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Abstract

More and more driver assistance systems are based on a fusion of multiple

environment perception sensors. This chapter gives an overview about the

objectives of sensor data fusion approaches, explains the main components

involved in the perception process, and explains the special topics that need to

M. Darms (*)

Continental AG, Lindau, Bavaria, Germany

e-mail: mdarms@gmx.de

# Springer International Publishing Switzerland 2016

H. Winner et al. (eds.), Handbook of Driver Assistance Systems,
DOI 10.1007/978-3-319-12352-3_24

549

mailto:mdarms@gmx.de


be taken into consideration in developing a multi-sensor fusion system for driver

assistance systems. Focus is put on the topics of data association, tracking,

classification, and the underlying architecture. The architecture strongly influ-

ences the costs, performance, and the development process of a multi-sensor

fusion system. As there are no deterministic methods that guarantee an optimal

solution for developing an architecture, the chapter gives an overview of

established, general architecture patterns in the field of sensor data fusion and

discusses their benefits and drawbacks.

1 Introduction

Driver assistance systems exclusively based on single-sensor solutions are known

from prior art. Examples include applications such as adaptive cruise control, which

relies on a single RADAR or laser sensor, for example, or lane departure warning,

which typically relies on a video sensor system.

As described in the previous chapters, the various sensor technologies all have

specific advantages and disadvantages. For example, a RADAR sensor can be used

to determine the longitudinal distance and velocity of a vehicle driving ahead with a

degree of accuracy sufficient for the adaptive cruise control application (see

▶Chaps. 45, “Adaptive Cruise Control,” and ▶ 17, “Automotive RADAR”). How-

ever, the relevant object, to which a certain distance must be kept, can only be

selected with a certain degree of precision due to the lateral resolution, the ambi-

guities in signal evaluation, and the lack of lane marker detection; interference from

vehicles on adjacent lanes must be thus accepted in system operation. On top of this,

there are limits to the ability to classify the detected object, so the control algorithm

typically only uses objects for which motion has been detected.

The missing information can be provided, for example, by data from a video

sensor (see ▶Chaps. 19, “Automotive Camera (Hardware),” ▶ 20, “Fundamentals

of Machine Vision,” and ▶ 48, “Lateral Guidance Assistance”). Lane marker

detection provides information which can be used for lane assignment. Classifica-

tion algorithms allow vehicles in the video image to be distinguished from other

objects, while image processing technologies enable to determine the position of

vehicles in the video image. In contrast to RADAR sensor systems, the distance and

speed cannot be measured and must therefore be estimated. The achievable preci-

sion is significantly lower with current sensor systems, especially in the long-

distance range. The functionality of an adaptive cruise control system purely

based on video sensors is thus restricted to a smaller speed range.

Combining the information from both sensors helps to leverage the benefits of

both technologies. For example, the RADAR sensor’s distance measurements can

be combined with the classification information and vehicle position measurements

in the video image. This makes it possible to reduce false interpretations and

improve accuracy in terms of the lateral position and distance. At the same time,

lane assignments, and thus the ability to detect the reference object with the help of

the video sensor data, become more robust.
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Various research works (see, e.g., Darms 2007; Holt 2004; St€uker 2004; Becker
2002; Bender et al. 2007), confirm the capability of data fusion approaches of this type;

environmental sensor data fusion is used in production vehicles (see, e.g., Schopper

et al. 2013). This means both the fusion of RADAR and camera sensors, as in the

example given here, and other combinations, for example, short-range and far-range

RADAR. The principle of fusion can be extended to other sensor technologies. The

current research and development focuses include the fusion of various imaging

sensors and the fusion of data from environmental sensors with stored map data.

The following sections provide an introduction to the basic principles of sensor

data fusion in driver assistance systems. Firstly, the term sensor data fusion is

defined, and the objectives of fusion are stated. The main components of environ-

mental data processing are then explained with a view to fusion of data from

multiple sensors. Finally, established architectural patterns for sensor data fusion

are presented. Part of the text in this chapter is orientated on the text provided in

Darms (2007).

