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Abstract. A family F of permutations of the vertices of a hypergraph
H is called pairwise suitable for H if, for every pair of disjoint edges in
H, there exists a permutation in F in which all the vertices in one edge
precede those in the other. The cardinality of a smallest such family
of permutations for H is called the separation dimension of H and is
denoted by π(H). Equivalently, π(H) is the smallest natural number k
so that the vertices of H can be embedded in R

k such that any two
disjoint edges of H can be separated by a hyperplane normal to one of
the axes. We show that the separation dimension of a hypergraph H
is equal to the boxicity of the line graph of H. This connection helps
us in borrowing results and techniques from the extensive literature on
boxicity to study the concept of separation dimension.

Keywords: Separation dimension · Boxicity · Scrambling permutation ·
Line graph · Acyclic chromatic number

1 Introduction

Let σ : U → [n] be a permutation of elements of an n-set U . For two disjoint
subsets A,B of U , we say A ≺σ B when every element of A precedes every
element of B in σ, i.e., σ(a) < σ(b),∀(a, b) ∈ A × B. Otherwise, we say A ⊀σ B.
We say that σ separates A and B if either A ≺σ B or B ≺σ A. We use a ≺σ b to
denote {a} ≺σ {b}. For two subsets A,B of U , we say A �σ B when A \ B ≺σ

A ∩ B ≺σ B \ A.
In this paper, we introduce and study a notion called pairwise suitable family

of permutations for a hypergraph H and the separation dimension of H.
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Definition 1. A family F of permutations of V (H) is pairwise suitable for
a hypergraph H if, for every two disjoint edges e, f ∈ E(H), there exists a
permutation σ ∈ F which separates e and f . The cardinality of a smallest family
of permutations that is pairwise suitable for H is called the separation dimension
of H and is denoted by π(H).

A family F = {σ1, . . . , σk} of permutations of a set V can be seen as an embed-
ding of V into R

k with the i-th coordinate of v ∈ V being the rank of v in the σi.
Similarly, given any embedding of V in R

k, we can construct k permutations by
projecting the points onto each of the k axes and then reading them along the
axis, breaking the ties arbitrarily. From this, it is easy to see that π(H) is the
smallest natural number k so that the vertices of H can be embedded into R

k

such that any two disjoint edges of H can be separated by a hyperplane normal
to one of the axes. This motivates us to call such an embedding a separating
embedding of H and π(H) the separation dimension of H.

The notion of separation dimension introduced here seems so natural but, to
the best of our knowledge, has not been studied in this generality before. The
authors of [15] provide suggested applications motivating the study of permuta-
tion covering and separation problems on event sequencing of tasks. Apart from
that, a major motivation for us to study this notion of separation is its interest-
ing connection with a certain well studied geometric representation of graphs.
In fact, we show that π(H) is same as the boxicity of the intersection graph of
the edge set of H, i.e., the line graph of H.

An axis-parallel k-dimensional box or a k-box is a Cartesian product R1 ×
· · · × Rk, where each Ri is a closed interval on the real line. For example, a line
segment lying parallel to the X axis is a 1-box, a rectangle with its sides parallel
to the X and Y axes is a 2-box, a rectangular cuboid with its sides parallel to
the X, Y , and Z axes is a 3-box and so on. A box representation of a graph G
is a geometric representation of G using axis-parallel boxes as follows.

Definition 2. The k-box representation of a graph G is a function f that maps
each vertex in G to a k-box in R

k such that, for all vertices u, v in G, the pair
{u, v} is an edge if and only if f(u) intersects f(v). The boxicity of a graph
G, denoted by boxicity(G), is the minimum positive integer k such that G has a
k-box representation.

The concept of boxicity was introduced by F.S. Roberts in 1969 [20]. He showed
that every graph on n vertices has an �n/2	-box representation. The n-vertex
graph whose complement is a perfect matching is an example of a graph whose
boxicity is equal to n/2. Upper bounds for boxicity in terms of other graph
parameters like maximum degree, treewidth, minimum vertex cover, degeneracy
etc. are available in literature. Studies on box representations of special graph
classes too are available in abundance. Scheinerman showed that every outerpla-
nar graph has a 2-box representation [21] while Thomassen showed that every
planar graph has a 3-box representation [23]. Results on boxicity of series-parallel
graphs [8], Halin graphs [12], chordal graphs, AT-free graphs, permutation graphs
[14], circular arc graphs [7], chordal bipartite graphs [11] etc. can be found in
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literature. Here we are interested in boxicity of the line graph of hypergraphs.
The line graph of a hypergraph H, denoted by L(H), is the graph with vertex
set V (L(H)) = E(H) and edge set E(L(H)) = {{e, f} : e, f ∈ E(H), e∩ f 
= ∅}.

