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Preface

The XIth International Workshop on Intelligent Statistical Quality Control took
place in Sydney, Australia from August 20 to August 23, 2013. It was hosted
by Professor Ross Sparks, CSIRO Mathematics, Informatics and Statistics, North
Ryde, Australia. The invitational workshop was jointly organized by Professors S.
Knoth, W. Schmid, and R. Sparks. The 23 papers in this volume were carefully
selected by the scientific program committee, reviewed by its members, revised by
the authors and, finally, adapted by the editors for this volume.

The focus of the book lies on three major areas of statistical quality control:
statistical process control (SPC), acceptance sampling and design of experiments.
The majority of the papers deal with statistical process control while acceptance
sampling, and design of experiments are treated to a lesser extent.

The book is divided into four parts. Subject of Part I is statistical process control.
Part II is devoted to acceptance sampling. Part III covers the design of experiments,
while in Part IV related fields are considered.

Part I: Statistical Process Control

Social networks are increasingly attracting the attention of academic and industry
researchers. Monitoring communications between clusters of suspicious individuals
is important in flagging potential planning activities for terrorism events or crime.
Governments are interested in methodology that can forewarn them of future
terrorist attacks or social uprisings in disenchanted groups of their populations. In
the paper of Sparks a range of approaches is examined that could be used to monitor
communication levels between suspicious individuals.

Woodall and Driscoll deal with the monitoring of a rare event. A review of
some recent results is given and several new approaches are offered. Because some
of the competing monitoring procedure have implicit headstart features, there are
compelling arguments for the use of steady-state performance metrics. The choice

v
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of an appropriate performance metrics is discussed in detail. The strong adverse
effect of Phase I parameter estimation on Phase II performance of various charts is
summarized. In addition, the important practical issue of the effect of aggregation
of counts over time, some generalizations of standard methods, and some promising
research ideas are discussed.

Big data is a popular term that is used to describe the large, diverse, complex,
and/or longitudinal datasets generated from a variety of instruments, sensors,
and/or computer-based transactions. In Megahed and Jones-Farmer several big
data applications are discussed to highlight the opportunities and challenges for
applied statisticians interested in surveillance and statistical process control. The
goal of the authors is to bring the research issues into better focus and encourage
methodological developments for big data analysis in these areas.

Epprecht presents a survey of the research on techniques for the statistical
control of industrial multiple-stream processes. These are processes in which the
same type of item is manufactured in several streams of output in parallel, or still
continuous processes in which several measures are taken at a cross section of the
product. This paper seems to be the first literature review on this topic. Essential
differences in the underlying models are stressed and issues for further research are
pointed out.

Yashchin considers a unified methodology based on the use of likelihood ratio
tests to monitor processes. This approach leads to control schemes that provide good
statistical performance and are easy to implement. They depend on just one design
parameter and require a limited computational effort that is dynamically adjusted
based on the process conditions. An example pertaining to multivariate control of
the normal mean is discussed in detail.

Lazariv and Schmid give an overview about variance control charts for time
dependent processes. In their paper, they consider charts based on the likelihood
ratio approach and the generalized likelihood ratio approach, the sequential proba-
bility ratio method and the generalized sequential probability ratio procedure, the
Shiryaev–Roberts procedure and a generalized Shiryaev–Roberts approach, and
different types of exponentially weighted moving average (EWMA) charts. Within
an extensive simulation study, these schemes are compared with each other. In order
to measure the performance of the schemes, the average run length and the average
delay are used.

Controlling both increases and decreases in a parameter by using a control
statistic with an asymmetrical distribution, frequently leads to an ARL-biased chart.
This means that some out-of-control ARL values are larger than the in-control ARL.
Knoth and Morais discuss the idea of ARL-unbiased charts, provide instructive
illustrations of ARL-(un)biased charts, relate ARL-unbiased Shewhart charts with
the notions of unbiased and uniformly most powerful unbiased tests, and briefly
discuss the design of EWMA charts not based on ARL(-unbiasedness).

The paper of Su, Gan, and Tang concerns with cumulative sum (CUSUM)
charts. If the density of the in-control process is unknown, they propose to
estimate its density by a kernel density estimator. The performance of this chart is
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investigated for unimodal distributions. The obtained results reveal that this chart
works well if a sufficient number of observations of the in-control process are
available.

In Yang and Arnold, EWMA control charts based on the process proportions
and an arcsin transformation are proposed to monitor the process mean and
variance simultaneously. The sampling properties of the new monitoring statistics
are analyzed. EWMA recursions are applied to these quantities. The behavior of the
new schemes is analyzed by making use of its average run lengths.

Capizzi and Masarotto concern with the application of variable selection
(VS) algorithms for monitoring multivariate data. These charts share the common
idea that process faults usually affect a small fraction of the monitored quality
characteristics. Hence, VS methods can be used to identify the subset of the
variables for which the shift may have occurred. However, the suggested VS-based
control charts differ in many aspects such as the particular VS algorithm and the type
of the control statistic. In this paper, some VS-based control charts are compared
with each other in a variety of out-of-control scenarios.

Göb and Lurz use an extension of the Camp-Meidell inequality to determine
the control limits of a Shewhart chart. This procedure does not make use of any
distributional assumption but only needs the existence of moments higher than 2.
It is discussed how the moments in the bounds can be estimated from a Phase I
sample. Appropriate estimators, their properties, and the effect of estimation on the
properties of the process monitoring charts are investigated. In particular, the use of
empirical Camp-Meidell bounds in quantile control charts is studied.

When simultaneous schemes are used, the quality characteristic is deemed
to be out of control whenever a signal is triggered by either individual chart.
Morais, Ramos, and Pacheco deal with the problem of misleading signals (MS),
meaning that a shift in the process mean can be misinterpreted as a shift in the
process variance and vice versa. Conditions are discussed to achieve values for
the probability of a misleading signal smaller than or equal to 0.5 and alternative
simultaneous Shewhart-type schemes are explored.

Saniga, Davis, Faraz, McWilliams, and Lucas investigate the characteristics
of economic control chart designs for both Shewhart and CUSUM control charts.
Authors in the past have made some suggestions regarding the design of these charts,
where design is defined as finding the values of sample size, intersample interval
and control limit (Shewhart), or control parameters for the CUSUM chart. In the
present paper, the authors run a large number of experiments consisting of many
configurations of the parameters and describe and model the results in terms of the
actual economic designs.

Hryniewicz analyzes SPC procedures when the quality parameters of interest
can be hardly directly monitored. Training data are used to build a model that is
used for the prediction of the value of an unobservable variable of interest. In the
paper, a model of a process is considered when traditionally applied assumptions
are violated. In such a case, it is shown that some non-statistical prediction models
proposed in the area of data-mining perform better than popular linear prediction
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models. However, new problems have to be considered when shifts in the levels
of process parameters may influence the performance of applied classification
algorithms.

Nowadays, there are many applications of SPC outside engineering, e.g., in
public health and finance. Di Bucchianicco and van den Heuvel investigate to
which extent modern statistical theory like hypothesis testing, prediction intervals,
and tolerance intervals may be used to extend Shewhart’s ideas in the above-
mentioned wider range of application domains. Alternative settings of statistical
control proposed in the literature including Bayesian settings are discussed as well.

Part II: Acceptance Sampling

Wilrich considers sampling plans which have besides the specification limit an
additional limit. Such extended sampling plans are, e.g., used for the evaluation
of bacterial contamination in foods, the amount of active ingredient used in
formulating drug products, and the strength of concrete. The operating characteristic
function of these extended sampling plans for inspection by variables is derived,
and the advantages/disadvantages in comparison with unextended sampling plans
are discussed.

The concept of a fractional acceptance number is particularly useful for short-
run food manufacturing processes involving a measurable quality characteristic
such as the percentage sugar or fat content. Govindaraju and Jones propose a
new fractional acceptance number sampling plan, which is a mix of attribute and
variables methods. The operating characteristics of the proposed plan are evaluated
using common error distributions and the incomplete beta function.

Steland extends the methodology of acceptance sampling for variables with
unknown distributions when additional sampling information is available to such
settings. Based on appropriate approximations of the operating characteristic,
new acceptance sampling plans are derived that control the overall operating
characteristic. The results cover the case of independent sampling as well as the
case of dependent sampling. In particular, a modified panel sampling design and the
case of spatial batch sampling are studied. The latter allows to detect and analyze
local clusters of degraded or damaged modules in photovoltaics.

Part III: Design of Experiments

Vining, Freeman, and Kensler point out that the reliability of products and
processes will become increasingly important in the near future. The paper begins
with a review of the current practice for planning reliability experiments. It then
reviews some recent work that takes into proper account the experimental protocol.
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A basic issue is that most reliability engineers have little training in planning
experiments while most experimental design experts have little background in
reliability data.

Hassler, Silvestrini, and Montgomery analyze Bayesian D-optimal designs,
which have become computationally feasible to construct for simple prior distribu-
tions. They identify several concerns for DB-optimal designs. It is shown that some
parameter values give rise to models that have little utility to the practitioner for
effect screening. For some generalized linear models such as the binomial, inclusion
of such models can cause the optimal design to spread out toward the boundary of
the design space. This can reduce the D-efficiency of the design over much of the
parameter space and result in the Bayesian D-optimal criterion’s divergence from
the concerns of a practitioner designing a screening experiment.

The Bayesian Lasso is a variable selection method that can be applied in
situations where there are more variables than observations. Thus both main effects
and interaction effects can be considered in screening experiments. To apply the
Bayesian framework to experiments involving the effect heredity principle, which
governs the relationships between interactions and their corresponding main effects,
several initial tunings of the Bayesian framework are required. Noguchi, Ojima, and
Yasui propose models that do not require the initial tuning values to be specified in
advance.

Part IV: Related Areas

The time scale need not be chronological if a failure occurs based on the cumulative
damages suffered from its usage or exposure to some risks. The true time scale need
not be supported by the observed field reliability data. Yamamoto and Takeshita
use simulations to investigate the properties of time scale models and the sample
properties of their estimates. The estimator and the time scale functions are applied
to a problem of finding a suitable time scale for field reliability data.

Lenz analyzes the phenomenon that the naive Bayesian classifier may dominate
the proper one as happened in clinical studies. The reason for the dominance relation
lies in a mix of an a-priori not fixed dimension of the state-space (symptom space)
given a disease, the feature selection procedure, and the parameter estimation. Esti-
mating conditional probabilities in high dimensions when using a proper Bayesian
model can lead to an “over fitting,” a missing value problem, and, consequently, to
a loss of classification accuracy.
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Statistical Process Control



Social Network Monitoring: Aiming to Identify
Periods of Unusually Increased Communications
Between Parties of Interest

Ross Sparks

Abstract Social networks are increasingly attracting the attention of academic and
industry researchers. Monitoring communications within clusters of suspicious indi-
viduals is important in flagging potential planning activities for terrorism events or
crime. Governments are interested in methodology that can forewarn them of future
terrorist attacks or social uprisings in disenchanted groups of their populations.
This paper will examine a range of approaches that could be used to monitoring
communication levels between suspicious individuals. The methodology could be
scaled up to either understand changes in social structure for larger groups of
people, to help manage crises such are bushfires in densely populated areas, or
early detection of disease outbreaks using surveillance methods. The methodology
could be extended into these other application domains that are less invasive of
individuals’ privacy.

Keywords Communication monitoring • Multivariate EWMA • Social network
data

1 Introduction

Security organisations see value in capturing and analysing social media content for
the early detection of emerging threats. These could involve either physical threats
to facilities, civil unrest, threats of attacks or terrorism. Early detection of emerging
risks enables security organisations to vary their surveillance efforts by focusing
on areas that minimise negative impacts. Although security organisations are able
to collect a massive amount of information, they are only able to process limited
amounts due to the total volume of activity. The ability to monitor e-mail, phone and
text conversation between two parties has been possible for some time, e.g., tracking
suspects of money laundering through journaling. Journaling involves obtaining
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everything sent and received by suspects. It is therefore possible to monitor the
email conversations between two people without them knowing.

The surveillance of user activity within social networks or communication
between people generates additional ethical and legal risks. Only the truly suspi-
cious people should be the target of surveillance activities and only aggregated
trends in communications should be analysed. It is important that the monitoring
technology avoids the targeting of innocent parties as much as possible as well as
preserving the privacy of innocent parties when alarming unusual interactions or
trends.

Knowing where to focus analytical and surveillance efforts is the challenge.
Large volumes of data make it difficult to know where to invest the effort. Other
benefits of focusing the surveillance effort on the higher risk aspects of social media
are reduced privacy breaches and improving the scalability of the surveillance task.
Surveillance of social networks in some countries is a growing activity.

The Department of Homeland Security in the USA searches digital media for
information on disasters, suspicious packages, street closures, risks, bomb threats,
etc. The popularity of consumer cloud services, such as Face-book, YouTube and
Linked-In, provides new targets for security monitoring. Agencies such as the
Federal Bureau of Investigation and the National Security Agency routinely collect
and monitor information about internet activity for reasons related to national
security. The FBI and other government agencies have been monitoring email
communications for several years. One of the FBI’s earlier email monitoring
programs, codenamed “Carnivore”, used conventional packet-sniffing technologies
to monitor email communications. Packet-sniffing technologies are legal as long
as the data are filtered adequately (e.g., see Ohm et al. 2007). Carnivore was
designed to harvest only the information sought, allowing all other information to
pass through the system, but was criticised for several security flaws.

The Telegraph reported on Friday 24 August 2012 that Ministers in the United
Kingdom are preparing to monitor the email exchanges and website visits of
every person in the UK. The Sunday Times reported that internet companies will
be instructed to install hardware enabling the government’s security agencies to
monitor any phone calls, text messages, emails and websites accessed in real time.
Ministers believe it is essential that the police and security agencies have access
to such communications data in order to tackle terrorism and protect the public.
The technology is meant to be able to access the content of such communications
without a warrant. The legislation would enable it to trace individuals or groups,
recording how often and for how long, they are in communication.

Face-book, to abide by the law, cooperates with the police. Face-book’s software
focuses on conversations between its members. The scanning technology uses
historical chat records from criminals and sexual predators to search for phrases
in electronic conversations. The relationship analyses need to highlight concerns
before Face-book employees examine communications and make the final decision
on whether to warn the authorities.

Criminals self-promote and provide evidence on sites such as Face-book and
Twitter. The following examples were reported by The Washington Post:
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• Members of an alleged street gang were reportedly using MySpace to funnel
information regarding a potential hit on a federal witness.

• One alleged drug dealer voiced his complaints on an online site regarding how
an individual was “watering down the pack” of the hallucinogen PCP.

• Authorities used Face-book to arrest a man wanted in a gang-related stabbing
after he posted his new hometown and contact information.

Law enforcement agencies are monitoring social network pages for any gang-
related conversations that could be crime-related. Among the most useful items
are the lists of friends, photos and contact information. The New York Police
Department has a unit whose task is to hunt down criminals using social media
networks. The public are using sites like Face-book to express concerns and
complaints regarding law enforcement actions in and around where they live thus
offering useful information for prevention strategies.

The many forms of communications and the increasing flow of information
between groups of people add to the increasing challenge. There is the difficulty
with gauging the quality of the information. Developing methods for analysing this
information quickly in a way that assesses what is quality information and avoids
the influence of biased/wrong information is difficult. For example, initial reports
from scenes of emergencies tend to be inaccurate. Perceptions over time change and
these are not always documented on social media. The analytical challenge relating
to selection biases and disinformation is enormous.

Although the final aim is to come up with a unified approach to monitoring
social media interaction, this paper focuses on the smaller issue of trying to
identify cells with increased levels of communications indicating some activity
is potentially being planned and also flagging who is involved with these plans
from the target interest group. Section 2 discusses the methodology. Section 3
introduces the exponentially weighted moving average (EWMA) statistic that is
useful for both smoothing the counts in time to reveal trends and for accumulating
memory to gain sufficient power to detect significant increases from expected levels
of communication. Section 4 outlines the algorithms proposed in this paper for
identifying significant increases in levels of communication.

2 The Methodology

We will start very simply by looking at who contacts whom at time period t(taken
as a day in this paper). We aggregate over all means of communication, e.g., Twitter,
Face-book pages, sms, phone, e-mail, etc. In a simple illustrative example, we
monitor the communication levels within a targeted group of 20 individuals. Label
them as persons A to T. We monitor the number of times A contacts: B, C, : : :, T; B
contacts: A, C, : : :, T; etc. Say we have daily total numbers of directional contacts
(e.g., A phones B) between each person in the target group. Figure 1 represents the
cells in which we investigate counts over a sequence of time periods. Figure 1 limits
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Fig. 1 The target communication network with temporal memory

itself to recording communication counts for the past twenty time periods. Looking
at a fixed group of the same 20 people without changes may be limiting so we will
explore ways of changing the group members by swapping people in and out based
on their communication level with the targeted group.

The diagonal elements of Fig. 1 for each time period are zero because people
don’t contact themselves, but I prefer the diagonal elements to be the number of
times that potential criminals contact close family members. This could be used as a
surrogate for a family incident being the reason for an escalation of communication
levels with an individual. This paper aims to develop technology that will be useful
in identifying a sudden unusual increase in communications between individuals
highlighting that some criminal activity or terrorism event is potentially being
planned. The remaining sub-sections will propose several ways of achieving the
aim of detecting unusual period of increased communication between sub-networks
in the population.
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Before we outline the approach we define some notation. Let yi;j;t be the number
of times the i th person contacted the j th person during time period t , and let yi;i;t be
the number times the i th person contacted close family members during time period
t . Let �i;j;t be the expected value for count yi;j;t at time t . This mean count �i;j;t is
considered stationary and not a function of time t , although the theory is developed
for the non-stationary mean situation.

If spatio-temporal surveillance task is tackled with a lattice structure as in
Glaz et al. (2001), then this task looks decidedly similar to that which is outlined in
Glaz et al. (2001) (see Fig. 1). Where this task differs from that outlined in Glaz et al.
(2001) is that their lattice dimensions are longitude, latitude and time. Each
dimension has a natural ordering in this spatio-temporal setting (see also Sparks
et al. 2012). When monitoring communication levels in the network the dimensions
are people contacting others and time; while time has a natural order, there is no
natural ordering of the people in the lattice. This means that the spatio-temporal
monitoring technology can’t be taken over into the network communication volume
monitoring without developing a meaningful order for people in the network. This
paper develops a plan that does not require the people to be ordered into neighbours.

2.1 Multivariate EWMA Statistic

The multivariate EWMA statistic (e.g., see Lowry et al. 1992; Sparks 1992) is used
to both retain memory of past communication counts as well as the smoothing of
the counts to reveal trends. We therefore examine the multivariate EWMAs of both
the counts and their means, that is, by calculating

ewmai;j;t D ˛yi;j;t C .1 � ˛/ewmai;j;t�1

and

ewm�i;j;t D ˛�i;j;t C .1 � ˛/ewm�i;j;t�1

where 0 < ˛ < 1 (Although the means are treated as known here, in practice,
they are estimated using historical records, e.g., see Sparks and Patrick 2014).
This temporal memory management differs from the scan statistic which advocates
a moving time window for retaining temporal memory (e.g., see Kulldorf and
Nagarwalla 1995). The temporal memory management approach is similar to the
EWMA scan used in Sparks et al. (2012) where it has been shown in certain
circumstances to be superior to the moving window scan of T D 10.

The scan plan (Tango 1995) uses an exhaustive search of different size windows
thus requiring significant computational effort if the targeted group involves several
thousand individuals, particularly when the order does not matter. Therefore its
application is unrealistic unless it is limited to monitoring small groups of targeted
people, e.g., when monitoring a 1,000 person network for crime gangs of 5 then
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there are over 8 billion potential gangs of 5 to scan. Therefore technology that is less
computational onerous is needed for monitoring several thousand targeted peoples’
communications.

2.2 An Algorithm for Detecting Unusually High
Communication Networks Based on Order Statistics

An alternative to the scan statistic is considered next. This is used to provide early
warnings of significantly increased communication periods for clusters of people
in the communication network. The approach tries to identify groups of people
(communication networks) with elevated communication levels.

A very simple example is now used below to demonstrate the plan. This assumes
that we are examining the daily communication counts between ten people labelled
A, B, C, D, E, F, G, H, I and J. Consider the communication counts in Table 1
as those for a particular day. Their respective expected level of communication

Table 1 Simple example of communication counts and expected counts
������������Contacting

Contacted
A B C D E F G H I J

A 0 6 5 0 0 0 0 0 0 0

B 4 0 3 0 0 0 0 0 0 0

C 3 3 0 0 0 0 0 0 0 0

D 0 0 0 0 5 2 1 0 0 0

E 0 0 0 2 0 2 0 0 0 0

F 0 0 0 2 0 0 1 0 0 0

G 0 0 0 1 1 1 0 0 0 0

H 0 0 0 0 0 0 0 0 3 2

I 0 0 0 0 0 0 0 2 0 2

J 0 0 0 0 0 0 0 2 2 0

Contacting person Expected daily communication levels (expected/average
number of calls)

A 0 2.1 1.7 0 0 0 0 0 0 0

B 1.9 0 1.3 0 0 0 0 0 0 0

C 0.6 0.4 0 0 0 0 0 0 0 0

D 0 0 0 0 4.5 2.1 0.6 0 0 0

E 0 0 0 2.5 0 2.40 0.4 0 0 0

F 0 0 0 1.5 0.6 0 0.9 0 0 0

G 0 0 0 0.5 1.0 0.8 0 0 0 0

H 0 0 0 0 0 0 0 0 2.5 2.4

I 0 0 0 0 0 0 0 2.1 0 2.0

J 0 0 0 0 0 0 0 1.9 1.8 0
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Fig. 2 The qq-plot used to
determine the number of
people to scan for detecting
increased communication
levels
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is included at the bottom of the table. In other words, Table 1 reports the daily
count in rows 2 to 11 of the table, and the expected daily communication levels
in rows 13 to 22. We will assume that counts are Poisson distributed and that
communications between individuals are independent once we have corrected for
their mean. The individual communication counts are investigated in term of their
departure from expected. Their signal-to-noise ratios are ordered from largest to
smallest. For the example in Table 1, we calculate the individual communication
signal-to-noise ratios for those with non-zero expected values using square root of
cell counts minus square root of expected values all times 2. This is approximately
standard normally distributed for Poisson counts. These signal-to-noise ratios are
plotted against standard normal quantiles using the qq-plot (e.g., see Fig. 2 for the
data in Table 1). We ignore diagonal cells (because they don’t vary). The solid line
in Fig. 2 is when the sample matches the theoretical values. The number of high
end order statistics above the dashed line determines the number of connections that
are significantly higher than expected. For those higher than expected there are six
directed communications that are above the dashed line. The departure in these from
expected is considered, i.e., total counts for these are 6C5C4C3C3C3 D 24 and
total expected values are 2:1 C 1:7 C 1:9 C 1:3 C 0:6 C 0:4 D 8 giving a signal-to-
noise ratio of 5.7. This is then compared to a threshold (found by simulation) to see
if communication has elevated significantly. The size of the threshold determines
the average time between signals when there is no change in communication levels.
The approach can be scaled up to the more complex task where the average length of
conversations between individuals, and text mining are included. An example is the
monitoring of the average length of conversations and counts of key phrases of the
conversations simultaneously with communication counts. This would be useful to
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assess the nature of the increased communications as well as identifying the nature
of changes in conversations. The main advantage of the group of ordered statistics
approach is that the methodology is invariant of the ordering of the target group,
whereas applying the scan statistic is highly dependent on the ordering of people in
the lattice structure.

3 Simulated Example of Application

Assume we are monitoring 1,000 people who have been convicted of a violent crime
before and are currently not in jail. We will simulate a network of criminal gangs
involving 100 independent groups of ten individuals; however, this knowledge will
be treated as unknown. The mean communication daily counts between individuals
within a gang are taken as uniform on the interval of 0.1 to 3 during periods when no
crime is being planned, and 0.0001 for individuals between gangs. A step change
in communications of ı for all individuals in the gangs will be simulated at the
start of their plans for the crime. This may be a little unrealistic, but we have no
information on common communications trends while gangs plan a crime; besides
this may vary from gang to gang. The plan used m D 25, 50, 75 or 100 rather than
using the qq-plot to determine the level of aggregation.

The following outbreaks, which are always taken as within the social network,
were considered: (the plan would detect it much sooner if gangs spanned networks
that usually did not communicate)

Scenario 1: One cell of ten individuals. (Total communication mean
count D 136.61).

Scenario 2: Two neighbouring cells of ten individuals. (Total communication
mean count D 275.25).

Scenario 3: Two non-neighbouring cells of ten individuals. (Total mean count D
294.76).

Scenario 4: Three independent cells involving 7 of the 10 within each cell. (Total
mean count D 204.2).

Scenario 5: Four independent cells involving 6 of the 10 within each cell. (Total
mean count D 194.95).

Scenario 6: Four non-neighbouring cells of ten individuals (Total mean count D
385.82).

It is surprising that the best level of aggregation is for the 25 highest order
statistics for all shifts in Tables 2, 3 and 4. The relative advantage for selecting
m D 25 is less clear if the communication outbreak involves more people, e.g., for
Scenarios 5 & 6 there is less of a difference between the choice of m D 25 and
m D 50. For improved diagnosis the best choice is to have m nearly as large as
the number of cells in the outbreak. Therefore, the choice of m that is best for early
detection and diagnosis unfortunately differ.
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Table 2 Average days to detection of the hidden simulated outbreaks for Scenarios 1 & 2 where
ı is the increase in the mean number of calls for each individual in the network planning a crime

Scenario 1 2
������ı

m
25 50 75 100 25 50 75 100

0.0 100:8 99:8 100:3 100:2 101:4 100:2 100:3 100:2

0.5 21:7 22:2 22:6 23:8 15:9 16:0 16:2 16:2

1.0 8:8 9:7 10:5 10:9 7:1 7:5 7:8 8:1

2.0 4:5 5:0 5:5 5:9 3:8 3:9 4:3 4:8

3.0 3:4 3:7 3:9 4:1 2:8 2:9 2:9 3:4

4.0 2:8 2:9 2:9 3:4 1:9 1:9 2:6 2:9

6.0 1:9 2:0 2:0 2:7 1:6 1:6 1:9 2:0

Table 3 Average days to detection of the hidden simulated outbreaks for Scenarios 3 & 4 where ı

is the increase in the mean number of calls for each individual in the sub-network planning a crime

Scenario 1 2
������ı

m
25 50 75 100 25 50 75 100

0.0 101:4 99:8 100:3 100:2 101:4 100:2 100:3 100:2

0.5 15:8 15:9 16:3 16:9 15:6 16:4 16:5 16:8

1.0 7:2 7:4 8:0 8:2 7:1 7:5 8:1 8:3

2.0 3:8 3:9 4:1 4:8 3:6 3:9 4:2 4:8

3.0 2:8 2:9 2:9 3:4 2:9 3:0 3:0 3:2

4.0 1:9 1:9 2:5 2:9 2:0 2:0 2:5 2:9

6.0 1:6 1:5 1:9 2:0 1:8 1:8 1:9 2:0

Table 4 Average days to detection of the hidden simulated outbreaks for Scenarios 5 & 6 where
ı is the increase in the mean number of calls for each individual in the network planning a crime

Scenario 1 2
������ı

m
25 50 75 100 25 50 75 100

0.0 101:4 99:8 100:3 100:2 101:4 100:2 100:3 100:2

0.5 14:7 14:8 15:5 15:6 12:0 12:1 12:3 12:6

1.0 6:6 7:3 7:5 8:1 5:4 5:9 6:1 6:4

2.0 3:2 3:9 3:9 4:8 2:9 2:9 3:4 3:8

3.0 2:2 2:9 2:9 3:4 2:2 2:2 2:6 2:9

4.0 1:9 2:0 2:0 2:9 1:9 1:9 2:0 2:0

6.0 1:7 1:6 1:7 2:0 1:6 1:6 1:6 1:6

As long as the increase in communication levels is equal to their normal value
(i.e., ı � 1:5), then the planning of a crime is detected within a week, which is
probably sufficient to intervene before the crime is committed. Thus this monitoring
tool could be useful for preventing serious criminal activities.
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4 Concluding Remarks

Many systems are designed to collect social network data. Analytical methods are
needed to turn these large volumes of data into information. This paper focuses
on surveillance techniques that aim at detecting changes in communication volume
within networks of individuals. Although the focus of the paper is on applications
relating to the risk of crime or terrorism, it can easily be used in other applications,
e.g., for monitoring the number of people from different groups of a population that
visit several different blog sites per week.

Social media information is also useful for business intelligence reasons. Accord-
ing to Gartner (an information technology company focusing on social media) by
2015 more than half of companies are likely to be eavesdropping on the publics’
e-conversations on social media trying to assess security risks to their organisations.
Many public relations firms provide social media monitoring as a standard client
service. For example, if companies do not directly invest in social media, they
will miss information when someone, somewhere, starts talking about either their
brand, staff, products, price, or value. Even knowing what people are saying about
competitors is a rich source of information. Large companies that operate globally
are interested in how innovation links to network communications within their
organisations and across organisations (e.g., see Rothwell 1992). Therefore open
access data inside and outside organisations can uncover new sources of value and
help drive performance improvements and innovation. Social media monitoring is
evolving towards real-time data-driven business improvement based on “real-time”
customer insights.

Most organisations do not want to set up an environment where they have
employees looking at private communications, so it is important that they use
technologies that preserve privacy and have low false-positive rates. Focusing on
mass trends rather than individual behaviour is a good start.

Social media monitoring is vital not only for security reasons, but also for
improving business intelligence or improving an individual’s health management
with targetted advice. This area of research is not without its technical, ethical and
legal challenges, however.
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Some Recent Results on Monitoring the Rate
of a Rare Event

William H. Woodall and Anne R. Driscoll

Abstract A growing number of applications involve monitoring with rare event
data. The event of interest could be, for example, a nonconforming manufactured
item, a congenital malformation, or an industrial accident. The most common
approaches for monitoring such processes involve using an exponential distribution
to model the time between the events or using a Bernoulli distribution to model
whether or not each opportunity for the event results in its occurrence. The use
of a sequence of independent Bernoulli random variables leads to a geometric
distribution for the number of non-occurrences between the occurrences of the
rare events. One surveillance method is to use a power transformation on the
exponential or geometric observations to achieve approximate normality of the in-
control distribution and then use a standard individuals control chart. We add to
the argument that use of this approach is very counterproductive and cover some
alternative approaches. We discuss the choice of appropriate performance metrics.
The strong adverse effect of Phase I parameter estimation on Phase II performance
of various charts is then summarized. In addition, the important practical issue of the
effect of aggregation of counts over time, some generalizations of standard methods,
and some promising research ideas are discussed.

Keywords Impact of data aggregation • Monitoring geometric distribution •
Phase I parameter estimation • Power transformation

1 Introduction

In an increasing number of applications interest is in the monitoring of a relatively
rare event. It is often assumed that the practitioner has the results of a sequence of
independent Bernoulli random variables, where a value of one indicates the event
occurred and a value of zero indicates nonoccurrence of the event. Thus the number
of trials between events has a geometric distribution for a stable process. Under
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this scenario one wants to monitor the event probability. In other applications it is
commonly assumed that the time between events has an exponential distribution and
one monitors the average time between events. Most often the focus is on detecting
process deterioration, i.e., an increase in the probability of the adverse event or a
decrease in the average time between events.

Szarka and Woodall (2011) reviewed the extensive number of methods that
have been proposed for monitoring processes using Bernoulli data. Generally, it
is difficult to better the performance of the Bernoulli cumulative sum (CUSUM)
chart of Reynolds and Stoumbos (1999). The Bernoulli and geometric CUSUM
charts can be designed to be equivalent, as discussed by Szarka and Woodall (2012).
With respect to monitoring the mean of an exponential distribution it is difficult to
outperform the exponential CUSUM chart studied by Lucas (1985) and Gan (1994).
Levinson (2011) argued that control charts should not be used with healthcare rare
event data because in many situations there is an assignable cause for each error,
e.g., each hospital-acquired infection or serious prescription error, and each incident
should be investigated. We agree that serious adverse events should be investigated
whether or not they result in a control chart signal. The investigation of rare adverse
events, however, and the implementation of process improvements to prevent future
such errors, does not preclude using a control chart to determine if the rate of such
events has increased or decreased over time. In fact, a control chart can be used to
evaluate the success of any process improvement initiative.

2 Performance Metrics

The choice of appropriate performance metrics for comparing surveillance schemes
for monitoring Bernoulli and exponential data is quite important. The usual Average
Run Length (ARL) metric refers to the average number of points plotted on the chart
until a signal is given. This metric is most clearly appropriate when the time between
the plotted points is constant. For exponential and geometric random variables each
plotted point corresponds to the occurrence of the event of interest. Thus the ARL
is the expected number of events until the chart signals. If the event is quite adverse
such as a serious accident or medical error, then this interpretation of the ARL
is very useful even though the time between events varies. If the process does
deteriorate, then we would like to detect it with as few adverse events as possible.

In some cases, such as in monitoring the number of near-miss accidents, it may
be informative to use a metric that reflects the actual time required to obtain an out-
of-control signal. Thus one can consider the number of Bernoulli trials until an out-
of-control signal is given for Bernoulli data, leading to its average, the ANOS. The
ANOS will be proportional to the average time before a signal if the rate at which
the Bernoulli trials are observed is constant over time. For exponentially distributed
data one could consider the average time to signal, the ATS. If the process is stable,
then ANOS D ARL/ p and ATS D ARL* � , where p and � are the Bernoulli
probability and the exponential mean, respectively.
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To assess out-of-control performance we believe it is most realistic to consider
steady-state performance where the shift in the parameter occurs at some time after
monitoring has begun. This approach was discussed by Zhang et al. (2007) and
Szarka and Woodall (2011), among others. Under this scenario one cannot easily
convert the ARL metric to the ANOS and ATS metrics. Consideration of steady-
state performance of competing methods is important because some methods have
an implicit headstart feature that results in good zero-state performance, but poor
steady-state performance. An example is the sets method of Chen (1978) studied by
Capizzi (1994) and Sego et al. (2008). The basic sets method based on Bernoulli
data signals a rate increase if the most recent k geometric waiting times are all
below a specified constant. The sets method and its variations have been proposed
for monitoring the rate of congenital malformations.

In addition, we note, as an example, that Liu et al. (2006) used zero-state
performance comparisons instead of steady-state comparisons. With zero-state
performance comparisons the shift in the parameter is assumed to occur at the
start of monitoring or when the chart statistic is at its initial value. They considered
charts based on the times between r events, where r > 1, that will seem to be more
effective than they would be for the delayed shifts assumed for steady-state analysis.
It is important to note that with these methods one waits until r events have occurred
to obtain one count, waits until r additional events occur to obtain the next count,
and so forth. When methods are based on waiting times which are aggregated over
time like this or when comparing methods based on counts taken at differing levels
of aggregation over time, then the ARL metric is not meaningful and either the ATS
or ANOS metric should be used.

3 The Use of a Power Transformation

We first consider the time-between-occurrence control chart as discussed by
Montgomery (2013, pp. 332–333). We assume that when the process is in control
that the successive times are independent exponential random variables with a
mean of �0. Montgomery suggested the transformation method proposed by Nelson
(1994) under which the exponential random variables, X1; X2; X3; : : : ; Xm in Phase
I are transformed using a power transformation Y D X0:2777 in order to achieve
approximate normality. After the transformation is made then one uses the standard
individuals control chart with 3-sigma control limits based on the average moving
range. This chart is frequently referred to as a “t-chart” in the literature, where t

refers to “time.”
Even though this seems like a reasonable approach, the performance of the

resulting t-chart is quite poor. McCool and Joyner-Motley (1998) studied Nelson’s
method and the use of a logarithmic transformation. More recently, Santiago and
Smith (2013) showed that if the in-control parameter is assumed to be known then
with 3-sigma control limits the out-of-control average run length (ARL) values
when there are decreases in the mean are far higher than the in-control ARL. This
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Fig. 1 Exact ARL and ATS
values for the t-Chart based
on Nelson (1994)
Transformation, (�0 D 1 and
ARL0 D 1325)

striking behavior is illustrated by the solid line in Fig. 1. The average time between
events must decrease to a very small fraction of the in-control value �0 in order for
a signal to be given on average with fewer plotted points.

Even though there are more points on average plotted on the chart before a signal
is given when the mean decreases, one should note that there is a shorter average
time period between the plotted points. Thus, in some cases it may be informative
to consider the ATS metric, which is ARL*� . This metric gives a better indication
of how quickly a signal is given. One can see from the dashed line we added in
Fig. 1 that the t-chart does not do well in detecting decreases in the exponential
mean quickly, but the performance based on the ATS metric is not as poor as for the
ARL metric. One could adjust the control limits of the chart to reduce the amount
of ARL-bias, but this would take away the simplicity of the approach. Szarka and
Woodall (2011) discussed this issue for similar charts.

We next consider the case in which the value of the in-control parameter p0 is
unknown for a Bernoulli process. Table 1 shows the percentage of the time one
will have a useful lower control limit (LCL) if one uses Nelson (1994) power
transformation with geometrically distributed data and the standard individuals chart
with limits based on the average moving range. Each geometric observation is the
number of trials required for the event to occur. Because interest is most likely to be
in detecting increases in the probability of the event probability, and thus decreases
in the mean of the geometric waiting time, there is a very good chance that the
control chart resulting from the use of Nelson (1994) transformation method will not
have an LCL greater than one and not be able to detect such process deterioration.
Here p0 is the in-control probability of the event of interest occurring. We based
each percentage in the table on 100,000 simulations of Phase I data containing m

geometric observations. This table shows that as events become rarer, the probability
of LCL > 1 increases, but still remains below 70 % even for p0 D 0:000001 for
m D 100. Note that the probability of a useful LCL decreases as m increases
for all values of p0 except p0 D 0:000001. We do not know the reason for this
phenomenon.
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Table 1 Proportion of
geometric Shewhart charts
based on a Phase I sample of
size m and Nelson’s
transformation which yield a
useful LCL

p0 m D 25 m D 50 m D 100

0.05 0.0095 0.0004 0.0000

0.01 0.0930 0.0277 0.0032

0.005 0.1545 0.0698 0.0182

0.001 0.3090 0.2314 0.1437

0.0001 0.4755 0.4535 0.4287

0.00005 0.5079 0.5018 0.4964

0.000001 0.6128 0.6466 0.6973

Table 2 Proportion of exponential Shewhart charts based on a Phase I sample size of m and
Nelson’s transformation which yield a useful LCL

m D 25 m D 50 m D 100

0.66029 0.71463 0.78248

Table 2 shows the corresponding percentages for exponentially distributed data,
leading to the same conclusion. For the exponential distribution, we can assume
without loss of generality that �0 D 1 since for any other in-control value we can
rescale the observations by dividing by �0.

Since the transformation method does not work well, other approaches must be
used. A wide variety of methods have been proposed in the literature, including
Shewhart, CUSUM, and EWMA charts based on sequences of exponential or
Bernoulli data. Most papers in the literature are on Phase II methods with the in-
control parameter value assumed to be known. In practice the practitioner must
estimate the in-control parameters, so the effect of parameter estimation is discussed
in the next section.

4 Performance Metrics

Steiner and MacKay (2004) pointed out that extremely large Phase I sample sizes
are needed in order to establish control limits for high quality Bernoulli processes. If
one uses Nelson’s (1994) recommendation of basing the estimator of the in-control
probability p0 on 24 observed events in Phase I, then if p0 D 0:000005 (i.e., 5 ppm)
the expected number of items in Phase I would be 4.8 million units. Steiner and
MacKay (2004) also pointed out that the out-of-control expected number of items
to signal can also be impractically large.

In some respects the problem is worse than Steiner and MacKay (2004) portray
it. Zhang et al. (2013) studied the effect of estimation error on the Shewhart-type
geometric chart. For practitioners to have confidence in their control chart design
in Phase II, they must have Phase II charts with the mean in-control ARL (or other
metric) near the desired value with sufficiently small variation about that value.
Figure 2 shows the average in-control ARL and Fig. 3 the standard deviation of the
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Fig. 2 The expected
in-control ARL for a given
in-control proportion p0 and
Phase I sample size m

Fig. 3 The standard
deviation of the in-control
ARL for a given in-control
proportion p0 and Phase I
sample size m

in-control ARL when the desired in-control ARL is 370.4. Note that the horizontal
scales of Figs. 2 and 3 are not the same. Also, if needed, the in-control ANOS D
in-control ARL/ p0. The number of Phase I Bernoulli observations is denoted by m.

Even though the average in-control ARL converges relatively quickly to the
desired value as m increases in Fig. 2, the variation in the in-control ARL converges
very slowly to zero in Fig. 3. This means that it is very difficult to design the
geometric control chart to have a specified in-control performance. The situation
becomes worse for lower values of p0. Using Nelson’s (1994) recommendation of
using a sample size required to observe 24 events in Phase I is inadequate. Lee et al.
(2013) showed an even larger adverse effect of estimation error in designing the
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Table 3 The average and
standard deviation (in
parentheses) of the in-control
ARL for one-sided
exponential CUSUM charts
based on a Phase I sample
size m and a shift size of
interest ı

m ı D 0:8 ı D 0:5 ı D 0:2

50 10740.7 1157.3 642.6

(213171.2) (2561.7) (474.4)

500 611.0 538.8 512.3

(402.5) (197.4) (101.9)

10,000 504.8 501.8 500.6

(60.8) (38.9) (21.9)

50,000 500.9 500.4 500.1

(26.8) (17.3) (9.8)

100,000 500.5 500.2 500.1

(18.9) (12.2) (6.9)

Bernoulli CUSUM chart. The effect of estimation error on the Bernoulli CUSUM
chart increases as the targeted shift size in the underlying proportion decreases.
The overall conclusion here is that practitioners should not expect charts based on
estimated in-control parameters to perform like they would if these parameters were
known, even if the Phase I sample is large.

Zhang et al. (2014) studied the effect of estimation error on the one-sided
exponential CUSUM chart designed to detect a change in the mean from �0 to ı�0,
where 0 < ı < 1. Some of their results are shown in Table 3, where one can see that
the effect of estimation error is greater if one wishes to detect a smaller shift in the
mean time between events. A large number of in-control observations are needed
to have the expected in-control ARL near the targeted value of 500. In order for
the variation of the in-control ARL to be reasonably low, however, an inordinate
number of Phase I observations is required. Note that, if needed, the in-control ATS
= in-control ARL* � .

5 The Effect of Aggregating Data

Data aggregation is frequently done when monitoring rare events and for count
data generally. For example, one might monitor the number of accidents per month
in a plant or the number of patient falls per week in a hospital. Montgomery
(2013, pp. 332–333) indicated that when there are many samples (i.e., time periods)
with no events, then a c-chart is not useful and one should use a time-between-
occurrence control chart. Schuh et al. (2013) showed, however, that there can be
significantly long expected delays in detecting process deterioration when data are
aggregated over time even when there are few samples with zero events. One can
always aggregate data over long enough time periods to avoid zero counts, but the
consequence is slower detection of increases in the rate of the adverse event.
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We assume a homogeneous Poisson process with an average time between events
of � time units. Under this model the interarrival times are independently distributed
exponential random variables with mean � . For an aggregation period of length d

time units, counts are independent and Poisson distributed with a mean of � D
d=� . The time unit considered can vary depending on the application. We assume
that the in-control value of the parameter is � D �0 D 1 and that we wish to
detect only decreases in the average time between events. Our results, however, are
generalizable. For example, if events occur at an average rate of 4 per 28-day period,
then this is equivalent to one event per week. If we consider an aggregation period
d of seven-time units, then this would correspond to aggregating the data over a 7
week (or 49 day) period. Thus, it is only necessary to consider the �0 D 1 case.
Basically, the expected count is always one for some time period.

Instead of monitoring the exponentially distributed time-between-event data,
it is very common to monitor instead the Poisson distributed data obtained by
aggregating the event data over time intervals of a specified length. Schuh et al.
(2013) showed that there is a price to be paid, however, for the data aggregation.
As an example, Table 4 shows some of their results when monitoring a Poisson
process with an average of one time unit between events of interest. Table 4 shows
the additional number of adverse events that would be expected to occur before a
signal is given for a decrease in the average time between events to given values
� , where � < �0 D 1. The comparison is to the chart with the lowest steady-state

Table 4 Number of additional adverse events expected for each less-effective chart when
detecting various decreases in the average time between events.

� POIS30 POIS4 POIS7 POIS1 EXP Performance for best chart

0.95 - 105.8 178.2 57.7 54.0 2239.37

0.9 - 127.2 201.3 95.9 103.3 1084.78

0.85 - 87.4 130.8 72.9 70.1 551.06

0.8 - 44.4 68.6 33.1 36.9 298.87

0.75 - 19.9 28.3 8.9 10.7 178.13

0.7 8.0 9.1 10.9 2.6 - 113.00

0.65 7.8 8.9 8.0 0.5 - 73.54

0.6 18.8 9.5 6.7 0.5 - 51.67

0.55 23.6 10.5 6.4 0.5 - 38.73

0.5 28.8 11.8 6.6 0.6 - 30.60

0.45 34.0 13.6 6.9 0.9 - 25.11

0.4 39.8 16.0 7.8 1.3 - 21.25

0.35 46.0 18.9 8.9 1.1 - 18.57

0.3 53.7 23.0 10.7 1.3 - 16.33

0.25 63.6 28.0 12.8 1.2 - 14.80

0.2 79.5 35.5 17.0 2.0 - 13.00

(The — symbol appears when a chart has the lowest steady-state ATS). For reference the average
number of adverse events until detection is given in the far right column for the best performing
chart
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ATS for the given shift. The exponential CUSUM chart is compared here to Poisson
CUSUM charts based on four different levels of aggregation. In the table POIS14,
for example, refers to the Poisson CUSUM chart based on counts aggregated over 14
time periods. All charts are designed to optimally detect a sustained shift to � D 0:5

under zero-state conditions. The in-control Average Time to Signal (ATS) values
are near 4,500 for all five charts. The out-of-control performance is based on the
steady-state ATS values with a shift to the out-of-control parameter value at some
point in time after monitoring has begun. For more details, the reader is referred to
Schuh et al. (2013).

Some other work has been done on the effect of aggregating count data. Reynolds
and Stoumbos (2000) compared the performance of Bernoulli CUSUM charts to
that of binomial CUSUM charts for aggregated samples of a specified size, finding
that Bernoulli CUSUM charts showed better overall performance, especially for
detecting large increases in the rates of nonconforming items. Szarka and Woodall
(2011) further discussed this topic in their review of Bernoulli-based charts. Another
type of aggregation is to wait until one has observed a given number of events before
updating a control chart based on a proportion or waiting time. See, for example,
Zhang et al. (2007) and Dzik et al. (2008). This type of aggregation, however, does
not appear to delay the detection of process changes nearly as much as aggregating
data over fixed time periods.

6 Some Generalizations

There have been some generalizations of the Bernoulli and exponential distribution-
based methods we have discussed. Ryan et al. (2011), for example, extended the
monitoring of Bernoulli data to monitoring with more than two categories through
use of the multinomial distribution. Having more than two categories provides more
information about the process.

Steiner et al. (2000) proposed a widely used method for monitoring Bernoulli
data when the in-control probability varies over time. Their risk-adjusted CUSUM
method is used to monitor surgical and other health-related outcomes while
adjusting for patient risk factors. In these applications one typically works with
serious events, such as death within 30 days of surgery, but the overall rate is
frequently too high, e.g., around 0.01, for the adverse event to be considered rare.
See Woodall et al. (2015) for a review of risk-adjusted monitoring.

Mousavi and Reynolds (2009) considered the monitoring of autocorrelated
Bernoulli data where adverse events are more likely to follow other adverse events
than to follow trials where the event does not occur. Finally, as generalizations of
methods designed for exponentially distributed time-between-event data, methods
have been proposed for Weibull and gamma distributed time-between-event data.
See, for example, Xie et al. (2002) and Zhang et al. (2007).
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7 Research Ideas

Given the disappointing performance of many of the methods for monitoring the
rate of a rare event, it is important to identify improved methods if at all possible.
We recommend the alternative methods proposed by Saleh et al. (2015) and others.
The focus of much of the research on monitoring rare events has been on detecting
sustained step shifts corresponding to process deterioration. Additional research
on other forms of process deterioration, such as drifts, and on detecting process
improvement is needed.

We believe that the adverse effect of aggregating data over time has not been
fully appreciated in practice and more research work is needed on this topic.
Only a couple of the most basic scenarios for count data have been studied.
Some interesting and important topics include the effect of data aggregation on the
performance of charts based on seasonal or autocorrelated count data, risk-adjusted
data, multinomial and multivariate data, and Weibull-distributed time-between-
event data.

Virtually all of the work on monitoring the rate of rare events is based on the
assumption that there is a sustained shift in the rate. In some applications the
rate change may be transient. In this scenario other performance metrics would be
needed, such as the probability of detecting the process shift during the transient
period. The effect of data aggregation over time might be larger if shifts in the
parameter are not sustained.

As reviewed by Szarka and Woodall (2011), there are several dozen papers
on Phase II methods for monitoring a Bernoulli probability. Even though recent
research has shown that very large Phase I samples are needed, relatively little work
has been done on Phase I analysis to check the adequacy of the Bernoulli model
and the stability of the process. Some related references are the papers by Pettitt
(1980), Worsley (1983), Wallenstein et al. (1994), Bell et al. (1994), Borror and
Champ (2001), Balakrishnan et al. (2001), Krauth (2003), and Tikhomirova and
Christyakov (2010). It is not clear which approach, or combinations of approaches,
is the best. Similarly, work on the Phase I analysis of exponential data is also needed.
The Phase I methods of Jones and Champ (2002) and Dovoedo and Chakraborti
(2012) have quite low power to detect shifts in the exponential mean.

In many applications the event of interest may vary in severity. The event of
interest may be an industrial accident, for example, but the impact and consequences
of accidents vary. How should both rate and severity be monitored? A related paper
is that of Wu et al. (2010).

Although we and Xie et al. (2010) have reviewed some of the work on monitoring
continuous time-between event data, we believe a more thorough review is needed
of the rather extensive literature on this subject. This review would be similar to that
done by Szarka and Woodall (2011) for monitoring with Bernoulli data.
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Toubia-Stucky et al. (2012) proposed a Bayesian approach to monitoring the
proportion associated with Bernoulli-trials. Although a Bayesian approach may
seem appealing, their method does not seem to be a viable alternative to the
frequentist methods due to the required assumptions and its ad hoc construction.

Finally,Wheeler (2011) was very critical of using either the Bernoulli or expo-
nential models and preferred the use of an individuals control chart with empirically
determined 3-sigma control limits based on the median moving range. He advocated
plotting either the time-between-event data or converting the time-between event
data to an “instantaneous rate.” For example, if an adverse event occurred after
110 days, this would be equivalent to an instantaneous rate of (1/110)*365 D 3.32
events per year. Study of these methods is needed since Wheeler (2011) gave only
a case study illustration of his proposed methods. Our preliminary investigation
shows, however, that his methods have an unacceptably large false alarm rate. His
recommendation of using a minimum of five events to determine the control limits
will likely prove to lead to highly unpredictable chart performance.

8 Conclusions

We have provided a review of some recent results on the monitoring of rare events
along with our perspective. This recent work has demonstrated that the effect of
estimation error in Phase I is more severe than for other charts studied in the
literature (Jensen et al. 2006). There are compelling arguments for the use of
steady-state performance metrics. In addition, recent work has demonstrated that
aggregating event data over fixed time intervals, as frequently done in practice, can
result in significant delays in detecting increases in the rate of adverse events. We
believe that the monitoring of the rate of rare events is an important and challenging
area and have offered some research ideas.

We agree with Steiner and MacKay (2004) that the monitoring of the rate of
rare events is indeed a very difficult problem. Steiner and MacKay (2004) proposed
solution to many of these difficulties is to use logistic regression or some other
approach to try to identify a continuous underlying variable, if possible, to monitor
instead of tracking simply the occurrence or non-occurrence of events. There could
be considerably more information in such an underlying continuous variable, which
could lead to more effective monitoring.
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Statistical Perspectives on “Big Data”

Fadel M. Megahed and L. Allison Jones-Farmer

Abstract As our information infrastructure evolves, our ability to store, extract,
and analyze data is rapidly changing. Big data is a popular term that is used to
describe the large, diverse, complex and/or longitudinal datasets generated from a
variety of instruments, sensors and/or computer-based transactions. The term big
data refers not only to the size or volume of data, but also to the variety of data and
the velocity or speed of data accrual. As the volume, variety, and velocity of data
increase, our existing analytical methodologies are stretched to new limits. These
changes pose new opportunities for researchers in statistical methodology, including
those interested in surveillance and statistical process control methods. Although it
is well documented that harnessing big data to make better decisions can serve as
a basis for innovative solutions in industry, healthcare, and science, these solutions
can be found more easily with sound statistical methodologies. In this paper, we
discuss several big data applications to highlight the opportunities and challenges
for applied statisticians interested in surveillance and statistical process control. Our
goal is to bring the research issues into better focus and encourage methodological
developments for big data analysis in these areas.

Keywords Analytics • Control charts • Data mining • High-dimensional data •
Image-monitoring • Surveillance • Text mining

1 Introduction

The volume of data produced from purchase transactions, social media sites,
production sensors, healthcare information systems, cellphone GPS signals, etc.
continues to expand at an estimated annual rate of 60–80 % (The Economist 2010a).
To put these numbers into perspective, an 80 % annual rate—if compounded daily—
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means that � 90 % of that data existing in the world today has been created since
2011. The acquisition of massive datasets is expected to transform the approach to
major problems such as: combating crime, preventing diseases, and predicting the
occurrence of natural disasters. Additionally, businesses are using their collected
data to spot business trends and customize their services according to customer
profiles. For example, Wal-Mart, the leading U.S. discount retailer, processes more
than 1 million customer transactions per hour, resulting in databases estimated
to be in the magnitude of 2,500 terabytes (The Economist 2010b). Wal-Mart is
not the only corporation that handles and stores such massive amounts of data.
Others include social media corporations, gaming companies, airlines, insurance
companies, healthcare providers, electric companies, and others. Indeed, most
industries are experiencing data inflation and combating the growing need to make
sense of big data.

The acquisition of data does not automatically transfer to new knowledge about
the system under study. This notion is not new to the statistical community. Deming
(2000, p. 106) said that “information, no matter how complete and speedy, is
not knowledge. Knowledge has temporal spread. Knowledge comes from theory.
Without theory, there is no way to use the information that comes to us on the
instant.” In the current age of big data there seem to be two competing camps:
those who place problems and data into theoretical frameworks (e.g., statisticians,
operations researchers, etc.), and those who use inductive analysis tools such as data
mining, artificial intelligence, and knowledge discovery methods.

Although theoretical framing of data has proven successful, sometimes the
theoretical frameworks are unrealistic for real data, and analyses based on the
frameworks fail. Similarly, inductive, often ad hoc, methods have worked well,
but often the focus on empirical results to the exclusion of domain expertise and
statistical or mathematical theory has given wrong answers. The need to balance
theory and empiricism is not new, but is growing in attention with the evolution of
the big data attention. A recent survey in The Economist shows that 62 % of workers
have indicated that the quality of their work is hampered because they cannot make
sense of the data that they already have (The Economist 2011). With large and
diverse data sets, we need to consider new and creative solutions to the problems
that are posed. MacGregor (2013) states “as we continue to collect more and more
information through more advanced sensors, our traditional reliance on fundamental
or structured empirical models becomes less and less viable and hybrid approaches
are needed.”

Unfortunately, for many organizations in the private and public sector, processing
and making sense of big data is still somewhat of a science project (with exceptions
in chemometrics where multivariate statistics are used in the monitoring and control
of processes governed by large amounts of sensor data). In 2010, the Library of
Congress (LOC) signed an agreement with Twitter to archive all public tweets since
2006. The LOC receives and processes nearly 500,000,000 tweets per day, and as of
December, 2012, had amassed 170 billion tweets, or 133.2 terabytes of compressed
data. A single search of the archive can take up to 24 h. As scholars anxiously await
access to the tweet archive, the LOC released a public statement stating that, “It is
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clear that technology to allow for scholarship access to large data sets is not nearly
as advanced as the technology for creating and distributing that data.” (Library of
Congress 2013)

In this article we give an overview of big data and how the researchers in
statistics and statistical process control (SPC) can aid in making sense of big data.
We begin in Sect. 2 by trying to answer the question “What is Big Data?”, with
the understanding that there is no clear-cut answer to this question. In Sect. 3 we
discuss the challenges with data quality. We provide in Sect. 4 some examples on
how SPC and statistics are being used in several application domains of big data,
highlighting a few of the challenges. In Sect. 5, we discuss some differences between
traditional and big data applications of statistical process control (SPC). We provide
concluding remarks in Sect. 6.

2 What is Big Data?

Big data is a popular term that is used to describe the large, diverse, complex
and/or longitudinal datasets generated from a variety of instruments, sensors and/or
computer-based transactions. Although there is no clearly agreed upon definition of
what constitutes big data most agree that the term refers to data that is so large it
requires some form of distributed computing to process and analysis (SAS 2013;
Manyika et al. 2011; Zikopoulos et al. 2013). To be able to gain knowledge from
big data, it is imperative to understand both the scale and scope of big data. The
challenges with processing and analyzing big data are not only limited to the size
of the data. These challenges include the size, or volume, as well as the variety and
velocity of the data (Zikopoulos et al. 2012). Known as the 3V’s, the volume, variety,
and/or velocity of the data are the three main characteristics that distinguish big data
from the data we have had in the past.

2.1 Volume

There are two major factors that contribute to the increase in data volume (Carter
2011). First, the continued advancements in sensing and measurement technologies
have made it possible to collect large amounts of data in manufacturing, healthcare,
service, telecommunications, and military applications. Second, decreasing storage
costs have made it economically feasible to store large amounts of data relatively
inexpensively. With increasing technology, storage can take different forms from
traditional databases to cloud storage (e.g., Amazon Web Services and Microsoft
Azure). It is interesting to note that advancements in sensing/measurement technol-
ogy and inexpensive storage are two of the driving forces behind advancements
in statistical methodology, including SPC methodology. With specific regard to
SPC, the 1920s were characterized with low levels of automation and high levels
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of manual inspection. Therefore, control charts focused on small samples and
univariate quality characteristics. With automation and increased computational
capabilities, there has been increased emphasis on multivariate control charts, time-
series methods and profile monitoring (Montgomery 2013; Noorossana et al. 2011).
It should be noted that much of this research has originated in chemometrics (e.g.,
see Duchesne et al. 2012; MacGregor and Cinar 2012; Nomikos and MacGregor
1995).

2.2 Variety

With increased sensing technology, the explosion in social media and networking,
and the willingness of companies to store everything, we have new challenges
in terms of data variety. For example, manufacturers are no longer restricted by
traditional dimensional measurement since they accumulate sensor data on their
equipment, images for inspecting product aesthetics, radio-frequency identification
(RFID) technology in supply chain management, and social network data to capture
their customers’ feedback. In theory, this variety of data should allow for a 360ı
view of manufacturing quality. In reality, even if we had the infrastructure to match
the customer feedback to the exact product identification, and tracking through
the supply chain, our methods to analyze and gain knowledge from this data are
limited. Most statistical methods (including control charts) are classified according
to the type of data with which they should be used. For example, few methods
are available for monitoring multivariate processes with a mixture of categorical
and continuous data (Jones-Farmer et al. 2014; Ning and Tsung 2010). Monitoring
and analyzing mixed data types becomes more challenging when we include non-
numeric, unstructured data.

Some reports estimate that nearly 80 % of an organization’s data is not numeric
(SAS 2013). Although there are many approaches to text analytics, our experience
with text analytics suggests there remain many limitations. Most text analytics
approaches convert unstructured text into numerical measures (e.g., word counts
and/or measures of sentiment captured in a phrase). The numerical measures are
then analyzed using traditional data analytic approaches (e.g., data mining). While
a thorough discussion of text analytics methods is well beyond the scope of this
article, it is important to note that most approaches have been developed in a specific
context (e.g., dictionaries that assign sentiment to word combinations from literature
or from interpreting political manifestos). The applicability of these methods to the
cryptic and evolutionary nature of the language of social media is questionable.
Thus, the analyses based on the numerical scores resulting from these methods
may not always be meaningful. A major challenge of big data analysis is how to
automatically process and translate such data into new knowledge.
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2.3 Velocity

Zikopoulos et al. (2012) state that the conventional notion of data velocity is the
rate at which the data arrives, is stored, and retrieved for processing. These authors
note, however, that this definition of velocity should be expanded to include, not
only the growth rate of data, but also the speed at which data are flowing. The rate
of flow can be quite massive in certain domains. Considering microblog data, data
consumers have the option to purchase near real-time access to the entire Twitter
data or a randomly selected portion of the data over a fixed prospective time range.
Recalling that Twitter processes around 500,000,000 tweets daily, the entire data
set is appropriately referred to as the “fire hose.” Social media is not the only
domain with high velocity data. Recall the estimated 1,000,000 transactions per
hour processed by Wal-Mart.

One of the main challenges with high velocity data is how fast any organization
can transform the high velocity data into knowledge. Near real-time responsiveness
to high velocity data may allow for competitive advantage in terms of managing
stock-outs, product introductions, customer service, and public relations interven-
tions. Similar advantages may be found with faster responsiveness to high velocity
data in areas including public health, network security, safety, traffic, and other
surveillance domains. Essentially, the opportunity cost clock starts once the data
point has been generated. Zikopoulos et al. (2012) state “velocity is perhaps one of
the most overlooked areas in the Big Data craze.” A similar sentiment is echoed
by SAS in a recent white paper that states, “reacting quickly enough to deal with
velocity is a challenge to most organizations”(SAS 2013).

Another challenge related to data velocity is the fact that social media and
transactional data can produce highly variable flow rates, with enormously large
peaks, and near zero valleys. In the context of social media, the phrase “gone viral”is
often used to describe a video, blog, or microblog that has been shared on a large
scale very rapidly. With internet and social media data, transactions or activity on
a particular site/topic can go from a manageable baseline velocity up to a level
that is beyond the capacity of the infrastructure to handle in a matter of seconds.
For example, in September, 2011, Target’s website was flooded with visitors and
transactions within hours of making a limited-edition line of clothing and home
products by Missoni available to customers. The influx of transactions crashed the
entire website, rendering it unavailable for the better part of a day.

In an attempt to manage unpredictable data velocity and volume, there has been
an increasing market for computer Infrastructure as a Service (IaaS) providers,
where customers pay as they go for scalable computing, storage and data access
over the internet (for a detailed introduction on IaaS, see Mell and Grance 2011;
Prodan and Ostermann 2009; U.S. General Services Administration 2013). While
the emergence of IaaS providers has allowed companies a failsafe for some of
the computing and storage needs that arise from the variable nature of big data,
analyzing and monitoring data with extreme fluctuations in velocity remains a
difficult problem. In addition to potential data overload problems, extreme variations
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in data velocity makes it very difficult to develop a baseline to account for daily,
seasonal, and event-triggered loads, and to detect performance changes and trends
(SAS 2013).

3 Beyond the 3V’s

The volume, variety, and velocity of data are three fundamental characteristics that
distinguish big data from any other type of data (e.g., medium or small). Many have
suggested that there are more V’s that are important to the big data problem such as
veracity and value (IEEE BigData 2013) . Veracity refers to the trustworthiness of
the data, and value refers to the value that the data adds to creating knowledge about
a topic or situation. While we agree that these are important data characteristics,
we do not see these as key features that distinguish big data from regular data. It is
important to evaluate the veracity and value of all data, both big and small.

Both veracity and value are related to the concept of data quality, an important
research area in the Information Systems (IS) literature for more than 50 years. The
research literature discussing the aspects and measures of data quality is extensive in
the IS field, but seems to have reached a general agreement that the multiple aspects
of data quality can be grouped into several broad categories (Wang and Strong
1996). Two of the categories relevant here are contextual and intrinsic dimensions
of data quality.

Contextual aspects of data quality are context specific measures that are sub-
jective in nature, including concepts like value-added, believability, and relevance.
Many of the measures for these contextual dimensions are based on surveys of the
end-users of the data. Batini et al. (2009) provide an overview of the previously
used measures regarding contextual data quality measures. Intrinsic aspects of data
quality are more concrete in nature, and include four main dimensions: accuracy,
timeliness, consistency, and completeness (Batini et al. 2009; Huang et al. 1999;
Parssian 2006; Scannapieco and Catarci 2002). The term accuracy implies data
which are as free from error as possible. Timeliness implies that data are as
up-to-date as possible. Consistency measures how closely the data’s content and
occurrences are structured in the same way in every instance. Completeness refers
to data which are full and complete in content, with no missing data. Jones-Farmer et
al. (2014) gave an overview of data quality and discuss opportunities for research in
statistical methods for evaluating and monitoring the quality of data.

From our perspective, many of the contextual and intrinsic aspects of data quality
are related to the veracity and value of the data. That said, big data presents new
challenges in conceptualizing, evaluating, and monitoring data quality. An excellent
example of the unique difficulties with big data quality, including value and veracity,
occurs with social media data. On April 23, 2013, at 1:07 p.m., Eastern Time, a
tweet from the Associated Press (AP) account stated “Breaking: Two Explosions
in the White House and Barack Obama is injured” (Strauss et al. 2013). The
fraudulent tweet, originated from the hacked AP Twitter account led to an immediate
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drop in the Dow Jones industrial average. Although the Dow quickly recovered
following a retraction from the AP and a press release from the White House, this
example illustrates the immediate and dramatic effects of poor quality data. There
are other examples of problems with veracity and value of big data in the social
media realm. For example, political analysts covering the 2012 Mexican presidential
election struggled with tweets due to the creation of a large number of fake Twitter
accounts that polluted the political discussion, and introduced derogatory hash tags
(Zikopoulos et al. 2013, pp. 14–15). It became very difficult to sift through the spam
tweets from the tweets of voters, and even understand the impact of spam tweets on
the voting population.

4 Applications of SPC to Big Data Problems

In this section, we discuss several examples on how SPC is currently being used
or could potentially be used with big data, highlighting some differences between
traditional and big data applications of SPC. As a disclaimer, not all of the data
that might be used with these applications will fit some definitions of “big data”;
however, they all fall into the general class of high volume, and/or, high velocity,
and/or, high variety data. The types of data we discuss include (a) labeled data,
(b) unlabeled data, (c) functional data, (d) graph data, and (e) data from multiple
streams.

4.1 Labeled Data

Machine learning algorithms are among the most frequently used methods to
analyze large and diverse data sets. Machine learning algorithms are typically
classified as supervised or unsupervised learning algorithms. The focus of super-
vised algorithms is to classify data based on training set that includes known
classifications. In the case of supervised learning, the classifications or dependent
variables are considered labeled. Specifically, the training set consists of pairs (x, y)
where x is a vector of independent variables (or features) and y is the classification
value for x (the label). The objective of the analysis is to discover a function y
= f (x) that best predicts the value of y that is associated with unseen values of
x (Rajaraman et al. 2012). It is important to note that y is not necessarily a real
number, but might be a dichotomous or polytomous variable. In some cases, such
as text analytics, y can represent a near-infinite set of classes.

Recently, machine learning algorithms have been proposed for use within SPC
(see, e.g., Chinnam 2002; Cook and Chiu 1998; Deng et al. 2012; Hwang et al.
2007; Sun and Tsung 2003). Although all of these methods are not presented in
a big data setting, we discuss them since they may be scalable to high volume,
high velocity data. Several of these methods can be used with mixed data types and
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data measured using different measurement scales. Usually, an artificial data set is
generated to represent out-of-control data, which is used to train a classifier. This
approach converts the monitoring problem to a supervised classification problem
which classifies future observations as either in- or out-of-control. Supervised
learning methods have also been used in Phase I analysis, in an attempt to identify
an in-control baseline sample (e.g., Liu et al. 2008; Deng et al. 2012)

4.2 Unlabeled Data

Unsupervised learning algorithms are commonly used when data are unlabeled,
often because it is expensive, difficult, or impossible to assign a label identifying the
classification or outcome. The goal of unsupervised learning methods is to assign
each point to one of a finite set of classifications. There are several approaches
to unsupervised learning, the most common of which include cluster analysis and
mixture modeling. Several authors have applied unsupervised learning methods to
unlabeled data in Phase I. Sullivan (2002) introduced a clustering method to detect
multiple outliers in a univariate continuous process. Thissen et al. (2005) used
Gaussian mixture models to establish an in-control reference sample in a Phase
I analysis. Jobe and Pokojovy (2009) introduced a computer intensive multi-step
clustering method for retrospective outlier detection in multivariate processes. More
recently, Zhang et al. (2010) introduced a univariate clustering-based method for
finding an in-control reference sample from a long historical stream of univariate
continuous data. There remain many opportunities to investigate the strengths and
limitations of unsupervised learning methods for Phase I analysis.

We see opportunities for using machine learning in both Phase I and Phase II
applications in SPC. Much work and process understanding is often required in
the transition between a Phase I and Phase II analysis Woodall (2000). With big
data applications, machine learning algorithms can be used to develop insights
and understand the root-causes for underlying problems. For example, Wenke et al.
(1999) included a classification step as a part of a general framework for intrusion
detection in computer systems. Cruz and Wishart (2006) provided a review on
using machine learning algorithms in cancer prediction and prognosis. In their
findings, they stated that “machine learning is also helping to improve our basic
understanding of cancer development and progression.”

4.3 Functional Data

Functional data originated within the fields of chemometrics and climatology in the
1960s. The topic has received a great deal of attention from the statistics community
ever since, as it covers a wide range of important statistical topics, including:
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classification, inference, factor-based analysis, regression, resampling, time-series,
and random processes. Additionally, it allows for infinitesimal calculations due to
the continuous nature of the data (Ferraty and Romain 2011). The reader is referred
to Ramsay and Silverman (2002, 2005) for an in-depth coverage of the topics
involved in functional data analysis (FDA). Ferraty and Romain (2011) provide an
excellent discussion on various benchmarking methodologies and the fundamental
mathematical aspects that are related to the big data aspect of FDA.

Woodall et al. (2004) related the application of profile monitoring to FDA.
Profile monitoring is a control charting method used when the quality of a
process or product can be characterized by a functional relationship between a
response variable and explanatory variable(s). In such applications features are often
extracted from the monitored curves, such as regression coefficients, and then, used
as input to standard control charting methods. This transformation represents an
initial phase of preprocessing that has not been explicitly identified in the traditional
SPC literature. Extensions of the existent profile monitoring techniques can be
seen in image analysis and other related areas. We provide an overview on these
applications in the paragraphs below.

We view the use of images for process monitoring as a very promising area of
statistical research with a wide range of applications. In manufacturing settings,
image-based monitoring adds the capability of monitoring a wide variety of quality
characteristics, such as dimensional data, product geometry, surface defect patterns,
and surface finish, in real-time. This is somewhat different from traditional SPC
applications that focus on dimensional and discrete process data. Additionally,
image monitoring plays an important role in many medical, military, and scientific
applications. Megahed et al. (2011) provided a review on the use of control charts
with 2D image data. In their review, they noted that the use of control charting
with image data is not yet well developed (with the exception of applications in
chemometrics).

A common theme in the literature discussing FDA is the lack in statistical
and mathematical tools that enables these data-rich sources to achieve their full
potential. For example, Ferraty and Romain (2011, pp. viii–ix) identified several
challenges for the future in the context of FDA including the need for semiparamet-
ric methods, the nonlinear structure in high-dimensional spaces, and the increasing
sophistication of the datasets. These challenges are important research areas to
consider, especially since surveillance requires Phase I analyses where the baseline
is established and the parameters are estimated. In addition to these challenges, there
exist several control charting opportunities that are specific to 2D images and data
from 3D scanners. For example, there is no discussion on the effect of estimation
error on image-based control charts, and therefore it is not known what Phase I
sample sizes are needed and whether they would be practical. Generally speaking,
there is a need to evaluate the assumptions inherent in many of the papers involving
control charting for image and point cloud data. It may be beneficial to create a large
repository of functional data and share it with researchers to accelerate scientific
discovery in this data-driven area. Such repositories exist for non-surveillance
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applications involving functional data (see, e.g., http://archive.ics.uci.edu/ml/, http://
www.ncbi.nlm.nih.gov/geo/, and http://aws.amazon.com/publicdatasets/).

4.4 Graph Data

In several big data applications, there is an interest to extract relationships between
the different entities in the data. This relational knowledge is best described
through a graph representation (Cook and Holder 2006). A graph allows the
entities to be represented by nodes. Two nodes are connected by an edge if there
is a relationship between them. The graph representation encompasses a large
number of applications that include: (a) social networks (e.g., Facebook, LinkedIn);
(b) cyber-security and computer networks (e.g., detecting network intrusion); (c)
influence propagation (e.g., propagation of disease, or product adoption); (d) e-
commerce (e.g., consumer ratings); and (e) other application domains Chakrabarti
and Faloutsos (2012). Some examples of opportunities to apply SPC techniques to
these types of graph data are given below.

McCulloh and Carley (2008) proposed an SPC-based approach to detect change
in social networking based on the notion that the data collected on such networks is
similar in structure to continuous variables that are typically monitored by control
charts in manufacturing applications. In their approach, they calculated the average
graph measures for density, closeness, and betweenness centrality for several
consecutive time-periods of the social network. They estimated the in-control mean
and variance for each of these three measures by taking a sample average and
sample variance of the stabilized measures. Then, they used a CUSUM chart (with
a reference value k = 0.5 and control limit, h = 4) to monitor each of these three
measures. Their control charts were deployed to detect structural changes on two
publically available social network datasets: Tactical Officer Education Program
e-mail Network and open source Al-Qaeda communications network. Using the
CUSUM chart, they were able to identify significant changes in both networks,
with Al-Qaeda network structurally changing prior to the attacks of September
11th. In addition, the authors discussed in detail the limitations of their method
and some future research extensions that should be examined. We agree with their
recommendations and suggest further investigation in that area.

Wu et al. (2007) presented a simple approach using a Shewhart control chart
to detect distributed denial of service (DDoS) attacks on a computer network.
Underbrink et al. (2012) suggested using Shewhart control charts in the context
of testing cyber-attack penetration to software applications. Hale and Rowe (2012)
provided an introduction on statistical process control, Shewhart control chart and
Shewhart chart with runs rules, and suggested its use to detect and eliminate
problems in developing software for military applications. From this discussion,
one can see that the use of control charting for intrusion detection in cyber-
security applications has been introductory. This can be seen by the absence of the
phrase “control chart” in the Guide to Intrusion Detection and Prevention Systems

http://archive.ics.uci.edu/ml/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://aws.amazon.com/publicdatasets/
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developed by the U.S. National Institute of Standards and Technology (Scarfone
and Mell 2012). We see the cyber-security (CS) problem to be far more complex
than what is presented as the architecture of the computer network is continuously
changing and the state of the network can be represented by data of different
types (e.g., counts, continuous variables, and probabilities/ratios). At this time, we
know of only a limited class of multivariate control charting methods that can be
used to successfully monitor multivariate data of mixed data types. These methods
are generally in the class of supervised machine learning techniques (e.g., neural
network based control charts), and the properties of these methods are still being
discussed in the academic literature. Thus, further work in this area warrants a
detailed investigation of these methods.

4.5 Multistream Data

Increased availability of data and data tracking sources makes it possible to
simultaneously monitor data from many, often disparate sources. This presents
opportunities and challenges in terms of managing reasonable false alarm rates
while maintaining the ability to quickly detect unusual events. A control chart
for monitoring multiple streams collected at regular time intervals was introduced
by Boyd (1950). This approach considered plotting the maximum and minimum
subgroup mean from the group of streams on a control chart to detect location
changes. Mortell and Runger (1995) proposed alternative control charts based on
the pooled subgroup means for detecting overall mean changes and the range of
the subgroup means to detect location changes in an individual stream. Liu et al.
(2008) compared the method of Mortell and Runger (1995) to several approaches
in the context of monitoring using multiple gauges in a truck assembly process.
Liu et al. (2008) proposed methods based on F-tests comparing the between gauge
to the within gauge variability and likelihood ratio tests to detect specific changes
in only one stream. Meneces et al. (2008) considered the effect of correlation across
the multiple streams on the use of individual Shewhart X-bar charts to monitor
each stream. Using simulation, Meneces et al. (2008) suggested alternative control
chart constants to maintain a desired false alarm probability when monitoring
multiple correlated streams. Lanning et al. (2002) used an adaptive fractional-
sampling approach to monitor a large number of independent streams when it is
only possible to monitor a fraction of the streams. Recently, Jirasettapong and
Rojanarowan (2011) provided a framework for selecting a control chart method
for monitoring multiple streams based on the stream characteristics including the
degree of correlation among the streams, the number of streams, and the shift size
to be detected.

While some methods to monitor multiple streams have been addressed in the
SPC literature, most focus on a manufacturing context. The need to monitor
multiple, often correlated, data streams occurs outside of manufacturing in several
big data contexts. These include surveillance in public health, bioterrorism, social
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media, and others. Many authors have considered the statistical challenges present
in monitoring multiple data streams, particularly in the biosurveillance context.
Shmueli and Burkom (2010) noted that the context of biosurveillance, including
the data types, the mechanisms underlying the time series, and the applications all
deviate from the traditional industrial setting for which control chart methods were
developed. Rolka et al. (2007) gave an overview of the methodological issues in
public health and bioterrorism surveillance in the context of multiple stream data.
In addition to traditional methods including the multivariate cumulative sum and
exponentially weighted moving average approaches, Rolka et al. (2007) considered
the spatiotemporal aspect of biosurveillance data and the use of spatial scan statistics
as well as Bayesian network models to combine multiple data streams. Tsui et al.
(2008) also considered public health and disease surveillance, giving an overview of
the most popular methods, and discussing research opportunities in spatiotemporal
surveillance. Fraker et al. (2008) and Megahed et al. (2012) discussed the advantages
and disadvantages of several performance metrics applied to health surveillance,
recommending metrics based on time-to-signal properties.

The advances in the use of the Web as an information sharing tool, the simplicity
with which publicly available data can be merged and filtered, and the willingness
of individuals to openly broadcast through social media is making the already
challenging area of multiple stream surveillance even richer and more widely
communicated. For example, Brownstein et al. (2009) listed a sample of Web-
based digital resources for disease detection and discusses the use of search-term
surveillance. They gave an example using Google Insights to investigate the search
volume for several terms related to a salmonella outbreak attributed to contaminated
peanut butter in January, 2009. Chunara et al. (2012) illustrated the effectiveness
of the use of informal data sources such as microblogs volume and query search
volumes to gain early insight into the 2010 cholera outbreak in Haiti. In both the
case of the salmonella outbreak and cholera in Haiti, researchers were able to look
retrospectively at a known event, asking the question “could we have detected
this event using alternate sources?” In addition to the statistical challenges with
monitoring multiple data streams, the real challenge may be non-statistical, and
relate to knowing what to listen and look for in these emerging data sources. The
reader is referred to (Hay et al. 2013) for a discussion on the opportunities of big
data in global infectious disease surveillance.

5 Some Challenges in Big Data SPC

The application of SPC methods to big data is similar in many ways to the
application of SPC methods to regular data. However, many of the challenges
inherent to properly studying and framing a problem can be more difficult in the
presence of massive amounts of data. There exist several frameworks for solving
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Fig. 1 The DMAIC and CRISP-DM cycles

problems in the Total Quality Management (TQM), SPC, or Six Sigma area. For
example, there is the Plan Do Check Act (PDCA) cycle, or the Define, Measure,
Analyze, Improve, Control (DMAIC) cycle. In the data mining and knowledge
discovery areas, common problem solving frameworks include the Cross Industry
Standard Process for Data Mining (CRISP-DM), the knowledge discovery in data
mining (KDD) (Azevedo and Santos 2008). Figure 1 shows the DMAIC cycle and
the CRISP-DM cycle side-by-side.

It is clear from Fig. 1 that there is some overlap between the traditional SPC
framework of DMAIC and that of the CRISP-DM process. However, in the CRISP-
DM cycle, there is specific emphasis on business understanding, data understanding,
and data preparation. These stages are implicit within the DMAIC cycle, in the
define and measure stages, but the importance of these stages is magnified when
working with large and diverse data sets. For example, business and process
understanding is emphasized heavily within Phase I of process improvement. In
this Phase, the goal is to understand the process and process variability, define
the in-control state of the process, and establish a baseline for estimation of the
process model and parameters. Completing Phase I is critical to successful Phase II
monitoring. However, Phase I cannot be successfully completed until there is clear
business understanding of the process and the goal of the analysis. Additionally,
data understanding is critical, and in a big data scenario, often with thousands or
more variables, identifying the critical key outcome measures can be challenging.
Finally, the importance of data quality cannot be overemphasized. Jones-Farmer et
al. (2014) gave a review of the data quality literature and how this relates to SPC.

A key element in the CRISP-DM cycle is the importance of model deployment.
Model deployment may be as simple as presenting the analysis in a PowerPoint or
a white paper, or may be as complex as building an adaptive, online model into
the information system. In any case, it is important to note that building the model
is not the end-game. The actual use of the analysis in practice is the goal. Thus,
some consideration needs to be given to the actual implementation of the statistical
surveillance applications. This brings us to another important challenge, that of the
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complexity of many big data applications. SPC applications have a tradition of back
of the napkin methods. The custom within SPC practice is the use of simple methods
that are easy to explain like the Shewhart control chart. These are often the best
methods to use to gain credibility because they are easy to understand and easy to
explain to a non-statistical audience. However, big data often does not lend itself
to easy-to-compute or easy-to-explain methods. While a control chart based on a
neural net may work well, it may be so difficult to understand and explain that it may
be abandoned for inferior, yet simpler methods. Thus, it is important to consider the
dissemination and deployment of advanced analytical methods in order for them to
be effectively used in practice.

Aside from the general framework of problem solving, there are other important
challenges with applying SPC to big data problems. For example, the data pro-
cessing speed is a major area of focus in big data applications, especially with
100 % sampling. Therefore, methods compete based on the overall running time.
The focus on data processing speed can also reflect on how the surveillance problem
is approached. This effect can be seen in the monitoring of massive amounts of
labeled data, where historical data is not stored and the analysis is done on the
fly (Rajaraman et al. 2012). Accordingly, the analysis is often carried out using a
representative set of points from the data, and a selective set of summary statistics
that are useful for moment calculations. See Zhang et al. (2010); Bradley et al.
(1998) and Guha et al. (1998) for three highly cited examples in this area. It is
important for researchers in statistical surveillance to consider processing speed
when developing and refining methodologies.