2 Definition and Objectives of Sensor Data Fusion

2.1 Definition of Sensor Data Fusion

According to Steinberg et al., the process of data fusion is defined as follows:

Data fusion is the process of combining data or information to estimate or predict entity

states. (Steinberg et al. 1998)

The generic term “entity” is used to describe an abstract object to which

information can be assigned. In the world of driver assistance systems, this can

mean a physical object in the vehicle’s environment, such as an observed vehicle,

but also an individual state variable, such as the pitch angle.

The following text mainly refers to the former case and thus directly uses the

term “object.” The focus is on track estimation, which is also referred to as tracking,

and on object discrimination (see also Klein 1999). Tracking means estimating the

states of an object in terms of control theory (e.g., position and speed). Object

discrimination is further broken down into detection and classification (Klein

1999). In the course of detection, a decision is made as to whether an object exists,

while classification assigns the object to a predefined class (e.g., vehicle, pedes-

trian). However, the considerations presented here can also be generalized to apply

to abstract objects (see also the discussion in Dietmayer et al. (2005)).

2.2 Objectives of Data Fusion

The primary objective of data fusion is to merge the data from individual sensors so

as to combine their strengths in a beneficial way and reduce individual weaknesses.
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The following aspects can be distinguished (see also Lou and Kay 1991;

Joerg 1994).

Redundancy Redundant sensors provide information relating to the same object.

This helps to improve the quality of the estimation. An estimation algorithm must

take the measuring error dependencies into consideration (see, e.g., Bar-Shalom

and Li 1995). One risk is the multiple introductions of artifacts and misinterpreta-

tions into the fusion process (see below).

Redundancy can also help to improve the error tolerance and availability of the

system in cases of individual sensor failure on the one hand – assuming that the

system can still provide data of sufficient quality without the information from

the failed sensor – and for artifacts or misinterpretations by individual sensors on

the other. Redundancy can reduce the influence of an individual single error on the

system as a whole.

Complementarity Complementary sensors deliver different, supplementary infor-

mation into the fusion process. This can happen from a spatial point of view, where

the same sensors deliver information with different field of views. Particular

attention should be focused on data processing of the peripheral zones of the

detection area in this case (see, e.g., St€uker 2004). This can also mean data that

relate to the same object. The information content can be enhanced by detecting

different properties. It is possible that a combination of the individual items of data

is required to provide the information required by the application.

The use of different sensor technologies can also improve the robustness of the

overall system in terms of detecting individual objects that may not be reliably

detected by single-sensor technology. For example, the beam from a laser sensor

penetrates glass, or the beam from a RADAR sensor penetrates various plastic

materials without detecting the object in question. Combining the sensors reduces

the probability of not detecting the object at all.

Temporal Aspects The overall system’s speed of acquisition can be improved by a

fusion approach. This can be achieved firstly by parallel processing of information

from the individual sensors and secondly by appropriate timing of the acquisition

process (e.g., by sensors measuring alternately).

Improved precision, or the introduction of complementary information, also

influences the dynamic of the estimation. It must also be noted that different

applications can pose different requirements in terms of estimation dynamic and

accuracy and that it can still make sense, even in a sensor fusion system, to use

different estimation algorithms for different applications (see Sect. 3.2).

Costs When designing any sensor system, the costs are a decisive factor in

deciding its practical feasibility. The use of a fusion system can help to reduce

the costs, compared with an individual sensor. However, this is not true in all cases

because, for example, improvements can also be achieved by developing new

algorithms for evaluating the data from a single sensor or by hardware advances.
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The decision to develop a single- or multi-sensor system will thus always be

multidimensional and must be based on the aspects stated above.

The costs of a sensor fusion system are substantively influenced by the archi-

tectural structure of the system (see, e.g., Hall 2001; Klaus 2004). Thus far, a

uniform architecture has not been specified in the automotive industry in the form

of a mandatory or de facto standard. This makes cross-enterprise cooperation

between suppliers and vehicle manufacturers, strategic development of sensors

and algorithms adapted for a common architecture, and the migration to new

assistance functions and sensor generations more difficult (see also Hall 2001).