For the line graph of a graph G with maximum degree Δ, it was shown by
Chandran, Mathew and Sivadasan that its boxicity is in O (Δ log log Δ) [13].
It was in their attempt to improve this result that the authors stumbled upon
pairwise suitable family of permutations and its relation with the boxicity of the
line graph of G. In an arXiv preprint version of this paper available at [6], we
improve the upper bound for boxicity of the line graph of G to 29log

�ΔΔ, where
log�Δ denotes the iterated logarithm of Δ to the base 2, i.e. the number of
times the logarithm function (to the base 2) has to be applied so that the result
is less than or equal to 1. In a recent joint work with Noga Alon, we have shown
that there exist graphs of maximum degree Δ whose line graphs have boxicity
in Ω(Δ). Bounds for separation dimension of a graph based on its treewidth,
degeneracy etc. are also established in the arXiv version.

1.1 Outline of the Paper

The remainder of this paper1 is organised as follows. A brief note on some
standard terms and notations used throughout this paper is given in Sect. 1.2.
Section 2 demonstrates the equivalence of separation dimension of a hypergraph
H and boxicity of the line graph of H. In Sect. 3.1, we characterize graphs of
separation dimension 1. Using a probabilistic argument, in Sect. 3.2, we prove a
tight (up to constants) upper bound for separation dimension of a graph based on
its size. Section 3.3 relates separation dimension with acyclic chromatic number.
In Sect. 3.4, using Schnyder’s celebrated result on planar drawing, we show that
the separation dimension of a planar graph is at most 3. This bound is the
best possible as we know of series-parallel graphs (that are subclasses of planar
graphs) of separation dimension 3. In Sect. 3.5, we prove the theorem that yields
a non-trivial lower bound to the separation dimension of a graph. This theorem
and its corollaries are used in establishing the tightness of the upper bounds
proved. Moreover, the theorem is used to prove a lower bound for the separation
dimension of a random graph in Sect. 3.6.

Once again, in Sect. 4.1, we use a probabilistic argument to show an upper
bound on the separation dimension of a rank-r hypergraph based on its size. This
is followed by an upper bound based on maximum degree in Sect. 4.2. We get
this upper bound as a consequence of a non-trivial result in the area of boxicity.
In Sect. 4.3, we prove a lower bound on the separation dimension of a complete
r-uniform hypergraph by extending the lower bounding technique used in the
context of graphs. Finally, in Sect. 5, we conclude with a discussion of a few open
problems that we find interesting.
1 The full version of this paper, which includes all the proofs, is available at http://
arxiv.org/abs/1404.4486.

http://arxiv.org/abs/1404.4486
http://arxiv.org/abs/1404.4486
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1.2 Notational Note

A hypergraph H is a pair (V,E) where V , called the vertex set, is any set and E,
called the edge set, is a collection of subsets of V . The vertex set and edge set
of a hypergraph H are denoted respectively by V (H) and E(H). The rank of a
hypergraph H is maxe∈E(H) |e| and H is called k-uniform if |e| = k,∀e ∈ E(H).
The degree of a vertex v in H is the number of edges of H which contain v. The
maximum degree of H, denoted as Δ(H) is the maximum degree over all vertices
of H. All the hypergraphs considered in this paper are finite.

A graph is a 2-uniform hypergraph. For a graph G and any S ⊆ V (G), the
subgraph of G induced by the vertex set S is denoted by G[S]. For any v ∈ V (G),
we use NG(v) to denote the neighbourhood of v in G, i.e., NG(v) = {u ∈ V (G) :
{v, u} ∈ E(G)}.

A closed interval on the real line, denoted as [i, j] where i, j ∈ R and i ≤ j,
is the set {x ∈ R : i ≤ x ≤ j}. Given an interval X = [i, j], define l(X) = i and
r(X) = j. We say that the closed interval X has left end-point l(X) and right
end-point r(X). For any two intervals [i1, j1], [i2, j2] on the real line, we say that
[i1, j1] < [i2, j2] if j1 < i2.

For any finite positive integer n, we shall use [n] to denote the set {1, . . . , n}.
A permutation of a finite set V is a bijection from V to [|V |]. The logarithm
of any positive real number x to the base 2 and e are respectively denoted by
log(x) and ln(x).

