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Abstract The reliability of products and processes will become increasing impor-
tant in the near future. One definition of reliability is “quality over time.” Customers
increasing will make their purchasing decisions on how long they can expect their
products and processes to deliver high quality results. As a result, there will be
increasing demands for manufacturers to design appropriate experiments to improve
reliability. This paper begins with a review of the current practice for planning
reliability experiments. It then reviews some recent work that takes into proper
account the experimental protocol. A basic issue is that most reliability engineers
have little training in planning experiments while most experimental design experts
have little background in reliability data.
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1 Introduction

Consumers are demanding more reliable products and services. A popular definition
of reliability is “quality over time.” Consumers expect that products will continue to
meet or exceed their expectations for at least the advertised lifetime, if not longer.
One reason for the rise of the Japanese automotive industry within North America
since the 1980s is the far better reliability of their cars and trucks.

Just as companies needed to apply experimental design concepts to improve
quality, so too will they need to apply these same concepts to improve reliability.
Current practice almost exclusively restricts the use of experimental protocols in
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reliability testing to completely randomized accelerated life tests. The future will
see more broad scale use of basic experimental designs, analyses, protocols, and
concepts.

A major problem facing this transition to more use of experimental design in reli-
ability is the nature of reliability data. Classical experimental designs and analyses
assume that the data at least roughly follow normal distributions. Reliability data
tend to follow highly skewed distributions, better modeled by such distributions as
the Weibull. Another complication is that typical reliability experiments censor large
amounts of the data, which stands in stark contrast to classical experimental design
and analysis. The issue then becomes that the people who routinely work with
reliability data apply very different tools and methods than people who routinely do
classical experimental design and analysis. The only proper way to apply classical
experimental design approaches is to understand at a fundamental level the nature of
reliability data. Unfortunately, very few people understand both fields well enough
to bridge the gap.

This paper first presents an introduction to reliability data, with a special focus
on the Weibull distribution and censoring. It then gives an overview of designing
experiments for lifetime data. The next section introduces a motivating example
analyzed in Meeker and Escobar (1998), who analyze the results as if they came
from a completely randomized design. However, the data actually reflect sub-
sampling. We then introduce a naive two-stage analysis that takes into account the
actual experimental protocol. The next section discusses a more statistically rigorous
approach to the data analysis. We then extend these basic results to the situation
where we have sub-sampling within random blocks. The final section offers some
conclusions and some future research directions.

2 Introduction to Reliability Data

Typically, reliability data focus on lifetimes. In some cases, these data are cycles
until failure, which is a surrogate for time. Engineering examples include extremely
complex systems, such as aircraft engines, as well as relatively simple parts such as
metal braces. Often, engineers must build reliability models on the relatively simple
components in order to develop a reasonable model for the complex system.

The most common distributions used by reliability engineers to model reliability
data are the lognormal, the exponential, and the Weibull. Of these three, the
Weibull tends to dominate, especially since the exponential is a special case. The
lognormal distribution transforms highly skewed data to the normal distribution.
The exponential distribution has a constant hazard function, which is associated with
true random failure behavior, i.e. there is no specific failure mechanism associated
with the failure. The biggest value of the Weibull distribution is its ability to model
the times to failure for specific failure mechanisms.
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Some textbooks discuss the gamma distribution for reliability applications.
The gamma distribution is extremely important in queueing theory for modeling
inter-arrival times. Most reliability engineers reject the basic concept of modeling
times to failures as an inter-arrival problem. The primary reason is that failures
have fundamental causes as opposed to truly random events. The physics based
interpretation of the Weibull distribution is that it models the time to failure when
the failure is due to the “weakest link,” which is a common failure mechanism.
This paper purely focuses on the Weibull distribution for modeling reliability data
because of its overwhelming popularity among reliability engineers.

Most reliability data involve censoring, which does complicate the analysis. The
basic types of censoring are:

• Right, where the test stops before all specimens fail

– Type I, where the test stops at a pre-specified time,
– Type II, where the test stops after a pre-specified number of failures,

• Left, where the first failure time recorded is after failures have begun to occur,
• Interval, where the analyst only knows that the failure occurred between two

times.

Censoring reflects the reality that failures typically are rare events, even under
accelerated conditions. By far, the most common approaches for estimation and
inference for reliability data are maximum likelihood and log-likelihood.