Modularity and the ability to economically extend the system are critical to its

practical feasibility. The aim is to realize migration to new assistance functions

economically and make it possible to source sensors and modules from various

suppliers, an aspect which is especially important to vehicle manufacturers.

3 Main Components in Sensor Data Processing

3.1 Overview

The following section summarizes the main components in environment sensor

data processing. The structure is generic and applies also to single-sensor systems.

The special features that need to be taken into consideration in developing a multi-

sensor system are pointed out at the appropriate places.

3.2 Signal Processing and Feature Extraction

In the scope of signal processing and feature extraction (see also Hall and

McMullen 2004), information from the vehicle’s environment is acquired by

sensors. Figure 1 shows the process. In the first step, which is referred to as

measure, the receiver element of the sensor (signal reception) receives payload

signals (energy) overlaid with interference signals (noise) and converts them into

raw signals (e.g., voltages, currents). The raw signals are interpreted as physical

measurements (e.g., intensities, frequencies, etc.), which finally form the sensor’s

Fusion

Assoiciation Assoiciation

Raw Data 1

Sensor 1
Signal Processing

Sensor n
Signal Processing

Sensor 1
Feature Extraction

Fusion

Sensor n
Feature Extraction

Feature Hypotheses 1 Feature Hypotheses nRaw Data n

Track-Estimation
Classification

Track-Estimation
Classification

Fig. 1 Perception process: measure and perceive (see Darms 2007, p. 9 and Darms et al. 2009)
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raw data. During signal processing, (physical) assumptions for interpretation are

made (e.g., maximum reception level, impulse forms, etc.). Where these assump-

tions are breached, artifacts (system-specific weaknesses) occur.

In the second step, termed perceive, features (e.g., edges, extreme values) are

extracted from the raw data on the basis of assumptions and models/heuristics. An

object hypothesis, an assumed object, is derived from these feature hypotheses.

Misinterpretations can occur due to the use of heuristics.

Where the information from multiple sensors is used in the estimation process, it

is necessary to find a common reference for the information. This task is in

particular made more difficult if the information is not orthogonal, that is, statisti-

cally independent.

One fundamental problem here is that of transferring the data to a coordinate

system with a common reference point. In the case of a single sensor, the effect of

adjustment errors can only be a negligible offset. However, maladjustment of a

multi-sensor system can make it impossible to align the data from various sensors

or cause systematic errors and deviations. This can impair the quality of the

evaluation (see below). Suitable adjustment processes and (online) adaption algo-

rithms are thus a central development focus for a multi-sensor system.

On top of this, various sensors can measure different attributes, even if this is not

desired. This occurs in particular with non-orthogonal sensors. For example, if the

distance to a vehicle is measured by a laser sensor and a RADAR sensor, it is

possible that the sensors detect different parts: the laser sensor might detect the rear

reflectors on a truck, while the RADAR sensor detects the rear axle. This effect can

also be observed for identical sensors. One reason for this is that an object is

detected from different angles of view. It is aggravated by sensor-specific artifacts

during measurement and feature extraction, which can also have an effect despite

the use of identical sensors.

Special care needs to be taken for the perceive part in multi-sensor systems. For

example, the extracted feature hypotheses from various sensors will ideally relate to

the same physical object. Due to different sensor resolutions, and misinterpreta-

tions, for example, in data segmentation (see, e.g., Holt 2004; Streller 2006), the

object hypothesis can differ between sensors. For a system with unsynchronized

sensors, the extracted features can also originate at different points in time. To be

able to combine the data from the various sensors, one thus at least needs a mutual

time base and sufficiently accurate time stamping (see also Kampchen and

Dietmayer 2003).

The topic of temporal and spatial association of data from various sensors is also

summarized in the referenced literature under “sensor registration” (see, e.g., Hall

2001).