Another challenge in monitoring high dimensional data sets is the fact that not
all of the monitored variables are likely to shift at the same time; thus, some method
is necessary to identify the process variables that have changed. In high dimensional
data sets, the decomposition methods used with multivariate control charts can
become very computationally expensive. Several authors have considered variable
selection methods combined with control charts to quickly detect process changes
in a variety of practical scenarios including fault detection, multistage processes,
and profile monitoring. Zou and Qiu (2009) considered the least absolute shrinkage
and selection operator (LASSO) test statistic of Tibshirani (1996) combined with
a multivariate exponentially weighted moving average (EWMA) control chart to
quickly identify process changes and to identify the shifted mean components.
Zou et al. (2012) considered the use of the LASSO statistic applied to profile
monitoring. Zou et al. (2011) developed a LASSO based diagnostic framework
for statistical process control that applies to high dimensional data sets. Capizzi
and Masarotto (2011) developed a multivariate (EWMA) control chart using the
Least Angle Regression (LAR) algorithm to detect changes in both the mean and
variance of a high dimensional process. All of these methods based on variable
selection techniques are based on the idea of monitoring subsets of potentially faulty
variables. Capizzi and Masarotto (2011) listed several important research areas in
this domain including the need to adapt these methods for nonparametric process
monitoring, better monitoring of process dispersion, and adapting the methods for
variable sampling interval (VSI) methods to improve detection performance. Some
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variable reduction methods are needed to better identify shifts. We believe that
further work in the areas combining variable selection methods and surveillance
are important for quickly and efficiently diagnosing changes in high-dimensional
data.

Another important challenge when using SPC methods with big data applications
is that, traditionally, SPC methods were developed for numeric data. While there are
some attributes control charts, these tend to be a distant choice to using methods
designed for quantitative variables. However, one of the great challenges of big
data is the ability to process and analyze unstructured data. Most of big data
applications are concerned with non-numeric data obtained from several databases.
This introduces several challenges. First, data quality becomes a focal point.
Pipino et al. (2002) defined data quality to have several dimensions that include:
completeness, consistency, free-of-error, security, timeliness, and understandability.
These metrics are essential to evaluate prior to performing any analysis since the
reliability of any produced model is associated with the quality of the input data.
Moreover, this evaluation is not straightforward since the data is often non-numeric,
unstructured, and imputed by a large number of users. Second, the modeling of the
data is often based on disciplines that are not studied by statisticians and quality
engineers. With text data, the models draw from linguistic sciences, psychology,
and computer science, and often integrate data from different languages. A third
challenge is that the arrival rate of the data fluctuates based on factors that are
often not understood prior to analyzing the data. This phenomenon is referred to
as trending/viral for online content.

6 Concluding Remarks

In this paper, we provided an overview of big data and the role of statisti-
cians/quality engineers in understanding and advancing big data. It is clear that big
data analytics is an evolving field with numerous applications, some of which can
present solutions to global challenges pertaining to public-health and science. SPC
and statistics are currently being deployed in some of these applications; however,
we encourage further research in these areas. In particular, work is needed to
examine how we can best preprocess large datasets and evaluate this preprocessing
phase. This includes a better understanding of how to evaluate the quality of the data,
select important features from the dataset, and perform Gage R&R. Additionally,
establishing the baseline is much more complex than standard SPC applications
since it requires domain knowledge, the data is heavily autocorrelated and is very
complex. The development of visualization techniques may play a role in better
understanding the problem. In Phase 1, we believe that data mining methods such as
classification and clustering approaches will become more commonly used to gain
process understanding. Additionally, we expect that the monitoring of functional,
graph, and multiple stream data to become increasingly important.
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Statistical Control of Multiple-Stream Processes:
A Literature Review

Eugenio K. Epprecht

Abstract This paper presents a survey of the research on techniques for the
statistical control of industrial multiple-stream processes—processes in which the
same type of item is manufactured in several streams of output in parallel, or still
continuous processes in which several measures are taken at a cross section of
the product. The literature on this topic is scarce, with few advances since 1950,
and experiencing a resurgence from the mid-1990s. Essential differences in the
underlying models of works before and after 1995 are stressed, and issues for further
research are pointed out.

Keywords Group control charts • Parallel monitoring • Variance components

1 Introduction

A multiple stream process (MSP) is a process that generates several streams of
output. From the statistical process control standpoint, the quality variable and
its specifications are the same in all streams. A classical example is a filling
process such as the ones found in beverage, cosmetics, pharmaceutical and chemical
industries, where a filler machine may have many heads. Another one would be
a mould with several cavities. Other processes may still produce only one stream
of output but the quality variable is measured at several points at the same time.
Consider, for instance, the fabrication of paper, sheets of steel, or the production
of rubber hoses by extrusion, where at every sampling time, the thickness of the
outcoming material is measured in different locations of its cross-section. For the
purposes of modelling and monitoring, these can also be seen as multiple-stream
processes.

Although multiple-stream processes are found very frequently in industry, the
literature on schemes for the statistical control of such kind of processes is far from
abundant. This paper presents a survey of the research on this topic. The focus
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is on industrial multiple-stream processes, but the last section (which indicates a
number of issues for further research) will briefly comment on the similarities (and
differences) between the problem of monitoring such processes and the problem
of monitoring multiple streams of data in other contexts of application. There is a
potential for the development of methods inspired on the techniques for industrial
MSPs, even when these techniques cannot be directly applied due to the greater
complexity of such other application contexts.

2 The Beginnings: The Group Control Chart and Nelson’s
Run Scheme

The first specific techniques for the statistical control of MSPs are the group control
charts (GCCs), described by Boyd (1950) and also in Burr (1976), Pyzdek (1992,
Chapter 21) and Montgomery (2012, Section 10.3.2). Boyd (1950) reported that
“the group chart for NX and R was developed by the British during World War II
and was described in ‘A First Guide to Quality Control for Engineers’, a British
Ministry of Supply publication compiled by Dr. E. H. Sealy and issued in 1943”.
Clearly the chief motivation for these charts was to avoid the proliferation of control
charts that would arise if every stream were controlled with a separate pair of charts
(one for location and other for spread). Assuming the in-control distribution of the
quality variable to be the same in all streams (an assumption which is sometimes
too restrictive), the control limits should be the same for every stream. So, the basic
idea is to build only one chart (or a pair of charts) with the information from all
streams. Specifically: at each sampling time t , every stream i is sampled and the
corresponding Nxi and Ri are calculated; the largest and the smallest Nx are plotted in
the Nx GCC, and the largest R is plotted in the R GCC. If these points lie within the
control limits, the other points (not plotted) would necessarily be within the limits
too. Of course an S chart could be used instead of the R chart, but in the 50s the R

chart was the usual one.
In the case the means of the streams differ but their variabilities are similar, the

group chart can still be used by subtracting the mean of each stream from the values
observed on that stream.

The question naturally arises of the overall false-alarm probability of a group
chart. Indeed, with a great number of streams, an adjustment of the control limits
should be made to ensure that this probability does not exceed the acceptable level.
Two possibilities are the Bonferroni (Johnson and Wichern 2007, p. 232) and the
Dunn-Sidak (Dunn 1958; Sidak 1967) corrections. Curiously, we found no reference
to the need of such adjustments in any of the previously mentioned references.
Colbeck (1999) and Grimshaw et al. (1999) are the first works, to my knowledge,
that explicitly point out the inappropriateness of using 3-sigma limits with the GCC.
The latter prescribed adjusting the limits with a formula that corresponds to the
Dunn-Sidak correction and gave tables of constants for computing the limits.
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With MSPs, special causes can be of two types: causes that affect all streams and
causes that affect only one or some of the streams. For instance, in a filling process,
a problem with a common pump may affect all spindles, while a clog in one spindle
will affect only that spindle (if it is due to impurities in the liquid, other spindles will
gradually become affected too). Nelson (1986) proposed a runs test (to be used with
the group charts, in addition to the “one point beyond the 3-sigma limits” criterion)
that would be sensitive to causes affecting only one stream. Namely, if the same
stream gives an extreme reading (the highest or the lowest Nx, or the highest R among
all streams) r times in a row, this is a signal that the mean of that stream has shifted
(or that its dispersion has increased). The critical value of r will depend on the
number of streams and on the in-control ARL desired. Quoting him, “if the outputs
of all the spindles have the same (not necessarily normal) distribution then the mean
recurrence time or average run length (ARL) for a run of length r is given by .kr �
1/=.k�1/, where k = number of spindles or, more generally, the number of streams”.
Using the above expression, in-control ARLs for different values of r and k can be
obtained and tabulated.

Mortell and Runger (1995) evaluated a two-sided version of this runs scheme,
in which a signal is the event that the mean of a stream is either a maximum or a
minimum in r consecutive samples.

Of course, the control limits of the GCC already provide sensitivity against
causes that affect only one stream; but the runs test increases this sensitivity.
Evidently, with both criteria for an alarm, the overall false-alarm risk will also
increase.

The runs test has two drawbacks, which have been pointed out by Mortell and
Runger (1995) and reported by Montgomery (2012). First, if two or more streams
shift, they are likely to alternate the extreme reading, so it may take quite some time
to observe a run of r consecutive observations of a same stream. In addition, due to
the discreteness of r , for some numbers of streams in the process there is no r value
that corresponds to a good tradeoff between false-alarm risk and power: with any
value of r , either the false-alarm risk will be too high or the sensitivity to shifts will
be too low.

Wise and Fair (1998) recommended using the GCC only with Nelson’s runs test,
and no control limit. The reason, while not explicitly stated (their book is a kind
of manual or cookbook; performance evaluation or theoretical arguments are not
provided), may either be the fact that using both the run test and the control limits
for detection would increase the false-alarm risk or, more probably, be the already
high false-alarm risk of a group chart with 3-sigma limits. I cannot concur with their
recommendation, however, at least because of the two limitations just mentioned
of the runs test. It would be preferable to keep the control limits and adjust them
for the acceptable false-alarm risk. They still proposed extending the use of group
charts to the case of individuals and moving range statistics (considering that when
the number of streams is large, samples with more than one observation per stream
may become impractical or even infeasible). They also proposed using group charts
for controlling multiple (different) quality characteristics, which can be achieved
by standardizing the different variables. In my opinion, however, this proposal is
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questionable. Their implicit motivation is that sometimes the number of different
quality characteristics to consider is huge; a counterargument is that, nowadays,
statistical process control (SPC) does not require plotting different charts on paper,
so different processes and characteristics can be controlled individually. (This is
supposing, of course, independent characteristics, otherwise the issue would belong
to the field of multivariate SPC).

Wise and Fair’s (1998) book deserves mentioning, nevertheless, for completeness
of this review and for being motivated by the practical experience of the authors in
the application of the techniques at Boeing.

Not only the runs scheme has its limitations, but also the “one point beyond the
control limits” criterion provides the group chart with limited sensitivity, for at least
two reasons: the widening of control limits required to control the false-alarm rate,
and the fact that, with many streams, often it is infeasible to take samples of more
than one or two measurements per stream. Schemes that are more sensitive both to
causes that affect one stream and to causes that affect all streams will be presented
in the next section.

From the standpoint of process analysis and improvement, Ott and Snee (1973)
presented a detailed off-line analysis of a multiple-head machine, with the purpose
of comparing “averages and variabilities of individual heads and changes with
time”. They make use of semi-residuals, complete residuals, plots of raw data
arranged in different ways and ANOVA to separate the time effects and head effects.
This work is remarkable as the only one, to the best of my knowledge, about the
analysis of MSPs; all other works are about monitoring them.

3 Two Sources of Variation

The GCC will work well if the values of the quality variable in the different streams
are independent and identically distributed, that is, if there is no cross-correlation
between streams. However, such an assumption is often unrealistic. In many real
multiple-stream processes, the value of the observed quality variable is typically
better described as the sum of two components: a common component (let’s refer
to it as “mean level”), exhibiting variation that affects all streams in the same way,
and the individual component of each stream, which corresponds to the difference
between the stream observation and the common mean level. In formal notation:
supposing that at time t a subgroup of measures is taken at each stream, the value of
j -th observation of the quality variable in stream i in time t is given by:

xtij D bt C etij ; t D 0; 1; 2; : : : ; i D 1; 2; : : : ; s ; j D 1; 2; : : : n (1)

where bt is the value of the “mean level” in time t and etij is the value of the
individual component of the j -th observation of the i -th stream at time t . The values
of bt may be i.i.d. or present some dynamics over time, depending on each particular
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process, and etij is assumed to be i.i.d. � N .0; �2/ over t , i and j , and independent
from b.

As a result, the variance of NXi (the sample average of the observations in any
stream i ) is

V. NXi / D �2
b C �2=n (2)

where �2
b is the variance of the mean level.

The presence of the mean level component can be identified in a given MSP by
examining the correlations between different streams (that is, between the NXti ’s:
the averages (over j ) of the n values observed in each stream i in a same time t),
because the mean level introduces cross correlations between the streams. Indeed,
the correlation between any two streams is

�2
b =.�2

b C �2=n/ :

Since the control limits of the NX GCC should be based on the total variance of
NXi (and, as stated before, should still be “widened” to avoid inflating the total

false-alarm rate), the presence of the mean level component leads to reduced
sensitivity of Boyd’s GCC to shifts in the individual component of a stream if
the variance �2

b of the mean level is large with respect to the variance �2 of the
individual stream components. Moreover, the GCC is a Shewhart-type chart; if the
data exhibit autocorrelation, the traditional form of estimating the process standard
deviation (for establishing the control limits) based on the average range or average
standard deviation of individual samples (even with the Bonferroni or Dunn-Sidak
correction) will result in too frequent false alarms, due to the underestimation of the
process total variance.

Mortell and Runger (1995) nicely illustrated this issue through an example with
simulated data of a process with 2 streams, in which �b D 4� and a sustained shift
of magnitude 1� was applied to the mean of one of the streams. The time-series
plot of the 2 streams (against control limits) shows clearly that the GCC is virtually
unable to signal the shift.

Another effect is that, in the converse situation when � is large with respect to
�b , the GCC will have little sensitivity to causes that affect all streams—at least, less
sensitivity than would have a chart on the average of the measurements across all
streams, since this one would have tighter limits than the GCC. Mortell and Runger
(1995) stated as generally true that the latter “can have (: : :) better performance
(than the GCC) when a shift common to all streams occurs”.

Therefore, to monitor MSPs with the two components described, Mortell and
Runger (1995) proposed using two control charts: First, a chart for the grand average
between streams, to monitor the mean level. The type of chart to be used should
be chosen according to the dynamics of the mean level: if it has a constant mean,
without any serial correlation, a classical NX chart, or an EWMA or CUSUM chart
would be appropriate; if it exhibits autocorrelation, some procedure for monitoring
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an autocorrelated process should be used. In any case, it would be a known
procedure in the previous literature for univariate processes, so Mortell and Runger
(1995) did not focus on it. For monitoring the individual stream components, they
proposed using a special range chart (Rt chart), whose statistic is the range between
streams, that is, the difference between the largest stream average and the smallest
stream average (at any time t , the j values xtij in each stream i are averaged; Rt is
then the difference between the maximum and the minimum of these averages). If
the process is in control and all individual stream components have mean equal to
zero, the Rt statistic has mean d2� and standard deviation d3� , where the constants
d2 and d3 are based on a “sample size” of s, the number of streams. If a stream
undergoes a shift in the mean, Rt will increase. Performance analysis of this scheme
has shown its efficiency in detecting causes that affect one stream. In addition, they
analysed enhanced versions of the idea, namely, EWMA and CUSUM versions of
the Rt chart. They compared the performance of the different schemes considering
also the two-sided runs scheme and a pair of CUSUMs, in the maximum and in
the minimum of all stream averages. In most cases, either the CUSUM or the runs
scheme performed the best, depending on the size of the shift and the number of
streams (depending on the number of streams, one scheme is better for small shifts
and the other for larger shifts, or the other way around). The EWMA scheme was
never the best, although only a few values of the smoothing constant were used, and
not optimized. Finally, the authors commented that both the chart on the average
of all streams and the Rt chart can be used even when at each sampling time only
a subset of the streams are sampled (provided that the number of streams sampled
remains constant). The subset can be varied periodically or even chosen at random.
They pointed out that it is common in practice to measure only a subset of streams
at each sampling time, especially when the number of streams is large. (Lanning
et al. 2002, analysed a fractional sampling scheme for an MSP, as we will see in the
next section).

Although almost the totality of Mortell and Runger’s paper is about the moni-
toring of the individual streams, the importance of the chart on the average of all
streams for monitoring the mean level of the process cannot be overemphasized.
Not only is it in general more sensitive than the traditional group chart but also the
latter is not appropriate for MSPs of the two-component nature described above.

Still about univariate charts for monitoring the mean level of MSPs, Nelson
(1986) mentioned that P. C. Clifford stated to him in a personal correspondence
that he used, “instead of an Nx chart, (: : :) a median chart for overall control (: : :).
Such chart is quite unaffected by the behavior of extreme spindles”.

Runger et al. (1996) modeled the MSP with two sources of variation as a
particular instance of a multivariate process and analysed their decomposition into
principal components. The result is that the major principal component turns out
to be the average of all streams, while the remaining components are any set of
s �1 orthonormal vectors that are orthogonal to the s-dimensional vector Œ11 : : : 1�0,
s being the number of streams. They proposed, then, to use a control chart for the
main component (average of all streams), as proposed in Mortell and Runger (1995),
and to use a univariate chart on the squared norm of the orthogonal projection of the
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multivariate vector on the subspace of the last s � 1 components, which turns out to
be proportional to the between-streams sample variance).

So, their proposal corresponds to replacing Mortell and Runger’s (1995) Rt chart
by an S2 chart (whose statistic is in fact the numerator of the sample variance of the
stream averages). Both are measures of spread between streams. Analogously to the
Rt chart, if there is more than one observation per stream, these should be averaged
(in the stream) to yield only one value per stream.

The ARL performance of this S2 chart is similar to the one of the Rt chart when
there are changes in one stream. However, the ARLs decrease when the number
of streams that have shifted increases, since the overall variance increases in this
case, while the ARLs of the Rt chart are not expected to significantly decrease
with the number of streams that shift, since the Rt statistic takes into account only
the extreme values. The ARLs of the S2 chart reach a minimum when half of the
streams have shifted. This happens because, with more than half streams shifted,
the values tend to concentrate again, just around another location, which makes the
expected value of the S2 statistic start to decrease, reaching its minimum when all
streams have shifted—a change to which this chart is insensitive—but which should
be detected by the chart on the average of all streams. Finally, they also analysed a
MEWMA version of the S2 chart—which, as expected, shows substantially smaller
out-of-control ARLs.

A third scheme that considers explicitly the two sources of variation described
above is Epprecht et al. (2011). For controlling the mean level, they proposed
(exactly as Mortell and Runger 1995, and Runger et al. 1996) using a chart on the
average of all streams; and, for controlling the individual streams, they proposed a
GCC on the differences between each stream and the average of all streams. It is
worth noting that Mortell and Runger (1995) had pointed out this possibility, even
if they have not pursued it. (They reported in the paper, however, that they had
evaluated the performance of a CUSUM chart on the extreme differences, but it had
been outperformed by the Rt CUSUM chart).

For controlling MSPs well represented by the model described in the beginning
of this section, this GCC has not the drawbacks mentioned above of the traditional
GCC on the values of the original variables in each stream, because the differences
between the streams and their average have zero mean when the process is in
control and are, each one, i.i.d. over time. Operationally, the scheme is a bit more
cumbersome than working with a single statistic (that is, Rt or S2), but, if it is
implemented in software (even in a spreadsheet), and if all values should be input in
any case, there is no practical difference—with the advantage over the other schemes
that a signal indicates the stream that has shifted. Conditional formatting in the
spreadsheet can also be used to indicate every stream that exceeds a control limit.
There are some complicating aspects, however: first, the fact that the differences
are taken with respect to an average of themselves introduces a cross-correlation
between the differences (even if there is no cross-correlation between the individual
components eij—not directly observable—of the different streams). This cross-
correlation is, however, negligible for more than 3 streams. Simulation analysis of
the scheme for the case of shifts in only one stream has shown that it outperforms
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the Rt and S2 charts for shifts in the mean larger than 1� . Since � is only part of
the process variance, it may be the case that shifts smaller than this be not relevant
to detect.

Simões (2010) analysed an EWMA version of this scheme, and also schemes
for monitoring the variance of the individual streams—an issue that had not been
investigated before under the context of the model with two sources of variation. For
this last problem, group control charts on the variances of the differences between
each stream and the average of streams, in Shewart-like and EWMA versions, have
been developed, and their performance has been analysed. Moving-range group
charts and their EWMA versions have also been analysed, to cater for the case
in which it is not feasible to take more than one observation per stream at each
sampling time. (The work is written is Portuguese.)

Meneces et al. (2008) advocated using one separate chart for each stream, due
to the enhanced diagnostic features of such scheme, which is now eased by current
computer resources. They used real data from an industrial process to compare the
in-control performance of this scheme with the performance of Nelson’s (1986)
runs scheme (which they called “the group method”) and of Mortell and Runger’s
(1995) Rt chart. The comparison was limited to one example, though: a series of 53
samples. The performance analysis of their proposed scheme (one chart for each
stream) was made by simulation and was more extensive, considering different
numbers of streams and different degrees of correlation between them; also, they
considered the cases of shifts in one stream, and in all streams. They also provided
values for the control limits coefficients of the Shewhart charts that yield the desired
in-control ARL, as a function of the correlation between streams. Although they
acknowledged the presence of such correlation, they did not consider separating the
two components of variability (common variability and intra-stream variability), as
the individual charts they recommended use directly, as monitoring statistics, the
values observed in each stream—the same monitoring statistics used by Boyd’s
group charts with control limits. This may lead to the same drawback of these
charts, namely, reduced sensitivity to special causes that affect just one or a few
streams. They also ignored the limitations of the runs scheme. In the Conclusions
section, they recommended using one chart for each stream, for two reasons. One
is its diagnostic feature (for example, when the Rt chart signals, an investigation is
needed to determine which stream(s) is (are) affected by special causes). The other is
that this scheme is more robust to differences in centring between different streams
because it admits adjusting for this case, through simply replacing the observation
in one stream by its difference to the in-control mean of the stream, while the other
methods would exhibit too many false alarms in this case. (I cannot fully agree
with this point though, because a similar adjustment could be applied to the other
methods, simply by considering the range of these adjusted observations instead of
the range of the raw observations).
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4 Other Approaches and Particular Problems

Amin et al. (1999) proposed an EWMA chart for the largest and smallest obser-
vations in each sample (the MaxMin EWMA chart). This chart can serve to
simultaneously monitor the mean and variability of univariate processes, but serves
as well to monitor multiple-stream processes, being sensitive to changes in the
overall process mean, in the inter-stream dispersion (as when individual streams
shift) or both. It can be seen as an EWMA extension of the Nx (or individuals) group
chart. Besides the objective detection criterion provided by the control limits, the
visual patterns of the two lines (Max EWMA and Min EWMA) give information
about the type of change. With a change in the overall mean, both lines would move
up or down together, and with an increase (decrease) in the process variance (or
inter-stream variance, in the case of an MSP), the lines will diverge (converge); and
so on. Optionally an Nx-EWMA line can be added to the chart. They reported that
the chart has been successfully applied in the nylon fibers industry to monitor 100
similar 8-stream processes.

Amin et al. (1999) analysed the performance of the chart and compared it with
a pair of EWMA charts, a two-sided EWMA chart for Nx and a one-sided EWMA
chart for ln.S2/. For shifts only in the mean, the joint charts perform better; with a
slight increase in the standard deviation, the difference in performance reduces and
for larger increases in the standard deviation the MaxMin EWMA chart outperforms
the joint scheme. They gave guidance for designing the chart, and proposed a variant
that is also sensitive to reductions in the process standard deviation.

Their scheme assumes a classical in-control process. In the case of MSPs, this
corresponds to the case of all streams being independent and identically distributed,
with no dynamics over time. An interesting issue that remains open is, then, how
the scheme would perform in the case of MSPs with two sources of variation such
as described in Sect. 3, and whether and how it should be adapted (and designed) in
order to deal with such processes.

In a very comprehensive paper, Wludyka and Jacobs (2002a) extended the group
chart and runs scheme to the case of multi-stream binomial processes, both for the
case of homogeneous streams and of streams with different nonconforming rates.
They made an extensive analysis of the use of the group chart, of the runs scheme
and also of a p chart for monitoring the overall process nonconforming rate, and gave
several tables of ARLs for shifts in a single stream and in the process (all streams).
They also discussed the possible impact of the estimation error in Phase I over the
Phase II performance of the control schemes, as well as the design of a useful
control scheme. In a couple of conference papers (Wludyka and Jacobs 2002b;
and Wludyka 2002), the same authors and the first one alone proposed chi-squared
control charts for controlling homogeneous and non-homogeneous multistream
binomial processes, respectively. To the best of my knowledge, these are the only
authors to have investigated MSP control by attributes,
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Lasi et al. (2004) presented an application of group control charts. The process
exhibited an autocorrelated common component and the first attempt at using joint
NX and R group charts (with 3-sigma control limits established by the traditional

expressions) led to too many false alarms of the NX group chart. This was due to
the underestimation of the total process variance (since the NR=d2 estimator does
not capture the variation of the common component over time). Recall this is one
of the limitations mentioned earlier of the group control charts in their traditional
form. They overcame the problem by changing the estimator of the variance to
capture the total variance. However, they still used 3-sigma control limits; that
is, even if they used for “sigma” the estimate of the total standard deviation, they
made no correction for the number of streams. By the way, the correction to apply
would not be a straightforward one. The Bonferroni or the Dunn-Sidak formulae are
not appropriate because they assume independence between streams (no common
component). Anyway, ignoring the need for a correction would increase the false-
alarm rate. Their chart still worked because the number of streams of the particular
process was small with only 4 streams.

Lanning et al. (2002) considered an MSP “where it is possible to monitor only
a fraction of the total streams at a given time”, which is “of interest in those
processes where the spread of production is great and includes a large number of
streams, but the ability to monitor the process is not fully automated”. The benefit
is, obviously, less sampling effort. In addition, they applied the variable sample size
and sampling interval (VSSI) technique to the sampling, increasing the efficiency
of the monitoring. (For descriptions of VSSI control charts, see Prabhu et al. 1994,
and Costa 1997.) In their proposed scheme, the measurements from a subset of
streams constituted a sample, and their average was plotted into a VSSI NX chart.
The purpose was to control the common component, and the chart should signal
when all streams shift or a significant number of them do. In that particular process
shifts in a single stream (or in a very few streams) were rare and/or not relevant.
Even so, the authors proposed the use of an Rt chart (as proposed by Mortell and
Runger 1995) together with the VSSI NX chart to detect possible shifts in individual
streams. The performance analysis of the scheme (with the ATS — average time
to signal — as performance measure) revealed its effectiveness in monitoring the
process overall mean (as opposed to the means of individual streams) when the
number of streams is large, a problem that had not received much attention before.

Bothe (2008) introduced a capability index he named average Cpk as a measure
of capability of the combined output of all streams. The index is derived from
the overall nonconforming fraction of the process, and has the advantage of being
applicable to both variables and attribute type data. This seems to be the only work
thus far on the capability of MSPs.

Liu et al. (2008) examined a somewhat different application of multiple stream
monitoring, the one of a (single stream) truck assembly process alignment where
product characteristics are measured by multiple gauges in parallel, and the goal
is to detect biases in one (or some) of the gauges. The task of detecting shifts
in the production process (which could be left to standard Shewhart charts) was
out of the scope of their work. Gauges were assigned haphazardly to units of
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the product, each part being measured by one gauge, and there was no “common
component” of variation introducing cross-correlation between streams (gauges).
They considered both the situation in which there are retrospective data to estimate
the unknown parameters (especially the variance) of the measurement system under
stable conditions and the situation in which such data are not available. For the
former case (which they called the known variance case) they proposed a likelihood
ratio method and analysed its performance as well as the performance of an F test
for simultaneous comparison of the means of the different gauges. For the latter case
(which they called the unknown variance case), they analysed the performances of
another version of likelihood ratio test, of Mortell and Runger’s Rt chart and of an S
chart on the standard deviation of the output averages of gauges in each subgroup (to
measure the between-gauges dispersion). With shifts (biases) in only one gauge, the
likelihood ratio methods consistently outperformed their competitors in each case.
The larger the number of gauges, the larger the differences in performance between
methods in a same group (known variance or unknown variance); with only two
gauges, the methods perform identically. However, if the number of gauges is small
and two gauges shift simultaneously in the same direction, the performance of the
likelihood methods is not as good.

Naturally, with increases in the sample size the power of all methods increases
and the differences between their performances decrease.

Liu et al. (2008) mentioned that extensions of their work include “adapting any
of the proposed test statistics to a sequential control chart such as a (. . . ) CUSUM
or (. . . ) EWMA”.

An open issue is to verify whether the likelihood test statistics proposed can be
applied (with some adaptation if necessary) to the context of a model with a common
component exhibiting autocorrelation.

Xiang and Tsung (2008) used a multiple-stream representation to monitor a
multi-stage process. They used a state-space model to represent and predict the
vector of variables in the different stages (which constitutes the output of a stage
and the input to the next one), and converted “the complex multi-stage monitoring
problem (: : :) to a simple multi-stream monitoring problem by applying group
exponentially weighted moving average charts to the one-step ahead forecast errors
of the model”. They illustrated the application and effectiveness of the method with
data from automobile hood manufacturing and workpiece assembly.

Mei (2010) proposed and analysed a scheme based on the sum (over all streams)
of CUSUM statistics of the individual streams. The individual CUSUM statistics
are based on the logarithm of a likelihood ratio statistic. The procedure is designed
to detect changes in a moderately large number of data streams, and is robust and
omnibus in the sense that it is sensitive to changes in different combinations of
affected streams, even with different changepoints (changes occurring at different
times), since the CUSUM statistics accumulate information over time. In the
performance analysis, the author compared this scheme with another one, based
on the maximum CUSUM statistic among the streams (see Woodall and Ncube
1985, and Tartakovsky et al. 2006), which performs better when one or just a
few streams change (simulations were conducted for the case of 100 streams
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and the max CUSUM outperformed the sum of CUSUMs when up to 5 streams
changed). The development of the scheme was motivated by the general (not
necessarily industrial) problem of monitoring multiple streams of data, of which the
author mentioned security and biosurveillance systems as examples. The post-alarm
problem of identifying the stream(s) that changed was left to one side. The validity
conditions for the method are based on the strong assumption that the observations
are independent over time as well as among data streams. This assumption will be
reasonable, however, if the scheme is applied to “the residuals of a spatio-temporal
model rather than the original observations”.

Epprecht and Barros (2013) studied a filling process application where the stream
variances were similar, but the stream means differed, wandered, changed from day
to day, were very difficult to adjust, and the production runs were too short to enable
good estimation of the parameters of the individual streams. The solution adopted to
control the process was to adjust the target above the nominal level to compensate
for the variation between streams, as a function of the lower specification limit,
of the desired false-alarm rate and of a point (shift, power) arbitrarily selected.
This would be a MSP version of “acceptance control charts” (Montgomery 2012,
Sect. 10.2) if taking samples with more than one observation per stream were
feasible. Since this was not the case, the target, the upper specification limit (less
solid a restriction than the lower one) and the upper control limit of the chart
were redefined as a function of the desired false-alarm rate, the point (shift, power)
specified, the lower specification limit and the variability between stream means.

Jirasettapong and Rojanarowan (2011) were concerned with the selection of
the appropriate control charts for monitoring an MSP, considering the degree of
correlation among streams, the number of streams, the feasibility of using one chart
per stream, whether the streams can or cannot be centred on the same target, and
the relevant shift size. They provided a taxonomy, in the form of a tree diagram, to
classify the MSPs according to these factors, where the leaves are the recommended
control charts. The work has the merit of making explicit some aspects that may
invalidate the use of some methods, and of illustrating the proposal with a real case.
However, they limited the options considered to just a few schemes and have not
considered all relevant aspects for the characterization of MSPs. This is a beginning,
but more research is needed on this issue of selection of the appropriate control
scheme for MSPs.

5 Perspectives: Other Applications, Open Issues, Challenges
and Opportunities for Research

This review is constrained to the industrial context of multiple-stream processes.
The need to monitor multiple streams of data, however, arises in other applications.
As said before, Mei (2010) mentioned security and biosurveillance systems as
examples. Woodall et al. (2010) pointed out the similarity between MSPs and the
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“large number of multiple streams of data” used in health-related surveillance,
such as “data available over time on a number of different subregions, hospitals
or physicians”, but added that the underlying assumptions of the models and
methods for industrial MSPs “may be too restrictive for these methods to be applied
directly to health-related monitoring”. He commented that “when many patient sub-
groupings or several healthcare indicators are simultaneously considered, it can
be a challenge to control the rate of false alarms and yet retain power to detect
meaningful outbreaks”. On this specific issue, see Marshall et al. (2004).

Still in this context, Burkom et al. (2005) analysed alternative tools for moni-
toring multiple data streams in public health monitoring systems. They underlined
the distinction between consensus monitoring, which is “the testing of a single
hypothesis using multiple sources of evidence” (which in turn may be constituted
by data of different natures) and parallel monitoring, which is “the monitoring of
time series representing different physical locations . . . that are possibly stratified
by other covariates”. This last problem is more similar to, although usually more
complex than, the one of monitoring industrial MSPs. The “streams” in this case are
no longer identically distributed, the process dynamics is more complex and most
often is a function of factors (the “other covariates” mentioned) that differ from
one location to another; seasonality and weekly patterns may be present (not to
mention autocorrelation and cross-correlation between different locations) and, as
a consequence, such monitoring requires specific methods or adaptation of existing
ones.

Burkom et al. (2005) analysed the performance of some univariate and multivari-
ate procedures, focusing mainly on consensus monitoring with procedures based on
the combination of p-values from different sources, but concluded by “the need
to blend the parallel and consensus monitoring tools to achieve a system with
distributed sensitivity and controlled alert rates”, since consensus monitoring tools
may not detect or identify individual outputs.

I will not linger on biosurveillance, which is, as said, out of the scope of
this review. The idea is to show that the development of specific multiple-stream
methods or extension of the existing ones for monitoring multiple streams of data
in biosurveillance systems is a need and an opportunity for challenging research.

Keeping confined to the industrial context, some open issues, which, of course,
are far from constituting an exhaustive list, are the following:

• Most research works consider a small to moderate number of streams. Some
processes may have hundreds of streams, and in this case the issue of how to
control the false-alarm rate while keeping enough detection power (as mentioned
above in the context of healthcare monitoring) becomes a real problem. Textile
industries, where, for instance, the number of spools may be of about one
thousand, obviated this problem by having an automatic controller in each spool.
When this is not the case, FDR methods (Benjamini and Hochberg 1995; and,
again, see Marshall et al. 2004) may be considered but it is not clear how to
employ them in the design of monitoring schemes for industrial processes.
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• Some of the methods mentioned in this review that were developed for specific
problems or types of process deserve analysis to verify the possibility of being
applied (with adaptation if needed) to other problems/processes. For example,
how would the methods in Liu et al. (2008) extend to the case of processes
with a common component exhibiting autocorrelation? How would the MaxMin
EWMA chart by Amin et al. (1999) perform in the case of an MSP with two
sources of variation? Or in which conditions (for which values of the ratio
between variance components) does it perform well? Can it be modified to be
adapted for this kind of process?

• Real multiple-stream processes can be very ill-behaved. The author of this paper
has seen a plant with six 20-stream filling processes in which the stream levels
had different means and variances and could not be adjusted separately (one
single pump and 20 hoses). For many real cases with particular twists like
this one, it happens that no previous solution in the literature is applicable.
Developing methods for such specific applications is a need.

• Different monitoring methods were developed assuming processes with different
characteristics. The appropriateness and efficiency of each of them depends
on the dynamic behaviour of the process over time, on the degree of cross-
correlation between streams, on the ratio between the variabilities of the indi-
vidual streams and of the common component (note that these three factors are
interrelated), on the type and size of shifts that are likely and/or relevant to detect,
on the ease or difficulty to adjust all streams in the same target, on the process
capability, on the number of streams, on the feasibility of taking samples of more
than one observation per stream at each sampling time (or even the feasibility
of taking one observation of every stream at each sampling time!), on the length
of the production runs, and so on. So, the first problem in a practical application
is to characterize the process and select the appropriate monitoring scheme (or
to adapt one, or to develop a new one). This analysis may not be trivial for the
average practitioner in industry. A methodological guide for such an analysis can
be a very useful contribution. Jirasettapong and Rojanarowan (2011) is the only
work I have found on the issue of selecting the most suitable monitoring scheme
for an MSP. It considers only a limited number of alternative schemes and a few
aspects of the problem. More comprehensive analyses are needed.

• An issue that has hardly been tackled is the one of Phase I. There is a huge body
of research on Phase I analysis of control charts (for a review, see Jensen et al.
2006); we found no such a study in the context of MSPs, with the only exception
of Wludyka and Jacobs (2002a,b) for the case of MSP control by attributes.

• Similarly to multivariate process control (of which multiple-stream process
control is a particular case), after a signal there may be the need to identify the
stream(s) that have shifted. Many methods do not provide this identification auto-
matically, so there is opportunity to investigate procedures for accomplishing it.

• There is place for a more extensive comparative analysis of performance of
existing methods, since the performance evaluations in different papers do not
consider the same cases, shifts, and number of streams affected.
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Regenerative Likelihood Ratio Control Schemes

Emmanuel Yashchin

Abstract We discuss the problem of monitoring where models driving the data are
undergoing abrupt changes in time, such as shifts or drifts. We introduce a unified
methodology based on the use of likelihood ratio tests that enables one to obtain
control schemes that provide both good (and, under some conditions, optimal)
statistical performance and are relatively easy to implement. These schemes depend
on just one design parameter and require a limited computational effort that
is dynamically adjusted based on process conditions. An example pertaining to
multivariate control of the normal mean is discussed in detail.

Keywords Average Run Length • Detection • False Alarms • Monitoring

1 Introduction

In many applications involving monitoring of data streams one can justify an
assumption that the model describing the data undergoes abrupt changes of
unknown magnitude that occur at unknown moments of time. Depending on the
objectives, such models can be used, among other things, to

• detect as quickly as possible onset of unfavorable process conditions while
maintaining a low rate of false alarms (the detection problem)

• estimate the current process parameters (filtering); this problem is of importance
in situations where on-line corrective actions are possible that can bring the
situation under control without directly addressing the cause of the unfavorable
change

• test retrospectively the assumption of data homogeneity; this problem is of
importance in process capability analysis

• locate retrospectively points of change and estimate magnitudes of change in
process parameters; this segmentation problem is used in the problem of process
diagnosis.
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The above problems have been subject of intensive research (e.g., see Telksnys
1986; Basseville and Nikiforov 1994; Tsui and Woodall 1993; Carlstein et al. 1995;
Lai 1995; Sullivan and Woodall 1996; Hawkins and Olwell 1998; Stoumbos et al.
2000; Sullivan 2002; Garthoff et al. 2013; Kenett et al. 2014). They can typically be
addressed in either fixed sample or sequential settings. Recently, new procedures
based on the generalized likelihood ratio (GLR) have been proposed by several
authors, e.g., see Reynolds and Lou (2010); Wang and Reynolds (2013).

In this article we focus on the problem of sequential detection of an unfavorable
change that is of high relevance in statistical process control (SPC) applications. We
address the problem in a general setting by using groups of likelihood ratio tests
performed sequentially at the current point in time. The depth of history considered
relevant for detection purposes will vary depending on process conditions. At some
points all the prior history will be declared irrelevant and discarded. The key feature
of our approach is selection of such points in a manner that does not discard useful
information.

In Sect. 2 we introduce the problem setup and formulate the likelihood strategy.
In Sect. 3 we present the basic approach, based on selection of regeneration points,
that modifies this strategy in a way where it becomes practical. Note that this
strategy contains some important enhancements compared to that considered in
earlier literature, eg. see Yashchin (1995, 1997). In Sects. 4 and 5 we apply this
strategy to the well known problem of monitoring the mean of a multivariate normal
population. As the reader will see, one appealing feature of the proposed scheme is
that it cannot be beaten by a Shewhart scheme, even for large changes in the process
mean, and yet, like a Shewhart scheme, it only depends on a single design parameter.
In Sect. 6 we discuss generalizations involving weighting information based on time
and other criteria. Finally, Sect. 7 contains a discussion.

2 The Problem Setup

Let fX i g, i D 1; 2; : : : be a sequence of (generally multivariate) observations
that we intend to monitor. In practical applications, they may represent, for
example, component-wise deviations between observed and projected features in
a lithography step of a chip manufacturing process, goodness-of-fit characteristics
of an assumed model, reliability characteristics of manufactured components, and
so forth.

The stochastic behavior of the sequence is determined by the vector of param-
eters � . We shall initially assume that all the components of this vector are of
primary interest. In the last section we discuss the case where behavior of fX i g
also depends on nuisance parameters. In general, the vectors fX ig can form
a serially correlated sequence; however, to simplify the presentation, in what
follows we will assume independence except where stated otherwise. Denote the
most recent moment of time by T and the corresponding most recently observed
observation by XT . Denote the joint distribution of m most recent observations by
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f�.XT �mC1; : : : ; X T �1; XT /, and denote its natural logarithm (the log-likelihood)
by Lm;T .�/.

To set up the problem of detection, we first specify the acceptable region ˝0

in which � should reside under normal operating conditions and the unacceptable
region, ˝1. Note that the union of ˝0 and ˝0 does not need, in general, to cover
the whole parameter space: there will generally exist a “grey” area in between. This
three-zone approach to design of control schemes (e. g., see Woodall 1985; Yashchin
1985) is motivated by practical convenience: in many industrial applications, an
engineer will have no difficulty specifying areas that are distinctly “good” or “bad”;
however, dividing the parameter space into two regions to separate “good” values
from “bad” ones could prove to be a challenge.

Performance of detection schemes is typically measured in terms of the run
length (RL), a random variable representing the number of observations taken until a
signal is triggered. In general, one would like this variable to be large when � 2 ˝0

(i.e., a low false alarm rate) and small when � 2 ˝1 (i.e., good sensitivity with
respect to out-of-control conditions). The most popular measure is the average run
length (ARL).

Now let us denote, for a given set of last m observations,

L�
m0;T D max

�2˝0

Lm;T .�/; L�
m1;T D max

�2˝1

Lm;T .�/; D�
m;T D L�

m1;T �L�
m0;T : (1)

Denote by m0 the minimal depth of data m for which � is estimable. Then one
can define a general strategy that leads to powerful control schemes as follows.

Likelihood Ratio (LR) Strategy: Trigger an out of control signal at time T if D�
m;T >

h for some m � m0 and pre-specified threshold h � 0.
The above strategy leads to powerful procedures for a wide class of situations

involving control of univariate and multivariate processes with or without serial
correlation, e.g., see Basseville and Nikiforov (1994); Hawkins and Olwell (1998).
Unfortunately, its practical usefulness is limited since it requires one to examine the
whole data set to reach a decision as to whether a signal is to be triggered at time T .
Therefore, any practical application of the LR strategy involves choosing a window
of size M and triggering a signal only if D�

m;T > h for values m0 � m � M .
In effect, this amounts to running a truncated SPRT backwards in time. As shown
in Lai (1995), in the univariate case one can achieve asymptotic efficiency of the
LR test by examining only a subset of values m. However, this approach could
still require a search going deep into history to establish whether a signal is to
be triggered. Another approach proposed by Lai and Shan (1999) involves using
a mixture of GLR window-limited tests. Nikiforov (2001) proposes an approach
based on separation of parameter space into several subsets and running a GLR
window-limited scheme for various subsets in parallel.

In the next section we introduce an alternative procedure, the regenerative
likelihood ratio (RLR). Its primary strengths are statistical power and simplicity. It
can also be used in conjunction with other monitoring schemes, for example those
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by Lai and Shan (1999) and Nikiforov (2001), to dynamically establish the size of
a window in a window-limited GLR scheme.

3 The Regenerative Likelihood Ratio Approach

Based on pre-specified threshold h � 0 and minimal window size m0, this procedure
calls for determining the depth MT dynamically, based on the previous history:

Regenerative Likelihood Ratio (RLR) Scheme: Given that at time T the last
regeneration point was registered MT units of time ago,

• trigger a signal if D�
m;T > h for some m0 � m � MT .

• if D�
m;T � 0 for every m0 � m � MT ; declare T the new regeneration point.

• otherwise, denote by mT the maximal value of m in Œm0; MT � for which D�
m;T >

0, and declare T � mT a new regeneration point.

We note that this formulation is different from that appearing in the earlier
literature (see Yashchin 1995, 1997). The new method for selecting the regeneration
point leads to substantial reduction in computing effort without a significant loss of
statistical power. Within the framework of the RLR scheme selection of window size
is completely automated, and thus it does not play the role of a design parameter, in
effect making the design problem one-dimensional.

The process of selection of a new regeneration point is shown in Fig. 1. The
intuitive explanation of the reason for moving the regeneration point from T � MT

to T � mT is as follows:

• if at the present point in time the process is in control then there is no reason to
have the history window at all, and so the move makes sense;

• if the process is at some “bad” level and will continue at this level in the future,
the points T � MT C 1; : : : T � mT that are not contributing to detection now are
not likely to contribute to detection later, and so can safely be discarded.

To implement the above procedure as a chart, it is convenient to define a process sT

at time T as follows:

sT D max
m0�m�MT

D�
m;T : (2)

Now we can plot sT on a control chart with domain .0; h/ and trigger a signal at
time T if sT > h. If sT � 0 declare T the new regeneration point. Otherwise, we
find mT as described above and declare T � mT a new regeneration point. This type
of chart is liked by end users because it is relatively easy to interpret: the value of sT

represents evidence accumulated at time T against the hypothesis that the process
is in control.

It is not difficult to see that in the “simple vs. simple” case where one seeks
to detect a change from a fixed “good” value �0 of a parameter to a known “bad”
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Fig. 1 The process of establishing a new regeneration point at the current point of time T. The
points shown on the plot are computed at time T: D�.m/ is the score in favor of the hypothesis
that the parameter is in the “bad” region computed based on the data window of size m. T � MT

is the current regeneration point. The largest window size for which evidence in favor of the “bad”
hypothesis is positive is mT —therefore, T � mT is declared a new regeneration point

value �1, the value of sT coincides with that of the Page’s Cusum scheme (also
known as the decision interval scheme). Therefore, the RLR can be viewed as the
natural extension of the Cusum technique to cover more complex data models, e.g.
involving serial correlation, cross-correlation, and multivariate data.

In practical applications one may prefer more simple schemes that sacrifice some
statistical efficiency to reduce complexity even further. For example, under “mild”
out-of-control conditions the regeneration point could remain intact for a prolonged
period in time, resulting in increasing computing costs related to necessity of
exploring progressively deeper data windows - one may want impose a limit on
such costs. We define three possible simplifications:

• Window-limited RLR: Regular RLR scheme but the depth of search is limited to
M0. In other words, the above rules defining the RLR call for triggering a signal
D�

m;T > h for some m0 � m � min.M0; MT /I T is declared a new regeneration
point if D�

m � 0 for every m0 � m � min.M0; MT /: If this does not hold,
then we denote by mT the maximal value of m in Œm0; min.M0; MT /� for which
D�

m;T > 0, and declare T � mT a new regeneration point.
• RLR(k): Regular RLR scheme, but explores only values of m on a k - spaced

grid. In addition, always explore m D MT . Note that in the special case k D 1
this scheme reduces to the sequence of generalized Sequential Probability Ratio
Tests:

1. Define scheme sT at time T by sT D D�
MT ;T . Signal if sT > h.

2. If sT � 0 declare T the new regeneration point.

• Same as RLR(k), but also explore m D m0. When k D 1 we obtain a
generalized Cusum-Shewhart scheme.
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As k increases, these simplified schemes develop an undesirable property as a
price for reduced complexity: their worst case performance deteriorates. The Lorden
(1971) criterion demands, roughly speaking, that for a given rate of false alarms
the average detection capability will be guaranteed to be at a certain prescribed
level independently of the data history preceding the change. The simplified
RLR procedures can appear to have good steady state or initial state statistical
performance, but they run into situations where previously recorded favorable
process history impedes detection capabilities with respect to subsequent changes.
An example is given in Sect. 5.

The window-limited approach can also be used in conjunction with RLR(k). In
general, one needs to exercise caution when selecting a suitable value of M0 for
RLR. Choosing too small a value for M0 could lead to low detection capability
with respect to unacceptable changes of relatively low or moderate magnitude.
Choosing an excessively large value for M0 could result in higher than necessary
computational costs when the process level is acceptable.

4 Example: Monitoring of the Multivariate Normal Mean

To illustrate the Regenerative Likelihood Ratio approach, consider the problem of
monitoring the mean of the multivariate normal population. Let us assume that

X i � Np.�; ˙ /; i D 1; 2; : : : ; (3)

where � is the p-dimensional process mean and ˙ .p�p/ is assumed to be known. Let
us assume that the monitored parameter is the distance from the target centroid, �0:

� D k� � �0k˙ D
q

.� � �0/
0

˙ �1.� � �0/; (4)

and that the acceptable and unacceptable regions for the monitored parameter are
� � �0 and � � �1, respectively, where �0 < �1. For a two-dimensional case the
graphical representation of the problem setup is given in Fig. 2.

To implement the RLR scheme we have to optimize, for every window m, the
log-likelihood, in both acceptable and unacceptable regions, and then construct the
likelihood ratio test. The log-likelihood at time T for window size m is:

Lm;T .�/ D �0:5m � ln Œ.2�/pk˙ k� � 0:5

mX
iD1

kXT �iC1 � �k2
˙ (5)

Denote the MLE based on window of size m and its distance from the centroid by

��.m/ D NX.m/ D 1

m

mX
iD1

XT �iC1I ��.m/ D k��.m/ � �0k˙ : (6)
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Fig. 2 The setup of the
problem for monitoring the
multivariate normal mean

Note that ��.m/ and ��.m/ defined above depend implicitly on T . Here and
in what follows, this dependence will not be explicitly reflected in the formulas in
order to keep the notation simple. We will also note that � is estimable based on the
data window of size m D 1; therefore, the minimal search window in RLR schemes
can be set to m0 D 1.

After some algebra involving constrained optimization with a Lagrange mul-
tiplier, one can show that ��.m; �/, the MLE computed under the constraint
k� � �0k˙ D �, is given by a linear combination of the target centroid �0 and
the unconstrained MLE. In particular,

��.mI �/ D �0 C .��.m/ � �0/ � �

��.m/
: (7)

The likelihood optimization process with mean constrained to the acceptable
region is illustrated in Fig. 3. By using the property (7) one can derive the RLR
scheme:

• Trigger a signal at time T if for some 1 � m � MT

k� � ��.m/ � �1 and m.�1 � �0/ Œ��.m/ � k�� > h� or
��.m/ � �1 and 0:5m Œ��.m/ � �0�

2 > h�;

where h� = signal level and k� = reference value = .�0 C �1/=2.
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Fig. 3 The MLE ��.m/ of
the mean � based on the
window of depth m. The
MLE ��.m; �0/ under the
constraint � � �0 is given by
the linear combination of �0

and ��.m/

• If ��.m/ � k� for all 1 � m � MT , then declare T a new regeneration point.
Otherwise, find mT using the process described in Sect. 3, and declare T � mT a
new regeneration point.

5 Selected ARL Comparisons

To illustrate the method, let us consider the bivariate normal case with ˙ D I ,
acceptable region consisting of a single point, � D 0 and unacceptable region � � 1.
We consider several RLR schemes along with two other popular schemes, namely,
the MC1 scheme proposed by Pignatiello and Runger (1990) and the Shewhart T 2

scheme which signals when kxi � �0k2
˙ exceeds a pre-specified threshold. The

ARLs in the table below are computed under the assumption that no data is available
prior to change-point.

Distance � RLR RLR(1) MC1 T 2

0.0 200 200 203 200

1.0 10.5 9.43 9.28 42.0

1.5 5.61 4.91 5.23 15.8

2.0 3.55 3.07 3.69 6.9

2.5 2.52 2.20 2.91 3.5

3.0 1.91 1.72 2.40 2.2
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As the table above illustrates, the RLR scheme is uniformly more powerful than
the Shewhart-type T 2 scheme that is prevalent in today’s industrial environment.
This popularity is explained not only by its relative simplicity, but also by the fact
that it is very difficult to beat in detection of large changes. Such changes are of
great importance to scheme designers, even though the most typical change they
are interested in detecting may be of smaller magnitude. For example, the MC1
scheme cannot beat the T 2 scheme for larger changes (� � 3). Compared to MC1,
the RLR scheme is more powerful for changes above � D 1:5, while remaining
competitive in the domain � < 1:5. Finally, note that while RLR(1) appears to
be more powerful in this comparison, its “worst case” performance suffers from the
fact that it allows previously recorded “good” history of the process to interfere with
detection capability.

6 Weighted Likelihood Schemes

In this section we discuss a generalization of the RLR approach that involves
weighting the observations. We refer to this approach as the weighted RLR
technique. In practical situations weights can be introduced when:

• there is a reason to believe that some of the observations should carry more
weight in decision making, because of reasons not reflected in the model. For
example, a more stable data gathering environment may give more credibility
to corresponding observations—and this is reflected in higher weights (type 1
weighting).

• it is not known a-priori what type of change the monitored parameter will
undergo. If the only possibilities are shifts or drifts, then one could use two
RLR schemes: one to detect the presence of unfavorable shifts, and another to
detect a drift. However, one can opt for a less complex route and apply a single
RLR scheme with higher weights given to more recent observations. Such a
scheme will have much better performance than the usual RLR with respect to
drifts in � , while maintaining good statistical power with respect to shifts (type 2
weighting). In many practical applications it is convenient to choose weights of
type wi D �i ; i D 0; 1; : : : which lead to Geometric RLR schemes.

We will now illustrate construction of a weighted RLR scheme of type 2.
Let w0; w1; : : : ; wm�1 be weights associated with XT ; XT �1; : : : ; XT �mC1, respec-
tively, for any fixed m (in other words, w0 is associated with the last observation,
w1—with the previous one, etc.). As noted above, the weights will typically
form a decreasing sequence to provide emphasize on the most recent information.
The weighted log-likelihood function corresponding to the last m observations is
given by:

L
.w/
m;T .�/ D

TX
iDT �mC1

wT �i log f� .X i jX i�1; X i�2; : : :/: (8)
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In light of the RLR approach described in Sect. 3, one can now construct a weighted
RLR control scheme by defining

L
�.w/
m0;T D max

�2˝0

L
.w/
m;T .�/; L

�.w/
m1;T D max

�2˝1

L
.w/
m;T .�/; D

�.w/
m;T D L

�.w/
m1;T � L

�.w/
m0;T

(9)

and triggering an out of control signal at time T if D
�.w/
m;T > h for some m � m0 and

threshold h � 0, while adhering to rules for determining regeneration points given
in Sect. 3.

7 Discussion

In general, when considering a simplified RLR scheme, one should take into
consideration not only sacrifices this will require in terms of the ARL curve (they
often turn out to be quite tolerable), but also the way in which nuisance parameters
are handled in the particular application. Let us denote the vector of nuisance
parameters by �. Then we can define

L�
m0;T D max

�2˝0;�
Lm;T ; L�

m1;T D max
�2˝1;�

Lm;T ; D�
m;T D L�

m1;T � L�
m0;T ;

(10)

and apply an RLR scheme in the way described above (the value m0 will have to
be large enough to enable one to estimate not only � but also �). In this mode
we will assure that even an abrupt change in � will not prevent us from detecting
unfavorable changes in � reasonably fast; simplified RLR, however, could be much
slower in detecting changes in � under such circumstances.

In situations where changes in � tend to be infrequent, one can chose to obtain an
estimate of its current value at time T and treat it as a known quantity. In the process
of estimating the current value of � one will typically use (explicitly or implicitly)
data that extend beyond the window MT ; for example, one can use exponentially
weighted averages or other filtering techniques. In situations of this kind simplified
RLR schemes tend to be less vulnerable to instability in �.

The above summary only relates to the frequentist approach to the problem of
detection. In the literature one can find a number of techniques stemming from
the Bayesian approach to this problem that cannot be discussed here because of
the limited scope of this article (e. g., see Kenett et al. 2014; Tartakovsky and
Moustakides 2010, for information and references on this topic). Situations in
which data can be viewed as being generated by models with changepoints are very
common in industry, especially in areas related to Quality Control. In this article
we presented several methods for detection of changes in � . These methods are
based on the concept of Likelihood and Likelihood Ratio and they do not require
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assumptions about the process of changes. The RLR detection schemes introduced
here appear to be statistically powerful and easily designable, as the number of
tuning parameters is relatively small. Their modest computational requirements
enable efficient implementation on a massive scale. These schemes can be viewed as
a natural generalization of the conventional Cusum technique for relatively complex
data models.

A large number of issues arise in relation to any given practical case where
use of such techniques is considered. How to determine “good” and “bad” process
windows? How to handle the nuisance parameters? Should any transformations be
applied to the data? What are the relevant sources of variability? Is there any serial
correlation present and, if so, what is its origin and nature? What modifications are
needed if presence of outliers cannot be ruled out? How to obtain good performance
estimates? What actions to take when we are quite confident that we are into a
new regime but there is not enough data to estimate its characteristics? Under what
conditions should we consider Bayesian methods more suitable? In any more or
less complex situation designing a robust monitoring system involves not only solid
science but also a great deal of art.
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Variance Charts for Time Series: A Comparison
Study

Taras Lazariv and Wolfgang Schmid

Abstract Most of the literature on control charts is focused on the surveillance of
the mean behavior of the observed process. In our contribution we are dealing with
monitoring the variance of a time series, in particular monitoring the increase of the
variance. The underlying process is assumed to be a time series.
In this paper we give an overview about the existing literature. In an extensive
simulation study several control charts are compared with each other. The target
process is assumed to be an autoregressive process of order one. In order to
measure the performance of the schemes the average run length and the average
delay are used. We consider charts based on the likelihood ratio approach and
the generalized likelihood ratio approach, the sequential probability ratio method
and the generalized sequential probability ratio procedure, the Shiryaev-Roberts
procedure and a generalized Shiryaev-Roberts approach and different types of
exponentially weighted moving average charts.

Keywords Control charts • CUSUM charts • EWMA charts • Generalized like-
lihood ratio • Sequential detection • Shiryaev-Roberts procedures • SPRT •
Statistical process control • Time series • Variance charts

1 Introduction

In many applications we are interested to detect a change in a process characteristic
as soon as possible. For instance, in engineering it is necessary to control a
production process in order to reduce the amount of defective parts, in economics
an investor wants to earn money and thus he has to react on changes on the market,
in public health the outbreak of a disease should be detected fast. In most of these
cases the underlying process has a complicate structure and has to be modeled by a
time series approach.
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Control charts for time series have been intensively discussed in the last 25 years.
However, nearly all publications deal with the detection of a change in the mean
of the underlying target process. In this paper we consider control charts for the
variance of a time series. Since in economics the variance is used as a measure for
the risk and in engineering it reflects the performance of a production process such
schemes are of wide interest in practice. This motivates the need for monitoring
tools, that can detect a shift in the variance of process as quickly as possible.

Exponentially Weighted Moving Average (EWMA) control charts for the vari-
ance of a time series were introduced by MacGregor and Harris (1993). Schipper
and Schmid (2001) introduced several one-sided variance charts for stationary
processes, however, their main focus was in the area of nonlinear time series. An
overview about variance charts for univariate and multivariate time series is given
in Okhrin and Schmid (2008). A lot of new control schemes obtained by using
the (generalized) likelihood ratio approach, the (generalized) sequential probability
ratio test and the (generalized) Shiryaev-Roberts approach were proposed by
Lazariv et al. (2013). The aim of this paper is to discuss the existing control charts
from a more practical point of view. To do this we focus on the important special
case of an autoregressive process of order one. All charts of Sect. 3 are compared
with each other by using the Average Run Length (ARL) and the (worst, maximum)
average delay.

In Sect. 2 the underlying model of our paper is introduced. It is explained how
the target process and the observed process are related with each other. In Sect. 3
the control schemes considered in the paper are briefly described. The results of our
comparison study are given in Sect. 4. Our simulations show that for small variance
changes the generalized Shiryeav-Roberts procedure proposed by Lazariv et al.
(2013) provides the best results while for moderate and large changes the EWMA
residual chart dominates.

2 Modelling

In the following it is assumed that at a given time point exactly one observation is
available. The target process is denoted by fYtg. Let fYtg be a stationary Gaussian
process with mean � and autocovariance function Cov.Yt ; YtCh/ D �.h/. The
relationship between the target process fYtg and the observed process fXtg is
given by

Xt D
(

Yt for 1 � t < 	

� C 
.Yt � �/ for t � 	
(1)
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for t 2 Z with 
 > 1 and 	 2 N [ f1g. Both processes coincide up to time point
	 � 1. Then there is a change in the scale. The observed process is said to be out
of control if 	 < 1. Else, if 	 D 1, fXtg is called to be in control. Note that the
change in the scale does not influence the mean structure. It holds that E.Xt/ D �

as well in the in-control state as in the out-of-control state. Moreover, we get that

Var.Xt/ D
(

Var.Yt / for 1 � t < 	


2Var.Yt / for t � 	
;

Cov.Xt ; XtCh/ D

8̂
<̂
ˆ̂:

�h for t < minf	; 	 � hg

�h for minf	; 	 � hg � t < maxf	; 	 � hg

2�h for t � maxf	; 	 � hg

:

Note that the observed process fXtg is not stationary in the out-of-control case.
A situation as described in (1) can be frequently found in applications. For

instance, in finance the variance is the most applied measure of risk (McNeil et
al. 2005). For an analyst it is of interest to rapidly detect an increase in the variance
since the probability of losing money increases. A locally constant volatility model
has been investigated in various studies, e.g., Hsu et al. (1974) and Chen et al.
(2010).

3 Variance Charts for Time Series

In the following it is assumed without restriction that � D 0 since else Yt

can be replaced by Yt � �. Let OYt denote the best linear predictor of Yt based
on Yt�1; ::; Y1. This quantity can be recursively calculated using the innovations
algorithm (cf. Brockwell and Davis 1991, p.172). It holds that OYt D Pt�1

j D1 atj Yj

with some coefficients atj . For a Gaussian process the best linear predictor is equal
to the predictor obtained by minimizing the mean-square distance. Moreover, let
vj D E.Yj C1 � OYj C1/

2 denote the mean-square error and let OXt D Pt�1
j D1 atj Xj .

3.1 CUSUM-Type Charts

Lazariv et al. (2013) introduced several new CUSUM control charts for the variance
of a time series. Next we present their main results.
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3.1.1 A Chart Based on the Likelihood Ratio

The idea behind this chart is to apply the likelihood ratio approach to a Gaussian
process with possible changes in the variance. The run length of this chart is given
by

NLR.cI 
/ D inffn 2 N W maxf0; max
1�i�n

�
�.n � i C 1/ log.
2/

C
nX

j Di

1

vj �1

�
2.1 � 1



/.Xj � OXj /.Xj � Tj;i / � .1 � 1



/2.Xj � Tj;i /

2

�1
Ag > cg

where c > 0 and Tj;	 D Pj �1
vD	 ajvXv . Note that Tj;	 D 0 for j � 	 .

Now we want to consider the special case of a stationary AR(1) process. Thus
Yt D ˛Yt�1 C "t . It is assumed that the white noise process f"tg is independent
distributed with mean zero and variance �2. Then it holds that OXt D ˛Xt�1 for
t � 2, OX1 D 0, v0 D �2=.1 � ˛2/, and vn D �2 for n � 1. Using

K.
/ D log.
2/

1 � 1=
2
;

AC
n .
/ D .Xn � OXn/2

vn�1

� K.
/ C max

(
�

OX2
n

vn�1

C 2=


1 C 1=


Xn
OXn

vn�1

; AC
n�1.
/

)

for n � 1 and AC
0 D 0 we obtain that

NLR.cI 
/ D inffn 2 N W maxf0; .1 � 1=
2/AC
n .
/g > cg: (2)

Putting ˛ D 0 we get the well-known variance chart for independent variables (cf.
Hawkins and Olwell 1998).

3.1.2 A Chart Based on the Sequential Probability Ratio Test

The chart is obtained by applying the sequential probability ratio test of Wald. Using

Sn.
/ D
nX

j D1

.Xj � OXj /2

vj �1

� nK.
/

the run length of this scheme is equal to

NSPRT.cI 
/ D inffn 2 N W max
0�i�n

fSn.
/ � Si.
/g > cg: (3)
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Let SC
n .
/ D max

0�i�n
fSn.
/ � Si .
/g. Then

SC
n .
/ D maxfSC

n�1.
/ C .Xn � OXn/2

vn�1

� K.
/; 0g

and thus the control statistic can be recursively calculated.
It is important to note that contrary to the i.i.d. case the LR approach and the

SPRT approach lead to different control charts.
Note that this scheme is equal to the variance chart for independent variables but

instead of the observations it is applied to the normalized residuals. Thus it coincides
with the CUSUM residual chart for the variance.

3.1.3 A Chart Based on Shiryaev-Roberts Procedure

The Shiryaev-Roberts (SR) procedure is based on papers of Shiryaev (1963) and
Roberts (1966). Contrary to the likelihood ratio approach not the maximum of the
likelihood ratio over all possible positions of the change points is taken, but the
maximum is replaced by the sum. This leads to the following statistic.

Lets consider

Rn.
/ D
nX

iD1

1


n�iC1
exp

8
<
:

nX
j Di

1

vj �1

�
.1 � 1



/.Xj � OXj /.Xj � Tj;i /

�1

2
.1 � 1



/2.Xj � Tj;i /

2

�9=
; :

The run length of the SR chart is given by

NSR.cI 
/ D inffn 2 N W Rn.
/ > cg: (4)

3.2 Generalized Control Charts

A great disadvantage of the charts presented in the last section consists in the fact
that in the derivation of the charts it is assumed that the size of the change 
 is
known. In practice this quantity is replaced by a value against which the practitioner
wants to protect himself. The following charts do not use this prior information.
Generalized control charts have been mostly discussed in literature on change point
analysis (e.g., Lai 2001). Recently it has received more attention in SPC literature
(Capizzi (2001), Capizzi and Masarotto (2008), and Reynolds and Lou (2012)). The
following charts were introduced in Lazariv et al. (2013).
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3.2.1 Generalized Likelihood Ratio Chart

In this approach the size of the change is considered as an unknown parameter and
the maximum of the likelihood function is taken over 
 as well.

Using


	;n D maxf1;
PSn;	 � RSn;	 C

q
. PSn;	 � RSn;	 /2 C 4.n � 	 C 1/ RSn;	

2.n � 	 C 1/
g;

PSn;	 D
nX

j D	

.Xj � OXj /.Xj � Tj;	 /

vj �1

; RSn;	 D
nX

j D	

.Xj � Tj;	 /2

vj �1

the run length of the GLR chart is given by

NGLR.c/ D inf

�
n 2 N W max

1�i�n

n
� .n � i C 1/ log.
i;n/ (5)

�1

2
.

1


i;n

� 1/.2 PSn;i C .
1


i;n

� 1/ RSn;i /
o

> c

�
: (6)

3.2.2 Generalized SPRT Chart

In the same way as for the GLR approach the SPRT is maximized over 
 as well.
Using the notation

hn.x/ D nh.x/ D n.x � 1 � log.x//=2 and Tn D
nX

iD1

.Xi � OXi/
2=vi�1:

the run length of this scheme is

NGSPRT.c/ D inffn 2 N W max
0�i�n

.hn.Tn=n// � hi .Ti=i// > cg: (7)

3.2.3 Generalized Modified SR Chart

Extending the Shiryaev-Roberts procedure in this way we have to take the maximum
over a quantity which is difficult to handle from the analytical point of view. For that
reason Lazariv et al. (2013) proposed to replace the sum of the likelihood ratios by
the sum of the logarithm of the likelihood ratios. In principle this means that instead
of the arithmetic mean the geometric mean is maximized. This modification can be
treated much easier.
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Let PUn D Pn
kD1

PSn;k; RUn D Pn
kD1

RSn;k and PSn;k and RSn;k as above. Let

gn. PUn; RUn/ D �n.n C 1/

2
log. O
2

n/ C 2.1 � 1

O
n

/ PUn � 1

2
.1 � 1

O
n

/2 RUn

and O
n D maxf1;
PUn� RUnC

p
. PUn� RUn/2C2n.nC1/ RUn

n.nC1/
g: Then the run length of the

generalized modified Shiryaev-Roberts approach is

NGMSR.c/ D inffn 2 N W gn. PUn; RUn/ > cg: (8)

3.3 EWMA-Type Charts

EWMA charts for the variance of a time series have been discussed for a longer
time. The first papers dealing with this topic seem to be MacGregor and Harris
(1993) and Schipper and Schmid (2001).

3.3.1 A Chart Based on Squared Observations

If we apply the EWMA recursion to the squared observations, we obtain

Zt D .1 � �/Zt�1 C �
X2

t

�0

;

where t � 1; � 2 .0; 1�. As a starting value for the EWMA recursion Z0 we choose
the in-control value of Var.Xt / which is equal to �0. This chart was discussed
by MacGregor and Harris (1993) for an ARMA.1; 1/ process and by Schipper and
Schmid (2001) for ARMA and GARCH processes.

Let E1.Zt / and Var1.Zt / denote the in-control values of E.Zt / and Var.Zt /,
respectively. Then E1.Zt / D 1 and

lim
t!1 Var1.Zt / D 1

2 � �
.2 C � C 4�

1X
iD1

�2
i .1 � �/i /

with �i D �i =�0 as shown in Schipper and Schmid (2001). For an AR(1) process
we get that

lim
t!1 Var1.Zt / D 1

2 � �
.2 C � C 4�˛2 1 � �

1 � .1 � �/˛2
/:
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Thus the stopping rule of the chart is

NS.cI �/ D infft 2 N W Zt � E1.Zt /q
lim

t!1Var1.Zt /
> cg: (9)

3.3.2 A Chart Based on the Logarithm of Squared Observations

In this case the EWMA recursion looks like

Zt D .1 � �/Zt�1 C � ln.X2
t =�0/

for t � 1 and Z0 D E.ln.Y 2
t =�0// D ��

0 D �ln.2/ � � where � stands for
the Euler-Mascheroni constant, i.e. � � 0:57721. Crowder and Hamilton (1992)
discussed this chart for independent variables.

The run length is given by

NLS.cI �/ D infft 2 N W Zt � ��
0q

lim
t!1Var1.Zt /

> cg: (10)

3.3.3 The EWMA Residual Chart

The EWMA statistics for the variance is as follows:

Zt D .1 � �/Zt�1 C �
.Xt � OXt/

2

vt�1

for t � 1; � 2 .0; 1�. The starting value is Z0 D 1. The process is concluded to be
out-of-control at time t if Zt > c

NR.cI �/ D infft 2 N W Zt > cg: (11)

Note that for an AR(1) process it holds that for t � 2

Xt � OXtp
vt�1

D
8<
:

"t=� for t < 	

."	 C .
 � 1/Y	/=� for t D 	


"t=� for t > 	

and

X1 � OX1p
v0

D
�


Y1=
p

�0 for 	 D 1

Y1=
p

�0 for 	 � 2
:
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4 Comparison Study

In this section we want to give recommendations which of the control charts of
Sect. 3 should be used in a specific situation. Because no explicit formulae for
the performance criteria are known we have estimated these quantities within
a simulation study. All charts were calibrated such that the in-control ARL
is always the same. We fixed the in-control ARL equal to 500. The out-of-
control behavior of all schemes is analyzed using the obtained control limits,
here c. In each case the ARL was determined within a simulation study based
on 106 repetitions. The only exception is the GLR chart. Since no recursive
presentation of the control statistic is known its calculation turns out to be more
complicate. For this scheme we made use of 105 repetitions. To evaluate the perfor-
mance of the charts the ARL E	D1;
.N.c// and the average delay E	;
.N.c/ �
	 C 1jN.c/ � 	/ are taken. The reference value 
� is chosen within the set
f1:10; 1:20; 1:30; 1:40; 1:50; 1:75; 2:00; 2:25; 2:50; 2:75; 3:00g. For EWMA control
charts the parameter � is taking values within f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8;

0:9; 1:0g.
In our comparison study the target process is assumed to be an AR(1) process

with standard normally distributed white noise. The coefficient of the process ˛

takes values from f�0:9; �0:8; �0:7; : : : ; 0:7; 0:8; 0:9g. Because the performance
criteria of the charts behave symmetric with respect to ˛ we only considered
nonnegative values. Note that some charts depend on the unknown value 
. In
practice this quantity is replaced by a fixed value which the practitioner chooses
a priori. This can be a problem, however, sometimes some information is available
about the size of the expected change.

In Tables 1, 2 and 3 the out-of-control ARLs of the considered charts are given.
In each row and each column the ARLs of nine control charts are given, above
the LR chart (Sect. 3.1.1, cf. (2)), followed by the SPRT chart (Sect. 3.1.2, cf. (3)),
the Shiryaev-Roberts chart (Sect. 3.1.3, cf. (4)), the GLR chart (Sect. 3.2.1, cf. (5)),
the GSPRT chart (Sect. 3.2.2, cf. (7)), and the GMSR chart (Sect. 3.2.3, cf. (8)), and
three EWMA chart, namely the EWMA chart for squared observations (Sect. 3.3.1,
cf. (9)), the EWMA chart for the logarithm of squared observations (Sect. 3.3.2,
cf. (10)), and the EWMA residual chart (Sect. 3.3.3, cf. (11)). The first three charts
and the EWMA charts depend on a reference value. For these charts the smallest
out-of-control ARL over all 
 and � is listed, respectively. In parenthesis the value
of the parameter is given where the minimum is attained. The other three charts are
generalized schemes and do not depend on a reference value. The results for the
best charts are given in bold. Because our results are based on simulations they are
subject to some random error which, however, due to the large amount of repetitions,
is small. For that reason we have printed the ARLs of the charts that do not deviate
from the smallest ARL by more than 2 % in bold as well. This is also the reason why
in the tables there seem to be sometimes jumps for the best smoothing parameters
and reference values but this is due to the fact that sometimes the out-of-control
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ARLs does not change a lot with the parameter and that additionally we still have a
small random error in the simulations.

The tables show that the smallest ARLs for the LR and the SPRT charts are
obtained if the reference value is chosen equal to the true value of the change. For
the SR chart, however, the best choice is greater or equal to the true value. For the
EWMA charts the optimal value of � is increasing with 
 if ˛ is fixed. For the
EWMA residual chart the best choice does not depend on ˛ and it is very slowly
increasing with 
. For the EWMA chart for squared observations we observe the
same behavior provided that ˛ is smaller or equal 0:7. For larger values of ˛ the best
choice is � D 1:0. This shows that these charts react very sensible on the choice of
� if the coefficient of the AR(1) process is large. A similar behavior can be observed
for the EWMA chart for the logarithm of the squared observations. For this chart,
however, the dependence on ˛ is much stronger and therefore it is difficult to make
general recommendations about the best choice of the smoothing parameter.

For a fixed value of 
 the out-of-control ARLs of the charts only slightly change
with ˛. The exceptions are the EWMA charts for squared observations and the
EWMA charts for the logarithm of the squared observations. For these two schemes
the out-of-control ARLs increase with ˛ and the out-of-control ARL for ˛ D 0:9

(strong correlation) may be more than three times larger than the value for ˛ D 0:0

(no correlation).
Next we want to compare the charts with each other. For small changes in the

variance, i.e. 
 � 1:3, the GMSR chart provides the smallest out-of-control ARL.
Note that it is even better than all charts with a reference parameter. For changes
of medium and large size, i.e. 
 > 1:3 the EWMA residual chart turns out to be
the best scheme. For 1:3 < 
 � 2:0 the smallest out-of-control ARL is obtained
for � D 0:1 while for larger changes the smoothing parameter should be chosen
larger. It has even turned out that the EWMA residual chart behaves quite robust
with respect to the choice of the smoothing parameter. Choosing 
 D 2:0 and

 D 3:0 even for the worst choice of the smoothing parameter the EWMA residual
chart provides a smaller out-of-control ARL than the best generalized scheme.

For the calculation of the ARL it is assumed that the change already happened at
the beginning, i.e. that 	 D 1. This is a great disadvantage. For that reason we
analyzed the schemes with respect to another performance criteria, the average
delay. In Table 4 it is assumed that the change arises up to 50th observation
(1 � 	 � 50). We focus on the changes 
 D 1:3 and 
 D 2:0. The values of 


and � refer to the optimal choice of the reference value as given in Tables 1, 2 and
3. In the table we give the ARL, the worst average delay for 1 � 	 � 50, and the
average delay for 	 D 50. The coefficient of the AR(1) process is chosen to be equal
to ˛ D 0:4. These results are again based on 106 repetitions.

Except the GSPRT chart the worst average delay of all other charts is always
equal to the average delay. If 	 increases the average delay is decreasing and it
does not change a lot for 	 � 20. The situation is different for the GSPRT chart
where the worst average delay is attained at 	 D 50 and its minimum ARL is
observed for a small value of 	 . From this table we can draw similar conclusions
as from Tables 1, 2 and 3. The GMSR chart should be used for the detection of
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Table 4 ARL (above), worst average delay for 1 � 	 � 50 (middle), and the value of the average
delay at position 	 D 50 (below) for the LR, the SPRT, the SR, and the EWMA residual chart for
optimal reference parameter, and the GLR, the GSPRT chart, and the GMSR chart (˛ D 0:4)

LR SPRT SR ERC GLR GSPRT GMSR


 D 1:3 32.52 32.59 35.09 32.25 39.40 49.18 32.68
32.52 32.59 35.09 32.25 39.40 73.46 32.68
29.85 29.85 30.70 31.97 33.43 73.46 21.91


 D 2:0 6.78 6.79 7.14 6.56 9.42 8.38 11.41

6.78 6.79 7.14 6.56 9.42 14.22 11.41

6.42 6.41 6.48 6.43 8.16 14.22 6. 18

Note: ARLs/AD of all charts are written in bold which for a fixed value of 
 deviate from the
smallest out-of-control ARL/AD by only 2 %

small changes while the EWMA residual chart dominates for moderate and larger
changes. If the change is expected not to arise at the beginning, then the best of all
considered schemes is the GMSR chart.

5 Summary

In this paper we compare several variance charts for Gaussian processes with each
other. Our aim is to detect an increase in the variance. In order to measure the
performance of the charts the ARL and the (worst, maximum) average delay are
used. Besides EWMA and CUSUM type charts we consider generalized schemes
as well. Such type of variance charts were proposed by Lazariv et al. (2013). They
have the great advantage that they do not depend on an additional parameter whose
choice is frequently unclear in applications.

For all schemes the performance criteria are estimated within an extensive
simulation study. The target process is assumed to be an AR(1) process. Our results
show that for small changes (
 � 1:3) the generalized Shiryaev-Roberts scheme
of Lazariv et al. (2013) has the smallest out-of-control ARL while for moderate
and larger changes the EWMA residual scheme behaves quite well. This scheme
also behaves quite robust with respect to the choice of the smoothing parameter.
Using the worst average delay we get the same ranking. For most schemes the worst
average delay is obtained for 	 D 1 which means that the change happened at the
first position. If we know that the change does not arise at the beginning, then the
maximum average delay can be applied. In the present case its smallest value is
attained for the generalized Shiryaev-Roberts scheme introduced in Lazariv et al.
(2013).
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On ARL-Unbiased Control Charts

Sven Knoth and Manuel Cabral Morais

Abstract Manufacturing processes are usually monitored by making use of control
charts for variables or attributes. Controlling both increases and decreases in a
parameter, by using a control statistic with an asymmetrical distribution, frequently
leads to an ARL-biased chart, in the sense that some out-of-control average run
length (ARL) values are larger than the in-control ARL, i.e., it takes longer to detect
some shifts in the parameter than to trigger a false alarm.
In this paper, we are going to:

• explore what Pignatiello et al. (4th Industrial Engineering Research Conference,
1995) and Acosta-Mejía et al. (J Qual Technol 32:89–102, 2000) aptly called an
ARL-unbiased chart;

• provide instructive illustrations of ARL-(un)biased charts of the Shewhart-, expo-
nentially weighted moving average (EWMA)-, and cumulative sum (CUSUM)-
type;

• relate ARL-unbiased Shewhart charts with the notions of unbiased and uniformly
most powerful unbiased (UMPU) tests;

• briefly discuss the design of EWMA charts not based on ARL(-unbiasedness).

Keywords Power function • Run length • Statistical process control

1 Introduction

In 1924 Walter A. Shewhart (1891–1967) prepared a memorandum only about a
page in length; in a third of that page there was a simple diagram which we would
all recognize today as a control chart. It is essentially a graphical device used to
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monitor a measurable characteristic X of a process with the purpose of establishing
whether the process is operating within its limits of expected variation (see Nelson
1982, p. 176).

To detect increases or decreases in the process mean �, Shewhart suggested the
use of the sample mean and the control limits �0 ˙ 3�0=

p
n, where �0 and �2

0 are
the target values of the process mean � and variance �2, and n the sample size.
The resulting SPC tool is usually termed a NX -chart with 3� limits and has very
interesting properties under certain assumptions, as shown in the next paragraphs,
inspired by Morais (2002, pp. 19–20).

Assume that: the quality characteristic X is normally distributed; the process
output is i.i.d.; it is possible to specify the target values �0 and �2

0 of the process
mean and variance so that an analysis of past data is not required; the process mean
relates to these target values as follows, � D �0 C ı�0=

p
n; ı 2 .�1; C1/; the

process variance remains constant at the target level �2
0 .

Now, consider a NX -chart with control limits �0 ˙ ��0=
p

n, where � is a positive
constant chosen in such way that the in-control average run length (ARL) of the NX -
chart, say ARL�.0/, takes a fixed and large value. Recall that the run length (RL)
of this control chart, say RL�.ı/, has a geometric distribution with parameter

��.ı/ D 1 � Œ˚.� � ı/ � ˚.�� � ı/�; (1)

which is a continuous and an even function of ı. The first derivative of ��.ı/ is an
odd function equal to

p
2=� e�.�2Cı2/=2 � sinh.�ı/; (2)

which is nonpositive for ı 2 .�1; 0� and nonnegative for ı 2 Œ0; C1/. Therefore
we can assert that ��.ı/ takes its minimum value at the origin and increases with jıj,
i.e., ��.ı/ monotonically increases, as � tends away from its target value. In other
words, the associated hypotheses test possesses what Ramachandran (1958) called
the monotonicity property.

Furthermore, taking into account that ARL.ı/ D 1=��.ı/, we can add the in-
control ARL is never smaller than any out-of-control ARL. Such a behavior of the
ARL function means that: the chart satisfies what Ramalhoto and Morais (1995) and
Ramalhoto and Morais (1999) called the primordial criterion; and we are dealing
with what Pignatiello et al. (1995) and Acosta-Mejía and Pignatiello (2000) expertly
termed an ARL-unbiased chart. Moreover,

P ŒRL�.ı/ > x� D 	
1 � ��.ı/


x � 	
1 � ��.ı0/


x D P ŒRL�.ı0/ > x�; (3)

for any x 2 N and any ı, ı0 such that jıj � jı0j, i.e., the number of collected
samples required to detect a change in � from its target value �0 to �0 C ı�0=

p
n

stochastically decreases (in the usual sense) with jıj—in short

RL�.ı/ #st with jıj: (4)
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For more details on stochastic ordering, please refer to Shaked and Shanthikumar
(1994).

As put by Pignatiello et al. (1995), most of the SPC literature on monitoring
process dispersion focuses on the detection of increases in the variance, regardless
of the fact that the detection of decreases in dispersion plays a crucial role in the
effective implementation of any quality improvement program.

