new Sign Chart for variables data to monitor the deviation of the
process measurement from the target without the assumption of a normal process
distribution or a distribution of known form. Yang and Cheng (2011) proposed a
CUSUM Mean Chart to monitor small shifts in the process mean. Yang et al. (2012)
addressed a new Mean Chart based on a simple statistic to monitor the shifts of the
process mean. Their approaches are quite easy to use, and even easier than some of
the above published nonparametric approaches. However, Yang and Cheng (2011),
and Yang et al. (2011, 2012) did not consider a variance chart.

In this paper, we propose using both an EWMA-V Chart and an EWMA-
M Chart for variables data to monitor the process variance and mean, extending
Yang et al.’s approach (2012). The approach is still quite easy to use, and has
better detection ability than the existing standard deviation and mean charts. The
paper is organized as follows: In Sect.2, we describe the EWMA-M Chart, and
illustrate its detection performance. In Sect.3, we discuss the construction of
a newly proposed EWMA-V Chart, and measure its detection performance. In
Sect. 4, we measure the detection performance of using both the new EWMA-V
and EWMA-M Charts simultaneously. In Sect.5, we describe the estimates for
unknown population parameters. In Sect. 6, a numerical example of a service system
in a bank branch was used to construct the proposed new EWMA-V and EWMA-
M Charts to monitor the quality of service time, and their performance compared
with those of some existing charts. Section 7 summarizes the findings and provides
a recommendation.

2 The Proposed EWMA-M Chart

Assume that a critical quality characteristic, X, has a mean y and variance 0.

Following Yang and Cheng (2011),let Y = X —p and p = P(Y > 0) = the
“Process Proportion.” If the process were in-control, then p = p,0, and if the
process were out-of-control, that is if p had shifted, then p = p,1 # pmo. If
Pmo 18 not given, it will be estimated using a preliminary data set.
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To monitor the process mean, a random sample of size ny, X1, Xa,..., Xy, is
taken from X . Define

1, ifY; >0, .
Y, =X,—p and I; = SRR S I S PR ()
0, otherwise,

Let M, be the total number of ¥; > 0 at time #, then M; = Z’]”=1 I; would follow

a binomial distribution with parameters (11, p,,0) for an in-control process.

2.1 The Control Limits of EWMA-M Chart

Monitoring the process mean shifts is equivalent to monitoring the changes in
process proportion. However, the binomial distribution is discrete and is asymmetric
for pno # 0.5. In addition the values of out-of-control average run length (ARL)
(ARL ) of the M, Chart do not change inversely with sample size as they normally
should (see Yang et al. 2012). To rectify this problem, they propose an “arcsine
transformed EWMA-M chart.” Each of these EWMA charts has the usual value of
370 for in-control ARL, and they are sensitive for monitoring small shifts in the
process mean quickly and effectively.

Let Ty = sin”! (\/M /n 1), then the distribution of T, is approximately normal
with a mean sin™" (W) and variance 1/(4n) (see Mosteller and Youtz 1961).
The EWMA-M statistic is

EWMA7,, = ATy, +(1-ADEWMA7,  0<A <1l 1=12,.... (2

The New EWMA-M chart is constructed as follows. Define

At
L; = sin”! m Ly |———,
L 00 eI

CL; = sin”" (y/Pmo) . 4

/ A
LCL, = sin™! (\/ me) — L m s (®)]

and plot EWMA7, . If any EWMA7, < LCL; or EWMA7, > UCL,4, an out-
of-control signal is issued. The two parameters, L; and A, are chosen to yield an
in-control ARL, ARL7,,, = 370, using the Markov chain approach proposed by
Lucas and Saccucci (1990).
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Table 1 The ARL7,,,
of the EWMA-M chart
when p,,0 = 0.5