2 Pairwise Suitable Family of Permutations and a Box
Representation

In this section we show that a family of permutations of cardinality k is pairwise
suitable for a hypergraph H (Definition 1) if and only if the line graph of H has
a k-box representation (Definition 2). Before we proceed to prove it, let us state
an equivalent but more combinatorial definition for boxicity.

Lemma 3 (Roberts [20]). For every graph G, boxicity(G) ≤ k if and only if
there exist k interval graphs I1, . . . , Ik, with V (I1) = · · · = V (Ik) = V (G) such
that G = I1 ∩ · · · ∩ Ik.

From the above lemma, we get an equivalent definition of boxicity.

Definition 4. The boxicity of a graph G is the minimum positive integer k for
which there exist k interval graphs I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.

Note that if G = I1 ∩ · · · ∩ Ik, then each Ii is a supergraph of G. Moreover, for
every pair of vertices u, v ∈ V (G) with {u, v} /∈ E(G), there exists some i ∈ [k]
such that {u, v} /∈ E(Ii). Now we are ready to prove the main theorem of this
section.

Theorem 5. For a hypergraph H, π(H) = boxicity(L(H)).
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Proof. First we show that π(H) ≤ boxicity(L(H)). Let boxicity(L(H)) = b.
Then, by Lemma 3, there exists a collection of b interval graphs, say I = {I1, . . . ,
Ib}, whose intersection is L(H). For each i ∈ [b], let fi be an interval represen-
tation of Ii. For each u ∈ V (H), let EH(u) = {e ∈ E(H) : u ∈ e} be the set
of edges of H containing u. Consider an i ∈ [b] and a vertex u ∈ V (H). The
closed interval Ci(u) =

⋂
e∈EH(u) fi(e) is called the clique region of u in fi. Since

any two edges in EH(u) are adjacent in L(H), the corresponding intervals have
non-empty intersection in fi. By the Helly property of intervals, Ci(u) is non-
empty. We define a permutation σi of V (H) from fi such that ∀u, v ∈ V (H),
Ci(u) < Ci(v) =⇒ u ≺σi

v. It suffices to prove that {σ1, . . . , σb} is a family of
permutations that is pairwise suitable for H.

Consider two disjoint edges e, e′ in H. Hence {e, e′} /∈ E(L(H)) and since
L(H) =

⋂b
i=1 Ii, there exists an interval graph, say Ii ∈ I, such that {e, e′} /∈

E(Ii), i.e., fi(e) ∩ fi(e′) = ∅. Without loss of generality, assume fi(e) < fi(e′).
For any v ∈ e and any v′ ∈ e′, since Ci(v) ⊆ fi(e) and Ci(v′) ⊆ f(e′), we have
Ci(v) < Ci(v′), i.e. v ≺σi

v′. Hence e ≺σi
e′. Thus the family {σ1, . . . , σb} of

permutations is pairwise suitable for H.
Next we show that boxicity(L(H)) ≤ π(H). Let π(H) = p and let F =

{σ1, . . . , σp} be a pairwise suitable family of permutations for H. From each
permutation σi, we shall construct an interval graph Ii such that L(H) =

⋂p
i=1 Ii.

Then by Lemma 3, boxicity(L(H)) ≤ π(H).
For a given i ∈ [p], to each edge e ∈ E(H), we associate the closed interval

fi(e) =
[

min
v∈e

σi(v) , max
v∈e

σi(v)
]

,

and let Ii be the intersection graph of the intervals fi(e), e ∈ E(H). Let e, e′ ∈
V (L(H)). If e and e′ are adjacent in L(H), let v ∈ e ∩ e′. Then σi(v) ∈ fi(e) ∩
fi(e′), ∀i ∈ [p]. Hence e and e′ are adjacent in Ii for every i ∈ [p]. If e and e′

are not adjacent in L(H), then there is a permutation σi ∈ F such that either
e ≺σi

e′ or e′ ≺σi
e. Hence by construction fi(e) ∩ fi(e′) = ∅ and so e and e′ are

not adjacent in Ii. This completes the proof. ��

3 Separation Dimension of Graphs

3.1 Characterizing Graphs of Separation Dimension 1

“When is π(G) = 0?” Clearly, if π(G) = 0, then G may have at most one non-
trivial connected component and every pair of edges must share an endpoint.
The following is a simple exercise answering the question:

Proposition 6. For a graph G, π(G) = 0 if and only if G has at most one
connected component of size greater than one and this component is either a
clique of size at most 3 or a star.
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A caterpillar is a tree consisting of a chordless path [v1, v2, . . . , vk] called the
spine, plus an unlimited number of pendant vertices. A caterpillar with single
humps is formed from a caterpillar by adding at most one new vertex xi adjacent
to vi and vi+1 for every i = 1, . . . , k − 1. Without loss of generality, we may
assume that the first and last vertex of the spine have no pendent vertices (i.e.,
the spine is longest possible.) The diamond, denoted here by D, is the graph
with 4 vertices and 5 edges; the 3-net N3 consists of a triangle with a pendant
vertex attached to each of its vertices; the graph T2 is the tree with 6 edges
{cx, cy, cz, xx′, yy′, zz′}; and the graph Ck (k ≥ 4) denotes the cycle of size k.