Curiously enough, the S2-chart—recommended by, we daresay, most Statistical
Quality Control (SQC) textbooks1 to effectively signal the occurrence of both
decreases and increases in the standard deviation—is an ARL-biased chart, in the
sense that some out-of-control ARL values are larger than the in-control ARL, as
put by Pignatiello et al. (1995). Moreover, most users are unaware of how to use
the S2-chart (or the R- and S -charts for that matter) to effectively monitor both
increases and decreases in the process dispersion (Pignatiello et al. 1995).

Furthermore, SQC textbooks and QC practitioners tend to adopt S - or R-charts,
using the famous quality control constants c4, d2 and d3 (E.S/ D c4� , E.R/ D
d2� , Var.R/ D d 2

3 �2 under normality) and the following symmetric limits (in-
control �0 D 1):

S -chart: c4 ˙ 3

q
1 � c2

4 and R-chart: d2 ˙ 3d3 : (5)

The trouble is twofold—for small sample sizes n (�5 and �6 for S - and R-charts,
respectively) the lower control limit is negative and the actual in-control ARL
differs considerably from the nominal value 370.4, as illustrated by Fig. 1. Using

n
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Fig. 1 Lower control limits (left)—for symmetric following (5) and probability limits solid and
dashed lines, respectively—and actual in-control ARL (right) of R- and S-charts using symmetric
limits (the probability limits ensure for every n the target in-control ARL of 370.4)

1As far as we have investigated, there is an honorable exception: Uhlmann (1982, pp. 212–215).
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the symmetric limits for R-charts is certainly misleading—see also Barbosa et al.
(2012) for a more detailed discussion of this phenomenon. S -charts with symmetric
limits are fairly reasonable with sample sizes n � 10, whereas those limits are not
recommended for smaller sample sizes.

2 A Closer Look at the ARL-Biased S 2-Chart

The use of a standard S2-chart is recommended to practitioners to detect changes in
the variance of normally distributed output, from its target value �2

0 to �2 D �2 ��2
0 ,

where � 2 .0; C1/.
Let ˛ D 1=ARL� .1/ 2 .0; 1/, where ARL� .1/ is a prespecified large value of

in-control ARL of the S2-chart. Then the lower and upper control limits found in
most SQC textbooks depend on the equal tail quantiles of the 2

n�1 distribution,

a.˛; n/ D F �1

2
n�1

.˛=2/ and b.˛; n/ D F �1

2
n�1

.1 � ˛=2/; (6)

and are determined by

�2
0

n � 1
� a.˛; n/ and

�2
0

n � 1
� b.˛; n/: (7)

Furthermore, the RL of this chart has a geometric distribution with parameter

�� .�/ D 1 �
n
F2

n�1

	
b.˛; n/=�2


 � F2
n�1

	
a.˛; n/=�2


o I (8)

as a consequence, ARL� .�/ D 1=�� .�/.
Two graphs of ARL� .�/, for �2

0 D 1, ˛ D 0:002 and n D 5; 10, can be found
in Fig. 2. It shows that the in-control ARL is smaller than the out-of-control ARL
values for some � 2 .0; 1/, i.e., it takes longer to detect some decreases in the
variance than to trigger a false alarm. For instance, when n D 5 and ˛ D 0:002,
the ARL associated with a 5 % decrease in � , ARL� .0:95/ ' 614:1 is 23 % larger
than ARL� .1/ D 1=˛ D 500. We are indeed dealing with an ARL-biased chart,
as previously noted by Pignatiello et al. (1995). The next proposition provides an
expression for the argmax of ARL� .�/; this result and its proof were adapted from
Morais (2002, Example 2.6, pp. 20–22) and can also be found in Zhang et al. (2005)
and Uhlmann (1982, p. 213).

Proposition 1 Consider the standard S2-chart with control limits defined by (7).
Then ARL� .�/ takes its maximum value at

��.˛; n/ D
s

b.˛; n/ � a.˛; n/

.n � 1/ flnŒb.˛; n/� � lnŒa.˛; n/�g : (9)
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Fig. 2 ARL� .�/ of standard S2-charts with �2
0 D 1 and ˛ D 0:002, for n D 5 (left) and n D 10

(right)

Proof In order to determine ��.˛; n/ we have to study the behavior of �� .�/. Its
first derivative has the same sign as

b.˛; n/ � f2
n�1

	
b.˛; n/=�2


 � a.˛; n/ � f2
n�1

	
a.˛; n/=�2



; (10)

which in turn has the same sign as

k.�/ D
�

b.˛; n/

a.˛; n/

� n�1
2

� exp

�
�b.˛; n/ � a.˛; n/

2�2

�
� 1: (11)

Since k.�/ is continuous and strictly increasing function of � in .0; C1/, such that

lim
�!0C

k.�/ D �1 and lim
�!C1 k.�/ D

�
b.˛; n/

a.˛; n/

� n�1
2

� 1 > 0; (12)

the first derivative of �� .�/ changes sign (from negative to positive) only once in
.0; C1/. As a consequence, �� .�/ takes its minimum value at the unique root
of equation k.�/ D 0 in .0; C1/, which is indeed ��.˛; n/. Hence, ARL� .�/

increases (resp. decreases) with � for 0 < � � ��.˛; n/ .resp. � � ��.˛; n//. ut
By capitalizing on the fact that �� .�/ decreases (resp. increases) with � for 0 < � �
��.˛; n/ .resp. � � ��.˛; n//, we can add that

RL� .�/ "st with � 2 �0; ��.˛; n/



(13)

RL� .�/ #st with � 2 	��.˛; n/; C1�
: (14)
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Table 1 Values of ��.˛; n/ for standard S2-charts, with �2
0 D 1, ˛ D 0:001; 0:002, 1=370:4,

0:003, 0:004; 0:005; 0:010; 0:050 and n D 2; 3; 4; 5; 7; 10; 15; 100

n

˛ 2 3 4 5 7 10 15 100

0.001 0.838196 0.888443 0.914767 0.931301 0.950817 0.965705 0.977286 0.996653

0.002 0.829239 0.883921 0.912191 0.929700 0.950062 0.965367 0.977149 0.996651

1=370:4 0.825003 0.881846 0.911036 0.928994 0.949734 0.965221 0.977089 0.996650

0.003 0.823457 0.881099 0.910624 0.928744 0.949618 0.965170 0.977069 0.996649

0.004 0.819079 0.879013 0.909488 0.928057 0.949302 0.965031 0.977012 0.996648

0.005 0.815510 0.877345 0.908591 0.927519 0.949057 0.964923 0.976968 0.996647

0.010 0.803343 0.871885 0.905733 0.925830 0.948296 0.964590 0.976834 0.996645

0.050 0.766915 0.857568 0.898763 0.921854 0.946556 0.963837 0.976532 0.996639

Furthermore, when we use the equal tail quantiles of the 2
n�1 distribution: 0 <

��.˛; n/ < 1, as illustrated by Table 1, for ˛ D 0:001; 0:002; 1=370:4; 0:003; 0:004,
0:005; 0:010; 0:050 and n D 2; 3; 4; 5; 7; 10, 15; 100; the maximum of ARL� .�/

is associated with a value of � that is about Œ1 � ��.˛; n/� � 100 % less than the
target value �0; and, for instance, when � 2 Œ��.˛; n/; 1/ the standard S2- chart is
less likely to trigger a valid signal within the x first samples than in the absence
of assignable causes. What Pignatiello et al. (1995) and Morais (2002, pp. 20–
22) failed to mention is that the range of the interval where ARL.�/ > ARL.1/

decreases with n, as shown in Fig. 2. This is essentially due to the fact that the
interquantile range b.˛; n/ � a.˛; n/ (resp. the ratio b.˛; n/=a.˛; n/) increases
(resp. decreases) with n, for fixed ˛ (see Saunders and Moran 1978)—thus,
Œ��.˛; n/�

n�1
2 D b.˛;n/�a.˛;n/

lnŒb.˛;n/��lnŒa.˛;n/�
increases with n, not to mention the fact that chi-

square distributions look more and more “symmetrical” as the sample size grows.

3 Revisiting the ARL-Unbiased S 2-Chart

Pignatiello et al. (1995), certainly inspired by Ramachandran (1958), proposed
alternative control limits for the S2-chart in order to achieve an ARL-unbiased chart.
Let

�2
0

n � 1
� Qa.˛; n/ and

�2
0

n � 1
� Qb.˛; n/ (15)

be the lower and upper control limits of what we shall term the ARL-unbiased
S2-chart. In this case,

Q�� .�/ D 1 �
n
F2

n�1

h Qb.˛; n/=�2
i

� F2
n�1

	 Qa.˛; n/=�2

o

; � 2 .0; C1/; (16)
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and eARL� .�/ D 1= Q�� .�/. Then the critical values Qa.˛; n/ and Qb.˛; n/, associated
with the ARL-unbiased S2-chart, are determined by solving the system of equations

F2
n�1

h Qb.˛; n/
i

� F2
n�1

Œ Qa.˛; n/� D 1 � ˛ (17)

Qb.˛; n/ � f2
n�1

h Qb.˛; n/
i

� Qa.˛; n/ � f2
n�1

Œ Qa.˛; n/� D 0 (18)

numerically, namely using a.˛; n/ and b.˛; n/ as the initial values in the numerical
search. Suffice to say that Eqs. (17) and (18) follow immediately from eARL� .1/ D
1=˛ and the condition for unbiasedness d AARL� .�/=d� j�D1 D 0, respectively.

Since the p.d.f. of the chi-square distribution with .n � 1/ degrees of freedom is
proportional to x.n�3/=2 e�x=2, (18) can be rewritten as

f2
nC1

Œ Qb.˛; n/� � f2
nC1

Œ Qa.˛; n/� D 0: (19)

According to Tate and Klett (1959), conditions (17) and (19) were introduced by
Neyman and Pearson (1936, pp. 18, 19, 25). Furthermore, invoking once again such
proportionality, we can add that (18) is equivalent to

" Qb.˛; n/

Qa.˛; n/

# n�1
2

D exp

" Qb.˛; n/ � Qa.˛; n/

2�2

#
; (20)

as mentioned by Fertig and Proehl (1937), Ramachandran (1958), Kendall and
Stuart (1979, p. 219), and Pignatiello et al. (1995), or put in equivalent equations
by Uhlmann (1982, p. 213) and Krumbholz and Zoeller (1995).

As for proving that argmaxAARL� .�/ D 1, we have to simply proceed either
as in the proof of Proposition 1, by replacing a.˛; n/ and b.˛; n/ with Qa.˛; n/ and
Qb.˛; n/ in k.�/; or in a similar fashion to Ramalhoto and Morais (1995, Appendix
A), Ramalhoto and Morais (1999, Proof of Prop. 1)2 or Kendall and Stuart (1979,
p. 219).

A large set of critical values Qa.˛; n/ and Qb.˛; n/ is provided by Table 2. Other
sets of these critical values can be found in: Ramachandran (1958, Table 744) with
2 decimal places, for ˛ D 0:05 and n � 1 D 2.1/8.2/24; 30; 40; 60; Tate and
Klett (1959, Table 680) with 4 decimal places, for ˛ D 0:001; 0:005; 0:01; 0:05; 0:1

and n � 1 D 2.1/29; Pachares (1961, Table I) with 5 significant figures, for
˛ D 0:01; 0:05; 0:1 and n � 1 D 1.1/20; 24; 30; 40; 60; 120; Kendall and Stuart

2We ought to add that Ramalhoto and Morais (1995) and Ramalhoto and Morais (1999) proposed
ARL-unbiased charts for the scale parameter of a Weibull quality characteristic (thus, dealing with
control statistic with a 2

2n distribution) and proved not only that the ARL has a maximum at � D 1,
but also that it strictly increases (resp. decreases) with � 2 .0; 1/ (resp. � 2 .1; C1/).
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Fig. 3 eARL� .�/ of ARL-unbiased S2-charts with �2
0 D 1 and ˛ D 0:002, for n D 5 (left) and

n D 10 (right)

(1979, Table 23.1, p. 219) with 2 decimal places, for ˛ D 0:05 and n � 1 D
2; 5; 10; 20; 30; 40; 60; Pignatiello et al. (1995, Table 3) with 4 decimal places, for
˛ D 0:005; 0:00286; 0:0020 and n D 3.2/15.10/55.

It goes without saying that the use of the critical values Qa.˛; n/ and Qb.˛; n/,
such as the ones in Table 2, leads to ARL-unbiased S2-charts which offer a more
balanced protection3 against both increases and decreases in the process dispersion,
as depicted in Fig. 3. Moreover,

fRL� .�/ "st with � 2 .0; 1� (21)

fRL� .�/ #st with � 2 Œ1; C1/: (22)

4 The ARL-Unbiased EWMA-S 2-Chart

If we dismiss the Shewhart charts with run rules suggested by Page (1955),
WECO (1956), and Roberts (1958), we can add that Shewhart charts only use
the last observed value of their control statistics to trigger (or not) a signal—
and simply ignore any information contained in the previous samples. This fact
is responsible for a serious and well-known limitation: Shewhart charts are not
effective in the detection of small to moderate changes in the parameter being
monitored. This limitation led to the proposal of alternative charts, such as the

3Regretfully, this chart has not uniformly smaller out-of-control ARLs than any other S2-chart, as
noted by Zhang et al. (2005). This result prompted these authors to propose two alternatives to the
ARL-unbiased S2-chart.
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cumulative sum (CUSUM) and exponentially weighted moving average (EWMA)
control charts introduced by Page (1954) and Roberts (1959), respectively. For
example, EWMA control charts make use of recursive control statistics that account
for the information contained in every collected sample of the process—in fact, the
EWMA charts for the process mean apply successively decreasing weights to the
past sample means (Nelson 1982, p. 181), and certainly prove to require a smaller
average number of samples than the NX -chart to detect small to moderate shifts in the
process mean. Unsurprisingly, the EWMA chart for the mean of Gaussian output—
with control limits symmetric around the target value �0—is an ARL-unbiased
chart because the control statistic has a symmetric distribution around �0 when the
process mean is on target.

Pioneering papers on the use of the EWMA smoothing to monitor the process
variance are Wortham and Ringer (1971), Sweet (1986), MacGregor and Harris
(1993) and Mittag et al. (1998) are more recent contributions on the subject. For
more details about monitoring normal variance with EWMA charts, see Knoth
(2010) and further references therein.

Setting up an EWMA-S2-chart is straightforward. Recall that it makes use of the
following control statistic:

Zi D
8
<
:

z0; i D 0

.1 � �/ Zi�1 C � S2
i ; i 2 N:

(23)

The quantity z0 represents the starting value, often the target value �2
0 . � is a suitable

constant chosen from the interval .0; 1� to ensure a specific in-control and out-
of-control signaling behavior: small (resp. large) values of � should be used to
efficiently signal the occurrence of small (resp. large) shifts (Capizzi and Masarotto
2003).

Since the distribution of this control statistic is obviously not symmetrical,
adopting control limits that are symmetrical with respect to the target value �2

0

might not provide proper protection against both increases and decreases in spread.
In early papers such as Wortham and Ringer (1971) and MacGregor and Harris
(1993), where EWMA was applied to squared individual observations, simple
approximations of the two control limits in the spirit of the above classical Shewhart
limits were constructed. To be precise, both papers use chi-square percentiles based
limits whose degrees of freedom are a function of the smoothing parameter �.
Besides, in Ng and Case (1989) similar ideas were used for EWMA R (sample
range) charts. In all cases neither the overall on-target condition is met nor an ARL-
unbiased design is obtained. Note that the problem of choosing the control limits
of EWMA charts meant to monitor both increases and decreases in the process
variance and based on asymmetrically distributed control statistics is not properly
discussed in literature.

Here, we check two design approaches: (i) Control limits that are symmetrical
with respect to the target value �2

0 (vanilla). (ii) Mimic the Shewhart S2 setup by
taking these limits and use them as upper and lower control limits, respectively, of



106 S. Knoth and M.C. Morais

θ

A
R

L
σ
(θ
)

0.8 0.9 1 1.1 1.2

20
0

30
0

40
0

50
0

60
0

λ
0.1
0.2
0.5

θ
A

R
L

σ
(θ
)

0.8 0.9 1 1.1 1.2

20
0

30
0

40
0

50
0

60
0

λ
0.1
0.2
0.5

Fig. 4 ARL� .�/ of equal tails EWMA-S2-schemes, with �2
0 D 1 and on-target ARL equal to

500, for n D 5 (left) and n D 10 (right)
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Fig. 5 ARL� .�/ of vanilla EWMA-S2-schemes, with �2
0 D 1 and on-target ARL equal to 500,

for n D 5 (left) and n D 10 (right)

one-sided EWMA charts yielding the same on-target ARL (equal tails). Recall that
for values of � larger than a certain real number it is not possible at all to construct
vanilla designs—see Fig. 5.

To start with the more promising (and more demanding) equal tails case, (ii) is
evaluated for � 2 f0:1; 0:2; 0:5g. The related Fig. 4 illustrates not only how biased
is the ARL profile of the equal tails EWMA-S2-schemes, but also how the bias is
much less pronounced as we decrease the value of the smoothing constant �. It looks
much worse for the vanilla case, that is with symmetric control limits—see Fig. 5.
Firstly, for � � 0:26 and � � 0:5 symmetric designs do not exist in case of n D 5

and n D 10, respectively. Secondly, the ARL profiles are heavily biased—only for
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� D 0:1 we get tolerable profiles: however, compared to the equal tails results
in Fig. 4 the vanilla design approach fails completely if ARL-unbiased designs are
requested.

All these ARL profiles can be certainly improved. However, the obtention
of an ARL-unbiased EWMA (or CUSUM) chart for the variance of Gaussian
output is more complex than the derivation of its Shewhart counterpart. This
problem has been tackled previously, namely by: Pignatiello et al. (1995), who
proposed an ARL-unbiased scheme consisting of two one-sided CUSUM charts
whose control statistics deploy S ; Acosta-Mejía and Pignatiello (2000), who
discussed ARL-unbiased EWMA dispersion charts for subgroups of size one; Knoth
(2010), who analyzed different dispersion EWMA schemes (S2, S , R, ln S2) in
their ARL-unbiased versions. In any of these papers, the authors obtained several
combinations of pairs of control limits that yield the same in-control ARL, thus
obtaining what Acosta-Mejía and Pignatiello (2000) called the Iso-ARL curve.
Subsequently, they adopted a search procedure to find the point on the Iso-ARL
curve that produces the ARL-unbiased CUSUM or EWMA chart.

The ARL-unbiased EWMA-S2-chart triggers a signal at sample i iff

Zi < �2
0 � QaE.˛; n/

s
2��2

0

.2 � �/.n � 1/
or Zi > �2

0 C QbE.˛; n/

s
2��2

0

.2 � �/.n � 1/
;

(24)

where the constants QaE.˛; n/ and QbE.˛; n/ are chosen in such way that the ARL
takes its maximum value at � D 1. These constants can be found in Table 3
for �2

0 D 1, � D 0:1, on-target ARL equal to ˛�1, ˛ D 0:001; 0:002; 1=370:4,
0:003; 0:004; 0:005; 0:010 and n D 2; 3; 4; 5; 7; 10; 15; 100.

Choosing the ARL-unbiased chart not only makes the ARL values decrease as we
move away from � D 1, but also decrease most rapidly in the vicinity of � D 1, as
illustrated in Fig. 6. The use of the constants QaE.˛; n/ and QbE.˛; n/, whose obtention
is described in detail in the appendix, is indeed to good advantage when it comes to
the detection of both decreases and increases in the process variance.

Further examples of the ARL profiles of variance charts can be found in
Fig. 7. They refer to the vanilla and ARL-unbiased versions of the EWMA-log S2-,
EWMA-S -charts and the two-sided4 CUSUM�S2-scheme. It is apparent that, for
the vanilla version of the EWMA-log S2-chart, the maximum of ARL profile is to
the right of the in-control value �0 D 1. As for the ARL of the EWMA-S vanilla
chart, Fig. 6 leads to the conclusion that it is less biased than the ARL of the vanilla
version of the EWMA-S2 we have previously discussed. Interestingly enough,

4The two-sided CUSUM�S2-scheme consists of two separate lower and upper one-sided charts.
Their reference values kL and kU are implicitly given by the chosen out-of-control values �1 < �0

and 1=�1.
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Table 3 QaE.˛; n/ and QbE.˛; n/ for ARL-unbiased EWMA-S2-charts, with �2
0 D 1, � D 0:1, on-

target ARL equal to ˛�1, ˛ D 0:001; 0:002; 1=370:4; 0:003; 0:004; 0:005; 0:010 and sample sizes
n D 2; 3; 4; 5; 7; 10; 15; 100

n

˛ 2 3 4 5 7 10 15 100

0.001 QaE.˛; n/ D 1.9905 2.2541 2.3840 2.4653 2.5656 2.6504 2.7274 2.9304
QbE.˛; n/ D 4.4786 4.0470 3.8579 3.7463 3.6152 3.5094 3.4174 3.1906

0.002 1.8891 2.1218 2.2354 2.3061 2.3929 2.4661 2.5322 2.7057

3.9840 3.6345 3.4798 3.3880 3.2798 3.1921 3.1155 2.9257

1=370:4 1.8390 2.0578 2.1641 2.2302 2.3111 2.3792 2.4406 2.6012

3.7659 3.4505 3.3102 3.2268 3.1282 3.0482 2.9781 2.8040

0.003 1.8204 2.0342 2.1380 2.2024 2.2812 2.3475 2.4073 2.5634

3.6886 3.3850 3.2497 3.1692 3.0739 2.9966 2.9287 2.7601

0.004 1.7664 1.9666 2.0633 2.1232 2.1963 2.2577 2.3130 2.4568

3.4764 3.2042 3.0822 3.0094 2.9231 2.8529 2.7912 2.6372

0.005 1.7213 1.9107 2.0018 2.0582 2.1269 2.1845 2.2363 2.3707

3.3105 3.0618 2.9499 2.8829 2.8034 2.7385 2.6814 2.5387

0.010 1.5583 1.7140 1.7881 1.8337 1.8889 1.9350 1.9762 2.0824

2.7903 2.6088 2.5258 2.4757 2.4158 2.3666 2.3231 2.2133

0.050 1.0124 1.1000 1.1413 1.1664 1.1965 1.2215 1.2437 1.3000

1.6350 1.5570 1.5196 1.4963 1.4680 1.4442 1.4229 1.3678
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Fig. 6 ARL� .�/ of ARL-unbiased EWMA-S2-charts with �2
0 D 1 and on-target ARL equal to

500, for n D 5 (left) and n D 10 (right)

the two-sided CUSUM vanilla scheme exhibits only slightly biased ARL profiles
and should be preferred to all the remaining vanilla charts. For a more elaborated
comparison among different EWMA-type schemes for the variance, please refer to
Knoth (2010).
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Fig. 7 ARL� .�/ of vanilla (left) and ARL-unbiased (right) designs for EWMA-log S2 and
EWMA-S charts and two-sided CUSUM-S2 scheme, for n D 5. (a) EWMA-log S2 , vanilla,
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vanilla, (f) CUSUM-S2, unbiased
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5 Relating ARL-Unbiased Charts and UMPU Tests

The concept of an ARL-unbiased Shewhart-type chart is certainly related to the
notion of unbiased test, which is due to Neyman and Pearson (1936, 1938),
according to Lehmann (2006, p. 8821). Let us remind the reader that:

• a size ˛ test for H0 W � 2 �0 against H1 W � 2 �c
0 , with power function �.�/, is

said to be unbiased if �.�/ � ˛, for � 2 �0, and �.�/ � ˛, for � 2 �c
0 (Shao

2003, p. 404), thus, the test is at least as likely to reject under any alternative as
under the null hypothesis (Lehmann 2006, p. 8820);

• if we consider C a class of tests for H0 W � 2 �0 against H1 W � 2 �c
0 , then a test

in C, with power function �.�/, is a uniformly most powerful (UMP) class C test
if �.�/ � � 0.�/, for every � 2 �c

0 and every � 0.�/ that is a power function of a
test in class C (Casella and Berger 1990, p. 365).

Lehmann (2006, p. 8820) also notes that in many situations in which no UMP test
exists, there is a test which is UMP among the class of all unbiased tests—the
uniformly most powerful unbiased (UMPU) test.

Proposition 2, inspired by Kendall and Stuart (1979, pp. 224–226), Lehmann
(1986, pp. 145–147) and Shao (2003, pp. 406–407), provides a systematic way of
obtaining an UMPU test concerning a real-valued parameter in an exponential fam-
ily, with the remaining parameters occurring as unspecified nuisance parameters.

Proposition 2 Let X D .X1; : : : ; Xn/ be distributed according to

f�;'.x/ D exp
˚
� Y.x/ C '> U.x/ � �.�; '/


; (25)

where: � is a real-valued parameter; ' is a vector-valued parameter; Y a real-
valued statistic; U a vector-valued statistic. Then for testing H0 W � D �0 and
H1 W � ¤ �0, the UMPU test of size ˛ is characterized by the following critical
function:

T .Y; U / D
8
<
:

1; Y < c1.U / or Y > c2.U /

�i .U /; Y D ci .U /; i D 1; 2

0; c1.U / < Y < c2.U /;

(26)

where ci .u/ and �i.u/ are functions determined by

E�0ŒT .Y; U / j U D u� D ˛ (27)

E�0ŒT .Y; U / � Y j U D u� D ˛ � E�0.Y j U D u/; (28)

for every u.

Proposition 2 can be applied in a straightforward manner to derive an UMPU test for
H0 W �2 D �2

0 against H1 W �2 ¤ �2
0 (see (Kendall and Stuart 1979, pp. 227–228),
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(Lehmann 1986, p. 194) and (Shao 2003, pp. 411–412)), hence to define the control
limits of what could be called an UMPU Shewhart-type chart for �2. Let X1; : : : ; Xn

be i.i.d. from N.�; �2/, where both � 2 IR and �2 2 IRC are unknown and
n 2 f2; 3; : : : g. Then

f�;'.x/ D exp

(
� 1

2�2

nX
iD1

x2
i C n�

�2
Nx � n�2

2�2
� n

2
log.2��2/

)
;

� D � 1

2�2
; ' D n�

�2
;

Y.X/ D
nX

iD1

X2
i ; U.X/ D NX:

Moreover:

• by Basu’s theorem, .n � 1/S2 D Y � n U 2 is independent of U ;
• V D .n � 1/S2=�2

0 � 2
n�1;

• �i .u/ D 0; i D 1; 2 because Y is a continuous r.v., thus, there is no need to
randomize the test;

• ci .u/; i D 1; 2, do not depend on u and are related to quantiles of the 2
n�1;

• the critical function can be written solely in terms of V and should be interpreted
as follows:

– reject H0 W �2 D �2
0 (i.e., � D �0) if V < Qa or V > Qb,

– not reject H0, otherwise;

• conditions (27) and (28) can be written only in terms of V

E�0

h
1 � I

ŒQa;Qb�
.V /

i
D ˛ (29)

E�0

n
Œ1 � IŒQa;Qb�.V /� � V

i
D ˛ � E�0.V /; (30)

where I
ŒQa;Qb�

is the indicator function of the interval Œ Qa; Qb�.

Finally, capitalizing on the distribution of V and on fact that

vf2
n�1

.v/ D .n � 1/f2
nC1

.v/; (31)

we are able to rewrite conditions (29) and (30) and add that the constants Qa and Qb
are determined by solving

F2
n�1

. Qb/ � F2
n�1

. Qa/ D 1 � ˛ (32)

F2
nC1

. Qb/ � F2
nC1

. Qa/ D 1 � ˛: (33)
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These constants are not those corresponding to the equal tail quantiles or to
the likelihood ratio test (Lehmann 2006, p. 8820). Interestingly enough, Qa and
Qb coincide with Qa.˛; n/ and Qb.˛; n/, respectively, even though condition (18) is
equivalent to

f2
nC1

Œ Qb.˛; n/� � f2
nC1

Œ Qa.˛; n/� D 0; (34)

and does not seem to agree with (33).

6 Going Beyond ARL-Based Chart Designs

Since the control statistics of EWMA charts are dependent, the probability of
signalling at sample i and the probability of triggering a signal at sample i given
that the chart has not signalled prior to sample i are time-varying functions. As a
result, we fail to relate ARL-unbiased EWMA charts to unbiased or UMPU tests
and we are bound to explore other criteria—other than the ARL-unbiasedness—to
set up EWMA-S2-charts to monitor dispersion.

The remainder of the paper is devoted to finding the control limits of EWMA
charts for �2 that simultaneously yield

P ŒRL� .1/ � RL.0/� � ˛ (35)

P ŒRL� .�/ � RL.0/� � ˛; for all � ¤ 1; (36)

where RL.0/ and ˛ are pre-specified constants. The resulting chart is going to be
simply termed unbiasedProb EWMA-S2-chart. We ought to comment on these two
conditions.

The first one parallels with the condition ARL� .1/ � ˛�1 , �� .1/ � ˛ (i.e., the
probability of a false alarm never exceeds ˛) in the Shewhart setting. To motivate
the choice of RL.0/ and ˛, assume RL.0/ is the planned monitoring horizon for the
EWMA chart and ˛ represents the probability of at least one false alarm during
this monitoring horizon. As for the second condition, it corresponds somehow to
the ARL-unbiased condition ARL� .�/ � 1=˛ , �� .�/ � ˛, for all � ¤ 1, in the
Shewhart scenario.

An example with RL.0/ D 500 and ˛ D 0:25 is provided to illustrate the
properties of an unbiasedProb EWMA-S2-chart. The performance of this chart—in
terms of the probability that at least one signal is triggered in the monitoring horizon,
P ŒRL� .�/ � RL.0/�—is confronted with the one of a equaltailsProb EWMA-S2-
scheme that makes use (setting it up) of a lower one-sided and an upper one-sided
EWMA-S2-chart set in such way that they both have the same on-target probability
that at least a false alarm during the monitoring horizon, from now on called the
equaltailsProb. Fig. 8 has the profiles of P ŒRL� .�/ � 500�, for the three values of
the smoothing constant and the two sample sizes previously used, � D 0:1; 0:2; 0:5
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Fig. 8 P ŒRL� .�/ � 500� for sample sizes n D 5 (left) and n D 10 (right). (a) n D 5,
equaltailsProb setup, (b) n D 10, equaltailsProb setup, (c) n D 5, unbiasedProb setup, (d)
n D 10, unbiasedProb setup

and n D 5; 10. The bias of the function P ŒRL� .�/ � 500� is clearly visible when
the equaltailsProb EWMA-S2-scheme is used, in particular for the smallest of the
sample sizes and the largest value of �. In contrast, the unbiasedProb EWMA-S2-
chart yields nearly symmetrical profiles of P ŒRL� .�/ � 500� in the vicinity of
� D 1.

We strongly believe that this approach to design an EWMA-S2-chart might
reconcile the classical control chart users from the Shewhart chart community with
the users of control charts with recursive control statistics, such as the EWMA.
Moreover, it is a plausible direction to setting up charts when the quality control
practitioner has additional knowledge of the monitoring horizon of the chart.
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7 Concluding Remarks

The aim of this paper is to draw the attention of practitioners who tend to use control
charts which are not ARL-unbiased because the adopted control limits were based,
namely on equal tail quantiles, disregarding the skewness of the distribution of the
control statistic and the fact that this customary procedure is far from satisfactory.

We feel bound to point out that a decrease in the process variance, the percentage
defective or the average number of defects should be taken seriously as it is a
synonym for a quality improvement. Thus, quick detection and identification of such
changes are rather important, particularly if we desired to maximize the production
of better quality items (Pignatiello et al. 1995), and the adoption of ARL-unbiased
charts (or an UMPU test, etc.) plays an absolutely crucial role in achieving this while
using charts to signal to both decreases and increases in a parameter.

A final note: Several programs for the statistical software system R (refer to
the URL http://www.r-project.org/, the R package spc (see the URL http://cran.at.
r-project.org/web/packages/spc/), and Mathematica (http://reference.wolfram.com/
legacy/v5/) were used to produce the graphs and obtain the values in the tables in
this paper; programs will be made available to those who request them from the
authors.

Acknowledgements The second author gratefully acknowledges the financial support received
from CEMAT (Centro de Matemática e Aplicações) to attend the XIth International Workshop on
Intelligent Statistical Quality Control, Sydney, Australia, August 20–23, 2013.

Appendix

What follows are some notes on how to obtain the critical values aE.˛; n/ and
bE.˛; n/, for the equal tails EWMA-S2-scheme, and QaE.˛; n/ and QbE.˛; n/, for
the ARL-unbiased EWMA-S2-chart.

We ought to mention that the EWMA-S2-charts, described in Sect. 6, are set up
taking advantage of the algorithms used to obtain aE.˛; n/, bE.˛; n/, QaE.˛; n/, and
QbE.˛; n/.

Numerics for the Equal Tails EWMA-S 2-Scheme

The critical constants, aE.˛; n/ and bE.˛; n/, should ensure that

ARL� .1/ D ARL.0/

ARLupper
� .1/ D ARLlower

� .1/;

http://www.r-project.org/
http://cran.at.r-project.org/web/packages/spc/
http://cran.at.r-project.org/web/packages/spc/
http://reference.wolfram.com/legacy/v5/
http://reference.wolfram.com/legacy/v5/
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where: ARL.0/ is the desired on-target ARL (e.g., 500); and ARL
upper/lower
� .1/ are the

on-target ARL values of the corresponding one-sided charts to be considered for the
equal tails EWMA-S2-scheme.

aE.˛; n/ and bE.˛; n/ are obtained numerically—the algorithm is implemented
in the R package spc—by applying a two-dimensional secant rule as follows. To
start with, initial values for aE.˛; n/ and bE.˛; n/ are derived for the one-sided
charts with on-target ARL equal to 2 � ARL.0/. Secondly, a slightly decreased
aE.˛; n/ and increased bE.˛; n/ serve as the second pair to initialize the secant
rule iteration process. Then 7 ARL values (two for each one-sided chart, three for
the two-sided chart) are calculated to allow the computation of the discrete, two-
dimensional, and symmetric Jacobi matrix. Finally, after less than ten iterations the
procedure is stopped. The stopping rule is: (i) the above equalities are fulfilled with
an error less than 10�6; or (ii) the changes in the constants are smaller than 10�8.

This is the output for � D 0:1 and n D 5:

lower limit upper limit lower ARL upper ARL 2-sided ARL
0.623811 1.541675 1000.0000 1000.0000 491.5735
0.617333 1.567712 1179.1669 1349.0616 620.6845
0.621418 1.543226 1062.0820 1017.7417 511.2787
0.623059 1.543026 1019.0277 1015.4410 500.1801
0.623142 1.543148 1016.9033 1016.8459 500.0018
0.623143 1.543150 1016.8711 1016.8711 500.0000
0.623143 1.543150 1016.8711 1016.8711 500.0000

The same algorithm is utilized to determine the control limits of a equaltailsProb
EWMA-S2-chart fulfilling the condition P ŒRL� .1/ � RL.0/� D ˛.

Numerics for the ARL-Unbiased EWMA-S 2-Chart

The critical constants QaE.˛; n/ and QbE.˛; n/ should yield

ARL� .1/ D ARL.0/

jARL� .1 C "/ � ARL� .1 � "/j
2"

� 10�6;

where " is set to 10�4 and the ratio in the second condition is an approximation of
the derivative that should be zero at � D 1.

The numerical algorithm is a nested secant rule. The outer procedure updates
the upper control limit until: (i) the magnitude of the difference quotient does not
exceed 10�6; or (ii) the change in that control limit is smaller than 10�8. Given a
fixed upper control limit, a similar inner procedure searches for a lower control limit
that leads to ARL� .1/ D ARL.0/. The initial upper control limit is the one from the
upper one-sided chart. Then this control limit is increased until the quotient above
is positive. The last two values of this loop are used as starting values for the outer
secant rule.
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The corresponding output is, for � D 0:1 and n D 5:
lower limit upper limit difference quotient
0.000000 1.478111 -15356.622543
0.615248 1.528111 -3457.229820
0.635062 1.578111 3607.692047
0.627064 1.552578 423.304834
0.625727 1.549184 -61.990991
0.625902 1.549618 0.884083
0.625900 1.549612 0.001812
0.625900 1.549612 -0.000000
0.625900 1.549612 0.000000

Note that for each line in the above output one inner secant rule is utilized and
two further ARL values (ARL� .1 � "/ and ARL� .1 C "/) are calculated. Thus, the
calculation of the critical constants QaE.˛; n/ and QbE.˛; n/ requires more time than
the obtention of aE.˛; n/ and bE.˛; n/ of the equal tails EWMA-S2-chart. The
same numerical algorithm is used to set the unbiasedProb EWMA-S2-chart.
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Optimal Cumulative Sum Charting Procedures
Based on Kernel Densities

Jessie Y. Su, Fah Fatt Gan, and Xu Tang

Abstract The cumulative sum (CUSUM) charting procedure is an important
online monitoring procedure which is especially effective for detecting small and
moderate shifts. In the design and implementation of an optimal CUSUM chart,
the probability density function of an in-control process distribution is assumed to
be known. If the density is not known or cannot be approximated using a known
density, an optimal CUSUM chart cannot be implemented. We propose a CUSUM
chart which does not require the density to be known. Kernel density estimation
method will be used to estimate the density of an in-control process distribution.
The performance of this chart is investigated for unimodal distributions. The results
obtained reveal that this chart works well if we can obtain sufficient observations
from an in-control process for kernel density and average run length estimations.
An example is given to illustrate the design and implementation of this chart.

Keywords Average run length • Collocation method • Integral equation • Sen-
sitivity analysis • Sequential probability ratio test • Statistical process control •
Unimodal distribution

1 Introduction

A key tool in statistical process control is the control chart. The first control chart
was introduced by Shewhart (1931). Even though the insensitivity of the Shewhart
chart in detecting small and moderate shifts of a process parameter was realized
from the beginning, the chart has been widely used. Many improvements of the
Shewhart chart have been developed. One such improvement is the cumulative
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sum (CUSUM) chart introduced by Page (1954). A CUSUM chart is able to detect
small and moderate shifts more quickly. In addition, a shift is usually revealed more
prominently on a CUSUM chart.

The CUSUM chart is well researched for a few probability density functions
(pdf’s) like normal (Page 1961; Goel and Wu 1971; Gan 1991), exponential
(Vardeman and Ray 1985; Gan 1994), gamma (Hawkins and Olwell 1998; Huang et
al. 2013) and inverse Gaussian (Hawkins and Olwell 1997). The current practice
of implementing an optimal CUSUM chart is to examine whether the underlying
distribution is one of those already studied. Parametric density estimation method
is usually used but this method requires the form of the distribution to be known
a priori. If the density is not known or cannot be approximated using a known
density, an optimal CUSUM chart cannot be implemented. The distribution of a
sample mean can be approximated using a normal distribution because of the central
limit theorem. Although a CUSUM chart based on sample mean can be used,
Hawkins and Olwell (1998) emphasized the usefulness of a CUSUM chart based
on individual observations and stated “. . . just as the default for Shewhart charts
is rational groups with individual readings as exception, so in CUSUM charting
individual readings are the norm and rational groups are the exception”.

In this paper, we develop a near optimal CUSUM chart without having to
specify the density of the in-control process. Our approach is to use a CUSUM
chart using the density estimated using a nonparametric method. Nonparametric
methods of density estimation do not require any assumption of the form of an
underlying density. The estimated density is driven entirely by a given data set.
Lehmann (1990) remarked that the nonparametric method is favoured over the
parametric method due to its greater flexibility and its insensitivity to specification
bias. In this paper, we will use the nonparametric kernel estimation method
developed by Rosenblatt (1956), Parzen (1962) and Cencov (1962). Kernel density
estimation is also known as Parzen-Rosenblatt window method, although the former
nomenclature is more common within the statistical community. Silverman (1986)
provided a comprehensive treatment of kernel density estimation. Scott (1992) and
Duda et al. (2000) showed that kernel density estimation techniques are powerful
methods as their estimators converge to any density function asymptotically and
are therefore appropriate and useful for many problems where the forms of the
underlying distributions are not known a priori.

In this paper, we examine the CUSUM charting procedure in Sect. 2, kernel
density estimation in Sect. 3 and develop the CUSUM charting procedure based
on kernel density estimation in Sect. 4. The performance of the proposed procedure
is studied in Sect. 5. An example to illustrate the design and implementation of the
procedure is given in Sect. 6, and a conclusion is given in Sect. 7.
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2 Cumulative Sum Charting Procedure

The CUSUM chart is based on the sequential probability ratio test (SPRT). Wald
(1943, 1945) conceptualized and developed the SPRT to increase the efficiency in
monitoring the quality of military equipment manufactured during World War II.
The SPRT uses information from each observation once it becomes available. In
SPRT, we test the density using a simple null hypothesis H0 W f .x/ D f0.x/ against
a simple alternative hypothesis H1 W f .x/ D f1.x/. According to Wald (1945), for
a sequence of independent observations X1; X2; : : : ; Xn from the density f .x/, the
log-likelihood ratio test statistic is computed sequentially as

log.�n/ D
nX

tD1

Wt ; (1)

where

Wt D W.Xt/ D log

"
f1.Xt/

f0.Xt/

#
: (2)

When H0 is true, the Wt ’s are expected to be negative, shifting the sum in Eq. (1)
downwards. Similarly, when H1 is true, the sum will shift upwards. In SPRT,
there are two cutoff constants, A and B , where A < B . The SPRT accepts H0

if log.�n/ � log.A/ and accepts H1 if log.�n/ � log.B/. Otherwise, it does not
accept any hypothesis and calls for another observation. The values of A and B are
determined by fixing the probabilities of Type I and II errors. Wald hypothesized
(1947) and later proved (Wald and Wolfowitz 1948) that the SPRT is optimal in
testing these hypotheses.

For process monitoring, we are only interested in signalling when H1 is accepted
because this provides evidence of an out-of-control process. If a process is in-
control, no signal shall be given. The CUSUM chart introduced by Page (1954)
plots

St D max.0; St�1 C Wt/ (3)

against the time t . The initial value of St is chosen such that 0 � S0 < h and is often
set to be zero. The chart signals when St exceeds h where h is commonly known as
the control chart limit. The value of h is prespecified based on the in-control average
run length (ARL). The time period chosen is arbitrary, although it is best to use the
smallest possible time period so that a shift in process parameter can be detected
earlier. Moustakides (1986) proved that the CUSUM chart is optimal.
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The ARL is a common measure of the performance of a control chart. The run
length is the number of observations sampled until a signal is given and the ARL
is the expectation of this random variable. The integral equation developed by Page
(1954) can be used to approximate the ARL. The integral equation is given as

L.z/ D 1 C L.0/P.W < �z/ C
Z h

0

L.x/fW .x � z/dx; (4)

where L.z/ is the ARL of a CUSUM chart with an initial value S0 D z and fW .�/ is
the pdf of W . The integral in Eq. (4) can be approximated using the Gauss-Legendre
quadratures (Abramowitz and Stegun 1972) to yield

L.z/ � 1 C L.0/P.W < �z/ C
MX

iD1

wi L.xi /fW .xi � z/; (5)

where xi and wi , i D 1; 2; : : : ; M are the Gauss-Legendre abscissas, and weights
respectively. The system of M C 1 linear equations in L.0/, L.x1/, : : :, L.xM / can
then be solved to obtain an approximation to L.z/.

The integral equation method only gives accurate results when the interval Œ0; h�

lies within the range of W.x/. Knoth (2005, 2006) demonstrated that the collocation
method is a more accurate method. The collocation method approximates L.z/
by

PN
j D1 cj Tj .z/, where cj ’s are unknown constants and Tj .z/ D cosŒ.j �

1/ arccos..2z � h/=h/�; j D 1; : : : ; N . Let the minimum and maximum of W be u
and l , respectively. The constants cj ’s can be found by solving the following system
of N linear equations

NX
j D1

cj Tj .zi / D 1 C P.W < �zi /

NX
j D1

cj Tj .0/

C
NX

j D1

cj

Z u�

l�

Tj .x/fW .x � zi /dx; (6)

where zi D hŒ1 C cosf.2i � 1/�=.2N /g�=2, i D 1; : : : ; N . The lower limit l� D 0

if 0 � l C zi and l� D l C zi if 0 < l C zi , while u� D h if h � u C zi and
u� D u C zi if h > u C zi . The integral on the right can be approximated using the
Gauss-Legendre quadratures.
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3 Kernel Density Estimation

Let fX1; : : : ; Xmg be a set of independent and identically distributed univariate
random variables sampled from f .x/. According to Silverman (1986), the kernel
density estimation method estimates f .x/ using the formula

Of .x/ D 1

md

mX
iD1

K
�x � Xi

d

�
; (7)

where K.�/ is a kernel function and d is the bandwidth. The kernel function is
usually unimodal and symmetrical around the origin. The bandwidth d controls the
degree of smoothness of an estimated density. Much attention on kernel density
estimation has been on the computation of an optimal d . The choice of d is usually
based on the minimization of the discrepancy between an estimated density and its
actual density. The density estimate Of depends on the observations X1; X2; : : : ; Xm

and as such is a random variable. This dependence will not be expressed explicitly.
According to Silverman (1986), when considering estimation at a single point x,
the discrepancy of the density estimate Of .x/ from the true density f .x/ can be
measured by the mean squared error which is defined as

MSEx. Of / D EŒ Of .x/ � f .x/�2; (8)

where E denotes the expected value with respect to the sample. When measuring
the global discrepancy of Of from f , the mean integrated squared error developed
by Rosenblatt (1956) is commonly used. It is defined as

MISE. Of / D E
�Z

Œ Of .x/ � f .x/�2dx
�
: (9)

Silverman (1986) emphasized the importance of choosing a suitable bandwidth
d as the bias of Of .x/ depends directly on d . He suggested that when estimating a
normal distribution using a Gaussian kernel, the following bandwidth can be used,

d1 D 1:06� m�1=5; (10)

where � can be estimated from the given observations. While Eq. (10) may work
well for normal or unimodal distributions, it may over smooth the density of a
multimodal distribution. For skewed and long-tailed distributions, Silverman (1986)
suggested the following bandwidth,

d2 D 0:79Rm�1=5; (11)
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where R represents the interquartile range of the distribution to be estimated.
Although Eq. (11) takes a more flexible measure of spread into account, it over-
smooths the density of a multimodal distribution more than the bandwidth in
Eq. (10). A bandwidth that combines the characteristics of Eqs. (10) and (11) is
defined as

d3 D 0:9Am�1=5; (12)

where

A D min

�
�;

R

1:34

�
; (13)

where � and R can be estimated from the given observations. Equation (12) is also
known as the Silverman’s reference bandwidth. It is shown by Silverman (1986) that
Eq. (12) can be used for the estimation of a variety of densities. Therefore, Eq. (12)
will be used in this paper.

Scott (1992) noted that the choice of a kernel has little effect on the MISE. Hence,
without undue concern for the loss of efficiency, a kernel can be chosen for other
reasons such as the ease of computation. Silverman (1986) noted that an estimated
density will inherit all continuity and differentiability properties from its kernel. In
this paper, the standard normal kernel will be used due to its symmetry, smoothness
and infinite support. The ease in estimating both pdf and cumulative distribution
function (cdf) due to its differentiability is also why the Gaussian kernel is chosen
instead of the Epanechnikov kernel despite the latter’s higher efficiency.

The accuracy of an estimated density also depends on the number of observa-
tions m. The accuracy, especially at the extreme points of an estimated density,
generally increases with an increasing number of observations. Silverman (1986)
explained that the bias in estimating f .x/ depends indirectly on m through its
dependence on d . The effects of m on density estimation and hence ARL estimation
will be investigated in Sect. 5. To summarize this section, the following formulae
will be used for the estimation of pdf and cdf

Of .x/ D 1

md

mX
iD1

�
�x � Xi

d

�
; (14)

OF .x/ D 1

m

mX
iD1

˚
�x � Xi

d

�
; (15)

where d is defined in Eq. (12) and �.�/ and ˚.�/ represent the standard normal pdf
and cdf, respectively.
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4 Cumulative Sum Chart Using Kernel Densities

In order to implement a CUSUM chart, Eqs. (2) and (3) show that the monitoring
statistic W.x/ must be known and it is a function of f0.x/ and f1.x/. If the
densities are not known, an optimal CUSUM chart cannot be implemented. To
overcome this problem, we will develop a CUSUM chart using kernel densities.
A closely related problem is that of setting an appropriate chart limit when the
parameters and in-control distribution are estimated. By bootstrapping the data used
to estimate the in-control state, Gandy and Kvaløy (2013) propose an adjustment to
a charting procedure such that the procedure will have a high probability of a certain
conditional performance given the estimated in-control state.

Suppose we have a sample of observations X1; : : : ; Xm taken from an unknown
in-control distribution f0.x/. The in-control pdf can be estimated using the kernel
density in Eq. (14). Consider a CUSUM chart for detecting an upward shift in
process mean. In the design of a CUSUM chart, the shift that is most important
to be detected quickly must also be specified. Without loss of generality, we will let
this be a one � shift in the mean,

f1.x/ D f0.x � �/; (16)

where � is the standard deviation of f0.x/. When Of0.x/ is estimated using a kernel
density, the corresponding Of1.x/ can be estimated using

Of1.x/ D Of0.x � s/; (17)

where s is an estimate of � based on the m observations. The monitoring statistic
can then be estimated as

OW .x/ D log

 Of1.x/

Of0.x/

!
: (18)

Hence, using OW .x/ in Eq. (3), we can implement a CUSUM chart.
To complete the design of this CUSUM chart, we will also need to determine

the control limit h for a given ARL. Unfortunately, the ARL of this chart is
mathematically intractable and we propose estimating the in-control ARL using
simulation based on sampling with replacement from the same historical data set.
This means a sufficiently large in-control historical data set is required for estimating
the ARL accurately. This will be investigated in the next section.

The CUSUM chart using kernel densities is highly flexible because it does not
require the in-control pdf to be known. How well this chart performs when compared
to the CUSUM chart using known f0.�/ and f1.�/ depends on how well W.x/
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is estimated. Since Of1.x/ is derived from Of0.x/, this ultimately depends on the
accuracy of Of0.x/ obtained. As stated in Sect. 3, accuracy of Of0.x/ depends on a
few factors such as the kernel chosen, bandwidth and the size of historical sample.
With the recommended kernel function and bandwidth, we will investigate the effect
of the size of historical sample on the performance of CUSUM chart in the next
section.

5 Performance of CUSUM Chart Using Kernel Densities

We are interested in developing a CUSUM chart for monitoring a unimodal
distribution because many quality measures follow such a distribution. We will
investigate the performance of the CUSUM chart using kernel densities for the
normal distribution and the t-distribution with 10 degrees of freedom. The latter
distribution is chosen because it represents a distribution that is more spread out
than the normal.

We will first consider the normal distribution. Consider the hypotheses H0 W
f .x/ D f0.x/ � N.0; 1/ and H1 W f .x/ D f1.x/ � N.1; 1/. Using Eq. (2),
W.x/ can be shown to follow the distribution N.�1=2; 1/. The range of W.x/

is .�1; 1/. Hence, the integral equation method can be used to obtain accurate
ARL for the CUSUM chart using known pdf since Œ0; h� is a subset of this range.
The collocation method also yields accurate ARL. Asymptotically, the ARL of the
CUSUM chart using kernel densities will approach that of the CUSUM chart using
known pdf’s as the sample size m increases. This is because Of0.�/ converges to f0.�/
as m increases. Table 1 contains the ARLs of CUSUM charts using kernel densities
estimated using historical data of size m D 500; 1,000; 3,000; 5,000 and 10,000. The
chart limits of these charts were approximated using a simple method as described in
Sect. 6. An ARL in the first row is simulated using observations based on sampling
with replacement from the same historical data set used to estimate the kernel
densities. The following rows are the in-control and out-of-control ARLs simulated
using observations from the true process densities. The values in parentheses refer
to the standard deviations of the respective ARLs obtained.

Table 1 shows that a CUSUM chart based on a historical data set of size m D
5,000 is adequate to produce an in-control ARL that is close to 100. In addition, the
out-of-control run length profiles of CUSUM charts using kernel densities based
on m D 5,000 and 10,000 are similar to those of the CUSUM charts using known
densities. This means that the CUSUM chart using kernel densities has near optimal
run length properties for m at least 5,000. A sensitivity analysis is also done by
replicating the results three more times for m D 5,000 and 10,000. These results,
together with the ones obtained in Table 1, are displayed in Table 2. The results
are consistent across the samples. In order to investigate the performance of the
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Table 1 ARLs of CUSUM charts using Kernel densities for monitoring the normal distribution

m 500 1,000 3,000 5,000 10,000 Exact

h 2:626 2:604 2:712 2:748 2:767 2.849

Shift

0.00 �100.1 99.9 100.6 99.6 100.2

(0.3) (0.3) (0.3) (0.3) (0.3)

0.00 ��53.5 86.7 77.1 99.3 100.9 100.0

(0.2) (0.3) (0.3) (0.3) (0.3)

0.10 37.2 57.4 51.3 63.8 64.7 64.1

(0.11) (0.17) (0.15) (0.20) (0.20)

0.20 26.5 39.2 35.2 42.7 43.2 42.7

(0.07) (0.11) (0.10) (0.12) (0.13)

0.30 19.8 27.7 25.2 29.7 30.0 30.0

(0.05) (0.07) (0.07) (0.08) (0.08)

0.40 15.1 20.2 18.8 21.5 21.7 21.4

(0.04) (0.05) (0.05) (0.05) (0.06)

0.50 11.8 15.5 14.4 16.1 16.3 16.1

(0.03) (0.04) (0.03) (0.04) (0.04)

0.75 7.3 8.8 8.4 9.2 9.2 9.2

(0.02) (0.02) (0.02) (0.02) (0.02)

1.00 5.1 5.9 5.7 6.2 6.1 6.1

(0.01) (0.01) (0.01) (0.01) (0.01)

1.25 3.8 4.4 4.3 4.6 4.5 4.5

(0.007) (0.008) (0.007) (0.008) (0.007)

1.50 3.1 3.5 3.4 3.7 3.6 3.6

(0.005) (0.005) (0.005) (0.005) (0.005)

2.00 2.2 2.5 2.5 2.5 2.5 2.6

(0.003) (0.003) (0.003) (0.003) (0.003)

2.50 1.9 2.1 2.0 2.1 1.9 2.0

(0.002) (0.002) (0.002) (0.002) (0.002)

3.00 1.5 1.8 1.8 1.7 1.5 1.7

(0.002) (0.002) (0.002) (0.002) (0.002)
�An ARL in the first row is simulated using observations based on sampling with replacement
from the same historical data set
��An ARL from this row onwards is simulated using observations from the true process density

CUSUM chart for other unimodal distributions, we consider H0 W f0.x/ � t� ,
t-distribution with � D 10 degrees of freedom and H1 W f1.x/ D f0.x � �/. Using
Eq. (2), it can be shown that W.x/ D �Œ.�C1/=2� logŒf�C.x��/2g=.�Cx2/�. With
the pdf and cdf of W.X/ derived, the exact ARL of the CUSUM chart using known
densities can be approximated accurately using the collocation method. Table 3
contains the ARLs of the CUSUM charts using kernel densities for monitoring the
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Table 2 Sensitivity analysis for the CUSUM charts using Kernel densities for monitoring the
normal distribution

m 5,000 5,000 5,000 5,000 10,000 10,000 10,000 10,000

h 2:748 2:771 2:771 2:752 2:767 2:780 2:798 2:760

Shift

0.00 �100.3 99.7 99.5 99.4 100.2 100.4 100.0 99.9

(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)

0.00 ��99.3 102.3 101.9 84.5 100.9 99.5 102.3 98.1

(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)

0.10 63.8 65.1 65.3 55.3 64.7 64.2 65.6 63.5

(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

0.20 42.7 43.4 43.7 37.5 43.2 42.7 43.0 42.5

(0.12) (0.13) (0.13) (0.11) (0.13) (0.13) (0.13) (0.12)

0.30 29.7 30.2 30.1 26.4 30.0 29.8 29.8 29.7

(0.08) (0.08) (0.09) (0.07) (0.08) (0.08) (0.09) (0.09)

0.40 21.5 21.8 21.8 19.4 21.7 21.5 21.6 21.5

(0.06) (0.06) (0.06) (0.05) (0.06) (0.06) (0.06) (0.06)

0.50 16.1 16.4 16.3 14.8 16.3 16.1 16.2 16.2

(0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04)

0.75 9.2 9.3 9.3 8.6 9.2 9.2 9.2 9.1

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

1.00 6.2 6.2 6.2 5.9 6.1 6.1 6.2 6.1

(0.010) (0.012) (0.012) (0.011) (0.010) (0.012) (0.012) (0.012)

1.25 4.6 4.6 4.6 4.4 4.5 4.5 4.6 4.5

(0.008) (0.008) (0.008) (0.007) (0.008) (0.008) (0.008) (0.008)

1.50 3.7 3.7 3.7 3.5 3.6 3.6 3.6 3.5

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

2.00 2.5 2.7 2.7 2.6 2.5 2.6 2.6 2.5

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

2.50 2.2 2.2 2.2 2.1 1.9 2.0 2.1 2.0

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

3.00 1.7 1.9 1.9 1.7 1.5 1.6 1.8 1.6

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
�An ARL in the first row is simulated using observations based on sampling with replacement
from the same historical data set
��An ARL from this row onwards is simulated using observations from the true process density

t-distribution. The table shows that a CUSUM chart based on m D 5,000 is adequate
to produce an in-control ARL that is close to 100. In addition, the out-of-control run
length profiles of CUSUM charts using kernel densities based on m D 5,000 and
10,000 are similar to those of the CUSUM charts using known densities. A similar
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Table 3 ARLs of CUSUM charts using Kernel densities for monitoring the t -distribution

m 500 1,000 3,000 5,000 10,000 Exact

h 2:7287 2:7960 2:8114 2:8483 2:9142 2.9920

Shift

0.00 �99.1 100.2 99.8 100.1 100.1

(0.3) (0.3) (0.3) (0.3) (0.3)

0.00 ��69.0 96.3 92.2 111.2 97.5 100.0

(0.2) (0.3) (0.3) (0.3) (0.3)

0.10 49.4 61.9 61.5 72.1 63.1 68.0

(0.14) (0.18) (0.18) (0.21) (0.18)

0.20 35.5 40.6 41.3 48.2 42.4 47.2

(0.10) (0.11) (0.12) (0.14) (0.12)

0.30 26.0 28.0 29.1 32.9 29.3 33.7

(0.07) (0.08) (0.08) (0.09) (0.08)

0.40 19.2 20.0 21.0 23.4 21.0 24.7

(0.05) (0.05) (0.06) (0.06) (0.05)

0.50 14.7 14.8 15.7 17.4 15.7 18.7

(0.04) (0.04) (0.04) (0.05) (0.04)

0.75 8.5 8.4 8.9 9.5 9.9 10.6

(0.02) (0.02) (0.02) (0.02) (0.02)

1.00 5.7 5.6 5.9 6.2 5.9 7.0

(0.011) (0.010) (0.011) (0.012) (0.011)

1.25 4.3 4.2 4.4 4.6 4.5 5.2

(0.007) (0.006) (0.007) (0.007) (0.007)

1.50 3.5 3.5 3.6 3.7 3.6 4.1

(0.005) (0.004) (0.005) (0.005) (0.004)

2.00 2.7 2.6 2.7 2.8 2.7 3.0

(0.003) (0.003) (0.003) (0.003) (0.003)

2.50 2.4 2.3 2.3 2.4 2.3 2.5

(0.002) (0.002) (0.002) (0.002) (0.002)

3.00 2.4 2.1 2.2 2.3 2.2 2.2

(0.002) (0.002) (0.002) (0.002) (0.002)
�An ARL in the first row is simulated using observations based on sampling with replacement
from the same historical data set
��An ARL from this row onwards is simulated using observations from the true process density

sensitivity analysis is done and the results are displayed in Table 4. For m D 5,000,
the estimated ARL using the historical data set tends to underestimate the true ARL
by about 10 %. The estimation improves when m D 10,000.
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Table 4 Sensitivity analysis for the CUSUM charts using Kernel densities for monitoring the
t -distribution

m 5,000 5,000 5,000 5,000 10,000 10,000 10,000 10,000

h 2:8483 2:8890 2:8483 2:8758 2:9162 2:8729 2:9151 2:8992

Shift

0.00 �100.1 100.2 100.1 100.1 100.1 100.4 99.7 99.9

(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)

0.00 ��111.2 115.3 110.8 110.5 97.5 108.1 104.4 96.2

(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)

0.10 72.1 73.0 72.0 71.5 63.1 70.0 66.3 62.2

(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

0.20 48.2 47.8 48.0 47.3 42.4 46.7 44.0 41.9

(0.14) (0.14) (0.14) (0.13) (0.13) (0.13) (0.13) (0.12)

0.30 32.9 32.2 33.2 32.2 29.3 31.9 30.2 28.9

(0.09) (0.09) (0.09) (0.09) (0.08) (0.09) (0.08) (0.08)

0.40 23.4 22.6 23.4 22.9 21.0 22.8 21.6 21.0

(0.06) (0.06) (0.06) (0.06) (0.05) (0.06) (0.05) (0.05)

0.50 17.4 16.7 17.3 17.0 15.7 16.9 16.1 15.6

(0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03)

0.75 9.5 9.1 9.5 9.4 8.9 9.3 9.0 8.8

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

1.00 6.2 6.1 6.2 6.2 5.9 6.1 6.0 5.9

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.25 4.6 4.5 4.6 4.6 4.5 4.5 4.6 4.5

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

1.50 3.7 3.7 3.7 3.7 3.6 3.6 3.7 3.6

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

2.00 2.8 2.8 2.8 2.8 2.7 2.7 2.8 2.7

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

2.50 2.4 2.3 2.4 2.3 2.3 2.3 2.4 2.3

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

3.00 2.3 2.1 2.2 2.1 2.1 2.1 2.1 2.1

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
�An ARL in the first row is simulated using observations based on sampling with replacement
from the same historical data set
��An ARL from this row onwards is simulated using observations from the true process density

6 Application

We illustrate the implementation of the CUSUM chart using kernel densities in this
section. We simulate an in-control data set of size 5,000 from N.� D 74; � D 0:01/

assumed to be the in-control process distribution of the diameter of a piston ring.
Kernel density estimation is used to obtain Of0.x/ given in Eq. (14). The bandwidth
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Fig. 1 Plot of simulated
ARL against control chart
limit h and the fitted cubic
regression line
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stated in Eq. (12) is used. For this application, it is decided that one sigma shift is
most important to be detected. For detecting an upward shift in mean, Of1.x/ and
OW .x/ are obtained using Eqs. (17) and (18), respectively. For detecting a downward

shift, we set Of1.x/ D Of0.x C s/. To obtain an estimated in-control ARL for a
particular control limit h, the run length of the CUSUM chart is repeated 100,000
times using observations randomly selected with replacement from the in-control
data set. The average of these 100,000 run lengths is an estimated in-control ARL.
This is repeated for several values of h. To estimate the value of h for a specified
in-control ARL, a plot of estimated in-control ARL against h is shown in Fig. 1. We
use a cubic function to fit the points and obtained

ARL D �132379:2 C 83568:8h � 17653:8h2 C 1255:7h3: (19)

Using Eq. (19), an approximate control limit for a one-sided CUSUM chart can be
determined approximately as h D 4:64 for an in-control ARL of 740. A combined
CUSUM scheme consisting of two one-sided charts will have an approximate ARL
of 370. To illustrate the implementation, the two CUSUM charts are plotted for
a data set for which the first 50 observations are generated from the in-control
distribution N.74; 0:01/ and the last 50 observations are generated from an out-
of-control distribution N.74:008; 0:01/ which represents a shift of 0.008 in the
mean. The charts are displayed as charts (a) and (b) in Fig. 2. Both charts do not
show any unusual fluctuations for the first half of the data when the process is in-
control. For the second half of the data, the CUSUM chart for detecting upward shift
shows more fluctuations and signals at 68th, 89th and 98th observations. The other
CUSUM chart becomes much quieter. In order to compare the CUSUM chart using
kernel densities and the CUSUM chart using known densities f0.�/ and f1.�/, we
plot the latter as the charts (c) and (d) in Fig. 2. Note that the CUSUM charts using
kernel densities are almost identical to the CUSUM charts using actual densities.
This shows that there is little practical difference between the two types of charts.
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Fig. 2 CUSUM charts using kernel and actual densities for detecting a shift in process mean
where the the first 50 observations are generated from the in-control distribution N.74; 0:01/ and
the last 50 observations are generated from an out-of-control distribution N.74:008; 0:01/ which
represents a shift of 0.008 in the mean. (a) CUSUM chart using Kernel densities to detect upward
shift. (b) CUSUM chart using Kernel densities to detect downward shift. (c) CUSUM chart using
actual densities to detect upward shift. (d) CUSUM chart using actual densities to detect downward
shift

7 Conclusion

In this paper, CUSUM chart using kernel densities is developed for monitoring a
unimodal distribution without having to specify the process density. This is a big
advantage in application because current implementation of an optimal CUSUM
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chart requires the in-control process density to be known and this may not be
feasible for many processes. In addition, many process densities are assumed to
have infinite support and this is not realistic in practice. Thus, the chart using kernel
densities is even more appropriate than the chart using known densities for practical
use. Our investigation shows that the chart requires an in-control data set of at
least 5000 observations for adequate density and ARL estimations. The chart can
be expected to have run length properties similar to the optimal CUSUM chart
using known densities if sufficient historical data are available for estimation of
the densities.
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A Simple Approach for Monitoring Process
Mean and Variance Simultaneously

Su-Fen Yang and Barry C. Arnold

Abstract Control charts are effective tools for signal detection in both manu-
facturing processes and service processes. Much of the data in service industries
comes from a process having non-normal or unknown distributions. The commonly
used Shewhart variable control charts, which depend heavily on the normality
assumption, are not appropriately used here. In this paper, we propose a new
EWMA-V Chart and EWMA-M Chart based on two simple independent statistics
to monitor process mean and variance shifts simultaneously. Further, we explore
the sampling properties of the new monitoring statistics, and calculate the average
run lengths when using both of the proposed EWMA Charts. A numerical example
involving non-normal service times from the service system of a bank branch in
Taiwan is used to illustrate the applications of the new EWMA-M and EWMA-
V Charts, and to compare them with the existing mean and variance (or standard
deviation) charts. The proposed new EWMA-M and EWMA-V Charts show
superior detection performance compared to the existing mean and variance charts.
The new EWMA-M and EWMA-V Charts are thus recommended.

Keywords Arcsine transformation • EWMA charts

1 Introduction

Control charts are commonly used tools in process signal detection to improve the
quality of manufacturing processes and service processes. In the past few years,
more and more statistical process control techniques are applied to the service
industry, and control charts are also becoming an effective tool in improving service
quality. There have been a few studies in this area, like those of Tsung et al.
(2008) and Ning et al. (2009). Much service process data comes from processes
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with variables having non-normal or unknown distributions so the commonly used
Shewhart variables control charts, which depend on the normality assumption, are
not suitable. Hence the question arises: “How to monitor a process with non-normal
or unknown distribution data?” Some research has been done to deal with such a
situation; see, for example, Ferrell (1953), Amin et al. (1995), Chakraborti et al.
(2001), Altukife (2003), Bakir (2004, 2006), Li et al. (2010), Zou and Tsung
(2010), and Graham et al. (2011). Little research has been done to deal with process
variability monitoring; see, for example, Das and Bhattacharya (2008) and Jones-
Farmer and Champ (2010).

A major drawback of the previous nonparametric approaches is that they are
not easy for practitioners to apply because they are not statisticians and do not
quite understand the proper way to implement the schemes. Yang et al. (2011)
proposed a new Sign Chart for variables data to monitor the deviation of the
process measurement from the target without the assumption of a normal process
distribution or a distribution of known form. Yang and Cheng (2011) proposed a
CUSUM Mean Chart to monitor small shifts in the process mean. Yang et al. (2012)
addressed a new Mean Chart based on a simple statistic to monitor the shifts of the
process mean. Their approaches are quite easy to use, and even easier than some of
the above published nonparametric approaches. However, Yang and Cheng (2011),
and Yang et al. (2011, 2012) did not consider a variance chart.

In this paper, we propose using both an EWMA-V Chart and an EWMA-
M Chart for variables data to monitor the process variance and mean, extending
Yang et al.’s approach (2012). The approach is still quite easy to use, and has
better detection ability than the existing standard deviation and mean charts. The
paper is organized as follows: In Sect. 2, we describe the EWMA-M Chart, and
illustrate its detection performance. In Sect. 3, we discuss the construction of
a newly proposed EWMA-V Chart, and measure its detection performance. In
Sect. 4, we measure the detection performance of using both the new EWMA-V
and EWMA-M Charts simultaneously. In Sect. 5, we describe the estimates for
unknown population parameters. In Sect. 6, a numerical example of a service system
in a bank branch was used to construct the proposed new EWMA-V and EWMA-
M Charts to monitor the quality of service time, and their performance compared
with those of some existing charts. Section 7 summarizes the findings and provides
a recommendation.

2 The Proposed EWMA-M Chart

Assume that a critical quality characteristic, X , has a mean � and variance �2.
Following Yang and Cheng (2011), let Y D X � � and p D P.Y > 0/ = the
“Process Proportion.” If the process were in-control, then p D pm0, and if the
process were out-of-control, that is if � had shifted, then p D pm1 ¤ pm0. If
pm0 is not given, it will be estimated using a preliminary data set.
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To monitor the process mean, a random sample of size n1, X1; X2; : : : ; Xn1 , is
taken from X . Define

Yj D Xj � � and Ij D
(

1 ; if Yj > 0,

0 ; otherwise;
; j D 1; 2; : : : ; n1 : (1)

Let Mt be the total number of Yj > 0 at time t , then Mt D Pn1

j D1 Ij would follow
a binomial distribution with parameters (n1, pm0) for an in-control process.

2.1 The Control Limits of EWMA-M Chart

Monitoring the process mean shifts is equivalent to monitoring the changes in
process proportion. However, the binomial distribution is discrete and is asymmetric
for pm0 ¤ 0:5. In addition the values of out-of-control average run length (ARL)
(ARLM1) of the Mt Chart do not change inversely with sample size as they normally
should (see Yang et al. 2012). To rectify this problem, they propose an “arcsine
transformed EWMA-M chart.” Each of these EWMA charts has the usual value of
370 for in-control ARL, and they are sensitive for monitoring small shifts in the
process mean quickly and effectively.

Let TM D sin�1
�p

M=n1

�
, then the distribution of TM is approximately normal

with a mean sin�1
�p

pM

�
and variance 1=.4n1/ (see Mosteller and Youtz 1961).

The EWMA-M statistic is

EWMATMt
D �1TMt C .1 � �1/EWMATMt�1

; 0 < �1 � 1; t D 1; 2; : : : : (2)

The New EWMA-M chart is constructed as follows. Define

UCL1 D sin�1
�p

pm0

�C L1

s
�1

4n1.2 � �1/
; (3)

CL1 D sin�1
�p

pm0

�
; (4)

LCL1 D sin�1
�p

pm0

� � L1

s
�1

4n1.2 � �1/
; (5)

and plot EWMATMt
. If any EWMATMt

� LCL1 or EWMATMt
� UCL1, an out-

of-control signal is issued. The two parameters, L1 and �1, are chosen to yield an
in-control ARL, ARLTM0 D 370, using the Markov chain approach proposed by
Lucas and Saccucci (1990).
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Table 1 The ARLTM1

of the EWMA-M chart
when pm0 D 0:5

pm1

n1 0.30 0.35 0.40 0.45 0.50

8 7.6 12.7 28.0 100.4 370.5

9 7.0 11.5 25.0 91.4 370.5

10 6.4 10.5 22.5 83.8 370.5

11 6.0 9.6 20.6 77.3 370.5

12 5.6 9.0 18.9 71.7 370.5

13 5.3 8.4 17.5 66.8 370.5

14 5.0 7.9 16.3 62.5 370.5

15 4.8 7.5 15.3 58.7 370.5

16 4.6 7.1 14.4 55.3 370.5

17 4.4 6.8 13.6 52.2 370.5

18 4.3 6.5 12.9 49.5 370.5

19 4.1 6.2 12.3 47.0 370.5

20 4.0 6.0 11.8 44.8 370.5

2.2 The In-Control and Out-of-Control Average Run Lengths
of the EWMA-M Chart

The ARLTM0 of the new EWMA-M chart is a function of (n1; L1; �1). Adopting
the in-control process proportion pm0 D 0:5, ARLTM0 � 370 with �1 D 0:2 and
L1 D 2:86, the out-of-control ARL, ARLTM1 , of the EWMA-M chart is listed for
n1 D 8.1/20 and pm1 D 0:30.0:05/0:50 in Table 1. From Table 1, we found that
ARLTM1 decreases when the out-of-control value of pm1 is far away from the in-
control value of pm0, and when n1 increases.

3 The Proposed EWMA-V Chart

To monitor the process variance, another random sample of size n2, X1; X2; : : : ; Xn2 ,
is taken from the process, X . Assume that the sample size n2 is even for convenience
(if not, delete one observation). Define

Y �
1 D .X2 � X1/

2=2 ; Y �
2 D .X4 � X3/

2=2 ; : : : ; Y �
n2
2

D .Xn2 � Xn2�1/2=2 ;

(6)

E.Y �
j 0/ D �2 ; j 0 D 1; 2; : : : ; n2=2 ; and (7)

Ij 0 D
(

1 ; if Y �
j 0 > �2

0 ; otherwise
; j 0 D 1; 2; : : : ; n2=2 : (8)
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Let V be the total number of Y �
j 0 > �2, then V D P0:5n2

j 0D1 Ij 0 will have a binomial
distribution with parameters (0:5n2, pv0) for an in-control process, where pv0 D
P.Y �

j 0 > �2/. The value of pv0 will depend on the distribution of the Xi ’s. For

example, if the Xi ’s are normally distributed, then pv0 D P.Y �
j 0 > �2/ D P.Z2 >

1/ where Z � N.0; 1/: Thus in this case pv0 D 0:3147. If the distribution of Xn2 �
Xn2�1 is unimodal, as it frequently is, the version of the Chebychev inequality for
unimodal variables implies that the quantity pv0 is bounded above by 4/9. The value
of pv0 can be arbitrarily small but it usually will be in the range 0.25–0.50.

Similar to the Mt Chart, the Vt Chart is a new chart in that the binomial variable
is not the count of nonconforming units in the sample but rather the number
of pairs of X values in a sample that are in-control with respect to the process
variance. Monitoring process variance shifts is equivalent to monitoring the changes
in process proportion, pv0. The Vt Chart is also asymmetric for pv0 ¤ 0:5, and the
values of out-of-control ARL (ARLV1) of the Vt Chart do not change inversely with
sample size as they normally should. Hence, we propose an “arcsine transformed
EWMA-V chart.” Each of these EWMA charts has the usual value of 370 for
in-control ARL, and they are sensitive for monitoring small shifts in the process
variance quickly and effectively.

3.1 The Control Limits of EWMA-V Chart

Let TV D sin�1
�p

V=0:5n2

�
, then the distribution of TV is approximately normal

with a mean sin�1
�p

pV

�
and variance 1=.2n2/ (see Mosteller and Youtz 1961).

We define the New EWMA-V statistic as:

EWMATVt
D �2TVt C .1 � �2/EWMATVt�1

; 0 < �2 � 1 : (9)

Analogous to the derivation of the arcsine transformed EWMA-M chart, we can
construct the new EWMA-V chart as follows. Define

UCL2 D sin�1
�p

pv0

�C L2

s
�2

2n2.2 � �2/
; (10)

CL2 D sin�1
�p

pv0

�
; (11)

LCL2 D sin�1
�p

pv0

�� L2

s
�2

2n2.2 � �2/
; (12)

and plot EWMATVt
. If any EWMATVt

� UCL2 or EWMATVt
� LCL2, an out-of-

control signal is issued. Here again, the two parameters, L2 and �2, are chosen
to yield the desired in-control ARL (ARLTV 0 � 370) using the Markov chain
approach.
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Table 2 The ARLTV 1

of the EWMA-V chart
when pv0 D 0:3

pv1

0:5n2 0.2 0.4 0.6 0.8

4 41.9 50.5 7.0 3.4

5 33.7 40.8 6.0 3.0

6 28.2 34.2 5.2 2.7

7 24.2 29.4 4.7 2.5

8 21.3 25.8 4.3 2.3

9 19.0 23.0 4.0 2.2

10 17.2 20.7 3.7 2.1

11 15.7 18.9 3.5 2.0

12 14.5 17.4 3.3 2.0

13 13.4 16.1 3.2 1.9

14 12.6 15.1 3.1 1.8

15 11.8 14.1 2.9 1.8

3.2 The In-Control and Out-of-Control Average Run Lengths
of the EWMA-V Chart

The ARLTV 0 of the new EWMA-V chart is a function of (n2, L2, �2). Adopting
the in-control process proportion pv0 D 0:3, ARLTV 0 � 370 with �2 D 0:2 and
L2 D 2:86, the out-of-control ARL, ARLTV 1 , of the EWMA-V chart is listed for
0:5n2 D 4.1/15 and pv1 D 0:2.0:2/0:8 in Table 2. From Table 2, we found that
ARLTV 1 decreases when the out-of-control value of pv1 is far away from the in-
control value of pv0, and when n2 increases.

4 Performance Measurement of Using the EWMA-V Chart
and the EWMA-M Chart Simultaneously

Use of both the EWMA-V Chart and EWMA-M Chart permits monitoring of the
process variance and mean simultaneously. We will use the ARL to measure the out-
of-control detection performance of using both the EWMA-V Chart and EWMA-M
Chart.

4.1 The In-Control Average Run Lengths of the EWMA-V
Chart and the EWMA-M Chart

In a production process, we take a sample of size n1 C n2, the first n1 observations
are used to calculate the statistic EWMATM , then the remaining n2 observations are
taken to calculate the statistic EWMATV . The statistics EWMATM and EWMATV are
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independent since the two groups of observations are independent. The in-control
overall ARL, ARL0, of the newly proposed charts is well approximated as follows
(see Hawkins 1992),

ARL0 D 1

1
ARLTM0

C 1
ARLTV 0

�
�

1
ARLTM0

1
ARLTV 0

�

� 1
1

ARLTM0
C 1

ARLTV 0

: (13)

The ARL0 of using both the EWMA-M Chart and EWMA-V Chart with any
combinations of (n1, n2) and (pm0, pv0) are all approximately 185 because of

ARL0 � 1
1

ARLTM0
C 1

ARLTV 0

D 1
1

370
C 1

370

:

Usually, the most efficient way of using a combined charting procedure is to use all
the observations for both the mean and variance charts but this was not considered
in our scheme. The reason is that the two monitoring statistics EWMA-V and
EWMA-M are dependent if all the observations are used, and this will complicate
the calculation of the overall ARLs of the two proposed control charts. Of course,
we may use simulation to estimate the overall ARLs.

4.2 The Out-of-Control Average Run Lengths of the EWMA-V
Chart and the EWMA-M Chart

When the process is out of control due to a shift in the process mean, �, the
process proportion becomes pm1 (¤ pm0). For an out-of-control process whose
variance �2 has changed, the process proportion becomes pv1 (¤ pv0). The out-
of-control overall ARL, ARL1, of using the EWMA-V Chart and EWMA-M Chart
simultaneously could be calculated approximately using

ARL1 � 1
1

ARLTM1
C 1

ARLTV 1

: (14)

The ARL1s of using both the EWMA-M Chart and EWMA-V Chart with the
combinations of n1 D 8.2/24, 0:5n2 D 4.1/12, pv0 D 0:1, pm0 D 0:5, pv1 D 0:2,
and pm1 D 0:25.0:05/0:45 are listed in Table 3. In Table 3, we observe that the
ARL1 changes inversely with n1 and n2, and the ARL1 decreases when pm1 is
far away from pm0 and/or pv1 is far away from pv0. The results are much more
reasonable than those corresponding to use of both the V Chart and M Chart.
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Table 3 The ARL1 of the
EWMA-V and EWMA-M
charts when pv0 D 0:1,
pm0 D 0:5, and pv1 D 0:2

pm1

0:5n2 n1 0.25 0.30 0.35 0.40 0.45

4 8 6.8 8.4 12.0 19.0 26.0

5 10 5.9 7.4 10.4 15.9 21.8

6 12 5.1 6.6 9.0 13.4 18.1

7 14 4.9 5.8 7.7 11.5 15.3

8 16 4.3 5.6 7.2 8.0 14.4

9 18 4.1 5.0 6.5 9.4 12.6

10 20 4.0 4.8 6.0 8.7 11.6

11 22 3.4 4.3 5.7 8.0 10.7

12 24 3.3 4.1 5.2 7.4 9.7

5 When the Population Mean and Variance Are Unknown

When the in-control process mean, �, and the process variance, �2, are unknown,
and hence the in-control process proportions, pm0 and pv0, are unknown, we can
use the following two preliminary independent sample data sets

Xt;1; Xt;2; : : : ; Xt;n1 ; t D 1; 2; : : : ; k :

Xt;n1C1; Xt;n1C2; : : : ; Xt;n1Cn2 ; t D 1; 2; : : : ; k :

from k sampling periods, each with an even number of observations, n1 and n2, to
estimate them (see, e.g., Montgomery 2009), i.e.

O� D NNx D
Pk

tD1

Pn1

j D1 xt;j

kn1

; O� D
NS

c4

D
Pk

tD1 St

c4k
;

where

Opm0 D
Pk

tD1
Mt

n1

k
; Opv0 D

Pk
tD1

Vt

0:5n2

k
; St D

vuut
Pn1Cn2

j Dn1C1

�
Xt;j � NXt

�2
n2 � 1

; t D 1; : : : ; k ;

c4 D
�

2

n2 � 1

�0:5
� .0:5n2/

�
�
0:5.n2 � 1/

� ; and NS D
Pk

tD1 St

k
:

The EWMA-V and EWMA-M Charts are thus constructed using these estimated
values of pm0 and pv0. The statistics EWMATM and EWMATV corresponding to the
samples of sizes n1 and n2 are plotted on the resulting EWMA-V and EWMA-M
Charts simultaneously. If no points fall outside their control limits, then we would
deem the process to be in-control.
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6 Example

We will use an example of service time from Yang et al. (2012) to illustrate the use
of the new EWMA-V and EWMA-M Charts. Service time is an important quality
characteristic in the banking industry. To measure the efficiency in the service
system of a bank branch, the in-control sampling service times (unit: minutes) is
measured from twenty counters every day for 15 days. That is, fifteen samples of
size n1 C n2 D 20, where n1 D n2 D 10 are available. This in-control data has
been analyzed assuming a non-normal distribution. For each sample, the first ten
observations illustrated in Table 4 are used to calculate the EWMATM statistic and
the last ten observations illustrated in Table 5 are used to calculate the EWMATV

statistic.
To construct the EWMA-V and EWMA-M charts, the variance and mean of the

service time are estimated by . NS=c4/
2 and NNx using the fifteen samples in Tables 5

and 4, respectively. The estimate of the variance is O�2 D . NS=c4/
2 D 30:159

and the estimate of the mean is O� D NNx D 5:77. For each sample in Table 5,
the monitoring statistic EWMATV is calculated. For each sample in Table 4, the
monitoring statistic EWMATM is calculated. Hence, the estimates of proportions

.pm0; pv0/ are ( Opm0 D
P15

tD1 Mt =10

15
D 0:39, Opv0 D

P15
tD1 Vt =5

15
D 0:24), where

Mt D Total number of (Yj > 5:77) and j D 1; 2; : : : ; 10, Vt D Total number
of (Y �

j > 30:159) and j D 11; 12; : : : ; 20. The EWMA-V and EWMA-M Charts
with �1 D �2 D 0:2 are constructed as follows based on the fifteen in-control
samples, respectively.