Pm1
ny 030 [0.35 |0.40 (045 |0.50

7.6 |12.7 |28.0 |100.4 |370.5

7.0 |11.5 250 | 91.4 |370.5
10 164 |10.5 |22.5 | 83.8 |370.5
11 /6.0 9.6 |20.6 | 77.3 |370.5
12 |5.6 9.0 |18.9 | 71.7 |370.5
13 |53 8.4 |17.5 | 66.8 |370.5
14 5.0 79 163 | 62.5 |370.5
15 4.8 7.5 |153 | 58.7 |370.5
16 4.6 7.1 | 144 | 553 |370.5
17 |44 6.8 |13.6 | 52.2 |370.5
18 |43 6.5 |12.9 | 49.5 |370.5
19 4.1 6.2 |12.3 | 47.0 |370.5
20 4.0 6.0 |11.8 | 44.8 |370.5

2.2 The In-Control and Out-of-Control Average Run Lengths
of the EWMA-M Chart

The ARLy,,, of the new EWMA-M chart is a function of (n;, L, A1). Adopting
the in-control process proportion p,,0 = 0.5, ARLp,, ~ 370 with A; = 0.2 and
L = 2.86, the out-of-control ARL, ARL7,,,, of the EWMA-M chart is listed for
ny = 8(1)20 and p,;; = 0.30(0.05)0.50 in Table 1. From Table 1, we found that
ARL7,,, decreases when the out-of-control value of p,, is far away from the in-
control value of p,,0, and when 7n; increases.

3 The Proposed EWMA-V Chart

To monitor the process variance, another random sample of size n15, X1, Xo, ..., X,
is taken from the process, X . Assume that the sample size 1, is even for convenience
(if not, delete one observation). Define

Y= (X, —X)?/2, Y = (X4 — X3)?/2, ..., Y% = (Xu, — Xupm1)?/2,
(6)
EY}) =0 .j =12.....n/2, and (7

1, ifY%>o?
Iy = J . j =1,2,...,n,/2. 8)
0, otherwise
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Let V be the total number of Y, > o2, then V = Z(])ZZI I;» will have a binomial
distribution with parameters (0.5n,, p,o) for an in-control process, where p,o =
P(YJT", > 02). The value of p,o will depend on the distribution of the X;’s. For
example, if the X;’s are normally distributed, then p,o = P(Yj*, > 0% = P(Z* >
1) where Z ~ N(0, 1). Thus in this case p,o = 0.3147.If the distribution of X, —
Xn,—1 1s unimodal, as it frequently is, the version of the Chebychev inequality for
unimodal variables implies that the quantity p,o is bounded above by 4/9. The value
of pyo can be arbitrarily small but it usually will be in the range 0.25-0.50.

Similar to the M, Chart, the V; Chart is a new chart in that the binomial variable
is not the count of nonconforming units in the sample but rather the number
of pairs of X values in a sample that are in-control with respect to the process
variance. Monitoring process variance shifts is equivalent to monitoring the changes
in process proportion, pyo. The V; Chart is also asymmetric for p, # 0.5, and the
values of out-of-control ARL (ARLy) of the V; Chart do not change inversely with
sample size as they normally should. Hence, we propose an “arcsine transformed
EWMA-V chart.” Each of these EWMA charts has the usual value of 370 for
in-control ARL, and they are sensitive for monitoring small shifts in the process
variance quickly and effectively.

3.1 The Control Limits of EWMA-V Chart

Let Ty = sin”! (,/ V/ O.5n2), then the distribution of Ty is approximately normal

with a mean sin™! ( / py) and variance 1/(2n,) (see Mosteller and Youtz 1961).
We define the New EWMA-V statistic as:

EWMATV’ = A.zTV[ + (1 - Az)EWMATV,,I , 0<Ay<Il. )

Analogous to the derivation of the arcsine transformed EWMA-M chart, we can
construct the new EWMA-V chart as follows. Define

_ / A2
— qin—!
UCL; = sin («/va) + L, =) (10)

CL, = sin™" (/7). (1)

Ar
LCL, = sin”! » —L,/—, 12
CL, = sin™" (/Pw) 2 3172 — A) (12)

and plot EWMA7,, . If any EWMA7, > UCL; or EWMA7, < LCL,, an out-of-
control signal is issued. Here again, the two parameters, L, and A,, are chosen
to yield the desired in-control ARL (ARL7,, ~ 370) using the Markov chain
approach.
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Table 2 The ARLy,
of the EWMA-V chart
when p,o0 = 0.3