The likelihood for Type I and Type II censored data is:

L.ˇ; �/ D C
NY

iD1

Œf .ti /�
ıi Œ1 � F.ti /�

1�ıi ;

where ıi D 1 if the data point is observed and ıi D 0 if the data point is right
censored. Additionally, f .ti / is the probability distribution function (PDF) for the
assumed distribution, F.ti / is the cumulative distribution function (CDF), andC is a
constant which varies based on the censoring type. However, C does not impact the
maximum likelihood estimators (MLEs). Therefore we use C D 1 for simplicity.
The log-likelihood for the right censored data case is then given by:
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where ˇ > 0 is the shape parameter, � > 0 is the scale parameter, and t > 0 is
the time to failure. The Weibull distribution is popular because the shape parameter
allows it to model several different mechanisms of failure. The CDF is

F .t; ˇ; �/ D 1 � e
�

�
t
�

�ˇ

:

The hazard function represents the instantaneous probability of failure, which is
quite important for reliability engineers. The Weibull hazard function is

h.t/ D ˇ

�

�
t

�

�ˇ�1

:

We note that the hazard function is a constant when ˇ D 1 (the exponential
distribution). As a result, reliability engineers view the exponential distribution as
modeling purely random failure, which often is of limited interest. For ˇ < 1, the
hazard function is monotonically decreasing, which corresponds to infant mortality.
For ˇ > 1, the hazard function is monotonically increasing, which corresponds to
wear-out. As a result, the Weibull shape parameter, ˇ, has a specific relationship to
the specific failure mechanism.

The Weibull distribution is a special case of the smallest extreme value distri-
bution, which is a member of the log-location-scale family of distributions. Let
� D log .�/, and let zi D ˇ Œ log.ti / � ��. We note that

log Œf .ti /� D log

�
ˇ

ti

�
C zi � ezi and

log Œ1 � F.ti /� D �ezi :

As a result, the log-likelihood for right censored Weibull data reduces to:
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3 Current Approaches to Planning Experiments
with Reliability Data

Reliability engineers conduct life tests to develop models for the product/process
lifetimes at the use conditions. In some cases, the use conditions produce sufficient
failures to estimate the model well. In most cases, however, the engineers must
use a stress factor (in some cases, more than one stress factor) to increase the
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probability of failures. Such experiments are called accelerated life tests. Common
stress factors include temperature, voltage, humidity, etc. The engineer uses the
estimated model to project back to the use conditions. Inherently, accelerated life
tests involve extrapolation. As a result, the experimenter must exercise caution in
choosing the appropriate levels for these stress factors. If the level is too extreme,
the failure mechanism can change, which then nullifies the ability to extrapolate
back to the expected behavior at the use conditions. In such a case, the cause of the
failure may never occur at the use conditions, which is a problem.

The current literature for designed experiments with reliability data almost
exclusively uses a completely randomized design, even when the actual protocol
is something different. The focus of the current literature is on planning optimal
designs. The basic issues are how many levels to use for the stress factors, how to
allocate the available units to these levels, and how long to run the test.

Typically, accelerated life tests use a single stress factor with at least three levels.
The linear models theory underlying the analysis suggests that the optimal design
should use only two levels. The rationale for at least three is practical. Often the level
for the stress factor closest to the use conditions does not produce enough failures
to estimate the model well. Using more than two levels helps to mitigate that risk.
Similarly, using more than two levels can help to mitigate the risk of inducing a new
failure mechanism.

The typical analysis of life and accelerated life tests uses the reparameterization
of the Weibull distribution to the smallest extreme value distribution. The basic idea
is to use a linear model for the log-location parameter, �. As a result, the basic
model is

�i D x0
i �;

where �i is the log-location parameter for the i th experimental run, xi is the
specific value for the i th setting for the experimental factors (taking the model into
account), and � is the corresponding vector of regression coefficients. Typically, the
model does include the y-intercept term. Engineers then use maximum likelihood
to estimate the model parameters and log-likelihood to perform inference.

4 Motivating Example

Zelen (1959) discusses a factorial experiment to determine the effect of voltage
and temperature on the lifespan of a glass capacitor. Zelen describes the experi-
ment as “n components are simultaneously placed on test.” Table 1 summarizes
the experimental results. Zelen uses eight capacitors per test stand and Type II
censoring after the fourth failure. Each test stand receives a different combination
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Table 1 Life test results of
capacitors, adapted from
Zelen (1959)

Applied voltage
Temperature (C) 200 250 300 350

170 439 572 315 258

904 690 315 258

1,092 904 439 347

1,105 1,090 628 588

180 439 572 315 258

904 690 315 258

1,092 904 439 347

1,105 1,090 628 588

of temperature and voltage. It is quite clear that the actual experimental protocol
involves sub-sampling. The actual experimental units are the test stands since the
treatment combinations are applied to the stand, not to the individual capacitors.
Each capacitor in a test stand receives the exact same combination of the two factors.
Two capacitors within a stand cannot have different temperatures or voltages. As a
result, the capacitors within a stand are correlated with each other.

