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Abstract In recent years, control charts based on variable selection (VS) algo-
rithms have been suggested for monitoring multivariate data. These charts share
the common idea that process faults usually affect a small fraction of the monitored
quality characteristics. Thus, VS methods can be used to identify the subset of the
variables for which the shift may have occurred. However, the suggested VS-based
control charts differ in many aspects such as the particular VS algorithm and the type
of control statistic. In this paper, we compare VS-based control charts in various
out-of-control scenarios characterizing modern manufacturing environments such
as high-dimensional data, profile, and multistage process monitoring. The main aim
of this paper is to provide practical guidelines for choosing a suitable VS-based
monitoring scheme.
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1 Introduction

Nowadays, the performance of modern processes depends on several related
quality characteristics. The statistical monitoring of “high-dimensional” processes
is known as multivariate statistical process control (MSPC, see Bersimis et al.
2007, for a comprehensive review of the MSPC literature). A critical task for
an MSPC control scheme is assessing whether the multidimensional process is
in-control (IC) or not. Although it is unlikely that all the quality characteristics
shift simultaneously, it is more common that only a subset of variables experiences
abnormal changes. Thus, it could be more efficient to monitor only the potential
out-of-control (OC) variables, which, however, are not known in advance. Thus,
recent developments in the MSPC framework propose using variable selection
(VS) algorithms to identify the suspected variables and then charting only these
characteristics to test whether the multidimensional process is in-control or not
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(see Wang and Jiang 2009; Zou and Qiu 2009; Zou et al. 2010; Capizzi and
Masarotto 2011; Jiang et al. 2012). These VS-based approaches seem attractive
since they offer a very satisfactory performance in OC scenarios involving a shift in
one, two,. . . , all the monitored quality characteristics. They are also coupled with
diagnostic tools to accurately identify the variables responsible for the change.

These recent proposals combine different multivariate control charts with dif-
ferent VS procedures. A “forward” selection algorithm (FVS) has been combined
with a Shewhart-type and a multivariate EWMA (MEWMA) by Wang and Jiang
(2009) and Jiang et al. (2012), respectively. Other VS algorithms such as Least
Absolute Shrinkage and Selection Operator (LASSO, see Tibshirani 1996) and
Least Angle Regression (LAR, see Efron et al. 2004) have been proposed combined
with an MEWMA-based control chart, by Zou and Qiu (2009), Zou et al. (2010)
and Capizzi and Masarotto (2011), respectively. The suggested monitoring schemes
differ not only in the VS algorithm but also in other aspects. In particular, the
control charts based on stepwise regression assume that the number of variables
that can be potentially OC is fixed a priori; this condition has been relaxed for the
LASSO- and LAR-based schemes (LEWMA and LAR-EWMA, hereafter). Indeed,
these control charts assume that any, proper or improper, subset of the monitored
variables can potentially shift. Further, LEWMA and LAR-EWMA are based on
two slightly different control statistics. In addition, LAR-EWMA is developed not
only for testing the status of the process mean but also for detecting an increase in
the total variability.

To provide some guidelines on how to choose between different VS-based
multivariate control charts and give some suggestions for further research, we here
compare and discuss some VS-based control charts recently proposed in the SPC
literature. For a more objective comparison, we use for all the investigated control
charts the general regression model introduced in Capizzi and Masarotto (2011) for
the LAR-EWMA. Indeed, this more general regression framework allows to handle
a wide a variety of multivariate scenarios not only involving shifts in the component
of a multivariate mean vector but also those related to changes in a profile or in a
multistage process.