DPvl
Snp, (02 104 106 0.8

0

4 419 505 7.0 |34
5 33.7 140.8 | 6.0 |3.0
6 28.2 342 |52 |27
7 242 (294 |47 |25
8 21.3 |25.8 |43 |23
9 19.0 |23.0 4.0 |22
10 17.2 120.7 |3.7 | 2.1
11 15.7 |189 |35 |2.0
12 145 |174 |33 |20
13 134 |16.1 |32 |19
14 126 |15.1 |3.1 | 1.8
15 11.8 |14.1 |29 | 1.8

3.2 The In-Control and Out-of-Control Average Run Lengths
of the EWMA-V Chart

The ARLy,, of the new EWMA-V chart is a function of (12, Ly, A2). Adopting
the in-control process proportion p,o = 0.3, ARLz,, ~ 370 with A, = 0.2 and
L, = 2.86, the out-of-control ARL, ARL7,,, of the EWMA-V chart is listed for
0.5n, = 4(1)15 and p,; = 0.2(0.2)0.8 in Table 2. From Table 2, we found that
ARL7,, decreases when the out-of-control value of p,; is far away from the in-
control value of p,, and when n, increases.

4 Performance Measurement of Using the EWMA-V Chart
and the EWMA-M Chart Simultaneously

Use of both the EWMA-V Chart and EWMA-M Chart permits monitoring of the
process variance and mean simultaneously. We will use the ARL to measure the out-
of-control detection performance of using both the EWMA-V Chart and EWMA-M
Chart.

4.1 The In-Control Average Run Lengths of the EWMA-V
Chart and the EWMA-M Chart

In a production process, we take a sample of size n; + n», the first n; observations
are used to calculate the statistic EWMAr,,, then the remaining n, observations are
taken to calculate the statistic EWMA7,, . The statistics EWMA~7,, and EWMA7, are
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independent since the two groups of observations are independent. The in-control
overall ARL, ARLy, of the newly proposed charts is well approximated as follows
(see Hawkins 1992),

1

ARLy =

1 + 1 _ 1 1
ARLTMO ARL7y ARLTMO ARL7y

%

1 (13)

I .
ARLT7) + ARL7y

The ARLy of using both the EWMA-M Chart and EWMA-V Chart with any
combinations of (11, n,) and (pmo, pvo) are all approximately 185 because of

1 1

1 1 1
ARL7,,, + ARLry, 370 T 37

Usually, the most efficient way of using a combined charting procedure is to use all
the observations for both the mean and variance charts but this was not considered
in our scheme. The reason is that the two monitoring statistics EWMA-V and
EWMA-M are dependent if all the observations are used, and this will complicate
the calculation of the overall ARLs of the two proposed control charts. Of course,
we may use simulation to estimate the overall ARLs.

4.2 The Out-of-Control Average Run Lengths of the EWMA-V
Chart and the EWMA-M Chart

When the process is out of control due to a shift in the process mean, u, the
process proportion becomes p,,; (# pmo). For an out-of-control process whose
variance 0> has changed, the process proportion becomes p,; (# puyo). The out-
of-control overall ARL, ARL;, of using the EWMA-V Chart and EWMA-M Chart
simultaneously could be calculated approximately using

1

1 1

ARL,; ~ .
ARLr,, T ARL7y,

(14)

The ARL;s of using both the EWMA-M Chart and EWMA-V Chart with the
combinations of ny = 8(2)24, 0.5n, = 4(1)12, py,o = 0.1, pyo = 0.5, py,1 = 0.2,
and p,; = 0.25(0.05)0.45 are listed in Table 3. In Table 3, we observe that the
ARL,; changes inversely with n; and n,, and the ARL; decreases when p,,; is
far away from p,,o and/or p,; is far away from p,o. The results are much more
reasonable than those corresponding to use of both the V' Chart and M Chart.
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Table 3 The ARL; of the
EWMA-V and EWMA-M
charts when p,o = 0.1,