Table 4 The service times from the first ten counters in a bank branch

t X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Mt EWMATMt

1 0.88 0.78 5.06 5.45 2.93 6.11 11.59 1.20 0.89 3.21 2 0.63

2 3.82 13.4 5.16 3.20 32.27 3.68 3.14 1.58 2.72 7.71 3 0.62

3 1.40 3.89 10.88 30.85 0.54 8.40 5.10 2.63 9.17 3.94 4 0.63

4 16.8 8.77 8.36 3.55 7.76 1.81 1.11 5.91 8.26 7.19 7 0.71

5 0.24 9.57 0.66 1.15 2.34 0.57 8.94 5.54 11.69 6.58 4 0.70

6 4.21 8.73 11.44 2.89 19.49 1.20 8.01 6.19 7.48 0.07 6 0.74

7 15.08 7.43 4.31 6.14 10.37 2.33 1.97 1.08 4.27 14.08 5 0.74

8 13.89 0.30 3.21 11.32 9.90 4.39 10.5 1.70 10.74 1.46 5 0.76

9 0.03 12.76 2.41 7.41 1.67 3.70 4.31 2.45 3.57 3.33 2 0.70

10 12.89 17.96 2.78 3.21 1.12 12.61 4.23 6.18 2.33 6.92 5 0.71

11 7.71 1.05 1.11 0.22 3.53 0.81 0.41 3.73 0.08 2.55 1 0.64

12 5.81 6.29 3.46 2.66 4.02 10.95 1.59 5.58 0.55 4.10 3 0.62

13 2.89 1.61 1.30 2.58 18.65 10.77 18.23 3.13 3.38 6.34 4 0.64

14 1.36 1.92 0.12 11.08 8.85 3.99 4.32 1.71 1.77 1.94 2 0.60

15 21.52 0.63 8.54 3.37 6.94 3.44 3.37 6.37 1.28 12.83 5 0.64
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Table 5 The service times from the last ten counters in a bank branch

t X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 Vt EWMATVt

1 3.82 6.29 10.88 30.85 9.9 3.99 1.59 1.71 8.26 4.1 1 0.5

2 0.24 12.76 11.44 3.2 3.53 0.57 18.23 2.45 2.72 6.92 3 0.58

3 3.82 7.43 0.12 3.37 1.12 12.61 1.59 1.08 0.89 0.07 1 0.56

4 13.89 3.89 5.16 11.32 4.02 0.57 8.01 6.19 1.77 6.58 1 0.54

5 5.81 12.76 2.41 1.15 3.53 0.81 11.59 5.91 4.27 3.33 0 0.43

6 12.89 8.73 10.88 2.89 18.65 10.95 0.41 3.13 4.27 7.71 1 0.44

7 2.89 0.63 0.12 0.22 4.02 10.95 8.01 1.08 10.74 4.1 0 0.35

8 16.8 1.05 1.3 3.2 2.34 0.81 4.32 3.13 0.08 1.46 1 0.37

9 4.21 17.96 5.06 0.22 4.02 3.99 8.01 5.91 0.55 3.33 1 0.39

10 12.89 8.77 11.44 7.41 1.12 1.81 4.32 5.58 0.89 14.08 1 0.41

11 0.88 8.77 5.06 3.55 8.85 10.95 18.23 5.54 2.33 6.58 2 0.46

12 7.71 7.43 0.12 2.58 1.12 2.33 4.23 2.63 4.27 3.33 0 0.37

13 7.71 9.57 0.12 30.85 7.76 1.81 3.14 1.71 2.72 14.08 2 0.43

14 2.89 1.05 2.41 11.32 32.27 8.4 1.97 2.45 11.69 12.83 2 0.48

15 1.36 0.63 3.46 11.32 0.54 10.95 4.23 2.45 2.33 6.34 2 0.52

The EWMA-V Chart:

UCL2 D 0:725 ; LCL2 D 0:299 :

The EWMA-M Chart:

UCL1 D 0:85 ; LCL1 D 0:47 :

The monitoring statistics EWMA-V and EWMA-M are calculated (see Tables 4
and 5). The EWMA-V and EWMA-M Charts show no signals (see Fig. 1a, b).

For comparison, we constructed the corresponding Shewhart standard deviation
and mean (S - NX) charts, EWMA-S and EWMA- NX charts, and transformed S and
NX charts by applying X0:278 transformation (see Montgomery 2009), respectively.

The Shewhart S - NX charts are constructed with bounds as follows:

UCLS D 9:66 ; LCLS D 1:597 ; UCL NX D 10:98 ; LCL NX D 0:55 :

The Shewhart S - NX charts also show no signals (see Fig. 1c, d). The EWMA-S and
EWMA- NX charts are constructed with bounds as follows:

UCLEWMA-S D 7:495 ; LCLEWMA-S D 2:485 ;

UCLEWMA- NX D 11:02 ; LCLEWMA- NX D 0:53 :
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Fig. 1 First 15 control chart points. (a) The EWMA-V chart. (b) The EWMA-M chart.
(c) Shewhart S chart. (d) Shewhart NX chart. (e) The EWMA-S chart. (f) The EWMA- NX chart.
(g) The transformed Shewhart S chart. (h) The transformed Shewhart NX chart
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Fig. 2 Next 10 control chart points. (a) The EWMA-V chart. (b) The EWMA-M chart.
(c) Shewhart S chart. (d) Shewhart NX chart. (e) The EWMA-S chart. (f) The EWMA- NX chart.
(g) The transformed Shewhart S chart. (h) The transformed Shewhart NX chart
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The EWMA-S and EWMA- NX charts also show no signals (see Fig. 1e, f). The
transformed S and NX charts are constructed with bounds as follows:

UCLTS D 0:732 ; LCLTS D 0:121 ; UCLT NX D 1:77 ; LCLT NX D 1:08 :

The transformed S chart shows no signal but the transformed NX chart shows a false
signal (see Fig. 1g, h).

A data set consisting of ten samples of ten service times from an improved new
automatic service system of the bank branch was collected and shown in Fig. 2. The
service times should be reduced because of the improved new automatic service
system. The new service times are regarded as out-of-control data set. The new
proposed EWMA-V and EWMA-M Charts are used to monitor the new service
times to illustrate their out-of-control detection ability

The EWMA-V and EWMA-M Charts detected out-of-control signals from the
third sample and the second sample onward, respectively (samples 3–10 on EWMA-
V Chart and samples 2–10 on EWMA-M Chart) (see Fig. 2a, b). That is, the
variance and mean of the new service times are significantly reduced because of
the improved new automatic service system. However, the corresponding Shewhart
S - NX charts produced only one true out-of-control signal (sample 9 on S chart) (see
Fig. 2c, d). The EWMA-S and EWMA- NX charts produced six true out-of-control
signals (samples 4–10 on EWMA- NX chart) (see Fig. 2e, f), and transformed S and
NX charts produced two true out-of-control signals (samples 2–3 on transformed NX

chart) (see Fig. 2g, h).
To construct the Shewhart S - NX charts, EWMA-S and EWMA- NX charts and

transformed S and NX charts one requires the normality assumption but this is not the
case for the EWMA-V and EWMA-M Charts. In this example, the EWMA-V and
EWMA-M charts detected most of the out-of-control signals. The New EWMA-
V and EWMA-M Charts showed better detection ability than the existing charts in
monitoring and detecting process variance and mean shifts. The new EWMA-V and
EWMA-M Charts are thus recommended.

7 Conclusions

In this paper, we propose using both the EWMA-M and EWMA-V Charts, based
on two simple independent statistics to monitor the mean and variance shifts in
the process simultaneously when the distribution of a quality characteristic is not
known or is not believed to be normal. A numerical example of service times from
a bank branch with a right skewed distribution illustrated the application of the new
EWMA-M and EWMA-V Charts which were compared with some existing charts.
The proposed new EWMA-M and EWMA-V Charts showed better detection ability
than the existing charts in monitoring and detecting both the process mean and
variance shifts. The new EWMA-M and EWMA-V Charts are thus recommended.



148 S.-F. Yang and B.C. Arnold

The M -V charts have the advantage of simplicity, but this is counter weighed by
some anomalies in their performance due to the discrete nature of the monitoring
variables. In an analysis based on two data sets, the EWMA-M and EWMA-
V charts appear to have good performance. Knoth and Morais (2013) deal with
what they termed an ARL-unbiased chart. We may consider ARL-unbiased EWMA
charts based on non-transformed statistics in a future study.
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Comparison of Phase II Control Charts Based
on Variable Selection Methods

Giovanna Capizzi and Guido Masarotto

Abstract In recent years, control charts based on variable selection (VS) algo-
rithms have been suggested for monitoring multivariate data. These charts share
the common idea that process faults usually affect a small fraction of the monitored
quality characteristics. Thus, VS methods can be used to identify the subset of the
variables for which the shift may have occurred. However, the suggested VS-based
control charts differ in many aspects such as the particular VS algorithm and the type
of control statistic. In this paper, we compare VS-based control charts in various
out-of-control scenarios characterizing modern manufacturing environments such
as high-dimensional data, profile, and multistage process monitoring. The main aim
of this paper is to provide practical guidelines for choosing a suitable VS-based
monitoring scheme.

Keywords Generalized least squares • LAR • LASSO • Multivariate EWMA

1 Introduction

Nowadays, the performance of modern processes depends on several related
quality characteristics. The statistical monitoring of “high-dimensional” processes
is known as multivariate statistical process control (MSPC, see Bersimis et al.
2007, for a comprehensive review of the MSPC literature). A critical task for
an MSPC control scheme is assessing whether the multidimensional process is
in-control (IC) or not. Although it is unlikely that all the quality characteristics
shift simultaneously, it is more common that only a subset of variables experiences
abnormal changes. Thus, it could be more efficient to monitor only the potential
out-of-control (OC) variables, which, however, are not known in advance. Thus,
recent developments in the MSPC framework propose using variable selection
(VS) algorithms to identify the suspected variables and then charting only these
characteristics to test whether the multidimensional process is in-control or not
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(see Wang and Jiang 2009; Zou and Qiu 2009; Zou et al. 2010; Capizzi and
Masarotto 2011; Jiang et al. 2012). These VS-based approaches seem attractive
since they offer a very satisfactory performance in OC scenarios involving a shift in
one, two,. . . , all the monitored quality characteristics. They are also coupled with
diagnostic tools to accurately identify the variables responsible for the change.

These recent proposals combine different multivariate control charts with dif-
ferent VS procedures. A “forward” selection algorithm (FVS) has been combined
with a Shewhart-type and a multivariate EWMA (MEWMA) by Wang and Jiang
(2009) and Jiang et al. (2012), respectively. Other VS algorithms such as Least
Absolute Shrinkage and Selection Operator (LASSO, see Tibshirani 1996) and
Least Angle Regression (LAR, see Efron et al. 2004) have been proposed combined
with an MEWMA-based control chart, by Zou and Qiu (2009), Zou et al. (2010)
and Capizzi and Masarotto (2011), respectively. The suggested monitoring schemes
differ not only in the VS algorithm but also in other aspects. In particular, the
control charts based on stepwise regression assume that the number of variables
that can be potentially OC is fixed a priori; this condition has been relaxed for the
LASSO- and LAR-based schemes (LEWMA and LAR-EWMA, hereafter). Indeed,
these control charts assume that any, proper or improper, subset of the monitored
variables can potentially shift. Further, LEWMA and LAR-EWMA are based on
two slightly different control statistics. In addition, LAR-EWMA is developed not
only for testing the status of the process mean but also for detecting an increase in
the total variability.

To provide some guidelines on how to choose between different VS-based
multivariate control charts and give some suggestions for further research, we here
compare and discuss some VS-based control charts recently proposed in the SPC
literature. For a more objective comparison, we use for all the investigated control
charts the general regression model introduced in Capizzi and Masarotto (2011) for
the LAR-EWMA. Indeed, this more general regression framework allows to handle
a wide a variety of multivariate scenarios not only involving shifts in the component
of a multivariate mean vector but also those related to changes in a profile or in a
multistage process.

The paper is organized as follows. Section 2 briefly describes the procedures
based on the variable selection algorithms. Section 3 presents the main results
concerning comparisons, in terms of average run length (ARL), between some
control schemes based on different VS-based algorithms. Details on the multivariate
OC scenarios, discussed in the comparisons, are given in the Appendix. Concluding
remarks are given in Sect. 4.
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2 Statistical Monitoring Based on Variable Selection
Algorithms

2.1 Generalities

Assume that at each time t , t D 1; 2; : : :, independent observations on y t , an n � 1

vector of quality characteristics, are available, and consider the following Gaussian
change-point model

y t �
�

Nn.�; ˙ / if t < 	 (in-control)
Nn.� C ı; ˝/ if t � 	 (out-of-control)

(1)

that is, at 	 , an unknown instant of time, the mean vector and the covariance matrix
shift leading the process to an OC state. Further, we suppose that the IC mean vector
� and the IC covariance matrix ˙ are known.

Concerning the OC mean vector, we assume that, at least approximately, the
mean shift ı takes the form

ı D F ˇ; (2)

where ˇ is a p � 1 vector of unknown parameters and F a suitable n � p matrix of
known constants. Thus, the mean vector may shift along any vector in the subspace
spanned by the columns of F , allowing for a multitude of potential shift directions.
As shown in Capizzi and Masarotto (2011), formulation (2) is sufficiently flexible
to encompass a wide variety of change-point scenarios. Further, suppose there is a
practical interest only in detecting an increase in the total dispersion and assume
that ˝ � ˙ is a positive definite matrix.

Suppose process observations are accumulated in the following MEWMA

zt D .1 � �/zt�1 C �.y t � �/ (3)

with z0 D 0n; 0 < � � 1. Assuming the following (approximated) linear model

zt D F ˇ C at ;

with at � Nn .0n; �=.1 � �/˙ /, the stability of the process mean can be checked
by testing the hypothesis system

�
H0 W ˇ D 0p;

H1 W ˇ ¤ 0p:
(4)

Unfortunately, the standard test, described in any regression textbook, for the
hypothesis system (4) can show a very low sensitivity when only a few compo-
nents of ˇ effectively shift, and a much more efficient approach should consider
alternative hypothesis systems on reduced subsets of the parameters.
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A promising solution consists of using a suitable VS algorithm for determining
subsets, having different sizes, of suspected variables, i.e., subsets of columns of
F corresponding to nonzero coefficients. In particular, for k D 1; : : : ; p, denote
with Jk D fjk;1; : : : ; jk;kg the indices of the selected predictors. Since the set
of coefficients fˇjk;1

; : : : ; ˇjk;k
g correspond to a plausible subset of possible out-

of-control parameters, the VS-based control statistics, for k D 1; : : : ; p, test the
following hypothesis systems:

(
H 0

0 W ˇj D 0 for j D 1; : : : ; p;

H 0
1;k W ˇj ¤ 0 if j 2 Jk and ˇj D 0 if j 62 Jk:

(5)

2.2 Three Different Approaches

Three distinct methods have been suggested for testing the hypothesis system (5).
In Wang and Jiang (2009) and Jiang et al. (2012), users are requested to choose

in advance a suitable value for k. Then, for t D 1; 2; : : :, a standard forward search
algorithm is used to select Jk , and an OC alarm is signaled when the following
control statistic

St;k D Ǒ 0
t;kF 0˙ �1F Ǒ

t;k (6)

is greater than the control limit chosen for giving a desired IC performance. Here,
Ǒ

t;k denotes the GLS estimate of ˇ obtained under H 0
1;k , i.e., constraining to zero

the coefficients of the predictors not in Jk .
In Zou and Qiu (2009), J1; : : : ; Jp are determined using the LASSO algorithm.

Then, for k D 1; : : : ; p, the authors suggest to compute the control statistic

Vt;k D .z0
t ˙

�1F Q̌
t;k/2

Q̌ 0
t;kF 0˙ �1F Q̌

t;k

; (7)

where Q̌
t;k denotes the LASSO estimator of ˇ obtained under H 0

1;k . An OC alarm is
given when the overall control statistic

Wt D max
kD1;:::;p

Vt;k � EŒVt;k�p
VarŒVt;k�

(8)

is greater than a suitable control limit. In (8), the mean and standard deviation of (7)
are computed under the null hypothesis.

Alternatively, Capizzi and Masarotto (2011) suggest selecting J1; : : : ; Jk using
the LAR algorithm and, for each k D 1; : : : ; p, to compute the statistic St;k. Since
it is important to detect not only changes in the process mean but also increases in
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the dispersion, Capizzi and Masarotto (2011) also consider the additional alternative
hypothesis

H 0
1;pC1 W ˇ D 0p and Ef.y t � �/0˙ �1.y t � �/g > n;

and the related one-sided EWMA statistic

St;pC1 D max

 
1; .1 � �/S

.1/
t�1;pC1 C �

.y t � �/0˙ �1.y t � �/

n

!
; (9)

with S0;pC1 D 1. Then, the LAR-based EWMA, for jointly monitoring the process
mean and dispersion, is given by the aggregation of the p C 1 statistics

Mt D max
kD1;:::;pC1

St;k � EŒSt;k�p
VarŒSt;k�

; (10)

where St;k is given by (6) for k D 1; : : : ; p, and by (9) for k D pC1. The combined
control statistic (10) triggers an alarm when it exceeds a suitable control limit.

2.3 First Recommendations and Open Questions

As shown in Zou and Qiu (2009), Capizzi and Masarotto (2011), and Jiang et al.
(2012), control charts like Wt and Mt offer a good protection against shifts occurring
in one, two,. . . , all components. Although the resulting scheme is not necessarily the
best for detecting a shift occurring in a fixed number of components, it is usually
close to the best. Conversely, control charts using a fixed value of k, such as those
proposed by Wang and Jiang (2009) and Jiang et al. (2012), offer the best protection
when shifts involve exactly k variables and unavoidably inferior protection when
a shifts occur in a number of components different from the fixed value. Further,
statistics such as Wt and Mt do not need an a priori choice of k. Thus, we suggest
using an aggregated control statistic.

In addition, we strongly recommend including a control statistic, like St;pC1,
designed for detecting a change in the dispersion. Indeed, joint monitoring of the
process mean and dispersion is relevant per se but also provides some level of
robustness against modeling errors and unforeseen behaviors. Further, as shown
in the univariate case by Reynolds and Stoumbos (2005, 2006), the inclusion of
a variance control statistic can be helpful for efficiently detecting large changes in
the mean.

In the following, studying by simulation the ARL performance of VS-based
control charts, we address the following additional issues: (1) Which variable
selection algorithm should be used? (2) Which is better to use for monitoring, the
elementary control statistic St;k or Vt;k?
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3 A Simulation Study

To address some of the issues discussed in the previous section, we compare five
VS-based monitoring schemes. As recommended, all the schemes are based on a
combination, similar to Mt , of p elementary control statistics used for detecting a
mean shift and of the control statistic St;pC1, given by (9), for detecting increases in
the total variation.

Details of the five control charts are given in Table 1. Note that, when a forward
stepwise search is used, we have, for each k, that St;k D Vt;k . Thus, we present only
one scheme for the forward VS algorithm. However, the control statistics Vt;k , given
in (7), are here based on the LASSO- and LAR-based estimators of the vector ˇ.
Observe that in (6) and (7), at each stage k, the nonzero elements obtained via these
three different VS algorithms are not necessarily the same.

Concerning the choice of the smoothing constant, as suggested in the literature
(Lucas and Saccucci 1990; Prabhu and Runger 1997; Zou and Qiu 2009; Capizzi
and Masarotto 2011; Jiang et al. 2012), a reasonable choice for normally distributed
observations is between 0.1 and 0.3. The performance of the different VS-based
schemes has been investigated for different values of � and 	 . Because results are
comparable for all the choices of these tuning constants, in the following results
will be referred only to � D 0:1 and 	 D 1. The five VS-based control charts
are compared in terms of out-of-control ARL evaluated using 500,000 Monte Carlo
replications. The control limits, giving an in-control ARL equal to 500, have been
computed using a stochastic approximation algorithm (Ruppert 1991; Polyak and
Juditsky 1992). Within a reasonable number of iterations, the algorithm estimates
the control limits with a given level of accuracy. Table 1 lists the estimates of
the control limits for the five VS-based control charts. In addition, the mean and
standard deviation of the elementary statistics St;k and Vt;k , for k D 1; : : : ; p C 1,
were computed by simulation.

Suitable choices of the matrix F lead to several change-point models, such as
the “unstructured” scenario, when changes directly involve the components of the
multivariate mean vector, and several “structured” scenarios, such those involving
changes in a profile, that is, in the relationship between a response variable and

Table 1 Five VS-based control charts

FORWARD LASSO/S LASSO/V LAR/S LAR/V

VS algorithm FORWARD LASSO LASSO LAR LAR

Elementary statistics St;k St;k Vt;k St;k Vt;k

Critical values

Unstructured 4.766477 4.578106 4.680325 4.722629 4.715809

Linear profile 5.033247 5.201960 5.011673 4.898843 5.061300

Cubic profile 4.877482 5.140879 4.889752 4.821646 4.870619

Nonparametric profile 5.268651 5.602346 5.546736 5.112253 5.156662

Multistage process 4.677853 4.603569 4.758084 4.726339 4.915792
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one or more explanatory variables, and in a multistage process. Details for the
components of the vector ˇ that are supposed to change are listed, for each change-
point model, in the Appendix. In every case, several possible mean shifts are
considered, including shifts in a single parameter, equal and different shifts in a pair
of parameters, shifts of the same size in either even or odd components and shifts in
variance. Here, we briefly describe the scenarios examined in the simulation study.

3.1 Unstructured

In this case p D n, the matrix F reduces to the identity matrix F D In and the i -th
element of ˇ directly points to a mean shift of the i -th quality characteristic, i.e.,
ıi D ˇi . Following the example in Zou and Qiu (2009), we consider p D n D 15

and assume that the IC distribution is Nn.0n; ˙ / with ˙ D .�ij / D .0:75ji�j j/ for
i; j D 1; 2; : : : ; n and the OC distribution Nn.ˇ; !2˙ / with ! > 1.

3.2 Linear and Cubic Profiles

Under this scenario, we assume that

yt;i D
(

�t;i if t < 	

ˇ1 C ˇ2xi C � � � C ˇpx
p�1
i C �t;i if t � 	

with xi D .2i � n � 1/=.n � 1/, for i D 1; : : : ; n. Here, �t;i are independent,
zero-mean, Gaussian random variables, with the IC and OC variance equal to one
and !2 > 1, respectively. Thus, in the described scenario, F D .fi;j / D .x

j �1
i /,

˙ D In and ˝ D !2In. In particular, we consider linear (p D 2) and cubic
(p D 4) profiles with n D 4 and n D 8 observations, respectively.

3.3 Nonparametric Profiles

To investigate the performance of the VS-based control chart for nonparametric
monitoring of non-linear profiles, we use the same IC model considered by Zou
et al. (2008), yt;i D 1 � exp.�xi / C �t;i ; where xi D .i � 0:5/=20, i D 1; : : : ; 20,
and the following three OC models:

I. yt;i D 1 � ˇ1 exp.�x
ˇ2

i / C �ti ;
II. yt;i D 1 � exp.�xt;i / C ˇ1 cos.ˇ2�.xt;i � 0:5// C �t;i ;

III. yt;i D 1 � exp.�xt;i � ˇ1 max.0; .xt;i � ˇ2/=.1 � ˇ2//2/ C �t;i .
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Here, �t;i are independent, zero-mean, Gaussian random variables, with the IC and
OC variance equal to one and !2 > 1, respectively. In this case, we set F equal
to the basis matrix of a cubic spline with four equispaced knots within the interval
Œ0; 1�.

3.4 Multistage Processes

We consider an n-state process representable by the linear state-space model

�
yt;i D �i C ci xt;i C vt;i

xt;i D di xt;i�1 C ˇi Ift�	g C wt;i

.i D 1; : : : ; n/

where vt;i and wt;i are independent normal random variables with zero mean. The n

elements of the ˇ D .ˇi / vector define the magnitude of the shifts and the stages at
which the shifts occur. It is easy to show that this model is a particular case of (1).
See Capizzi and Masarotto (2011) for the details and, in particular, for the structure
of the F and ˙ matrices. In the simulation, we fix the number of stages to n D 10

and investigate the performance for different shift locations, occurring in one, two,
five and all stages assuming that �i D 0, ci D di D var.wt;i / D var.vt;i / D 1 for
every i .

3.5 Results

Results are summarized in Fig. 1, which shows the following percent relative
differences

100 � ARLrs � MARLr

MARLr

; s D 1; : : : ; 5; (11)

i.e., the percent relative differences between ARLrs, the OC ARL of s-th control
chart in the r-th OC scenario, and MARLr , the mean of the five out-of-control ARL
values, one for each control chart, obtained for the r-th OC scenario. Observe that
the number of the OC scenarios is different for the different cases. In particular,
r D 1; : : : ; 18 for the case of nonparametric and multistage process monitoring,
r D 1; : : : ; 23 for the monitoring of linear and cubic profiles and r D 1; : : : ; 30

in the unstructured case (see the Appendix for a detailed description of each OC
scenario).

A negative (positive) value of (11) can be interpreted as a quicker reaction
(slower) reaction of the s-th control chart to the r-th OC situation, when compared
to the other VS-based control charts.
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Fig. 1 Relative ARL differences of five VS-based control charts for several OC scenarios (see the
Appendix for labels in the x axis)
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Results show that, independently from the multivariate control charts, the
forward- and the LAR-based schemes show a similar behavior that seems to be quite
stable throughout all the different practical contexts. However, while LASSO shows
a substantially negligible advantage for some out-of-control situations, it can also
show a relatively large degradation for other applications, such as nonparametric
profile monitoring. Further, monitoring schemes based on the same VS algorithm
but on different elementary control statistics, i.e., on St;k or Vt;k , offer essentially
the same performance.

4 Conclusions

In this paper, we compared the performance of multivariate control charts based
on three different variable selection procedures. In particular, the compared mul-
tivariate control charts have been implemented for detecting many out-of-control
conditions, even involving increases in process variation, for several MSPC frame-
works. Results show that whereas control charts consisting of the aggregation
of several control statistics, such as those proposed by Zou and Qiu (2009) and
Capizzi and Masarotto (2011), behave quite similarly for different OC applications,
suggestions can be given to practitioners concerning the particular variable selection
procedure to use. As discussed before, the LASSO-based control charts can show
an unsatisfactory performance in detecting some particular OC situations. However,
the forward and LAR-based procedures can be considered substantially equivalent
in terms of OC ARL performance for the investigated practical applications. Thus,
from a practical point of view, multivariate control charts based on forward selection
could be more appealing to users since these charts are more intuitive and simpler
to implement.

Appendix

In the following, we provide details on the OC scenarios listed in the x axes of
Fig. 1. When only variables or stages with an even (odd) index are subject to a shift
of size ı, the OC scenario is indicated with either EvenŒı� or OddŒı�.

1. Unstructured model: 1 D .ˇ1 D 0:5/, 2 D .ˇ1 D 1/, 3 D .ˇ3 D 0:5/, 4 D
.ˇ3 D 1/, 5 D .ˇ1 D 0:5; ˇ2 D 0:25/, 6 D .ˇ1 D 0:5; ˇ2 D 0:5/, 7 D .ˇ1 D
0:5; ˇ2 D 0:75/, 8 D .ˇ1 D 0:5; ˇ3 D 0:25/ 9 D .ˇ1 D 0:5; ˇ3 D 0:5/, 10 D
.ˇ1 D 0:5; ˇ3 D 0:75/, 11 D .ˇ3 D 0:5; ˇ8 D 0:25/, 12 D .ˇ3 D 0:5; ˇ8 D
0:5/, 13 D .ˇ3 D 0:5; ˇ8 D 0:75/, 14 D ˇ1 D 0:5; ˇ2 D 0:25; ˇ3 D 0:25/,
15 D .ˇ1 D 0:25; ˇ2 D 0:25; ˇ3 D 0:5/, 16 D .ˇ2 D 0:5; ˇ3 D 0:25; ˇ8 D
0:25/, 17 D .ˇ2 D 0:25; ˇ3 D 0:25; ˇ8 D 0:5/, 18 D .ˇ7 D 0:5; ˇ8 D
0:25; ˇ9 D 0:5/, 19 D .ˇ7 D 0:25; ˇ8 D 0:75; ˇ9 D 0:5/, 20 D .ˇ6 D
0:5; ˇ8 D 0:25; ˇ10 D 0:5/, 21 D .ˇ6 D 0:25; ˇ8 D 0:75; ˇ10 D 0:5/,
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22 D .EvenŒ0:25�), 23 D .EvenŒ0:5�), 24 D .OddŒ0:25�), 25 D .EvenŒ0:5�),
26 D .EvenŒ0:5�, OddŒ0:25�), 27 D .OddŒ0:5�; EvenŒ0:25�), 28 D .! D 1:2/,
29 D .! D 1:5/, 30 D .! D 2/.

2. Linear profiles: 1 D .ˇ1 D 0:1/, 2 D .ˇ1 D 0:3/, 3 D .ˇ2 D 0:2/, 4 D
.ˇ2 D 0:5/, 5 D .ˇ3 D 0:2/, 6 D .ˇ3 D 0:5/, 7 D .ˇ1 D 0:1; ˇ2 D 0:1/,
8 D .ˇ1 D 0:4; ˇ2 D 0:2/ 9 D .ˇ1 D 0:4; ˇ2 D 0:6/, 10 D .ˇ1 D
0:6; ˇ2 D 0:6/, 11 D .ˇ1 D 0:1; ! D 1:2/, 12 D .ˇ1 D 0:3; ! D 1:2/,
13 D .ˇ1 D 1; ! D 1:2/, 14 D .ˇ2 D 0:1; ! D 1:2/, 15 D .ˇ2 D 0:4; ! D
1:2/, 16 D .ˇ1 D 1:2; ! D 1:2/, 17 D .ˇ1 D 0:1; ˇ2 D 0:1; ! D 1:2/,
18 D .ˇ1 D 0:4; ˇ2 D 0:2; ! D 1:2/, 19 D .ˇ1 D 0:4; ˇ2 D 0:6; ! D 1:2/,
20 D .ˇ1 D 0:6; ˇ2 D 0:6; ! D 1:2/, 21 D .! D 1:2/, 22 D .! D 1:5/,
23 D .! D 2/.

3. Cubic profiles: 1 D .ˇ1 D 0:1/, 2 D .ˇ1 D 0:3/, 3 D .ˇ1 D 1/, 4 D .ˇ2 D
0:2/, 5 D .ˇ2 D 0:4/, 6 D .ˇ2 D 1:2/, 7 D .ˇ4 D 0:2/, 8 D .ˇ4 D 0:5/,
9 D .ˇ1 D 0:1; ˇ2 D 0:1/, 10 D .ˇ1 D 0:1; ˇ3 D 0:2/ 11 D .ˇ1 D
0:1; ˇ4 D 0:2/, 12 D .ˇ2 D 0:2; ˇ3 D 0:2/, 13 D .ˇ2 D 0:4; ˇ4 D 0:2/,
14 D .ˇ3 D 0:5; ˇ4 D 0:5/, 15 D .ˇ1 D 0:1; ˇ2 D 0:1; ˇ3 D 0:1/,
16 D .ˇ1 D 0:1; ˇ3 D 0:2; ˇ4 D 0:1/, 17 D .ˇ2 D 0:1; ˇ3 D 0:3; ˇ4 D 0:2/,
18 D .ˇ1 D 0:1; ˇ2 D 0:1; ˇ3 D 0:1; ˇ4 D 0:1/, 19 D .ˇ1 D 0:1; ˇ2 D
0:2; ˇ3 D 0:1; ˇ4 D 0:2/, 20 D .ˇ1 D 0:2; ˇ2 D 0:1; ˇ3 D 0:2; ˇ4 D 0:1/,
21 D .! D 1:2/, 22 D .! D 1:5/, 23 D .! D 2/.

4. Non parametric profiles. The following OC scenarios are referred to possible
shifts in the regression coefficients of models I, II and III. 1 D .I; ˇ1 D
1:00; ˇ2 D 1:30/, 2 D .I; ˇ1 D 1:00; ˇ2 D 1:50/, 3 D .I; ˇ1 D 1:10; ˇ2 D
1:00/ 4 D .I; ˇ1 D 1:30; ˇ2 D 1:00/, 5 D .I; ˇ1 D 1:20; ˇ2 D 1:00; ! D
1:10/, 6 D .I; ˇ1 D 1:00; ˇ2 D 1:20; ! D 1:30/, 7 D .II; ˇ1 D 0:10; ˇ2 D
3:00/, 8 D .II; ˇ1 D 0:30; ˇ2 D 3:00/, 9 D .II; ˇ1 D 0:10; ˇ2 D 2:00/

10 D .II; ˇ1 D 0:30; ˇ2 D 2:00/, 11 D .II; ˇ1 D 0:20; ˇ2 D 4:00; ! D 1:10/,
12 D .II; ˇ1 D 0:20; ˇ2 D 4:00; ! D 1:30/ 13 D .III; ˇ1 D 2:00; ˇ2 D 0:90/,
14 D .III; ˇ1 D 4:00; ˇ2 D 0:90/, 15 D .III; ˇ1 D 2:00; ˇ2 D 0:75/, 16 D
.III; ˇ1 D 4:00; ˇ2 D 0:75/, 17 D .III; ˇ1 D 2:00; ˇ2 D 0:90; ! D 1:20/,
18 D .III; ˇ1 D 4:00; ˇ2 D 0:75; ! D 1:20/.

5. Multistage process. In the following, ˇj indicates the shift of size ˇ, occurring at
the j -th stage, j D 1; : : : ; 20. 1 D .ˇ1 D 0:75/, 2 D .ˇ5 D 0:75/, 3 D .ˇ10 D
0:75/, 4 D .ˇ1 D 1:5/, 5 D .ˇ5 D 1:5/, 6 D .ˇ10 D 1:5/, 7 D .ˇ2 D 0:6; ˇ8 D
0:6/, 8 D .ˇ4 D 0:6; ˇ5 D 0:6/, 9 D .ˇ2 D 1:2; ˇ8 D 1:2/, 10 D .ˇ4 D
1:2; ˇ5 D 1:2/, 11 D .ˇ2 D 1:8; ˇ8 D 1:8/, 12 D .ˇ4 D 1:8; ˇ5 D 1:8/,
13 D .ˇ1 D ˇ5 D ˇ10 D 0:2; ˇ3 D ˇ7 D 0:4/, 14 D .ˇ3 D ˇ5 D ˇ7 D
0:2; ˇ4 D ˇ6 D 0:4/, 15 D .ˇ1 D ˇ5 D ˇ10 D 0:6; ˇ3 D ˇ7 D 0:4/,
16 D .ˇ3 D ˇ5 D ˇ7 D 0:6; ˇ4 D ˇ6 D 0:4/, 17 D .EvenŒ0:1�, OddŒ0:2�),
18 D .EvenŒ0:5�, OddŒ0:25�).
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The Use of Inequalities of Camp-Meidell Type
in Nonparametric Statistical Process Monitoring

Rainer Göb and Kristina Lurz

Abstract A few authors have used the classical Camp-Meidell inequality for the
nonparametric analysis of statistical process monitoring. The following issues have
not received sufficient attention. (i) The use of moments of order higher than 2 in
the inequalities provides tighter bounds. (ii) The problem of estimating the moments
in the bounds, e.g., from a phase 1 sample, cannot be neglected. The present study
analyses both aspects (i) and (ii). Appropriate estimators, their properties, and the
effect of estimation on the properties of process monitoring charts are investigated.
In particular, the use of empirical Camp-Meidell bounds in quantile control charts
is studied.

Keywords Quantile bounds • Shewhart charts • Zero inflated data

1 Introduction

Historically, the mathematical theory of statistical process monitoring has strongly
been concentrating on the paradigm of normally distributed observations. Process
monitoring emerged from the manufacturing industries. However, the normality
assumption is far from being universally valid for data from manufacturing
processes as already noted by Shewhart (1931) in his seminal work on process
monitoring. The normal distribution is even less common in more recent targets of
process monitoring like service, finance, or logistics, see Pyzdek (1995) analysis, for
instance. The abundant use of the normality assumption in the process monitoring
literature seems to be disproportionate to the actual importance of the normal
distribution in field practice. Several authors have investigated the fallacious
effect of erroneous normality assumptions on the properties of process monitoring
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procedures, e.g., Burr (1967), Schilling and Nelson (1976), Yourstone and Zimmer
(1992), Spedding and Rawlings (1994), Samanta and Bhattacherjee (2004).
Distrust against the normality assumption has motivated two lines of research:
(1) the so-called parametric approach studies process monitoring procedures under
particular parametric distribution families other than the normal, whereas (2) the so-
called nonparametric approaches do not rely on particular distribution assumptions.

Early instances of the approach (1) are Ferrell’s (1958) and Morrison’s (1958)
studies on control charts under the lognormal distribution. Later, the topic of process
monitoring under specific distributions has generated a large number of literature
contributions. The Weibull distribution received particular interest, see the studies
by Johnson (1966), Nelson (1979), Ramalhoto and Morais (1998, 1999), Kanji
and Arif (2001), Zhang and Chen (2004), Erto and Pallotta (2007), Erto et al.
(2008), Guo and Wang (2012). Yang and Xie (2000) consider the exponential
distribution. Further studies on the lognormal distribution were provided by Joffe
and Sichel (1968), Kotz and Lovelace (1988), Cheng and Xie (2000), Areepong and
Sukparungsee (2010). González and Viles (2000, 2001) and Kantam and Sriram
(2001) consider the gamma distribution. Hardly any distribution seems to have
escaped the attention of interested authors: Subba and Kantam (2008) study the
double exponential distribution, Edgeman (1989) considers the inverse Gaussian,
Kantam et al. (2006) assume the log-logistic distribution, Betul and Yaziki (2006)
discuss control charts for the Burr distribution.

The practical usefulness of process monitoring procedures tailored for particular
distribution classes must be doubted. Such procedures provide a benefit only if the
specific distribution type is correctly identified. The latter is often impossible in
practice, due to a lack of statistical expertise, or due to small sample sizes. Such
problems are avoided by nonparametric or distribution-free monitoring schemes.
These do not require to identify a particular distribution family but only some basic
properties of the underlying distribution, e.g., skewed or symmetric. Various ideas
have come up to avoid the use of a particular reference distribution in the design of
process monitoring procedures, see the partial survey by Chakraborti et al. (2001).
Basically, two lines of distribution-free inference can be distinguished: (i) inference
based on small online samples from the process, and (ii) inference from training
samples drawn under guaranteed in-control operation of the process, e.g., in phase I
of a control chart, see Woodall (2000). Most of the approaches of type (i) are based
on sign or rank statistics, see the studies by Bakir and Reynolds (1979), Hackl and
Ledolter (1992), Amin et al. (1995), Bakir (2004, 2006), Chakraborti and Eryilmaz
(2007). A large group of approaches of type (ii) use bootstrapping, see Leger et
al. (1992), Seppala et al. (1995), Liu and Tang (1996), Teyarachakul et al. (2007),
Chatterjee and Qiu (2009), and the discussion by Jones and Woodall (1998). Some
further heterogeneous approaches of type (ii) based on in-control training samples
are suggested by Park and Reynolds (1987), Hackl and Ledolter (1991), Willemain
and Runger (1996), Qiu and Li (2011). Winterbottom (1993), Chen (1998), Chan
and Cui (2003) consider p charts; Wu and Wang (2009) suggest control limits based
on the quantile expansion developed by Cornish and Fisher (1938). The parameters
of the expansion, namely the third and fourth standardised cumulant, have to be
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estimated from in-control reference samples. However, the referenced studies give
an oversimplified account of the underlying estimation tasks. In particular, the
problem of the high variance of the standardised cumulant estimators are ignored.

Stochastic inequalities, in particular Chebyshev’s (1867) and the inequality
established by Camp (1922) and Meidell (1922), have often been referenced to
evaluate and justify the use of simple 3-sigma control limits under arbitrary in-
control distributions, see Shewhart (1931), Florac and Carleton (1999), Grant and
Leavenworth (1999), for instance. For the proper design of control limits, however,
Chebyshev’s inequality and the standard form of the Camp-Meidell inequality are
too unprecise. Apparently, the only closer analysis of the Camp-Meidell inequality
in the context of nonparametric statistical process control is due to Ion (2001) thesis.
However, higher order versions of the inequality remain unconsidered in this thesis.

The present study investigates the use of higher order Camp-Meidell inequalities
in the design of control charts. The Camp-Meidell inequality rigorously holds for
symmetric unimodal distributions only. In the nonparametric context, many studies
have been accounting for skewness, as a property which marks a clear difference
from the classical Gaussian paradigm, see the contributions by Choobineh and
Ballard (1987), Bai and Choi (1995), Wu (1996), Chan and Cui (2003), Chang
and Bai (2001), Derya and Canan (2012), for instance. Nevertheless, symmetric
distributions play an important role for process modeling. In particular, symmetric
distributions are often suitable models for measurement error, see the “Guide to the
Expression of Uncertainty in Measurement”, ISO (2008), or for financial returns.
In the class of unimodal symmetric distributions, the normal distribution can be an
inadequate model because of its light tails, see Haas and Pigorsch (2009). Most
of the classical unimodal symmetric distribution models like Laplace, logistic,
Student’s t have considerably higher probability mass on the extremes than the
normal distribution. The quantiles of the true underlying distribution are thus often
seriously underestimated from a normal distribution model. Control limits designed
for an in-control normal distribution will lead to a large number of false alarms.

The study also approaches the problem of point-inflated data, i.e., random
observations with a positive probability mass at some point of the real line. In
the case of symmetric unimodal distributions, the interesting case is a positive
probability mass occurring at the expectation �X of the considered random variable
X , so that X � �X is zero-inflated. Such data occur particularly in the context of
financial auditing where deviations of the true audit values from the stipulated book
values of inventories, debtor or creditor accounts in either direction are infrequent.

The study is organised in the following sections. Section 2 provides theoretical
quantile bounds of Camp-Meidell type. The estimation problems in the empirical
use of the Camp-Meidell quantile bounds are discussed by Sect. 3. Section 4 studies
an estimator for the Camp-Meidell quantile bounds. The usage of the empirical
bounds in the design of a Shewhart individual observation control chart is described
by Sect. 5. Section 6 discusses the achieved results and outlines remaining research
topics.
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2 The Camp-Meidell Inequality and Resulting Quantile
Bounds

The subsequent theorem 1 presents a version of the inequality established by Camp
(1922) and Meidell (1922) which is generalised in two respects: (i) it includes
distributions with a zero inflation at the mean, and (ii) it clearly describes the
type of distributions for which the upper bound of the inequality is exact. The
theorem considers mean-modal random variables X with finite central moments
with the following detailed properties: M1) there is a real a and independent random
variables I , X0 with X D a C IX0; M2) I has a binomial distribution Bi.1; 1 � q/

where 0 � q < 1; M3) X0 is absolutely continuous, EŒX0� D 0, and the density
fX0 is increasing on .�1I 0/ and decreasing .0I C1/; M4) X0 has finite central
moments. M1) through M4) imply: �X D EŒX� D a; the central moments
mX;s D EŒ.X � �X /s� D .1 � q/�X0;s are finite; for q > 0, the distribution
of X is inflated at its mean �X with probability mass P.X D �X / D q; the
conditional distribution of X under X ¤ �X is absolutely continuous with a density
fX increasing on .�1I �X / and decreasing on .�X I C1/. In particular, mean-
modality holds for symmetric unimodal random variables.

Theorem 1 (Two-Sided Camp-Meidell Inequality) Let X be a mean-modal ran-
dom variable with finite central moments mX;s D EŒ.X � �X /s�, see the above
definition in the introduction of Sect. 2. For 0 � p � 1, # > 0 let Yp;# be a
random variable with the following properties: (i) P.Yp;# D �X / D 1 � p, (ii)
P.Yp;# < �X / D p=2 D P.Yp;# > �X /, (iii) the conditional distribution of Yp;#

under Yp;# < �X is the rectangular distribution on the support Œ�X � # I �X �, i.e.,

P.Yp;# � yjYp;# < �X / D p

2

y � .�X � #/

#
for �X � # < y � �X ; (1)

(iv) the conditional distribution of Yp;# under Yp;# > �X is the rectangular
distribution on the support Œ�X I �X C #�, i.e.,

P.Yp;# � yjYp;# > �X / D p

2

�
1 � y � �X

#

�
for �X < y � �X C #: (2)

The CDF of Yp;# is symmetric about �X and satisfies

FYp;#
.y/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

p

2

y�.�X �#/

#
for �X � # < y � �X ;

1 � p

2
for y D �X ;

1 � p

2
C p

2

y��X

#
for �X � y � �X C #;

(3)

and we have �Yp;#
D �X . The following assertions hold for x > 0:
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(a) In the case x < ŒmX;2r .2r C 1/�1=.2r/ we have

mX;2r�
x 2rC1

2r

�2r
> 1 � x

ŒmX;2r .2r C 1/�1=.2r/
D

P.jYp0;#0 � �Yp0;#0
j � x/ � P.jX � �X j � x/;

(4)

where p0 D 1, #0 D ŒmX;2r .2r C 1/�1=.2r/. Then EŒY 2r
p0;#0

� D mX;2r .

(b) In the case x � ŒmX;2r .2r C 1/�1=.2r/ 2r
2rC1

we have

1 � x

ŒmX;2r .2r C 1/�1=.2r/
� mX;2r�

x 2rC1
2r

�2r
D

P.jYp0;#0 � �Yp0;#0
j � x/ � P.jX � �X j � x/

(5)

where

p0 D mX;2r .2r C 1/�
x 2rC1

2r

�2r
; #0 D x.2r C 1/

2r
; EŒY 2r

p0;#0
� D mX;2r :

A proof of Theorem 1 is provided by Göb and Lurz (2013a). Inverting the
inequalities stated by Theorem 1 provides the quantile bounds of the subsequent
theorem 2.

Theorem 2 (Camp-Meidell Quantile Bounds) Let X be a mean-modal random
variable X with finite central moments, see the above definition in the introduction
of Sect. 2. Let r > 0, 0 < ˛ < 1,

xC;r;˛ D

8
<̂
:̂

.1 � ˛/ŒmX;2r .2r C 1/�1=.2r/; if ˛ � 1
2rC1

;

�
mX;2r

˛

� 1
2r 2r

2rC1
D �X

� cX;2r

˛

� 1
2r 2r

2rC1
; if ˛ � 1

2rC1
:

For 0 � p � 1, # > 0 let Yp;# be defined as in Theorem 1. Then we have for
0 < ˛ < 1

P.jX � �X j � xC;r;˛/ � ˛ D P.jYp;# � �Yp;#
j � xC;˛/ (6)

where in the case ˛ � 1
2rC1

we have p D 1, # D ŒmX;2r .2r C1/�1=.2r/, and where in

the case ˛ � 1
2rC1

we have p D ˛.2r C 1/, # D ŒmX;2r=˛�1=.2r/. If the distribution
of X is symmetric around �X , we obtain by letting zC;r;X.�/ D �X C xC;2.1��/ for
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Fig. 1 Normal distribution
N.0; 1/, ˛ D 0:10

0 < � < 1 the inequality

zX .�/ � zC;r;X .�/ D
8
<̂
:̂

�X C .2� � 1/ŒmX;2r .2r C 1/�1=.2r/; if � � 4rC1
4rC2

;

�X C
�

mX;2r

2.1��/

� 1
2r 2r

2rC1
; if � � 4rC1

4rC2
;

(7)

where zX .�/ is the one-sided level � quantile defined by FX .zX .�// D �.

Figure 1 displays the CDF of the maximising variable Yp;# from Theorem 2 for
˛ D 0:1, i.e., � D 1 � ˛=2 D 0:95, 2r D 4, under the standard normal distribution
N.0; 1/. In this case, we have mX;2r D 3, � � 0:9 D .2r � 1/=.2r C 1/. The
distribution of Yp;# collects the weight p D ˛.2r C 1/ D 0:5 at �X D 0. The exact
N.0; 1/ quantile is zX .�/ D zX .0:95/ D 1:64485, the bound from the inequality (7)
is 1.87228. The maximising distribution established by Theorem 2 has a discrete
point mass P.Yp;# D �X / D 1 � p at y D �X , i.e., the distribution is inflated at the
point y D �X . The closer a distribution to inflation at the mean, the more accurate
are the quantile bounds. Such shapes occur particularly in the context of financial
auditing where deviations of the true audit values from the stipulated book values of
inventories, debtor or creditor accounts in either direction are infrequent.

Subsequently, we evaluate the accuracy of the Camp-Meidell bounds for some
classical symmetric unimodal distributions which are often assumed in SPC lit-
erature. Figure 2 compares the accuracy of the one-sided quantile bound for the
parameter choices r D 1; 2; 3; 4 for the normal, Laplace, logistic, and central t-
distribution. The graphs plot the ratio zC;r;X .�/=zX.�/ for quantile levels 0:90 < �.
The standard form of the Camp-Meidell inequality considers the value r D 1 only,
see Patel et al. (1976) or Ion (2001). However, for the examples considered in Fig. 2,
r D 1 performs poorly, particularly for large quantile levels �. r D 2 performs
consistently well, except for very large values of � above 0.995, where r � 3 can
achieve better results. The discussion in Sects. 3 and 4 show that the empirical use of
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a b

c d

Fig. 2 Accuracy of Camp quantile bounds from Theorem 2 for symmetric unimodal absolutely
continuous distributions. (a) Normal distribution N.�; �2/. (b) Laplace distribution LAP.�; ˇ/.
(c) Logistic distribution LGT .�; ˇ/. (d) Central t -distribution t .�/, � D 10:0

Camp-Meidell quantile bounds with r > 2 involves particular estimation problems.
All in all, the use of r D 2 is recommended in practice.

3 Estimation Problems in the Empirical Use
of Camp-Meidell Quantile Bounds

The empirical use of the Camp-Meidell quantile bounds established by Theorem 2
requires the estimation of the roots m1=.2r/

X;2r of the central moments mX;2r from

observations Xi; : : : ; Xn. At first glance, it seems obvious to use the root M
1=.2r/
n;X;2r

of the sample central moment Mn;X;2r D 1
n

P
.Xi � X/2r as an estimator. However,

this estimator is unsatisfactory. First, the sample central moment Mn;X;2r D
1
n

P
.Xi � X/2r is not unbiased for mX;2r , see Cramér (1946). Particularly in the

case 2r D 4, Mn;X;2r seriously underestimates mX;2r for all classical symmetric
unimodal distribution models, see Göb and Lurz (2013a). Second, the function
y 7! y1=.2r/ is strictly concave. Hence the well-known Jensen inequality implies
EŒM

1=.2r/
n;X;2r � < EŒMn;X;2r �

1=.2r/ for random variables X which are not almost
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surely constant. Thus the observed underestimation of Mn;X;2r for mX;2r is further
intensified when estimating m1=.2r/

X;2r by M
1=.2r/
n;X;2r .

Let us first consider the estimation of the central moment mX;2r . A distribution-
free unbiased estimator can be found by expressing moments through cumulants,
and using Fisher’s (1928) k-statistics as the unbiased cumulant estimators. For the
case 2r D 4, this leads to an estimator a.n/Mn;X;4 C b.n/M 2

n;X;2 where a.n/ and
b.n/ are rational functions of the sample size n, see Cramér (1946, p.352) . For
larger r , the unbiased estimator rests on a considerably involved expression.

For the normal distribution, we can adjust the sample moment by a simple
coefficient to obtain

Kn;X;2r D
� n

n � 1

�r

Mn;X;2r (8)

as an unbiased estimator for mX;2r , see Göb and Lurz (2013a) for a proof. For
standardised moments mX;s=�s

X , it is often recommended to use estimators which
are unbiased under the normal distribution also under other distribution families,
see Joanes and Gill (1998). Following this strategy, Göb and Lurz (2013a) compare
the performance of the distribution-free unbiased estimator with the performance of
the estimator Kn;X;2r for the case 2r D 4 under several symmetric distributions. For
small sample sizes n in the range of n � 10, Kn;X;4 underestimates mX;4 at 10 to
20 %, for sample sizes n � 25 the underestimation is rather negligible. However, the
estimator Kn;X;4 strikingly outperforms the distribution-free unbiased estimator with
respect to the mean square error (MSE) EŒ.Kn;X;4�mX;4/2�. Particularly for small n,
the distribution-free unbiased estimator a.n/Mn;X;4 C b.n/M 2

n;X;2 has an excessive
variance, resulting from the strong correlation between the sample moments Mn;X;4

and Mn;X;2. The results are illustrated in Fig. 3 for the Laplace distribution.
Concluding from this pattern, the simple estimator Kn;X;4 is a recommendable
alternative to the distribution-free unbiased estimator under symmetric distributions.
An unbiased or nearly unbiased estimator for mX;2r does not provide directly a
suitable solution for the estimation of m1=.2r/

X;2r since the root induces underestimation
on the average, see the above remarks. Distribution-free unbiased estimators for
m1=.2r/

X;2r are not known. Approximately unbiased estimators are investigated by

a b

Fig. 3 Comparison of the distribution-free unbiased estimator for mX;4 with the estimator Kn;X;4

under the Laplace distribution. (a) mX;4=E[Kn;X;4]. (b) MSE of unbiased estimator=MSE[Kn;X;4]
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Göb and Lurz (2013a). For the purpose of control charting, a simple and easily
implementable solution is required. Motivated by the good performance of the
estimator Kn;X;2r for mX;2r we consider an analogous solution for the estimation
of m1=.2r/

X;2r : correct the root M
1=.2r/
n;X;2r by a coefficient cn;2r to obtain an estimator

Rn;X;2r D cn;2rM
1=.2r/
n;X;2r (9)

where the coefficient cn;2r is chosen to make Rn;X;2r unbiased for a baseline sym-
metric unimodal distribution. Asymptotically, all choices of the baseline distribution
are equivalent: the central limit theorem and the delta method show that M

1=.2r/
n;X;2r is

asymptotically distributed by a normal distribution with mean m1=.2r/
X;2r . The problem

is to choose a baseline distribution which provides good results also for small sample
sizes. One reasonable choice for the baseline model is the normal distribution. If
interest is rather in distributions with stronger weights on the tails, the Laplace
distribution or hyperbolic distributions are suitable alternatives.

Under the normal distribution, the unbiasing coefficient for the case r D 1 is

cn;2r D cn;2 D �
�

n�1
2

�
p

2�
�

n
2

� : (10)

The latter coefficients are tabulated in most statistical quality control textbooks.
For r � 2, the unbiasing coefficients cannot be expressed in closed form. The
coefficients for r D 2; 3; 4 displayed in Table 1 were calculated by simulation.
The number of simulation runs was chosen so as to keep the length of the empirical
99 % confidence interval smaller than 2:5 � 10�3. N varies from N D 1:5 � 106

for small sample size n down to N D 2:5 � 105 for large sample size n > 50. Burr
(1967) demonstrates that the unbiasing coefficients cn;2r D cn;2 for r D 1 given
by (10) are considerably robust against deviation from normality, as long as the true
distribution is not markedly skewed. For r D 2, Fig. 4 evaluates the bias of the
uncorrected root M

1=4
n;X;4 and the bias of the corrected estimator Rn;X;4 by the ratios

m1=4
X;4=EŒM

1=4
n;X;4� and m1=4

X;4=EŒRn;X;4� under the symmetric unimodal distributions
listed in Table 2. The logistic, Laplace, and generalised hyperbolic distribution
families are closed under affine transformations. For these distributions, the study
of the ratios can be restricted to the parameters of standardised representatives
with EŒX� D 0, V ŒX� D mX;2 D 1 such that the central fourth moment mX;4

equals the excess coefficient mX;4=m2
X;2. For the two-parameter logistic and Laplace

families, the study of the standardised representatives is representative for the entire
family. The standardised symmetric version of GH.�; ˛; ˇ; ı; �/ has the parameters
� D 0 D ˇ, but still depends on the parameters ˛ and � which affect the
fourth moment. Figure 4 considers a standardised symmetric generalised hyperbolic
distribution with a very large excess at mX;4 D mX;4=m2

X;2 D 14:96.
The results displayed in Fig. 4 are based on simulation. The number of simulation

runs was chosen so as to keep the length of the empirical 99 % confidence interval



172 R. Göb and K. Lurz

Table 1 Coefficients cn;2r unbiasing the estimator (9) under the normal distribution

n r D 2 r D 3 r D 4 n r D 2 r D 3 r D 4

5 1.32435 1.45293 1.57817 53 1.02747 1.05116 1.08288

6 1.26098 1.37422 1.48164 54 1.02681 1.04959 1.08224

7 1.21822 1.31849 1.41691 55 1.02678 1.04924 1.08079

8 1.18909 1.27857 1.36926 56 1.02615 1.04789 1.07991

9 1.16460 1.24819 1.33204 57 1.02593 1.04763 1.07883

10 1.14873 1.22465 1.30444 58 1.02575 1.04684 1.07742

11 1.13517 1.20647 1.28093 59 1.02480 1.04630 1.07615

12 1.12271 1.18853 1.25966 60 1.02404 1.04576 1.07578

13 1.11255 1.17614 1.24398 61 1.02398 1.04505 1.07501

14 1.10502 1.16468 1.22954 62 1.02369 1.04448 1.07388

15 1.09700 1.15338 1.21789 63 1.02342 1.04397 1.07322

16 1.09112 1.14551 1.20667 64 1.02278 1.04308 1.07197

17 1.08610 1.13750 1.19693 65 1.02234 1.04250 1.07149

18 1.08147 1.13075 1.18844 66 1.02231 1.04194 1.07044

19 1.07647 1.12461 1.18099 67 1.02170 1.04119 1.06968

20 1.07323 1.11884 1.17478 68 1.02169 1.04039 1.06896

21 1.06985 1.11395 1.16749 69 1.02152 1.04019 1.06842

22 1.06594 1.10945 1.16130 70 1.02096 1.03985 1.06741

23 1.06340 1.10539 1.15534 71 1.02080 1.03902 1.06693

24 1.06057 1.10096 1.15069 72 1.02021 1.03871 1.06643

25 1.05841 1.09832 1.14622 73 1.02025 1.03826 1.06505

26 1.05571 1.09448 1.14196 74 1.02011 1.03797 1.06472

27 1.05389 1.09172 1.13778 75 1.01983 1.03748 1.06405

28 1.05176 1.08909 1.13377 76 1.01918 1.03720 1.06358

29 1.05022 1.08640 1.13061 77 1.01904 1.03672 1.06291

30 1.04863 1.08361 1.12704 78 1.01904 1.03574 1.06245

31 1.04666 1.08085 1.12346 79 1.01870 1.03595 1.06185

32 1.04604 1.07841 1.12183 80 1.01852 1.03536 1.06119

33 1.04440 1.07639 1.11827 81 1.01817 1.03503 1.06073

34 1.04304 1.07471 1.11553 82 1.01764 1.03458 1.05930

35 1.04143 1.07280 1.11282 83 1.01787 1.03401 1.05924

36 1.04065 1.07090 1.11041 84 1.01776 1.03407 1.05862

37 1.03967 1.06917 1.10830 85 1.01744 1.03328 1.05786

38 1.03875 1.06789 1.10721 86 1.01726 1.03332 1.05813

39 1.03764 1.06649 1.10407 87 1.01701 1.03292 1.05750

40 1.03671 1.06510 1.10271 88 1.01631 1.03230 1.05692

41 1.03572 1.06375 1.10032 89 1.01668 1.03272 1.05593

42 1.03454 1.06162 1.09814 90 1.01632 1.03191 1.05587

43 1.03416 1.06131 1.09695 91 1.01592 1.03167 1.05494

44 1.03336 1.06049 1.09573 92 1.01601 1.03143 1.05483

45 1.03291 1.05853 1.09407 93 1.01600 1.03121 1.05473

(continued)
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Table 1 (continued)

n r D 2 r D 3 r D 4 n r D 2 r D 3 r D 4

46 1.03168 1.05746 1.09204 94 1.01567 1.03068 1.05370

47 1.03078 1.05626 1.09042 95 1.01556 1.03030 1.05366

48 1.03066 1.05548 1.08942 96 1.01554 1.03058 1.05321

49 1.02978 1.05444 1.08791 97 1.01505 1.03029 1.05306

50 1.02926 1.05303 1.08724 98 1.01505 1.02949 1.05211

51 1.02828 1.05274 1.08489 99 1.01480 1.02907 1.05231

52 1.02848 1.05142 1.08385 100 1.01478 1.02914 1.05173

a b

c d

Fig. 4 Ratios EŒM
1=4
n;X;4�=m1=4

X;4 and EŒRn;X;4�=m1=4
X;4 for the uncorrected root M

1=4
n;X;4 of the fourth

sample moment and for the corrected estimator Rn;X;4 D cn;4M
1=4
n;X;4, see (9). (a) Logistic

distribution. (b) Laplace distribution. (c) Central t .�/, � D 10. (d) Generalised hyperbolic

smaller than 2:5 � 10�3. N varies from N D 1:5 � 106 for small sample size n

downto N D 2:5 � 105 for large sample size n > 50. All considered distributions
have larger probability mass of the tails than the normal distribution which has the
excess mX;4=m2

X;2 D 3:0. In particular, the generalised hyperbolic was introduced
by Barndorff-Nielsen and Blæsild (1981) as a semi-heavy tails distribution which
places markedly larger probability mass on the tails than the normal distribution,
but still has finite moments of every order. The generalised hyperbolic distributions
has been used in modelling financial data, see Necula (2009) for a literature
overview. In spite of the large excesses, the corrected estimator Rn;X;4 performs well
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Table 2 Symmetric distributions considered in Fig. 4

Distribution Density Considered parameters

Logistic
LGT.�; ˇ/

exp
�

�.x��/

ˇ

�

ˇ
h
1 C exp

�
�.x��/

ˇ

�i2
� D 0, ˇ D

p

3

�
, mX;4 D 4:2

Laplace
LAP.�; ˇ/

1

2ˇ
exp

��jx � �j
ˇ

�
� D 0, ˇ D 1

p

2
, mX;4 D 6

Central t t .�/
�
�

�C1
2

�

�
�

�
2

� p
��

�
1 C x2

�

��
�C1

2

� D 10, mX;4 D 6:25, mX;4

m2
X;2

D 4:0

Generalised
hyperbolic
GH.�; ˛; ˇ; ı; �/

a.�; ˛; ˇ; ı; �/
h
ı2 C .x � �/2

i2��1

�K��0:5

�
˛
p

ı2 C .x � �/2

�

� exp
�
ˇ.x � �/

�

� D 0 D ˇ, � D 0, ˛ D 0:6371795,

ı D 0:1569416, mX;4 D 14:96

for all considered distributions, except for the considered generalised hyperbolic
distribution with its very high excess. The performance is good even for small
sample sizes, and in any case strikingly better than the uncorrected root M

1=4
n;X;4 of

the fourth sample moment. Both statistics underestimate m1=4
X;4 on the average with

EŒM
1=4
n;X;4� < EŒRn;X;4� < m1=4

X;4. Particularly for small sample sizes, the bias of

M
1=4
n;X;4 is excessive whereas EŒRn;X;4� comes reasonably close to m1=4

X;4.

4 Empirical Camp-Meidell Quantile Bounds

Concluding from the results of the previous Sect. 3, the corrected central sample
moment root Rn;X;2r defined by (9) is a suitable estimator for the central moment
root m1=.2r/

X;2r . Hence an empirical Camp-Meidell bound OzC;r;X .�/ for the one-sided
quantile zX .�/ is obtained by replacing in the formula (7) for the theoretical bound
zC;r;X .�/ the occurrences of m1=.2r/

X;2r by the estimator Rn;X;2r and the mean �X by the
sample mean so as to obtain

OzC;r;X.�/ D

8̂
<
:̂

X C .2� � 1/Rn;X;2r .2r C 1/1=.2r/; if � � 4rC1
4rC2

;

X C Rn;X;2r

Œ2.1��/�
1
2r

2r
2rC1

; if � � 4rC1
4rC2

:
(11)

A suitable benchmark for the usefulness of the quantile bound OzC;r;X .�/ is a
nonparametric quantile estimator. An exhaustive comparison with the large variety
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of nonparametric quantile estimators suggested in literature is far beyond the scope
of the present study. We confine the comparison to the elementary sample quantile
defined by as the order statistic X.dn�e;n/ among the ordered sample X.1;n/ �
: : : � X.n;n/. Various improvements of the sample quantile have been suggested in
literature, see the discussion by Hyndman and Fan (1996), but the basic properties
of all these variants are the same.

We compare the quantile bound OzC;r;X.�/ and the sample quantile X.dn�e;n/ in
two respects: (i) the expectations EŒOzC;r;X.�/�, EŒX.dn�e;n/�, and (ii) the coverages
P.OzC;r;X .�/ � zX .�//, P.X.dn�e;n/ � zX .�// with respect to the true quantile zX .�/.
Figures 5 and 6 show graphs of the characteristic quantities as functions of the
sample size n ranging from n D 5 to n D 100 for the quantile levels � D 0:975

and � D 0:995. We consider the same distributions as in Fig. 4, see Table 2. The
results displayed in Figs. 5 and 6 were calculated by simulation based on the same
technique as used for calculating the results provided in Fig. 4.

The estimator OzX .�/ performs well for both quantile levels � and for all con-
sidered distributions. The bounding relation OzX .�/ > zX .�/ holds on the average,
even for very small sample sizes downto n D 5. The coverage P.OzC;r;X.�/ � zX .�//

exceeds 0.5 for small sample sizes, and rapidly increases to values of 0.8 to 0.9 for
sample sizes n � 50.

Considered as a quantile estimator, the empirical bound OzC;r;X .�/ has some
appealing features in comparison with the sample quantile, in particular a high
coverage with an only moderate overestimation for small sample sizes, and the
absence of discontinuities in expectation and coverage as functions of the sample
size, as visible for � D 0:975 in Fig. 5.

5 Shewhart Individual Observation Charts Based
on Camp-Meidell Quantile Bounds

We consider the statistical design of a two-sided Shewhart individual observation
control chart under i.i.d. mean-modal measurements .Xi/, see the introduction of
Sect. 2 for the definition of mean-modality. The individual measurement Xi signals
an alarm if Xi < LCL or if Xi > UCL. A bound ˛ is prescribed for the false alarm
probability, i.e., the probability of an alarm in the in-control state. To guarantee
the bound, a parametric design based on a specific symmetric distribution uses the
control limits

LCL D zX

�˛

2

�
; UCL D zX

�
1 � ˛

2

�
: (12)

In a nonparametric design, the bound should hold for arbitrary symmetric mean-
modal in-control distributions, without referring to a specific distribution. Conclud-
ing from the results of the preceding paragraphs, the use of Camp-Meidell quantile
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a b

c d

e f

g h

Fig. 5 Left-hand graphs: ratios EŒOzC;r;X .�/�=zX .�/, EŒX.dn�e;n/�=zX .�/ for � D 0:975; right-
hand graphs: coverages P.OzC;r;X .�/ � zX .�//, P.X.dn�e;n/ � zX .�// for � D 0:975. (a)
Normal distribution. (b) Normal distribution. (c) Logistic distribution. (d) Logistic distribution. (e)
Central t -distribution t .10/ (f) Central t -distribution t .10/. (g) Laplace distribution. (h) Laplace
distribution
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a b

c d

e f

g h

Fig. 6 Left-hand graphs: ratios EŒOzC;r;X .�/�=zX .�/, EŒX.dn�e;n/�=zX .�/ for � D 0:995; right-
hand graphs: coverages P.OzC;r;X .�/ � zX .�//, P.X.dn�e;n/ � zX .�// for � D 0:995. (a)
Normal distribution. (b) Normal distribution. (c) Logistic distribution. (d) Logistic distribution. (e)
Central t -distribution t .10/. (f) Central t -distribution t .10/. (g) Laplace distribution. (h) Laplace
distribution
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bounds zC;r;X.�/ with � D 1 � ˛ from Theorem 2 is a reasonable approach to the
nonparametric design task. For the implementation we distinguish two cases.

Case 1: Known Camp-Meidell quantile bounds, i.e., known central moment
mX;2r . In practice, the “known” case means that the moments and the Camp-Meidell
bound, respectively, can be estimated with good precision from a sufficient amount
n of in-control data, e.g., from a phase 1 study. The results of Sect. 4 show that an in-
control data set X1; : : : ; Xn of size n � 100 already provides a precise estimate of
Camp-Meidell quantile bounds. One would then calculate the estimate OzX

�
1 � ˛

2

�
from X1; : : : ; Xn and use

UCL D OzX

�
1 � ˛

2

�
; LCL D 2X � UCL (13)

as the control limits in the subsequent implementation of the chart.
Case 2: Unknown Camp-Meidell quantile bounds, i.e., unknown central moment

mX;2r . In this case, the quantile bound estimations have to be updated from
successive observations X1; X2; : : :. If XnC1 is the present observation, and past
observations X1; : : : ; Xn have not generated an alarm and can be considered as in-
control, the quantile estimator OzX

�
1 � ˛

2

�
can be calculated from X1; : : : ; Xn and

the control limits for the test on XnC1 can be set as in (13). The results of Sect. 4
show that even for a small number n of in-control rated observations the obtained
bounds cover the true quantiles with a high probability, in any case with a much
higher probability than achieved by the empirical quantile.

Relative to the classification established in Sect. 1, the Case 1 procedure is a
variant of the approach (ii) which uses inference from training samples, whereas
the Case 2 procedure is an instance of the approach (i) based on potentially small
online samples from the process. The empirical Camp-Meidell quantile bounds can
be successfully used for both approaches.

Under the above assumptions on .Xi/, the in-control average run length (ARL)
of the individual observations chart under known quantile zX .�/ is .1 � �/�1. If
an estimate Oz.�/ is used as an estimate for zX .�/, the actual average run length
for the in-control symmetric distribution function FX is Œ1 � FX .OzX .�//��1. Since
.0I 1/ 7! .1 � x/�1 is strictly increasing, we have

P

�
1

1 � FX .OzX .�//
� 1

1 � �

�
D P

�
Oz.�/ � zX .�/

�
:

Hence the properties of the estimated ARL Œ1 � FX .Oz.�//��1 under the estimates
OzX .�/ D zC;r;X .�/ based on the Camp-Meidell bound and the sample quantile
OzX .�/ D X.dn�e;n/ are illustrated by the right-hand columns in Figs. 5 and 6. For
the considered in-control distributions, the Camp-Meidell approach provides with
high probability an upper bound for the true ARL with a moderate overestimation
even for small sample sizes. For industrial quality control, Fig. 6 corresponding to a
theoretical in-control ARL of 200 is more relevant than Fig. 5 which corresponds to
a theoretical in-control ARL of 40.
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6 Conclusive Discussion and Outlook

Higher order Camp-Meidell inequalities provide bounds which approximate the true
quantiles of levels � � 0:95 of the familiar symmetric mean-modal distributions up
to a moderate relative error. We have developed an estimator of the bound which
essentially preserves the bounding property. The estimator is even competitive as
a quantile estimator, particularly for small sample sizes. It makes sense to use the
empirical bound for the design of an individual observation chart. The particular
advantage of the technique is the very modest amount of data required for a
sufficiently precise estimation of the control limits.

The following issues remain to be studied. (i) We have studied the classical
symmetric mean-modal distributions. Further distributions should be studied to
corroborate the results, in particular, more distributions with large probability mass
on the tails, and mean-inflated distributions. (ii) It is to be conjectured that slight
deviations from symmetry or mean-modality will not substantially alter the pattern.
This should be studied in detail. (iii) The design based on empirical Camp-Meidell
bounds is conservative with respect to the false alarm rate. The overestimation of
the theoretical quantile is moderate, but the effects on the rate of undetected shifts
should be explored in more detail. (iv) The in-control and out-of-control run length
of the chart should be studied in more detail.
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Strategies to Reduce the Probability
of a Misleading Signal

Manuel Cabral Morais, Patrícia Ferreira Ramos, and António Pacheco

Abstract Standard practice in statistical process control (SPC) is to run two
individual charts, one for the process mean and another one for the process variance.
The resulting scheme is known as a simultaneous scheme and it provides a way
to satisfy Shewhart’s dictum that proper process control implies monitoring both
location and dispersion.
When we use a simultaneous scheme, the quality characteristic is deemed to
be out-of-control whenever a signal is triggered by either individual chart. As a
consequence, the misidentification of the parameter that has changed can occur,
meaning that a shift in the process mean can be misinterpreted as a shift in the
process variance and vice versa. These two events are known as misleading signals
(MS) and can occur quite frequently.
We discuss (necessary and) sufficient conditions to achieve values of probabilities
of misleading signals (PMS) smaller than or equal to 0.5, explore, for instance,
alternative simultaneous Shewhart-type schemes and check if they lead to PMS
which are smaller than the ones of the popular . NX; S2/ simultaneous scheme.

Keywords Misleading signals • Simultaneous schemes • Statistical process
control

1 Control Charts and the Phenomenon of Misleading Signals

Concerns about quality can be traced back to the Babylonian Empire (1830BC–
539BC). Browsing the Code of Hammurabi (Code of Hammurabi/Wikipedia
2012)—a well-preserved Babylonian law code, dating back to about 1772BC,
and aptly named after the sixth Babylonian king, Hammurabi, who enacted
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it—can be an “eye-opening” experience. This code consists of 282 laws dealing
with matters of contracts, terms of transactions or addressing household and family
relationships such as inheritance, divorce, paternity and sexual behavior (Code of
Hammurabi/Wikipedia 2012). For instance, its laws 229 through 233 illustrate “an
eye for an eye” approach to quality and certainly prove that quality and warranty
were matters of importance to Babylonians.

Although quality has long been considered utterly relevant, we have to leap
to the twentieth century to meet the father of modern quality control and the
founder of statistical process control (SPC), Walter A. Shewhart (1891–1967).
This physicist, engineer and statistician for Bell Laboratories acknowledged that
any production process, no matter how well designed, always presents a certain
amount of variability (Wieringa 1999, p. 2) and distinguished between acceptable
and undesirable variability, arising from what is usually termed as common causes
and assignable causes, respectively.

Shewhart proposed, in 1924, the quality control chart, a graphical device to detect
the presence of assignable causes of variation in the process by plotting the observed
value of a (control) statistic against time and comparing it with a pair of control
limits. Points lying outside the control limits indicate potential assignable causes
that should be investigated and eliminated (Nelson 1982, p. 178).

Shewhart suggested the use of the sample mean and a pair of control limits, LCL�

and UCL�, thus, defining a NX -chart to monitor the process mean of a continuous
quality characteristic X . If the process mean (resp. standard deviation) shifts from
its target value �0 (resp. �0) to � D �0 C ı�0=

p
n, where ı ¤ 0 (resp. � D ��0,

where � > 1), then the number of samples taken until a signal is triggered by
the NX -chart, its run length (RL), say RL�.ı; �/, has a geometric distribution with
parameter ��.ı; �/ D Pı;� . NX 62 ŒLCL�; UCL��/ and the average run length (ARL)
equals ARL�.ı; �/ D 1=��.ı; �/.

To satisfy Shewhart’s famous dictum (Hawkins and Maboudou-Tchao 2008) that
proper process control implies monitoring both location and dispersion, standard
(and popular) practice is to simultaneously run one individual chart for � and
another one for �2. If we are only concerned about increases in the dispersion of a
process, then we should make use of the control statistic S2 D 1

n�1

Pn
iD1.Xi � NX/2

along with an upper control limit UCL� . The RL of the S2-chart, say RL� .�/,
has a geometric distribution with parameter �� .�/ D P� .S2 62 Œ0; UCL� �/ and
ARL� .�/ D 1=�� .�/.

Since it is not realistic to believe that only one of the two parameters is
subject to shifts, a simultaneous scheme triggers a signal whenever one (or both)
of the individual charts triggers a signal, suggesting a potential shift in �, in
�2, or in both � and �2. In other words, the RL of a simultaneous scheme, say
RL�;� .ı; �/, is the minimum of the RL of the two individual control charts for �

and �2: RL�;� .ı; �/ D min
˚
RL�.ı; �/; RL� .�/


. Moreover, for Gaussian output,

RL�;� .ı; �/ has a geometric distribution with parameter ��;� .ı; �/ D ��.ı; �/ C
�� .�/ � ��.ı; �/ � �� .�/.
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Additionally, it is possible that:

• a signal is triggered by the chart for � before the chart for �2 signals, even though
� is on-target and �2 is off-target;

• � has changed and �2 is on-target, but the chart for �2 signals before the chart
for �.

These are instances of what St. John and Bragg (1991) called misleading signals
(MS), namely MS of types III and IV, respectively.

Since the assignable causes on charts for � can differ from those on charts for �2,
the diagnostic procedures that follow a signal can differ depending on whether the
signal is given by the chart for � or the one for �2 (Morais 2002, p. 109, Knoth et
al. 2009). Thus, misleading signals are valid signals that may well have different
consequences: they can namely lead the quality control operator or engineer to
misdiagnose assignable causes and deploy incorrect actions to bring the process
back to target.

2 Looking Closely at the Probability of a Misleading Signal

The main question is not whether there will be MS but rather how frequent they
are (Morais 2002, p. 112). Therefore, the impact of MS in the performance of
the simultaneous scheme should be assessed by calculating the probabilities of
misleading signal (PMS).

According to the definition of MS of types III and IV, the corresponding PMS
can be written as:

PMSIII.�/ D P ŒRL�.0; �/ < RL� .�/�; � > 1I (1)

PMSIV.ı/ D P ŒRL� .1/ < RL�.ı; 1/�; ı ¤ 0: (2)

Simple expressions of the PMS can be derived if the individual charts of
the simultaneous scheme are Shewhart-type charts based on independent control
statistics (Morais 2002, p. 118), such as NX and S2. Moreover, as noted by Knoth et
al. (2009):

PMSIII.�/ D ��.0; �/ � Œ1 � �� .�/�

��.0; �/ C �� .�/ � ��.0; �/ � �� .�/
; � > 1I (3)

PMSIV .ı/ D Œ1 � ��.ı; 1/� � �� .1/

��.ı; 1/ C �� .1/ � ��.ı; 1/ � �� .1/
; ı ¤ 0: (4)

Furthermore, the PMS of Type III (resp. IV) can be obviously interpreted as a
conditional probability—it corresponds to the probability that the chart for � (resp.
�2) triggers a signal and the chart for �2 (resp. �) fails to do so, given that the
simultaneous scheme was responsible for an alarm.
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Awareness of the phenomenon of MS stretches back to the seminal work of St.
John and Bragg (1991), and the PMS, proposed by Morais and Pacheco (2000), has
been already addressed for:

• i.i.d. Gaussian output by Morais and Pacheco (2000); Morais (2002); Morais and
Pacheco (2006);

• autocorrelated Gaussian output by Antunes (2009); Knoth et al. (2009); Ramos et
al. (2012, 2013);

• i.i.d. bivariate and multivariate normal output by Ramos et al. (2013a,b,c).

These authors have presented some striking and instructive examples that show
that:

• the occurrence of MS should be a cause of concern in practice;
• Shewhart-type simultaneous schemes compare unfavourably to the ones with

more sophisticated schemes, namely of the exponentially weighted moving
average (EWMA) type;

• simultaneous schemes that ignore autocorrelation are far from being reliable in
identifying which parameter has changed;

• the fact that the control statistics of the individual charts for the mean vector
.�/ are based on quadratic forms—and therefore tend to confound shifts in the
mean vector with shifts in the covariance matrix .˙/—aggravates the prevalence
of MS.

More important, in certain instances, specifically when we deal with simultaneous
schemes that falsely assume that the output is i.i.d. or with simultaneous schemes
for � and ˙ , PMS can take values which exceed 50 %.

The next proposition provides necessary and sufficient conditions—written in
terms of the ARL of the individual charts of the Shewhart-type simultaneous
scheme—to obtain PMS which do not exceed 50 %.

Proposition 1 If the individual charts of the simultaneous scheme for � and �2 are
of the Shewhart-type and are based on independent control statistics, then:

• PMSIII.�/ � 0:5 iff ARL�.0; �/ C 1 � ARL� .�/;
• PMSIV .ı/ � 0:5 iff ARL� .1/ C 1 � ARL�.ı; 1/.

Proof Capitalizing on formulas (3) and (4), and on the fact that the ARL function
of a Shewhart-type chart is the reciprocal of the probability of a signal and that ARL
is larger than or equal to the unit, we can provide necessary and sufficient condition
to yield PMS of Type III not larger than 50 %:

PMSIII.�/ � 0:5 , ��.0; �/Œ1 � �� .�/�

��.0; �/ C �� .�/ � ��.0; �/�� .�/
� 0:5

, ��.0; �/ � ��.0; �/�� .�/ � �� .�/

, 1

�� .�/
� 1 � 1

��.0; �/

, ARL�.0; �/ C 1 � ARL� .�/: (5)
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The equivalence

PMSIV .ı/ � 0:5 , ARL� .1/ C 1 � ARL�.ı; 1/ (6)

is proven in a similar fashion. ut
A sufficient condition for PMSIII.�/ � 0:5 .resp. PMSIV.ı/ � 0:5/ is

ARL�.0; �/ � ARL� .�/ .resp. ARL� .1/ � ARL�.ı; 1// or, equivalently,

��.0; �/ � �� .�/ .resp. �� .1/ � ��.ı; 1//: (7)

(7) sounds rather reasonable: If the chart for � (resp. �2) triggers valid signals less
or as frequently as the chart for �2 (resp. �), when ı D 0 and � > 1 (resp. ı ¤ 0

and � D 1), then the PMS of type III (resp. IV) does not exceed 50 %.
Even though Proposition 1 was stated considering that the location and dispersion

are univariate parameters (resp. the RL of the chart for �2 does not depend on
the shift in �), results (5) and (6) are also valid while dealing with simultaneous
Shewhart-type schemes for the control of the mean vector and covariance matrix of
multivariate normal output (resp. simultaneous Shewhart-type residual schemes for
the mean and variance of autocorrelated output, where the RL of the chart for �2

depends on ı).
As far as the PMS of simultaneous EWMA schemes are concerned, it is not easy

to extend Proposition 1 due to the Markovian character of the control statistics of
the individual charts and consequently the phase-type distributions of the RL of
the individual charts. Nevertheless, we can add that the approximate results for the
PMS, obtained by Ramos et al. (2013c) for simultaneous EWMA-type schemes for
� and ˙ , led to very few values of the PMS of Type III larger than 0:5 even though
condition (5) was valid. Unsurprisingly, these values refer to the PMS of Type III
when the unitary variances increase and the correlation coefficients shift from 0
to a non-null value, a scenario that corresponds to a radical change in the joint
behaviour of the quality characteristics and obviously results in a more frequent
misinterpretation of the shift in ˙ as a shift in � by the chart for the mean vector.