3.3 Data Association

The feature hypotheses gained from signal processing and feature extraction are

associated with object hypotheses already known to the system in the data
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association step (see, e.g., Bar-Shalom and Li 1995). The quality of the estimation

is significantly influenced by the data association process (see Holt 2004; St€uker
2004; Bar-Shalom and Li 1995). If an incorrect association is made, information

loss occurs or false information is introduced in the estimation process (see, e.g.,

St€uker 2004).
Hall and Llinas break the data association process down into the following three

steps (see Hall and Llinas 1997 and Fig. 2); special algorithms used in automotive

applications can be found in Holt (2004), Becker (2002), and Streller (2006), for

example.

1. Generating association hypotheses. Theoretically possible associations of

feature hypotheses to object hypotheses are found. The results are one or

multiple matrices with theoretically possible associations (association matrices).

2. Evaluating the association hypotheses. The association hypotheses found are

evaluated with the aim of quantitative evaluation or ranking. The results are

quantitative values (e.g., costs) in the association matrix or matrices.

3. Selection of association hypotheses. A selection is made from the evaluated

association options; downstream data processing and thus, in particular, data

filtering are based on this.

The three processing steps do not need to be implemented separately; on the

contrary, they can depend on one another. However, it is advisable to decouple the

steps in the development process (see Hall and McMullen 2004). The quality and

performance of the available resources (e.g., computing capacity, resolution and

usable raw data of a specific sensor, artifacts and potentially false interpretations)

play a role in designing the algorithms. Depending on these boundary conditions,

various solutions are possible (see Hall 2001).

Hypothesis generation itself can be broken down into two sub-steps: postulating
the association hypotheses and selecting the theoretically possible hypotheses.

Various methods can be used for postulating the association hypotheses. They

include (see Hall and McMullen 2004):

Physical models. Fields of view and occlusions of the sensors used can be calcu-

lated. Object hypotheses that lie significantly outside the field of view are not

considered in generating hypotheses.

Fusion

Track-to-Track Assoiciation

···

Sensor Report 1

Sensor 1

Track-Estimation
Local Classification

Sensor 1

Track-Estimation
Local Classification

Sensor Report n

Track-Fusion
Global Classification

Fig. 2 Breakdown of the

data association process (see

Darms 2007, p. 45)
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Scenario knowledge. The behavior and potential location of objects on the basis of

the observed scenario can be leveraged, for example, areas for finding road

markers or traffic signs.

Probabilistic models. The expected number of false detections can be factored into

the process.

Ad hoc methods. One example of this is postulating all possible association

options. No prior knowledge needs to exist for this. However, it does make the

process of selecting the correct associations more difficult.

The following methods are possible for selecting possible hypotheses (see, e.g.,

Hall and McMullen 2004):

Pattern detection algorithms. Associations can be ruled out using the raw signals

and raw data (e.g., via correlation techniques).

Gating techniques. Physical models, for example, can be used to compute an area

in which object hypotheses, or the feature hypotheses derived from them, can

exist with a specific probability at the current time of measuring (prediction).

Feature hypotheses originating from the current measurement cycle that lie

outside of such an area are not associated with the corresponding object

hypothesis.

Hypothesis evaluation can be based on probabilistic models based on Bayes’

theorem, possibilistic models based on the Dempster–Shafer theory, neuronal

networks, or even ad hoc techniques, such as unweighted distance computation

between a prediction of the features and the features themselves (see, e.g., Hall and

McMullen 2004).

Finally, a variety of mathematical algorithms exists for hypothesis selection (see
Hall and McMullen 2004). This solution requires a large amount of computing time

with increasing dimensions and in particular if data from multiple cycles are

considered in the selection algorithm.

Simple approaches, where hypothesis selection only considers the data from the

current cycle, are manageable in terms of complexity. St€uker provides an overview
of various association methods (see St€uker 2004). A problem that is frequently

found here is that of associating n object hypotheses with m feature hypotheses

where m � n , and where one object hypothesis is associated with precisely one

feature hypothesis.