Pmo = 0.5, and p,; = 0.2

Pmi
Sny (np [ 0.25 1030 [0.35 040 |0.45

0

4 8§ |68 |84 |12.0 19.0 |26.0
5 10 |59 |74 [104 [159 |21.8
6 12 |51 6.6 9.0 134 |18.1
7 14 149 |58 7.7 |11.5 | 15.3
8 16 |43 |5.6 72 | 8.0 |14.4
9 18 |41 |5.0 65 | 94 |12.6
10 20 |40 |48 6.0 | 8.7 |11.6
11 22 |34 |43 57 | 8.0 |10.7
12 24 |33 |41 52| 74 | 97

S When the Population Mean and Variance Are Unknown

When the in-control process mean, i, and the process variance, o2, are unknown,

and hence the in-control process proportions, p,o and p,o, are unknown, we can
use the following two preliminary independent sample data sets

Xt,laXt,za"'aXt,nla t=1,2,...,k.

Xt,n1+1aXt,n1+2’--',Xt,n1+n2 ,t=1,2,... k.

from k sampling periods, each with an even number of observations, 7, and n,, to
estimate them (see, e.g., Montgomery 2009), i.e.

k n S k
~ = Zt=l Z]l=1 -xt,j A~ S Z[:] Sf
= X=5 s 0O = — = ——8 s
kn1 C4 C4k

where

koM ko v, + =2
N 2= . ~ 2= 0.51; Z’/l‘l=n’?+1 (Xt-j - Xt)
Pmo=—"—, pp=—7"—-, 8§ = ,t=1,...,k,

k k ny — 1
2\ r05m) D SR
cy = , and S =="—.
n, — 1 r0.5(m,—1)) k

The EWMA-V and EWMA-M Charts are thus constructed using these estimated
values of p;,0 and pyo. The statistics EWMA7,, and EWMA 7, corresponding to the
samples of sizes n; and n, are plotted on the resulting EWMA-V and EWMA-M
Charts simultaneously. If no points fall outside their control limits, then we would
deem the process to be in-control.
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6 Example

We will use an example of service time from Yang et al. (2012) to illustrate the use
of the new EWMA-V and EWMA-M Charts. Service time is an important quality
characteristic in the banking industry. To measure the efficiency in the service
system of a bank branch, the in-control sampling service times (unit: minutes) is
measured from twenty counters every day for 15 days. That is, fifteen samples of
size ny + n, = 20, where n; = n, = 10 are available. This in-control data has
been analyzed assuming a non-normal distribution. For each sample, the first ten
observations illustrated in Table 4 are used to calculate the EWMAr,, statistic and
the last ten observations illustrated in Table 5 are used to calculate the EWMA7,
statistic.

To construct the EWMA-V and EWMA-M charts, the variance and mean of the
service time are estimated by (S /c4)? and X using the fifteen samples in Tables 5
and 4, respectively. The estimate of the variance is 62 = (S/cy)?> = 30.159
and the estimate of the mean is i = X = 5.77. For each sample in Table 5,
the monitoring statistic EWMA7, is calculated. For each sample in Table 4, the
monitoring statistic EWMAr,, is calculated. Hence, the estimates of proportions

(Do puo) are (o = S0 = 039, py = 2= = 0.24), where
M, = Total number of (¥Y; > 5.77)and j = 1,2,...,10, V; = Total number
of (Yj* > 30.159)and j = 11,12,...,20. The EWMA-V and EWMA-M Charts
with Ay = A, = 0.2 are constructed as follows based on the fifteen in-control

samples, respectively.