3 A Few Strategies to Reduce the Probability of a Misleading
Signal

Simultaneous schemes for � and �2 are usually set in such way that the ARL of their
individual control charts are matched in-control—i.e., ARL�.0; 1/ D ARL� .1/.

Interestingly enough, matching the charts for � and �2 (or � and ˙), in the
absence of assignable causes, seems to lead to values of the PMS of Type IV which
do not exceed 50 %. In fact, if ARL� does not depend on ı and ARL�.ı; 1/ decreases
with ı, such as in the case of simultaneous Shewhart schemes for the mean and
variance of i.i.d. output, we get ARL� .1/ � ARL�.ı; 1/, then PMSIV .ı/ � 0:5.
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Regretfully, when we deal with multivariate normal output, the ARL� is often
much more sensitive to changes in the covariance matrix than ARL˙ , leading to a
violation of (5) and, thus, to PMS of Type III larger than 50 %, even if the individual
charts were matched in-control, as illustrated by Ramos et al. (2013a,b,c).

The choice of control statistics also has an impact on the values of PMS.
Having said this, we ought to refer that replacing the NX and S2 charts with their
EWMA counterparts proves to reduce the PMS of types III and IV considerably,
as extensively reported by Morais (2002) and many other authors in different
settings (i.i.d. Gaussian output, autocorrelated Gaussian output and i.i.d. bivariate
and multivariate normal output).

Since there are quality control practitioners who are still reluctant to use EWMA
charts, we explore now the use of alternative control statistics for the location and
the spread of i.i.d. univariate Gaussian output to decrease the prevalence of MS.
In Walsh (1952), we can find two other possibilities of control statistics for the
simultaneous Shewhart-type schemes for � and �2:

•
p

n. NX � �0/=S and S2;
• NX and

Pn
iD1.Xi � �0/

2=n.

Walsh (1952) justifies the use of the control statistics
p

n. NX � �0/=S andPn
iD1.Xi ��0/2=n quite carefully. Although NX is an estimator of �, the probability

that NX lies beyond the control limits depends not only on how � compares with
its target value �0 but also on the how �2 compares with �2

0 , hence a value of
NX outside the control limits cannot necessarily be attributed to the discrepancy

between � and �0; unlike NX , the t�statistic
p

n. NX � �0/=S provides a rigorous
measure of how � deviates from its target value. Walsh (1952) continues: When
� D �0,

Pn
iD1.Xi � �0/

2=n is an estimator of �2 which is more efficient than
S2; thus, using NX and

Pn
iD1.Xi � �0/

2=n might be preferable to NX and S2 orp
n. NX � �0/=S and S2.
It is important to notice that the two pairs of alternative control statistics

suggested by Walsh (1952) are not independent; consequently, the corresponding
PMS have different expressions than the ones in Eqs. (3) and (4). However, by
capitalizing on expressions (1) and (2) and on Walsh’s mathematical derivations
of the associated operating characteristic (OC) functions, we were able to obtain
expressions for the PMS of types III and IV, as shown in Proposition 2.

Notation wise, let

.T .i/; U .i// D

8
<̂
:̂

� NX; S2
�

; i D 1� NX��0

S=
p

n
; S2

�
; i D 2� NX; 1

n

Pn
iD1.Xi � �0/2

�
; i D 3

(8)

be the three pairs of control statistics used to monitor both the mean and variance of
normal i.i.d. output.
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All the charts for � depend on a lower and an upper control limit, say LCL.i/
� and

UCL.i/
� ; i D 1; 2; 3. However, unlike Walsh (1952), our aim is solely the detection

of increases in �2, thus, all charts for �2 only rely on their upper control limit,
UCL.i/

� ; i D 1; 2; 3. Having in mind the distributions of NX ,
p

n. NX � �0/=S , S2 and
1
n

Pn
iD1.Xi � �0/2 in the absence of assignable causes, we shall deal with

LCL.i/
� D

(
�0 � �

.i/
� � �0p

n
; i D 1; 3

��
.2/
� ; i D 2

(9)

UCL.i/
� D

(
�0 C �

.i/
� � �0p

n
; i D 1; 3

�
.2/
� ; i D 2

(10)

UCL.i/
� D

(
�

.i/
� � �2

0

n�1
; i D 1; 2

�
.3/
� � �2

0

n
; i D 3;

(11)

where:

• �
.i/
� D ˚�1.1 � ˇ.i//; i D 1; 3; �

.2/
� D F �1

t.n�1/
.1 � ˇ.2//;

• �
.i/
� D F �1

2
.n�1/

.1 � 2ˇ.i//; i D 1; 2; �
.3/
� D F �1

2
.n/

.1 � 2ˇ.3//.

Let RL.i/
�;� .ı; �/ be the RL of the simultaneous scheme that makes use of the

control statistics .T .i/; U .i//. Since these RL are geometrically distributed with
parameter equal to

�.i/
�;� .ı; �/ D 1 � Pı;�

�
T .i/ 2 ŒLCL.i/

� ; UCL.i/
� �; U .i/ 2 Œ0; UCL.i/

� �
�

(12)

and expected value ARL.i/
�;� .ı; �/ D 1=�

.i/
�;� .ı; �/, the values of ˇ.i/—corresponding

to a given false alarm rate �
.i/
�;� .0; 1/ D ˛—are found by equating

ARL.i/
�;� .0; 1/ D ˛�1: (13)

Suffice to say that: the individual charts are matched in-control and ARL.i/
� .0; 1/ D

ARL.i/
� .0; 1/ D Œ2ˇ.i/��1; ˇ.1/ D 1�p

1�˛
2

; ˇ.2/ and ˇ.3/ are determined by
numerical search.

Proposition 2 The MS of types III and IV occur in the simultaneous Shewhart-type
schemes, with constituent charts for � and �2 with control statistics T .i/ and U .i/,
with probabilities:

PMS.i/
III .�/ D

P0;�

�
T .i/ 62 ŒLCL.i/

� ; UCL.i/
� �; U .i/ 2 Œ0; UCL.i/

� �
�

�
.i/
�;� .0; �/

; � > 1I (14)
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PMS.i/
IV .ı/ D

Pı;1

�
T .i/ 2 ŒLCL.i/

� ; UCL.i/
� �; U .i/ 62 Œ0; UCL.i/

� �
�

�
.i/
�;� .ı; 1/

; ı ¤ 0: (15)

The full expressions of the numerators and denominators can be found in the
appendix.

Proof Taking advantage of the fact that the f.T .i/
j ; U

.i/
j / W j 2 IN g are i.i.d.

bivariate r.v., we successively get:

PMS.i/
III .�/ D

1X
mD1

P
�

RL.i/
� .0; �/ D m; RL.i/

� .�/ > m
�

D
1X

mD1

P0;�

�
T

.i/
j 2 ŒLCL.i/

� ; UCL.i/
� �; U

.i/
j 2 Œ0; UCL.i/

� �; j D 1; : : : ; m � 1I

T .i/
m 62 ŒLCL.i/

� ; UCL.i/
� �; U .i/

m 2 Œ0; UCL.i/
� �
�

D P0;�

�
T .i/ 62 ŒLCL.i/

� ; UCL.i/
� �; U .i/ 2 Œ0; UCL.i/

� �
�

�
1X

mD1

h
1 � �.i/

�;� .0; �/
im�1

D
P0;�

�
T .i/ 62 ŒLCL.i/

� ; UCL.i/
� �; U .i/ 2 Œ0; UCL.i/

� �
�

�
.i/
�;� .0; �/

:

PMS.i/
IV .ı/ is derived similarly. ut

Table 1 contains the critical values �
.i/
� and �

.i/
� , i D 1; 2; 3, of the individual

charts of the three simultaneous Shewhart-type schemes for � and �2. These values
were determined for n D 3; 5; 7, by finding the value of ˇ.i/ which yields a specified
probability of false alarm ˛ D 1=1000; 1=500; 1=370:4 for scheme.i/; i D 1; 2; 3.

Please note that ˇ.1/ and �
.1/
� do not depend on n. Since this fact has implications

in the behaviour of the PMS, namely of Type IV, it is going to be addressed in the
next section.

4 Discussion, Numerical Results and Final Thoughts

The PMS of Type III (resp. IV) represents a means of studying the (in)ability of a
simultaneous scheme for the process mean and spread to misinterpret a shift in �

(resp. �) as a shift in � (resp. �).
In this section we provide values of the PMS of types III and IV, for the . NX; S2/,

.
p

n. NX � �0/=S; S2/ and . NX; 1
n

Pn
iD1.Xi � �0/2/ simultaneous schemes for �
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Fig. 1 Plots of PMS.i/
III .�/ (left) and PMS.i/

IV .ı/ (right), for i D 1; 2; 3 (in black, light grey, grey;
top to bottom, resp.), ˛ D 1=1000; 1=500; 1=370:4 (dashed, solid and dot dashed lines, resp.) and
n D 3

and �2, considering: � D 1:02; 1:1; 1:2; 2; ı D 0:05; 0:5; 1; 2.1 Plots have been
added, namely to make the comparison between these three simultaneous schemes
possible.

Firstly, it is worthy of note that we obtained the graphs of the PMS of types III and
IV for all three simultaneous schemes, sample sizes .n D 3; 5; 7/ and significance
levels .˛ D 1=1000; 1=500; 1=370:4/; interestingly enough, these PMS seem to be
somewhat insensitive to the value of the in-control ARL, ˛�1, as depicted in Fig. 1
for n D 3. In Table 2 we can find the values of the PMS of types III and IV only for
˛ D 1=500.

1Since the PMS of Type IV has the same value for ı D �c as for ı D c, only positive values of ı

are plotted or tabulated.
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Secondly, the examination of Table 2 shows that the PMS of Type IV does not
depend on the sample size, when we are dealing with the . NX; S2/ simultaneous
scheme. As far as we know, this behaviour has not been reported before, essentially
because the illustrations in the literature refer to a fixed sample size. The fact
that PMS.1/

IV .ı/ is independent of n, for fixed ˛ and ı, is easily justified. By
“incorporating” the sample size in ı D p

n.� � �0/=�0, the probability that
the NX chart signals in the absence of a shift in � , ��.ı; 1/, no longer depends
on n. Furthermore, by fixing the in-control ARL of the simultaneous scheme
and demanding that both individual charts have the same in-control ARL, we get
��.ı; 1/ D 2ˇ.1/ D �� .1/, thus, also independent of the sample size. Finally, a

close inspection of (4) leads to the conclusion that PMS.1/
IV .ı/ is a mere function of

��.ı; 1/ and �� .1/, hence independent of n.
Thirdly, we are bound to refer that collecting larger samples may cause slight

increases in the PMS of Type III (resp. IV), when the . NX;
Pn

iD1.Xi � �0/2=n/

simultaneous scheme is at use in the presence of small shifts in � (resp. �). On
the one hand, this seems to be a startling result because the misinterpretation
of a shift in � as a shift in � and vice versa should become less frequent as
we collect more information. On the other hand, the values of .OC function/ D
.1 � Power function/, in Table 3 of Walsh (1952), anticipated somehow such a
surprising result:2 they increase occasionally with the sample size (they should
decrease instead!), when � D 1 and the . NX;

Pn
iD1.Xi � �0/2=n/ simultaneous

scheme is used.
Finally, other plots of the PMS of types III and IV have been added to this section

and are assembled in Fig. 2, which gives a more accurate idea than Table 2 of how
the PMS of the three simultaneous schemes in this paper compare.

Figure 2 gives considerable evidence that the simultaneous scheme based on
.
p

n. NX � �0/=S; S2/ (light grey lines) tends to be superior (resp. inferior) to those
based on . NX; S2/ (black lines) or . NX; 1

n

Pn
iD1.Xi � �0/

2/ (grey lines), as far as
the PMS of Type III (resp. IV) is concerned. Furthermore, Fig. 2 tells us that the
adoption of the . NX; 1

n

Pn
iD1.Xi � �0/2/ simultaneous scheme might be a fairly

good decision when it comes to reducing the PMS of types III and IV if large shifts
in � are not anticipated.

The over-all consensus seems to be that none of the two alternative simultaneous
schemes are able to reduce the PMS of types III and IV of the simultaneous scheme
based on . NX; S2/ and no pair of simultaneous schemes are roughly equivalent when
it comes to the PMS of both types, as portrayed in Fig. 2. Consequently, the choice
of one of the three simultaneous Shewhart-type schemes for � and �2 should also
depend on the amount of effort and money spent while attempting to identify and
correct non-existing causes of variation in � (resp. �2), i.e., when an MS of Type
III (resp. IV) occurs, as put by Morais and Pacheco (2006). For example, it seems
reasonable to favour a simultaneous scheme based on .

p
n. NX � �0/=S; S2/ if the

2Even if those values refer to a simultaneous scheme used to monitor both decreases and increases
in the process mean or variance.
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Fig. 2 Plots of PMS.i/
III .�/ (left) and PMS.i/

IV .ı/ (right), for i D 1; 2; 3 (in black, light grey, grey,
resp.), ˛ D 1=500 and n D 3; 5; 7 (top to bottom)

implications of MS of Type IV are unimportant and the occurrence of MS of Type
III are a great cause of concern.

We would like to note in passing that using the EWMA counterpart of . NX; S2/

is a strategy to reduce the PMS of types III and IV that quality control practitioners
should ponder too, as suggested by the results in Morais (2002, p. 125) and Morais
and Pacheco (2006).

A possibility for future work is to investigate how the adoption of a control
statistic (or a set of control statistics) for �, which is not based on a quadratic
form, can influence the PMS of simultaneous schemes for the mean vector and
covariance matrix of multivariate normal output. The analysis of the effect of the
adoption of other control charts for the covariance matrix on the PMS, like the
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rather complex one proposed by Tang and Barnett (1996a,b), also deserves some
consideration. These authors showed that this chart and a few other alternative
outperformed the jSj chart; the control statistics of these alternative charts have
a crippling disadvantage: even though they have well-known distributions under
control, it is very difficult to derive the corresponding out-of-control distributions.
As a consequence, we would have to resort to simulation, as Tang and Barnett
(1996b) did, to investigate the impact of the adoption of these charts for ˙ on both
PMS.
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Appendix

In this section we present the necessary results to compute the probabilities in the
denominator and numerator of the PMS of types III and IV:
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The derivation of Pı;� .T .i/ 2 ŒLCL.i/
� ; UCL.i/

� �; U .i/ 2 Œ0; UCL.i/
� �/ follows

closely Walsh (1952). The apparent differences are essentially due to the fact that
Walsh (1952) represented the shift in the process mean (resp. standard deviation)
by a D p

n.�0 � �/=� (resp. b D �0=�), i.e., ı D �a=b (resp. � D 1=b), and
considered a chart for � with a lower control limit.

The derivation of the remaining probabilities follows in a straightforward
manner.
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Characteristics of Economically Designed
CUSUM and NX Control Charts

Erwin Saniga, Darwin Davis, Alireza Faraz, Thomas McWilliams,
and James Lucas

Abstract In this paper we investigate the characteristics of economic control chart
designs for both Shewhart ( NX ) and CUSUM control charts. Authors in the past have
made some suggestions regarding the design of these charts, where design is defined
as finding the values of sample size, intersample interval and control limit (Shewhart
chart) or control parameters (k and h) for the CUSUM chart. Here, we run a large
number of experiments consisting of many configurations of the parameters and
describe and model the results in terms of the actual economic designs.

Keywords Control charts • Economic design • CUSUM charts • Shewhart NX
charts

1 Introduction

Previous research by Saniga et al. (2012) and Saniga et al. (2006a,b) has shown
that the statistical advantage of CUSUM control charts for controlling a sample
mean versus the Shewhart NX chart translates to an economic advantage provided
the fixed cost of sampling is small or when there are two components of variance
as is common in process industries. These results were obtained experimentally by
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finding economic designs of CUSUM charts and NX charts for a wide range of input
parameters, a wide range of shift sizes and for situations in which there is one or
possibly two components of variance. In this paper we delve into the experimental
results to investigate the characteristics of these designs. More precisely, we
investigate the distributions of the design parameters over the experimental range,
determine what input parameters seem to most significantly affect the design, look
at ARL0 contours by k and h for the CUSUM chart where ARL0 is the in control
average run length of the CUSUM chart and k is the reference value and h is the
decision interval. We also look at regions of these contours to show that in some
cases an NX chart may be employed while in most cases a CUSUM chart should
be employed because of its economic advantage. This chart also gives some design
guidelines for k and h for the economically designed CUSUM chart.

Comparison of CUSUM and NX charts is important as each has certain advantages
and disadvantages in controlling a process mean. Montgomery (2001) notes that one
should use the CUSUM control chart if one wants to detect a shift that is expected
to be small because the CUSUM chart has a marked statistical advantage for small
shifts. While the CUSUM chart is optimal (see Moustakides 1986) in the sense
that the average run length (ARL) of the CUSUM is minimum for detecting any
particular shift for a fixed in control ARL, this advantage is larger for small shifts.
In fact, it is well known that the Shewhart NX chart is a CUSUM chart for larger
shifts. The ease of design, use, maintenance and lack of abstractness might point to
an advantage of using the NX chart in this situation.

This is contrary to the conclusion of Reynolds and Stoumbos (2004) who
recommend the use of n D 1 CUSUM or EWMA charts in general if the criterion
is statistical. At times, though, the simplicity of the NX chart in terms of ease of use
and design might make it the control chart of choice, especially when one wants to
guard against especially large shifts.

Some authors including Goel (1968), von Collani (1987), Saniga et al. (2006a,b)
have compared the CUSUM chart to the NX chart in terms of cost under the
assumption that each was designed in an economically optimal fashion and there
was a single component of variance process. Saniga et al. (2012) have done the
same comparison for the two components of variance process.

The first two studies found that there is no real cost advantage to the CUSUM
chart and that the design of the optimal CUSUM chart is one in which the reference
value k is large and the decision interval h is small which makes it more or less
equivalent to the NX chart (i.e., the NX chart is a special case of the CUSUM chart
where k D 3 and h D 0).

The Saniga et al. (2006b) and Saniga et al. (2012) studies contradict the previous
studies, finding that first, consideration of fixed costs may make the CUSUM chart
with n D 1 far from economically optimal; second, there are regions where the
CUSUM chart is economically advantageous; third, optimal economic designs of
CUSUM charts are unlike the NX chart in terms of k and h; and fourth, even if small
shifts are expected the CUSUM chart may not have an economic advantage. A fifth
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conclusion is that in the presence of two components of variance the CUSUM chart
dominates the NX chart.

In this paper, we employ the same experimental results of Saniga et al. (2012) but
we now investigate in detail the characteristics of economically designed CUSUM
and NX control charts. In the next section we discuss the cost model, and in Sect. 3
we present the experiment. Section 4 describes the results, and Sect. 5 presents some
conclusions.

2 The Cost Model

One of the first to model a process where quality is monitored by a control chart
was Duncan (1956). This model was expanded to cover a wider range of industrial
applications by Lorenzen and Vance (1986). Most models in this realm assume that
the data are available to estimate the average shift size, that the time in control
follows the negative exponential distribution, that all system and cost parameters
are known, and that the process is in state of statistical control. That is, we are
monitoring a stable process. In this paper we will use the Lorenzen and Vance (1986)
and the terms defined in that paper. Some of the terms specific to this paper are:

n D sample size
g D hours between samples
k D number of standard deviations from control limits to center line (for the NX
chart only)
k D reference value for the CUSUM chart
h D decision interval for the CUSUM chart
ı D number of standard deviations shift when out of control
E D time to sample and chart one item
Y D cost per false alarm
W D cost to locate and repair the assignable cause
A D fixed cost per sample
B D variable cost of sampling
T0 D expected search time for a false alarm
T1 D expected time to find an assignable cause
T2 D expected time to repair the assignable cause
C0 D cost per hour when in control
C1 D cost per hour when an assignable cause exists
� D arrival rate of an assignable cause
�2

B D between sample variance
�2

W D within sample variance
D1 D 1 if production continues during searches

D 0 if production ceases during searches
D2 D 1 if production continues during repair

D 0 if production ceases during repair
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We use this model to find the economic design for the CUSUM chart and the
NX chart. Our algorithm to find the optimal economic designs is discussed in

Saniga et al. (2006b). The discussion of standardized shifts when there are two
components of variance is contained in Saniga et al. (2012).

3 The Experiments

We designed four experiments—three are essentially the same as in Saniga et al.
(2006b) after example problems in the literature provided by Chiu (1974) and
Lorenzen and Vance (1986). These are defined in Saniga et al. (2012), but we
provide some definition here as well because there is a slight difference. In each
experiment we find optimal NX control chart designs as well as optimal CUSUM
control chart designs.

The four experiments are as follows:
Experiment A: Here we find designs for 7,680 configurations of cost and system

parameters derived from Chiu’s (1974) first example. In this experiment we allow
C0 D 0; C1 D 100, 500, 1; 000; b D 0:1, 1; a D 0:5, 10; � D 0:01, 0:05; ı D 0:5,
1, 2, 3; ı1 D ı2 D 0, 1; Y D W D 75, 500; t0 D t1 D 0:1, 0:5; and t2 D 0:2, 0:5.
We set E0 D 0. Also, we vary �2

B D 0, 0:25, 0:5, 1 and 2. In all experiments we fix
�2

W D 1 and let �2
B D 0, 0:25, 0:5, 1 and 2.

Experiment B: This experiment is the same as the previous experiment except
that E D 0:5. Thus, it includes 7,680 configurations of input parameters.

Experiment C: This experiment is the same as the previous two experiments
except that E D 1:0. It also includes 7,680 configurations of input parameters.

Experiment D: This experiment alters the parameters of the example in Lorenzen
and Vance (1986). In this case C0; C1 D .0; 835/.114:2; 949/; b D 0:1, 0:5;
a D 0, 10, 50, 200; � D 0:02, 0:05; ı D 0:5, 0:86, 1:5; Y D W D
.200; 200/.977; 977/.1; 500; 1; 500/; t0 D t1 D 0:0833, 0:5; t2 D 0:75, 1:5;
E0 D 0:0833, 0:5. We fix ı1 D 1, ı2 D 0 and we vary �2

B D 0, 0:25, 0:5, 1

and 2. There are 17,280 configurations of parameters in this experiment.
In each of the experiments we also allow an alternative process control strategy

to be employed if it is economically better than either the CUSUM or NX chart. This
policy is a regular search policy. In this case the process is shut down every g h and
a search for an assignable cause takes place.

4 Analysis of Results

Finding an economic design for a practical scenario is a difficult problem for several
reasons. First, some knowledge of cost accounting is necessary to accurately deter-
mine the various costs specified in the Lorenzen and Vance (1986) model. Second,
some care must be taken to accurately determine the other system parameters; this
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Table 1 Significant values (˛ D 0:05) for various design parameters XD Experiment A,
� D Experiment B, X D Experiment C, 0 D Experiment D

can be done by a systematic data collection strategy. Third, nonlinear programming
must be employed to find these designs although there are published algorithms that
allow these to be calculated for NX and R charts (see, e.g., McWilliams et al. 2001).

Our first analysis was to run regression models of the design parameters (g, k,
and h for the NX chart and g, k, h and n for the CUSUM chart) and ARL0 and ARL1

for both charts. All models run were linear with respect to all parameters. The model
for n, say, is n D f .Y; A; B; �; ı; �2

B ; C0; C1; T0; T1; E/ C �.
Table 1 contains the results for the four experiments. It is interesting to note

that, generally, the first six variables Y , A, B , �, ı, �2
B are significant (at ˛ D

0:05) in most of the 11 regression models estimated. Experiment D, which is the
Lorenzen and Vance (1986) example also finds E to be a significant variable for
all of the design and design related parameters. We caution that the determination
of significance is based upon an assumption of normality. The actual models are
available upon request.

Future work involves finding designs based upon a model based upon just these
parameters (or fixing the others at a constant level) and investigating the robustness
of this reduced size model on the estimation of design parameters and the errors
in cost estimation. Of course, the latter is of secondary importance if the design
parameters are correctly determined.

Table 2 shows the means and ranges of the various input parameters for
Experiment A broken down as follows: experiments in which n > 0 for the CUSUM
and NX chart and ARL0 � 500, experiments in which n > 0 for the CUSUM and NX
chart, and experiments in which n D 0 for the CUSUM and NX chart. The first case
is one in which an economic design would be feasible where we define a feasible
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Table 2 Input parameter means and ranges for Experiment A

design as one in which the charts have an ARL0 � 500, which is an arbitrary
but plausible number for an in control ARL. Keep in mind the in control ARL for
Shewhart’s NX chart is about 370. For the CUSUM, 12,227 of the 40,320 runs in
the four experiments were feasible. For the NX chart, 4,690 of the 40,320 runs were
feasible. Results for all four experiments are available upon request.

Woodall (1986) has argued that there are practical problems with economic
designs including the possibility of having an economically optimal design with
a low in control ARL. This implies that there would be frequent false searches for
false alarms causing a lack of trust in the control chart and possibly incorrect process
adjustments leading to an increase in the variability of the process.

The results in Table 2 show that generally, with smaller shift sizes and larger
fixed costs of sampling, a regular search policy (i.e., n D 0) might be advantageous
to using a control chart for both the CUSUM and NX chart. A regular search policy is
one in which the process is investigated at every g interval of time without sampling
to see if an assignable cause has occurred. Now, feasible economic designs are those
in which the variables A and B are smaller and the variables Y and W are larger.
Of course, it is quite easy to find a feasible design by adding various constraints to
the optimization problem as suggested by Saniga (1989).

Figures 1 and 2 show the quantile plots for the design parameters and ARLs
for all CUSUM designs, and Figs. 3 and 4 show the quantile plots for the design
parameters and ARLs for all NX chart designs. The “c” in the figures refers to
the CUSUM chart and the “x” refers to the NX chart. Note from Figs. 2 and 4
that the median ARL0 is less than 500 for the CUSUM designs and for the NX
chart designs. The observed high frequency of low ARL0 values is consistent with
Woodall’s observation regarding economic designs. Also, n can be quite large for
both designs, especially for experiment A, possibly causing the loss of the advantage
of subgrouping in later data analysis. Note from the NX chart designs that k seems
to have a median value around 2.6, which is, of course, less than Shewhart’s
recommended 3� control limit. This is another way of stating that the ARL0 may
be too low for most of the cases we investigated where too low is defined as an
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Fig. 1 Quantile plots for CUSUM designs
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Fig. 2 Quantile plots for CUSUM designs
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Fig. 3 Quantile plots for X designs
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Fig. 4 Quantile plots for X designs
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ARL0 < 370, say. Of course, one can add ARL constraints to solve this problem as
done by Saniga (1989). We have also done quantile plots for the CUSUM chart and
the NX chart with ARL0 � 500. These are available upon request.

Sampling frequencies seem to have a median around one for most experiments
for both charts as well, indicating that the recommendation of taking one sample
every hour is a good one in general, although there are many examples where a
higher (and lower) sampling frequency should be used. Keep in mind that one can
add a constraint here as well to ensure a sampling frequency that meets the temporal
imperative of the organization.

Figures 5 and 6 show scatter plots for various design and input parameters
for CUSUM designs, and Fig. 7 shows scatter plots for various design and input
parameters for NX designs. For the first set of plots given in Figs. 5 and 6 one sees the
relationship of k and h for the CUSUM; as h increases k decreases at a decreasing
rate. Perhaps there is a positive relationship between k and n as well for two of the
experiments while g and n do not seem to be related. The rule of thumb that k D ı=2

seems to be violated when discussing economic design rather than statistical design
as well, except for the larger shift sizes. These results also hold true for the scatter
plots when ARL0 � 500 for both charts; these plots are available upon request.

For the NX chart there seem to be no relationships between the design parameters.
Figure 8 shows contour plots for various in control ARLs as a function of k and

h for the CUSUM chart. Note that many of these are nonmonotonic; perhaps, the
best explanation of this is that we are plotting a range of ARLs in each case and
the plotting algorithm in JMP causes this outcome. For a particular h though, it is
apparent that a higher k must be used to ensure feasible ARLs. The same is true for
a fixed k; higher h’s result in a higher ARL.

We have isolated the extreme regions of the highest ARL contour in this graph;
these regions are circled and labeled AREA 1 and AREA 2. In the figure we
present the cost ratios of the NX chart to the CUSUM chart in the upper right-
hand side of the figure. One can easily see that in AREA 1 one could employ an
NX chart without a cost disadvantage; i.e., the cost ratio is about 1 which mean both

charts cost the same. In AREA 2 though, one sees the marked advantage of the
CUSUM chart economically, having an average cost advantage of 68 %. Moreover,
optimal economic CUSUM designs, especially when they dominate NX designs, are
dissimilar in terms of k and h to an NX design.

We also present the mean and range of the input parameters for all outcomes in
these areas. Note that some of the same conclusions drawn by Saniga et al. (2012)
are apparent here. In particular, note that the CUSUM chart is cost dominant when
the shift size ı is small (and the NX chart is not disadvantageous in terms of cost
when ı is large (ı D 3)). A larger Y and W and especially a small fixed cost of
sampling, A, as well as a two component of variance process, makes the CUSUM a
definite choice economically.

Figure 9 shows the same graph as Fig. 8 except that we show the ARL contours
separately for each of the experiments.
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Fig. 5 Scatter plots for CUSUM designs
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Fig. 6 Scatter plots for CUSUM designs
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Fig. 7 Scatter plots for X

designs
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Fig. 8 Data from Experiments A, B, C & D
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Fig. 9 ARL0 ranges by Experiment

5 Conclusions

We have done extensive data analysis on many economic control chart designs for
both the NX chart and the CUSUM chart. These are presented in various forms in this
paper. Some general conclusions are that economic control chart designs may not
be a good choice unless constraints on ARLs and other requirements of particular
processes are carefully managed; economically optimal CUSUM designs do not
mirror NX chart designs in terms of k and h; optimal CUSUM designs do not follow
the statistical rule of thumb that k D ı=2; and that CUSUM designs should be used
when certain process parameters are at certain levels.
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SPC of Processes with Predicted Data:
Application of the Data Mining Methodology

Olgierd Hryniewicz

Abstract SPC procedures are usually designed to control stability of directly
observed parameters of a process. However, when quality parameters of interest are
related to reliability characteristics it is practically hardly possible to monitor such
characteristics directly. Instead, we use some training data in order to build a model
that is used for the prediction of the value of an unobservable variable of interest
basing on the values of observed explanatory variables. Such prediction models
have been developed for normally distributed characteristics, both observable
and unobservable. However, when reliability is concerned the random variables
of interest are usually described by non-normal distributions, and their mutual
dependence may be quite complicated. In the paper we consider the model of
a process when traditionally applied assumptions are violated. We show that in
such a case some non-statistical prediction models proposed in the area of data-
mining, such as Quinlan’s C4.5 decision tree, perform better than popular linear
prediction models. However, new problems have to be considered when shifts in the
levels of process parameters may influence the performance of applied classification
algorithms.

Keywords Monitoring of unobserved variables • Quality prediction • Shewhart
charts

1 Introduction

For many years procedures of Statistical Quality Control (SQC) have been used
for the analysis of independent, and usually normally distributed, quality charac-
teristics. With the development and automatization of new measurement techniques
production processes can be now described by many, usually interdependent, char-
acteristics. For many years the T 2 control chart, introduced by Hotelling in the 1947,
was the only SPC tool used for SPC of processes described by multivariate data, see
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Montgomery (2011). However, during the last 20 years some new techniques have
been proposed for dealing with interdependent statistical quality data. For example,
control charts for the parameters of the so-called profiles have been introduced in
order to control not only numerical values of quality characteristics, but the structure
of their mutual dependence as well, see the paper by Woodall et al. (2004), the book
by Noorsana et al. (2011), and recent papers by Xu et al. (2012), and by Wang and
Huwang (2012) for more information. These methods can be used for the analysis of
different dependencies of a regression type, both linear and non-linear. However, in
practically all cases the proposed models have been obtained under the assumption
of normality of measured characteristics. Moreover, it is assumed that all important
quality characteristics of interest are directly measurable.

In contemporary production processes important parameters of produced objects
are usually measured for all produced items. When specification limits are set for the
values of these measurements one can say that a 100 % quality inspection has been
implemented for this process. However, the parameters that can be measured during
the production process are not necessarily the same as the quality characteristics
that determine the quality of produced items. For example, important reliability
characteristics such as the lifetime cannot be measured during a production process.
The same is with all quality characteristics whose measurement may have a
negative impact on the quality of inspected items. There are also other quality
characteristics whose measurements are costly (e.g. when the time of measurement
is too long for a production process), and thus infeasible. In all such cases there are
attempts to measure these characteristics indirectly by the measurements of other
characteristics.

The problem of an indirect inspection of important quality characteristics
attracted the attention of relatively few authors for the last more than 50 years.
There exist two general approaches. In the first approach, introduced by Owen and
collaborators, see Owen and Su (1977), a multivariate probability distribution of
the random vector .Z; X1; : : : ; Xk/ is built, where Z is the quality characteristic
of interest, and X1; : : : ; Xk are the characteristics which are directly measurable
in a production process. This approach gives acceptable results only in the case
of the multivariate (usually bivariate) normal (Gaussian) distribution describing
.Z; X1; : : : ; Xk/. Another approach is based on the assumption that the relation
between the random variable Z and the variables X1; : : : ; Xk is described by a
certain (usually linear) regression model. Also in this case the normality assumption
about Z is usually used in practice. In both cases there is a direct link of the
proposed methods to the multivariate SPC tools mentioned in the first paragraph
of this section.

Unfortunately, the models mentioned above are of rather limited applicability
when the actual multivariate probability distribution of .Z; X1; : : : ; Xk/ is different
from the normal (Gaussian) one, and when the number of predictors (explanatory
variables) X1; : : : ; Xk is not small. In such cases building of a well-established prob-
abilistic model is rather infeasible. Instead, one can think about the usage of the data
mining methodology for a simple classification of inspected items. In the first step
used in this approach some (usually two: conforming and nonconforming) classes of
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inspected items are defined in relation to the possible values of Z. Then, a classifier
(e.g. linear classifier, decision tree or artificial neural network) is built using a
training data consisted of the limited number of observations .Z; X1; : : : ; Xk/.
Finally, the classifier is used in the inspection process for “labeling” the produced
items.

Classifiers used in the inspection process are usually built using small amount of
data, named training data. Thus, the results of classification are not error-free. What
is more important, however, that the relation between the results of classification and
the actual level of the quality characteristic of interest may be quite complicated.
Therefore, there is a need to investigate the impact the quality of the classification
procedures on the efficiency of SPC procedures used in production processes.

The remaining part of this paper is organized as follows. Section 2 is devoted
to the problem of the prediction of directly unobserved quality characteristics
using data mining techniques. The simulation model used for the evaluation of
different prediction algorithms is described. Then, the performance of two data
mining algorithms, namely the Linear Discrimination Analysis (LDA) and the
Classification Decision Tree Quinlan’s C4.5 algorithm, is evaluated in terms of
prediction errors for both non-shifted and shifted process levels. The properties of
classical Shewhart control charts for attributes used for the predicted quality data are
discussed in Sect. 3. Some conclusions and indication for future work are presented
in the last section of the paper.

2 Quality Prediction of Indirectly Observed Processes:
Simulation Experiments

The problem of process control when quality characteristics of interest are not
directly observable, but only assessed on the basis of observations of other, possibly
related, variables is much more complicated than the classical one when all variables
of interest are directly observable. The variability of such processes consists of two
parts. One is related to the variability of the process itself, and the second one is
related to unavoidable uncertainty of classification (prediction) procedures. What
is more important, these two types of variability are practically inseparable. In this
section we are using the results of simulation experiments with the aim to evaluate
possible extent to which these two types of variability (and especially the second
one) may influence the performance of SPC procedures.

As it has been noted in the previous section, the majority of statistical procedures
used for the prediction of unobservable quality characteristics is based on the
assumption of multivariate normality. Usually this assumption is reduced to the
case that the quality characteristic of interest and its observable predictor are jointly
distributed according to a bivariate normal distribution. When several possible
predictors are available it is also often assumed that these predictors are statistically
independent. Under such assumptions simple regression models (usually linear) are
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built and used for the purpose of quality evaluation. Unfortunately, when quality
characteristics of interest describe reliability these simple assumptions are hardly
acceptable. First of all, reliability characteristics, such as the lifetime, are usually
described by strongly skewed distributions. Moreover, predictors are frequently
modeled by random variables defined on subsets of positive real numbers, and their
distributions can be quite far from the normal distribution. Finally, behind the values
of observed predictors there are some common physical and chemical phenomena
which often make them strongly statistically dependent. One can also add another
dimension by assuming strong non-linearity of the relations describing physical
phenomena with the observed lifetimes, described, e.g., by models of the so-called
competitive risks. Thus, the real models describing the process of, e.g., reliability
prediction may be very complicated, and usually extremely difficult to identify.

In order to investigate the impact of some of the problems mentioned above on
the efficiency of prediction (classification) process we have built a simulation model
consisted of three levels. This construction reflects the situation when an observed
failure is a result of the activation of one or more possible hidden mechanisms. On
the first level we have four random variables, denoted by A; B; C; D, respectively,
which describe observable characteristics. These variables may be described by sev-
eral probability distributions (normal, uniform, exponential, Weibull, log-normal)
chosen by an experimenter. Observed variables may be pairwise dependent, and
their dependence may be described by several copulas (normal, Clayton, Gumbel,
Frank) chosen by an experimenter. The strength of dependence is defined by the
value of Kendall’s coefficient of association 	 . Detailed information about the
usage of copulas for the description of complex dependence structures can be
found in the monograph by Nelsen (2006). These assumptions allow to simulate
quite complicated structures of interdependent predictors. On the second level we
have four hidden (unobservable) random variables HA; HB; HC ; HD defined on
a positive part of the real line, and having the interpretation of the activation
times of hidden failure mechanisms. Their probability distributions may be chosen
from the set of distributions used in the theory of reliability (exponential, Weibull,
log-normal). Each of the hidden random variables is related to its respective
observed variable, i.e. HA to A, HB to B , etc., and this relation is described by a
chosen copula (with a given value of Kendall’s 	) describing their joint probability
distribution, and a certain linear dependence between their expected values. Finally,
on the third level, hidden random variables are transformed to the final random
variable E that describes the lifetime that can be observed only in specially designed
experiments. The relation between HA; HB; HC ; HD and E is strongly non-linear,
and is described by operators of a “min-max” type. This type of non-linear relations
is observed in practice when an observed failure can be considered as the result of
the activation of the so-called competing risks.

The simulation system described above allows to simulate sets of data with a
very complex, and practically impossible to be predicted in advance, structure.
In this paper we show the results of experiments of only one of the investigated
models. In this model A is distributed according to the normal distribution, B has the
exponential distribution, C is distributed according to the log-normal distribution,
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and D has the Weibull distribution. The dependence between A and B has been
described by the Clayton copula with 	 D 0; 8. The joint distribution of B and
C is described by the normal copula with 	 D �0; 8 (Notice that this is bivariate
“normal” distribution, but with non-normal marginals!), and the joint distribution
of C and D has been described by the Frank copula with 	 D 0; 8. The hidden
variable HA is described by the log-normal distribution, and its joint probability
distribution with A has been described by the normal copula with 	 D �0; 8.
The joint distribution of HB and B has been described by the Frank copula with
	 D 0; 9, and the marginal distribution of HB is assumed to be the exponential.
The joint model of HC and C is similar, but the copula describing the dependence
in this case is the Gumbel copula. Finally, the hidden variable HD is described
by the Weibull distribution, and its joint probability distribution with D has been
described by the Clayton copula with 	 D �0; 8. The random variable E that
describes the lifetime has been defined as E D minŒmax.HA; HB/; HC ; HD�. The
parameters of the aforementioned distributions have been found experimentally in
such a way, that unreliable items have their lifetimes E smaller than 5. Moreover, the
relation between the observed variables A; B; C; D and their hidden counterparts
HA; HB; HC ; HD is such that a shift in the expected value of each observed variable,
measured in terms of its standard deviation, results with the similar shift of the
expected value of its hidden counterpart, measured in terms of its own standard
deviation.

The ultimate goal of the performed simulation experiments is to evaluate the
efficiency of several classifiers which can be used for the prediction of reliability
of produced items. As it has been written in the Introduction we are looking for a
“labeling” classification procedure which assigns labels for potentially reliable and
unreliable items. In the practice of data mining such classification procedures are
designed using training data. It is rather obvious that the amount of training data
significantly influences the efficiency of classification. In the majority of practical
examples described in the literature training data sets have several hundreds units.
Unfortunately, such numerous data sets are hardly possible in reliability tests. Our
experience shows that n D 100 can be regarded as an upper practical limit for the
size of training data. In the simulation experiment described in this paper we have
used this value for the size of the training data sets in order to show how different
classifiers may perform in the most favorable, when the efficiency of classification
is taken into account, situation. In our simulation experiments we have also taken
into account the random variability of training data sets used for the construction
of classifiers. We have randomly generated ten different training data sets each of
n D 100 elements. For these different data sets we designed different classification
procedures (classifiers). The simulation experiment designed this way should reflect
the impact of random variability in choosing the training data on the efficiency of
quality inspection processes.
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2.1 The Case of Constant Process Levels

There exist dozens of methods used for solving classification problems. Some of
them, based on some statistical assumptions, have certain optimal properties. The
properties of other methods, mainly based on a data mining approach, can be only
assessed experimentally. In our research we have considered the performance of
several classification methods in the analysis of data generated by our simulation
system. Because of limited space we restrict ourselves to only two of them.

First considered classifier is based on classical statistical results of Fisher.
It is known as the Linear Discrimination Analysis (LDA), and is described in
many textbooks on multivariate statistical analysis, and data mining (see, e.g.
Hastie et al. (2008). In this method statistical data are projected on a certain
hyperplane estimated from the training data. Those data points who are closer to
the mean value of the projected on this hyperplane training data representing the
class 1 than to the mean value of training data representing the remaining class 2 are
classified to the class 1. Otherwise, they are classified to the class 2. The equation
of the hyperplane is given by the following formula:

L D yAA C yBB C yC C C yDD C yF ; (1)

where L is the value of the transformed data point calculated using the values of
explanatory variables A; B; C; D, and yA; yB; yC ; yD; yF are respective coefficients
of the LDA equation estimated from a training set of n elements. If ZL denote the
decision point, a new item is classified to the class 1 if L � ZL, and to the class
2, otherwise. In our research we considered several methods of the calculation of
ZL, but finally we present the results when this point is just the average of the
mean values of the transformed data points from the training set that belong to the
class 1 and the class 2, respectively. The calculation of the coefficients in the LDA
equation (1) is not so simple. However, it can be done using basic versions of many
statistical packages such as SPSS, STATISTICA, etc.

The second considered classification method is based on the implementation
of the one of the most popular data mining classification algorithms, namely the
classification decision tree (CDT) algorithm C4.5 introduced by Quinlan (1993),
and described in many textbooks on data mining, such as Witten et al. (2011). In
our experiments we used its version (known as J48) implemented in the WEKA
software, available from the University of Waikato, Hamilton, New Zealand, under
the GNU license. The decision tree is constructed using “IF..THEN..ELSE” rules,
deducted from the training data. In the description of this classification method in
this paper we use the notation of the MS Excel function IF.lt; t; f /, where lt is a
logical condition (e.g. C < 50), t is the action when lt D true, and f is the action
when lt D false. The actions t and f can be implementations of other IF functions,
or—finally—the assignments of classes to the considered items.

The elements of decision rules (LDA linear equations or decision tree “IF..
THEN..ELSE” rules) are estimated from training data sets. In our experiment these
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training data sets have been generated by our simulation program. In the artificial
intelligence community it is assumed that good training data sets should consist
of several hundreds of items. In our reliability prediction problem such large data
sets are absolutely infeasible. In our simulation experiments for the generation of
training data sets we have taken an upper feasible limit on the number n of observed
items, namely n D 100. In order to estimate the effect of the randomness of the
training data sets on the classification decision rules, and finally on the results of
classification during a production process, we have generated several different data
sets. For each of these data sets we have built LDA and CDT classification rules.
Because of the restricted space of this paper we present the results for only 10
such sets.

A comparison of the decision model parameters for different training data sets
in the LDA case is presented in Table 1. In this case we cannot say about statistical
significance of the parameters of the decision rule. However, the general impression
is that some predictors are of limited importance for the classification purposes.
The particular models look completely different depending on the training data set.
However, in all the cases the explanatory variable C seems to have no effect (very
low values of the coefficient describing this variable) on the classification.

Now, let us consider different decision rules estimated for the CDT algorithm.
Because of a completely different structure of decision rules presented in Table 2
we cannot compare directly these rules with the rules described by the Eq. (1). They
also look completely different for different training data sets, but in nearly all cases
(except for the Set 9) decision are predominantly (and in one case exclusively) based
on the value of the explanatory variable C . One can notice that the weight assigned
to the explanatory variables in the CDT algorithm is nearly exactly opposite to
the weights assigned in the LDA classification model (1). In order to explain this
shocking difference one should look at Fig. 1.

The dependence between the lifetime E and the explanatory variables C and
D is not only non-linear, but non-monotonic as well. This dependence cannot be
captured by the measures of linear correlation in the linear model (1). However, it

Table 1 Linear discrimination analysis—different sets of training data

Dataset yA yB yC yD yF Midpoint

Set 1 0.687 0.174 0.001 0.133 �6.338 0.628

Set 2 �0.045 0.178 �0.001 0.151 �2.710 �0.014

Set 3 �0.646 0.148 <0.0005 �0.001 1.663 0.464

Set 4 0.880 0.152 0.002 0.087 �7.499 0.585

Set 5 1.500 0.091 0.003 �0.008 �9.121 0.254

Set 6 �0.342 0.219 <0.0005 0.107 �1.399 0.706

Set 7 0.703 0.196 0.002 0.037 �6.044 0.784

Set 8 �0.501 0.173 <0.0005 0.006 0.636 0.629

Set 9 1.458 0.127 0.001 0.143 �10.048 0.344

Set 10 0.008 0.087 0.002 �0.206 0.272 0.771
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Table 2 Decision trees—different sets of training data

Dataset Decision rule

Set 1 IF.C <D 70; 0181I IF.C <D 56; 1124I 1I IF.C <D 63; 2962I 2I 1//I IF.D <D
16; 4381I 2I IF.A <D 4; 3509I 2I 1///

Set 2 IF.C <D 56; 4865I 1I IF.D <D 17; 3301I 2I IF.A <D 4; 0217I 2I 1///

Set 3 IF.C <D 73; 6148I IF.C <D 57; 1355I 1I IF.A <D 5; 0876I 2I IF.D <D
4; 497I 2I 1///I IF.D <D 17; 3499I 2I 1//

Set 4 IF.C <D 70; 2191I 1I IF.D <D 15; 9098I 2I 1//

Set 5 IF.C <D 73; 1584I 1I .IF.D <D 17; 0516I .IF.C <D 87; 8921I .IF.D <D
5; 0679I 2I 1//I 2//I 1///

Set 6 IF.C <D 60; 3912I 1I IF.D <D 16; 3504I 2I 1//

Set 7 IF.C <D 71; 8184I 1I 2/

Set 8 IF.C <D 71; 4456I 1I .IF.C <D 983; 0929I 2I .IF.D <D 18; 8213I 2I 1/////

Set 9 IF.B <D 14; 7339I .IF.D <D 16; 7482I .IF.D <D 4; 527I 1I 2//I 1//I 1/

Set 10 IF.C <D 60; 5044I 1I 2/

Fig. 1 Dependencies between the lifetime E and explanatory variables A; B; C; D

seems that the explanatory potential of these two variables is much greater than the
potential of the variables A and B . We have investigated this problem in our further
simulation experiments.

The simplest method for the comparison of classification algorithms is the
comparison of their false classification rates. In this comparison one should make
distinction between false non-detection of unreliable items (i.e. those with the
lifetime in our simulation experiment smaller than 5), and the false classification
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of reliable items. In many application the false classification of the first type is
much more dangerous, as, e.g., unreliable components may be installed in technical
systems that are important for safety of people. In Table 3 we compare false
classification rates estimated from samples of 100,000 elements. The subscripts nd
denote the false non-detection of unreliable items, and the subscripts fd denote the
false classification of reliable items. The results for the regression algorithm are
denoted by L for the LDA algorithm and by T for the CDT algorithm, respectively.

A close look at Table 3 reveals some interesting features. First, one can see that
the false detection rates vary significantly depending upon the training data set.
It shows that the practical necessity to use small training data sets has a negative
impact on the stability of the classification procedures. Second, the classification
algorithm based on the decision tree approach is visibly more accurate than the LDA
one. Additional interesting information about the efficiency of compared algorithms
can be found in Table 4 where falsely classified items have been presented in
terms of percentages of all items belonging to a given class. Subscripts pf denote
the percentages of unreliable items that have been classified as reliable ones, and
subscripts pnf denote the percentages of reliable items that have been falsely
classified as unreliable ones. When we compare the considered two algorithms we

Table 3 Percentages of
misclassified data—different
sets of training data

Dataset Lnd Lfd Tnd Tfd

Set 1 7.29 7.13 6.56 3.08

Set 2 4.71 14.14 6.78 1.86

Set 3 8.23 3.89 3.55 4.07

Set 4 9.94 4.15 2.01 7.46

Set 5 5.89 9.83 0.74 9.26

Set 6 8.28 4.73 4.62 4.57

Set 7 6.40 7.37 4.97 2.93

Set 8 7.95 4.21 4.36 3.14

Set 9 6.94 9.36 2.34 9.42

Set 10 6.63 4.53 7.58 0.87

Table 4 Relative
percentages of misclassified
data—different sets of
training data

Dataset Lpf Lpnf Tpf Tpnf

Set 1 28.5 9.6 25.7 4.1

Set 2 18.8 18.9 27.1 2.5

Set 3 32.1 5.2 13.9 5.5

Set 4 39.3 5.6 8.0 10.0

Set 5 23.5 13.1 2.9 12.4

Set 6 32.3 6.4 18.0 6.1

Set 7 25.1 9.9 19.9 3.9

Set 8 31.4 5.7 17.2 4.2

Set 9 27.7 12.5 9.3 12.6

Set 10 26.6 6.0 30.2 1.2
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Table 5 Observed fraction
of potentially non-reliable
items—different classifiers

Dataset Actual LDA CDT

Set 1 0.256 0.254 0.221

Set 2 0.251 0.345 0.201

Set 3 0.256 0.213 0.261

Set 4 0.253 0.195 0.397

Set 5 0.251 0.290 0.336

Set 6 0.256 0.221 0.256

Set 7 0.255 0.264 0.234

Set 8 0.253 0.216 0.241

Set 9 0.251 0.275 0.321

Set 10 0.251 0.230 0.183

can see that in the visible majority of cases the CDT algorithm outperforms the LDA
algorithm.

If one looks at percentages of misclassified data it is immediately seen that
the observed quality level of a process may be, depending on a classifier used,
completely different from the actual one. In Table 5 we present the estimated, from
samples of 100,000 items, values of process levels for two considered classifiers. In
the first column we present the value of the actual process level, as if it were actually
observed in different samples of that size.

The differences between the observed process levels and the actual one are really
striking. Even for classifiers of the same type the differences between the observed
process levels resulting from the randomness of training data sets are very large.
Therefore, the observed fractions nonconforming can be very different from the
actual one. Hence, by applying SPC tools for such data one can only monitor the
stability of the process, but not the value the actual process level.

2.2 The Case of Shifted Process Levels

In the previous section we have considered the case when observations of explana-
tory (predictive) and decision variables are governed by the same random mecha-
nisms as those forming the training data, and used for building classifiers. However,
considered processes may vary in time in many different ways. In our experiments
we consider only the simplest case when the expected value of only one of
explanatory variables is shifted (up or down) by the value equal to one half of the
standard deviation of this variable. This shift has been chosen deliberately small in
order to reveal possible differences in the change of the proportion of unreliable
items resulted from the change of process parameters.

First of all, we have to note that the shift of the expected value of an explanatory
variable may result in two mechanisms of the change of the observed process
level. First, it changes, but to usually unknown extent (because of very complicated
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relations between the values of considered variables), the actual fraction of unreli-
able items. Second, it results in changing the efficiency of classification rules. After
such a shift has occurred the existing classification rules do not fit to the actual data,
and the rates of false classification may change quite dramatically.

In our experiments we have considered the impact of the process shift on the
false classification rates of several classifiers, but in this paper we present the
results for only two of them: the LDA linear classifier, and the decision tree based
classifier (CDT). This impact has been evaluated on samples of 100,000 items, for
all considered sets of classifiers (obtained for different training data sets).

First, let us consider the positive shifts of the process levels, and suppose that
each shift is observed for only one of the explanatory variables. In all cases these
shifts result in the decrease of the actual (not observed in a real process!) fraction of
unreliable items. However, only for the variables C and D the fraction of unreliable
items has decreased significantly. The differences between the No shift, Shift A and
Shift B cases may be attributed to random errors of simulation. In Table 6 we show
how these fractions are changing following the shift of the process level for a given
explanatory variable.

In Tables 7 and 8 we show how the probabilities of wrong classification are
changing for such shifts of the expected values of the explanatory variables that
result in the decrease of the actual fraction nonconforming. In the first column
of these tables we present these probabilities when process data have the same
distribution as in the case of no shift.

In the case of the LDA classifier, and positive small shifts in the expected values
of the explanatory variables, the average false classification rate (probabilities),
averaged over all considered sets of classifiers with different classification rules,
have similar values for the case of no-shift, and for the cases of all considered
explanatory variables. Therefore, small positive shifts of the expected values of the
explanatory variables usually do not change the average efficiency of the LDA linear

Table 6 Fraction of
potentially non-reliable
items—shifts of 0.5�

No shift Shift A Shift B Shift C Shift D

0.253 0.252 0.252 0.234 0.244

Table 7 LDA—probability
of wrong classification (shift
0.5� )

Dataset No shift Shift A Shift B Shift C Shift D

Set 1 14.4 15.4 16.6 15.1 16.0

Set 2 18.9 18.6 24.1 18.6 31.8

Set 3 12.1 12.1 13.2 11.7 11.1

Set 4 14.1 14.0 14.1 16.0 14.1

Set 5 15.7 20.5 17.0 22.4 14.8

Set 6 13.0 12.8 14.6 13.0 12.9

Set 7 13.8 14.5 16.2 15.9 13.3

Set 8 12.2 11.9 13.5 12.0 11.2

Set 9 16.3 20.8 15.7 17.3 20.1

Set 10 11.2 11.2 11.6 13.4 10.4



230 O. Hryniewicz

Table 8 CDT—probability
of wrong classification (shifts
of 0.5� )

Dataset No shift Shift A Shift B Shift C Shift D

Set 1 9.6 9.8 9.6 15.1 17.2

Set 2 8.6 8.4 8.8 15.6 18.4

Set 3 7.6 7.6 7.7 14.7 18.3

Set 4 9.5 9.5 9.5 14.6 22.7

Set 5 10.0 9.9 9.8 11.0 22.1

Set 6 9.2 9.3 9.1 16.2 22.1

Set 7 7.9 7.7 7.9 12.7 6.9

Set 8 7.5 7.5 7.5 12.2 7.7

Set 9 11.8 11.7 10.7 12.3 23.2

Set 10 8.4 8.5 8.6 15.7 7.5

Table 9 Fraction of
potentially non-reliable
items—shifts of �0:5�

No shift Shift A Shift B Shift C Shift D

0.253 0.252 0.253 0.303 0.269

classifier. Only in the case of the shift in the expected value of the variable D the
variability of the observed false classification rates is larger than in the remaining
cases.

The situation is completely different in the case of the decision tree classifier
(CDT). The average values of false classification rates are nearly the same in the
cases of no-shift, and shifts in the levels of A and B . However, in the case of the
variables C and, especially, D the probabilities of false classification are visibly
higher. It is due to the fact that the CDT classifiers are built mainly on the observed
values of these variables. Moreover, in the cases of shifts in the levels of C and D

these probabilities may vary in a wide range, depending on the randomly chosen
classification rules.

Now, let us consider the negative shifts of the process levels when the shift is
observed for only one of the explanatory variables. For the explanatory variables A

and B such shifts do not significantly change the actual non-observed value of the
process level (the differences are due to a random simulation error). However, for
explanatory variables C and D such shifts result in the significant increase of the
actual (not observed in a real process!) fraction of unreliable items. In Table 9 we
show how these fractions are changing following the shift of the process level for a
given explanatory variable.

In Table 10 we present probabilities of wrong classification according to the LDA
algorithm when we observe small negative shift. Similarly to the case of positive
small shifts these probabilities are very similar with some exceptions in the case of
the shift of the variable C .

The situation changes significantly if we use the CDT algorithm for a negatively
shifted process. As it is seen from Table 11 the probability of wrong classification
increases dramatically if we decrease the expected value of the variable C . As we
see from Table 2 the classification rules obtained using this algorithm mainly depend
upon the value of this particular variable. The only exception is for Set 9 where the
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Table 10 LDA—probability
of wrong classification (shifts
of �0:5� )

Dataset No shift Shift A Shift B Shift C Shift D

Set 1 14.4 13.7 13.9 15.0 14.9

Set 2 18.9 19.1 15.2 18.4 16.4

Set 3 12.1 12.2 13.1 13.9 13.8

Set 4 14.1 16.4 18.2 20.0 17.7

Set 5 15.7 13.6 14.6 13.9 17.0

Set 6 13.0 13.1 13.6 35.6 14.3

Set 7 13.8 13.0 13.0 13.2 14.9

Set 8 12.2 12.4 13.0 13.6 13.7

Set 9 16.3 14.6 15.7 16.3 16.2

Set 10 11.2 11.2 11.5 12.6 14.6

Table 11 CDT—probability
of wrong classification (shifts
of �0:5� )

Dataset No shift Shift A Shift B Shift C Shift D

Set 1 9.6 9.4 9.6 33.8 11.0

Set 2 8.6 9.0 9.0 29.0 11.1

Set 3 7.6 7.9 7.5 30.9 10.9

Set 4 9.5 9.5 9.4 40.1 9.1

Set 5 10.0 9.9 9.8 45.7 10.0

Set 6 9.2 9.3 9.2 56.8 10.1

Set 7 7.9 7.8 8.0 39.1 9.5

Set 8 7.5 7.6 7.4 38.8 9.4

Set 9 11.8 11.7 10.9 11.4 17.5

Set 10 8.4 8.6 8.4 32.5 10.2

decision rule does not depend upon the value of C . One may say, that the CDT
classification algorithm in some cases may be completely unacceptable when the
values of explanatory variables are shifted.

To conclude this section we can say that the classification rules obtained using the
LDA algorithm are characterized by larger classification errors, but their behavior
remains stable in the presence of small shifts of the expected values of the
explanatory variables. On the other hand, the classification rules obtained using
the CDT algorithm perform much better in the case of stable processes. However,
when the values of some crucial parameters are changing their performance may
drastically deteriorate.

3 Application of a Shewhart Control Chart for Monitoring
the Process

The ultimate goal of any SPC procedure is to keep the process at an acceptable
level. Even if we observe all items in a process we can still use SPC procedures
for monitoring the process quality. For example, we can divide the entire process
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Table 12 Control limits of p chart—different classifiers

Dataset Actual-L Actual-U LDA-L LDA-U CDT-L CDT-U

Set 1 0.130 0.394 0.133 0.397 0.093 0.341

Set 2 0.112 0.368 0.205 0.491 0.082 0.324

Set 3 0.120 0.379 0.091 0.337 0.128 0.392

Set 4 0.123 0.384 0.085 0.327 0.171 0.449

Set 5 0.107 0.361 0.151 0.423 0.182 0.462

Set 6 0.123 0.385 0.091 0.337 0.117 0.378

Set 7 0.133 0.397 0.160 0.334 0.122 0.382

Set 8 0.118 0.376 0.088 0.332 0.111 0.370

Set 9 0.123 0.384 0.152 0.424 0.183 0.464

Set 10 0.112 0.368 0.093 0.341 0.062 0.290

into consecutive segments of n elements, and treat these segments as samples
for charting purposes. Alternative approaches, such as using a sliding window
for monitoring the process, are also possible. In our research we considered two
approaches: division of the process into segments of n D 100 items considered as
samples for charting the Shewhart p-chart, and using a moving average chart (MAV)
with a sliding window of n D 100 items. In this paper we describe only the first of
the both considered methods.

For the construction of Shewhart p-charts we used the data sets consisted of
samples of 1;000 items each. These samples represented the Phase 1 sampling
period, and were used for estimating control chart parameters for different clas-
sification rules derived from the samples of the training data used for the setting of
classification rules. The calculated control limits are presented in Table 12.

The columns labeled Actual-L and Actual-U give the values of the lower and
upper control limits of the p-chart as if the actual (not predicted!) binary values
of the variable of interest were observed. One can notice that they visibly vary
depending upon the data set used for the estimation of the fraction nonconforming
p. In the remaining columns the control limits have been calculated from the
predicted binary values observed from the Phase 1 samples. It has to be noticed that
these control limits are quite different for classifiers of the considered types (LDA
and CDT), and also vary significantly for different training data sets used for the
construction of classifiers. This significant variation stems mainly from the variation
of the probabilities of wrong classifications described in the previous section of this
paper.

First, let us consider the case of a stable process. Stability in this case means
not only the stability of the actual process level, but the stability of probability
distributions of the explanatory variables used for classification purposes. In our
experiments we have generated 100 runs of the process, and have calculated the
average run length ARL0. The number of simulation runs is too small to evaluate
the accurate values of ARL0, but provides a general idea about the performance of
the monitoring process. The results of this experiments are summarized in Table 13.
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Table 13 Average run length
ARL0—different classifiers

Dataset Actual LDA CDT

Set 1 535.1 344.7 416.1

Set 2 150.7 251.8 390.0

Set 3 263.4 385.8 681.0

Set 4 372.5 221.8 338.2

Set 5 145.8 196.0 253.1

Set 6 403.8 294.1 269.3

Set 7 326.7 180.3 274.3

Set 8 298.6 448.2 462.2

Set 9 380.6 353.0 366.4

Set 10 178.9 211.6 143.9

Table 14 Average run length
ARL—actual (not observed)
values

Dataset Shift B Shift C Shift D

Set 1 513.5 42.1 275.9

Set 2 161.7 41.4 58.6

Set 3 281.3 13.3 95.0

Set 4 401.7 23.2 180.0

Set 5 173.4 10.5 59.7

Set 6 409.8 24.3 141.0

Set 7 368.8 45.6 274.9

Set 8 296.3 15.9 115.4

Set 9 423.2 29.2 199.6

Set 10 170.4 10.2 60.4

In the first column of this table we display the values of ARLs as if the values of the
actual process were observed. Therefore, the variability observed in Table 13 is not
only due to the variability of the characteristics of classifiers, but to the variability
of chart’s control limits as well. One should note, looking at the first column of
Table 13, that even in the case of 1000 items used for the estimation of control
limits, the variability of the control charts may be strikingly large.

In Table 14 we give the actual (if the real times to failure were observed)
values of the ARLs when the process is deteriorating due to small negative shifts
(�0:5�) of the explanatory variables B , C , and D. We have not presented the
data for the explanatory variable A as they are similar to those obtained for B .
From Table 9 we know that a small negative shift of B does nor change the actual
fraction nonconforming (potentially unreliable) items. This is confirmed by the data
presented in the second column of Table 14 where the observed values of ARL are
similar to those given in the second column of Table 13. A similar (in terms of
standard deviations) shift of C causes severe deterioration of the process, and this
deterioration is reflected in the third column of Table 14. The impact of the shift of
D is also visible (see the fourth column of this table), but is not so significant as
in the case of C . The respective observed values of the ARLs for LDA and CDT
classifiers are presented in Table 15. The results presented in this table are really
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Table 15 Average run length ARL—different shifts and classifiers

Dataset ShiftB-LDA ShiftB-CDT ShiftC-LDA ShiftC-CDT ShiftD-LDA ShiftD-CDT

Set 1 18.7 467.4 260.3 1.0 75.9 279.7

Set 2 6.3 427.6 4.2 1.0 11.0 143.9

Set 3 17.8 577.8 416.8 1.0 432.6 15.4

Set 4 13.3 309.4 68.5 1.0 95.7 14.9

Set 5 195.6 246.1 74.5 1.0 164.3 17.0

Set 6 16.5 237.3 275.6 1.0 256.6 56.5

Set 7 9.5 288.7 56.6 1.0 103.9 281.6

Set 8 45.8 488.0 491.7 1.0 481.9 537.8

Set 9 33.0 135.8 205.4 367.6 37.3 156.6

Set10 321.1 142.3 566.2 1.0 6.3 176.0

alarming. When we use the LDA classifier we observe unnecessary alarms (small
values of the ARL) in the cases of shifts of B , and the lack of necessary alarms
(large values of the ARL) in the cases of shifts of C . Moreover, these results are
completely unpredictable. For example, the classifier used in the analysis of the Set
10 reacts correctly for the shift of B , but completely wrongly for the shift of C .
On the other hand, the classifier used in the analysis of the Set 2 reacts incorrectly
for the shift of B , but completely correctly for the shift of C . The CDT classifier
performs quite well in the case of shifts of B (large values of the ARL) and C (very
small values of the ARL, but with a noticeable exception of Set 9 for which the
classification rule does not depend upon the values of this particular parameter).
However, in the case of the shift of D the behavior of the CDT classifier seems to
be completely unpredictable.

To sum up, from the results presented in Tables 14 and 15 we can conclude that
the p control charts based on predicted classification data may trigger alarms when
the actual impact of shifts in explanatory variables on actual quality is negligible,
and—vice versa—do not trigger alarms when it is needed. This behaviour strongly
depends upon the type of a classifier, and its parameters estimated from a training
data. In the simulations described in this section we assumed that alarms are
triggered by crossing either the lower or the upper control limit. When only the
upper control limit of the p-chart is active, the respective values of the ARL are
much larger, especially in the case of no-shift or if the shift in the explanatory
variable has a small effect on the quality variable of interest.

4 Conclusions

The results presented in this paper are of very preliminary character. They show
that in the case of non-normal distributions of characteristics of interest, and non-
linear dependencies between observable (explanatory) and not directly observable
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(only predicted!) values of processes the properties of control charts designed using
the standard methodology may be not satisfactory. The most popular classifiers
(statistical one—LDA, and typical for data mining—CDT) used for prediction
purposes may not perform well. Moreover, their performance is difficult to predict
in advance. Further research is needed with the aim to analyze the impact of the size
of training data sets, and the size of the Phase 1 samples, on the characteristics of
control charts. Additional research on the possible application of more complicated
classifiers is also needed. The results presented in this paper show that the
application of modern data mining techniques for SPC purposes, which is strongly
advocated by some specialists, is not so promising as it may look like.
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Shewhart’s Idea of Predictability and Modern
Statistics

Alessandro Di Bucchianico and Edwin R. van den Heuvel

Abstract Shewhart’s view on statistical control as presented in his 1931 book is
connected to predictability and it seems to be inspired by philosophical theories.
At that time, there was no proper statistical framework available when Shewhart
implemented his ideas on statistical control. This was not a problem for standard
settings for which the original Shewhart control chart was developed, but there
are currently several much more complicated situations where the standard tools
of Shewhart do not suffice without modification. We will discuss whether current
statistical notions like hypothesis testing (both the standard Neyman-Pearson theory
and other forms like sequential statistics and equivalence testing), prediction
intervals and tolerance intervals can be useful in these other settings. We will also
discuss alternative settings of statistical control proposed in the literature including
Bayesian settings.

Keywords Charting versus testing • Neyman/Pearson tests • Statistical control •
Statistical intervals

1 Introduction

Shewhart’s view on statistical control as presented in Shewhart (1931) is connected
to predictability. His ideas are deep and are remarkably relevant even today. How-
ever, when Shewhart developed his ideas in the 1920s and 1930s, the development
of basic statistical theory had just started (e.g., the Neyman-Pearson theory of
hypothesis testing was developed in the early 1930s) and it was not until the
1950s that the basic statistical theory of estimation and hypothesis testing was
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established. So, there was no proper statistical framework available to Shewhart
when he implemented his ideas and for that matter he relied on simple statistical
tools. This was not a problem for the conventional manufacturing of parts since in
those settings the pragmatic approach of the original Shewhart control chart does
suffice (as exemplified by, for instance, the view on hypothesis testing by Deming
and others quoted in Woodall 2000). Nowadays, however, there are several other
application domains in which statistical process control (SPC) is applied with a
variety of domain specific goals. Examples of such application domains include
batch process manufacturing, health care, environmental surveillance, computer
network surveillance, biosurveillance and finance (see, e.g., MacCarthy and Wasusri
2002; Frisén 2009; Ning et al. 2009; Okhrin and Schmid 2007 for more detailed
overviews and several explicit examples). Obviously one cannot expect that the
standard tools of Shewhart suffice in all such cases. In view of this, we feel it is
worthwhile to revisit the ideas of Shewhart. We will investigate to which extent mod-
ern statistical theory may be used to extend Shewhart’s ideas in the above-mentioned
wider range of application domains. In particular, we will discuss whether current
statistical notions like hypothesis testing (both the standard Neyman-Pearson theory
and the other forms like sequential statistics and equivalence testing), prediction
intervals, and tolerance intervals can be applied or implemented. We will also
discuss alternative settings of statistical control proposed in the literature (see, e.g.,
Alwan and Roberts 1988; Andersson et al. 2007; Chakhunashvili and Bergman
2007; Crowder et al. 1997; Di Bucchianico et al. 2004; Frisén and De Maré 1991;
Hawkins et al. 2003).

Our discussion in this paper is limited to univariate SPC. Even in this restricted
case there are several issues that one has to address properly before moving on to
more complicated cases. We also note that the current theory of multivariate SPC has
a strong algorithmic flavour, opposed to univariate SPC where statistical modelling
is prominent (cf. Breiman 2001).

2 Shewhart’s Definitions of Statistical Control

As mentioned in the introduction, Shewhart’s view on statistical control as presented
in Shewhart (1931) is connected to predictability. On page 6 of Shewhart (1931) it
says:

a phenomenon will be said to be controlled when, through the use of past experience, we
can predict, at least within limits, how the phenomenon may be expected to vary in the
future. Here it is understood that the prediction within limits means that we can state, at
least approximately, the probability that the observed phenomenon will fall within given
limits

The link with predictability is somewhat lost in current discussions of the
notion of statistical control. Indeed, the original Shewhart chart still seems to be
the most widely used control chart in industrial practice (see, e.g., the survey
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in MacCarthy and Wasusri 2002), and new research papers keep appearing on
modifications of this control chart. Therefore, the notion of statistical control is
somewhat restricted since it is implicitly or explicitly tied to this specific control
chart. Shewhart charts (without additions like runs rules) only use the current
data (either a rational subgroup or an individual observation) which makes the
decision events independent. Thus the performance of this particular chart can be
fully described in terms of type I errors of a statistical test instead of performance
measures based on time until detection. Before we continue let us remark that
in Shewhart (1939) there is another definition of statistical control in terms of
joint distributions that are invariant under permutations. This definition seems to
be inspired by a philosophical theory called pragmatism, see Bergman (2009),
Mauléon and Bergman (2009) and Wilcox (2004) for modern discussions on this
topic. As remarked in Barlow and Irony (1992) and Chakhunashvili and Bergman
(2007), this definition boils down to exchangeability, which is a weaker notion than
independence. Exchangeability was used by De Finetti in his approach to subjective
probability and as such has a definite Bayesian flavour (see Bergman 2009). We will
not discuss this definition in the sequel because we feel that it does not apply to all
application domains and it is more difficult to translate into practice.

3 Application Scenarios

Before we start our review of existing approaches let us mention some scenarios that
could be viewed as being in statistical control, but might cause many false signals in
the original Shewhart control chart. In order to focus ideas, every scenario consists
of a practical situation together with an appropriate statistical model. The scenarios
that we have in mind are:

1. Tool wear: linear regression (see, e.g., Noorossana et al. 2012) or isotonic
regression (see, e.g., Chang and Fricker 1999; Kang and Albin 2000)

2. Processes that are sampled at high frequency: time series models (see, e.g., Faltin
et al. 1997)

3. Processes that cannot be kept at a setpoint (chemical reactors): time series models
(see, e.g., Vander Wiel et al. 1992; Vander Wiel 1996)

4. Multiple random components: random effect models or variance component
models (see, e.g., Chakhunashvili and Bergman 2007; Woodall and Thomas
1995; Yashchin 1994)

5. Trend reversals in business cycles: two-state Hidden Markov model (see, e.g.,
Andersson et al. 2007)

6. Multiple suppliers: mixture of distributions (see, e.g., Chakhunashvili and
Bergman 2007)

7. Processes with feedback controllers (integration of SPC and APC/EPC): time
series models (see, e.g., Box and Kramer 1992; Göb et al. 2001; Nembhard and
Chen 2007)
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Of course, combined versions of these scenarios are also possible (see, e.g., Göb
2000). All these scenarios can be interpreted as being in statistical control since the
process outcomes can in principle all be predicted, but they do not correspond to
the classical notion of stability. Note that nonstationary models may be required for
some of these scenarios in order to formulate the notion of statistical control.

4 General Frameworks

As an introduction let us remark that a discussion on control charts should bear in
mind that there are three aspects: process model, observations and decision strategy.
Often these aspects are confused, since one often defines the concept of being in
statistical control in terms of the control chart itself. Reasons for distinguishing
between process model and observations include the joint use of control charts for
mean and variance (e.g., a Shewhart X chart used alongside with an R or S chart) or
the use of control charts with variable sampling intervals or variable sampling sizes.
In spite of its inherent importance, we will not discuss such monitoring strategies
because they do not have an added value for our discussion.

Shewhart clearly distinguished between the economic operation of a process
and its predictability. However, as stated in Chakhunashvili and Bergman (2007),
Shewhart did not clearly transfer this distinction to a definition of being in statistical
control. Processes that are predictable within limits but possibly have special
(assignable) causes of variations are said to be “in weak statistical control” in
Chakhunashvili and Bergman (2007). Some of our scenarios also appear in that
paper to illustrate that we should rethink the basic notion of being in statistical
control.

In Frisén and De Maré (1991) a very general framework is described. The state
of the process is described as a general stochastic process. In-control situations are
a subset of realizations of this stochastic process, while out-of-control situations
are seen as the complement of the set of in-control realizations. This framework
includes all scenarios except Scenarios 3 and 7, but it is too generic to be seen as a
real framework (although Andersson et al. (2007) gave an example of the use of this
framework for a specific model). The framework that is behind the control charts
based on time series as put forward in Alwan and Roberts (1988) (see especially
Sect. 4) is similar, but assumes time series modelling of the underlying stochastic
process. It can handle Scenarios 2, 3, 4 and 7 but it cannot handle Scenarios 1, 5
and 6.

The weak statistical control definition of Chakhunashvili and Bergman (2007)
extends the stationarity framework and is supposed to include Scenario 3. It has the
disadvantage of not being explicit in a mathematical sense. Our contribution is to
investigate whether modern statistical techniques and theory can be used to develop
actual monitoring strategies that correspond to these notions of being in statistical
control.
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5 Prediction and Tolerance Intervals

Since Shewhart explicitly mentions prediction in his definition of being in statistical
control, it seems logical to involve prediction intervals or prediction regions in
making his definition operational. Instead we see widely recommended practices
like jointly monitoring the mean � and the standard deviation � with the X and S

for all kinds of situations. Of course, monitoring the variance is sensible in view
of process improvement. For example, under Scenario 4 a process could exhibit
two sources of variation, e.g. within and between batch variation. The between
variation may come from sources that are still in statistical control, but just add to
the variability (Roes and Does 1995). The sum of the variation sources may remain
approximately constant and thus predictability is guaranteed, but the ratio of the two
individual sources may change due to circumstances which would indicate an out
of control situation if the parameters would be monitored. The use of prediction
intervals is common practice in regression analysis where one constructs such
intervals for individual or sets of observations (Hahn and Meeker 1991, especially
in engineering and the medical sciences. Note that the control chart for individual
observations can be seen in view of predictability as well as in view of monitoring
distributional parameters. However, this dual view is lacking in our seven practical
scenarios which indicates again the need for a re-evaluation of the concepts of in
statistical control.

A related concept to predictability is of course tolerance intervals, that unlike
confidence intervals for parameters are defined in terms of coverage of a probability
distribution (see, e.g., Guttman 1970; Krishnamoorthy and Mathew 2009). There
are two main types of tolerance intervals: guaranteed content tolerance intervals
and mean coverage tolerance intervals. The former type contains with a certain
confidence level a proportion of the distribution, while the latter contains this
proportion on average. It is not widely known that mean coverage tolerance
intervals for independent and identically distributed random variables coincide
with prediction intervals (a result due to Paulson 1943). Tolerance and prediction
intervals have been derived for many statistical models (see, e.g., Patel 1986; Hahn
and Meeker 1991) and there is also a generalization of these classical concepts due
to Weerahandi that is useful for situations in which traditional intervals cannot be
computed (see, e.g., Weerahandi 2003 for a general overview and Krishnamoorthy
and Mathew 2009 for tolerance intervals in particular).

However, there is a problem in using these intervals for checking whether a
process is in statistical control. Should one check whether only the next observation
falls within predictable limits or should one do so for some or all future obser-
vations? In the settings of our practical scenarios, the parameters of the statistical
model may alter over time, but this may not necessarily severely affect the prediction
or tolerance interval. The process remains predictable, but the process does seem to
have changed and could also be viewed out of control. Furthermore, simultaneous
prediction intervals do exist, but these intervals do not have a natural associated
way to judge performance when used for monitoring. In a sense, the variance
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parameters are indirectly monitored, since the prediction and tolerance intervals
require a precise and unbiased estimate of the variance components.

Checking whether a value lies within a confidence interval of a distribution
parameter is related to hypothesis testing. Hypothesis testing has the advantage that
it provides natural performance measures. Therefore we turn to hypothesis testing
in the next section.

6 Hypothesis Testing

To start our discussion on the role of hypothesis testing let us consider what in
the SPC literature is called Phase II (on-line monitoring). The standard implicit
framework of the Shewhart control chart is monitoring a process modelled as a
sequence of independent, normally distributed random variables or vectors with
constant mean and variance. Let us also make the restrictive assumption that the
mean and variance are known and that we are only applying an X chart. The goal
is then to quickly detect an out-of-control situation, which is usually assumed to
be a persistent shift of the mean. To be more precise, it is assumed that there is
an unknown, deterministic time 	 (usually called changepoint) such that the means
�i at times i D 1; 2; : : : are equal to a known value �0 before time 	 and equal
to an unknown value �0 C ı from time 	 onwards. This situation can be put in a
hypothesis testing framework which is typical of the so-called changepoint literature
(see, e.g., Chen and Gupta 2012; Csörgő and Horváth 1997; Gombay 2003; Lai
1995; Yashchin 1997):

H0 W �1 D : : : D � versus H1 W �1 D : : : D �	�1 D � ¤ � C ı D �	 D �	C1 D : : :

(1)

This hypothesis framework obviously cannot handle any of the scenarios. Mixtures
could be handled if one drops the normality assumption since they are usually
multimodal (and thus not normally distributed). Scenario 2 can also be handled
if one assumes a parametric time series model and/or a parametric regression
model and let the hypothesis refer to one or more parameters. Woodall (2000)
reviews statements of several authors on the relation between hypothesis testing
and control charting. Several of these quoted authors state that control charting is
quite different from hypothesis testing. Some of these criticisms seem to apply to
overtheoreticizing standard uses of control charting. As mentioned above, control
charting is being applied more and more in new, complex situations that do require
careful study of underlying statistical notions. Therefore we choose to concentrate
on technical drawbacks of the standard hypothesis framework.

A major drawback is that on-line use of control charts involves repeated decisions
so that we should have a sequential point of view. This is especially important
for control charts like EWMA and CUSUM charts that use not only current
observations but also observations from the past, since these charts have decisions
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based on overlapping sets of data. For the standard Shewhart chart this does not
play a role, since we then use non-overlapping data (only the current observation or
rational subgroup), and decisions can be described without any problems in terms
of type I errors. However this is not appropriate even in simple cases like adding run
rules to the standard Shewhart chart. This criticism is in fact not related to the use of
hypotheses (process model) but to the decision strategy. Statistical techniques like
Sequential Probability Ratio Tests and Generalized Likelihood Ratio tests exist to
properly deal with the sequential nature of repeated decisions (see, e.g., Lai 1995;
Stoumbos and Reynolds Jr 1997).

A similar criticism refers to the asymmetry between the null hypothesis and
the alternative hypothesis in the standard Neyman-Pearson approach to hypothesis
testing. We will return to this later when we discuss the relation with equivalence
testing. The major criticism against the use of hypothesis testing is that the standard
hypotheses are simple hypotheses and that as a consequence, any deviation from the
single value of the parameter(s) under the null hypothesis has to be interpreted as
being out-of-control. This is a much too strict formulation in general and does not
match the scenarios of Sect. 3. It is also not a convenient translation of Shewhart’s
“predictability”.

One should not conclude from the criticisms mentioned in previous paragraphs,
that hypothesis testing is not an appropriate framework. An important advantage of
hypothesis testing (static or sequential) is that it connects with concepts to describe
the performance of control charts (see, e.g., Frisén 2007; Kenett and Pollak 2012 for
recent discussions that go far beyond the traditional average run length notions). It is
thus worthwhile to try to explore more suitable ways of formulating hypotheses. In
Does and Schriever (1992) the hypotheses of (1) were slightly generalized by using
parameterized cumulative distribution functions so that any parameter (not just the
mean) is allowed as well as changes in more than one parameter:

H0 W F1 D F2 D : : : D F versus H1 W F1 D F2 D : : : D F	�1 D F ¤ G D F	 D F	C1 : : :

(2)

The case of a mean shift as in (1) is included as the special choice G.x/ D F.x�ı/:

This type of hypothesis can handle Scenario 6 only. However, it is possible to extend
this framework. For instance, in Andersson et al. (2007) the following hypotheses
are used:

H0 W �1 � �2 � : : : versus H1 W �1 � �2 � : : : �	�1 � �	 � �	C1 � : : : (3)

Although these hypotheses are in terms of means and hence generalize (1) rather
than (2), one could use cumulative distribution functions under the stochastic
ordering F � G if and only if F.x/ � G.x/ for all x. This would lead to hypotheses
of the form

H0 W F1 � F2 � : : : versus H1 W F1 � F2 � : : : � F	�1 � F	 � F	C1 � : : :

(4)
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In order to accommodate Scenario 3 one could use composite hypotheses. In
Di Bucchianico et al. (2004) GLR procedures are presented for several composite
hypotheses. E.g., non-monotone threshold crossing is included by considering the
following hypotheses (similar monotone versions can be found in Chang and Fricker
(1999)):

H0 W �i � ı for i D 1; : : : versus H1 W �i � ı for i < 	 and �i > ı for i � 	

(5)

Of course, two-sided versions are also possible so that one gets rid of the unrealistic
assumption of a single true value of a process parameter (e.g., the mean):

H0 W ı1 � �i � ı2 for i D 1; : : : versus H1 W ı1 � �i � ı2 for i < 	 and

�i < ı1 or �i > ı2 for i � 	 (6)

Note that many variations are possible. For instance, in so-called epidemic alterna-
tives there is only a temporary change of parameters. This is relevant for Scenario
7, since shifts in the underlying process may be seen temporarily in the process
output due to the compensating effect of feedback controllers. Scenario 4 seems to
provide some difficulty in formulation of hypothesis testing. The reason is that the
mean values over time in some cases are random variables themselves due to one
particular source of variation that may vary naturally but is not measured itself over
time.