Precise methods exist for this that minimize the aggregated costs in the

association matrix. One example is the Munkres algorithm which has a complexity

of O n2mð Þ) (see Becker 2002). Less complex algorithms also exist, but they only

provide approximated solutions. One example is the iterative nearest neighbor

method, which successively selects associations with the lowest cost, or the highest

probability, at a complexity of O m2log2mð Þ (see Becker 2002). Depending on the

sensor technology, various algorithms are used (see Darms 2007).

As the discussion shows, data association can also be optimized by means of

sensor-specific algorithms. Without access to the raw data, and if the sensor-specific
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conditions are not taken into account, the quality of the data association can degrade

(see also Darms 2007).

Data association is also related to feature extraction and object hypothesis

generation. Again, a variety of sensor-specific options for optimizing or reconciling

individual processes exist with a view to achieving the best possible association of

feature hypotheses to object hypotheses given the existing resources. This approach

makes it possible to identify artifacts, e.g., duplicate measurements in the scope of

data association, and to exclude them from the fusion process (see, e.g., Darms

et al. 2008).

Knowledge of the way the data are generated, such as potential artifacts and

typical misinterpretations, can thus be used for optimizing the algorithms. In addition,

special properties of a sensor technology, such as the resolution capability, can be

taken into account when designing the algorithms. The data association algorithm

design is thus related to the knowledge of how the data are generated and thus of the

hardware of the sensor being used. In a modular setup, it can thus be useful to

encapsulate the association algorithms in sensor-specific modules (see Darms 2007).

3.4 Data Filtering

The feature hypotheses that have been extracted and associated with an object

hypothesis are processed downstream by a filter or estimation algorithm. This

algorithm is used to improve the information, but also to gain new information

(see Bar-Shalom et al. 2001; Hänsler 1997). Examples include:

– Signal and noise separation

– Reconstructing state variables that cannot be measured directly

For an overview of filter algorithms for sensor data fusion, see Holt (2004),

Klein (1999), and Bar-Shalom and Li (1995). The filter parameters are designed and

configured to suit the optimization criteria that need to be defined for the individual

application (see Hänsler 1997). If the filter is part of the control loop, it influences

the dynamic behavior of the entire system (see, e.g., Lunze 2006; Föllinger 1990).

In this case, the filter parameters must be adapted to suit the control loop’s

requirements (e.g., ACC). It is important to find a compromise between the filter

dynamic and the achievable estimation accuracy (see Lunze 2006). If a state

controller is used, the separation theorem (Lunze 2006; Föllinger 1990) at least

ensures the stability of the overall system, assuming that the estimator is stable. The

control and estimation parameters can be designed separately (see Lunze 2006;

Föllinger 1990); this offers benefits in terms of architecture.

To save costs, the data from a multi-sensor system can be provided to various

applications (see, e.g., Darms 2007; Dietmayer et al. 2005). It is important to

consider the fact that, depending on the sensor accuracy, areas can exist in which

various applications cannot be operated with a common filter algorithm or in which

shared operation of the application with one filter necessitates finding a
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compromise that is not optimal for individual applications in terms of dynamics

(see Darms 2007).

Development of data filtering algorithms cannot be completely abstracted from

the data association design. This is true of the design process, in which mutually

compatible algorithms must be found (see Bar-Shalom and Li 1995), and also of the

runtime behavior, given that the data filtering dynamic influences the quality of the

association process. Again, depending on the sensor accuracy, it is possible that

different filter algorithms for applications and data association make sense (see

Darms 2007).

3.5 Classification

During classification, object hypotheses are assigned to a predefined class on the

basis of associated properties (see, e.g., Klein 1999). The properties can come from

the sensor’s raw data, but also from the estimated state variables of the object

hypothesis.

In a multi-sensor system, the input data from various sensors are available. In

terms of the architectural design, it is beneficial for the data included in the fusion

process to be mutually orthogonal. A multiple implementation of a classification on

the basis of state variables can be avoided, given an appropriate architecture design

(see Sect. 4).