The paper is organized as follows. Section 2 briefly describes the procedures
based on the variable selection algorithms. Section 3 presents the main results
concerning comparisons, in terms of average run length (ARL), between some
control schemes based on different VS-based algorithms. Details on the multivariate
OC scenarios, discussed in the comparisons, are given in the Appendix. Concluding
remarks are given in Sect. 4.
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2 Statistical Monitoring Based on Variable Selection
Algorithms

2.1 Generalities

Assume that at each time t , t D 1; 2; : : :, independent observations on y t , an n � 1

vector of quality characteristics, are available, and consider the following Gaussian
change-point model

y t �
�

Nn.�; ˙ / if t < � (in-control)
Nn.� C ı; ˝/ if t � � (out-of-control)

(1)

that is, at � , an unknown instant of time, the mean vector and the covariance matrix
shift leading the process to an OC state. Further, we suppose that the IC mean vector
� and the IC covariance matrix ˙ are known.

Concerning the OC mean vector, we assume that, at least approximately, the
mean shift ı takes the form

ı D F ˇ; (2)

where ˇ is a p � 1 vector of unknown parameters and F a suitable n � p matrix of
known constants. Thus, the mean vector may shift along any vector in the subspace
spanned by the columns of F , allowing for a multitude of potential shift directions.
As shown in Capizzi and Masarotto (2011), formulation (2) is sufficiently flexible
to encompass a wide variety of change-point scenarios. Further, suppose there is a
practical interest only in detecting an increase in the total dispersion and assume
that ˝ � ˙ is a positive definite matrix.

Suppose process observations are accumulated in the following MEWMA

zt D .1 � �/zt�1 C �.y t � �/ (3)

with z0 D 0n; 0 < � � 1. Assuming the following (approximated) linear model

zt D F ˇ C at ;

with at � Nn .0n; �=.1 � �/˙ /, the stability of the process mean can be checked
by testing the hypothesis system

�
H0 W ˇ D 0p;

H1 W ˇ ¤ 0p:
(4)

Unfortunately, the standard test, described in any regression textbook, for the
hypothesis system (4) can show a very low sensitivity when only a few compo-
nents of ˇ effectively shift, and a much more efficient approach should consider
alternative hypothesis systems on reduced subsets of the parameters.
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A promising solution consists of using a suitable VS algorithm for determining
subsets, having different sizes, of suspected variables, i.e., subsets of columns of
F corresponding to nonzero coefficients. In particular, for k D 1; : : : ; p, denote
with Jk D fjk;1; : : : ; jk;kg the indices of the selected predictors. Since the set
of coefficients fˇjk;1

; : : : ; ˇjk;k
g correspond to a plausible subset of possible out-

of-control parameters, the VS-based control statistics, for k D 1; : : : ; p, test the
following hypothesis systems:

(
H 0

0 W ˇj D 0 for j D 1; : : : ; p;

H 0
1;k W ˇj ¤ 0 if j 2 Jk and ˇj D 0 if j 62 Jk:

(5)

2.2 Three Different Approaches

Three distinct methods have been suggested for testing the hypothesis system (5).
In Wang and Jiang (2009) and Jiang et al. (2012), users are requested to choose

in advance a suitable value for k. Then, for t D 1; 2; : : :, a standard forward search
algorithm is used to select Jk , and an OC alarm is signaled when the following
control statistic

St;k D Ǒ 0
t;kF 0˙ �1F Ǒ

t;k (6)

is greater than the control limit chosen for giving a desired IC performance. Here,
Ǒ

t;k denotes the GLS estimate of ˇ obtained under H 0
1;k , i.e., constraining to zero

the coefficients of the predictors not in Jk .
In Zou and Qiu (2009), J1; : : : ; Jp are determined using the LASSO algorithm.

Then, for k D 1; : : : ; p, the authors suggest to compute the control statistic

Vt;k D .z0
t ˙

�1F Q̌
t;k/2

Q̌ 0
t;kF 0˙ �1F Q̌

t;k

; (7)

where Q̌
t;k denotes the LASSO estimator of ˇ obtained under H 0

1;k . An OC alarm is
given when the overall control statistic

Wt D max
kD1;:::;p

Vt;k � EŒVt;k�p
VarŒVt;k�

(8)

is greater than a suitable control limit. In (8), the mean and standard deviation of (7)
are computed under the null hypothesis.