Meeker and Escobar (1998) use these data to illustrate how to analyze a reliability
experiment using regression. They treat each capacitor as independent, thus ignoring
the fact that capacitors within cells are correlated. Meeker and Escobar analyze the
experiment as if there are 64 experimental units when in fact there are only 8. As a
result, they treat the data as if they came from a completely randomized design in the
capacitors replicated a total of eight times. The problem is that the actual protocol
is an unreplicated completely randomized design in the test stands.

5 Naive Two-Stage Analysis of Reliability Data
with Sub-Sampling

Freeman and Vining (2010) propose a naive two-step approach to this problem that
assumes:

• Lifetimes within a test stand follow the same Weibull distribution.
• The failure mechanism remains the same across the test stands.
• The impact of treatments is through the scale parameter.
• Test stands are independent and, given the scale parameter, the observations

within a test stand are independent.
• The experimental variability between scale parameters is log-normal.
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5.1 First Stage of the Naive Analysis

Let tij be the observed lifetime for the j th item within the i th test stand. The failure
times follow a Weibull distribution within a test stand, therefore:

f
�
tij

	 D ˇ

�i

�
tij

�i

�ˇ�1

e
�

�
tij
�i

�ˇ

;

where ˇ > 0 is the constant shape parameter and �i is the scale parameter for i th

test stand. The likelihood for an individual test stand with right censoring present is:

L .ˇ; �i / D C
nY

j D1



f .tij/

�ıij


1 � F.tij/

�1�ıij
;

where ıij D 1 if the item fails and ıij D 0 if the item is censored. Again, C is
a constant dependent on the type of censoring but can be taken as C D 1 when
calculating maximum likelihood estimates. The joint log-likelihood for data with
right censoring then becomes:

`.ˇ; �1; : : : ; �m/ D
mX

iD1

nX

j D1

�
ıij log

�
ˇ

tij

�
C ıijzij � ezij

�
:

One then can find the MLEs for ˇ and the �i s by maximizing the joint likelihood
function. Many standard statistical software packages such as Minitab and SAS-
JMP do this analysis.

Meeker and Escobar (1998) show that the Weibull distribution meets the
regularity conditions to derive the asymptotic variance–covariance matrix from the
maximum likelihood estimates. The resulting estimated variance matrix for the
maximum likelihood estimates is:

Ȯ O� D

2
66664

cVar. Ǒ/ bCov. Ǒ; O�1/ : : : bCov. Ǒ; O�m/
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:::
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: : : bCov. O�m�1; O�m/

bCov. Ǒ; O�m/ : : : bCov. O�m; O�m�1/ cVar. O�m/

3
77775
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6666664
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From the log-likelihood one can establish:

�@2`.ˇ; �1; : : : ; �m/

@̌ 2
D

mX

iD1

nX

j D1

"
ıij

ˇ2
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ˇ2 exp.zij/
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Additionally, the second derivatives between all pairs of �i and �j are zero. This
variance matrix will be used in the second stage of the model.

5.2 The Second Stage: The Model Between Experimental Units

This step uses the estimates for the shape parameter and the scale parameters and
their corresponding variances for each experimental unit to model the estimates of
the scale parameters as a linear function of the factors. The most appropriate way to
estimate the model takes into account the variances on the scale parameter estimates
through weighted least squares. In this case, the second stage model is:

O� D X� C �;

where X is the matrix containing the treatment levels of the factors, � is the
vector of the corresponding regression coefficients, and � � MVN.0; V /. The
variance matrix, V , accounts for the scale parameter variance estimates. Since the
covariances are essentially 0, we can simplify the analysis by assuming that V is
diagonal with the non-zero elements simply being < cVar . b�i / >. The resulting
parameter estimates are:

O� D �
XT V �1X

	�1
XT V �1 O�:

The big advantage to this approach is that one can correctly model the experimental
error in current statistical packages that have the ability to fit lifetime distributions
and linear models.