3.6 Situation Analysis

Situation analysis determines the overall behavior of the driver assistance system.

For example, adaptive cruise control (ACC) is backed up by a state machine that

defines the application’s behavior in various scenarios (see, e.g., Mayr 2001).

Situation analysis is thus the link between environment sensor data processing

and the assistance function. Algorithms for situation analysis need to consider both

the capability of the environmental data acquisition system and the application’s

boundary conditions. In the case of automatic emergency braking, for example, a

decision to intervene is taken as part of the situation analysis; this decision is driven

both by the accuracy with which the potential collision object is estimated and by

the potential, vehicle-specific evasion trajectories.

4 Architecture Patterns for Sensor Data Fusion

4.1 General Overview

The architecture documents the structure and the interactions between the individ-

ual components for the persons involved in developing the system (see Starke

2005). The architecture of the system also contributes toward structuring the
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development process (see Starke 2005). This is also true beyond corporate bound-

aries, as the architecture and the degree of coupling (see Vogel 2005) within the

system influence the extent to which components can be manufactured by various

suppliers.

There is no deterministic method that guarantees an optimal solution for devel-

oping an architecture (Starke 2005). The following section lists established, general

architecture patterns in the field of sensor data fusion and discusses the benefits and

drawbacks.

4.2 Decentralized–Centralized–Hybrid

The distinction into decentralized, centralized, and hybrid fusion relates to the

module view of the system (Vogel 2005). It is based on the degree of data

processing in the sensors, the results of data processing in the sensors, and the

point at which the data are merged in the fusion process (Klein 1999). It is typically

used in conjunction with tracking (Hall and Llinas 1997).

Figure 3 shows a decentralized architecture. This approach is referred to in the

referenced literature as sensor-level fusion, autonomous fusion, distributed fusion,
or post-individual sensor processing fusion (Klein 1999). The individual sensor

modules handle object discrimination and tracking. The results are merged in a

central module, possibly involving feedback of results from the centralized fusion

to the sensors (Bar-Shalom and Li 1995). In this case, each decentralized module

can additionally handle the central module functions, thus achieving redundancy

(Bar-Shalom and Li 1995).

In terms of object discrimination, this type of architecture is optimal, given that

the sensors are mutually orthogonal for this operation. This is the case, for example,

Fig. 3 Decentralized architecture (see Darms 2007, p. 16)
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if sensor principles based on different physical effects are used that do not cause

artifacts due to identical phenomena (Robinson and Aboutalib 1990). Two pieces of

information are required for fusion: firstly the discrimination decision and secondly

a metric for the decision quality (Klaus 2004).

The architecture can also be optimal for tracking, in the sense of minimizing the

estimation error (Bar-Shalom and Li 1995). However, this is only true given

relatively restrictive preconditions, which rarely exist in practical applications. If

the sensors’ measuring times also differ, again, the solutions are only approxi-

mately ideal in terms of the achievable accuracy (Bar-Shalom and Li 1995).

Figure 4 shows a centralized architecture. This is referred to in the referenced

literature as central-level fusion, centralized fusion, or pre-individual sensor
processing fusion (Klein 1999). The data only go through minimal preprocessing

in the sensor modules (feature or raw data level) and are then merged in a

centralized module, possibly involving feedback to the sensor modules (Klein

1999).

In terms of object discrimination, this type of architecture is superior to a

decentralized architecture if the sensors are not mutually orthogonal. If the sensors

are orthogonal, the results do not differ (Klein 1999).

A centralized architecture is optimal for tracking, without the restricting pre-

requisites that apply for a decentralized architecture. Additionally, measurements

not taken at the same time can be optimally merged (Bar-Shalom and Li 1995).

The main drawbacks of a centralized architecture are firstly restrictions in terms

of flexibility, as the internal algorithms of the central module may need to be

modified to accommodate extensions, and secondly a higher data volume that

occurs at the interfaces between the sensor modules and the fusion module (Klein

1999).