Alternatively, Capizzi and Masarotto (2011) suggest selecting J1; : : : ; Jk using
the LAR algorithm and, for each k D 1; : : : ; p, to compute the statistic St;k. Since
it is important to detect not only changes in the process mean but also increases in
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the dispersion, Capizzi and Masarotto (2011) also consider the additional alternative
hypothesis

H 0
1;pC1 W ˇ D 0p and Ef.y t � �/0˙ �1.y t � �/g > n;

and the related one-sided EWMA statistic

St;pC1 D max

 
1; .1 � �/S

.1/
t�1;pC1 C �

.y t � �/0˙ �1.y t � �/

n

!
; (9)

with S0;pC1 D 1. Then, the LAR-based EWMA, for jointly monitoring the process
mean and dispersion, is given by the aggregation of the p C 1 statistics

Mt D max
kD1;:::;pC1

St;k � EŒSt;k�p
VarŒSt;k�

; (10)

where St;k is given by (6) for k D 1; : : : ; p, and by (9) for k D pC1. The combined
control statistic (10) triggers an alarm when it exceeds a suitable control limit.

2.3 First Recommendations and Open Questions

As shown in Zou and Qiu (2009), Capizzi and Masarotto (2011), and Jiang et al.
(2012), control charts like Wt and Mt offer a good protection against shifts occurring
in one, two,. . . , all components. Although the resulting scheme is not necessarily the
best for detecting a shift occurring in a fixed number of components, it is usually
close to the best. Conversely, control charts using a fixed value of k, such as those
proposed by Wang and Jiang (2009) and Jiang et al. (2012), offer the best protection
when shifts involve exactly k variables and unavoidably inferior protection when
a shifts occur in a number of components different from the fixed value. Further,
statistics such as Wt and Mt do not need an a priori choice of k. Thus, we suggest
using an aggregated control statistic.

In addition, we strongly recommend including a control statistic, like St;pC1,
designed for detecting a change in the dispersion. Indeed, joint monitoring of the
process mean and dispersion is relevant per se but also provides some level of
robustness against modeling errors and unforeseen behaviors. Further, as shown
in the univariate case by Reynolds and Stoumbos (2005, 2006), the inclusion of
a variance control statistic can be helpful for efficiently detecting large changes in
the mean.

In the following, studying by simulation the ARL performance of VS-based
control charts, we address the following additional issues: (1) Which variable
selection algorithm should be used? (2) Which is better to use for monitoring, the
elementary control statistic St;k or Vt;k?
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3 A Simulation Study

To address some of the issues discussed in the previous section, we compare five
VS-based monitoring schemes. As recommended, all the schemes are based on a
combination, similar to Mt , of p elementary control statistics used for detecting a
mean shift and of the control statistic St;pC1, given by (9), for detecting increases in
the total variation.

Details of the five control charts are given in Table 1. Note that, when a forward
stepwise search is used, we have, for each k, that St;k D Vt;k . Thus, we present only
one scheme for the forward VS algorithm. However, the control statistics Vt;k , given
in (7), are here based on the LASSO- and LAR-based estimators of the vector ˇ.
Observe that in (6) and (7), at each stage k, the nonzero elements obtained via these
three different VS algorithms are not necessarily the same.

Concerning the choice of the smoothing constant, as suggested in the literature
(Lucas and Saccucci 1990; Prabhu and Runger 1997; Zou and Qiu 2009; Capizzi
and Masarotto 2011; Jiang et al. 2012), a reasonable choice for normally distributed
observations is between 0.1 and 0.3. The performance of the different VS-based
schemes has been investigated for different values of � and � . Because results are
comparable for all the choices of these tuning constants, in the following results
will be referred only to � D 0:1 and � D 1. The five VS-based control charts
are compared in terms of out-of-control ARL evaluated using 500,000 Monte Carlo
replications. The control limits, giving an in-control ARL equal to 500, have been
computed using a stochastic approximation algorithm (Ruppert 1991; Polyak and
Juditsky 1992). Within a reasonable number of iterations, the algorithm estimates
the control limits with a given level of accuracy. Table 1 lists the estimates of
the control limits for the five VS-based control charts. In addition, the mean and
standard deviation of the elementary statistics St;k and Vt;k , for k D 1; : : : ; p C 1,
were computed by simulation.