Table 4 The service times from the first ten counters in a bank branch

t | X X> X3 X4 Xs Xe X7 Xz | Xo X0 | M, | EWMA7,,
1 088 0.78| 5.06 | 545| 293 | 6.11 |11.59 |1.20 | 0.89 | 3.21 |2 |0.63
2 3.82 134 5.16 | 3203227 | 3.68| 3.14 |1.58 | 2.72| 7.71 |3 |0.62
3 1.40 | 3.89|10.88 |30.85| 0.54 | 840 | 5.10 12.63 | 9.17 | 3.94 |4 |0.63
4 |16.8 877 | 836 | 355| 776 | 1.81| 1.11 591 | 8.26| 7.19 |7 |0.71
5 024 | 957 | 0.66 | 1.15| 234 | 0.57| 894 554 |11.69| 658 |4 |0.70
6 | 421| 873 |11.44| 289 (1949 | 1.20| 8.01 |6.19 | 7.48| 0.07 |6 |0.74
7 |15.08 | 7.43 | 431 | 6.14 1037 | 2.33 | 1.97 |1.08 | 427 |14.08 |5 |0.74
8 |13.89 | 0.30| 3.21 |11.32| 990 | 439|105 |1.70|10.74 | 1.46 |5 |0.76
9 0.03|12.76 | 241 | 741 | 1.67| 3.70 | 431|245 | 3.57| 333 |2 |0.70
10 1 12.89 | 17.96 | 2.78 | 321 | 1.12|12.61 | 423 |6.18 | 2.33 | 692 |5 |0.71
11| 771 1.05| 1.11| 022 3.53| 0.81| 0.413.73| 0.08| 2.55|1 |0.64
12| 581 | 629 | 346 | 266 4.02/1095| 1.59 558 | 0.55| 4.10 |3 |0.62
13| 2.89| 1.61 | 1.30| 2.58 18.6510.77 |18.23 |3.13 | 3.38 | 6.34 |4 |0.64
14| 136 1.92| 0.12 | 11.08 | 885 | 3.99| 432|171 | 1.77| 1.94 |2 |0.60
152152 | 0.63 | 854 | 337 | 694 | 344 | 337637 | 1281283 |5 |0.64
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Table 5 The service times from the last ten counters in a bank branch

t 1 Xu [ X | X3 | X [ Xis [ Xie [ X7 [ Xis [ X | X | Vi | EWMA7p,
1 3.82 | 6.29 |10.88 |1 30.85 | 9.9 399 | 159 171 826 41 |1 |05
2 0.24 | 12.76 | 1144 | 3.2 3.53 | 057 18.23 (245 | 272 | 692 |3 |0.58
3 382 | 743 | 0.12| 337 | 1.12|12.61 | 1.59|1.08 | 0.89 | 0.07 |1 |0.56
4 1389 | 3.89 | 5.16|11.32 | 402 | 057 8.01 6.19 | 1.77 | 658 |1 |0.54
5 5.81 (1276 | 2.41 | 1.15| 3.53 | 0.81 |11.59 |591 | 427 | 333 /0 043
6 |12.89| 873 |10.88 | 2.89 18.65|10.95| 041 |3.13 | 427 | 771 |1 044
7 289 063 0.12| 0.22 | 4.02 1095 | 8.01 |1.08 |10.74 | 4.1 |0 |0.35
8 |16.8 1.05| 1.3 32 234 081 432(3.13| 008 | 146 |1 |0.37
9 4211796 | 506 | 022 | 402 | 399 8.01 591 | 0.55| 333 |1 |0.39
10 | 12.89 | 877 |11.44 | 7.41 | 1.12| 1.81| 432|558 | 0.89 |14.08 /1 041
11| 0.88| 877 | 506 | 3.55 | 8.85|10.95 1823|554 | 233 | 658 2 046
12 771 7.43 | 0.12 | 258 | 1.12| 233 | 423 |2.63 | 427 | 3330 |0.37
13| 771 9.57| 0.12 13085 | 7.76 | 1.81 | 3.14 | 1.71 | 2.72 | 14.08 |2 |0.43
14| 2.89 | 1.05| 241 11.32 3227 | 84 1.97 |2.45 | 11.69 | 12.83 |2 |0.48
15| 1.36 | 0.63 | 3.46 1132 | 0.54 | 1095 | 423|245 | 233 | 634 2 052

The EWMA-V Chart:
UCL, = 0.725, LCL, = 0.299.
The EWMA-M Chart:
UCL; =0.85, LCL; =0.47.

The monitoring statistics EWMA-V and EWMA-M are calculated (see Tables 4
and 5). The EWMA-V and EWMA-M Charts show no signals (see Fig. 1a, b).