A hybrid architecture combines the centralized and decentralized approaches.

In addition to minimally preprocessed data (raw data), data preprocessed by the

sensors (tracks) can be fed to the central fusion module. Tracks can in turn provide

input for a decentralized fusion module in the same system. The results from this

decentralized module can flow into the central fusion module’s fusion algorithm

(Klein 1999).

Fig. 4 Centralized architecture. (a) Fusion at raw data level. (b) Fusion at feature level (see

Darms 2007, p. 17)
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As an example of the use of hybrid architecture, Bar-Shalom and Li describe a

scenario that is broken down into various acquisition areas, each of which is

covered by a multi-sensor platform. A centralized architecture is used within the

platform, while the overall estimation is determined by a decentralized architecture

across the areas (Bar-Shalom and Li 1995).

4.3 Raw Data Level–Feature Level–Decision-Making Level

The distinction into fusion at raw data level, feature level, and decision-making

level relates to the resolution of the data fed to the fusion algorithm and the degree

of sensor data preprocessing (Klein 1999). It thus relates to the runtime view

(Starke 2005) and is typically used in the context of object discrimination algo-

rithms (Hall and Llinas 1997).

In the case of fusion at raw data level, minimally preprocessed data that exist at

the resolution of the sensors involved (e.g., pixels in image processing) are fused in

a centralized architecture. This means that, for example, information from various

spectra (infrared, visible light) can be fused prior to image processing (Klein 1999).

The advantage this approach offers is the availability of complete sensor informa-

tion to which the fusion algorithm can be adapted. The main disadvantages are the

large data volume between the sensors and the centralized module, as well as the

difficulty of changing and extending the optimized algorithms in the centralized

module.

In the case of fusion at feature level, the features are first extracted before

fusion is performed. In a centralized architecture, this reduces the communication

bandwidth between the sensor modules and the central module at a price of losing

information.

Fusion at decision-making level is equivalent to a decentralized architecture. In

contrast to fusion at feature level, object discrimination is already performed in the

sensor modules. The results are then merged together with the tracking information

in a centralized module (Klein 1999). Tracking in this case does not need to follow

the decentralized architecture principle.

Table 1 summarizes the architectural principles decentralized–centrali-

zed–hybrid and raw data level–feature level–decision-making level, as well as

their dependencies.

4.4 Synchronized–Unsynchronized

In terms of the system’s dynamic interaction, a distinction can be made between

synchronized and unsynchronized sensors. The distinction relates to the temporal

sequence in which the data are acquired by the sensors (see, e.g., Bar-Shalom and Li

1995; Narbe et al. 2003a; Narbe et al. 2003b; Mauthener et al. 2006).

In synchronized sensors data acquisition is temporally aligned. Synchronous

sensors are a special case of synchronized sensors in which data acquisition occurs
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simultaneously. With unsynchronized sensors, data acquisition occurs in an indi-

vidual sensor cycle that is not aligned with the other sensors and does not need to be

constant.

The drawback of synchronization is the additional overhead in terms of hard-

ware and possibly software; the advantage is that the system’s timing behavior is

already known at the design stage (see also Kampchen and Dietmayer 2003).

4.5 New Data–Data Constellation–External Event

Events which cause data fusion to be performed can be grouped into three classes:

the occurrence of new data, the occurrence of a specific data constellation, and the

occurrence of an external event.

Table 1 Fusion architectures (see Darms 2007, p. 19, following Hall and McMullen 2004,

pp. 360–361; see also Klein 1999, p. 73)