Suitable choices of the matrix F lead to several change-point models, such as
the “unstructured” scenario, when changes directly involve the components of the
multivariate mean vector, and several “structured” scenarios, such those involving
changes in a profile, that is, in the relationship between a response variable and

Table 1 Five VS-based control charts

FORWARD LASSO/S LASSO/V LAR/S LAR/V

VS algorithm FORWARD LASSO LASSO LAR LAR

Elementary statistics St;k St;k Vt;k St;k Vt;k

Critical values

Unstructured 4.766477 4.578106 4.680325 4.722629 4.715809

Linear profile 5.033247 5.201960 5.011673 4.898843 5.061300

Cubic profile 4.877482 5.140879 4.889752 4.821646 4.870619

Nonparametric profile 5.268651 5.602346 5.546736 5.112253 5.156662

Multistage process 4.677853 4.603569 4.758084 4.726339 4.915792
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one or more explanatory variables, and in a multistage process. Details for the
components of the vector ˇ that are supposed to change are listed, for each change-
point model, in the Appendix. In every case, several possible mean shifts are
considered, including shifts in a single parameter, equal and different shifts in a pair
of parameters, shifts of the same size in either even or odd components and shifts in
variance. Here, we briefly describe the scenarios examined in the simulation study.

3.1 Unstructured

In this case p D n, the matrix F reduces to the identity matrix F D In and the i -th
element of ˇ directly points to a mean shift of the i -th quality characteristic, i.e.,
ıi D ˇi . Following the example in Zou and Qiu (2009), we consider p D n D 15

and assume that the IC distribution is Nn.0n; ˙ / with ˙ D .�ij / D .0:75ji�j j/ for
i; j D 1; 2; : : : ; n and the OC distribution Nn.ˇ; !2˙ / with ! > 1.

3.2 Linear and Cubic Profiles

Under this scenario, we assume that

yt;i D
(

�t;i if t < �

ˇ1 C ˇ2xi C � � � C ˇpx
p�1
i C �t;i if t � �

with xi D .2i � n � 1/=.n � 1/, for i D 1; : : : ; n. Here, �t;i are independent,
zero-mean, Gaussian random variables, with the IC and OC variance equal to one
and !2 > 1, respectively. Thus, in the described scenario, F D .fi;j / D .x

j �1
i /,

˙ D In and ˝ D !2In. In particular, we consider linear (p D 2) and cubic
(p D 4) profiles with n D 4 and n D 8 observations, respectively.

3.3 Nonparametric Profiles

To investigate the performance of the VS-based control chart for nonparametric
monitoring of non-linear profiles, we use the same IC model considered by Zou
et al. (2008), yt;i D 1 � exp.�xi / C �t;i ; where xi D .i � 0:5/=20, i D 1; : : : ; 20,
and the following three OC models:

I. yt;i D 1 � ˇ1 exp.�x
ˇ2

i / C �ti ;
II. yt;i D 1 � exp.�xt;i / C ˇ1 cos.ˇ2�.xt;i � 0:5// C �t;i ;

III. yt;i D 1 � exp.�xt;i � ˇ1 max.0; .xt;i � ˇ2/=.1 � ˇ2//2/ C �t;i .
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Here, �t;i are independent, zero-mean, Gaussian random variables, with the IC and
OC variance equal to one and !2 > 1, respectively. In this case, we set F equal
to the basis matrix of a cubic spline with four equispaced knots within the interval
Œ0; 1�.