These types of hypotheses bring us to another general issue: the so-called
equivalence testing (see, e.g., Wellek 2010). Neyman-Pearson’s theory of hypothesis
testing is asymmetric in the sense that one does not reject the null hypothesis instead
of accepting it. This becomes a problem in confirmatory tests in pharmaceutics
when one wishes to demonstrate that a new drug has the same effect as another
one (“bio-equivalence”). A similar situation occurs when one uses a goodness-of-fit
test where one wishes to accept the null hypothesis of a certain assumed distribution
to be true. In SPC we do not wish to “accept” or “not reject” a null hypothesis of
being in statistical control, but reject the hypothesis that the process is out-of-control
and continue sampling. The essence of equivalence testing is to quantify a range of
parameter values that may be considered (almost) equivalent processes. Whenever
the process parameter remains within this range the process is considered under
control. This view is more natural, since small variations in the model parameters
may not severely alter the range of individual outcomes of a process and therefore
the process remain predictable. Equivalence has been introduced essentially by
quality improvement programs like Six Sigma. Indeed, in these type of programs
the range of acceptable values for the process mean was set at approximately 1:5

times the short-term standard deviation, although these programs did not present
this flexibility in terms of equivalence.
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As pointed out in Wellek (2010), one can adapt the Neyman-Pearson framework
and its related likelihood ratio tests to accommodate this. One does therefore
not need a new statistical theory, but it does yield different decisions than
applying standard statistical theory. This also holds for the hypotheses discussed
in Di Bucchianico et al. (2004) and Woodall (1985): the methods still work if
one interchanges them and adapt the likelihood ratios accordingly. Note that
conventional sequential testing theory also requires one to choose between two
alternative hypotheses or continue collecting data (cf. Lai 1995; Lai 2001).

All of the above is based on the frequentist approach to hypothesis testing
which assumes true, but unknown values of process parameters. Bayesian methods
assume distributions on parameters and hence are more flexible than hypotheses
like (6) since they also allow randomness in the unknown parameters involved like
the changepoint parameter 	 or the shift parameter ı in (1). The randomness is
formulated as a prior distribution on the parameters involved, while the alarm is
triggered using a rule based on the a posteriori distribution. The idea of using a
Bayesian framework goes back to at least the 1960s (see, e.g., the nice overview
of Shiryaev (2010) on the origins and mathematical background of the Shiryaev-
Roberts procedure). Early overviews of Bayesian procedures for changepoint
problems and statistical process control can be found in Zacks (1982) and Zacks
(1983). The development of the Markov Chain Monte Carlo methods like the
Metropolis and the Gibbs samplers have made the practical use of Bayesian
statistics feasible (see, e.g., Carlin et al. 1992; Colosimo and Del Castillo 2010
for extensive modern discussions of Bayesian approaches to changepoint problems
and statistical process control that include both computational issues and modelling
issues, e.g., multiple changepoints). These developments give an extra dimension
to the discussion in Bergman (2009) on the connection of Bayesian statistics with
conceptual pragmatism, the philosophy that has inspired Shewhart to develop his
ideas on quality control.

The hypothesis testing framework described above is strongly related to outlier
detection in a set of independent observations. In this research area hypothesis
testing is typically referred to as discordance testing (Barnett and Lewis 1994).
In the above formulations of process control the null hypothesis is formulated as
H0 W Xi � F; 8i 2 f1; 2; : : : ; ng, while the alternative hypothesis is H1 W
9j W Xj � G; G ¤ F . In outlier detection the observation Xj will be called
contaminated, but it is unknown which observation would be from the alternative
distribution G. Therefore, the alternative hypothesis for discordant testing is, for
instance, reformulated as: X.1/; X.2/; : : : ; X.n�1/ belong to F and X.n/ belong to G

for a single outlier in the right tail, with X.1/; X.2/; : : : ; X.n/ being the order statistics.
Under normality assumptions the difference with the alternative hypothesis in (1)
is that the process has changed indefinitely, while in outlier detection only one
observation may have slipped into a change in mean, which is also referred to as
the slippage hypothesis. Depending on the type of assumptions of the distributions
F and G and the imposed characteristics of the test statistic, many outlier detection
tests have been developed in the past (Barnett and Lewis 1994). We believe that the
outlier detection hypothesis is strongly related to the concept of predictability, since
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an outlier would indicate that the process is not within predictable limits anymore.
It relates to an out-of-control signal, similar to the one used in Shewhart’s control
charts without the additional run rules, but more formally, it can be shown that
outlier detection fits within the concept of tolerance intervals (Hawkins 1980).

7 Conclusion

Shewhart defined being in statistical control in terms of a process being predictable.
We reviewed his concept in view of the major developments in statistical methodol-
ogy that have taken place since then. Several non-standard scenarios in which SPC
are being used currently have been presented. These scenarios go beyond the simple
manufacturing scenario for which Shewhart developed his methods. Prediction
intervals and the related concept of tolerance intervals have been developed for
several statistical models, but they lack a natural way to assess the performance
of using them to monitor processes. The related concept of hypothesis testing is
much better suited for this. We discussed several useful extensions of the standard
setup with simple hypotheses. These extensions can accommodate the non-standard
scenarios that we presented and may also take away the criticism to using hypothesis
testing as the basic statistical methodology underlying the use of control charts.
More work is needed here to obtain a general framework.

Bayesian methods offer additional flexibility in modelling uncertainty and may
thus yield more realistic approaches for practical use of control charts. These
methods have been relatively unexplored in the field of statistical process control.
An additional advantage of Bayesian methods is that they seem to match well with
the philosophical theory (pragmatism) that underlies the ideas of Shewhart. This is
also an area that is worthwhile to explore.
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Sampling Inspection by Variables
with an Additional Acceptance Criterion

Peter-Th. Wilrich

Abstract We deal with sampling inspection by variables, i.e. acceptance sampling
procedures wherein the acceptability of a lot is statistically established from the
measurement results of a specified continuous variable X obtained at the items in a
sample from the lot. An item is qualified as nonconforming if its measured quality
characteristic x is larger than a defined upper specification limit U . We accept the
lot if Nx C k� � U or Nx C ks � U in the case of known or unknown lot standard
deviation � , respectively, where Nx and s are mean and standard deviation of a sample
of size n drawn at random from the lot and k is an acceptance constant given as a
parameter of the sampling plan.

In some cases the acceptance procedure is extended by an additional limit
U ? D U C 
 with 
 2 R that must not be exceeded by any of the measurements
x1; x2; : : : ; xn, i.e. for acceptance of the lot the largest measurement result x.n/ D
max.x1; x2; : : : ; xn/ must be less or equal to U ?, x.n/ � U ? D U C 
: Of course,
with this additional requirement for acceptance the probability of acceptance of the
lot is smaller than without it for each fraction p of nonconforming items in the lot.

Such extended sampling plans are, e.g., used for the evaluation of bacterial
contamination in foods, the amount of active ingredient used in formulating drug
products and the strength of concrete.

The OC function of these extended sampling plans for inspection by variables is
derived and the advantages/disadvantages in comparison with unextended sampling
plans are discussed. It turns out that especially in the case of “known” � plans the
extended sampling plans protect against a true standard deviation that is larger than
the value being used in the acceptance criterion Nx C k� � U .
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1 Introduction

We deal with sampling inspection by variables, i.e. acceptance sampling procedures
wherein the acceptability of a lot is statistically established from the measurement
results of a specified continuous variable X obtained at the items in a sample
from the lot. An item is qualified as nonconforming when its measured quality
characteristic x is larger than a defined upper specification limit U .

Under the assumption that the quality characteristic X is normally distributed
with mean � and standard deviation � the fraction of nonconforming items in the
lot is

p D P.X > U / D 1 � P.X � U / D 1 � P

�
X � �

�
� U � �

�

�

D 1 � P

�
Z � U � �

�

�
D 1 � ˚

�
U � �

�

�
(1)

where Z is the standardized normal variable and ˚.�/ is the cumulative distribution
function of the standardized normal distribution. Hence, .U � �/=� is equal to the
.1 � p/-quantile z1�p of the standardized normal distribution,

U � �

�
D z1�p: (2)

A sample of n items is randomly drawn from the lot and the quality characteristic
X is measured at each of the sample items. The sample average

Nx D
nX

iD1

xi (3)

and (eventually) the sample standard deviation

s D
vuut 1

n � 1

nX
iD1

.xi � Nx/2 (4)

of the measurements x1; x2; : : : ; xn are used for the acceptance decision.
In the case of known standard deviation � we accept the lot if

Nx C k� � U I (5)

the operating characteristic function (OC), i.e. the probability of acceptance of a lot
as a function of the fraction of nonconforming items in the lot, p, is

PA.p/ D P. NX C k� � U / D ˚.
p

n.z1�p � k//: (6)
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In the case of unknown � we accept the lot if

Nx C ks � U I (7)

the OC is

PA.p/ D P. NX C kS � U / D 1 � FTn�1;ı
.k

p
n/ (8)

where Fn�1;ı.�/ is the cumulative distribution function of the noncentral t-
distribution with f D n � 1 degrees of freedom and noncentrality parameter
ı D p

nz1�p; see Schilling and Neubauer (2009). We denote such an acceptance
procedure as a single sampling plan .n; k/ for inspection by variables.

In some cases the acceptance procedure is extended by an additional limit

U ? D U C 
 (9)

with 
 2 R that must not be exceeded by any of the measurements
x1; x2; : : : ; xn, i.e. for acceptance of the lot the largest measurement result
x.n/ D max.x1; x2; : : : ; xn/ must be less or equal to U ?,

x.n/ � U ? D U C 
: (10)

A lot is accepted if the requirements (5) or (7), respectively, and (10) are fulfilled.1

Of course, with this additional requirement for acceptance the probability of
acceptance of the lot, PA.p/, is smaller than without it for each fraction p of
nonconforming items in the lot.

In Bray et al. (1973) such extended sampling plans were introduced as Three-
class sampling plans and their application concerning hazardous substances in foods
or the amount of active ingredient used in formulating drug products were discussed.
The quality characteristic X is the concentration for which two specification limits
U and U ? > U are defined. By this definition the items in the lot are classified
into three classes: conforming items .x � U /, marginally conforming items
.U < x � U ?/ and totally nonconforming .x > U ?/ items. The application of
Three-class sampling plans for inspection by attributes for the evaluation of bacterial
contamination have been discussed in Hildebrandt et al. (1995), Milchverordnung
(1995), Dahms and Hildebrandt (1998), Legan et al. (2001), ICMSF (2002), Dahms
(2003, 2004), and Wilrich and Weiss (2011). In Wilrich and Weiss (2011) it is
proposed to use Three-class sampling plans for inspection by variables instead of
Three-class sampling plans for inspection by attributes in order to increase the
discrimination power and at the same time maintain the advantages of the Three-
class sampling plan.

1If a lower specification limit L is defined, the additional limit is L? D L � 
. The lot is accepted
if Nx � k� � L or Nx � ks � L, respectively, and x.1/ D min.x1; : : : ; xn/ � L?
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An interesting modification of an extended sampling plan for inspection by
variables is the Content uniformity test of the European Pharmacopoeia (and
identically of the United States Pharmacopeia and of the Japanese Pharmacopeia)
EDQM (2010). It starts with the measurement of the doses of a first sample of
n D 10 dosage units (e.g., tablets), i.e. for each dosage unit the concentration
and the weight are measured and multiplied. These results are expressed as
percentage with the claimed content = 100 % . Mean Nx and standard deviation
s of these doses are calculated and the acceptance value is obtained as AV D
max.min. Nx; 101:5/; 98:5/ C k � s with k D 2:4. If AV is not larger than 15
(percent) the content uniformity test is passed. If AV > 15 a second sample of
n D 20 dosage measurements is obtained and combined with the first sample.
With Nx and s of the n D 30 doses the acceptance value is obtained as AV D
max.min. Nx; 101:5/; 98:5/ C k � s with k D 2:0. If AV is not larger than 15 (percent)
the content uniformity test is passed; otherwise not. In addition to this acceptance
criterion it is required for acceptance that all measured doses fall within the interval
100 ˙ 25 %.

In CEB (1978) extended sampling plans are introduced for the evaluation of the
strength of concrete, and they are now standardized in EN (2000). Taerwe (1988)
presents OC curves of these plans obtained by simulation.

The upper limit U is a specification limit because it specifies whether an item
is conforming .X � U / or not. However, at the same time it is a decision limit
because the lot is rejected if Nx C k� > U or Nx C ks > U . In the application
in microbiology the additional limit U ? D U C 
 is also a specification limit
because it classifies the items of the lot into three classes (conforming, marginally
conforming and nonconforming items), and it is a decision limit because the lot is
rejected if x.n/ > U ?. However, in many applications as in the inspection of concrete
this additional limit U ? is only a decision limit because it does not specify the
conformance/nonconformance of items but is only used as an additional acceptance
criterion. In this case the additional limit U ? can be smaller than the specification
limit U , i.e. 
 < 0.

The OC function of the extended sampling plans for known standard deviation �

is derived in Sect. 2 and for unknown � in Sect. 3. In Sect. 4 we investigate how the
extended sampling plans protect against a standard deviation being larger than the
assumed value, and in Sect. 5 how they protect against deviations from the assumed
normal distribution. Section 6 summarizes the results.

2 The OC Function of the Extended Sampling Plans
with Known Standard Deviation �

The probability of acceptance of a lot with the fraction p of nonconforming items is

PA.p/ D P. NX C k� � U ^ X.n/ � U C 
 j p/: (11)
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Since NX � X.n/ the acceptance criterion X.n/ � U C 
 implies NX � U C 
.
Hence, the acceptance criterion for NX is NX � U � k� ^ NX � U C 
 or NX �
min.U � k�; U C 
/. This is only relevant if 
 < �k� , i.e. if ı < �k.

X.n/ and NX are not independent and hence, we look at the random variable X.n/�NX which is independent of NX . The random variables Xi � NX I i D 1; : : : ; n are
normally distributed with mean 0 and standard deviation �

p
.n � 1/=n and hence,

their cumulative distribution function is

FXi � NX .x/ D ˚

 
x

�
p

.n � 1/=n

!
I (12)

however, the distribution of their maximum X.n/� NX is difficult to obtain because the
random variables Xi � NX and Xj � NX ; i; j D 1; : : : ; nI i ¤ j are correlated (with
the small correlation coefficient �1=n). In McKay (1935) the probability density
function of .X.n/ � NX/=� for a given n was derived as a function of the cumulative
distribution function for n�1 and hence, principally, the distribution can be obtained
by recursion. However, for 5 � n � 100 the distribution of .X.n/ � NX/=� (that does
not depend on � and �) can be approximated by a logarithmic normal distribution.
For each n we have performed 105 simulation runs and obtained estimates of the
mean and the standard deviation of this distribution. The dependence of these means
on n can be approximately described by the function

�n D exp.�9:26n�0:95/ (13)

and that of the standard deviations by

�n D 0:71n�0:33 (14)

so that we get the cumulative distribution function of .X.n/� NX/=� as approximately

P

 
X.n/ � NX

�
� x

!
� ˚

�
log.x/ � �n

�n

�
: (15)

Now we write (11) as

PA.p/ D
Z U Cmin.
;�k�/

�1
f NX . Nx/F.X.n/� NX/=�

�
U C 
 � Nx

�

�
d Nx

D
Z U Cmin.
;�k�/

�1
f NX . Nx/F.X.n/� NX/=�

�
z1�p C 


�
� zp

n

�
d Nx (16)
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and with (15), z D p
n. Nx � �/=� , f NX. Nx/d Nx D �.z/dz and the integration limit

U C min.
; �k�/ for Nx becoming
p

n.U C min.
; �k�/ � �/=� D p
n.z1�p C

min.
=�; �k// for z,

PA.p/ �
Z p

n.z1�pCmin.
=�;�k//

�1
�.z/

�˚
�

log.z1�p C 
=� � z=
p

n/ � �n

�n

�
dz: (17)

The probability of acceptance of a lot does not only depend on the two parameters
of the sampling plan, n and k, but also on the distance 
 between the specification
limit U and the additional limit U ? divided by � . We denote the ratio

ı D 


�
(18)

as standardized limit distance. For 
 ! 1, i.e. if the additional limit U ? becomes
larger, PA.p/ tends towards that of the unextended sampling plan, given in (6);
for 
 ! 0, i.e. if the additional limit U ? is not much larger than U , PA.p/ tends
towards the probability of X.n/ not exceeding the additional limit, P.X.n/ � U C
/.

Figure 1 shows OC curves of the sampling plan .n D 9; k D 1:83/ for known � .
The black curve is that for the unextended plan (ı ! 1), the red curve is that for
the case of the additional limit equal to the specification limit (ı D 0). OC curves for
ı > 0 lie between these two curves; for ı < 0, the OC curves lie below the curve for
ı D 0. Apparently, the additional criterion for acceptance decreases the probability

δ = 0

δ = 0.2

δ = −0.5

Fig. 1 The OC curves of the sampling plan .n; k/ D .9; 1:83/ for inspection by variables with
known � for various standardized limit distances ı. Theoretical OC curves are presented as solid
lines, simulation results as points (each point represents the average of 104 simulation runs)
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n =  9  k =  1.830 δ = 0

n =  9  k =  1.830 δ = 0.2

n =  9  k =  1.863 δ → ∞

Fig. 2 The OC curves of the sampling plan .n; k/ D .9; 1:83/ for inspection by variables with
known � for ı ! 1 (unextended, plan 1, black line) and ı D 0:2 (extended, plan 2, green
line) and the unextended plan that matches the OC of plan 2 at the indifference point .p?

0 D
0:0312; 0:5/. The latter one (plan 3, blue line, k D 1:858) has a steeper OC than plan 2

of acceptance for each fraction p of nonconforming items in the lot. That this is not
an advantage can be further demonstrated by the following comparison presented
in Fig. 2: It repeats the OCs of the sampling plans for .n D 9; k D 1:83/. The OC
of the unextended plan (plan 1, black line) has its indifference point (probability of
acceptance equal to 0.5) when in the OC function according to (6) z1�p0 D k D 1:83

and hence, p0 D 1 � ˚.k/ D 0:0336. The extended plan with the standard limit
distance ı D 0:2 (plan 2, green line) has its indifference point at p?

0 D 0:0312. The
acceptance constant of the sampling plan 3 (blue line) without an additional decision
limit that coincides in the point .p?

0 ; 0:5/ with plan 2 is k? D 1 � z1�p?
0

D 1:858.
The OC of this sampling plan .n; k?/ is steeper than that of plan 2: Increasing the
acceptance constant of our plan from k D 1:83 to k D 1:857 is a better strategy than
using the extended plan with ı D 0:2 because, compared with plan 2, it improves
the discrimination power between lots with small and lots with large fractions of
nonconforming items. This is not surprising, because, given the sample average Nx
the distribution of X.n/ � NX does not depend on � and hence, not on p, i.e. it is
uninformative concerning the fraction of nonconforming items in the lot. However,
in Sects. 4 and 5 we show that the additional acceptance criterion partly protects
against the case that the true standard deviation �true is larger than the “known”
standard deviation � used in the acceptance criterion (5) and against violations of
the normality assumption, especially against outliers.
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3 The OC Function of the Extended Sampling Plans
with Unknown Standard Deviation �

The probability of acceptance of a lot with the fraction p of nonconforming items is

PA.p/ D P. NX C kS � U ^ X.n/ � U C 
 j p/: (19)

X.n/ is not independent of NX and S and hence, we look at the random variable
.X.n/� NX/=S which is independent of NX and S . In analogy to Sect. 3 the distribution
of .X.n/ � NX/=S can be approximated by a logarithmic normal distribution. For
each n between n D 5 and n D 100 we have performed 105 simulation runs and
obtained estimates of the mean and the standard deviation of this distribution. The
dependence of these means on n can be approximately described by the function

�n D exp.�6:48n�0:87/ (20)

and that of the standard deviations by

�n D 0:30n�0:15 (21)

so that we get the cumulative distribution function of .X.n/� NX/=S as approximately

P

 
X.n/ � NX

S
� x

!
� ˚

�
log.x/ � �n

�n

�
: (22)

Now we write (19) as

PA.p/ (23)

D
Z U

NxD�1

f NX . Nx/

"Z .U �Nx/=k

sD0

fS .s/F.X.n/� NX/=S

�
U C 
 � Nx

s

�
ds

#
d Nx

D
Z U

NxD�1

f NX . Nx/

"Z .U �Nx/=k

sD0

fS .s/F.X.n/� NX/=S

�
z1�p C 
=� � . Nx � �/=�

s=�

�
ds

#
d Nx:

With z D p
n. Nx � �/=� , f NX . Nx/d Nx D �.z/dz and the integration limit U for Nx

becoming
p

n.U � �/=� D p
nz1�p for z, y D .n � 1/s2=�2, fS .s/ds D f2

�
.y/dy

and the integration limit .U � Nx/=k for s becoming .n�1/.z1�p �z=
p

n/2=k2 for y

we get

PA.p/ D
Z p

nz1�p

zD�1
�.z/

"Z .n�1/.z1�p�z=
p

n/2=k2

yD0

f2
�
.y/ (24)

�F.X.n/� NX/=S

 p
n � 1.z1�p C 
=� � z=

p
n/p

y

!
dy

#
dz:
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With (22) we finally have

PA.p/ �
Z p

nz1�p

zD�1
�.z/

"Z .n�1/.z1�p�z=
p

n/2=k2

yD0

f2
�
.y/ (25)

�˚
 

log.
p

n � 1.z1�p C 
=� � z=
p

n/=
p

y/ � �n

�n

!
dy

#
dz:

As in the case of known � the probability of acceptance of a lot does not only
depend on the two parameters of the sampling plan, n and k, but also on the
standardized limit distance ı D 
=� .

For 
 ! 1, i.e. if the additional limit U ? becomes larger, PA.p/ tends towards
that of the unextended sampling plan, given in (8); for 
 ! 0, i.e. if the additional
limit U ? is not much larger than U , PA.p/ tends towards the probability of X.n/ not
exceeding the additional limit, P.X.n/ � U C 
/.

Figure 3 shows OC curves for the sampling plan .n D 25; k D 1:83/ . The black
curve is that for the unextended plan .ı ! 1/; its OC curve is almost identical
to that of the unextended plan .n D 9; k D 1:83/ of Fig. 1 for known � . The red
curve is that for the case of the additional limit being equal to the specification limit
(ı D 0). OC curves for ı > 0 lie between these two curves; for ı < 0, the OC
curves lie below the curve for ı D 0. As for the case of known � the additional
criterion for acceptance decreases the probability of acceptance for each fraction
p of nonconforming items in the lot. In analogy to Fig. 2, Fig. 4 demonstrates

Fig. 3 The OC curves of the sampling plan .n; k/ D .25; 1:83/ for inspection by variables with
unknown � for various standardized limit distances ı. Theoretical OC curves are presented as solid
lines, simulation results as points (each point represents the average of 104 simulation runs)
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Fig. 4 The OC curves of the sampling plan .n; k/ D .25; 1:83/ for inspection by variables with
unknown � for ı ! 1 (unextended, plan 1, black line) and ı D 0:2 (extended, plan 2, green
line) and the unextended plan that matches that the OC of plan 2 at the indifference point .p?

0 D
0:0283; 0:5/. The latter one (plan 3, blue line, k? D 1:931/ has a steeper OC than plan 2

that increasing the acceptance constant of the unextended plan from k D 1:83 to
k D 1:931 is a better strategy than using the extended plan with ı D 0:2 because,
compared with plan 2, it improves the discrimination power between lots with small
and lots with large fractions of nonconforming items.

It should be noted that the OC function (25) depends on the standardized limit
distance ı D 
=� and hence, for any 
 that is used in the application of the plan,
on the unknown standard deviation � . Therefore, the OC of an extended sampling
plan for inspection by variables with unknown � is principally unknown. In order to
overcome this difficulty we recommend to assume a reasonable value of � , calculate
ı D 
=� and the OC for this ı. This OC is valid if the true standard deviation, �true,
is equal to � . We discuss this problem further in Sect. 4.

4 The OC of the Sampling Plan if the Standard Deviation
Differs from the Assumed Value

4.1 “Known” Standard Deviation

The “known” standard deviation � , used in the application of the sampling plan
for known standard deviation, is the value that is assumed to be equal to the true
standard deviation �true. However, this assumption does not necessarily hold. If we
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distinguish between � and �true the OC function (17) becomes

PA.p/

D P. NX C k� � U ^ X.n/ � U C 
 j p/

D P

 p
n. NX � �/

�true
� p

n
U � �

�true
� k

�

�true
/ ^ X.n/ � U C 


!

D P.Z � p
n.z1�p � k=	/ ^ X.n/ � U C 
/

D
Z p

n.z1�pCmin.ı;�k=	//

�1
�.z//F.X.n/� NX/=�true

�
U C 
 � Nx

�true

�
d Nx

�
Z p

n.z1�pCmin.ı;�k=	//

�1
�.z/˚

�
log.z1�p C ı=	 � z=

p
n/ � �n

�n

�
dz (26)

where 	 D �true=� . For �true D � .	 D 1/ Eq. (26) is equal to (17). Figure 5
presents the OC curves of the unextended sampling plan .n D 9; k D 1:83/ and
the extended plan for ı D 0:2 for various values of 	 . If �true is larger than �

.	 > 1/, then for each value of the fraction nonconforming, p, the probabilities
of acceptance of both the unextended and the extended sampling plan are larger
than those of the respective plan for �true D � .	 D 1/. This is an unavoidable
disadvantage of the sampling plans for inspection by variables, however, the effect is
smaller for the extended sampling plan than for the unextended plan. The additional
limit U ? D U C 
 D U C ı� reduces the negative effect of �true being larger
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Fig. 5 The OC curves of the sampling plan .n; k/ D .9; 1:83/ for inspection by variables with
known � , unextended (solid lines) and extended with ı D 0:2 (dashed lines), for various ratios
	 D �true=�
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Fig. 6 The OC curves of the sampling plan .n; k/ D .9; 1:83/ for inspection by variables with
known � , unextended (ı ! 1, black lines), extended with ı D 0:2 (red lines) and extended with
ı D 0 (green lines) for ratios 	 D �true=� D 1 and 1.5

than � . Figure 6 shows that the negative effect of �true > � becomes smaller if
the additional limit ı tends towards 0. The solid lines are the OCs for 	 D 1 and
ı ! 1 (unextended plan, i.e. no additional limit, black line), ı D 0:2 (red line)
and ı D 0 (additional limit equal to the specification limit), and the dashed lines
are the respective lines for 	 D 1:5. Apparently, the distance between the OC of the
extended and the unextended plan is smallest for ı D 0 and largest for ı ! 1.

4.2 Unknown Standard Deviation

The OC (8) of the unextended sampling plan for unknown standard deviation does
not depend on the unknown standard deviation. However, as (25) shows, the OC
of the extended plan depends on � via ı D 
=� . In Sect. 3 it was recommended
to overcome this difficulty by starting with the desired value 
 and then to assume
a reasonable value of � , to calculate ı D 
=� and the OC for this ı. This OC is
valid if the true value of the standard deviation, �true, is equal to � . If �true ¤ � , i.e.
	 D �true=� ¤ 1, the OC (25) becomes

PA.p/ �
Z p

nz1�p

zD�1
�.z/

"Z .n�1/.z1�p�z=
p

n/2=k2

yD0
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Fig. 7 The OC curves of the sampling plan .n; k/ D .25; 1:83/ for inspection by variables with
unknown � , unextended (solid black line) and extended with ı D 0:2 (dashed lines), for various
ratios 	 D �true=�

Figure 7 corresponds to Fig. 5. It presents, for 	 D �true=� = 1, 0.75, 1.25, 1.5, the
OC curve of the unextended plan (that does not depend on 	) as solid black line and
the OC curves of the extended plan as dashed lines. Compared with the case where
�true D � (	 D 1, black dashed line) the probabilities of acceptance are decreased
for �true > � (	 > 1, green and blue line) and increased for �true < � (	 < 1, red
line).

5 The Performance of the Sampling Plans
If the Distributional Assumption Is Violated

If X is distributed with unknown E.X/ D �, known V.X/ D �2, cumulative
distribution function FX .x/ and .1 � p/-quantiles x1�p defined by FX .x1�p/ D
1 � p, then the fraction nonconforming in the lot is, given the upper limit U ,

P.X > U / D 1 � P.X � U / D 1 � FX .U / D p; (28)

i.e. U D x1�p . The OC function of the unextended sampling plan .n; k/ for known
� is

PA.p/ D P. NX C k� � U j p/ D P. NX � x1�p � k�/: (29)



264 P.-Th. Wilrich

According to the central limit theorem NX is approximately normal distributed with
E. NX/ D � and V. NX/ D �2=n. Hence,

p
n. NX��/=� is approximately standardized

normal distributed and

PA.p/ D P
�p

n. NX � �/=� � p
n.x1�p � k� � �/=�

�

� ˚
�p

n
�x1�p � �

�
� k

��
: (30)

The OC functions of the extended plans for known � and of the unextended
and extended plans for unknown � cannot be obtained analytically because the
distributions of .X.n/ � NX/=� , S and .X.n/ � NX=S are unknown and their
independence cannot generally be assumed. Therefore, we obtain these OCs by
simulation.

A comparison of (30) with the OC function under normality, (6), shows that the
.1 � p/-quantile z1�p of the standardized normal distribution is replaced by the
standardized .1 � p/-quantile .x1�p � �/=� of X and we immediately see that
PA.p/ will be larger under the non-normal distribution of X than under normality
if .x1�p � �/=� > z1�p and smaller otherwise.

As an example of a symmetric heavy-tailed (leptocurtic) distribution we choose
the t�-distribution with � degrees of freedom. Its expectation and variance are
E.T�/ D 0 and V.T�/ D �=.� � 2/; � D 3; : : :, respectively. We find the
standardized .1 � p/-quantile of T� as

x1�p � �

�
D t�I1�pp

�=.� � 2/
(31)

where t�I1�p is the .1 � p/-quantile of T� . Figure 8 shows the OCs of the sampling
plan .n D 9; k D 1:83/, unextended (ı ! 1, solid lines) and extended (ı D 0,
dotted lines) for the normal distribution (black) and the t�-distribution with � D 10

(green) and � D 3 (blue) degrees of freedom. The standardized quantile function
t�I1�p=

p
�=.� � 2/ of the t� -distribution with � D 10 and of the quantile function

z1�p of the standardized normal distribution intersect at p D p0 D 0:036 for � D 10

and at p D p0 D 0:018 for � D 3. For p � p0 the former one and hence, PA.p/ is
larger, for p � p0 it is smaller. As heavier the tails of the underlying distribution are,
as more is the acceptance probability decreased (for not too small p) as compared
with the normal distribution. This is also true for the extended sampling plan with
ı D 0, however, the extension of the sampling plan has no additional effect. Figure 9
corresponds to Fig. 8, however now it gives the OCs of the matching sampling plan
.n D 25; k D 1:83/ for unknown � . Both the unextended and the extended sampling
plan are rather robust with regard to a symmetric heavy-tailed distribution instead
of the normal distribution.

As an example of a distribution that is skewed to the right we choose the 2
�-

distribution with � degrees of freedom. Its expectation and variance are E.2
�/ D �
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Fig. 8 OCs of the sampling plan .n D 9; k D 1:83/ for known � , unextended (ı ! 1, solid
lines) and extended (ı D 0, dotted lines) for the normal distribution (black) and the t�-distribution
with � D 10 (green) and � D 3 (blue) degrees of freedom. The smooth curves are the theoretical
OCs. Each point represents the average over 104 simulation runs

Fig. 9 OCs of the sampling plan .n D 25; k D 1:83/ for unknown � , unextended (ı ! 1, solid
lines) and extended (ı D 0, dotted lines) for the normal distribution (black) and the t�-distribution
with � D 10 (green) and � D 3 (blue) degrees of freedom. Each point represents the average over
104 simulation runs

and V.2
�/ D 2�; � D 1; : : :, respectively. We find the standardized .1�p/-quantile

of T� as

x1�p � �

�
D 2

�I1�p � �p
2�

(32)
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Fig. 10 OCs of the sampling plan .n D 9; k D 1:83/ for known � , unextended (ı ! 1, solid
lines) and extended (ı D 0, dotted lines) for the normal distribution (black) and the 2

�-distribution
with � D 10 (green) and � D 3 (blue) degrees of freedom. Each point represents the average over
104 simulation runs

where 2
�I1�p is the .1�p/-quantile of 2

� . Figure 10 shows the OCs of the sampling
plan .n D 9; k D 1:83/, unextended (ı ! 1, solid lines) and extended (ı D 0,
dotted lines) for the normal distribution (black) and the 2

�-distribution with � D 10

(green) and � D 3 (blue) degrees of freedom. The standardized quantile function
.2

�I1�p � �/=
p

2� of the 2
� -distribution with � D 10 and of the quantile function

z1�p of the standardized normal distribution intersect at p D p0 D 0:114 for � D 10

and at p D p0 D 0:133 for � D 3. For p � p0 the former one and hence, PA.p/ is
(much) larger, for p � p0 it is smaller. As more skewed to the right the underlying
distribution is, as more is the acceptance probability increased as compared with the
normal distribution. This is also true for the extended sampling plan with ı D 0,
however, the extension of the sampling plan has no additional effect. Figure 11
corresponds to Fig. 10, however now it gives the OCs of the matching sampling plan
.n D 25; k D 1:83/ for unknown � . The acceptance probabilities of the unextended
plan are heavily increased under the skewed distribution whereas they remain almost
stable if the extended plan with ı D 0 is used.

As examples of mixed distributions we choose two distributions with the
densities p1f1.�1; �2

1 /Cp2f2.�2; �2
2 /I p1 Cp2 D 1; �2 > �1 where f1 and f2 are

normal densities. We set p1 D 0:8 and �2
1 D �2

2 D 0:5 (for the mixed distribution
1) and �2

1 D �2
2 D 0:3 (for the mixed distribution 2). In order to get a mixed

distribution with E.X/ D � D 0 and V.X/ D �2 D 1 we have to fix �1 D �p2d

and �2 D p1d where d D �2 � �1 D
r

1��2
1

p1p2
. This gives �1 D �0:354 and

�2 D 1:414 for the mixed distribution 1 and �1 D �0:418 and �2 D 1:673 for the
mixed distribution 2. Both mixed distributions have a large component .p1 D 0:8/

on the left side and a small component on the right side. In the mixed distribution
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Fig. 11 OCs of the sampling plan .n D 25; k D 1:83/ for unknown � , unextended (ı ! 1,
solid lines) and extended (ı D 0, dotted lines) for the normal distribution (black) and the 2

�-
distribution with � D 10 (green) and � D 3 (blue) degrees of freedom. Each point represents the
average over 104 simulation runs

Fig. 12 OCs of the sampling plan .n D 9; k D 1:83/ for known � , unextended (ı ! 1,
solid lines) and extended (ı D 0, dotted lines) for the normal distribution (black) and the mixed
distribution 1 (green) and 2 (blue). Each point represents the average over 104 simulation runs

2 the distance between the means of the two components is larger in relation to
their common standard deviation than in the mixed distribution 1. Figure 12 shows
the OCs of the sampling plan .n D 9; k D 1:83/, unextended (ı ! 1, solid
lines) and extended (ı D 0, dotted lines) for the normal distribution (black) and the
mixed distribution 1 (green) and 2 (blue). The standardized quantile functions of
both mixed distributions are larger than that of the standardized normal distribution
.z1�p/ and hence, PA.p/ is (much) larger than under normal distribution. As more
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distant the means of the mixed distribution (with a large component on the left side
and a small component on the right side), as more is the acceptance probability
increased as compared with the normal distribution.

We do not present a similar graph for the case of sampling plans with unknown
� because their behaviour under mixed distributions is principally equal to that of
the plans with known � .

6 Conclusions

• The additional criterion X.n/ � U C 
 for acceptance decreases the probability
of acceptance for each fraction p of nonconforming items in the lot. However,
such an extended sampling plan is less efficient than the unextended sampling
plan with identical indifference point.

• The “known” standard deviation � , used in the application of the sampling plan
for known standard deviation, is the value that is assumed to be equal to the true
standard deviation �true. If �true is larger than � , then for each value of the fraction
nonconforming, p, the probabilities of acceptance of both the unextended and the
extended sampling plan are larger than those of the respective plan for �true D �

and vice versa. The additional limit U ? D U C
 D U Cı� reduces the negative
effect of �true being larger than � .

• The OC function of the unextended sampling plan for unknown standard
deviation does not depend on the unknown standard deviation. However, for the
extended sampling plan it depends on the standardized limit distance ı D 
=�

and hence, for any 
 ¤ 0 on the unknown � . Therefore, the OC of an
extended sampling plan for inspection by variables with unknown � is principally
unknown. In order to overcome this difficulty we recommend to assume a
reasonable value of � , to calculate ı D 
=� and the OC for this ı. Compared
with the case where �true D � the probabilities of acceptance are increased for
�true > � and decreased for �true < � .

• Both the unextended and the extended sampling plan are rather robust with regard
to a symmetric heavy-tailed distribution instead of the normal distribution.

The acceptance probabilities of the unextended plan are heavily increased
under a skewed distribution whereas they remain almost stable if the extended
plan with ı D 0 is used.

As more distant the means of a mixed distribution (with a large normal
component on the left side and a small normal component on the right side)
are, as more is the acceptance probability increased as compared with the normal
distribution. This effect is similar for the unextended and the extended sampling
plan.

• Each outlying observation x above the additional limit U C 
 causes an
immediate rejection of the lot.
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The essential advantages of the extended sampling plan as compared to the
unextended sampling plan are

• a good protection against outlying observations (that might indicate a contami-
nation of the distribution of X with a component with larger mean or/and larger
standard deviation) and

• a partial compensation of the negative effect of the true standard deviation being
larger than the “known” or assumed value � .
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Fractional Acceptance Numbers for Lot Quality
Assurance

K. Govindaraju and G. Jones

Abstract Fractional acceptance numbers such as one-quarter fraction noncon-
forming are used in the acceptance sampling literature. The concept of fractional
acceptance number is particularly useful for short-run food manufacturing processes
involving a measurable quality characteristic such as the percentage sugar or fat
content. Attribute method of inspection is desirable for small sample sizes because
of the difficulty in identifying the underlying distribution. Analytical testing of fat
content, etc. also involves considerable measurement uncertainty, often up to half
of the observed variation. However the distribution of the measurement errors can
be fairly well ascertained using past calibration studies. An observed measurement
X is classified with certainty as conforming or not for given specification limits
only when there are no measurement errors. Measurement error uncertainty results
only in an estimated probability of conformance of a unit. The probability of
nonconformance of an individual unit based on the error-prone measurement is
defined as the ‘fractional’ nonconforming unit. A new fractional acceptance number
sampling plan, which is a mix of attribute and variables methods, is introduced. The
operating characteristics of the proposed plan are evaluated using common error
distributions and the incomplete beta function. The fractional acceptance numbers
also extend to broken acceptance numbers such as 1.6.

Keywords Measurement error correction • OC function • Sampling plans

1 Introduction

Measurement of quality by the variables method is usually considered as more
informative than the attribute method of counting nonconforming units. Let a
random sample of size n, say .X1; X2; : : : ; Xn/, be available for a continuous quality
characteristic X . Let NX and S be the sample mean and standard deviation (n � 1

in the divisor). The uniformly minimum variance unbiased estimate (UMVUE) of
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the fraction nonconforming p for a normally distributed quality characteristic with
a lower specification limit L is obtained using the statistic

zpL D
r

n

n � 1

 
L � NX

S

!

which follows the non-central t distribution (see (Lieberman and Resnikoff 1955)
or (Schilling and Neubauer 2009) for details). For Maximum Likelihood (ML) and
other methods of estimation of p, see Guenther (1971), Brown and Rutemiller
(1973), Boullion et al. (1985), and Md-Yusof and Rigdon (1992).

Let the variable measurements be instead used to classify the sampled items
as conforming or nonconforming based on a given lower specification limit L

(say). The observed number of nonconforming units d becomes a binomial random
variable giving an estimated fraction nonconforming Op D d

n
. Consider the

(fictitious) sample measurements (50.01, 50.04, 50.07, 50.10, 50.15, 50.20, 50.29,
50.42, 50.45, 50.48, 50.55, 50.60, 50.80, 51.20, 51.30) for L D 50 which passes
various normality tests. The estimated fraction nonconforming under the normal
distribution for X is Op D 0:13. On the other hand, there are no nonconforming units
in the sample and hence Op D 0 under the attribute method. Such huge differences in
the estimated fraction nonconforming leads to contradictory conclusions depending
on whether an attribute or variables sampling plan is employed. A lot will always
be accepted if there are no nonconforming units in the sample under the attribute
method (irrespective of the acceptance number Ac). A lot rejection with no apparent
nonconforming units in the sample is not viewed favorably by the producer. The
disadvantage of variables plans rejecting lots with no apparent nonconforming units
is well known and discussed in Woods (1955), Duncan (1986), and Collani (1991).

Small sample sizes can be blamed for the large standard errors in the estimated
fraction nonconforming but the justification of a known probability distribution
for X is important to correctly estimate the fraction nonconforming. It is well
known that the fraction nonconforming estimates based on the normal distribution
are not robust. The effect of non-normality on variables sampling plans is studied
by Das and Mitra (1964), Singh (1966), Owen (1969), Takagi (1972), Schneider
and Wilrich (1981), and Montgomery (1985). The producer’s and consumer’s
risks as well as the fraction nonconforming are incorrectly estimated when the
distribution of the lot quality characteristic is non-normal. Process capability indices
are also not robust to non-normality, see Clements (1989), Kotz and Johnson
(1993), Somerville and Montgomery (1996), Ahmed (2005), and others. Tail area
estimation depends on the assumed probability distribution, and hence it is not
surprising that the parametric approach to the estimation of fraction nonconforming,
process capability, etc. does not work well for small sample sizes. The validity
of the normal distribution for finite size lots is investigated by Collani (1991),
Seidel (1997), and others. When compared to attribute plans, variables plans are
found to incorrectly estimate the fraction nonconforming and risks for finite lot
sizes. In the absence of quality history, such as the Phase I process control data,
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the distributional uncertainty in the quality characteristic X forces us to take a
nonparametric approach to quality assurance. While non-normality is not critical for
the NX chart (see, Burr (1967), Schilling and Nelson (1978), and Balakrishnan and
Kocherlakota (1986)), the distributional uncertainty cannot be ignored for control
charts for dispersion such as the S chart (see Abbasi and Miller (2012) and the
references cited therein).

Food manufacturing processes are often short-run or batch production processes.
Such processes involve frequent start-ups due to the need to clean the machinery
for safety reasons. Frequent sampling from the process is also not practical. Hourly
samples are often taken for a production run whose length may extend to 20–30 h.
Food quality characteristics such as the percentage sugar and fat are determined
using analytical methods which involve considerable measurement uncertainty.
This paper deals with the quality assurance problem when only small samples are
available, and half of the observed variation or even more is due to measurement
uncertainty. In Sect. 2, a review of fractional acceptance numbers is given. In Sect. 3,
the use of fractional and broken acceptance numbers for lot quality assurance after
correction for measurement errors is discussed. The case of known distribution for
the quality characteristic of interest is then discussed in Sect. 4. The last section
provides the summary and conclusions.

2 Fractional Acceptance Numbers

In a single sampling attribute plan, the acceptance number Ac is the maximum
allowable number of nonconforming units in the sample of size n for lot acceptance
purposes. In order to compare the single sampling plan with other types of sampling
plans such as the double sampling plan, Hamaker (1950) introduced the concept
of fractional and broken acceptance numbers (and sample sizes). For example,
an acceptance number of 1.6 is equivalent to using the Ac D 1 plan 40 % of
the time and the Ac D 2 plan 60 % of the time using a randomization (lottery)
device. This approach derives its support from the randomized hypothesis test
procedure in the statistical inference literature (Young and Smith 2005, p.66).
Govindaraju (1991) showed the equivalence of fractional acceptance number single
sampling plans to double sampling plans with different sample sizes for the first and
second samples. This approach operationalizes the fractional acceptance numbers
to achieve a desired level of discrimination between acceptable and rejectable levels
of fraction nonconforming. Fractional acceptance numbers are also part of the ISO
Standard ISO 2859-1:1999(E) (1999).

A random sample of continuous measurements X1; X2; : : : ; Xn becomes avail-
able under the variables method of inspection. For a given lower specification
limit L, the indicator variable IXi <L becomes a Bernoulli random variable with
pi D Pr.Xi < L/. That is, the variable measurements are transformed to a
binary quality measure (one for Xi < L or zero for Xi � L) with the number
of nonconforming units d D Pn

iD1 IXi <L becoming a binomial random variable
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for p1 D p2 D : : : D pn D p. The single sampling attribute plan having an
acceptance number Ac accepts the lot when d � Ac. The assumption of identically
and independently distributed Xi is critical for using the binomial distribution for
obtaining the OC function of the single sampling attribute plan as

Pa.pjn; Ac/ D
AcX

dD0

 
n

d

!
pd .1 � p/n�d :

The above OC function giving the probability of acceptance for a given lot fraction
nonconforming p, known as the Type B OC function, is valid for large lot sizes as
well as for a series of lots; see Duncan (1986). The above OC function is equivalent
to the incomplete beta function

B.pjn; Ac/ D � .n � 1/

� .Ac � 1/� .n � Ac/

Z 1�p

0

tn�Ac�1.1 � t/Acdt

which allows for fractional Ac values. For np < 5, the incomplete gamma function

G.xjAc/ D 1

� .Ac C 1/

Z 1

x

e�t tAcdt

provides a good approximation where x D np. Single sampling plans are commonly
designed (i.e. n and Ac are determined) for given Acceptance Quality Limit (AQL)
p1�˛ , producer’s risk ˛ D 1�Pa.p1�˛/, Limiting Quality (LQ) pˇ, and consumer’s
risk ˇ D Pa.pˇ/. Fractional acceptance numbers are useful in achieving a desired
operating ratio pˇ=p1�˛ such as 8. For example, let p1�˛ D 0:01, ˛ D 0:05,
pˇ D 0:08, ˇ D 0:1. The resulting equations B.0:01jn; Ac/ D 0:95 and
B.0:08jn; Ac/ D 0:1 can be solved for n and Ac using software such as R (R
Development Core Team 2012) as Ac D 1:444531 and n D 55:16412 (see the
Appendix for R codes). Rounding the sample size n to an integer value such as 55
does not affect the achieved producer’s and consumer’s risks much. Such rounding
cannot be done to Ac because the pˇ=p1�˛ is purely a function of Ac. Table 1 shows
the operating ratios R D npˇ

np1�˛
D pˇ

p1�˛
for various fractional acceptance numbers

where pˇ is the fraction nonconforming for which G.npˇjAc/ D ˇ and p1�˛ is
the fraction nonconforming for which G.np1�˛jAc/ D 1 � ˛. In other words, the
operating ratios are purely a function of the fractional acceptance numbers under
the gamma (Poisson) model for the expected number of nonconforming units in a
sample of size n. This result is also true for broken acceptance numbers exceeding
1 such as 1.6. The R codes given in the Appendix can be used to obtain such
broken acceptance numbers Ac > 1. Fractional and broken acceptance numbers are
particularly useful for lot quality assessment in the presence of measurement errors
because of the inherent uncertainty in assessing whether a particular unit conforms
to the specifications or not. The probability distribution of the measurement errors



Fractional Acceptance Numbers 275

Table 1 Operating ratios of fractional acceptance number Ac for given ˛ and ˇ

Ac np0:95 np0:1 R D np0:1

np0:95
np0:99 np0:05 R D np0:05

np0:99

0 0.0513 2.3026 44.8908 0.0101 2.9957 297.2171

0.02 0.0549 2.3372 42.5641 0.0111 3.0344 273.2344

0.04 0.0587 2.3716 40.4097 0.0122 3.0727 251.6212

0.06 0.0626 2.4059 38.4423 0.0134 3.1109 232.2854

0.08 0.0666 2.4400 36.6410 0.0146 3.1489 215.0587

0.10 0.0708 2.4740 34.9667 0.0160 3.1867 199.6580

0.12 0.0750 2.5077 33.4358 0.0174 3.2242 185.6969

0.14 0.0794 2.5414 32.0205 0.0188 3.2616 173.4350

0.16 0.0838 2.5749 30.7091 0.0203 3.2988 162.2469

0.18 0.0884 2.6083 29.4925 0.0219 3.3358 152.1442

0.20 0.0931 2.6415 28.3604 0.0236 3.3727 143.4700

0.22 0.0979 2.6745 27.3056 0.0254 3.4093 134.3994

0.24 0.1029 2.7075 26.3210 0.0272 3.4459 126.8273

0.26 0.1079 2.7403 25.4000 0.0291 3.4822 119.8340

0.28 0.1130 2.7731 24.5377 0.0310 3.5184 113.4246

0.30 0.1183 2.8056 23.7161 0.0331 3.5545 107.4634

0.32 0.1236 2.8381 22.9569 0.0352 3.5903 102.0146

0.34 0.1291 2.8705 22.2422 0.0373 3.6261 97.1426

0.36 0.1346 2.9027 21.5687 0.0396 3.6617 92.4704

0.38 0.1402 2.9349 20.9330 0.0419 3.6972 88.1764

0.40 0.1459 2.9669 20.3318 0.0443 3.7325 84.2003

0.42 0.1518 2.9989 19.7613 0.0468 3.7678 80.4894

0.44 0.1577 3.0307 19.2225 0.0494 3.8028 77.0459

0.46 0.1637 3.0625 18.7118 0.0520 3.8378 73.8355

0.48 0.1698 3.0941 18.2270 0.0547 3.8726 70.8364

0.50 0.1759 3.1257 17.7664 0.0574 3.9074 68.0318

0.52 0.1822 3.1572 17.3285 0.0603 3.9420 65.4049

0.54 0.1885 3.1885 16.9115 0.0632 3.9765 62.9413

0.56 0.1950 3.2198 16.5141 0.0662 4.0109 60.6276

0.58 0.2015 3.2511 16.1351 0.0691 4.0452 58.5037

0.60 0.2081 3.2822 15.7732 0.0723 4.0793 56.4517

0.62 0.2148 3.3132 15.4274 0.0755 4.1134 54.5178

0.64 0.2215 3.3442 15.0967 0.0787 4.1474 52.6931

0.66 0.2284 3.3751 14.7802 0.0820 4.1813 50.9695

0.68 0.2353 3.4059 14.4771 0.0854 4.2150 49.3397

0.70 0.2422 3.4367 14.1865 0.0889 4.2488 47.7992

0.72 0.2493 3.4673 13.9094 0.0924 4.2824 46.3396

0.74 0.2564 3.4979 13.6403 0.0960 4.3158 44.9549

0.76 0.2636 3.5284 13.3844 0.0997 4.3493 43.6402

(continued)
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Table 1 (continued)

Ac np0:95 np0:1 R D np0:1

np0:95
np0:99 np0:05 R D np0:05

np0:99

0.78 0.2709 3.5589 13.1363 0.1034 4.3826 42.3907

0.80 0.2783 3.5893 12.8988 0.1072 4.4158 41.2022

0.82 0.2857 3.6196 12.6704 0.1110 4.4490 40.0706

0.84 0.2931 3.6499 12.4506 0.1149 4.4821 38.9924

0.86 0.3007 3.6801 12.2366 0.1189 4.5151 37.9641

0.88 0.3083 3.7102 12.0331 0.1230 4.5480 36.9828

0.90 0.3160 3.7403 11.8358 0.1271 4.5808 36.0455

0.92 0.3238 3.7703 11.6453 0.1313 4.6136 35.1496

0.94 0.3316 3.8002 11.4619 0.1355 4.6463 34.2927

0.96 0.3394 3.8301 11.2845 0.1398 4.6789 33.4724

0.98 0.3474 3.8599 11.1111 0.1441 4.7114 32.6867

1 0.3554 3.8897 10.9455 0.1486 4.7439 31.9336

results in fractional nonconformance of a given measurement depending on its
closeness to the specification. This is discussed in the next section.

3 Measurement Error Correction for Attribute Inspection

Type I (false positive) misclassification error places a true conforming unit as
(apparently) nonconforming, while Type II (false negative) misclassification error
places a true nonconforming unit as (apparently) conforming. Let e1 and e2 be the
Type I and Type II error probabilities, respectively. The relationship between true
fraction nonconforming p and the apparent fraction nonconforming units pe is given
by pe D e1.1�p/C.1�e2/p, see Lavin (1946). It is established in the literature that
the misclassification errors affect the producer more than the consumer in general. A
good introduction to the topic of inspection errors in attribute sampling is available
in the text by Johnson et al. (1991). The main weakness in the theory of inspection
errors for attribute inspection is that the error probabilities e1 and e2 are assumed to
be fixed and known.

Fuzzy set theory is also used to adjust for the inspection errors. Hryniewicz
(2008) provided an excellent review and discussion on handling fuzzy data in
statistical quality control. Jamkhaneh (2011) provided a recent review on the
effect of inspection on single sampling attribute plans with fuzzy parameters.
Imprecise or fuzzy quality measurements are modelled using membership functions.
It is common to model the inspection of the whole sample using a trinomial
or multinomial distribution, see the discussion in Ohta (1988) and Hryniewicz
(2008). A major limitation of the fuzzy approach to the design of acceptance
sampling plans is that the fuzzy bounds (numbers) must be known and fixed.
Fixed fuzzy numbers may not be adequate for measurable characteristics which are
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converted to attributes after comparing the measured value with the specifications.
A measurement closer to the specification is more likely to be nonconforming than
a measurement away from the specification. The fuzzy approach allows for only
possibilities and not precise probabilities for the degree of nonconformance. A
flexible approach that allows for varying probabilities for nonconformance within
the attribute inspection is desirable in practice. The probability distribution of the
measurement errors is usually determined by repeat testing of the same unit or the
fully blended composite specimen. In the absence of other nuisance variables, a
controlled repeat testing experiment will justify a probability distribution model for
measurement errors. The measurement error distributions are usually unimodal and
symmetrical distributions such as triangular, normal, etc. For small samples, the
distributional uncertainty in the main quality characteristic of interest cannot be
resolved satisfactorily, and hence an attribute assessment of lot quality is desirable.
However the distributional uncertainty is resolvable for measurement errors and
hence the degree of nonconformance of a measurement can be quantified as
probabilities.

As an example, let the measurement error t follows a triangular distribution
T .min D a; max D b; mode D c/. A single observation x from a unimodal
distribution estimates the mode of the unknown underlying distribution. When
the triangular error distribution is shifted to the observation x (i.e. setting the
mode c at x), T .min D a C .x � c/; max D b C .x � c/; mode D x/ gives
an estimate of the fraction conforming qc D Pr.t > Lj min; max; mode/ and
an estimate of the fraction nonconforming pc D 1 � qc . For example, assume
that the triangular distribution T .a D �0:1; b D 0:3/ with mode at c D 0:05

was fitted for measurement errors after repeated testing of several specimens. The
fitted error distribution is asymmetrical and hence some instrument bias is also
present. For a given apparent measurement x D 50:05, the error distribution
T .min D 49:9; max D 50:3; mode D 50/ gives qc D 0:75 being the probability
of falling above the lower specification limit L D 50. It should be noted that a
measurement of 50.05 yields an estimate of 1 (certainty) for fraction conforming
under the attribute method (assuming Bernoulli trials) when measurement errors are
ignored but this estimate falls to 0.75 after correcting for the measurement error
because the apparent measurement is closer to L D 50.

When error-prone variables measurements are converted into attribute measure-
ments, the fractional and broken acceptance numbers are suitable. A new fractional
acceptance number plan is introduced in the following steps:

1. Obtain the apparent sample measurements x1; x2; : : : ; xn.
2. Calculate the estimated probabilities of nonconformance bp1; bp2; : : : ; bpn under

the known measurement error distribution.
3. Accept the lot if ı D Pn

iD1 bpi � Ac. Reject the lot when ı > Ac.

For the fictitious sample of 15 measurements considered in Sect. 1, we compute
ı D Pn

iD1 bpi D 0:958 under the triangular T .a D �0:1; b D 0:3; c D 0:05/

error distribution. For a fractional acceptance number Ac D 0:75 (say), the lot will
be rejected. Sample protein percentages found for each of the ten lots of a milk
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Table 2 Protein percentage data for ten lots

Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 Lot 7 Lot 8 Lot 9 Lot 10

24.76 24.81 24.79 24.41 24.47 24.25 24.34 24.23 24.29 24.43

24.74 24.79 24.81 24.43 24.46 24.24 24.31 24.37 24.33 24.45

24.76 24.77 24.80 24.48 24.42 24.26 24.32 24.24 24.29 24.39

24.77 24.79 24.82 24.48 24.37 24.27 24.33 24.16 24.30 24.44

24.76 24.81 24.78 24.42 24.39 24.23 24.27 24.21 24.34 24.50

24.80 24.74 24.79 24.49 24.40 24.26 24.33 24.21 24.33 24.49

24.77 24.75 24.78 24.54 24.50 24.24 24.26 24.15 24.27 24.47

24.97 24.71 24.73 24.19 24.26 24.31 24.32 24.25 24.39 24.46

25.01 24.65 24.64 24.22 24.23 24.29 24.29 24.30 24.39 24.30

24.95 24.66 24.66 24.16 24.16 24.35 24.24 24.17 24.57 24.27

24.94 24.65 24.62 24.20 24.18 24.33 24.23 24.32 24.35 24.42

24.89 24.70 24.59 24.23 24.17 24.34 24.32 24.44 24.32 24.35

25.07 24.64 24.60 24.16 24.22 24.35 24.27 24.37 24.28 24.34

24.98 24.65 24.54 24.19 24.26 24.27 24.24 24.49 24.32 24.30

24.91 24.67 24.49 24.22 24.28 24.30 24.27 24.40 24.26 24.40

25.04 24.63 24.44 24.26 24.24 24.25 24.20 24.47 24.33 24.30

25.05 24.67 24.47 24.19 24.27 24.20 24.22 24.43 24.30 24.46

25.03 24.72 24.59 24.44 24.25 24.26 24.26 24.32 24.30 24.43

24.94 24.75 24.50 24.45 24.28 24.21 24.20 24.29 24.23 24.37

24.97 24.83 24.48 24.42 24.23 24.28 24.17 24.25 24.21 24.45

24.81 24.65 24.45 24.38 24.27 24.25 24.15 24.31 24.23 24.31

24.87 24.81 24.41 24.40 24.31 24.30 24.23 24.21 24.24 24.35

24.86 24.70 24.45 24.31 24.26 24.32 24.23 24.35 24.38 24.41

24.75 24.80 24.49 24.43 24.27 24.30 24.24 24.35 24.39 24.40

product is given in Table 2. For a lower specification limit of 24 % (say), there are
no apparent nonconforming measurements and hence all the ten lots will be accepted
under an attribute plan. On the other hand, the ı values for the ten lots are (0.0006,
0.0065, 0.1071, 1.8414, 2.1028, 2.0893, 2.4988, 2.0521, 1.5759, 0.7296) for the
known error distribution N.0; 0:2/ (say). Evidently the overall nonconformance as
measured by ı is different for the ten lots. The first lot was subject to heavy guard-
banding while the quality of lots 6 to 8 is somewhat closer to the lower specification
suggesting minimal guard-banding (ı > 2). If a broken acceptance number of
1.6 (say) is set for the ı statistic, then only 5 of the 10 lots will be accepted.
It should also be noted that the fractional and broken acceptance number plans
do not require a randomization procedure as originally contemplated by Hamaker
(1950). The measurement error distribution acts as a natural randomizer resulting in
a nonconformance probability, particularly when the measurement is closer to the
specification.
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If we denote the apparent measurement of the true (unobserved) quality charac-
teristic X by Y , then Y D X C Z where Z is the measurement error, assumed to
have a known distribution function FZ.�/. For a given lower specification limit L,
the probability that X < L conditional on the observed value Y is

pY D Pr.X < LjY / D Pr.Z > Y � LjY / D 1 � FZ.Y � L/:

Suppose now that, following the usual procedure for a randomized test, we
choose with probability pY to decide that this observation is nonconforming. Then
the binary decision variable A, with values 0 (conforming) and 1 (nonconforming),
follows a Bernoulli distribution:

AjY � Bernoulli.pY /:

The unconditional distribution of A will also be Bernoulli, with probability

p� D
Z

Œ1 � FZ.Y � L/�dFY

where FY .:/ is the (unknown) distribution of the observed measurements. Thus A

has mean p� and variance p�.1 � p�/. Now consider the unconditional distribution
of the fractional nonconformance pY . We have

EŒA� D E ŒEŒAjY �� D EŒpY �

and

V ŒA� D V ŒEŒAjY �� C E ŒV ŒAjY �� D V ŒpY � C EŒpY .1 � pY /�:

Thus the fractional nonconformance pY has the same mean, but a smaller variance,
than the randomized nonconformance A of Hamaker (1950). The same will be true
for the total nonconformance from a random sample of size n. The randomized
nonconformance

Pn
iD1 Ai will have a binomial distribution, so for this the R

codes given in the Appendix can be used to accurately control the producer’s and
consumer’s risks at desired levels. However, if the decision is based on the total
fractional nonconformance ı D Pn

iD1 pY , without randomization, then using the
same sample size and acceptance number will, because of the smaller variance,
be conservative leading to smaller producer’s and consumer’s risks than planned.
Table 3 compares the probability acceptance values of the plan based on the ı

statistic with the plan based on the randomized conformance procedure of Hamaker
(1950) for a sample of size n D 10. The fractional acceptance number of 0.15 is
set for the Hamaker (1950) plan applied on the observed (random) Y data from
the standard normal distribution N.0; 1/. Assuming N.0; 0:3/ distribution for the
measurement errors (Z), the fractional acceptance number of 0.65 is employed for
the ı statistic. Both plans achieve a producer’s risk of about 5 % at p D 0:005.
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Table 3 Comparison of fractional nonconformance plan with Hamaker’s randomized Ac plan

True p Pa.p/ (Randomized Ac D 0:15) Pa.p/ (ı � 0:65 plan)

0.001 0.9870 0.9889

0.002 0.9760 0.9795

0.005 0.9455 0.9499

0.007 0.9243 0.9290

0.010 0.8947 0.8981

0.020 0.8097 0.8036

0.030 0.7299 0.7117

0.050 0.6048 0.5655

0.070 0.4964 0.4387

0.10 0.3705 0.2969

0.20 0.1329 0.0748

0.30 0.0423 0.0153

Table 4 Fractional nonconformance plan matching Hamaker’s randomized Ac plan

AQL LQL/AQL n Ac Producer’s risk Consumer’s risk

X � N.0; 1/, Z � N.0; 0:3/

0.005 35 11 (12.89) 0.75 (1.10) 0.046 0.098

0.005 25 17 (21.53) 0.9 (1.26) 0.050 0.087

0.005 15 40 (62.45) 1.3 (1.97) 0.043 0.042

0.010 10 35 (48.86) 1.8 (2.42) 0.043 0.058

0.010 6 62 (94.71) 2.5 (3.33) 0.047 0.090

0.010 4 130 (212.35) 4.3 (5.51) 0.040 0.094

X � G.1; 2/, Z � N.0; 0:3/

0.005 35 11 (12.06) 0.75 (1.08) 0.046 0.111

0.005 25 17 (17.82) 0.9 (1.12) 0.060 0.113

0.005 15 40 (51.76) 1.3 (2.10) 0.023 0.097

0.010 10 35 (40.57) 1.8 (2.32) 0.035 0.102

0.010 6 62 (75.36) 2.5 (3.32) 0.026 0.194

0.010 4 130 (160.64) 4.3 (5.47) 0.014 0.270

However the ı statistic provides better discrimination at other good and poor quality
levels when compared to the randomized procedure of Hamaker (1950). Table 4
provides matched sets of broken and fractional acceptance numbers plans based
on the ı statistic proposed in this paper with the randomized conformance plans
(in brackets) of Hamaker (1950) for various AQL and LQL/AQL values assuming
X � N.0; 0/ as well as X � G.1; 2/ for Z � N.0; 0:3/ error distribution. Evidently
the smaller variance associated with the ı statistic leads to a smaller sample size in
general. The G.1; 1/ distribution is right skewed towards the upper specification
limit and hence results in higher producer’s and consumer’s risks. In other words,
the ı statistic will lead to smaller risks when compared to the Hamaker (1950) plan
depending on how large EŒpY .1 � pY /� is.
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4 Measurement Error Correction for Variables Inspection

A parametric approach is taken in the variables sampling inspection plan literature to
correct for the measurement errors. The apparent measurements (Y ) subject to errors
(Z) are assumed to follow a probability distribution such as N.�; 	/ instead of the
N.0; 1/ distribution for the true measurements X . In the presence of (instrument)
bias in measurements, the condition � ¤ 0 holds. When apparent measurements
are imprecise, the condition 	 ¤ 1 holds. Assuming that Y and Z are normally
distributed, Mei et al. (1975), Owen and Chou (1983), Basnet and Case (1992),
Fang and Zhang (1995), Wilrich (2000), and Melgaard and Thyregod (2001) studied
the single sampling variables plans. Mei et al. (1975), Owen and Chou (1983),
and Wilrich (2000) suggested an increase in sample size to mitigate the effect of
inaccuracy in measurements. The acceptability constant k is also adjusted for a
known level of bias. Grzegorzewski (2002) considered fuzzy theory for modelling
imprecise variables data. This approach also requires the fuzzy bounds to be
prefixed.

The case of non-normal errors for the variables sampling plan has not received
much attention because the convolutions of normal and other non-normal distri-
bution cannot be obtained analytically. The estimation of the true distribution of
measurements can be made by the deconvolution process given the apparent mea-
surements and the error distribution, see Hazelton and Turlach (2009) and Hazelton
and Turlach (2010). Estimation of tail areas using non-parametric kernel density
estimation methods needs reasonably large sample sizes and is also more complex
to administer. A simple procedure of estimating the true fraction nonconforming p

from the apparent fraction nonconforming pe is desirable.
Consider the fictitious data discussed in Sect. 1. Assuming that the quality

characteristic follows a normal distribution, the estimate of the apparent fraction
nonconforming is found as Op D 0:13. After correcting for the measurement
errors using the triangular error distribution but without the normal assumption,
this estimate becomes Op D 0:064 (see Sect. 3). The estimated excess fraction
nonconforming due to the measurement errors is of the order 0:06, which is not
small. A formal treatment to the problem of estimating the true fraction noncon-
forming can be given if X and Z are known to be independent and reproductive
random variables such as normal. Let X � N.�X; �2

X / and Z � N.0; �2
Z/. This

implies that Y � N.�X ; �2
X C �2

Z/, assuming that there is no instrument bias or
�X D �Y . Let 	X D 1=�2

X and 	Z D 1=�2
Z . The conditional probability density

f .ZjY D y/ D fX .y�z/fZ.z/
fY .y/

is proportional to

exp

�
�1

2

�
	Zz2 C 	X .y � z � �X /2

��
:
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After simplification, we obtain

f .ZjY D y/ / exp

"
�1

2

 
.	Z C 	X /

�
z � 	X

	X C 	Z

.y � �X /

�2
!#

:

That is, the measurement error Z conditional on the given apparent measure-

ment value y also follows the normal distribution N
�

	X

	X C	Z
.y � �X /; 1

	X C	Z

�
or

N
�
k.y � �X /; .1 � k/�2

Z

�
where k D �2

Z=�2
Y . Here k is the ratio of measurement

error variance to the total observed variance, which is in the range 0.1 to 0.5
for many bulk materials, particularly when measurements are made by analytical
methods.

For a given upper specification limit U , P Œx > U jY D y� D P Œz < y � U � D
˚.!U / where

!U D
�

.y � U / � k.y � �X /

�Z

p
1 � k

�

If we estimate �X .D �Y / by Ny, then OpN D 1
n

Pn
1 ˚.c!U /, where c!U D�

.y�U /�k.y� Ny/

�Z

p
1�k

�
, gives the estimated true fraction nonconforming in a sample of

size n while ˚.c!U / gives the fractional nonconforming estimate for given U , k,
and �Z . Without loss of generality, let �2

X D 1, �2
Y D 1

1�k
and �2

Z D k
1�k

leading to

c!U D
�

.y�U /�k.y� Ny/p
k

�
.

The traditional estimate of the true fraction nonconforming is cpU D ˚.�U /

where �U D
�

Nx�U
�x

�
D . Nx � U /. This estimate is recommended by Hahn

(1982) as a way of adjusting for the measurement error when the repeatability
standard deviation �Z is known. It should be noted that cpU estimate is not based
on the individual estimates of fractional nonconformance of individual units. A
comparison of the smoothed density of cpU and OpN (obtained by simulation) for
n D 30, p D 0:03, and k D 0:5 is shown in Fig. 1. The traditional cpU estimate is
more variable than the OpN estimate. We are not particularly concerned with the point
estimation properties such as unbiasedness in acceptance sampling. This is because
an estimate of the fraction nonconforming is finally compared with the maximum
allowable fraction nonconforming for lot acceptance/rejection decisions, and hence
any bias in the estimation of p cancels out. However the precision of the estimate
will affect the producer’s and consumer’s risks. This issue is discussed using an
example in the next paragraph.

Let the maximum allowable fraction nonconforming p� be 0.05. That is, the lot
is accepted when cpU � p� and cpN � p� under the two methods of operation
(estimation). By varying the unknown fraction nonconforming p, the probability
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Fig. 1 Comparison ofcpU

and OpN estimates
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of acceptance of the lot can be found as the proportion of lots accepted using
simulation methods. For example, let n D 30 and k D 0:5. Figure 2 shows that
the cpN � p� method of estimation and operation of the variables plan results in a
more discriminatory OC curve when compared to the cpU � p� plan.
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5 Summary and Conclusions

In the presence of measurement errors, an individual measurement cannot be
regarded as conforming or not with certainty. If the measurement error distribution
is known, the probabilities of conformance and nonconformance of a measurement
become relevant. For a given sample of n measurements, the sum of probabilities
of nonconformance can be used to assess the lot acceptance based on fractional or
broken acceptance numbers. Fractional acceptance numbers are particularly suitable
for practical applications where the fraction nonconforming is expected to be small.
A fully parametric approach based for fractional nonconformance is also introduced.
The fractional and broken acceptance number plans are particularly useful for lots
produced by short run production processes.
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Appendix

p1=0.01; p2=0.08; alpha=0.05; beta=0.1
require("BB")
fn <- function(p) {

r <- rep(NA, length(p))
r[1] <- pbeta(p1, exp(p[1])+1, exp(p[2])+1)-alpha
r[2] <- pbeta(p2, exp(p[1])+1, exp(p[2])+1)-(1-beta)
r}

p0 <- c(2,2)
res = BBsolve(par = p0, fn = fn, control = list(trace = FALSE))
(a= exp(res$par[1])+1)
(b= exp(res$par[2])+1)
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Sampling Plans for Control-Inspection Schemes
Under Independent and Dependent Sampling
Designs with Applications to Photovoltaics

Ansgar Steland

Abstract The evaluation of produced items at the time of delivery is, in practice,
usually amended by at least one inspection at later time points. We extend
the methodology of acceptance sampling for variables for arbitrary unknown
distributions when additional sampling information is available to such settings.
Based on appropriate approximations of the operating characteristic, we derive new
acceptance sampling plans that control the overall operating characteristic. The
results cover the case of independent sampling as well as the case of dependent
sampling. In particular, we study a modified panel sampling design and the case
of spatial batch sampling. The latter is advisable in photovoltaic field monitoring
studies, since it allows to detect and analyze local clusters of degraded or damaged
modules. Some finite sample properties are examined by a simulation study,
focusing on the accuracy of estimation.

Keywords Acceptance sampling • Dependence • Quality control • Renewable
energies • Sampling design

1 Introduction

The acceptance sampling problem deals with the construction of sampling plans for
inspection, in order to decide, using a minimal number of measurements, whether
a lot (or shipment) of produced items should be accepted or rejected. Our approach
is motivated by applications in photovoltaics, where the distribution of the relevant
quality features, in particular the power output of solar panels, is typically non-
normal, unknown and cannot be captured appropriately by parametric models.
However, in photovoltaics additional measurements from the production line are
available and can be used to construct acceptance sampling plans.
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Let X represent a control measurement of produced item, with distribution
function F that possesses a finite fourth moment, e.g. the power output of a
photovoltaic module. It is classified as non-conforming, defective or out-of-spec,
if X � 	 , where 	 is a (one-sided) specification limit, usually defined as 	 D
��.1 � "/, where �� is the target (or nominal) mean and " 2 .0; 1/ the tolerance. If
there were no randomness, X D �, where � D E.X/ is the true mean of X . Then
items are non-conforming if � � 	 � 0 and, clearly, we should reject the lot, if and
only if � � 	 � 0. But if the distribution of X is not degenerated, it is reasonable to
replace � by its unbiased canonical estimator O� D X to form a decision rule, and
thus to reject the lot if X � 	 � c, where the critical value c > 0 accounts for the
estimation error.

The fraction of non-conforming (out-of-spec) modules (or items) corresponding
to the above definition is then given by

p D P.X1 � 	/ D F.	/:

It is usually regarded as the quantity of interest in quality control, although it makes
no assertion about how far away from the specification the non-conforming items
are. However, it is worth mentioning that the fraction of non-conforming modules
is directly related to the resulting costs, since it determines the number of modules
one has to repair or replace in case of a total inspection. For these reasons, one aims
at the determination of control procedures that allow to infer whether the fraction
p, also called quality level, is acceptable, i.e. p < AQL, or not, i.e. p > RQL. Here
0 < AQL < RQL < 1 denote the acceptance quality limit (AQL) and the rejectable
quality limit (RQL).

It is known that the probability of acceptance for the above rule based on X � 	

is a function of the fraction defectives p, but it depends on the unknown distribution
function F . In photovoltaics and presumably other areas as well, we are given
additional data from the production line that can be used to estimate unknowns.

In this paper, we construct sampling plans for the following situation: We assume
that a control sample is drawn at the time of delivery of the modules, i.e., when the
modules are new and unused, in order to ensure that shipments that are out-of-spec
are identified and are not delivered to the customers. The sampling plan used at
this first stage of the procedure is constructed using an additional sample from the
production line, as discussed above. We further assume that shipments that passed
the first-stage acceptance sampling procedure are inspected at a later time point,
in order to check whether they are still in agreement with the quality requirements
after some defined period of operation. At this second stage a further sample is
taken, which is combined with the sample information from the first stage. This is
done in order to avoid that a close decision in favor of acceptance, i.e. when the first
stage control statistic has attained a value close to the critical value, results again in
an acceptance due to the fact that the second stage sample size is relatively small.
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At first glance, it seems that the approach is a double sampling procedure. Recall
that the idea of double sampling plans is to give a questionable lot a second chance
or, put differently, allow for quick acceptance of very good lots: If the test statistic
(say, e.g., the number of defectives) is small, say smaller than a, one accepts, if it
is too large, say larger than b, one rejects, and if it is between a and b one draws
a second sample and bases the decision on the enlarged sample. Our approach is
related in that we aim at re-using the sample information from the first-stage control
sample, but in our approach the second sample is not taken at the same time instant,
but at the inspection time, and the decision to accept or reject at the first stage is only
based on the first sample. Indeed, we have in mind that there may be a substantial
time lag between the two stages.

The fact that in practice one prefers to take repeated measures at inspection
time, i.e. of those items already selected, complicates the design of appropriate
procedures, since now the samples at different time points are not independent.
Thus, we extend the required theoretical results to the case of dependent sampling
under quite general conditions. We propose a panel-based sampling scheme, where
the items selected at the first stage form the basis of the second stage sample, which
is enlarged by new items if necessary. A further important sampling design is spatial
batch sampling. Here the batches of observations may be correlated, for example
since their spatial closeness implies that they carry the same factors that may affect
quality measurements. We show that our results are general enough to apply to such
a sampling design as well.

The rest of the paper is organized as follows. Section 2 discusses related work and
applications. Section 3 introduces the two-stage acceptance sampling framework, in
particular the operating characteristic curves that define the statistical behavior of
our two-stage procedure, and discusses our model for the two-stage setting with a
control sample, an inspection sample and an additional sample from the production
line. In Sect. 4, we provide the asymptotic results that allow us to construct valid
acceptance sampling plans that control the overall operating characteristic curve.
Those results cover expansions of the control statistics, their joint asymptotic
normality, and approximations of the operating characteristics. We provide results
for the case that the control sample and the inspection sample are independent as
well as for the more general and realistic case that the samples are dependent.
Computational issues are discussed in Sect. 5. Lastly, Sect. 6 presents results from a
simulation study.

2 Preliminaries

2.1 Related Work

The acceptance sampling problem dates back to the seminal contributions of
Dodge and has been studied since then to some extent. For a general overview
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of classical procedures and their implementations in standards, we refer to recent
monograph Schilling and Neubauer (2009). For the Gaussian case, optimal plans
have been constructed by Liebermann and Resnikoff (1955), see also Brun-Suhr
and Krumbholz (1991), Feldmann and Krumbholz (2002), where the latter paper
studies double sampling plans for normal and exponential data, and the references
given there. Their lack of robustness with respect to departures from normality has
been discussed in Kössler and Lenz (1997). Kössler (1995) used a Pareto-type tail
approximation of the operating characteristic combined with maximum likelihood
estimation, in order to estimate the fraction of defectives and then constructed
sampling plans using the asymptotic distribution of that estimate, when the lot is
accepted if the estimated fraction of defectives is too small. The methods works,
if the tails are not too short. Since in industrial applications large production lots
are usually classified in classes, the case of non-normal but compactly supported
distributions deserves attention. For such distributions, approximations based on the
asymptotic normality of sample means are a convenient and powerful tool for the
construction of sampling plans, having in mind that t-type statistics are a natural
choice to decide in favor of acceptance or rejection of a lot, as discussed above.
Thus, recent works focused on t-type test statistics resembling the statistic used by
the optimal procedure under normality.

Sampling plans for variables inspection when the underlying quality variable
has an arbitrary continuous distribution with finite fourth moment and the related
estimation theory based on the sample quantile function of an additional sample has
been studied in Steland and Zähle (2009) employing empirical process theory. For
historic samples, i.e. samples having the same distribution as the control sample,
a simplified proof using the Bahadur representation can be found in Meisen et al.
(2012). In the present work, it is shown that this method of proof extends to the
case of a difference in location between the additional sample and the control
sample as studied in Steland and Zähle (2009). Further results and discussions
on acceptance sampling for photovoltaic data and applications can be found in
Herrmann et al. (2006, 2010). Herrmann and Steland (2010) have shown that the
accuracy of such acceptance sampling plans using additional samples from the
production line can be substantially improved by using smooth quantile estimators
such as numerically inverted integrated cross-validated kernel density estimators.
The construction of procedures using the singular spectral analysis (SSA) approach
with adaptively estimated parameters has been recently studied by Golyandina et al.
(2012). Bernstein-Durrmeyer polynomial estimators are well known as a general
purpose approach to estimation that provides quite smooth estimators. The relevant
theory as well as their application to the construction of acceptance sampling
plans with one-sided specification limits has been investigated in Pepelyshev et al.
(2014a). The extension of the methodology to two-sided specification limits and
numerical results focusing on photovoltaic applications can be found in Pepelyshev
et al. (2014b).
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2.2 Applications in Photovoltaics

The quality control of photovoltaic systems has become a key application area
for recent developments and extensions of the acceptance sampling methodology,
although the results can certainly be adopted to many other areas in industry.

The production of solar panels has become a highly complex high-throughput
production process. Today’s cell technologies rely on sophisticated solar cell
designs. A solar cell can be regarded as a stack of thin layers, in order to trap as
many photons as possible, transform them into electron-hole pairs and then ease the
electrons’ movement through the cell to the wires. Anti-reflective coatings of the
glass covering have been introduced recently, in order to maximize the amount of
sunlight trapped by the solar cells by channelling the photons to the lower layers
of the cell. Optical filters are used in order to ensure that only those wavelengths
pass that can be processed by the semiconductor to form electron-hole pairs. Let us
briefly recall how a solar cell works: The p-type silicon layer consists of silicon,
which has four electrons, doped with a compound (such as Phosphorous) that
contains one more valence electron, such that this layer is positively charged. The n-
type silicon layer is silicon doped with compounds (such as Boron) having one less
valence electron than silicon, such that only three electrons are available for binding
with four adjacent silicon atoms. Thus, the n-type layer is negatively charged. An
incomplete bond (hole) of the n-type layer can attract an electron to fill the hole,
in which case the hole moves. At the np-junction where both layers meet, electrons
from the n-type layer being freed by the photons’ energy move to the p-layer and
from there to the back contact, and the corresponding holes move to the contact
grid at the top of the cell. This results in a current I . Combined with the internal
electrical field of the cell due to the differently charged p- and n-silicon layers leads
to power (P D UI), which can be used by an external load attached to the cell.

Each layer of a cell makes use of specific physical and chemical properties of
the base material and the added compounds. In a multijunction (tandem) design two
cells are mechanically stacked on top of each other. The second cell at the bottom
absorbs the higher energy photons not absorbed by the top cell. Such designs can
increase the efficiency substantially. The physical and chemical interaction of those
materials and particles is a complex dynamic process driven by the sun’s irradiance,
the associated heat and the weather conditions that may range from extreme cold
to extreme heat. Even in the absence of manufacturing faults, these facts cause
serious changes of the physical and chemical properties due to ageing, and, as a
consequence, also of the electrical properties of a solar cell, leading to what could
be called degradation by design.

Manufacturing faults add to those unavoidable sources of degradation. For exam-
ple, even minor defects in the encapsulation of a PV module may result in leakage
after a couple of years, thus leading to internal corrosion and other effects that
degrade or even destroy the module. Micro cracks in the crystalline semiconductor
arising by improper handling of the modules at the production line, stress during
transport to the site of construction or improper handling during assembly of the
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photovoltaic system, are invisible by eye but visible in electro luminescence (EL)
images. Usually they have no effect on the electrical characteristics. However,
it is conjectured that such micro cracks could have serious impact on long-term
degradation and result in failures after several years of operation. As a consequence,
insurance companies routinely make EL images from insured lots or systems and are
highly interested in the long-term influence of micro cracks. Antireflective coatings
have been shown experimentally to degrade after damp-heat tests leading to a loss
of power. Driven by the high potential between the cell’s surface and the ground, a
likely source of potential induced degradation (PID) is the wandering of NaC ions
from the glass surface through the cell to the np-junction, where they short-circuit
the emitter. The fact that the emerging markets for photovoltaics are in countries
such as India or Saudi Arabia, the degradation of the glass surface due to sand is an
important issue for the reliability of PV systems.

As a consequence, there is a need for proper inspection plans that combine
available information from the production line, quality assessments and audits at
the time of delivery and construction of the solar systems and later inspections.