Theorem 7. Let G be a graph. The following conditions are equivalent:

(i) π(G) ≤ 1,
(ii) G is a disjoint union of caterpillars with single humps,
(iii) G has no partial subgraph Ck (k ≥ 4), N3 or T2,
(iv) G is a chordal graph with no induced subgraph D, K4, T2, N3, G1, G2 or

G3, where G1 = T2 ∪ {cx′}, G2 = G1 ∪ {cy′} and G3 = G2 ∪ {cz′},
(v) The line graph L(G) is an interval graph.

The proof of Theorem7 suggests a linear time algorithm for recognizing whether
a graph G has separation dimension 1 and constructing its representation as
a caterpillar with single humps: (1) Using either Lexicographic Breadth First
Search or Maximum Cardinality Search, obtain an ordering of the vertices
a1, a2, . . . , an (but do not bother to test whether it is a perfect elimination order-
ing2; (2) Starting with an and proceeding in reverse order, follow the rules in
the proof of (iii) ⇒ (ii) to construct the spine, pendant vertices and the humps.
If either (1) or (2) fails, then π(G) > 1.

3.2 Separation Dimension and the Size of a Graph

For graphs, sometimes we work with a notion of suitability that is stronger than
the pairwise suitability of Definition 1. This will come in handy in proving certain
results later in this article.

Definition 8. For a graph G, a family F of permutations of G is 3-mixing if,
for every two adjacent edges {a, b}, {a, c} ∈ E(G), there exists a permutation
σ ∈ F such that either b ≺σ a ≺σ c or c ≺σ a ≺σ b.

Notice that a family of permutations F of V (G) is pairwise suitable and 3-mixing
for G if, for every two edges e, f ∈ E(G), there exists a permutation σ ∈ F such
that either e �σ f or f �σ e. Let π�(G) denote the cardinality of a smallest
family of permutations that is pairwise suitable and 3-mixing for G. From their
definitions, π(G) ≤ π�(G).

2 If G is chordal, any LexBFS or MCS ordering will be a perfect elimination ordering,
but testing whether each vi has exactly one forward neighbor or two connected
forward neighbors will be enough.
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Observation 9. π(G) and π�(G) are monotone increasing properties.

The following theorem is the special case of Theorem 25 when the rank-r hyper-
graph under consideration is a graph. Theorem25 yields a bound of π(G) ≤
9.596 log n.

Theorem 10. For a graph G on n vertices, π(G) ≤ π�(G) ≤ 6.84 log n.

Proof. From the definitions of π(G) and π�(G) and Observation 9, we have
π(G) ≤ π�(G) ≤ π�(Kn), where Kn denotes the complete graph on n vertices.
Here we prove that π�(Kn) ≤ 6.84 log n.

Choose r permutations, σ1, . . . , σr, independently and uniformly at random
from the n! distinct permutations of [n]. Let e, f be two distinct edges of Kn.
The probability that e �σi

f is 1/6, for each i ∈ [r]. (4 out of 4! outcomes are
favourable when e and f are non-adjacent and 1 out of 3! outcomes is favourable
otherwise.) Therefore, the probability that e �σi

f or f �σi
e is 1/3. Let B(e, f)

denote the “bad” event of e �σi
f and f �σi

e for all i ∈ [r]. Then, Pr[B(e, f)] =
(2/3)r. Taking union bound over all distinct pairs of edges e and f , we get

Pr[
⋃

∀ pairs of distinct edges e,f

B(e, f)] < n4

(
2
3

)r

When r = 6.84 log n, the left hand side of the above inequality is a quantity less
than 1. That is, there exists a family of permutations of V (Kn) of cardinality at
most 6.84 log n which is pairwise suitable and 3 mixing for Kn. ��

Tightness of Theorem10. Let Kn denote a complete graph on n vertices.
Since ω(Kn) = n, it follows from Corollary 21 that π(Kn) ≥ log �n/2	. Hence
the bound proved in Theorem10 is tight up to a constant factor.