3.4 Multistage Processes

We consider an n-state process representable by the linear state-space model

�
yt;i D �i C ci xt;i C vt;i

xt;i D di xt;i�1 C ˇi Ift��g C wt;i

.i D 1; : : : ; n/

where vt;i and wt;i are independent normal random variables with zero mean. The n

elements of the ˇ D .ˇi / vector define the magnitude of the shifts and the stages at
which the shifts occur. It is easy to show that this model is a particular case of (1).
See Capizzi and Masarotto (2011) for the details and, in particular, for the structure
of the F and ˙ matrices. In the simulation, we fix the number of stages to n D 10

and investigate the performance for different shift locations, occurring in one, two,
five and all stages assuming that �i D 0, ci D di D var.wt;i / D var.vt;i / D 1 for
every i .

3.5 Results

Results are summarized in Fig. 1, which shows the following percent relative
differences

100 � ARLrs � MARLr

MARLr

; s D 1; : : : ; 5; (11)

i.e., the percent relative differences between ARLrs, the OC ARL of s-th control
chart in the r-th OC scenario, and MARLr , the mean of the five out-of-control ARL
values, one for each control chart, obtained for the r-th OC scenario. Observe that
the number of the OC scenarios is different for the different cases. In particular,
r D 1; : : : ; 18 for the case of nonparametric and multistage process monitoring,
r D 1; : : : ; 23 for the monitoring of linear and cubic profiles and r D 1; : : : ; 30

in the unstructured case (see the Appendix for a detailed description of each OC
scenario).

A negative (positive) value of (11) can be interpreted as a quicker reaction
(slower) reaction of the s-th control chart to the r-th OC situation, when compared
to the other VS-based control charts.
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Fig. 1 Relative ARL differences of five VS-based control charts for several OC scenarios (see the
Appendix for labels in the x axis)
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Results show that, independently from the multivariate control charts, the
forward- and the LAR-based schemes show a similar behavior that seems to be quite
stable throughout all the different practical contexts. However, while LASSO shows
a substantially negligible advantage for some out-of-control situations, it can also
show a relatively large degradation for other applications, such as nonparametric
profile monitoring. Further, monitoring schemes based on the same VS algorithm
but on different elementary control statistics, i.e., on St;k or Vt;k , offer essentially
the same performance.

4 Conclusions

In this paper, we compared the performance of multivariate control charts based
on three different variable selection procedures. In particular, the compared mul-
tivariate control charts have been implemented for detecting many out-of-control
conditions, even involving increases in process variation, for several MSPC frame-
works. Results show that whereas control charts consisting of the aggregation
of several control statistics, such as those proposed by Zou and Qiu (2009) and
Capizzi and Masarotto (2011), behave quite similarly for different OC applications,
suggestions can be given to practitioners concerning the particular variable selection
procedure to use. As discussed before, the LASSO-based control charts can show
an unsatisfactory performance in detecting some particular OC situations. However,
the forward and LAR-based procedures can be considered substantially equivalent
in terms of OC ARL performance for the investigated practical applications. Thus,
from a practical point of view, multivariate control charts based on forward selection
could be more appealing to users since these charts are more intuitive and simpler
to implement.

Appendix

In the following, we provide details on the OC scenarios listed in the x axes of
Fig. 1. When only variables or stages with an even (odd) index are subject to a shift
of size ı, the OC scenario is indicated with either EvenŒı� or OddŒı�.