3 Method

3.1 Two-Stage Acceptance Sampling

To proceed, let us fix some notions more rigorously. Let Tn be a statistic (decision
function) depending on a sample X1; : : : ; Xn constructed in such a way that large
values of Xn � 	 indicate that the lot should be accepted. A pair .n; c/ 2 N� Œ0; 1/

is called a (acceptance) sampling plan, if one draws a sample of n observations and
accepts the lot if Xn � 	 > c. Then the probability that the lot is accepted,

OC.p/ D P.Tn > cjp/; p 2 Œ0; 1�;

is called operating characteristic. Here P.	jp/ indicates that the probability is
calculated under the assumption that the true fraction of non-conforming items
equals p. Given specifications of the AQL and RQL and error probabilities ˛ and
ˇ, a sampling plan is called valid, if

OC.p/ � 1 � ˛; for all p � AQL; (1)

and

OC.p/ � ˇ; for all p � RQL: (2)

In this article, we consider two-stage acceptance procedures where a lot is
examined at two time points. At time t1, usually the time of production, delivery
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or construction of the system that uses the delivered items (PV modules), a control
sample is taken, in order to decide whether the lot or shipment can be accepted. If
the lot is rejected, we stop. If the lot is accepted, one proceeds and at time instant
t2 the system is inspected again. One applies a further acceptance sampling plan,
based on an inspection sample, in order to conclude whether the shipment is still in
agreement with the specifications.

Let us denote the test statistic used at time ti using a sampling plan .ni ; ci / by
Tni D Tni ;i , i D 1; 2. Notice that here and in what follows, with some abuse of usual
notation, we indicate the dependence on ni by n, in order to keep notation simple
and clean; this will cause neither confusion nor conflict.

Then the corresponding operating characteristics are given by

OC1.p/ D P.Tn1 > c1jp/; p 2 Œ0; 1�;

and, since the sampling plan .n2; c2/ is constructed given Tn1 > c1,

OC2.p/ D P.Tn2 > c2jTn1 > c1; p/; p 2 Œ0; 1�:

Since a lot is accepted if and only if it is accepted at stage 1 and stage 2, the overall
operating characteristic, OC.p/ D P.‘lot acceptance’jp/, is given by

OC.p/ D OC1.p/OC2.p/; p 2 Œ0; 1�: (3)

Of course, one may design the procedure such that at both stages the operating
characteristics are valid for the same error probabilities. However, then one cannot
control the error probabilities of the overall procedure, since its operating character-
istic is given by (3).

Thus, we propose to design the procedure by controlling the overall operating
characteristics. This means, the stage-wise sampling plans are determined in such a
way that both of them ensure (1) and (2) for stage-specific error probabilities ˛1; ˇ1

and ˛2; ˇ2, i.e.

OCi .p/ � 1 � ˛i ; p � AQL; .i D 1; 2/; (4)

and

OCi .p/ � ˇi ; p � RQL; .i D 1; 2/: (5)

If (4) and (5) can be ensured with equality for p 2 fAQL; RQLg, then we obtain

OC.AQL/ D .1 � ˛1/.1 � ˛2/; OC.RQL/ D ˇ1ˇ2
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for the overall OC curve. If we want that it represents an (overall) valid acceptance
sampling plan, i.e.

OC.p/ � 1 � ˛; p � AQL; OC.p/ � ˇ; p � RQL; (6)

for given global error probabilities ˛ and ˇ, we have to design the procedures at both
stages appropriately. Treating the producer risk and the consumer risk symmetrically
imposes the constraints

˛1 D ˇ1; ˛2 D ˇ2;

such that it remains to select ˛1 and ˛2 in such a way that the resulting procedures
guarantees a valid overall sampling plan. For example, if one additionally imposes
the constraint ˛1 D ˛2, one obtains a valid (overall) acceptance sampling plan, if
.˛1; ˇ1/ is selected such that .1 � ˛1/2 D 1 � ˛; ˇ2

1 D ˇ. If now the global error
probabilities ˛ and ˇ are given and one puts ˛2 D ˛1 D 1�p

1 � ˛ and ˇ1 D ˇ2 Dp
ˇ, then (6) holds with equalities, but the stage-wise consumer risks ˇ1; ˇ2 may

be too high in practice—observe that
p

0:1 � 0:31623. Another approach is to use
plans with ˛1 < ˛2, such that the procedure is, in terms of the producer risk, more
restrictive at the first stage than at the second stage. In the simulations, we specified
˛.D 0:1/ and ˛1, determined the corresponding ˛2, i.e. ˛2 D 1� 1�˛

1�˛1
; and put ˇi D

˛i ; i D 1; 2. This means, at each stage producer and consumer risks are symmetric.
As a consequence, the procedure will work on a small global consumer risk, since
ˇ D ˇ1ˇ2 with ˇ1; ˇ2 � ˛1. For example, the choices ˛ D 0:1; ˛1 D 0:03 lead
to ˛2 D ˇ2 � 0:072 such that ˇ � 0:00216, yielding a valid acceptance sampling
plan.

3.2 A Two-Stage Procedure Using Additional Data

We assume that we are given an additional data set of size m, usually quite large,
consisting of independent and identically distributed measurements,

X0; X01; : : : ; X0m
i:i:d:� F0;

sampled at time t0 < t1, with

mean �0 D E.X0/ and variance �2
0 D Var.X0/,

which can be used for the construction of the decision procedures. Recalling from
our above discussion that those additional measurements usually represent historic
data or are taken using a different measurement system, we allow for difference
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in location with respect to the independent and identically distributed control
measurements,

X1; X11; : : : ; X1n1

i:i:d:� F1;

taken at time instant t1. At the inspection time point t2, we have additional
measurements

X2; X21; : : : ; X2n2

i:i:d:� F2:

Here we shall allow for a degradation effect leading to smaller measurements.
Concretely, our distributional model relating the marginal distributions of the three
samples is now as follows.

Xji �
8
<
:

F .	 � 
/ ; j D 0;

F.	/; j D 1;

F
� �

d

�
; j D 2:

(7)

for constants 
 2 R and 0 < d < 1. Equivalently, in terms of equality in
distribution,

X0
dD 
 C X1;

X1 � F;

X2
dD dX1:

The constant d determines the degree of degradation (if d < 1) and is assumed to be
known. We work with a simple degradation model, since in photovoltaics there is not
yet enough knowledge about the degradation of photovoltaic modules, which would
justify to go beyond the assumption that degradation acts like a damping factor
on the power output measurement. We also assume that d is known, since even
the estimation of the mean yearly degradation is a difficult practical problem and
requires large data sets over long time periods. Hence it is not realistic to estimate
d within our framework.

Further, we may and shall assume that

F.x/ D G
�x � �

�

�
; x 2 R;

for some fixed but unknown d.f. G with
R

xdG.x/ D 0 and
R

x2dG.x/ D 1,
such that

� D E.X1/; �2 D Var.X1/;

are the mean and the variance of the control measurements taken at time t1.
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The two-stage acceptance sampling procedure to be studied is now as follows.
At stage 1, i.e. at time t1, based on a sampling plan .n1; c1/ we accept the lot or
shipment, if

Tn1 D p
n1

X1 � 	

Sm

> c1; (8)

where X1 D 1
n1

Pn1

iD1 X1i is the average of the observations taken at time t1 and

Sm D
vuut 1

m � 1

mX
iD1

.X0i � X0/2

is the sample standard deviation calculated from the observation taken at time t0. It is
worth mentioning that standardizing with the sample standard deviation calculated
from the time t0 measurements is crucial; indeed, Sm cannot be replaced by, say,
O�1 D .n1 � 1/�1

Pni

j D1.X1j � Xi /
2.

If the lot is accepted at time t1, we draw the additional observations X21; : : : ; X2n2

for inspection and calculate the corresponding statistic

Tn2 D p
n2

DX2 � 	

Sm

;

where D D 1=d and X2 D 1
n2

Pn2

iD1 X2i . At inspection time t2 the lot is accepted if

Tn1 C Tn2 > c2: (9)

Notice that here we aggregate the available information by summing up Tn1 and
Tn2. The rationale behind this rule is as follows. We reach the inspection time, only
if we passed the quality control at time t1. The value of the statistic Tn1 comprises
the evidence in favor of acceptance and rejection, respectively. But even if the lot
is accepted, the decision could be a close one, i.e. Tn1 > c1 but Tn1 � c1. In such
cases, the probability is relatively large that the lot is accepted at the inspection time
again, if one drops the information already obtained at stage 1. Thus, it makes sense
to aggregate all available information to come to a decision, i.e. to take the sum of
the statistics Tn1 and Tn2 and compare with a new critical value c2.

4 Approximations of the Operating Characteristics

In order to calculate concrete acceptance sampling plans, we need to calculate
the true operating characteristics, which is impossible without knowing the true
underlying distributions. Thus, we shall derive appropriate approximations of the
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operating characteristics that will allow us to construct asymptotically optimal
sampling plans.

Let us introduce the following notations. The standardized arithmetic averages
will be denoted by

X
�
i D p

ni

Xi � �

�
; i D 1; 2:

Here and in what follows, we assume that D D 1, since otherwise one may replace
the X2i by DX2i . It turns out that the asymptotically optimal acceptance sampling
plans depend on the quantile function G�1.p/ of the standardized observations

X�
i D .Xi � �/=�; i D 0; 1:

Thus, we shall assume that we have an arbitrary consistent quantile estimator
G�1

m .p/ of G�1.p/ at our disposal. It will be calculated from the additional sample
taken at time t0. We only need the following regularity assumption.

Assumption Q One of the following two conditions holds.

(i) G�1
m .p/ is a quantile estimator of the quantile function G�1.p/ of the standard-

ized measurements satisfying the central limit theorem

p
m.G�1

m .p/ � G�1.p//
d! V;

as m ! 1, for some random variable V .
(ii) F �1

m .p/ is a quantile estimator of the quantile function F �1
0 .p/ of the measure-

ments taken at time t0, satisfying the central limit theorem

p
m.F �1

m .p/ � F �1
0 .p//

d! U;

as m ! 1, for some random variable U .

Remark 1 Notice that under condition (ii) of Assumption Q, one may construct a
quantile estimator for G�1.p/ by

QG�1
m .p/ WD F �1

m .p/ � �0

�0

;

if �0 and �0 are known, since the quantiles of F and G are related by

F �1.p/ D � C �G�1.p/:
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If � and � are unknown, one should take the estimator

G�1
m .p/ WD F �1

m .p/ � X0

Sm

; (10)

where .X0; Sm/ consistently estimates .�0; �0/ under our assumption of an i.i.d.
sample X01; : : : ; X0m with a finite second moment.

Let us consider two examples.

Example 1 A natural candidate for F �1
m .p/ is the corresponding sample quantile,

QF �1
m .p/ D X0;.dmpe/; p 2 .0; 1/;

where X0;.1/ � � � � � X0;.m/ is the order statistic associated with X01; : : : ; X0m.
However, it is known that the sample quantiles perform poorly for the type of
acceptance sampling plans to be studied here, see Meisen et al. (2012).

Example 2 Suppose that the distribution of the measurements is concentrated on
a finite interval Œa; b� that can be assumed to be Œ0; 1�. The Bernstein-Durrmeyer
polynomial estimator of degree N 2 N for F �1

0 .p/ is then defined as

F �1
m;N .p/ D .N C 1/

NX
iD0

ai B
.N /
i .p/; p 2 .0; 1/;

with coefficients

ai D
Z 1

0

QF �1
m .u/BN

i .u/ du; where B
.N /
i .x/ D

 
N

i

!
xi .1 � x/N �i

for i D 0; : : : ; N are the Bernstein polynomials. In Pepelyshev et al. (2014a) it
has been shown that OF �1

m;N .p/ is consistent in the MSE and MISE sense and almost
attains the optimal parametric rate of convergence if F �1

0 is smooth. The degree
N can be chosen in a data-adaptive way by controlling the number of modes of
the density associated with the estimator as well as the closeness of the associated
estimator of the distribution function OFm;N .x/ in the sense that the maximal distance
between OFm;N . OF �1

m; ON .x// and the identity function i.x/ D x is uniformly less or

equal to 1=Rm where Rm D 2
p

m=
p

2 log log m; for details of the algorithm leading
to the estimate ON , we refer to Pepelyshev et al. (2014a). For the resulting estimate
OF �1

m; ON .p/ an uniform error bound can be established,

sup
q

j OF �1

m; ON .q/ � F �1
0 .q/j � 2

p
2 log log m=

p
m;

see Pepelyshev et al. (2014a, Theorem 3.1).
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Example 3 From previous studies it is known that quantile estimators obtained by
(numerically) inverting a kernel density estimator

Ofm.x/ D 1

mh

nX
iD1

Kh.x � X0i/; x 2 R;

provide accurate results for sampling plan estimation, see Herrmann and Steland
(2010). Here K.	/ is a regular kernel, usually chosen as a density with mean 0 and
unit variance, h > 0 the bandwidth and Kh.z/ D K.z=h/=h, z 2 R, its rescaled
version. The associated quantile estimator is obtained by solving for given p 2
.0; 1/ the nonlinear equation

Fm.xp/ D
Z xp

�1
Ofm.x/ dx

ŠD p:

For a kernel density estimator one has to select the bandwidth h. If the resulting
estimate is consistent for f .x/ for each x 2 R, which requires to select h D hn

such that h ! 0 and nh ! 1, it follows that the corresponding estimator of the
distribution function, Fm.x/ D R x

�1 Ofm.u/ du, x 2 R, is consistent as well, see
Glick (1974), if the kernel used for smoothing is a density function.

In many cases, the central limit theorem for a quantile estimator, say, OQm.p/, of a
quantile function F �1.p/ can be strengthened to a functional version that considers
the scaled difference

p
m. OQm.p/ � F �1.p// as a function of p.

Assumption Q’ Assume that F �1
m .p/ is a quantile estimator of the quantile

function F �1
0 .p/, 0 < p < 1, satisfying

p
m.F �1

m .p/ � F �1
0 .p//

d! F .p/;

as m ! 1, for some random process fF .p/ W 0 < p < 1g, in the sense of weak
convergence of such stochastic processes indexed by the unit interval.

Assumption Q’ holds true for the sample quantiles F �1
m .p/ as well as, for

example, the Bernstein-Durrmeyer estimator, if the underlying distribution function
attains a positive density. For the latter results, further details and discussion, we
refer to Pepelyshev et al. (2014a).

Having defined the decision rules for acceptance and rejection at both stages by
(8) and (9), the overall OC curve is obviously given by

OC.p/ D P.Tn1 > c1; Tn1 C Tn2 > c2jp/; p 2 Œ0; 1�:

Further, the operating characteristic of stage 2 is a conditional one and given by

OC2.p/ D P.Tn1 C Tn2 > c2jTn1 > c1; p/; p 2 Œ0; 1�:
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Those probabilities cannot be calculated explicitly under the general assumptions of
this paper. Hence, we need appropriate approximations in order to construct valid
sampling plans.

4.1 Independent Sampling

The case of independent sampling is, of course, of some relevance. In particular, it
covers the case of destructive testing or, more generally, testing methods that may
change the properties. Examples are accelerated heat-damp tests of PV modules.
Let us assume that the samples Xi1; : : : ; Xini , i D 1; 2, are independent. Our OC
curve approximations are based on the following result, which provides expansions
of the test statistics involving the quantile estimates G�1

m .p/.

Proposition 1 Under independent sampling, we have

Tn1 D X
�
1 � p

n1G
�1
m .p/ C oP .1/;

as n1 ! 1 and m=n1 D o.1/, and

Tn2 D X
�
2 � p

n2G�1
m .p/ C oP .1/;

as n2 ! 1 and m=n2 D o.1/. If a quantile estimator F �1
m .p/ of F �1

0 .p/ is
available, both expansions still hold true with G�1

m .p/ defined by (10).

In what follows, ˚.x/ denotes the distribution function of the standard normal
distribution. We obtain the following approximation of the overall OC curve. The
approximation holds in the following sense: We say A approximates An and write
An � A, if An D A C oP .1/, as min.n1; n2/ ! 1.

Theorem 1 Under independent sampling and Assumption Q we have

OC2.p/ � 1p
2�

R
c1Cp

n1G�1
m .p/

	
1 � ˚.c2 � z C .

p
n1 C p

n2/G�1
m .p//



e�z2=2 dz

1 � ˚.c1 C p
n1G�1

m .p//
;

for any fixed p 2 .0; 1/.

4.2 Dependent Sampling

If it is not necessary to rely on independent samples for quality control at time t0 and
inspection at time t1, i.e. to test different modules at inspection, it is better to take
the same modules. This means, one should rely on a panel design, where at time t0
or t1 a random sample from the lot is drawn, the so-called panel, and that panel is
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also analyzed at the time of inspection, i.e. the modules are remeasured. To simplify
the technical proofs, we shall assume in the sequel that the panel is established at
time t1 and that the sample taken at time t0 is independent from the observations
taken at later time points.

The control-inspection scheme studied in this paper aims at the minimization of
the costs of testing by aggregating available information. Therefore, the inspection
sample should be (and will be) considerably smaller than the first stage sample, i.e.
n2 << n1, although it also may happen occasionally that n2 > n1, since the sample
sizes are random.

In order to deal with this issue, the following dependent sampling scheme is
proposed. If n2 < n1, one draws a subsample of size n2 from the items drawn at
time t1 to obtain the control sample of size n2. Those n2 items are remeasured at
time instant t2 yielding the sample X21; : : : ; X2n2 . Notice that for fixed item (solar
panel) i the corresponding measurements, denoted by X1i and X2i , are dependent,
since they are obtained from the same item. Thus, we are given a paired sample

.X1i ; X2i /; i D 1; : : : ; n2;

which has to be taken into account.
It remains to discuss how to proceed, if n2 > n1. Then one remeasures all n1

items already sampled at time t1 yielding n1 paired observations .X1i ; X2i /, i D
1; : : : ; n1, and draws n2 � n1 additional items from the lot.

As a consequence, n1 observations from the stage 2 sample are stochastically
dependent from the stage 1 observations, whereas the others are independent. In
order to proceed, let us assume that the sample sizes n1 and n2 satisfy

lim
n1

n2

D �: (11)

Notice that

Cov.X
�
1 ; X

�
2 / D 1p

n1n2

n1X
iD1

n2X
j D1

Cor.X1i ; X2j / D
r

n1

n2

�0;

where

�0 D Cor.X1; X2/ 6D 0:

Thus, if �0 6D 0, the approximation results of the previous subsection are no longer
valid, since even asymptotically X1 and X2 are correlated, and thus the standardized
versions are correlated as well under this condition.

The following results provide the extensions required to handle this case of
dependent sampling. Proposition 2 provides the asymptotic normality of the sample
averages, which share the possibly non-trivial covariance.
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Proposition 2 Suppose that the above sampling scheme at stages 1 and 2 is applied
and assume that one of the following assumptions is satisfied.

(i) X01; : : : ; X0m is an i.i.d. sample with common distribution function F0.x/ D
F.x � 
/ and Assumption Q holds.

(ii) Assumption Q’ is satisfied.

Then we have
 

X
�
1

X
�
2

!
d! N

��
0

0

�
; ˙

�
;

as min.n1; n2/ ! 1 with n1=n2 ! �, where the asymptotic covariance matrix is
given by

˙ D
�

1 �

� 1

�
;

with � D p
� Cor.X1; X2/.

The following theorem now establishes expansions of the test statistics, which
hold jointly.

Theorem 2 Suppose that the above sampling scheme at stages 1 and 2 is applied
and assume that one of the following assumptions is satisfied.

(i) X01; : : : ; X0m is an i.i.d. sample with common distribution function F0.x/ D
F.x � 
/ and Assumption Q holds.

(ii) Assumption Q’ is satisfied.

Then we have

�
Tn1

Tn2

�
D
 

X
�
1

X
�
2

!
�
�p

n1G�1
m .p/p

n2G�1
m .p/

�
C oP .1/;

as min.n1; n2/ ! 1 with n1=n2 ! 1 and max.n1; n2/=m D o.1/.

The approximation of the OC curve OC2.p/ is now more involved. Recall at this
point the well-known fact that for a random vector .X; Y / that is bivariate normal
with mean vector .�X ; �Y /0, variances �2

X D �2
Y D 1 and correlation �XY , the

conditional distribution of, say, Y given X D z attains the Gaussian density

x 7! 1p
2�.1 � �2/

exp

0
B@� .x � �z/2

2

q
1 � �2

XY

1
CA ; x 2 R:
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The following theorem now provides us with the required approximation of the
operating characteristic for the second stage sampling plan. It will be established in
the following sense, slightly modified compared to the previous subsection: We say
A approximates An and write An � A, if An D A C oP .1/, as min.n1; n2/ ! 1
with n1=n2 ! �, max.n1; n2/=m D o.1/ and n1 � n ! 1.

Theorem 3 Suppose that the above sampling scheme at stages 1 and 2 is applied
and assume that one of the following assumptions is satisfied.

(i) X01; : : : ; X0m is an i.i.d. with common distribution function F0.x/ and Assump-
tion Q holds.

(ii) Assumption Q’ is satisfied.

If, additionally, j�j < 1, then we have

OC2.p/ � 1p
2�

R
c1Cp

n1G�1
m .p/

�
1 � ˚

�
c2�zC.

p
n1Cp

n2/G�1
m .p/� O�zp

1� O�2

��
e�z2=2 dz

1 � ˚.c1 C p
n1G�1

m .p//
;

(12)

where

O� D
r

n1

n2

O�
O�1 O�2

with O�2
j D 1

n

nX
iD1

.Xji � Xi /
2; j D 1; 2;

and

O� D 1

n

nX
iD1

.X1i � X1/.X2i � X2/:

The above result deserves some discussion.

Remark 2 Observe that the unknown correlation coefficient is estimated from
n pairs .X1i ; X2i /, i D 1; : : : ; n. Since the sampling plan .n2; c2/ cannot be
determined without an estimator O�, one should fix n � n1 and remeasure n items at
inspection time t2, in order to estimate �.

Remark 3 The fact that the approximation also holds true under the general prob-
abilistic assumption Q’ points to the fact that the results generalize the acceptance
sampling methodology to the case of dependent sampling, for example when it is
not feasible to draw randomly from the lot and instead one has to rely on consecutive
produced items that are very likely to be stochastically dependent due to the nature
of the production process.

Remark 4 The condition (11) can be easily ensured by replacing n2 by n1=�, i.e.
put n2.�/ D n1=� and determining � such that a valid sampling plan .n2; c2/ results.
However, the procedure is not reformulated in this way for the sake of clarity.
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4.3 Sampling in Spatial Batches

In photovoltaic quality control, it is quite common to sample in spatial batches. Here
one selects randomly a solar panel from the photovoltaic system, usually arranged
as a grid spread out over a relatively large area. Then the selected module and
b � 1 neighboring modules are measured on site. Of course, observations from
neighboring modules are correlated, since they share various factors that affect
variables relevant for quality and reliability. Among those are the frame on which
they are installed, so that they share risk factors due to wrong installation, the
local climate within the area (wind and its direction that leads to stress due to
vibrations, see Assmus et al. (2011)), the wires as well as the inverter to which
they are connected. Further, one cannot assume that during installation the modules
are randomly spread over the area, so that their ordering may be the same as on the
production line.

So let us assume that one substitutes ni by dni =beb and ci by the re-adjusted
critical value (see step 6 of the algorithm in Sect. 5). Thus, we may and will assume
that

ni D rib; i D 1; 2; and r1 � r2;

where b is the batch size and ri the number of randomly selected batches. Suppose
that the observations are arranged such that

.Xi1; : : : ; Xini / D .X
.1/
1 ; : : : ; X

.1/

b ; : : : ; X
.ri /
1 ; : : : ; X

.ri /

b /;

where X
.j /

` is the `th observation from batch j , ` D 1; : : : ; b, j D 1; : : : ; ri .
Let us assume the following spatial-temporal model:

Xi;.`�1/bCj D �i C B` C �ij;

for i D 1; 2, ` D 1; : : : ; r and j D 1; : : : ; b. Here f�ij W 1 � j � b; i D 1; 2g
are i.i.d. .0; �2

� / error terms, fB` W ` D 1; : : : ; r2g are i.i.d. .0; �2
B/ random variables

representing the batch effect. It is assumed that f�ijg and fB`g are independent.
Then the covariance matrix of the random vector Xi D .Xi1; : : : ; X1ni / is

given by

Cov.Xi / D
riM

iD1

Œ�2
B Jb C �2

� Ib�;

for i D 1; 2, where Jb denotes the .b � b/-matrix with entries 1, Ib is the
b-dimensional identity matrix and A ˚ B D diag.A; B/ is the direct sum of two
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matrices A and B , i.e. the block-diagonal matrix

 
A 0
0 B

!
. Observing that

Cov.
p

n1X1;
p

n2X2/ D Sp
n1

p
n2

where S is the sum of all elements of Cov.X1/, we obtain

Cov.
p

n1X1;
p

n2X2/ D r1b
2�2

B C r1b�2
�p

r1r2b
D
r

r1

r2

b�2
B C

r
r1

r2

�2
� :

It can be shown that the method of proof used to show the above results extends to
that spatial batch sampling, if one additionally assumes that b is fixed and

lim
r1

r2

D r� > 0:

5 Computational Aspects

It is worth discussing some computational aspects. We confine ourselves to the case
of independent sampling, since the modifications for the dependent case are then
straightforward.

The calculation of the two-stage sampling plan is now as follows. At stage 1, one
solves the equations

OC1.AQL/ D 1 � ˛1; OC1.RQL/ D ˇ1;

leading to the explicit solutions

n1 D
�

.˚�1.˛1/ � ˚�1.1 � ˇ1//
2

.G�1
m .AQL/ � G�1

m .RQL//2

�
; (13)

c1 D �
p

n1

2
.G�1

m .AQL/ C G�1
m .RQL//: (14)

The sampling plan .n2; c2/ for stage 2 has to be determined such that

OC2.AQL/ D 1 � ˛2; OC2.RQL/ D ˇ1;
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which is done by replacing OC2 by its approximation, thus leading us to the
nonlinear equations

1p
2�

R
c1C

p

n1G�1
m .AQL/

	
1 � ˚.c2 � z C .

p
n1 C p

n2/G�1
m .AQL//



e�z2=2 dz

1 � ˚.c1 C p
n1G�1

m .AQL//
D 1�˛2

and

1p
2�

R
c1C

p

n1G�1
m .RQL/

	
1 � ˚.c2 � z C .

p
n1 C p

n2/G�1
m .RQL//



e�z2=2 dz

1 � ˚.c1 C p
n1G�1

m .RQL//
D ˇ2;

which have to be solved numerically. Notice that the integrals appearing at the left
side also have to be calculated numerically.

In order to calculate the sampling plan .n2; c2/, the following straightforward
algorithm performed well and was used in the simulation study.
ALGORITHM:

1. Select " > 0.
2. Calculate .n1; c1/ using (13) and (14).
3. Perform a grid search minimization of the OC curve over .n; c/ 2 f.n0; c0/ W

c0 D 1; : : : ; c�.n0/; n0 D 1; : : : ; 200g, where c�.n0/ D minf1 � c00 � 60 W
.OC.AQL/ � .1 � ˛2//

2 C .OC.RQL/ � ˇ2/
2 � "g for given n0. Denote the

grid-minimizer by .n�; c�/.
4. Use the grid-minimizer .n�; c�/ as a starting value for numerically solving the

nonlinear equations up to an error bound " for the sum of squared deviations
from the target. Denote the minimizer by .n�

2 ; c�
2 /.

5. Put n2 D dn2e.
6. For fixed n D n2 minimize numerically the nonlinear equations with respect

to c2 up to an error bound " for the sum of squared deviations from the target.
Denote the minimizer by c�

2 .
7. Output .n2; c2/ D .n2; c�

2 /.

It turned out that the combination of a grid search to obtain starting values and
a two-pass successive invocation of a numerical optimizer to minimize with respect
to the sample size and the control limit in the first stage and, after rounding up
the sample size, minimizing with respect to the control limit results in a stable
algorithm.

6 Simulations

The simulation study has been conducted, in order to get some insights into the final
sample statistical properties of the procedures. It was designed to mimic certain
distributional settings that are of relevance in photovoltaic quality control.
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It is known from previous studies that the standard deviation of the estimated
sample size is often quite high even when a large data set X01; : : : ; X0m can be used
to estimate it, see Meisen et al. (2012), Golyandina et al. (2012), and Pepelyshev
et al. (2014a). The question arises how accurately the second stage sampling plan
can be estimated, having in mind that the estimated first stage sample size affects
the operating characteristic at the second stage.

For the simulations the following parameters were used: ˛ D ˇ D 0:1 (global
error probabilities), AQL D 2 % and RQL D 5 %. The error probabilities ˛1 D
ˇ1 for the first stage acceptance sampling procedure were selected from the set
f0:03; 0:05; 0:07g and the corresponding value ˛2 D 1 � .1 � ˛/=.1 � ˛1/ was then
calculated for the second stage inspection, cf. our discussion in Sect. 3. The sample
size m of the additional sample from the production line was chosen as 250 and 500.

Data sets according to the following models were simulated:

Model 1: X0 � F 1 D N.220; 4/;

Model 2: X0 � F 2 D 0:9N.220; 4/ C 0:1N.230; 8/:

Model 3: X0 � F 3 D 0:2N.210; 8/ C 0:6N.220; 4/ C 0:2N.230; 8/:

Model 4: X0 � F 4 D 0:2N.212; 4/ C 0:6N.220; 8/ C 0:2N.228; 6/:

The required quantiles for methods based on the kernel density estimator for
the construction of the sampling plans were estimated by numerically inverting an
integrated kernel density estimator Ofm.x/ calculated from the standardized sample
X�

01; : : : ; X�
0m. The following methods of quantile estimation were used, where

the first four approaches employ the kernel estimator with different bandwidth
selectors:

1. Biased cross-validated (BCV) bandwidth.
2. Sheather-Johnson bandwidth selection (SJ), Sheather and Jones (1991).
3. Golyandina-Pepeyshev-Steland method (GPS), Golyandina et al. (2012).
4. Indirect cross-validation (ICV), Savchuk et al. (2010).
5. Bernstein-Durrmeyer polynomial (BDP) quantile estimator, Pepelyshev et al.

(2014a).

The following tables summarize the simulation results. Each case was simulated
using 10,000 repetitions.

Table 1 provides results for normally distributed measurements with mean 220

and variance 4. The results show that even for such small sample sizes as 250 and
500, respectively, the second-stage sampling plan .n2; c2/ can be estimated with
comparable accuracy as the first-stage plan. Further, it can be seen that the GPS
bandwidth selector provides on average the smallest sampling plan numbers n2 and
the highest accuracy.
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Table 1 Characteristics of the sampling plans for Model 1

˛1 ˛2 m Type E.n1/ sd.n1/ c1 sd.c1/ E.n2/ sd.n2/ c2 sd.c2/

3 % 7.22 % 250 BCV 79.76 22.47 17.39 2.14 18.33 8.63 26.30 3.34

250 SJ 82.13 25.42 17.43 2.38 19.97 9.97 26.41 3.42

250 GPS 78.92 21.82 17.37 2.11 17.68 8.29 26.23 3.33

250 ICV 80.10 22.89 17.40 2.17 18.50 8.81 26.31 3.34

250 BDP 90.58 34.08 16.91 2.64 26.97 13.95 26.28 3.29

7 % 3.23 % 250 BCV 49.29 13.84 13.67 1.68 22.35 8.46 23.71 3.07

250 SJ 50.76 15.67 13.71 1.86 23.85 9.60 23.93 3.38

250 GPS 48.78 13.43 13.66 1.65 21.80 8.22 23.61 2.99

250 ICV 49.50 14.09 13.68 1.70 22.52 8.62 23.73 3.11

250 BDP 55.98 21.01 13.29 2.07 31.04 13.83 23.99 3.76

3 % 7.22 % 500 BCV 80.21 17.99 17.26 1.72 19.11 6.86 26.55 2.94

500 SJ 81.60 19.51 17.27 1.84 20.09 7.52 26.66 3.06

500 GPS 79.49 17.42 17.25 1.67 18.50 6.64 26.44 2.88

500 ICV 80.36 18.22 17.26 1.73 19.18 6.98 26.56 2.97

500 BDP 93.90 24.27 17.43 1.95 27.32 9.90 27.38 2.83

7 % 3.23 % 500 BCV 49.58 11.07 13.57 1.34 23.17 7.05 23.68 2.52

500 SJ 50.45 12.01 13.58 1.44 24.09 7.57 23.81 2.69

500 GPS 49.15 10.72 13.56 1.31 22.62 6.84 23.60 2.44

500 ICV 49.67 11.21 13.57 1.35 23.27 7.19 23.70 2.54

500 BDP 58.01 14.93 13.70 1.53 31.97 10.12 24.70 2.89

For Model 2, a mixture model where for 10 % of the items the mean is reduced
by ten units, the situation is now different. Here biased cross-validation and indirect
cross-validation perform best and produce the most accurate estimates, see Table 2.
Again, the stage-two plan can be estimated with comparable accuracy.

Model 3 represents a symmetric distribution with two smaller subpopulations
whose mean is larger or smaller, such that there are notable local minima of the
density between the three corresponding local maxima. The results are given in
Table 3. Whereas for Models 1, 2, and 4 the GDP method leads to larger expected
sample sizes and larger standard deviations than the other methods, it outperforms
all other methods under Model 3, when m D 250.

Of considerable interest in photovoltaic applications, and presumable other areas
as well, is Model 4, a kind of head-and-shoulders distribution resulting in relatively
short tails. The results in Table 4 demonstrate that in this case the GPS method
provides the best results in all cases, both in the sense of smallest expected sample
sizes for both stages and in the sense of highest accuracy of estimation (i.e., smallest
standard deviations).
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Table 2 Characteristics of the sampling plans for Model 2

˛1 ˛2 m Type E.n1/ sd.n1/ c1 sd.c1/ E.n2/ sd.n2/ c2 sd.c2/

3 % 7.22 % 250 BCV 281.52 88:60 21.80 2.45 115.68 46.15 29.34 2.28

250 SJ 296.12 94:82 22.07 2.60 126.44 45.39 29.92 2.71

250 GPS 297.60 97:68 22.06 2.63 128.48 48.30 30.38 2.82

250 ICV 274.44 83:41 21.67 2.33 111.32 39.88 30.22 2.50

250 BDP 320.28 123:21 21.35 3.20 136.48 57.84 29.55 1.97

7 % 3.23 % 250 BCV 173.44 54:63 17.11 1.93 110.88 38.94 31.64 3.62

250 SJ 182.56 58:42 17.33 2.04 118.28 38.59 32.22 3.66

250 GPS 183.32 60:02 17.32 2.06 122.88 42.15 32.34 3.74

250 ICV 169.20 51:33 17.01 1.83 108.20 33.66 31.42 3.30

250 BDP 197.52 75:82 16.77 2.51 129.72 50.85 31.20 4.59

3 % 7.22 % 500 BCV 280.24 56:48 21.94 2.04 116.00 26.61 28.84 2.82

500 SJ 289.00 61:28 22.14 2.19 122.44 30.35 28.62 2.08

500 GPS 283.32 62:64 22.02 2.14 118.40 30.42 28.49 2.09

500 ICV 276.88 53:26 21.86 1.99 114.52 23.33 28.37 2.13

500 BDP 331.44 91:83 22.40 2.73 138.20 42.49 30.36 3.29

7 % 3.23 % 500 BCV 172.84 34:83 17.23 1.60 110.52 21.92 31.89 2.96

500 SJ 178.12 37:56 17.38 1.71 115.16 25.58 32.14 3.19

500 GPS 174.68 38:62 17.29 1.68 113.04 29.44 31.68 2.84

500 ICV 170.68 32:78 17.16 1.56 108.96 20.69 31.78 2.89

500 BDP 204.36 56:50 17.59 2.14 133.32 35.27 32.30 3.34

Table 3 Characteristics of the sampling plans for Model 3

˛1 ˛2 m Type E.n1/ sd.n1/ c1 sd.c1/ E.n2/ sd.n2/ c2 sd.c2/

3 % 7.22 % 250 BCV 206.12 78.11 26.99 4.46 75.92 33.60 29.05 2.57

250 SJ 210.84 78.68 27.26 4.55 77.44 34.14 30.39 2.96

250 GPS 203.44 75.73 26.86 4.26 72.64 33.43 29.36 2.99

250 ICV 202.96 76.32 26.83 4.36 74.12 33.60 29.57 3.01

250 BDP 171.00 66.69 23.82 3.70 58.76 29.80 29.15 2.07

7 % 3.23 % 250 BCV 127.16 48.05 21.20 3.50 73.36 35.32 33.94 2.66

250 SJ 129.96 48.50 21.40 3.57 75.60 35.86 33.73 2.48

250 GPS 125.36 46.58 21.09 3.33 70.88 34.31 33.98 2.63

250 ICV 125.12 47.01 21.07 3.42 72.44 36.28 34.05 2.31

250 BDP 105.64 41.11 18.73 2.90 58.64 28.75 32.19 3.20

(continued)
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Table 3 (continued)

˛1 ˛2 m Type E.n1/ sd.n1/ c1 sd.c1/ E.n2/ sd.n2/ c2 sd.c2/

3 % 7.22 % 500 BCV 190.80 58.17 26.28 3.54 68.00 25.37 28.45 2.04

500 SJ 191.68 60.03 26.30 3.67 67.92 25.75 29.17 2.57

500 GPS 188.96 56.97 26.20 3.44 66.52 24.81 28.79 1.74

500 ICV 190.68 57.17 26.30 3.48 67.80 25.28 28.74 1.92

500 BDP 194.84 49.04 25.89 2.67 71.80 22.06 28.73 1.62

7 % 3.23 % 500 BCV 117.64 35.78 20.64 2.77 65.76 27.16 33.69 2.20

500 SJ 118.40 36.91 20.67 2.87 65.12 27.68 33.44 2.44

500 GPS 116.48 34.94 20.57 2.69 65.36 26.14 33.62 2.11

500 ICV 117.56 35.21 20.65 2.72 66.32 26.38 33.79 2.23

500 BDP 120.12 30.31 20.33 2.10 67.88 22.75 34.64 2.05

Table 4 Characteristics of the sampling plans for Model 4

˛1 ˛2 m Type E.n1/ sd.n1/ c1 sd.c1/ E.n2/ sd.n2/ c2 sd.c2/

3 % 7.22 % 250 BCV 171.76 49.49 24.52 2.58 59:79 23.18 28.55 1.85

250 SJ 230.81 65.47 27.29 3.28 87:28 29.17 29.45 1.91

250 GPS 173.57 46.82 24.62 2.49 60:70 22.25 28.57 1.74

250 ICV 173.32 44.49 24.61 2.37 60:56 21.12 28.47 1.71

250 BDP 251.94 80.19 26.98 3.67 96:91 34.33 29.63 2.04

7 % 3.23 % 250 BCV 105.94 30.47 19.26 2.03 58:85 24.02 33.12 2.37

250 SJ 142.30 40.30 21.43 2.57 87:94 32.09 33.85 2.33

250 GPS 107.05 28.84 19.33 1.96 59:57 22.68 33.32 2.63

250 ICV 106.91 27.38 19.33 1.86 59:49 21.82 33.39 2.43

250 BDP 155.31 49.36 21.19 2.88 100:03 39.10 33.95 2.47

3 % 7.22 % 500 BCV 231.72 52.48 27.43 2.58 88:00 23.35 29.27 1.61

500 SJ 254.06 55.76 28.41 2.72 97:89 24.41 29.85 1.72

500 GPS 209.60 43.00 26.43 2.20 78:13 19.35 28.69 1.36

500 ICV 224.87 49.94 27.13 2.48 84:83 22.18 29.07 1.52

500 BDP 295.24 72.06 29.34 3.10 115:42 30.61 30.47 2.01

7 % 3.23 % 500 BCV 142.85 32.31 21.54 2.02 88:49 26.36 34.24 2.23

500 SJ 156.60 34.33 22.31 2.13 99:64 27.51 33.92 2.13

500 GPS 129.24 26.48 20.76 1.73 77:04 21.69 34.58 2.21

500 ICV 138.64 30.75 21.30 1.95 84:79 25.11 34.38 2.25

500 BDP 181.98 44.37 23.04 2.43 120:50 35.80 33.86 2.09

7 Discussion

A sampling plan methodology for a control-inspection policy is established that
allows for independent as well as dependent sampling. Relying on a decision rule
based on a t-type test statistic, sampling plans are constructed based on quantile
estimates calculated from an additional sample taken from the production line. The
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new methodology applies to independent samples as well as dependent ones, under
general conditions. When aggregating the available sampling information in order
to minimize the required additional sampling costs at inspection time, it turns out
that the relevant operating characteristics are relatively involved nonlinear equations
that have to be solved numerically. Monte-Carlo simulations show that the approach
works well and that the second stage sampling plan can be estimated with an
accuracy that is comparable to the accuracy for the known formulas applicable for
the first stage sampling plan. It also turns out that there is no uniformly superior
method of bandwidth selection when relying on quantile estimates using inverted
kernel density estimators. However, ICV and the GPS bandwidth selectors provide
better results in many cases than more classical approaches.

The extension of the acceptance sampling methodology to the case of L �
2 number of inspection time points, preferably allowing for dependent cluster
sampling, requires further investigation. Firstly, the question arises whether or not
one should design such procedures such that the overall type I and type II error rates
are under control. Further, it remains an open issue to which extent one should
aggregate data and to which extent time effects can be modelled stochastically.
Lastly, for large L appropriate procedures could resemble sequential (closed-end)
procedures.

Having in mind that in many cases present day quality control is based on high
dimensional data arising from measurement curves and images such as IV curves or
EL images in photovoltaics, the extension of the acceptance sampling methodology
to high dimensional and functional data deserves future research efforts as well; a
deeper discussion is beyond the scope of the present article.
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proof-reading. Part of this work has been supported by a grant from the German Federal Ministry
for Economic Affairs and Energy (BMWi), PV-Scan project (grant no. 0325588B).

Appendix: Proofs

The results are obtained by refinements of the results obtained in Steland and Zähle
(2009) and Meisen et al. (2012) and their extension to the two-stage setup with
possibly dependent samples. First, we need the two following auxiliary results,
which are proved in Meisen et al. (2012) for independent observations. However,
it can be easily seen that the proofs work under more general conditions.

Lemma 1 If X1; X2; : : : have mean �, variance �2 2 .0; 1/ and satisfy a central

limit theorem, i.e.
p

n
Xn��

�

d! N.0; 1/; as n ! 1, then

Rn D p
n

Xn � �

�

� � Sm

Sm

D oP .1/;

as min.n; m/ ! 1, if Sm is a weakly consistent estimator for � .
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Lemma 2 Suppose that

 p
m.F �1

m .p/ � F �1.p//p
n

Xn��

�

!
d!
�

V1

V2

�
(15)

as m ! 1, for a pair .V1; V2/
0 of random variables. Then

Vn D
r

n

m

p
m.F �1

m .p/ � F �1.p//

Sm

D oP .1/;

as min.n; m/ ! 1 such that n=m D o.1/.

Proof (Theorem 1) In order to establish the approximations, first notice that the
well-known Skorohod/Dudley/Wichura representation theorem allows us to assume
that all distributional convergences can be assumed to hold a.s. and that all oP .1/

terms are o.1/; we leave the details to the reader. In particular, we may and shall
assume that, almost surely,

.X
�
1 ; X

�
2 /0 ! .Z1; Z2/ , X

�
1 � Z1 D o.1/; X

�
2 � Z2 D o.1/; (16)

as min.n1; n2/ ! 1, where .Z1; Z2/ are i.i.d standard normal random variables.
Let us consider the probability q D P.Tn1 > c1; Tn1 CTn2 > c2/: As shown in detail
below in the proof of Theorem 2 for the more involved case of dependent sampling,
we have the asymptotic expansions

�
Tn1

Tn2

�
D
 

X
�
1

X
�
2

!
�
�p

n1G�1
m .p/p

n2G�1
m .p/

�
C oP .1/;

as min.n1; n2/ ! 1 with n1=n2 ! 1 and max.n1; n2/=m D o.1/, and both
coordinates are independent given G�1

m .p/. Combing these expansions with (16),
we obtain, by plugging in the above expansions and .Z1; Z2/ for .X

�
1 ; X

�
2 /,

q D P.X
�
1 � p

n1G�1
m .p/ C o.1/ > c1; X

�
1 C X

�
2 � .

p
n1 C p

n2/G�1
m .p/ C o.1/ > c2/

D P.Z1 � p
n1G�1

m .p/ C o.1/ > c1; Z1 C Z2 � .
p

n1 C p
n2/G�1

m .p/ C o.1/ > c2/

Conditioning on Z2 D z2 and X01; : : : ; X0m leads to the expression

Z
P.z > c1Cp

n1G�1
m .p/Co.1/; Z2 > c2�zC.

p
n1Cp

n2/G�1
m .p/Co.1// d˚.z/
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for q. Using E.1A1B/ D 1AE.1B/, if A is non-random with respect to P , we obtain

q D
Z

1

c1C

p

n1G�1
m .p/Co.1/

Œ1 � ˚.c2 � z C .
p

n1 C p
n2/G�1

m .p/ C o.1//� d˚.z/ C o.1/

D
Z

1

c1C

p

n1G�1
m .p/Co.1/

Œ1 � ˚.c2 � z C .
p

n1 C p
n2/G�1

m .p//� d˚.z/ C o.1/;

where we used the continuity of the integral. Further, the o.1/ term in the integrand
can be dropped by virtue of the Lipschitz continuity of ˚ . Combing the above results
with the approximation P.Tn1 > c1/ D 1�˚.c1 Cp

n1G�1
m .p//Co.1/; establishes

the result. ut
We are now in a position to show Theorem 2. If X01; : : : ; X0m and X11; : : : ; X1n1

are independent, then (15) follows easily. Otherwise, Assumption Q’ ensures the
validity of the joint asymptotic normality for independent as well as a large class of
dependent sampling schemes.

Proof (Theorem 2) Recall that E.Xi/ D � and Var.Xi / D �=ni , i D 1; 2. We may
closely follow the arguments given in Meisen et al. (2012), since we have

Tni D p
ni

Xi � 	

Sm

D p
ni

Xi � �

�
C Rni C p

ni

� � 	

�
C Vni;

where

Rni D p
ni

Xn � �

�

� � Sm

Sm

D oP .1/;

Vni D p
ni

� � 	

�

�
�

Sm

� 1

�
D oP .1/;

as min.ni ; m/ ! 1, by virtue of Lemma 1, since
p

m.Sm � �/ is asymptotically
normal (by an application of the 
-method, if the fourth moment is finite, and
ni =m D o.1/, also see Steland and Zähle (2009). Thus, it remains to consider

p
ni

� � F �1.p/

�
D � p

ni G
�1.p/ D

r
ni

m

p
mŒG�1

m .p/ � G�1.p/� � p
ni G

�1
m .p/;

where, by virtue of Assumption Q, the first term is oP .1/, if min.m; ni / ! 1
and ni =m D o.1/. This shows the first assertion which is relevant when a quantile
estimator of the standardized observations is available. Recall that �0 D � C 
 D
E.X0/ and �2

0 D Var.X0/ D �2. If a quantile estimator F �1
m for the quantile

function F �1
0 .p/ D �0 C �0G

�1.p/ of the additional sample taken at time t0 is
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available, one proceeds as follows. Noting that ��F �1.p/

�
D G�1.p/ D �0�F �1

0 .p/

�0
,

we have

p
ni

� � F �1.p/

�
D
r

ni

m

p
mŒF �1

m .p/ � F �1
0 .p/�

�0

� p
ni

F �1
m .p/ � X0

Sm

� p
ni

F �1
m .p/ � X0

Sm

�
Sm

�0

� 1

�
C p

m
�0 � X0

�0

r
ni

m
:

In this decomposition at the right side the first, third, and fourth term are oP .1/, as
min.ni ; m/ ! 1 with ni =m D o.1/, i D 1; 2. Notice that the fourth term is o.1/,
since

p
m.X0 � �0/=�0

d! N.0; 1/;

if X01; : : : ; X0m are i.i.d. � F..	 � �0/=�0/ or as a consequence of Assumption Q’.
Thus,

p
ni

� � F �1.p/

�
D p

ni G
�1
m .p/ C oP .1/;

where now G�1
m .p/ D F �1

m .p/�X0

Sm
is an estimator of the quantile function G�1.p/

of the standardized observations, see Remark 1. ut
Proof (Proposition 2) We consider the case n1 < n2. W.l.o.g. we can assume
that X21; : : : ; X2n1 are the time t2 measurements from those n1 items (modules)
already drawn at time t1, and X2;n1C1; : : : ; X2n2 are n2 � n1 measurements taken
from newly selected items from the lot. By virtue of the Cramér-Wold device, to
prove the proposition, it suffices to show that for all constants d1; d2 2 R with
.d1; d2/ ¤ .0; 0/

d1X
�
1 C d2X

�
2

d!
n!1 N.0; d 2

1 C d 2
2 C 2d1d2

p
�%0/;

since E.d1X
�
1 C d2X

�
2 / D 0 and

Var.d1X
�
1 C d2X

�
2 / D d 2

1 C d 2
2 C 2d1d2

r
n1

n2

%0:

Write d1X
�
1 C d2X

�
2 D An C Bn; where

An D 1p
n

n1X
j D1

�
d1

X1j � �1

�1

C d2

r
n1

n2

X2j � �1

�1

�
;

Bn D d2p
n2

p
n2 � n1

1p
n2 � n1

n2X
j Dn1C1

X2j � �2

�2

:
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The summands of An form an array of row-wise independent random variables
�n1;j ; 1 � j � n1; n1 � 1, with mean zero and variance

Var.�n1;j / D d 2
1 C d 2

2

n1

n2

C 2d1d2

r
n1

n2

%0 ! d 2
1 C d 2

2 � C 2d1d2

p
�%0;

as n1 ! 1: Further, it is easy to verify that Bn

d! N.0; d 2
2 .1 � �//; as n1 ! 1.

By independence of An and Bn, we obtain

�
An

Bn

�
d! N

��
0

0

�
;

�
d 2

1 C d 2
2 � C 2d1d2

p
�%0 0

0 d 2
2 .1 � �/

��
;

as n1 ! 1: Now the continuous mapping theorem entails

An C Bn

d! N.0; �2
AB/;

as n1 ! 1, where �2
AB D d 2

1 C d 2
2 � C 2d1d2

p
�%0 C d 2

2 .1 � �/ D d 2
1 C d 2

2 � C
2d1d2

p
�%0; which establishes the assertion. ut

Proof (Theorem 3) The proof goes along the lines of the proof for the independent
case. Again we may and shall assume that the distributional convergence is a.s.

and oP .1/ are o.1/ a.s. Therefore,
�
X

�
1 ; X

�
2

�
a:s:! .Z1; Z2/ ; as min.n1; n2/ ! 1.

Here .Z1; Z2/ is a bivariate random vector that is jointly normal with mean 0, unit
variances and correlation �. The probability q D P.Tn1 > c1; Tn1 C Tn2 > c2/ can
now be calculated as follows. We have

q D P.X
�
1 � p

n1G�1
m .p/ C o.1/ > c1; X

�
1 C X

�
2 � .

p
n1 C p

n2/G�1
m .p/ C o.1/ > c2/

D P.Z1 > c1 C p
n1G�1

m .p/ C o.1/; Z2 > c2 � z C .
p

n1 C p
n2/G�1

m .p/ C o.1//

D
Z

1.z > c1 C p
n1G�1

m .p/ C o.1//

P.Z2 > c2 � z C .
p

n1 C p
n2/G�1

m .p/ C o.1/jZ1 D z/ d˚.z/ C o.1/:

However, now we have to take into account that the conditional law of Z2 given
Z1 D z is a normal distribution that depends on z, namely with mean �z and variance
1 � �2. Therefore, we may conclude that, up to an o.1/ term,

q D 1p
2�

Z 1

c1Cp
n1G�1

m .p/

"
1 � ˚

 
c � z C .

p
n1 C p

n2/G
�1
m .p/ � �zp

1 � �2

!#
e�z2=2 dz:
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The unknown correlation parameter � may be replaced by its consistent estimator
O�, since the integrand is Lipschitz continuous, if j�j < 1. Indeed, observing that

d

d�
˚

 
c � z C .

p
n1 C p

n2/G
�1
m .p/ � �zp

1 � �2

!

D '.0;1/

 
c � z C .

p
n1 C p

n2/G�1
m .p/ � �zp

1 � �2

!

� �zp
1 � �2

C �
c � z C .

p
n1 C p

n2/G
�1
m .p/ � �2

.
p

1 � �2/3
;

where '.0;1/ denotes the density of the N.0; 1/-distribution, we can find 0 < c < 1,
such that the above expression is not larger than cjzj, as a function of z. Hence,
replacing � by its estimator O�n results in an error term that can be bounded by
.2�/�1c

R jzje�z2=2 dzj O�n � �j D oP .1/. Putting things together, we arrive at the
assertion of the theorem. ut

References

Assmus, M., Jack, S., Weiss, K.-A., & Koehl, M. (2011). Measurement and simulation of vibrations
of PV-modules by dynamic mechanical loads. Progress in Photovoltaics, 19, 688–694.

Bruhn-Suhr, M., & Krumbholz, W. (1991). Exact two-sided Liebermann-Resnikoff sampling plans.
Statistische Hefte, 32, 233–241.

Feldmann, B. & Krumbholz, W. (2002). ASN-minimax double sampling plans. Statistical Papers,
43, 361–377.

Glick, N. (1974). Consistency conditions for probability densities and integrands of density
estimators. Utilitas Mathematica, 6, 75–86.

Golyandina, N., Pepelyshev, A. & Steland, A. (2012). New approaches to nonparametric density
estimation and selection of smoothing parameters. Computational Statistics and Data Analysis,
56(7), 2206–2218.

Herrmann, W. & Steland, A. (2010). Evaluation of photovoltaic modules based on sampling
inspection using smoothed empirical quantiles. Progress in Photovoltaics, 18(1), 1–9.

Herrmann, W., Althaus, J., Steland, A. & Zähle, H. (2006). Statistical and experimental methods for
assessing the power output specification of PV modules. In Proceedings of the 21st European
Photovoltaic Solar Energy Conference, (pp. 2416–2420).

Herrmann, W., Steland, A. & Herff, W. (2010). Sampling procedures for the validation of
PV module output specification. In Proceedings of the 24th European Photovoltaic Solar
Energy Conference, Hamburg, Germany, ISBN 3-936338-25-6, 3540–3547. doi:10.4229/
24thEUPVSEC2009-4AV.3.70.

Kössler, W. & Lenz, H. -J. (1997). On the non-robustness of maximum-likelihood sampling plans
by variables. In H.-J. Lenz & P.-T. Wilrich (Eds.), Frontiers in statistical quality control (Vol.
5, pp.38–51). Berlin: Springer.

Kössler, W. (1995). A new one-sided variable inspection plan for continuous distribution functions.
Allgemeines Statistisches Archiv, 83(4), 416–433.

Liebermann, G. J. & Resnikoff, G. J. (1995). Sampling plans for inspection by variables. Journal
of the American Statistical Association, 50, 457–516.

10.4229/24thEUPVSEC2009-4AV.3.70
10.4229/24thEUPVSEC2009-4AV.3.70


Control-Inspection Schemes 317

Meisen, S., Pepelyshev, A. & Steland, A. (2012). Quality assessment in the presence of additional
data in photovoltaics. In H.-J. Lenz, W. Schmid & P.-T. Wilrich (Eds.), Frontiers in Statistical
Quality Control (Vol. 10, pp. 249–274). Berlin: Springer.

Pepelyshev, A., Rafajłowicz, R. & Steland, A. (2014a). Estimation of the quantile function using
Bernstein-Durrmeyer polynomials. Journal of Nonparametric Statistics, 145, 49–73.

Pepelyshev, A., Steland, A., & Avellan-Hampe, A. (2014b). Acceptance sampling plans for
photovoltaic modules with two-sided specification limits. Progress in Photovoltaics, 22(6),
603–611.

Savchuk, O. Y., Hart, J. D. & Sheather, S. J. (2010). Indirect cross-validation for density estimation.
Journal of the American Statistical Association, 105(489), 415–423.

Schilling, D. G. & Neubauer, D. V. (2009). Acceptance sampling in quality control. Boca Raton:
Chapman & Hall/CRC.

Sheather, S.J. & Jones, M.C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society B, 53, 683–690.

Steland, A. & Zähle, H. (2009). Sampling inspection by variables: Nonparametric setting. Statistica
Neerlandica, 63(1), 101–123.



Part III
Design of Experiments



An Overview of Designing Experiments
for Reliability Data

G. Geoffrey Vining, Laura J. Freeman, and Jennifer L.K. Kensler

Abstract The reliability of products and processes will become increasing impor-
tant in the near future. One definition of reliability is “quality over time.” Customers
increasing will make their purchasing decisions on how long they can expect their
products and processes to deliver high quality results. As a result, there will be
increasing demands for manufacturers to design appropriate experiments to improve
reliability. This paper begins with a review of the current practice for planning
reliability experiments. It then reviews some recent work that takes into proper
account the experimental protocol. A basic issue is that most reliability engineers
have little training in planning experiments while most experimental design experts
have little background in reliability data.

Keywords Censored data • Skewed distributions

1 Introduction

Consumers are demanding more reliable products and services. A popular definition
of reliability is “quality over time.” Consumers expect that products will continue to
meet or exceed their expectations for at least the advertised lifetime, if not longer.
One reason for the rise of the Japanese automotive industry within North America
since the 1980s is the far better reliability of their cars and trucks.

Just as companies needed to apply experimental design concepts to improve
quality, so too will they need to apply these same concepts to improve reliability.
Current practice almost exclusively restricts the use of experimental protocols in
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reliability testing to completely randomized accelerated life tests. The future will
see more broad scale use of basic experimental designs, analyses, protocols, and
concepts.

A major problem facing this transition to more use of experimental design in reli-
ability is the nature of reliability data. Classical experimental designs and analyses
assume that the data at least roughly follow normal distributions. Reliability data
tend to follow highly skewed distributions, better modeled by such distributions as
the Weibull. Another complication is that typical reliability experiments censor large
amounts of the data, which stands in stark contrast to classical experimental design
and analysis. The issue then becomes that the people who routinely work with
reliability data apply very different tools and methods than people who routinely do
classical experimental design and analysis. The only proper way to apply classical
experimental design approaches is to understand at a fundamental level the nature of
reliability data. Unfortunately, very few people understand both fields well enough
to bridge the gap.

This paper first presents an introduction to reliability data, with a special focus
on the Weibull distribution and censoring. It then gives an overview of designing
experiments for lifetime data. The next section introduces a motivating example
analyzed in Meeker and Escobar (1998), who analyze the results as if they came
from a completely randomized design. However, the data actually reflect sub-
sampling. We then introduce a naive two-stage analysis that takes into account the
actual experimental protocol. The next section discusses a more statistically rigorous
approach to the data analysis. We then extend these basic results to the situation
where we have sub-sampling within random blocks. The final section offers some
conclusions and some future research directions.

2 Introduction to Reliability Data

Typically, reliability data focus on lifetimes. In some cases, these data are cycles
until failure, which is a surrogate for time. Engineering examples include extremely
complex systems, such as aircraft engines, as well as relatively simple parts such as
metal braces. Often, engineers must build reliability models on the relatively simple
components in order to develop a reasonable model for the complex system.

The most common distributions used by reliability engineers to model reliability
data are the lognormal, the exponential, and the Weibull. Of these three, the
Weibull tends to dominate, especially since the exponential is a special case. The
lognormal distribution transforms highly skewed data to the normal distribution.
The exponential distribution has a constant hazard function, which is associated with
true random failure behavior, i.e. there is no specific failure mechanism associated
with the failure. The biggest value of the Weibull distribution is its ability to model
the times to failure for specific failure mechanisms.
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Some textbooks discuss the gamma distribution for reliability applications.
The gamma distribution is extremely important in queueing theory for modeling
inter-arrival times. Most reliability engineers reject the basic concept of modeling
times to failures as an inter-arrival problem. The primary reason is that failures
have fundamental causes as opposed to truly random events. The physics based
interpretation of the Weibull distribution is that it models the time to failure when
the failure is due to the “weakest link,” which is a common failure mechanism.
This paper purely focuses on the Weibull distribution for modeling reliability data
because of its overwhelming popularity among reliability engineers.

Most reliability data involve censoring, which does complicate the analysis. The
basic types of censoring are:

• Right, where the test stops before all specimens fail

– Type I, where the test stops at a pre-specified time,
– Type II, where the test stops after a pre-specified number of failures,

• Left, where the first failure time recorded is after failures have begun to occur,
• Interval, where the analyst only knows that the failure occurred between two

times.

Censoring reflects the reality that failures typically are rare events, even under
accelerated conditions. By far, the most common approaches for estimation and
inference for reliability data are maximum likelihood and log-likelihood.

The likelihood for Type I and Type II censored data is:

L.ˇ; �/ D C
NY

iD1

Œf .ti /�
ıi Œ1 � F.ti /�

1�ıi ;

where ıi D 1 if the data point is observed and ıi D 0 if the data point is right
censored. Additionally, f .ti / is the probability distribution function (PDF) for the
assumed distribution, F.ti / is the cumulative distribution function (CDF), andC is a
constant which varies based on the censoring type. However, C does not impact the
maximum likelihood estimators (MLEs). Therefore we use C D 1 for simplicity.
The log-likelihood for the right censored data case is then given by:

`i .ˇ; �/ D
NX

iD1

ıi log.f .ti // C
NX

iD1

Œ1 � ıi � log.1 � F.ti //:

The PDF for the Weibull distribution is

f .t; ˇ; �/ D ˇ

�

�
t

�

�ˇ�1

e
�
�

t
�

�ˇ

;
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where ˇ > 0 is the shape parameter, � > 0 is the scale parameter, and t > 0 is
the time to failure. The Weibull distribution is popular because the shape parameter
allows it to model several different mechanisms of failure. The CDF is

F .t; ˇ; �/ D 1 � e
�
�

t
�

�ˇ

:

The hazard function represents the instantaneous probability of failure, which is
quite important for reliability engineers. The Weibull hazard function is

h.t/ D ˇ

�

�
t

�

�ˇ�1

:

We note that the hazard function is a constant when ˇ D 1 (the exponential
distribution). As a result, reliability engineers view the exponential distribution as
modeling purely random failure, which often is of limited interest. For ˇ < 1, the
hazard function is monotonically decreasing, which corresponds to infant mortality.
For ˇ > 1, the hazard function is monotonically increasing, which corresponds to
wear-out. As a result, the Weibull shape parameter, ˇ, has a specific relationship to
the specific failure mechanism.

The Weibull distribution is a special case of the smallest extreme value distri-
bution, which is a member of the log-location-scale family of distributions. Let
� D log .�/, and let zi D ˇ Œ log.ti / � ��. We note that

log Œf .ti /� D log

�
ˇ

ti

�
C zi � ezi and

log Œ1 � F.ti /� D �ezi :

As a result, the log-likelihood for right censored Weibull data reduces to:

`.ˇ; �/ D
NX

iD1

�
ıi

�
log

�
ˇ

ti

�
C zi

�
� ezi

�
:

3 Current Approaches to Planning Experiments
with Reliability Data

Reliability engineers conduct life tests to develop models for the product/process
lifetimes at the use conditions. In some cases, the use conditions produce sufficient
failures to estimate the model well. In most cases, however, the engineers must
use a stress factor (in some cases, more than one stress factor) to increase the
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probability of failures. Such experiments are called accelerated life tests. Common
stress factors include temperature, voltage, humidity, etc. The engineer uses the
estimated model to project back to the use conditions. Inherently, accelerated life
tests involve extrapolation. As a result, the experimenter must exercise caution in
choosing the appropriate levels for these stress factors. If the level is too extreme,
the failure mechanism can change, which then nullifies the ability to extrapolate
back to the expected behavior at the use conditions. In such a case, the cause of the
failure may never occur at the use conditions, which is a problem.

The current literature for designed experiments with reliability data almost
exclusively uses a completely randomized design, even when the actual protocol
is something different. The focus of the current literature is on planning optimal
designs. The basic issues are how many levels to use for the stress factors, how to
allocate the available units to these levels, and how long to run the test.

Typically, accelerated life tests use a single stress factor with at least three levels.
The linear models theory underlying the analysis suggests that the optimal design
should use only two levels. The rationale for at least three is practical. Often the level
for the stress factor closest to the use conditions does not produce enough failures
to estimate the model well. Using more than two levels helps to mitigate that risk.
Similarly, using more than two levels can help to mitigate the risk of inducing a new
failure mechanism.

The typical analysis of life and accelerated life tests uses the reparameterization
of the Weibull distribution to the smallest extreme value distribution. The basic idea
is to use a linear model for the log-location parameter, �. As a result, the basic
model is

�i D x0
i �;

where �i is the log-location parameter for the i th experimental run, xi is the
specific value for the i th setting for the experimental factors (taking the model into
account), and � is the corresponding vector of regression coefficients. Typically, the
model does include the y-intercept term. Engineers then use maximum likelihood
to estimate the model parameters and log-likelihood to perform inference.

4 Motivating Example

Zelen (1959) discusses a factorial experiment to determine the effect of voltage
and temperature on the lifespan of a glass capacitor. Zelen describes the experi-
ment as “n components are simultaneously placed on test.” Table 1 summarizes
the experimental results. Zelen uses eight capacitors per test stand and Type II
censoring after the fourth failure. Each test stand receives a different combination



326 G.G. Vining et al.

Table 1 Life test results of
capacitors, adapted from
Zelen (1959)

Applied voltage
Temperature (C) 200 250 300 350

170 439 572 315 258

904 690 315 258

1,092 904 439 347

1,105 1,090 628 588

180 439 572 315 258

904 690 315 258

1,092 904 439 347

1,105 1,090 628 588

of temperature and voltage. It is quite clear that the actual experimental protocol
involves sub-sampling. The actual experimental units are the test stands since the
treatment combinations are applied to the stand, not to the individual capacitors.
Each capacitor in a test stand receives the exact same combination of the two factors.
Two capacitors within a stand cannot have different temperatures or voltages. As a
result, the capacitors within a stand are correlated with each other.

Meeker and Escobar (1998) use these data to illustrate how to analyze a reliability
experiment using regression. They treat each capacitor as independent, thus ignoring
the fact that capacitors within cells are correlated. Meeker and Escobar analyze the
experiment as if there are 64 experimental units when in fact there are only 8. As a
result, they treat the data as if they came from a completely randomized design in the
capacitors replicated a total of eight times. The problem is that the actual protocol
is an unreplicated completely randomized design in the test stands.

5 Naive Two-Stage Analysis of Reliability Data
with Sub-Sampling

Freeman and Vining (2010) propose a naive two-step approach to this problem that
assumes:

• Lifetimes within a test stand follow the same Weibull distribution.
• The failure mechanism remains the same across the test stands.
• The impact of treatments is through the scale parameter.
• Test stands are independent and, given the scale parameter, the observations

within a test stand are independent.
• The experimental variability between scale parameters is log-normal.
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5.1 First Stage of the Naive Analysis

Let tij be the observed lifetime for the j th item within the i th test stand. The failure
times follow a Weibull distribution within a test stand, therefore:

f
�
tij
� D ˇ

�i

�
tij

�i

�ˇ�1

e
�
�

tij
�i

�ˇ

;

where ˇ > 0 is the constant shape parameter and �i is the scale parameter for i th

test stand. The likelihood for an individual test stand with right censoring present is:

L .ˇ; �i / D C
nY

j D1

	
f .tij/


ıij
	
1 � F.tij/


1�ıij
;

where ıij D 1 if the item fails and ıij D 0 if the item is censored. Again, C is
a constant dependent on the type of censoring but can be taken as C D 1 when
calculating maximum likelihood estimates. The joint log-likelihood for data with
right censoring then becomes:

`.ˇ; �1; : : : ; �m/ D
mX

iD1

nX
j D1

�
ıij log

�
ˇ

tij

�
C ıijzij � ezij

�
:

One then can find the MLEs for ˇ and the �i s by maximizing the joint likelihood
function. Many standard statistical software packages such as Minitab and SAS-
JMP do this analysis.

Meeker and Escobar (1998) show that the Weibull distribution meets the
regularity conditions to derive the asymptotic variance–covariance matrix from the
maximum likelihood estimates. The resulting estimated variance matrix for the
maximum likelihood estimates is:

Ȯ O� D

2
66664

cVar. Ǒ/ bCov. Ǒ; O�1/ : : : bCov. Ǒ; O�m/
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:::

:::
: : : bCov. O�m�1; O�m/
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3
77775

D

2
6666664
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From the log-likelihood one can establish:
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Additionally, the second derivatives between all pairs of �i and �j are zero. This
variance matrix will be used in the second stage of the model.

5.2 The Second Stage: The Model Between Experimental Units

This step uses the estimates for the shape parameter and the scale parameters and
their corresponding variances for each experimental unit to model the estimates of
the scale parameters as a linear function of the factors. The most appropriate way to
estimate the model takes into account the variances on the scale parameter estimates
through weighted least squares. In this case, the second stage model is:

O� D X� C �;

where X is the matrix containing the treatment levels of the factors, � is the
vector of the corresponding regression coefficients, and � � MVN.0; V /. The
variance matrix, V , accounts for the scale parameter variance estimates. Since the
covariances are essentially 0, we can simplify the analysis by assuming that V is
diagonal with the non-zero elements simply being < cVar .b�i / >. The resulting
parameter estimates are:

O� D �
XT V �1X

��1
XT V �1 O�:

The big advantage to this approach is that one can correctly model the experimental
error in current statistical packages that have the ability to fit lifetime distributions
and linear models.

The key to this analysis is a proper understanding of how one can deal with sub-
sampling under normal theory. Once again, the observations within the experimental
unit are correlated. However, one can take into proper consideration the correlation
by replacing the individual observations within the experimental unit by their
average, as long as each experimental unit has the same number of observations. The
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Table 2 Stage one analysis
results

Voltage Temperature O� b�i D log.b�i / cVar . O�i /

200 170 1,262.35 7.141 0.1387

200 180 1,292.78 7.165 0.1390

250 170 1,207.58 7.096 0.1386

250 180 532.85 6.278 0.1387

300 170 683.61 6.527 0.1385

300 180 431.04 6.066 0.1388

350 170 633.86 6.452 0.1384

350 180 510.10 6.235 0.1386

Table 3 Analysis from
minitab, stage two analysis
result

Predictor Coefficient Standard error T p

Constant 14.613 3.249 4.50 0.056

Voltage �0.005638 0.001644 �3.43 0.019

Temperature �0.03682 0.01838 �2.00 0.102

proposed two-stage analysis extends this basic idea to the sub-sampling situation
with Weibull data. The first step uses the Weibull distribution to estimate the
common shape parameter and the different scale parameters, one for each test
stand. The second step models the log transform of the different scale parameters
using weighted least squares where the experimental error terms are given by the
asymptotic experimental error derived in the first step for the log-scale parameters.

Table 2 presents the results from Minitab estimating the eight different scale
parameter assuming constant ˇ. The estimate of the shape parameter is Ǒ

New D
3:62, which is a dramatically different estimate from the shape parameter estimate
in the traditional reliability analysis, which is Ǒ

Trad: D 2:75. This difference in the
shape parameter estimate is the first practical implication of taking the experimental
design into account.

The second step of our proposed new analysis models the resulting maximum
likelihood estimates for the �i ’s using a weighted regression linear model where
the weights are determined by the asymptotic variances from the first step of this
model. The second stage of this analysis can be done in any standard statistical
package. Note that the variance estimates on the different �i are essentially equal
in Table 2. This is a nice result because in the second stage of the model using a
weighted regression is essentially equivalent to standard least squares regression
further simplifying this two-stage analysis method. This is the case because we
have assumed a constant shape parameter, ˇ and the shape parameter is the driving
parameter in the Fisher Information matrix calculations for the variances on the
scale parameters. The results from running the analysis in Minitab are displayed in
Table 3. Table 4 gives the analysis from Meeker and Escobar (1998), which assumes
that all the capacitors are independent.

Several practical differences emerge comparing the results of the new analysis
back to the traditional analysis. First, the Meeker and Escobar analysis overstates the
true experimental degrees of freedom by treating each observation as an independent
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Table 4 Analysis from Meeker and Escobar

Predictor Coefficient Standard error Z p

Intercept 13.4070 2.29584 5.84 0.000

Voltage �0.0059 0.0010398 �5.68 0.000

Temperature �0.0289 0.0129 �2.24 0.0250

Weibull shape 2.74869 0.418739

data point. As a result, their standard errors of the coefficients are all smaller.
The increase in standard error results in the temperature not being a significant
factor at ˛ D 0:05 level for the new analysis. Additionally, the estimates of the
shape parameter are dramatically different between the two analysis methods. The
coefficient estimates for the linear relationship between the log scale parameter and
temperature and pressure are also slightly different.

6 Joint Likelihood Approach

Kensler (2012) performed a simulation study comparing the two stage approach to
the Meeker and Escobar approach. The type I error rate for the two stage was very
close to the nominal. On the other hand, the Meeker and Escobar approach produced
Type I error rates much higher than the nominal. In many cases, so high, in fact, as
to invalidate the analysis.

A major problem with the naive two-stage analysis is that it cannot generate a
joint likelihood for ˇ and the coefficients for temperature and voltage. As a result,
one cannot generate confidence or prediction intervals for such predicted values as
percentiles, which often are of prime importance to a reliability analysis.

Freeman and Vining (2013) propose a joint likelihood approach that requires
a variance component to take into proper account the test stand-to-test stand
variability. If we have i D 1; : : : ; m independent experimental units and j D
1; : : : ; ni sub-samples or observational units per experimental unit, one can specify
the nonlinear mixed model for the Weibull distribution with sub-sampling as:

tijjui � Indep: Weib.ˇ; �i /

F1.tijjˇ; �i ; ui / D 1 � exp

"
�
�

tij

�i

�ˇ
#

log.�i / D �i D xT
i � C ui

f2.ui / � iidN .0; �2
u /;

where xi is the p x 1 vector of fixed factor levels, � is the vector of fixed effect
coefficients,and ui are i D 1; : : : ; m independent random effects. Since the random
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effects are independent, we can write the likelihood as:
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�1

2
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niY
j D1

	
f1.tijjui /


ıij
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1�ıij
f2.ui /

3
5 dui ;

where f1.tijjui / is the Weibull PDF for the data within an experimental unit and
f2.ui / is the normal PDF for the random effect.

Random effects models, especially nonlinear models, pose computational issues
since it is necessary to integrate over the random effect ui to maximize the likeli-
hood. Gauss-Hermite (G-H) quadrature is an especially effective technique when the
random effect follows a normal distribution. Quadrature involves weighting the sum
of a function values at specific points over the domain of integration. G-H quadrature
uses the roots of the Hermite polynomials to provide these specific points. G-H
quadrature requires the random effect to have the form e�x2

. As a result, a change
of variables is necessary to apply G-H quadrature to our likelihood function. Let
ui D p

2�uvi , then the likelihood before the change of variables is:
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where g.tijjui / D 	
f1.tijjui /


ıij
	
1 � F1.tijjui /


1�ıij for right censored data. Execut-
ing the change in variables results in the following likelihood:
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G-H quadrature results in the following approximation of the likelihood:
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where nk is the number of quadrature points, qk are the evaluation points found
from the roots of the Hermite polynomials, and wk are the corresponding weights to
the evaluation points:

wk D 2n�1nŠ
p

�

n2ŒHn�1.qk/�2
:

A common recommendation for the number of quadrature points to minimize bias
is 20 points. Pinheiro and Bates (1995) show that G-H quadrature with 100 points
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is as good as any other solution they investigated to the numerical optimization
problem. In this research, we use 20 quadrature points in all of our analyses, unless
otherwise stated, as an appropriate compromise on computation time, especially in
the simulation studies. The log-likelihood is:

`.ˇ; �jData/ �
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log

0
@ 1p

�

nkX
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3
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1
A :

The approximate log-likelihood is maximized through standard maximization
techniques.

A major advantage of using G-H quadrature is that it results in a closed-
form approximate log-likelihood which allows for one to derive a Hessian matrix
and the corresponding asymptotic covariance matrix. Maximum likelihood theory
states that under certain regularity conditions that

p
.n/. O� � �/ converges in

distribution to a multivariate normal. Let ��T D Œˇ; � �, then O�� � Asymptotically
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The estimated covariance for the parameter estimates can be found by substituting
the MLEs for the parameters they estimate into the information matrix, I.��/.
Meeker and Escobar (1998, p. 622) note that the regularity conditions hold for
the Weibull distribution. See Freeman (2010) for the derivation of the information
matrix for the random effects Weibull model. Alternatively, the standard errors for
the model parameters could be calculated through a bootstrapping procedure.

Table 5 summarizes the analysis of the Zelen data using the joint likelihood
approach. The standard errors for the intercept, voltage, and temperature are similar
to those from the naive two-stage analysis. However, the estimate of the shape
parameter from the joint analysis is very similar to that from the Meeker and Escobar
analysis rather than the two-stage analysis, which is much higher. This result
suggests that the two-stage method may be susceptible to bias in the estimation
of the shape parameter.

Freeman and Vining (2013) perform a simulation study to investigate the
properties of the joint likelihood analysis. Their basic conclusions are

• The joint likelihood approach results in Weibull shape parameter estimates that
are robust to model misspecification and random effect variation.

• Weibull scale parameter estimates are consistently good for both the joint
likelihood analysis and the Meeker and Escobar—independent analysis.
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Table 5 Joint likelihood analysis of the Zelen data

Parameter Estimate Standard error T p-value

Weibull shape 2.7753 0.6622 4.19 0.0041

Intercept 13.5257 3.0636 4.42 0.0031

Voltage �0.00589 0.001154 �5.10 0.0014

Temperature �0.02964 0.01808 �1.64 0.1451

Log(�u) �3.0184 9.0655 �0.33 0.7489

• The joint likelihood approach poorly estimates the true value of ��, primarily
due to the small number of degrees of freedom available in realistic reliability
experiments to estimate this error term.

• The two-stage analysis provides a ready solution for practitioners with sub-
sampling data.

• The joint likelihood approach provides a comprehensive solution for analyzing
data from life test designs that are not completely randomized.

• Both analyses provide a motivation for thinking about design in a reliability
context more comprehensively.

7 Extensions to Random Blocks with Sub-sampling

Kensler et al. (2014) extend the two-stage approach to the situation where we have
test stands within random blocks. Like Freeman and Vining (2010), Kensler et al.
estimate the log scale parameter for each test stand assuming a constant shape
parameter across all the test stands in the first stage. They then perform a standard
random block analysis using the estimated log scale parameters as the response. The
model for the second stage analysis is

O� D X� C Z� C !;

where � is the vector of estimated log-scale parameters from the first stage, X is
the model matrix for the treatment effects, � is the vector of model coefficients, Z

is the incidence matrix for the blocks, � is the vector of random block effects, and
! is the vector of random test stand errors. The second stage analysis assumes that
the �’s are independent and normally distributed with a mean of 0 and a variance
of �2

� , that the !’s are independent and normally distributed with a mean of 0 and a
variance of �2

! , and that the �’s and the !’s are independent.
They adapted the battery data from Montgomery (2005, p. 165) as the basis for

their illustrative example. The experimental objective was to determine the effect
of operating temperature on battery life. The batteries came from three batches,
assumed to be random. Each test stand had eight batteries. The researchers used
Type II censoring after the fourth failure.
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Table 6 The battery life data
(in hours)

Temperature
Batch 15 70 125

1 74 34 20

130 40 58

155 75 80

180 80 82

2 126 106 25

150 115 45

159 122 58

188 136 70

3 110 120 25

138 139 82

160 150 96

168 174 104

Table 7 The first stage
analysis of the battery life
data

Batch Temperature �ij �ij D log.�ij/ cVar.�ij/

1 15 197.79 5.287 0.0158

1 70 87.98 4.477 0.0158

1 125 89.85 4.498 0.0158

2 15 208.88 5.342 0.0160

2 70 153.56 5.034 0.0160

2 125 76.28 4.334 0.0158

3 15 189.22 5.243 0.0160

3 70 193.85 5.267 0.0160

3 125 116.05 4.754 0.0159

Table 8 The second stage
analysis of the battery life
data

Source df MS F p-value

Temperature 1 0.8704 16.96 0.009

Block 2 0.0839 1.63 0.284

Residual 5 0.05132

Table 6 summarizes the battery data. Table 7 summarizes the estimates of the
scale parameters, the log scale parameters, and the variances of the log scale
parameters. The estimate of the shape parameter, ˇ is 4.03, which indicates a wear-
out failure mode. Once again, the estimated variances for the estimated log scale
parameters are essentially constant like the example in Freeman and Vining (2010).
As a result, Kensler et al. use standard ordinary least squares in stage two of their
analysis. Table 8 summarizes the second stage regression analysis from Minitab. The
estimates of the two variance components are �2

! D 0:05132 and �2
! D 0:01086.

The second stage analysis does show that the temperature does have an important
effect on the battery life.
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Kensler et al. (2014) performed a simulation study to examine the performance
of the two-stage method. They found that the two-stage method did an excellent
job preserving the Type I error rate. They also found that power for the two-stage
method was close to the nominal for larger ˇ and number of failures; however, the
actual power was less than the nominal for small ˇ’s and only a few failures. Just
as in the Freeman and Vining (2010) paper, the estimates for ˇ from the first stage
tend to be biased.

8 Conclusions and Future Research

The basic conclusions reached so far by this research are:

• The two-stage approach provides a straightforward basis for analyzing reliability
experiments with sub-sampling that practitioners can apply with current standard
statistical software.

• The two-stage approach does a good job preserving the nominal Type I error
rates and a much better job than the traditional analyses.

• The two-stage approach does produce biased estimates of ˇ.
• The two-stage approach does not allow the analyst to compute confidence or

prediction intervals around predicted values.
• The joint likelihood approach has much less bias in its estimates of ˇ.
• The joint likelihood approach does allow analysts to generate appropriate

confidence and prediction intervals.

Future research includes

• submitting the paper that uses the joint likelihood approach for the random blocks
case.

• extending the two-stage and joint likelihood approaches to split-plot experiments.
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Bayesian D-Optimal Design Issues for Binomial
Generalized Linear Model Screening Designs

Edgar Hassler, Douglas C. Montgomery, and Rachel T. Silvestrini

Abstract Bayesian D-optimal designs have become computationally feasible to
construct for simple prior distributions. Some parameter values give rise to models
that have little utility to the practitioner for effect screening. For some generalized
linear models such as the binomial, inclusion of such models can cause the optimal
design to spread out toward the boundary of the design space. This can reduce the D-
efficiency of the design over much of the parameter space and result in the Bayesian
D-optimal criterion’s divergence from the concerns of a practitioner designing a
screening experiment.

Keywords Challenger data set • Confidence intervals • Non-linear designs

1 Introduction

Screening experiments address the situation when a process is not well understood
and the experimenter wishes to learn which effects are important and which are
unimportant with respect to controlling the response over the design space. The
screening problem is well understood for linear models, but little attention has been
paid to this problem in a non-linear setting. This may be due, in part, to the fact
that most non-linear models require a level of understanding of the system to be
able to define the model, and such a level of understanding may obviate the need
for screening. Yet the need for screening designs arises in practice for generalized
linear models (GLMs).