The key to this analysis is a proper understanding of how one can deal with sub-
sampling under normal theory. Once again, the observations within the experimental
unit are correlated. However, one can take into proper consideration the correlation
by replacing the individual observations within the experimental unit by their
average, as long as each experimental unit has the same number of observations. The
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Table 2 Stage one analysis
results

Voltage Temperature O� b�i D log.b�i / cVar . O�i /

200 170 1,262.35 7.141 0.1387

200 180 1,292.78 7.165 0.1390

250 170 1,207.58 7.096 0.1386

250 180 532.85 6.278 0.1387

300 170 683.61 6.527 0.1385

300 180 431.04 6.066 0.1388

350 170 633.86 6.452 0.1384

350 180 510.10 6.235 0.1386

Table 3 Analysis from
minitab, stage two analysis
result

Predictor Coefficient Standard error T p

Constant 14.613 3.249 4.50 0.056

Voltage �0.005638 0.001644 �3.43 0.019

Temperature �0.03682 0.01838 �2.00 0.102

proposed two-stage analysis extends this basic idea to the sub-sampling situation
with Weibull data. The first step uses the Weibull distribution to estimate the
common shape parameter and the different scale parameters, one for each test
stand. The second step models the log transform of the different scale parameters
using weighted least squares where the experimental error terms are given by the
asymptotic experimental error derived in the first step for the log-scale parameters.

Table 2 presents the results from Minitab estimating the eight different scale
parameter assuming constant ˇ. The estimate of the shape parameter is Ǒ

New D
3:62, which is a dramatically different estimate from the shape parameter estimate
in the traditional reliability analysis, which is Ǒ

Trad: D 2:75. This difference in the
shape parameter estimate is the first practical implication of taking the experimental
design into account.

The second step of our proposed new analysis models the resulting maximum
likelihood estimates for the �i ’s using a weighted regression linear model where
the weights are determined by the asymptotic variances from the first step of this
model. The second stage of this analysis can be done in any standard statistical
package. Note that the variance estimates on the different �i are essentially equal
in Table 2. This is a nice result because in the second stage of the model using a
weighted regression is essentially equivalent to standard least squares regression
further simplifying this two-stage analysis method. This is the case because we
have assumed a constant shape parameter, ˇ and the shape parameter is the driving
parameter in the Fisher Information matrix calculations for the variances on the
scale parameters. The results from running the analysis in Minitab are displayed in
Table 3. Table 4 gives the analysis from Meeker and Escobar (1998), which assumes
that all the capacitors are independent.

Several practical differences emerge comparing the results of the new analysis
back to the traditional analysis. First, the Meeker and Escobar analysis overstates the
true experimental degrees of freedom by treating each observation as an independent
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Table 4 Analysis from Meeker and Escobar

Predictor Coefficient Standard error Z p

Intercept 13.4070 2.29584 5.84 0.000

Voltage �0.0059 0.0010398 �5.68 0.000

Temperature �0.0289 0.0129 �2.24 0.0250

Weibull shape 2.74869 0.418739

data point. As a result, their standard errors of the coefficients are all smaller.
The increase in standard error results in the temperature not being a significant
factor at ˛ D 0:05 level for the new analysis. Additionally, the estimates of the
shape parameter are dramatically different between the two analysis methods. The
coefficient estimates for the linear relationship between the log scale parameter and
temperature and pressure are also slightly different.

6 Joint Likelihood Approach

Kensler (2012) performed a simulation study comparing the two stage approach to
the Meeker and Escobar approach. The type I error rate for the two stage was very
close to the nominal. On the other hand, the Meeker and Escobar approach produced
Type I error rates much higher than the nominal. In many cases, so high, in fact, as
to invalidate the analysis.

A major problem with the naive two-stage analysis is that it cannot generate a
joint likelihood for ˇ and the coefficients for temperature and voltage. As a result,
one cannot generate confidence or prediction intervals for such predicted values as
percentiles, which often are of prime importance to a reliability analysis.

Freeman and Vining (2013) propose a joint likelihood approach that requires
a variance component to take into proper account the test stand-to-test stand
variability. If we have i D 1; : : : ; m independent experimental units and j D
1; : : : ; ni sub-samples or observational units per experimental unit, one can specify
the nonlinear mixed model for the Weibull distribution with sub-sampling as:

tijjui � Indep: Weib.ˇ; �i /

F1.tijjˇ; �i ; ui / D 1 � exp

"
�

�
tij

�i

�ˇ
#

log.�i / D �i D xT
i � C ui

f2.ui / � iidN .0; �2
u /;

where xi is the p x 1 vector of fixed factor levels, � is the vector of fixed effect
coefficients,and ui are i D 1; : : : ; m independent random effects. Since the random
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effects are independent, we can write the likelihood as:

L .ˇ; � jData/ D
mY

iD1

Z 1

�1

2

4
niY

j D1



f1.tijjui /

�ıij


1 � F1.tijjui /

�1�ıij
f2.ui /

3

5 dui ;

where f1.tijjui / is the Weibull PDF for the data within an experimental unit and
f2.ui / is the normal PDF for the random effect.