1. Unstructured model: 1 D .ˇ1 D 0:5/, 2 D .ˇ1 D 1/, 3 D .ˇ3 D 0:5/, 4 D
.ˇ3 D 1/, 5 D .ˇ1 D 0:5; ˇ2 D 0:25/, 6 D .ˇ1 D 0:5; ˇ2 D 0:5/, 7 D .ˇ1 D
0:5; ˇ2 D 0:75/, 8 D .ˇ1 D 0:5; ˇ3 D 0:25/ 9 D .ˇ1 D 0:5; ˇ3 D 0:5/, 10 D
.ˇ1 D 0:5; ˇ3 D 0:75/, 11 D .ˇ3 D 0:5; ˇ8 D 0:25/, 12 D .ˇ3 D 0:5; ˇ8 D
0:5/, 13 D .ˇ3 D 0:5; ˇ8 D 0:75/, 14 D ˇ1 D 0:5; ˇ2 D 0:25; ˇ3 D 0:25/,
15 D .ˇ1 D 0:25; ˇ2 D 0:25; ˇ3 D 0:5/, 16 D .ˇ2 D 0:5; ˇ3 D 0:25; ˇ8 D
0:25/, 17 D .ˇ2 D 0:25; ˇ3 D 0:25; ˇ8 D 0:5/, 18 D .ˇ7 D 0:5; ˇ8 D
0:25; ˇ9 D 0:5/, 19 D .ˇ7 D 0:25; ˇ8 D 0:75; ˇ9 D 0:5/, 20 D .ˇ6 D
0:5; ˇ8 D 0:25; ˇ10 D 0:5/, 21 D .ˇ6 D 0:25; ˇ8 D 0:75; ˇ10 D 0:5/,
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22 D .EvenŒ0:25�), 23 D .EvenŒ0:5�), 24 D .OddŒ0:25�), 25 D .EvenŒ0:5�),
26 D .EvenŒ0:5�, OddŒ0:25�), 27 D .OddŒ0:5�; EvenŒ0:25�), 28 D .! D 1:2/,
29 D .! D 1:5/, 30 D .! D 2/.

2. Linear profiles: 1 D .ˇ1 D 0:1/, 2 D .ˇ1 D 0:3/, 3 D .ˇ2 D 0:2/, 4 D
.ˇ2 D 0:5/, 5 D .ˇ3 D 0:2/, 6 D .ˇ3 D 0:5/, 7 D .ˇ1 D 0:1; ˇ2 D 0:1/,
8 D .ˇ1 D 0:4; ˇ2 D 0:2/ 9 D .ˇ1 D 0:4; ˇ2 D 0:6/, 10 D .ˇ1 D
0:6; ˇ2 D 0:6/, 11 D .ˇ1 D 0:1; ! D 1:2/, 12 D .ˇ1 D 0:3; ! D 1:2/,
13 D .ˇ1 D 1; ! D 1:2/, 14 D .ˇ2 D 0:1; ! D 1:2/, 15 D .ˇ2 D 0:4; ! D
1:2/, 16 D .ˇ1 D 1:2; ! D 1:2/, 17 D .ˇ1 D 0:1; ˇ2 D 0:1; ! D 1:2/,
18 D .ˇ1 D 0:4; ˇ2 D 0:2; ! D 1:2/, 19 D .ˇ1 D 0:4; ˇ2 D 0:6; ! D 1:2/,
20 D .ˇ1 D 0:6; ˇ2 D 0:6; ! D 1:2/, 21 D .! D 1:2/, 22 D .! D 1:5/,
23 D .! D 2/.

3. Cubic profiles: 1 D .ˇ1 D 0:1/, 2 D .ˇ1 D 0:3/, 3 D .ˇ1 D 1/, 4 D .ˇ2 D
0:2/, 5 D .ˇ2 D 0:4/, 6 D .ˇ2 D 1:2/, 7 D .ˇ4 D 0:2/, 8 D .ˇ4 D 0:5/,
9 D .ˇ1 D 0:1; ˇ2 D 0:1/, 10 D .ˇ1 D 0:1; ˇ3 D 0:2/ 11 D .ˇ1 D
0:1; ˇ4 D 0:2/, 12 D .ˇ2 D 0:2; ˇ3 D 0:2/, 13 D .ˇ2 D 0:4; ˇ4 D 0:2/,
14 D .ˇ3 D 0:5; ˇ4 D 0:5/, 15 D .ˇ1 D 0:1; ˇ2 D 0:1; ˇ3 D 0:1/,
16 D .ˇ1 D 0:1; ˇ3 D 0:2; ˇ4 D 0:1/, 17 D .ˇ2 D 0:1; ˇ3 D 0:3; ˇ4 D 0:2/,
18 D .ˇ1 D 0:1; ˇ2 D 0:1; ˇ3 D 0:1; ˇ4 D 0:1/, 19 D .ˇ1 D 0:1; ˇ2 D
0:2; ˇ3 D 0:1; ˇ4 D 0:2/, 20 D .ˇ1 D 0:2; ˇ2 D 0:1; ˇ3 D 0:2; ˇ4 D 0:1/,
21 D .! D 1:2/, 22 D .! D 1:5/, 23 D .! D 2/.