Screening designs, and experimental designs in general, must address many
concerns that sometimes conflict. Many numerical criteria exist describing desirable
qualities of experimental designs. One strategy for constructing designs is to focus
on finding a design that is best with respect to just one such criterion, and these
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are referred to as optimal designs. To create an optimal design one must specify
a region of interest for a set of model input variables (called the design space),
specify a mathematical model, select the sample size of the design, and choose the
optimality criterion. A computer algorithm chooses the design points in the design
space based on an optimization scheme that maximizes (or minimizes) the criterion.

Criteria for optimal designs are often functions of the Fisher information matrix
M. Common “alphabetic criteria” for linear models are given by Atkinson et al.
(2007):

• A-optimality where trace ŒM�1� is minimized.
• D-optimality where jMj is maximized.
• E-optimality where supa0aD1 VarŒa0 Ǒ � is minimized.

Khuri et al. (2006) reviewed issues associated with designing experiments for
GLMs, principal among which was what they termed the design dependence prob-
lem—the information matrix for non-linear models is dependent on the parameter
values of the model. This leaves the practitioner seeking a screening design in the
uncomfortable position of having to have a good estimate of the parameter values
in order to design an experiment to get a good estimate of the parameter values.

Bayesian and pseudo-Bayesian approaches provide a way to address the design
dependence problem. These solutions can range from simply integrating a criterion
over a prior distribution to a full decision-theoretic treatment of the screening
decision problem. Chaloner and Larntz (1989) searched for an exact design � in
the space of all candidate designs that maximizes the Bayesian D-optimality (DB-
optimality) which we denote as ˚.�/. This criterion is with respect to a prior
distribution p.�/ over a parameter space �:

˚.�/ D
Z

�

log jM.�; �/jp.�/ d�: (1)

Evaluating (1) often requires numerical integration methods, but when the dimen-
sion of � becomes larger than 1 or 2 the number of samples required by Monte Carlo
integration techniques makes such techniques prohibitively expensive. A cubature
scheme from Gotwalt et al. (2009) has made possible the evaluation of and search
over this criterion. It is implemented in the commercial software JMP, Version 10
(1989–2013).

The DB criterion has an appealing interpretation when parameters are fit by
maximum likelihood. It can be regarded as simply integrating a weighted D

criterion over the parameter space, in which case it can be thought of as minimizing
the volume of the expected asymptotic confidence region of the parameters. In terms
of a full Bayesian formulation, the DB criterion can be seen as maximizing the
expected Shannon information (among other interpretations).

For screening experiments, minimizing the length of parameter estimate confi-
dence intervals can be more important than minimizing the covariance determinant
because the confidence intervals are related to tests of active effects for which the
screening experiment is conducted. Reliance on asymptotic normal approximations
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can result in the nominal confidence intervals that are much wider than calculated
due to the inaccuracy of the asymptotic result for small samples and changes
depending on the location of the design points. This can happen for the following
reasons:

• Compromises in how the prior is defined (i.e. as a product of independent priors)
needed for computation, overly broad priors, and/or the curse of dimensionality
can lead to designs where the number of distinct points collapses to very few
stuck on or near the boundary of the design space.

• When the GLM is for a lattice distribution then the small sample behavior
can change dramatically across small regions. This can cause the design that
optimizes DB-criterion to be very near a design that has superior performance
in terms of both the parameter estimate variances and the parameter confidence
intervals over a majority of the mass of the prior distribution.

• For the binomial GLM, the s-shaped link function means that designs that differ
greatly in parameter values may have very similar shapes over the design space,
and this requires attention when defining the prior to avoid over-weighting certain
models that tend to draw the DB-optimal design points toward the boundaries of
the design space.

The same small sample behavior that results in poor confidence interval coverage
can also result in an incorrect determinant of the covariance matrix. We examine
these issues for the binomial GLM to demonstrate the effect on optimal screening
designs.

Consider the following motivating example. A DB-optimal screening design was
constructed for the model from the Challenger data set in Faraway (2005) with a
binomial GLM where x 2 Œ30; 80� with i.i.d. samples Xi � Bin.6; �.xi // and the
canonical link. The model in Faraway (2005, p. 27) has �0 D 11:66 and �1 D �0:2.
Using a very broad independent prior for each parameter

�0 � Unif.�72; 72/ and �1 � Unif.�0:4; 0:4/

yielded the DB-optimal design

	
30 30 33:87 33:87 76:05 76:05 80 80



:

Using the given design, the fidelity of the asymptotic approximation for parame-
ter estimate variance was measured by looking at the ratio of the determinant of the
Wald covariance matrix versus the determinant of the numerically estimated param-
eter estimate covariance matrix. This was then compared to the same procedure
for a design (discussed later, and in Fig. 5) where the design points were manually
spread out.

Parameter values were randomly sampled from uniform distributions around the
true value of the model, with �0 � Unif.8:66; 14:66/ and �1 � Unif.�0:6; �0:2/.
This generated 500 pairs, and for each pair 5,000 samples were simulated from
the binomial GLM. The DB-optimal design given above (which will be referred
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to as design 1) had poorer accuracy for the Wald approximation over 80 % of the
parameter space when compared to a manually generated design (where the design
points are more spread out, as is described later in Sect. 4). This demonstrates that
the accuracy of the DB-criterion in reflecting the parameter estimate variances can
be influenced by the design.

Perhaps more important for a screening experiment, the same phenomenon can
be seen for the confidence intervals. Holding �1 at 11:66, the coverage probability
of a 95 % confidence interval was examined as �1 varied over 500 equally spaced
values in Œ�0:4; 0�. At each parameter setting 5,000 samples were generated
according to the true distribution and the coverage of Wald-type confidence intervals
were measured.

The true coverage of the 95 % confidence interval ranged between 87.2 %
and 100 %. The coverage estimates are presented in Fig. 1. The amount of over-
estimation of the design’s local performance exceeds the under-estimation raising
questions about the overall performance of the design in terms of estimating
the value of the parameters. When the prior for �1 is mainly contained within
Œ�0:3; �0:2� then the criterion systematically overestimates the design quality
for screening experiments. When the prior for �1 is mainly contained within
Œ�0:4; �0:3� then the criterion systematically underestimates the quality of the
design for screening experiments.

In Sect. 2 we discuss approaches to screening designs for non-linear models.
In Sect. 3 we discuss concerns for choosing a prior distribution and problems that
can develop from compromises in the specification. In Sect. 4 we discuss how the
difference between log jMj and the covariance of the parameter estimates at each �

can lead to a DB-optimal design that is near a design with better D-efficiency over
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Fig. 1 Wald-type confidence interval coverage for 95 % confidence intervals as �1 in the Chal-
lenger data example from Faraway (2005) is varied
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a majority of the parameter space. Section 4 also describes how the small sample
behavior of the parameter estimate variances can deviate from the asymptotic value
in the same way as the confidence intervals.

2 Optimal Non-linear Design

As reviewed in Khuri et al. (2006) and Atkinson et al. (2007), the design dependence
problem has been addressed several ways in the literature. Perhaps the easiest
approach to create a design is the use of locally optimal designs where the
practitioner simply guesses at the true value of the parameters, perhaps by relying on
historical data or subject matter experts. Locally optimal designs based on � 0 when
the true parameter value is � may have poor performance the larger the distance
between � and � 0. The maximin design is

arg max
�

min
�2�

log jM.�; �/j;

where � is the bounded space of parameters that are to be considered. Atkinson
et al. (2007) noted that this approach is not always desirable as it can tend to
overemphasize the importance of models with parameters on the edge of the
parameter space.

When a full prior is defined over � then we may use a Bayesian approach.
Chaloner and Verdinelli (1995) and DasGupta (1995) discuss Bayesian experimen-
tal design in terms of a decision theoretic approach from Lindley (1972). A utility
function U.d; �; �; Y / is defined in terms of the design �, possible data Y , parameter
values � , and terminal decision d . Following Clyde (2001) the posterior expected
utility is

max
d

Z

�

U.d; �; �; Y /p.�jY; �/ d� D U.�; Y /

and the pre-posterior expected utility U.�/ is

U.�/ D
Z

˝

U.�; Y /p.Y j�/ dY

D
Z

˝

max
d

Z

�

U.d; �; �; Y /p.� jY; �/p.Y j�/ d� dY:

The optimal design is then �? D arg max� U.�/.
Chaloner and Verdinelli (1995) note a number of utility functions that yield the

DB criterion in (1), including maximizing the expected Shannon information

U.x; � ; �; Y / D logfp.�jY; �/g;
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where they rely on a normal approximation

�jY; � � N. O�; ŒnM. O� ; �/��1/:

They suggest another approximation

� jY; � � N. O�; ŒR C nM. O� ; �/��1/;

where R is the matrix of second derivatives of the logarithm of the prior density
function, and represents the contribution of the prior to the information matrix of
the joint distribution. The information matrix from the first approximation is only
with respect to the likelihood and ignores the prior, whereas the information matrix
in the second approximation is with respect to the joint distribution of the response
and parameters. This second approximation yields a different criterion

Z

�

log jR C M.�; �/jp.�/ d�: (2)

Chaloner and Verdinelli (1995) presented strengths of both approximations but
recommend using (1) for reasons including avoiding specification of R, the appeal
of such criterion in non-Bayesian frameworks, and less dependence on sample size.

Atkinson et al. noted that the approach of (1) is sometimes called a pseudo-
Bayesian approach since M does not incorporate p.�/ in its expectation as in (2).
This independence of M from the prior, in the case of GLMs, allows for an easy
modification to make (1) robust to link choice. Let link gi have prior probability �i .
Then letting Mgi be the information matrix with respect to link gi we can use

X
i

�i

Z

�i

log jMgi .�; �/jp.�jgi / d�

as a robust criterion. Firth and Hinde (1994) and Lohr (1995) showed that (1) is
invariant to reparameterization. Atkinson et al. (2007) also described many other
criteria called Bayesian D-optimality, Sándor and Wedel (2001) used the kth root
instead of log for scaling within the integral in (1), and other small changes to (1)
exist in the literature. In this paper we rely on (1) defined in Chaloner and Larntz
(1989) as it occurs often in the literature and is implemented in JMP’s Nonlinear
Design Platform.

An advantage that DB-optimal designs have over locally optimal designs is that
they tend to spread their design points around the design space more so than the
locally optimal design, making the DB-optimal design more robust to poor guesses
for � than the locally optimal design. There are two cases where there will be very
few distinct design points in the DB-optimal design: when the prior is very narrow,
or when the prior is very broad. When the prior is narrow, the DB-optimal design
nears locally optimal designs. Section 3 describes how broad priors can cause design
points to be forced to a few places on the boundary.
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DB-optimal designs are computationally expensive to generate because the
integral in (1) is very difficult to calculate, more so as � increases beyond 1 or
2 dimensions. Several approaches to this problem have been proposed. Woods et al.
(2006) used simulated annealing to search the design space and estimates based
on the sum of local optimality criteria. Dror and Steinberg (2006) sampled from
the prior and used clustering on the generated locally optimal designs to achieve
good designs. Gotwalt et al. (2009) relied on a cubature scheme that provides high
accuracy with very few evaluations for several sample problems, and this method is
used throughout this paper to calculate DB-optimal designs.

Simple coordinate exchange (Meyer and Nachtsheim 1995) is used in the method
to search the design space for an optimal design. The cubature itself is related to
the radial-spherical cubature from Monahan (2001) used for calculating normal-
prior Bayesian integrals. In the implementation by Gotwalt et al. (2009), a set
of radii are chosen according to a Radau-Gauss-Legendre rule (see Davis and
Rabinowitz 2007). Random rotations are then applied to spherical cubatures at each
radii to estimate (1). This approach shows surprising accuracy for very few cubature
points, increases in complexity only polynomially with the parameter space, and
has very few tuning parameters. Also, the speed of the algorithm makes this method
preferable to the other two methods for several sample problems.

3 Utility and Prior Specification

There is little benefit to the practitioner performing a screening experiment where
the mean response does not change by some practical minimum over the design
space. In the identity link case with standardized design space, the size of the
parameters is additively related to the change in the mean response, such that if
the mean response does not change by some minimum then none of the parameters
may be very large. However, this is not generally the case, and there are situations
when models with large parameters may have little utility to the practitioner.

In general there are two situations when the mean response can be mainly flat.
The first is when the non-intercept parameters are all nearly zero. In this case the
lack of utility is clear. The second situation arises when a link function is very flat
in one of its tails. For binomial GLMs the link functions are all necessarily flat in
both tails. When a link has a flat tail then a large parameter value of the intercept
or a non-centered factor may shift the linear predictor into this tail area of the link
function.

This second situation has little utility because changes in any of the factor
levels has almost no effect on the mean response over the entire design space. If
a practitioner uses an intercept only model, then this will not deviate very far from
the mainly flat model. Statistical tests will have a difficult time differentiating the
non-intercept parameters from zero, and improving the sensitivity of such tests will
serve only to make clear that the associated factor has little effect on the mean
response over the design space.
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The negligibility of factors with large parameter magnitudes can be seen even
in the normal linear model: If a parameter is not exactly zero but small, we can
make it as large as we wish simply by dividing the factor levels by a large constant.
Standardizing the factor levels prevents this from happening in the normal linear
model, and can prevent this phenomenon from happening to the non-intercept terms
in GLMs but not the intercept itself.

The cost of ignoring these mainly flat models is that tests that the parameters
are non-zero are less likely to differentiate the parameter from zero. Yet, since the
intercept-only model is very close to the true model, very little utility is lost.

This is in stark contrast to the benefit when some effect is practically significant.
In such a case, properly identifying an effect as practically significant is the goal
of the screening experiment. False identification of an effect as important (a type
I error) causes a slight inconvenience for the practitioner in the presence of some
correctly identified important effects. Only failure to identify an important effect (a
type II error) greatly reduces the benefit of the experiment to the practitioner.

These values are not reflected in U.d; �; �; Y /. Instead, U.d; �; �; Y / as in (1)
can be seen as relentlessly focusing on reducing the determinant of the covariance of
the parameter estimates, even over models where better estimates do no good. This
issue may be addressed in two equivalent ways: either the utility function can be
weighted to discount parameter values that give rise to models where the response
does not change by some practical minimum, or the prior may be restricted away
from such parameters.

Taking a more liberal view of the prior in (1) beyond a representation of
how believable certain parameters are to the practitioner lends perspective to the
performance of the design. Given a prior p1 with bounded support, expanding that
support to p2 has the effect of sacrificing the performance of the design over the
support of p1 to improve the performance over p2. Thus, the practitioner should ask
themselves if they would be willing to sacrifice efficiency over part of the parameter
space to gain efficiency over another part. Put another way, it may make sense to
craft a prior to cover certain models where the efficiency of the estimators is more
important than in other models.

In addition to a loss of efficiency, some non-linear model DB-optimal designs
can have the number of distinct points collapse in the presence of a large proportion
of models that are very flat over the design space. This may mean that models where
change is focused within the design space will have lower efficiency than alternative
designs. This can cause further issues as discussed in Sect. 4.

Most GLMs require the linear predictor to be nearly constant for the response
to be nearly constant, but the binomial GLM can exhibit nearly constant responses
when the parameters are large in magnitude. If a practitioner constructs a prior that is
overly broad, either intentionally or as a simplification for computational concerns,
then the DB-optimal design can give too much importance to such nearly constant
models. Computational difficulties arise when the prior covers models where the
value of log jMj can vary widely.
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3.1 GLMs with Near Constant Responses

GLMs with a near constant linear predictor have very flat responses and tend to bias
the DB-optimal design by drawing points to the boundary of the design space. In the
case of the binomial GLM, when the linear predictor is nearly zero everywhere the
relative importance of the model in (1) is maximal. We may write the information
matrix for GLMs as d.�/X0

VX where d.�/ is related to dispersion (which is
constant for the binomial model) and V is a diagonal matrix with elements that
are functions of the mean for each design point (Myers et al. 2012). The entries of V
for the binomial GLM are proportional to �.xi /

�
1��.xi /

�
which is maximal when

the linear predictor is zero.
The binomial GLM also admits models where the parameters of the linear

predictor are large but the response over the design space is very near 0 or 1. These
models have an intercept in the linear predictor that is very different from the other
parameters, causing the response’s s-shape to shift out of the design space. These
models have very small values of jMj as samples from within the design space
can tell us very little about the shape of the response. The log-scaling of (1) tends
to inflate the relative importance of these shifted models, as well as the benefit of
small improvements in their determinant.

Figure 2 shows the value of the determinant of the information matrix in terms of
fraction of the parameter space from a design over Œ�1; 1� and with the prior noted
on the plot. The DB-criterion is the integral over (the log of) these values, and so
examining these plots can give some sense of the relative importance of the various
magnitudes of determinants of the local information matrices.

Plots (a1) and (a2) include flat-in-the-design-space models in the prior’s support
and show a sharp spike in the value of the determinant. The large number of near-
zero determinants at regular scale become very large negative values at log scale.
Such large negative values make up a proportionately large part of the DB-criterion’s
value. As such, a design that has higher efficiency for such low-utility models will
be attractive to the criterion. Plots (b1), (b2), (c1), and (c2) do not include very flat
models, and plots (b1) and (b2) demonstrate the greater regularity of determinant
values when flat-in-the-design-space models are ignored. The log-scaling that so
inflates the relative importance of low-utility models may be addressed by using an
alternative scale (such as using the kth root instead of log as in Sándor and Wedel
2001).

Another feature of (a2) is the fast bend about 30 % that may indicate complexity
of the log-determinant surface beyond the relatively low-order polynomial approx-
imation of the cubature scheme. In comparison with (a1) and (a2), the change
in determinant for (b1) and (b2) over the parameter space is much less, and the
smoothness over more of the parameter space suggests that the cubature scheme
may perform better. Empirically, we found numerical issues with several designs
that considered many flat-in-the-design-space models, yet had no such issues when
such models were not considered.
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Fig. 2 Fraction of parameter space plots for the DB-optimal designs under various priors. Plots
(a1), (b1), and (c1) show the fraction of the parameter space at or below that determinant, whereas
plots (a2), (b2), (c2) show the fraction of the parameter space at or below that log determinants.
Plots (a1) and (a2) show the behavior of the determinant when models that do not vary in the
design space are in the prior’s support. Plots (b1), (b2), (c1), and (c2) represent the same design,
that only includes in the prior models that vary in the design space, plotted at different scales
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3.2 Simplified Priors and Shifted Models

A practitioner constructing the prior for a binomial GLM screening design may
include a single effect that is dramatic or several effects that are more modest
yet important. The algorithm from Gotwalt et al. (2009) requires the prior to
be of a specific form, and the implementation in JMP 10 requires independent
prior distributions for each parameter. If the practitioner simplifies their prior to
maintain coverage, then they will include many shifted models in the periphery
of the simplified parameter space. This can quickly become a problem as the
number of parameters can increase exponentially with the number of factors, and
the proportion of the peripheral to the center of the parameter space increases
exponentially in the number of parameters.

Shifted models in locally optimal designs force the design points toward the
boundary of the design space, and the effect of including such models in the prior
is DB-optimal designs with points focused near the boundary of the design space.
Consider regression on a simple binomial GLM with the canonical link and mean
response �.x/. The parameterization in terms of �0 and �1 is not as intuitive as a
parameterization in terms of the 50 % quantile �0 and a scale parameter �ı. Let �ı

be the value of t so that �.�0 C t=2/ � �.�0 � t=2/ D ı. We may express the
relationship of these parameterizations as

�0 / �0

�1
�ı / 1

�1
�0 / �0

�ı
�1 / 1

�ı
:

Note that increasing �1 affects both the center and scale of the link function. Suppose
that our best representation of the prior is �0 � Unif.30; 80/ and �ı � Unif.5; 50/

independently. Figure 3 shows the prior in the reparameterized space (a) and the
prior in the original parameterization (b). Surrounding these are the models and
locally optimal designs at those models (c1), (c2), (c3), and (c4) that are included in
a simplified independent uniform prior over the �’s but not included in the original
reparameterization.

Locally optimal designs for these shifted models have very small determinants
and are highly inefficient for practically significant models. The DB-optimal design
with the following prior

�0 � Unif.�8; 8/ and �1 � Unif.1; 10/

is less efficient over 4 % of the parameter space Œ�10; 10� � Œ1; 10� than the
DB-optimal design with uniform prior over that space. This 4 % includes other
models that vary outside of the design space. By removing 20 % of the models in the
parameter space we observed only a slight effect on the efficiency of the DB-optimal
design when � is low dimensional.

As the dimension of the parameter space increases, the curse of dimensionality
and the requirement of a simple prior can quickly increase the fraction of shifted
models in the parameter space. The motivating example in the introduction is a case
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Fig. 3 Plot (a) represents an independent prior on the reparameterized space. Plot (b) is the region
in (a) converted into the original parameterization. Plots (c1), (c2), (c3), and (c4) show models
with eight-point locally optimal designs denoted with circles

where the proportion of models varying primarily outside of the design space is
large. When the parameter space is of a higher dimension then the log jMj diverges
further and further from the nearest low-order polynomial. The high variability of
the nearly flat binomial GLM models can exacerbate errors in the computation
scheme for (1).

3.3 Computational Difficulty

The log-determinant of the information matrix is very smooth everywhere except as
the design points collide with the boundary of the design space. Even though it is
smooth, the log-determinant can change very quickly when the determinant is near
zero. These features can make numerical calculation of an optimal design difficult,
and can result in odd behavior. Several times the algorithm generated designs that,
when the uniform prior was narrowed, the design became worse over a majority of
the narrower prior’s support.
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The procedure by Gotwalt et al. (2009) calculates weights and abscissae based
on spherical cubatures with radii according to the abscissae of a Radau-Gauss-
Laguerre scheme. Though we can calculate these radial abscissae and weights by
root finding (Press et al. 2007) or by eigenvalue-based (Gautschi 2004) approaches,
both approaches quickly degrade due to numerical issues as the number of abscissae
increases (e.g., in 64-bit floating point format the weights and abscissae for a
16-point quadrature begin to lose accuracy). Since the spherical cubatures in the
procedure have a fixed number of abscissae, we may increase the number of spheres
at random rotation, but this does not address the issues of finer features being missed
due to the spacing of the radii.

Increasing the number of random starting locations also does not solve the
numerical issue since the cubature scheme remains fixed except for the random
rotations. The practitioner might consider using a more expensive estimation
technique for (1) once a design has been selected, comparing the two estimates
of the criterion. Adjusting the prior by moving its center and changing its spread
may provide different designs. If the design fails to be robust to such manipulation,
then the practitioner could order the designs based on higher fidelity approximations
of (1).

4 Poor Coverage and Few Design Points

Wald-type confidence intervals can have poor coverage for lattice distributions like
the binomial GLM, and this is related to higher order terms in the asymptotic
expansion for the parameter estimates. Parameter estimation for GLMs is often
done by maximum likelihood (McCullagh and Nelder 1989), and the maximum
likelihood estimates (MLEs) are asymptotically normally distributed. If O� is the
MLE for � and for a design �, then

p
n. O� � �/ ) N

�
0;M.�; �/�1

�
:

The series of papers (Brown et al. 2001, 2002, 2003) describe the issues of
coverage related to estimating the proportion in a binomial random variable. They
found that for Xi � Bin.n; p/ i.i.d. certain “unlucky” combinations of n and p

produced radically different coverage for confidence intervals, and that difference
between the presumed and realized coverage became larger as p neared 0 or 1.
They further showed that the main culprit was the discrete nature of the binomial
response. These same issues effect binomial regression, as shown in Fig. 1.

The DB-optimality criterion can be viewed as minimizing the volume of the
confidence region around the asymptotically normal parameter estimates. Methods
such as that of Firth (1993) exist to correct for some of the bias, but the DB-
optimality criterion is blind to such bias, and the act of correcting this bias may
introduce new problems for the optimization scheme. It may be that the DB-optimal
is a design that is very close to a design with a better capacity to estimate parameters,
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both in terms of overall variance of the estimate and in terms of any particular
confidence interval. Again, for a practitioner performing screening experiments, the
width of particular confidence intervals may be most important.

Let the design from the motivating example be design 1, and consider the new
design, design 2, as

	
30 33:87 37 45 54 73 76:05 80



:

Figure 4 shows the true coverage of the 95 % confidence interval on �1 for the two
designs. The better spread of the points in design 2 prevented the design points from
all accumulating on “bad-luck” values for the various parameters. This suggests
that the spread of points which often occurs in DB-optimal designs may serve as a
buffer against the bias of (1) with respect to the true parameter estimate confidence
intervals.

Figure 5 shows the difference in the relative magnitude of the determinant of the
approximate covariance matrix divided by the true parameter estimate covariance
matrix (directly estimated numerically, using 5,000 samples per estimate) from
unity. A total of 500 samples of the parameters were taken uniformly distributed
about the true model from the motivating example with

�0 � Unif.8:66; 14:66/ and �1 � Unif.�0:6; �0:2/ :

When the ratio is near one then D-criterion for the Wald approximation is a good
approximation of the D-criterion for the parameter estimate covariance, and when
the ratio is away from one then the approximation is poor. The fraction of the
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Fig. 4 Wald-type confidence interval coverage for 95 % confidence intervals as �1 in the Chal-
lenger data example from Faraway (2005) is varied
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around the values in the Challenger data example from Faraway (2005)

parameter space plot demonstrates that the Wald approximation for Design 2 has
better fidelity over a majority of the parameter space when compared to Design 1.
Note that no claim is being made about the efficiency of Design 2 versus Design
1, only that the Wald approximation is better for Design 2 versus Design 1 over a
majority of the parameter space. The bias that is so prominently displayed in Fig. 4
is present in the parameter estimate variances as well.

Taken together, Figs. 4 and 5 suggest that DB-optimal designs with very few
distinct points may have nearby designs that have better performance, both for
parameter estimate variances and for parameter estimate confidence intervals.
Alternatively, the chance of getting strong bias due to the small sample behavior
of the asymptotics is reduced as the number of distinct points increases.

5 Conclusion

We have identified three concerns for DB-optimal designs. First, the prior may be
used to modify the measure of the utility of models. We identified two types of
models that may reside in high density regions of the prior but that have little utility.
These models introduce bias in the DB-optimal design that, under conditions such as
extreme misspecification or simplification of priors in higher dimensional parameter
spaces, can have a noticeable effect on the design. In the binomial GLM with
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canonical link the effect was to force design points towards extremes of the design
space. Down-weighting or eliminating such models from the prior can improve the
D-efficiency of the design over a majority of the design space.

Second, we described computational issues of the DB-optimal criterion. Priors
that include a large proportion of nearly-flat-in-the-design-space models and param-
eter values may contribute to numerical problems in estimating (1).

Third, we showed how the well-known problem of bias due to relying on
asymptotics for lattice and skewed distributions can have an effect on DB-optimal
designs with priors that cause the number of distinct design points to be small. When
(1) is evaluated over few distinct design points then (1) may diverge from the goals
of screening and result in a design that is sub-optimal.
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Bayesian Lasso with Effect Heredity Principle

Hidehisa Noguchi, Yoshikazu Ojima, and Seiichi Yasui

Abstract The Bayesian Lasso is a variable selection method that can be applied in
situations where there are more variables than observations; thus, both main effects
and interaction effects can be considered in screening experiments. To apply the
Bayesian framework to experiments involving the effect heredity principle, which
governs the relationships between interactions and their corresponding main effects,
several initial tunings of the Bayesian framework are required. However, it is rather
unnatural to specify these tuning values before running an experiment. In this paper,
we propose models that do not require the initial tuning values to be specified in
advance. The proposed methods are demonstrated with screening examples such as
Plackett–Burman and mixed-level design.

Keywords Factor interaction • Hierarchical models • Variable selection

1 Introduction

A screening experiment is conducted to identify important factors from a large
number of candidates. The purpose of the experiment is to identify main effects
of the important factors and to obtain some insights about which factors may be
involved in two-factor interaction. Therefore, designs with complex aliasing patterns
such as two-level non-geometric Plackett–Burman (Plackett and Burman 1946) are
used (Hamada and Wu 1992). When a subset of active factors is selected in this
situation, two typical variable selection problems might arise. The first problem is
that the number of factors might exceed the number of observations. The second
problem is selected subset might not be interpretable, for example, it consists of
only interactions.

Bayesian variable selection (Mitchell and Beauchamp 1988; George and McCul-
loch 1993), Lasso (Tibshirani 1996), and Bayesian Lasso (Park and Casella 2008)
can handle the first problem. To manage the second problem, Chipman et al. (1997)
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extended Bayesian variable selection, and Nam et al. (2010) and Noguchi et al.
(2012) extended the Lasso. Both the extensions of these techniques were accom-
plished by incorporating the effect heredity principle, which governs the relationship
between an interaction and its corresponding main effects.

Chipman et al. (1997) proposed that Bayesian variable selection combined with
the heredity principle can manage both of the variable selection problems outlined
above, if proper initial tuning values are incorporated. However, based on which
tuning values are incorporated, different subsets of factors might be selected by
their method, and it is not always practical to specify tuning values before designing
screening experiments.

In this paper, we extend the Bayesian Lasso such that the heredity principle can
be taken into account in the variable selection without selecting arbitrary initial
tunings. In other words, this method is intended to facilitate the selection of an
interpretable and well-fitted subset of factors without incorporating initial tunings.

This paper is organized as follows. In Sect. 2, we review the Lasso and the
Bayesian Lasso. In Sect. 3, we propose our models which can incorporate the effect
heredity principle. We demonstrate the application of the proposed models through
three examples in Sect 4, and conclude with a discussion in Sect. 5.

2 Lasso and Bayesian Lasso

Usually, experimental data can be modeled in the form of the following general
linear model

Y D Xˇ C "; (1)

where Y is an n � 1 vector of responses, X is an n � f matrix of predictors and
" is a vector of n error variables " D ."1; : : : ; "n/ each of which is assumed to be
independent and identically distributed as N.0; �2/ and ˇ D .ˇ1; : : : ; ˇf /T is a
vector of parameters. Throughout this paper, we assume Y and X are centered such
that the observed mean is 0.

The Lasso is proposed for variable selection and parameter estimation; moreover,
it is a constrained version of ordinary least squares and, it fits a linear model by
solving the optimization problem

ǑLasso D min
ˇ

.Y � Xˇ/0.Y � Xˇ/ C �

fX
iD1

jˇi j; (2)

where � > 0 is controlling the amount of shrinkage for the fitted coefficients. A
sufficiently large value of � produces shrunken estimates of regression coefficients,
often with many components equal to 0. Choosing � can be interpreted as selecting
the number of active factors that are included in a subset. In design of experiments,
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this characteristic can be interpreted as the effect sparsity principle, which states
that the number of active effects in an experiment is relatively small.

The Bayesian Lasso proposed by Park and Casella (2008) was based on the
suggestion that estimates of the Lasso can be interpreted as Bayesian posterior
modes using normal likelihood and an independent Laplace prior to each regression
coefficient ˇ. The problem with the method of Park and Casella (2008) is that its
interpretation of the estimates as posterior modes makes it difficult to identify which
factors are active, thereby negating the value of the Bayesian Lasso as a means of
variable selection.

3 The Bayesian Lasso and the Effect Heredity Principle

We use the following linear regression model proposed by Kuo and Mallick (1998).

Y D XD�ˇ C ": (3)

Here, D� D diag.�1; : : : ; �f /, �h (h D 1; : : : ; f ) is a binary indicator variable
following Bernoulli distribution. Each �h takes the value 0 or 1, indicating whether
the corresponding factor belongs to an inactive or an active effect, respectively.
Applying the regression model Eq. (3) to the Bayesian Lasso, an inactive factor can
be identified by the indicator variable even if its posterior mode wouldn’t be equal
to 0.

In screening experiments, the main purpose is to identify active main effects and
two-factor interactions. Therefore, in our paper, we focus on a regression model
with main effects and two-factor interactions.

f .x/ D
pX

iD1

ˇi �ixi C
X
i<j

pX
j D2

ˇij�ijxi xj ; (4)

where p is the number of main factors.

3.1 Strong and Weak Heredity Models

The effect heredity principle can be considered to incorporate two principles. One
is the strong heredity principle which allows an interaction to be active only if both
corresponding main effects are active. The other is the weak heredity principle,
which allows an interaction to be active if one or more of its parent’s factors are
active. To identify an active subset based on either the strong or weak heredity
principles, we reformulate the coefficients for the interaction terms in Eq. (4). Rather
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than the single indicator parameter �ij.i < j; i; j D 1; : : : ; p/ for the interaction
xi xj , we use all of the related parameters �ij; �i ; and �j .

We model the strong heredity principle with main effects and linear-by-linear
interactions as follows:

fs.x/ D
pX

iD1

ˇi �ixi C
X
i<j

pX
j D2

ˇij�ij�i �j xi xj : (5)

If either �i or �j is equal to 0, interaction xi xj is removed. We model the weak
heredity principle as shown in Eq. (6).

fw.x/ D
pX

iD1

ˇi �ixi C
X
i<j

pX
j D2

ˇij�ij.�i C �j � �i �j /xi xj : (6)

With the expression .�i C �j � �i �j / D .1 � .1 � �i /.1 � �j //, interaction xi xj is
removed when both �i and �j are equal to 0.

The prior distribution of � is specified by choosing marginal probabilities for
each effect being active. Setting the initial probability as Pr.�i D 1/ D 1 � Pr.�i D
0/ D 0:5 is natural, because we usually do not know whether an effect is active or
not. The above reformulations indicate that the probabilities for higher-order effects
can be lower than those for lower-order effects. They account for the effect hierarchy
principle, which states that lower-order effects are more important than higher-order
effects.

To extend the model for higher order interactions, linear-by-quadratic and
quadratic-by-quadratic interactions, we adopt the convention that the parents of a
term are those terms of the next lowest order. For example, consider two three-level
factors: A and B . The hierarchy among all variables can be described by the diagram
in Fig. 1.

Compared to our method, in Bayesian variable selection following effect heredity
principle (Chipman 1996), the model hunter has to specify three different probabili-
ties as initial tuning values. Consider two factors, A and B , and one linear-by-linear

AQBQ

AQBL ALBQ

AQ ALBL BQ

AL BL

Fig. 1 Ordering and inheritance relations for two-way interaction between three-level factors
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interaction, AB. The conditional probability for the interaction AB being active is as
follows.

Prob.�AB D 1j�A; �B/ D
8<
:

p0 if .�A; �B/ D .0; 0/

p1 if one of �A; �B D 1

p2 if .�A; �B/ D .1; 1/

: (7)

Chipman (1996) and Chipman et al. (1997) specified the initial probabilities under
the condition of p0 D p1 D 0, p2 > 0 and p0 D 0, p1 > 0, p2 > 0 in Eq. (7)
to incorporate the strong and weak heredity principle, respectively. Bergquist et al.
(2011) reviewed some of the initial probabilities in an analysis of unreplicated two-
level factorials. However, in any case, it is difficult to explain the propriety of the
initial tuning values.

In our method, effect heredity principle is incorporated by reformulation of
indicator variables for interaction terms. Therefore, we are able to avoid specifying
the initial settings.

3.2 Hierarchical Model

In the Bayesian Lasso, each element of the regression coefficient parameter ˇ has
a Laplace prior which can be represented as a scale mixture of normals with an
exponential density approach used by Andrews and Mallow (1974).

�.ˇ/ D
fY

hD1

�

2
expf��jˇhjg

D
fY

hD1

Z 1

0

1q
2�	2

h

exp

�
� ˇ2

h

2	2
h

�
� �2

2
exp

�
��2	2

h

2

�
d	: (8)

Based on the approach of Andrews and Mallow (1974), we present the following
hierarchical model.

Y jX; ˇ; �2 � N.XD�ˇ; �2I / D� D diag.�1; : : : ; �f /

� �
fY

hD1

p
�h

h .1 � ph/.1��h/

ˇj�2; 	2 � N.0; �2D	 / D	 D diag.	1; : : : ; 	f /

�2; 	2
1 ; : : : ; 	2

f � �.�2/d�2

fY
hD1

�2

2
exp

˚��2	2
h=2


d	2

h :
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We use the reformulated indicator parameters for the corresponding elements of the
interaction in D� . Park and Casella (2008) suggest using the noninformative scale-
invariant marginal prior �.�2/ D 1=�2 for the residual variance. Instead of �, we
regard �2=2 as the parameter of interest. We consider the conjugate gamma priors
Gamma.a; b/ on �2=2. To consider the prior for �2=2 as a noninformative, we set a

and b as small value (e.g., a D 0:1 and b D 0:1).
The joint posterior distribution of the parameters given data �.ˇ; �; �2; 	2; �jY /

can be simulated using the Markov chain Monte Carlo (MCMC) algorithm. The
MCMC algorithm draws from each fully conditional posterior distribution given
the current values of all other unknowns and the observed data. Alternatively,
ˇh is updated from the normal distribution �.ˇhjY; ˇ�h; �; �2; 	2/, where ˇ�h

represents all elements of ˇ except ˇh, and � is updated from Bernoulli distribution
�.�hjY; ˇ; ��h/. In our proposed models, the above MCMC algorithms can be
performed by the Bayesian software WinBUGS14 (Spiegelhalter et al. 1994, 2003).

In our method, variable selection is based on the posterior distribution of the
indicator parameter � . Thus, the subset with the highest posterior probability, which
has the most frequent combination of active factors, will be selected. Moreover,
median estimates obtained from the posterior distribution of reformulated regression
parameters �hˇh might provide probable active factors.

4 Example

In this section, we apply our proposed models to the data obtained from a 12-run
Plackett–Burman design and a mixed-level design. These examples are selected to
demonstrate the wide applicability of our method.

4.1 12-Run Plackett–Burman Design

Table 1 presents a 12-run Plackett–Burman design and illustrates its use in a
screening context that can accommodate up to 11 factors labeled A–K . In the
analysis of this design, we consider main effects as well as all two-way interactions
among the factors.

4.1.1 Cast Fatigue Experiment

Hunter et al. (1982) used the 12-run design to study the effects of seven factors on
the fatigue life of weld-repaired castings, and these factors and levels are listed in
Table 2. The seven factors (A–G) were assigned using the first seven columns of the
design. The response Y1 is the logarithm of the lifetime of the casting. This example
was analyzed by Hamada and Wu (1992), and the main effect F and interaction
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Table 1 Plackett–Burman 12-run design with response data

No. A B C D E F G H I J K Y1 Y2

1 C C � C C C � � � C � 6.058 1.058

2 C � C C C � � � C � C 4.733 1.004

3 � C C C � � � C � C C 4.625 �5.200

4 C C C � � � C � C C � 5.899 5.320

5 C C � � � C � C C � C 7.000 1.022

6 C � � � C � C C � C C 5.752 �2.471

7 � � � C � C C � C C C 5.682 2.809

8 � � C � C C � C C C � 6.607 �1.272

9 � C � C C � C C C � � 5.818 �0.955

10 C � C C � C C C � � � 5.917 0.644

11 � C C � C C C � � � C 5.863 �5.025

12 � � � � � � � � � � � 4.809 3.060

Table 2 Factors and levels
for cast fatigue experiment

Factors � C
A:Initial structure As received ˇ treat

B:Bead size Small Large

C :Presure treat None HIP

D:Heat treat Anneal Solution treat/age

E:Cooling rate Slow Rapid

F :Polish Chemical Mechanical

G:Final treat None Peen

FG were identified. With the factors F and FG, predicted fatigue lifetimes OY D
5:7 C 0:458F � 0:459FG can be obtained. To increase the predicted life, the setting
of factor F and G should be “C” and “�,” respectively. Therefore, our goal would
be to identify the subset (F , FG), which has an adjusted R2 (ad-R2) of 0.871.

We applied the ordinary Bayesian Lasso and our proposed models to the data
Y1 in Table 1. In this example, we computed the posterior median using 50,000
consecutive iterations of the Gibbs sampler after 5,000 burn-in for each factor. From
the result of the Bayesian Lasso, the main effect F and interactions AE and FG were
identified by applying the threshold value 0.1 to the median absolute estimates. Note
that this result is identical to the result obtained by applying the Lasso. Although
the interaction AE was identified, its corresponding main effects A and E were not
identified. The subset comprising these factors had relatively low ad-R2 of 0.553.
When we applied the strong heredity model, the most frequent subset was (F , G,
FG) with posterior probability of 0.261. This subset is consistent with the strong
heredity principle and had ad-R2 of 0.910. Adding G to the desired subset (F , FG)
only increased ad-R2 to 0.039. Thus, the factor G might not be significant, whereas
the weak heredity model can identify the subset (F , FG) with the highest posterior
probability. Figure 2 shows boxplots for samples from each posterior distribution
of the regression parameter in the Bayesian Lasso and our proposed models. When
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Fig. 2 Boxplots for sample from posterior distributions

using the Bayesian Lasso, identifying which factor is active is difficult; however
from our models it is possible to identify which factors may be active.

4.1.2 Simulated Screening Experiment

The data Y2 in Table 1 were constructed in Hamada and Wu (1992) based on the
true model Y D AC2ABC2ACC�, here � � N.0; � D 0:25/: i.e., factor A had an
active main effect and there were active interactions between A and B and between
A and C , although the remaining factors D–K were inactive.

The strong heredity model resulted in the selection of the subset A, B , C , AB, AC
with posterior probability of 0.398 and its ad-R2 is 0.996. The weak heredity model
resulted in the selection of the subsets A, AB, AC, AJ with posterior probability
of 0.298 and a high ad-R2 of 0.997. The true subset (A, AB, AC) with the second
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highest posterior probability of 0.167 was selected with the weak heredity model.
However, the posterior mode estimate for the interaction AJ of the A, AB, AC, AJ
subset was equal to 0. Therefore, we can say that if we use the weak heredity model,
the true subset can be identified. Note that one of the methods proposed by Hamada
and Wu (1992) as well as the ordinary Lasso did not identify the main effect A,
which shows the advantages of our proposed models.

4.2 Blood Glucose Experiment Using Mixed-Level Design

An 18-run mixed-level design was used to study the effect of eight factors
(two- and three-level factors) on blood glucose readings made by a clinical
laboratory testing device (Henkin 1986). Factor A had two levels and each
of the other seven factors B–H had three levels. The design of the experi-
ment had 18 runs, and the response data are shown in Table 3. In this exam-
ple, we considered linear-and-quadratic main effects and interaction effects, and
denoted the linear and quadratic terms as L and Q, respectively. Each three-level
factor was divided into linear and quadratic effects using orthogonal polyno-
mial coding. Consequently, there are 15 linear-and-quadratic main effects and
98 two-factor interactions (28 linear-by-linear (ALBQ; : : : ; ALHQ), 49 linear-by-
quadratic (ALBQ; : : : ; ALHQ; BLCQ; : : : ; GLHQ), and 21 quadratic-by-quadratic
(BQCQ; : : : ; GQHQ) interactions: therefore, a total of 113 effects were under

Table 3 Plackett–Burman
18-run design with response
data

Factor A G B C D E F H Y

1 0 0 0 0 0 0 0 0 97.94

2 0 0 1 1 1 1 1 1 83.40

3 0 0 2 2 2 2 2 2 95.88

4 0 1 0 0 1 1 2 2 88.86

5 0 1 1 1 2 2 0 0 106.58

6 0 1 2 2 0 0 1 1 89.57

7 0 2 0 1 0 2 1 2 91.98

8 0 2 1 2 1 0 2 0 98.41

9 0 2 2 0 2 1 0 1 87.56

10 1 0 0 2 2 1 1 0 88.11

11 1 0 1 0 0 2 2 1 83.81

12 1 0 2 1 1 0 0 2 98.27

13 1 1 0 1 2 0 2 1 115.52

14 1 1 1 2 0 1 0 2 94.89

15 1 1 2 0 1 2 1 0 94.70

16 1 2 0 2 1 2 0 1 121.62

17 1 2 1 0 2 0 1 2 93.86

18 1 2 2 1 0 1 2 0 96.10
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Table 4 Selected subsets and their criterion

Active effects ad-R2 AIC

Stepwise BLHQ, BQHQ, ELGL, ALHQ, HL, ELFQ 0.9815 68.0

Lasso BLHQ, BQHQ, ELFL, ALHQ, CQGQ 0.8035 110.0

Chipman et al. (1997) BL, BLHL, BLHQ, BQHQ 0.8202 107.8

Strong heredity model BL, DL, FL, HL, BQ , DQ, HQ, BLDL, BLHQ,
DLHL, FLHL, HLBQ , BQHQ

0.9990 14.6

Weak heredity model BL, BLHL, BLHQ, BQHQ 0.8202 107.8

consideration. We used this example to illustrate how our proposed model can
handle a complicated situation. In this example, we computed the posterior median
using 50,000 consecutive iterations of the Gibbs sampler after 5,000 burn-in for
each factor.

Table 4 shows selected subsets and the value of ad-R2 and AIC obtained by
the ordinary stepwise selection, the Lasso, the Bayesian variable selection with the
effect heredity principle (Chipman et al. 1997), and our proposed models.

The stepwise method and the Lasso select uninterpretable subsets that consist
of some interactions without corresponding main effects. Our proposed models,
especially the strong heredity model, select much better subsets than the others.
Both the strong and weak heredity models are able to select the well-fitted subset
following the effect heredity principle. We observe that the strong heredity model
could select the best subset in this example.

5 Discussion

In this paper, we extended the Bayesian Lasso to incorporate the effect heredity
principle by reformulating the coefficients for the interaction terms. In the examples,
the proposed models were applied to three examples of screening experiments. Our
models could select subsets that were consistent with the effect heredity principle
and also fit the data well. Furthermore, using our proposed models, it is possible
not only to select a subset with posterior model probability but also to estimate
regression coefficients from the posterior distribution. Considering the posterior
distribution of regression coefficients might help our inference for variable selection.
Moreover, our model can be applied in situations where the number of factors
exceeds the number of observations, because it is based on the Bayesian framework.

As we see in the examples, depending on which principle we apply, the selected
subset may change and it is not definite which heredity model will select a better
subset. Therefore, in practice, it is better to apply both models. Note that the
Bayesian approach is useful because of its flexibility in introducing new parameters;
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thus, it might be possible to handle the strong and weak heredity principles in a
comprehensive manner. The run-size of a screening design might also affect which
principles are most appropriate for use, and this could be a topic for future study.
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Comparative Study of Time Scales in Optimal
Time Scale Analysis of Field Reliability Data

Watalu Yamamoto and Kazuki Takeshita

Abstract The time scale of failures need not be chronological, if a failure occurs
according to the accumulation of damages from its usage or exposure to some
risk. The true time scale, if there could be, need not show the best fit among time
scale candidates to the observed field reliability data. A semiparametric estimator of
the time scale which combines multivariate lifetime data has been proposed in the
literature. It does not require the specification of the lifetime distribution beforehand
on the time scale also to be estimated. We first show a set of simulation results
for investigation of the properties of time scale models and the sample properties
of their estimates. Then we show another result on the performance under the
time scale misspecifications. Finally the estimator and the time scale functions are
applied to a problem of finding a suitable time scale for field reliability data. We
show that the results are useful even in cases when there exists prior knowledge
about the suitable time scale.

Keywords Competing risks • Counting process • Field reliability data • Optimal
lifetime scale

1 Introduction

Laboratory evaluation of the reliability of products, components, parts, etc. enables
local control during endurance testing and lifetime testing. The usage conditions
and situation can be controlled by introducing appropriate experimental factors and
levels, thereby obtaining test results reflecting the various situations each item may
encounter. However, it would be impossible to define and test all possible conditions
and to run all tests until an instance failed. Therefore, some items may only fail when
a customer uses it under certain conditions in certain situations. To improve the
reliability performance and safety of items in the field, it is important for a company
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Fig. 1 Graphical presentation of Case A. (a) Scatterplot of all records in Case A. (b) Weibull
probability plot for days. (c) Weibull probability plot for cumulative loads

or provider to have a system for collecting field performance data. A warranty claims
system is a good source of such information.

This research was motivated by two cases. In Case A, there is a set of bivariate
lifetime data on systems with only one failure mode. This data consists of r failure
records and n � r censored records. Figure 1 shows a graphical presentation of
this case. Figure 1a shows a scatterplot of all records. The x-axis is days X , as a
chronological time, and the y-axis is cumulative loads Y , which is the work amounts
weighted by loads. Accumulated engineering knowledge supports the use of work
amounts Y for the time scale of the lifetime distribution. However, the Kaplan-
Meier estimate of the survival function for days X seems to fit better to Weibull
distribution than a curve for cumulative loads Y , as shown in Fig. 1b, c.

In Case B, there is another set of bivariate lifetime data on systems with multiple
failure modes. This data also consists of r failure records and n�r censored records.
A scatterplot of all records is shown in Fig. 2. The failure records are classified into
six failure types, which are independent. There are competing risks since the system
is considered to have failed once any failure has occurred.
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Fig. 2 Scatterplot of all
records in Case B. Dotted
curves are time scales
estimated in Sect. 3
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The time scale need not be chronological if a failure can occur due to cumulative
damage suffered from usage or exposure to some risk. Engineering knowledge can
be used to identify a more appropriate time scale, such as mileages or usage count or
amounts. However, the actual time scale is often unobservable (e.g., precise rotation
counts of each gear, integrals of loads by distances), in which case an observable
time scale is needed as an approximation. Moreover, there is often more than
one candidate time scale. There has been much researches on combining multiple
lifetime scales into a unified time scale ideal for modeling the lifetimes of target
items. Some authors call such a time scale ideal or intrinsic.

Farewell and Cox (1975) were possibly the first authors to investigate combining
multiple time scales to obtain a more suitable time scale in the context of life testing.
Oakes (1995) defined the notion of collapsibility of the time scale and proposed a
parametric inference for choosing time scales and failure distributions. Kordonsky
and Gertsbakh (1993, 1995a,b, 1997) used minimum coefficient of variation as a
criterion to fit linear time-scale models. Duchesne and Lawless (2000, 2002) defined
ideal time scales as alternative time scales for multivariate lifetime data problems
and proposed a semiparametric estimator based on a counting process approach.
Finkelstein (1999, 2004) investigated similar problems in slightly different settings.

In this paper, we apply the method proposed by Duchesne and Lawless (2002)
to an industrial problem. We call the estimated ideal time scale the “optimal time
scale.” We present a series of results from simulation studies done to investigate the
properties of time-scale models (linear time scale, multiplicative time scale, and log-
linear time scale) and the sample properties of their estimates. We also investigate
compatibility among these scales to gain some insight into choosing a time-scale
function for analyzing field reliability data.
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2 Optimal Lifetime Scale

2.1 Models for Lifetime Scales

Assume that we can observe k usage-amount time scales for each item. They may
include the chronological time. We denote the chronological time as s and let Xj .s/

be the j -th usage amount at s. There are two major models for lifetime scales.
Linear time scale is defined as the weighted mean of all scales:

t.sI ˇ/ D
kX

j D1

ˇj Xj .s/ with
kX

j D1

ˇj D 1 and ˇj � 0 for all j:

The values of parameters ˇ1, : : :, ˇk depend on the “scales” of the individual
amounts, X1, : : :, Xk . Applying scale transformation to all variables by using scaling
coefficients c1, : : :, ck ,

QXj .s/ D Xj .s/ =cj ;

transforms the parameters into

Q̌
j D cj ˇj =

X
j

cj ˇj :

The denominator is needed to satisfy constraint
Pk

j D1
Q̌
j D 1. This time-

scale function is thus scale equivalent and requires attention when the estimated
parameters are interpreted. Note that t .s/ is invariant under scale transformation.

Multiplicative time scale is defined as the weighted geometric mean of all scales:

t.sI ˇ/ D
kY

j D1

Xj .s/ˇj with
kX

j D1

ˇj D 1 and ˇj � 0 for all j:

The values of the parameters are invariant under scale transformation of the
individual usage amounts. Note that t .s/ is equivariant under scale transformation.

2.2 Estimation of Time Scales

Duchesne and Lawless (2002) proposed a general method for estimating the values
of the parameters of time-scale functions that is applicable to cases under general
censoring independent of the cause of failure.
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We assume for simplicity that the usage path is linear in time unless otherwise
noted:

Xj .s/ D �j s ; j D 1; : : : ; k;

where the �j ’s are random variables with values equal to the slopes of the usages of
Xj against a chronological time scale s. This assumption was also made by Lawless
et al. (2009) and many others in the analysis of field reliability data. We also assume
that �j is observed for each item when it fails or it is censored.

We assume that lifetime distribution G.t/ on optimal time scale t.s; �I ˇ/ has
a known parametric form and let �.t/ be the hazard function corresponding to the
lifetime distribution. We also introduce Yi.s/ as a function of chronological time s

for each item; it is 1 if the i -th item is at risk at chronological time s and 0 otherwise.
The log-likelihood for ˇ is given by

l.ˇ/ D
nX

iD1

Z 1

0

Yi .s/
�

log �
�
ti .s/

�C log t 0
i .s/

��
dNi .s/ � �

�
ti .s/

�
t 0
i .s/ds

�
;

where ti .s/ D ti .s; � I ˇ/ and t 0
i .s/ D @ti .s; � I ˇ/=@s.

If assuming a parametric form for G.t/ is undesired, the estimation can be done
semiparametrically. By defining

QNi.t I ˇ/ D I Œti .si / � t; Y.si / D 1�

and

QYi.t I ˇ/ D I Œti .si / � t � ;

the function for estimating ˇ is obtained as

QU .ˇ/ D
nX

iD1

Z 1

0

QYi.t I ˇ/

 
Qi .t I ˇ/ �

Pn
j D1

QYj .t I ˇ/Qj .t I ˇ/
Pn

j D1
QYj .si I ˇ/

!
d QNi.t I ˇ/;

which can be alternatively written as

QU .ˇ/ D
nX

iD1

QYi

�
ti .si /I ˇ

�
 

Qi.si ; �i I ˇ/ �
Pn

j D1
QYj

�
ti .si /I ˇ

�
Qj .si ; �j I ˇ/

Pn
j D1

QYj

�
ti .si /I ˇ

�
!

;

(1)
with

Qi.si ; �i I ˇ/ D @

ˇ
log

@

@s
ti .s; � I ˇ/

ˇ̌
ˇ̌
sDsi

:
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Solving QU .ˇ/ D 0 is not easy since the estimation function QU .ˇ/ is not continuous.
Duchesne and Lawless (2002) defined the estimator of ˇ as

Ǒ D arg min QU .ˇ/t QU .ˇ/: (2)

As is illustrated in Duchesne and Lawless (2002), the resulting estimator is not so
complicated if the time scale is linear or multiplicative. In the case of a univariate
usage path and a linear time scale, t.sI ˇ/ D .1 � ˇ/s C ˇ�s, Qi.si ; �i I ˇ/ D
.1 � ˇ/=.1 � ˇ C ˇ�i/, and QU .ˇ/ becomes

QU .ˇ/ D
nX

iD1

ıi

 
1 � ˇ

1 � ˇ C ˇ�i

�
Pn

j D1
QYj

�
ti .si /I ˇ

�
.1 � ˇ/=.1 � ˇ C ˇ�i /Pn

j D1
QYj

�
ti .si /I ˇ

�
!

;

where ıi is 1 if the i -th item fails and 0 if it is censored.
The semiparametric estimation procedure is preferable in that it does not depend

on distribution G.t/. Duchesne and Lawless (2002) demonstrated numerically that
this procedure is as precise as fully parametric inference if a parametric form can be
assumed for G.t/.

2.3 Lifetime Scale Estimations for Competing Risks Cases

The procedure proposed by Duchesne and Lawless (2002) can be applied to cases
with competing risks without modification. The situation is very similar to that
of the maximum likelihood estimation of parameters of competing risks models.
Assume that there are k mutually independent competing risks, i.e., failure modes.
Once the time scale for each failure mode has been estimated, censored items are
treated as censored, and items that failed in other failure modes are also treated
as censored. This enables estimation function (1) to be formulated for each failure
mode. Of course, this is a marginal approach to inference in that the contribution
of the censored records can be varied by constructing a set of the simultaneous
estimation functions since the time scales can vary with each other.

3 Time Scale Analysis of a Field Reliability Data

3.1 Case A

In Case A, we assume a linear trace for each usage history and use a stratification
approach, as was done in Duchesne (2004). First, we partition the data set into
six strata in accordance with usage rate y=x. Then the parameters of the Weibull
distribution are estimated for each stratum. Table 1 shows the estimated parameters.
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Table 1 Estimated
parameters of Weibull
distributions for each stratum
and for multiple time scales

Shape Scale
Stratum parameter parameter

1 3.70 1:42 � 107

2 2.80 1:65 � 107

3 2.26 2:95 � 107

4 2.53 3:05 � 107

5 3.39 3:71 � 107

6 4.04 3:43 � 107

Time scale 3.13 3:17 � 105
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Fig. 3 Contour lines of estimated time scale and those of stratified analysis

From these estimates, we can estimate the conditional percentiles for each stratum.
The piecewise linear lines in Fig. 3 connect the estimated conditional percentiles of
the strata.

The time-scale analysis can estimate the contours of the bivariate lifetime in a
much simpler way than the stratified approach. First, we fit the multiplicative time
scale to the failure data and obtain the estimate Ǒ D 0:543. Then we fit a single

Weibull distribution to the transformed data ti D xi
Ǒ
yi

1� Ǒ either graphically or
numerically. This results in the model identification problem becoming that for the
univariate case. The estimated Weibull distributions on the multiplicative time scale
are shown at the bottom of Table 1. The shape parameter estimate, 3:13, is similar
to the stratified estimates.

The percentiles estimated using a multiplicative time scale and the Weibull fit
are shown in Fig. 3 as smooth curves. These curves are given by three parameters,
much fewer than the 12 parameters used to identify Weibull distributions for each
stratum.
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The estimated quantiles under the Weibull assumption are shown in Fig. 3. The
piecewise linear lines are stratified estimates, and the curves are estimates from the
multiplicative time scale. Both sets of estimates share the same tendencies.

3.2 Case B

The set of field reliability data for a component in an electrical appliance from
an anonymous industrial company is considered in Case B. When a component
instance is replaced due to failure or for preventive maintenance, the number of
days it was in use and the total usage amount are added to the dataset. This data set
consists of the records of about nine thousand items—904 failures were observed
and the rest of items were replaced before failure and are analyzed as censored. The
six failure modes are labeled alphabetically, A—F.

The observed time scale for usage amount Y is roughly 100 longer than that
for chronological time X . Since the linear time scale gives a poor fit even after
appropriate scale transformation, we use only the multiplicative time scale.

Table 2 shows the parameter estimates for the multiplicative time scale for
each failure mode, the number of records observed, and the censored ratio for the
marginal inference for each failure mode. The data set contains more than 100
failure records for failure modes A, B, and C. Failure modes A and C are sensitive
to changes in Y , i.e., they have a Ǒ larger than 0.5. Figure 4a, c show contour plots
of the estimated multiplicative time scales for modes A and C, respectively. These
contour plots are parallel to the x-axis when Y is not so large. Failure mode B is
sensitive to changes in X , in that Ǒ is smaller than 0.5 for this mode. These results
suggest that failure modes A and C can be modeled on a usage amount scale, and
mode B can be modeled on a chronological time scale.

Note that the scatterplots are for failed and censored data. Though the estimated
time scale covers the area with no dots, we do not claim that this scale can be used
for extrapolation.

Table 2 Estimates of
lifetime scale parameters for
each failure mode

Failure mode Ǒ Observed Censored ratio (%)

All 0.543 904 89.94

A 0.695 321 93.51

B 0.332 188 97.91

C 0.618 116 98.71

D 0.329 73 99.19

E 0.397 40 99.56

F 0.528 36 99.60
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Fig. 4 Scatterplots and estimated time scales of failure and censored data. (a) Failure mode A,
Ǒ D 0:695. (b) Failure mode B, Ǒ D 0:332. (c) Failure mode C, Ǒ D 0:618

4 Simulation Study on the Properties of the Time Scale
Estimator

4.1 Lifetime Scale Estimations Under Random Censoring
or Competing Risks Cases

As done in Duchesne and Lawless (2002), we conducted a series of numerical exper-
iments to investigate the properties of the estimator of the parameters of lifetime
scales. We considered a two-dimensional case; one dimension was chronological
time X and the other was usage amount Y . Five thousand pairs of random variables
T and � were generated numerically under four simulation settings, as described
below.

A. T � Weibull with shape parameter m D 3 and scale parameter � D 1;000,
tan�1 � � Uniform on Œ0; 1�: (Abbreviated as Weib-Uni)

B. T � Weibull with shape parameter m D 3 and scale parameter � D 1;000, � �
Lognormal with location parameter � D 2:37 and scale parameter � D 0:572.
(Abbreviated as Weib-LogN)

C. T � Lognormal with location parameter � D 6:7 and scale parameter � D
0:832, tan�1 � � Uniform on Œ0; 1�: (Abbreviated as LogN-Uni)

D. T � Lognormal with location parameter � D 6:7 and scale parameter � D
0:832, � � Lognormal with location � D 2:37 and scale parameter � D 0:572.
(Abbreviated as LogN-LogN)

These parameter settings are chosen to be similar to those in Duchesne and
Lawless (2002).

The chronological time X and the usage amount Y for each item were obtained
for a linear time scale,

Xi D Ti

1 � ˇ C ˇ�i

; Yi D �iTi

1 � ˇ C ˇ�i

;
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Fig. 5 Results of simulation study for linear time-scale setting with ˇ D 0:5. (a) Type I cens.
(Averages). (b) Type II cens. (Averages). (c) Random cens. (Averages). (d) Type I cens. (Std.
dev.). (e) Type II cens. (Std. dev.). (f) Random cens. (Std. dev.)

and for a multiplicative time scale,

Xi D Ti

�
ˇ
i

; Yi D Ti

�
ˇ�1
i

:

Type I censoring, Type II censoring, and random censoring were used for each
simulated data set of 5,000 records. Though the proportions of failed items were
fixed only for Type II censoring, the censoring times and numbers were set to the
average so that all settings could be compared. In all the studies described here, we
set ˇ D 0:5.

Figure 5 shows the results for a linear time scale, t D .1 � ˇ/X C ˇY . The
averages of the estimates Ǒ were biased even when the percent censored was less
than 50 for settings B and D, as shown in Fig. 5a, c, e.

The standard deviations of the estimates Ǒ increased with an increase in the
proportion of censored items for those settings, as shown in Fig. 5a, c, e. For settings
A and C, the estimator was relatively unbiased for cases in which less than 90 %
of the items were censored. However, the standard deviations tended to increase
rapidly when more than 50 % of the items were censored. That is, the linear time
scale tended to depend on the assumptions about the underlying distributions and
tended to be sensitive to censoring.

Figure 6 shows the results for a multiplicative time scale, t D X1�ˇY ˇ. This
time scale was scale equivariant, and the meaning of parameter ˇ did not depend on
the scales of X and Y . The averages of the estimates Ǒ were less biased than those
for the linear time scale for all settings, as shown in Fig. 6a, c, e.
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Fig. 6 Results of simulation study for multiplicative time-scale setting with ˇ D 0:5. (a) Type I
cens. (Averages). (b) Type II cens. (Averages). (c) Random cens. (Averages). (d) Type I cens. (Std.
dev.). (e) Type II cens. (Std. dev.). (f) Random cens. (Std. dev.)

The standard deviations of the estimates Ǒ increased more slowly than those for
the linear time scale with an increase in the proportion of censored items for those
simulations, as shown in Fig. 6b, d, f. The parameter estimates for the multiplicative
time scale tended to have a sampling distribution insensitive to the assumptions
about the underlying distributions and had a certain level of precision even for the
data sets with a relatively high proportion of censored items.

Recall that as mentioned in Sect. 2.2, a semiparametric estimator does not depend
on the distributional assumption of the time scale, so the multiple time scale is
preferable in that it is less sensitive to the distributions of T and � .

4.2 Lifetime Scale Estimations Under Misspecified Settings

We are also interested in the performance of the time-scale estimator under
misspecified model situations. We investigated three possible situations: (1) time-
scale function is correct but scale is misspecified, (2) time-scale function is correct
but time variables are misspecified, and (3) time-scale function is misspecified. We
generated the simulation data using the “generated” time scale and fitted the data
using the “fitted” time scale.

In the first situation, the time scale after some monotone transformation was true,
but we do not have any technical knowledge about that transformation. Figure 7
shows the results for cases in which logarithmic and exponential transformations
were combined with a linear time-scale function. The true time-scale parameter was
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Fig. 7 Results of simulated time-scale transformation with linear time-scale function (ˇ D 0:5).
(a) generated: linear TS; fitted: log-linear TS. (b) generated: log-linear TS; fitted: linear TS

0.5 for all cases described in this section. We call a time scale that is linear after
logarithmic transformation,

t.sI ˇ/ D exp

0
@

kX
j D1

ˇj Xj .s/

1
A with

kX
j D1

ˇj D 1 and ˇj � 0 for all j:

a log-linear time scale. It is mathematically equivalent to a linear time scale. We
see in Fig. 7 that the estimation procedure described in Sect. 2.2 worked not much
worse when tan�1 � � Uniform on Œ0; 1� (as shown by the solid lines) and censoring
was not so heavy. However, it created some bias for cases with � � Lognormal, as
shown by the dashed lines. The dashed lines for standard deviations in Fig. 7a, b are
rather flat for various censoring ratios, meaning that the linear time-scale function
is not so flexible under exponential and logarithmic transformation.

Figure 8 presents the results of cases with time-scale misspecification, Fig. 8a,b,
and with variable transformation misspecification, Fig. 8c, d.

The averages and standard deviations of the estimated time-scale parameter ˇ tell
us something about the suitability or matching among the time-scale function and
the underlying model. Figure 8a shows that the log-linear time-scale function gives
a Ǒ near 0:5 even though the underlying function is linear, for cases with tan�1 � �
Uniform on Œ0; 1�. Further the standard deviation increases as the censoring becomes
heavier. The log-linear time-scale function pretends as if it is the true time-scale
function. We call this property by working times-scale function.
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Fig. 8 Results of simulated time-scale transformation under linear time-scale setting (ˇ D 0:5).
(a) generated: linear TS; fitted: multiplicative TS. (b) generated: multiplicative TS; fitted: linear
TS. (c) generated: multiplicative TS; fitted: log-linear TS. (d) generated: log-linear TS; fitted:
multiplicative TS

However this time-scale function gives Ǒ near 1:0 for cases with � � Lognormal,
and gives small standard deviations for same cases. It looks being sticked to those
values and having no effects from censoring, such as some monotone tendency in
the average or increasing in the standard deviation, of the parameter estimates. So
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we see that log-linear time-scale function is not suitable for these two cases, even as
a working time-scale function.

Figure 8b suggests that the linear time-scale function may work as the working
time-scale, in that we may not be able to identify which is the true time-scale, linear
or log-linear. It gives steady averages and increasing standard deviations for cases
with T � Lognormal. However it works not fine for the case with T � Weibull and
� � Lognormal.

The difference between the multiplicative and exponential linear time-scale
functions (Fig. 8c, d) was the scale for X and Y since

t.sI ˇ/ D
kY

j D1

Xj .s/ˇj D exp

0
@

kX
j D1

ˇj log Xj .s/

1
A :

If we take the logarithm of all variables and use the log-linear time-scale function,
the resulting analysis is the same as that with the multiplicative time scale. Both
time-scale functions worked strangely under � � Lognormal, as shown by the
dashed lines. But both seem to have worked as a working time scale, again under
tan�1 � � Uniform on Œ0; 1�, as shown by the solid lines.

We conclude that the time-scale function estimator can perform well as a working
time-scale function depending on the distribution of � . The invariance under the
transformation of t.sI ˇ/ depends on the distribution of � .

5 Conclusion

Time-scale analysis is useful because it can be used to estimate the contour plot
of a cumulative distribution function using many fewer parameters than with the
stratified approach. It is also more flexible because identification of the lifetime
distribution can be done after the time-scale function is estimated. Our analyses
of two examples demonstrated the advantages of this approach. Simulation studies
of the effects of this approach under variable transformations and time-scale
misspecifications showed that the multiplicative time scale is the first candidate for
application.

The scatterplots were those for failed and censored data. Though the estimated
time scale covered the area with no data, we do not claim that the multiplicative
time scale can be used for extrapolation. Our extension of the estimator proposed
by Duchesne and Lawless (2002) to the competing risks scenario requires further
investigation of the sampling properties, and our future research will include such
investigation.
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Why the Naive Bayesian Classifier for Clinical
Diagnostics or Monitoring Can Dominate
the Proper One Even for Massive Data Sets

Hans - J. Lenz

Abstract We explain the phenomenon that the naive Bayesian classifier may
dominate the proper one as happened in clinical studies, cf. Gammerman and
Thatcher (Methods of Information in Medicine, 30, 15–22, 1991). Today this effect
may be of concern for real-time health care monitoring or surveillance. The reason
for the dominance relation lies in a mix of an a-priori not fixed dimension of the
state-space (symptom space) given a disease, the feature selection procedure and
the parameter estimation. Estimating conditional probabilities in high dimensions
when using a proper Bayesian model can lead to an “over fitting,” a missing value
problem, and, consequently, to a loss of classification accuracy. Due to the “Curse
of dimension” the degradation may not even be compensated by big data sets.

Keywords Curse of dimension • Dependency structures • Over-fitting

1 Introduction

Consider a clinical database as a collection of big tables each of them consisting of
a set of records. For example, table P of patients stores data like patient’s name,
age, gender, address, insurance company, etc., table C of cases relates patients,
doctors, treatments, illnesses, and symptoms, cf. Fig. 1. Furthermore, the reference
table (International Catalog of Diseases) ICD relates the set of diseases 	 to the
set of symptoms X in a many-to-many way. The last relation represents current
medical knowledge as, for instance, coded by ICD-10. We assume that the tables
of symptoms, diseases, and the reference table are finite, which is a reasonable
assumption in this context and simplifies stochastic modeling.

Consider a new patient (case) admitted to the hospital and his recorded symptom
vector x 2 Xd of fixed length d stored during anamnesis and updated while
applying treatments to him. The objective of medical diagnostics during any phase
of the patient’s stay at a hospital or while monitoring him is to use a classifier
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Fig. 1 Conceptual clinical
database model clipping
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(diagnostic function): � W Xd ! 	 � RŒ0;1�, .�; �/ D �.x/ where � 2 � identifies
the disease of the current case with a degree of belief � D P.� j x/, and � is the
class of classifiers considered. In the study of Gammerman and Thatcher (1991) the
problem is reduced to check the classification precision of computer and physicians’
preliminary diagnoses during anamnesis.

As there are different classifiers � available we limit ourselves to the maximum
probability rule of the Bayesian framework

�.x/ D �� with � D P.�� j x/ where �� D argmax
�2�

P.� j x/ (1)

The vital question from a diagnostic point of view is how to estimate P.� j x/

directly or—using the Bayes theorem—indirectly by first computing the marginal
P.�/ and conditional probabilities P.x j �/ for each “reasonable” � 2 � using the
clinical database. The Bayesian approach offers two variants. The naïve or Idiot
Bayes approach assumes conditional independence of the symptoms given a specific
disease, which is counterintuitive and seems quite unrealistic. The advantage of this
approach is that it factorizes P.x j �/ by the product of the marginals P.x1 j �/,
P.x2 j �/, . . . , P.xd j �/. Thus the estimation problem is reduced from one
d -dimensional problem to d one-dimensional ones. Accordingly, the marginals
are estimated by the corresponding relative frequencies n.xi ; �/=n.�/ in the one-
dimensional symptom subspace related to � . Quite opposite, the proper Bayes
approach assumes a conditional dependency structure between symptoms given a
specific disease. The unknown conditional probabilities P.x j �/ for each � are
estimated by the joint frequencies n.x1; x2; : : : ; xd ; �/=n.�/ for each � . Note that
in the Bayesian framework we usually assume that the symptom space has a fixed
dimension d 2 N . However, in the health-care domain d varies from disease to
disease, i.e. d� � d , and even from case to case. So d is an upper bound. Moreover,
due to computational complexity model-hunting cannot use full enumeration of all
symptoms combinations, but must be based on search heuristics.
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The empirical studies of Gammerman and Thatcher (1991) and Schwartz et al.
(1993) surprisingly show that the proper Bayes approach leads to an inferior
diagnostic rule compared to the naïve Bayesian one, i.e. �nB 
 �B . In the following
we analyze this phenomenon cf. Lenz (1995), and give an explanation why a proper
approach can produce worse results, how this happened and what should be done
to avoid such artifacts. We put a stress on the fact that this effect is not limited to
the Bayesian classifier but is—mutatis mutandis—also true, for example, for the
perceptron model of the neural network classification approach, cf. Khanna (1990).

2 Some Well-Known Definitions and Theorems

The probability theory is a well-established theory which is capable of mapping
equally well population variability, measurement errors as well as sampling and esti-
mation errors. We shall follow the axiomatic approach originated by Kolmogorov
(1933).

First, we recall some few well-known definitions about marginal and conditional
probabilities. Let .˝; 2˝; P / be the underlying probability space with the finite
observation set ˝ , power set (sigma algebra) 2˝ , and probability function P . Later
˝ will represent the set of 0 � 1 vectors of maximum length d D 135.

Definition 1 Conditional Probability P.A j B/

Let A; B 2 2˝ and P.B/ > 0. Then P.A j B/ D P.A; B/=P.B/ : (2)

The conditional independence of events .A1; A2; : : : ; An/ given an event B is
defined as follows.

Definition 2 Conditional Independence
Let

�
Ai

�
i2I

2 2˝ be a finite sequence of events and P.B/ > 0. Then the events
.A1; A2; : : : ; An/ are called conditional stochastically independent given B 2 2˝ if

P.A1; A2; : : : ; An j B/ D
Y
i2I

P.Ai j B/: (3)

The famous Bayes theorem combines marginal and conditional probabilities as
follows, cf. Fig. 2.

Theorem 1 Bayes Theorem
Given P.x j �/ and P.�/ > 0 for � 2 	 it follows

P.� j x/ D cP.x j �/P.�/ (4)

where c 2 RC is a normalizing constant.
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Fig. 2 Bayesian learning
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independence of symptoms
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Remember that a prerequisite of applying the Bayes theorem to health care is the
knowledge of the multi-dimensional distribution P.x j �/, and of the marginal or
prior distribution P.�/ for each disease � .

The naïve or Idiot Bayes theorem—a term coined by Spiegelhalter (1986)—
is a special case of the Bayes theorem assuming conditional independence of the
d symptoms X1; X2; : : : ; Xd given a specific disease � , cf. Fig. 3. Note that d is
disease or even case dependent. The strong assumption of conditional independence
greatly simplifies determining the probabilities P.� j x/ for all � 2 � by experts
during the elicitation phase, and, of course, influences the precision of the estimates.

Theorem 2 Idiot-Bayes Theorem
Assuming conditional independence between the components of symptom vector

X D .X1; X2; : : : ; Xd / given � one can factorize the joint distribution P.x j �/ as
follows:

P.� j x/ D c

dY
iD1

P.xi j �/P.�/ (5)

where c 2 RC is a normalizing constant.
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3 Estimation of Marginal and Conditional Probabilities
Using a Clinical Database System

Given a clinical database the estimation of the marginal and/or conditional proba-
bilities can be achieved by querying the database.

3.1 Strategy 1: Marginal Probability Estimation

First, we consider the marginal (or prior) probability P.�/ for each � 2 	 and
estimate the probability by OP .�/ D n.�/=N where n.�/ counts the number of cases
where patients are classified to have disease � and N is total number of patients
admitted to the hospital having an illness � 2 	 . Remember that j 	 j< 1.

This simple indicator is not considered further as it neglects symptoms, and only
plays a role as a prior distribution when initializing the Bayesian classifier.

3.2 Strategy 2: Direct Estimation

In principle, P.� j x/ for all illnesses � 2 	 can be directly estimated by (at least)
two table look-ups in the clinical database. First, the whole database is scanned for
selecting the subset C x � C where the (complete) symptom vector x 2 Xd is
the selection criterion and the counts are recorded. Let the cardinality of this set be
n.x/. Next the smaller table C x is scanned and the number of cases n.x; �/ showing
disease � together with symptom vector x is counted. As an ML-estimate we get

OP .� j x/ D n.x; �/=n.x/: (6)

Therefore no Bayesian inference step is necessary at this point, as the conditional
distribution P.� j x/ for each � 2 � can be estimated directly.

However, the cases vary in so far as the number of observed or recorded
symptoms per case varies from case to case even for the same disease � , i.e. not
all single symptoms may be observed or recorded as elements of the observation
vector x 2 X d for each patient. Evidently, d is disease and case dependent. This
leads to a missing value problem. If the missing values were completely generated at
random (so-called MCAR assumption), then a complete-set analysis is appropriate.
However, dropping incomplete cases as suggested by Gammerman and Thatcher
(1991) reduces the sample size and leads to loss of estimation accuracy.
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3.3 Strategy 3: Proper Bayesian Approach

Here the definition of the (Bayesian) posterior distribution—likelihood � prior—
P.� j x/ D cP.x j �/P.�/ holds true for each � 2 	 considered. Ignoring
computational efficiency for a moment one can compute the estimates OP .� j x/ D
n.x; �/=n.�/ and OP .�/ D n.�/=N where n.�/ is an absolute frequency and counts
the cases with disease � , and N represents the total number of cases, i.e. N Dj C j.
Note that not every patient shows the same symptom vector. Therefore the main
problem is to select the “best” combination of d symptoms, i.e. to solve heuristically
the feature selection problem.

3.4 Strategy 4: Idiot Bayes Approach

The posterior probability P.x j �/ is computed as mentioned above by factorization
of P.x; �/ D Q

P.xi j �/, cf. Fig. 3. The conditional probability of each single
symptom, P.xi j �/, for i D 1; 2; : : : ; d is estimated by

OP .xi j �/ D n.xi ; �/=N

n.�/=N
(7)

Evidently, the problem of missing values is reduced because each symptom is
treated and counted separately for estimation. Given a patient suffering from disease
� the probability to be positive with one out of d symptoms is much higher than
simultaneously with the bulk of all d � 1 symptoms. Or simplifying, when firing
into space it is easier to hit a given rectangle in two dimensions than a hypercube in
high-dimensions. For illustration of this “curse of dimension” assume independent
symptoms given a disease, and a constant probability � D 5 % for a missing value
(so-called “missing rate”) for any of the d 2 N symptoms. Then the probability
P.at least one missing value/ D 1�.1��/d D 0:999 � 1 for d D 135, see Fig. 4.
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This effect leads to a larger sample size of complete records in lower dimensions,
i.e. in a proper subspace of the symptom space X .

4 The Gammerman and Thatcher Study

The empirical comparative study by Gammerman and Thatcher (1991) on the
Bangour Hospital, Roxburgh, UK, is worthwhile reading, and is still representative
for current machine diagnoses and health-care monitoring. It has a learning size
of nL D 4;387 cases, and left nT D 2;000 for testing. Altogether, there are
j � jD 9 diseases (or so-called Diagnostic Groups) used for preliminary and final
diagnoses like appendicitis, pancreatitis, renal colic and dyspepsia, cf. Gammerman
and Thatcher (1991). If a patient cannot be classified to one of the “real” eight
possible diseases, he is allocated to the residual diagnostic group labeled “non-
specific abdominal pain.” There are 33 main symptoms like Pain-site, Anorexia, etc.
considered (some being present or absent, others multi-valued and not only binary),
and expanded to all together j X jD 135 binary symptoms under study. Therefore
the range of the symptom space is X D f0; 1gd .

We condense the study to the main summary statistic and refer the reader who is
interested in the details of the study to Gammerman and Thatcher (1991). It includes
three diagnosis methods I-III—made by a physician, the Idiot and the proper Bayes
approach, and compares them by the overall non-error rate (%) of all preliminary
diagnoses related to the final (actual) ones taking the physician’s decision as a
yardstick, cf. Table 1. By the way, Gammerman and Thatcher (1991) present a
fourth one (CART) which we ignore in our context; it performs like method III
(Proper Bayesian approach) with an accuracy of 65 %.

Evidently, the Idiot Bayes dominates the proper Bayes approach, and is near to
the physicians’ classification. How could this happen? The study of Schwartz et al.
(1993) supports this phenomenon, and the ranking is even the same for big data
studies. So far the study is “representative” and by no means an artifact.

Table 1 Percentages of
correct preliminary diagnoses
in a comparative study

Method Percentage of correct diagnoses

I Physician 76

II Idiot bayes 74

III Proper bayes 65 (!)

Source:Gammerman and Thatcher (1991)
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5 Modeling and Estimation Accuracy

We come back to our question put forward above. The contradiction which is evident
from Table 1 can be explained as a mix of factors as follows.

1. The feature selection problem: The probability model relating a disease � and
a corresponding symptom vector x is by no means trivial to be found-out.
Even the proper dimension of the symptom space .X � / given illness � is
unknown. Gammerman and Thatcher estimated these dimensional parameters
and the corresponding symptoms combination—necessarily only for the proper
Bayesian approach—by a forward selection procedure based on a 2-statistic for
2 � 2 tables. It includes a step-by-step procedure for up to 135 symptoms xi

and each single disease � . For instance, during the initial phase the value of the
2-statistic for 2 � 2 table .�1; N�1; xi ; Nxi / with i D 1; 2; : : : ; 135 was computed.
When the symptom x�

i having the highest discrimination power measured by the
2-statistic is selected, the next best double symptoms combination .x�

i ; xj / for
all j D 1; 2; : : : ; 135; i ¤ j is searched for in a similar way. Unfortunately, it
is unclear how the authors achieve the nominal value of ˛ D 1 %. During the
model-hunting phase they consider a learning set of size nL D 4;387, and a test
size equal to nT D 2;000. The best combinations lead to an overall hit-rate of
diagnoses equal to 65 %. Instead of simply fixing a boundary of the dimension
of X � a more sophisticated approach could be to use multiple imputation, cf.
Barnard and Rubin (1999). The reader interested in details of fitting a general
linear model (GLM) should consult, for example, Fahrmeir et al. (1996).

2. The over-fitting effect: Too many symptoms per disease may be selected due to
ignoring multi-collinearity effects caused by the forward selection procedure.
Furthermore, the missing values effect according to “incomplete records” leads
to a reduced sample size (number of cases with a d� -complete symptom vector
per disease). Consequently, the sampling error in weakly occupied cells of a high-
dimensional data cube (contingency table) is increased, i.e.

Var
� OP .x; �/

� � 1=mx;� : (8)

where mx;� is the current absolute frequency in cell .x; �/.
3. The effect of weakly occupied cells: In high dimensional spaces .X ; �/ the

risk of incomplete records is seemingly reduced if the Idiot Bayes approach is
used. From an algebraic point of view we switch to the subspace .X� ; f�g/. The
conditional independence assumption increases the number n.xi ; �/ of counts in
each single cell .xi ; �/ for all diseases � 2 � and observed symptom xi being an
element of x 2 Xd . In other words, relaxing the dependency structure activates
the “The law of large numbers.”
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Generally speaking, before applying a Bayesian diagnostic rule for clinical
diagnostics or (on-line) health-care monitoring or any similar approach one
should find out the trade-off between structural dependency, managing missing
values (ignoring incomplete records or applying multiple imputation) and esti-
mation efficiency. In high dimensional data spaces this effect does not vanish
even with big data.
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