Random effects models, especially nonlinear models, pose computational issues
since it is necessary to integrate over the random effect ui to maximize the likeli-
hood. Gauss-Hermite (G-H) quadrature is an especially effective technique when the
random effect follows a normal distribution. Quadrature involves weighting the sum
of a function values at specific points over the domain of integration. G-H quadrature
uses the roots of the Hermite polynomials to provide these specific points. G-H
quadrature requires the random effect to have the form e�x2

. As a result, a change
of variables is necessary to apply G-H quadrature to our likelihood function. Let
ui D p

2�uvi , then the likelihood before the change of variables is:

L .ˇ; � jData/ D
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niY
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75 dui ;

where g.tijjui / D 

f1.tijjui /

�ıij


1 � F1.tijjui /

�1�ıij for right censored data. Execut-
ing the change in variables results in the following likelihood:
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G-H quadrature results in the following approximation of the likelihood:

L .ˇ; �jData/ �
mY

iD1

1p
�

8
<

:

nkX

kD1
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4
niY

j D1

g.tijj
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2�uqki /wk

3
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=
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where nk is the number of quadrature points, qk are the evaluation points found
from the roots of the Hermite polynomials, and wk are the corresponding weights to
the evaluation points:

wk D 2n�1nŠ
p

�

n2ŒHn�1.qk/�2
:

A common recommendation for the number of quadrature points to minimize bias
is 20 points. Pinheiro and Bates (1995) show that G-H quadrature with 100 points
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is as good as any other solution they investigated to the numerical optimization
problem. In this research, we use 20 quadrature points in all of our analyses, unless
otherwise stated, as an appropriate compromise on computation time, especially in
the simulation studies. The log-likelihood is:

`.ˇ; �jData/ �
mX

iD1

log

0

@ 1p
�

nkX

kD1

2

4
niY

j D1

g.tijj
p

2�uqki /wk

3

5

1

A :

The approximate log-likelihood is maximized through standard maximization
techniques.

A major advantage of using G-H quadrature is that it results in a closed-
form approximate log-likelihood which allows for one to derive a Hessian matrix
and the corresponding asymptotic covariance matrix. Maximum likelihood theory
states that under certain regularity conditions that

p
.n/. O� � �/ converges in

distribution to a multivariate normal. Let ��T D Œˇ; � �, then O�� � Asymptotically
MVN .��; I.��/�1/, where
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:

The estimated covariance for the parameter estimates can be found by substituting
the MLEs for the parameters they estimate into the information matrix, I.��/.
Meeker and Escobar (1998, p. 622) note that the regularity conditions hold for
the Weibull distribution. See Freeman (2010) for the derivation of the information
matrix for the random effects Weibull model. Alternatively, the standard errors for
the model parameters could be calculated through a bootstrapping procedure.

Table 5 summarizes the analysis of the Zelen data using the joint likelihood
approach. The standard errors for the intercept, voltage, and temperature are similar
to those from the naive two-stage analysis. However, the estimate of the shape
parameter from the joint analysis is very similar to that from the Meeker and Escobar
analysis rather than the two-stage analysis, which is much higher. This result
suggests that the two-stage method may be susceptible to bias in the estimation
of the shape parameter.

Freeman and Vining (2013) perform a simulation study to investigate the
properties of the joint likelihood analysis. Their basic conclusions are

• The joint likelihood approach results in Weibull shape parameter estimates that
are robust to model misspecification and random effect variation.

• Weibull scale parameter estimates are consistently good for both the joint
likelihood analysis and the Meeker and Escobar—independent analysis.
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Table 5 Joint likelihood analysis of the Zelen data

Parameter Estimate Standard error T p-value

Weibull shape 2.7753 0.6622 4.19 0.0041

Intercept 13.5257 3.0636 4.42 0.0031

Voltage �0.00589 0.001154 �5.10 0.0014

Temperature �0.02964 0.01808 �1.64 0.1451

Log(�u) �3.0184 9.0655 �0.33 0.7489

• The joint likelihood approach poorly estimates the true value of ��, primarily
due to the small number of degrees of freedom available in realistic reliability
experiments to estimate this error term.