4. Non parametric profiles. The following OC scenarios are referred to possible
shifts in the regression coefficients of models I, II and III. 1 D .I; ˇ1 D
1:00; ˇ2 D 1:30/, 2 D .I; ˇ1 D 1:00; ˇ2 D 1:50/, 3 D .I; ˇ1 D 1:10; ˇ2 D
1:00/ 4 D .I; ˇ1 D 1:30; ˇ2 D 1:00/, 5 D .I; ˇ1 D 1:20; ˇ2 D 1:00; ! D
1:10/, 6 D .I; ˇ1 D 1:00; ˇ2 D 1:20; ! D 1:30/, 7 D .II; ˇ1 D 0:10; ˇ2 D
3:00/, 8 D .II; ˇ1 D 0:30; ˇ2 D 3:00/, 9 D .II; ˇ1 D 0:10; ˇ2 D 2:00/

10 D .II; ˇ1 D 0:30; ˇ2 D 2:00/, 11 D .II; ˇ1 D 0:20; ˇ2 D 4:00; ! D 1:10/,
12 D .II; ˇ1 D 0:20; ˇ2 D 4:00; ! D 1:30/ 13 D .III; ˇ1 D 2:00; ˇ2 D 0:90/,
14 D .III; ˇ1 D 4:00; ˇ2 D 0:90/, 15 D .III; ˇ1 D 2:00; ˇ2 D 0:75/, 16 D
.III; ˇ1 D 4:00; ˇ2 D 0:75/, 17 D .III; ˇ1 D 2:00; ˇ2 D 0:90; ! D 1:20/,
18 D .III; ˇ1 D 4:00; ˇ2 D 0:75; ! D 1:20/.

5. Multistage process. In the following, ˇj indicates the shift of size ˇ, occurring at
the j -th stage, j D 1; : : : ; 20. 1 D .ˇ1 D 0:75/, 2 D .ˇ5 D 0:75/, 3 D .ˇ10 D
0:75/, 4 D .ˇ1 D 1:5/, 5 D .ˇ5 D 1:5/, 6 D .ˇ10 D 1:5/, 7 D .ˇ2 D 0:6; ˇ8 D
0:6/, 8 D .ˇ4 D 0:6; ˇ5 D 0:6/, 9 D .ˇ2 D 1:2; ˇ8 D 1:2/, 10 D .ˇ4 D
1:2; ˇ5 D 1:2/, 11 D .ˇ2 D 1:8; ˇ8 D 1:8/, 12 D .ˇ4 D 1:8; ˇ5 D 1:8/,
13 D .ˇ1 D ˇ5 D ˇ10 D 0:2; ˇ3 D ˇ7 D 0:4/, 14 D .ˇ3 D ˇ5 D ˇ7 D
0:2; ˇ4 D ˇ6 D 0:4/, 15 D .ˇ1 D ˇ5 D ˇ10 D 0:6; ˇ3 D ˇ7 D 0:4/,
16 D .ˇ3 D ˇ5 D ˇ7 D 0:6; ˇ4 D ˇ6 D 0:4/, 17 D .EvenŒ0:1�, OddŒ0:2�),
18 D .EvenŒ0:5�, OddŒ0:25�).
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