Type Description Fusion level Comment

Centralized Raw data fusion Raw data Minimal information loss

In comparison, needs the greatest

communication bandwidth between the

sensor modules and the centralized

module

Optimal for orthogonal and

non-orthogonal sensors

Feature fusion Feature Requires lower communication

bandwidth than fusion at raw data level

Information loss due to feature

extraction

The benefits of fusion at raw data level

cannot be leveraged for non-orthogonal

sensors

Decentralized Fusion of state

variables and

discrimination

decisions

Decision-

making level

Information loss due to feature

extraction

Optimal object discrimination for

orthogonal sensors

Optimal tracking only under restrictive

conditions

Dependency on the results determined in

the sensor modules must be taken into

consideration on fusion

Redundancy can be achieved by

allowing multiple decentralized

modules to compute the fusion

Hybrid Combination of

centralized and

decentralized

Combination

possible on

all levels

Combines the properties of centralized

and decentralized architecture

High complexity of the architecture in

comparison
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If fusion occurs whenever new data occur, no information is lost. Depending on

whether synchronized or unsynchronized sensors are used, the fusion process needs

to find solutions for processing data that do not arrive at the fusion modules in the

temporal sequence of data acquisition (St€uker 2004; Bar-Shalom 2002). In a

decentralized structure, the latest fusion data can be fed back to the sensors so

that the sensors always have the latest prediction, for example, for preconditioning

algorithms.

If the fusion process always occurs for specific data constellations, for example,

whenever the data for specific sensors occur, then data caching resources must be

reserved. Additionally, the fusion data are not available at the earliest possible point

in time. If unsynchronized sensors are used, a decision as to the filtering state in

which the data are input into the fusion process must be made (see Sect. 4.6).

If the results of a centralized fusion module are not fed back to the sensors,

fusion can be triggered at arbitrary points in time by an external event. This allows

the data rate to be accommodated to match downstream processing, thus allowing

for the resources to be accommodated. However, in terms of tracking accuracy, this

is not an optimal solution (Bar-Shalom and Li 1995).

4.6 Original Data–Filtered Data–Predicted Data

In terms of the filtering state of data input into the fusion process, a distinction can

be made between original data, filtered data, and predicted data.

In case of original data, the temporally unfiltered data are fed into the fusion

process. This allows for optimal tracking.

If filtered data are used (e.g., in a decentralized architecture), optimal tracking

can be achieved under restrictive conditions. However, if the filtered data are

treated like unfiltered data and passed to a further filter for estimation, a chain of

filters is established. This generally leads to higher signal propagation delay.

Additionally, errors are now correlated; for an optimal estimation result, the filter

model needs to take this into consideration.

It is also possible to use predicted data (e.g., on the basis of models). This

approach is often used to relate the acquired measurement data to a point in time

when a specific data constellation occurs and to consolidate the different measure-

ments to so-called super measurements. Bar-Shalom and Li are of the opinion that

this approach does not lead to optimal results in terms of the achievable estimation

error for unsynchronized sensors (Bar-Shalom and Li 1995).

4.7 Parallel–Sequential

Another distinction which can be found in the referenced literature relates to the

fusion algorithm. A distinction is made here between parallel fusion, where fusion

of the existing measurements occurs in a single step, and sequential fusion, where

the measurements are merged in multiple, sequential steps. If the systems are linear
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and the sensors are synchronized, then the two methods are equivalent (Bar-Shalom

and Li 1995).

Dietmayer et al. also refer to explicit fusion in the case of synchronized sensors

and parallel fusion and to implicit fusion for unsynchronized sensors and sequential

fusion (Dietmayer et al. 2005).

5 Conclusions

In the author’s opinion, data fusion is essential for meeting the requirements for

future driver assistance systems and automated vehicles. This is particularly true of

systems designed to improve safety.

Given an appropriate architecture design, the sensor fusion data system can

represent an abstraction of the environmental perception of the deployed sensors.

The applications can thus be developed independently of the environment acquisi-

tion system. The design of the situational analysis as an interface between fusion

and application plays a central role then.

However, experience also shows that the equation “more sensors equals a better

system” does not apply without restrictions in practical applications. For example, the

overall system complexity increases with each sensor. Each sensor adds sensor-

specific properties to the system. If this is not modeled or taken into consideration

with a sufficient degree of accuracy, it may still be possible to partially improve

certain aspects, but will at the same time impact the overall performance. Hall (2001)

provides an overview of the typical pitfalls in designing a multi-sensor system.
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