For comparison, we constructed the corresponding Shewhart standard deviation
and mean (S-X) charts, EWMA-S and EWMA-X charts, and transformed S and
X charts by applying X*27® transformation (see Montgomery 2009), respectively.
The Shewhart S-X charts are constructed with bounds as follows:

UCLg = 9.66, LCLg = 1.597, UCLyz = 10.98, LCL; = 0.55.

The Shewhart S -X charts also show no signals (see Fig. 1c, d). The EWMA-S and
EWMA-X charts are constructed with bounds as follows:

UCLEWMA»S = 7.495 s LCLEWMA-S = 2.485 ,
UCL gy g = 11.02, LCLgyya g = 0.53.
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Fig. 1 First 15 control chart points. (a) The EWMA-V chart. (b) The EWMA-M chart.
(c) Shewhart S chart. (d) Shewhart X chart. (¢) The EWMA-S chart. (f) The EWMA-X chart.
(g) The transformed Shewhart S chart. (h) The transformed Shewhart X chart
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Fig. 2 Next 10 control chart points. (a) The EWMA-V chart. (b) The EWMA-M chart.
(c) Shewhart S chart. (d) Shewhart X chart. (¢) The EWMA-S chart. (f) The EWMA-X chart.
(g) The transformed Shewhart S chart. (h) The transformed Shewhart X chart
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The EWMA-S and_EWMA-)Z charts also show no signals (see Fig. le, f). The
transformed S and X charts are constructed with bounds as follows:

UCLrs = 0.732, LCLzs = 0.121, UCL;5 = 1.77, LCL;; = 1.08.

The transformed S chart shows no signal but the transformed X chart shows a false
signal (see Fig. 1g, h).

A data set consisting of ten samples of ten service times from an improved new
automatic service system of the bank branch was collected and shown in Fig. 2. The
service times should be reduced because of the improved new automatic service
system. The new service times are regarded as out-of-control data set. The new
proposed EWMA-V and EWMA-M Charts are used to monitor the new service
times to illustrate their out-of-control detection ability

The EWMA-V and EWMA-M Charts detected out-of-control signals from the
third sample and the second sample onward, respectively (samples 3—10 on EWMA-
V' Chart and samples 2-10 on EWMA-M Chart) (see Fig.2a, b). That is, the
variance and mean of the new service times are significantly reduced because of
the improved new automatic service system. However, the corresponding Shewhart
S-X charts produced only one true out-of-control signal (sample 9 on S chart) (see
Fig. 2c, d). The EWMA-S and EWMA-X charts produced six true out-of-control
signals (samples 4-10 on EWMA-X chart) (see Fig. 2e, f), and transformed S and
X charts produced two true out-of-control signals (samples 2—3 on transformed X
chart) (see Fig.2g, h).

To construct the Shewhart S-X charts, EWMA-S and EWMA-X charts and
transformed S and X charts one requires the normality assumption but this is not the
case for the EWMA-V and EWMA-M Charts. In this example, the EWMA-V and
EWMA-M charts detected most of the out-of-control signals. The New EWMA-
V and EWMA-M Charts showed better detection ability than the existing charts in
monitoring and detecting process variance and mean shifts. The new EWMA-V and
EWMA-M Charts are thus recommended.

7 Conclusions

In this paper, we propose using both the EWMA-M and EWMA-V Charts, based
on two simple independent statistics to monitor the mean and variance shifts in
the process simultaneously when the distribution of a quality characteristic is not
known or is not believed to be normal. A numerical example of service times from
a bank branch with a right skewed distribution illustrated the application of the new
EWMA-M and EWMA-V Charts which were compared with some existing charts.
The proposed new EWMA-M and EWMA-V Charts showed better detection ability
than the existing charts in monitoring and detecting both the process mean and
variance shifts. The new EWMA-M and EWMA-V Charts are thus recommended.
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The M-V charts have the advantage of simplicity, but this is counter weighed by
some anomalies in their performance due to the discrete nature of the monitoring
variables. In an analysis based on two data sets, the EWMA-M and EWMA-
V' charts appear to have good performance. Knoth and Morais (2013) deal with
what they termed an ARL-unbiased chart. We may consider ARL-unbiased EWMA
charts based on non-transformed statistics in a future study.
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