• The two-stage analysis provides a ready solution for practitioners with sub-
sampling data.

• The joint likelihood approach provides a comprehensive solution for analyzing
data from life test designs that are not completely randomized.

• Both analyses provide a motivation for thinking about design in a reliability
context more comprehensively.

7 Extensions to Random Blocks with Sub-sampling

Kensler et al. (2014) extend the two-stage approach to the situation where we have
test stands within random blocks. Like Freeman and Vining (2010), Kensler et al.
estimate the log scale parameter for each test stand assuming a constant shape
parameter across all the test stands in the first stage. They then perform a standard
random block analysis using the estimated log scale parameters as the response. The
model for the second stage analysis is

O� D X� C Z� C !;

where � is the vector of estimated log-scale parameters from the first stage, X is
the model matrix for the treatment effects, � is the vector of model coefficients, Z

is the incidence matrix for the blocks, � is the vector of random block effects, and
! is the vector of random test stand errors. The second stage analysis assumes that
the 	’s are independent and normally distributed with a mean of 0 and a variance
of �2

	 , that the !’s are independent and normally distributed with a mean of 0 and a
variance of �2

! , and that the 	’s and the !’s are independent.
They adapted the battery data from Montgomery (2005, p. 165) as the basis for

their illustrative example. The experimental objective was to determine the effect
of operating temperature on battery life. The batteries came from three batches,
assumed to be random. Each test stand had eight batteries. The researchers used
Type II censoring after the fourth failure.
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Table 6 The battery life data
(in hours)

Temperature
Batch 15 70 125

1 74 34 20

130 40 58

155 75 80

180 80 82

2 126 106 25

150 115 45

159 122 58

188 136 70

3 110 120 25

138 139 82

160 150 96

168 174 104

Table 7 The first stage
analysis of the battery life
data

Batch Temperature �ij �ij D log.�ij/ cVar.�ij/

1 15 197.79 5.287 0.0158

1 70 87.98 4.477 0.0158

1 125 89.85 4.498 0.0158

2 15 208.88 5.342 0.0160

2 70 153.56 5.034 0.0160

2 125 76.28 4.334 0.0158

3 15 189.22 5.243 0.0160

3 70 193.85 5.267 0.0160

3 125 116.05 4.754 0.0159

Table 8 The second stage
analysis of the battery life
data

Source df MS F p-value

Temperature 1 0.8704 16.96 0.009

Block 2 0.0839 1.63 0.284

Residual 5 0.05132

Table 6 summarizes the battery data. Table 7 summarizes the estimates of the
scale parameters, the log scale parameters, and the variances of the log scale
parameters. The estimate of the shape parameter, ˇ is 4.03, which indicates a wear-
out failure mode. Once again, the estimated variances for the estimated log scale
parameters are essentially constant like the example in Freeman and Vining (2010).
As a result, Kensler et al. use standard ordinary least squares in stage two of their
analysis. Table 8 summarizes the second stage regression analysis from Minitab. The
estimates of the two variance components are �2

! D 0:05132 and �2
! D 0:01086.

The second stage analysis does show that the temperature does have an important
effect on the battery life.
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Kensler et al. (2014) performed a simulation study to examine the performance
of the two-stage method. They found that the two-stage method did an excellent
job preserving the Type I error rate. They also found that power for the two-stage
method was close to the nominal for larger ˇ and number of failures; however, the
actual power was less than the nominal for small ˇ’s and only a few failures. Just
as in the Freeman and Vining (2010) paper, the estimates for ˇ from the first stage
tend to be biased.

8 Conclusions and Future Research

The basic conclusions reached so far by this research are:

• The two-stage approach provides a straightforward basis for analyzing reliability
experiments with sub-sampling that practitioners can apply with current standard
statistical software.

• The two-stage approach does a good job preserving the nominal Type I error
rates and a much better job than the traditional analyses.

• The two-stage approach does produce biased estimates of ˇ.
• The two-stage approach does not allow the analyst to compute confidence or

prediction intervals around predicted values.
• The joint likelihood approach has much less bias in its estimates of ˇ.
• The joint likelihood approach does allow analysts to generate appropriate

confidence and prediction intervals.

Future research includes

• submitting the paper that uses the joint likelihood approach for the random blocks
case.

• extending the two-stage and joint likelihood approaches to split-plot experiments.
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