3.3 Acyclic and Star Chromatic Number

Definition 11. The acyclic chromatic number of a graph G, denoted by χa(G),
is the minimum number of colours needed to do a proper colouring of the vertices
of G such that the graph induced on the vertices of every pair of colour classes
is acyclic. The star chromatic number of a graph G, denoted by χs(G), is the
minimum number of colours needed to do a proper colouring of the vertices of
G such that the graph induced on the vertices of every pair of colour classes is a
star forest.

We know that that a star forest is a disjoint union of stars. Therefore, χs(G) ≥
χa(G) ≥ χ(G), where χ(G) denotes the chromatic number of G. In order to
bound π(G) in terms of χa(G) and χs(G), we first bound π(G) for forests and
star forests. Then the required result follows from an application of Lemma14.
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Since forests are outerplanar graphs, the following lemma follows directly
from the discussion on outerplanar graphs in Sect. 3.4.

Lemma 12. For a forest G, π(G) ≤ 2.

Lemma 13. For a star forest G, π(G) = 1.

Proof. Follows directly from Theorem 7. ��
Lemma 14. Let PG = {V1, . . . , Vr} be a partitioning of the vertices of a graph
G, i.e., V (G) = V1 � · · · � Vr. Let π̂(PG) = maxi,j∈[r] π(G[Vi ∪ Vj ]). Then,
π(G) ≤ 13.68 log r + π̂(PG)r.

Theorem 15. For a graph G, π(G) ≤ 2χa(G) + 13.68 log(χa(G)). Further,
π(G) ≤ χs(G) + 13.68 log(χs(G)).

Proof. The theorem follows directly from Lemmas 12, 13, and 14. ��
This, together with some existing results from literature, gives us a few easy
corollaries. Alon, Mohar, and Sanders have showed that a graph embeddable
in a surface of Euler genus g has an acyclic chromatic number in O(g4/7) [5].
It is noted by Esperet and Joret in [17], using results of Nesetril, Ossona de
Mendez, Kostochka, and Thomassen, that graphs with no Kt minor have an
acyclic chromatic number in O

(
t2 log t

)
. Hence the following corollary.

Corollary 16. (i) For a graph G with Euler genus g, π(G) ∈ O(g4/7); and
(ii) for a graph G with no Kt minor, π(G) ∈ O(t2 log t).

3.4 Planar Graphs

Since planar graphs have acyclic chromatic number at most 5 [9], it follows
from Theorem 15 that, for every planar graph G, π(G) ≤ 42. Using Schnyder’s
celebrated result on non-crossing straight line plane drawings of planar graphs
we improve this bound to the best possible.

Theorem 17 (Schnyder, Theorem 1.1 in [22]). Let λ1, λ2, λ3 be three
pairwise non-parallel straight lines in the plane. Then, each plane graph has a
straight line embedding in which any two disjoint edges are separated by a straight
line parallel to λ1, λ2 or λ3.

This immediately gives us the following tight bound for planar graphs.

Theorem 18. Separation dimension of a planar graph is at most 3. Moreover
there exist planar graphs with separation dimension 3.

Outerplanar and Series-Parallel Graphs. We know that outerplanar graphs
form a subclass of series-parallel graphs which in turn form a subclass of planar
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graphs. It is not difficult to see that the separation dimension of outerplanar
graphs is at most 2. The idea is to take one permutation by reading the vertices
from left to right along the spine in a one page embedding of the graph and the
second permutation in the order in which we see the vertices when we recursively
peel off the outermost edge till every vertex is enlisted. As for series-parallel
graphs, we know of series-parallel graphs that require separation dimension 3.

3.5 Lower Bounds

The tightness of many of the upper bounds we showed in the previous section
relies on the lower bounds we derive in this section. First, we show that if a
graph contains a uniform bipartite subgraph, then it needs a large separation
dimension. This immediately gives a lower bound on separation dimension for
complete bipartite graphs and hence a lower bound for every graph G in terms
ω(G). The same is used to obtain a lower bound on the separation dimension for
random graphs of all density. Finally, it is used as a critical ingredient in proving
a lower bound on the separation dimension for complete r-uniform hypergraphs.

Theorem 19. For a graph G, let V1, V2 � V (G) such that V1 ∩ V2 = ∅. If there
exists an edge between every s1-subset of V1 and every s2-subset of V2, then
π(G) ≥ min

{
log |V1|

s1
, log |V2|

s2

}
.

The next two corollaries are immediate.

Corollary 20. For a complete bipartite graph Km,n with m ≤ n, π(Km,n) ≥
log(m).

Corollary 21. For a graph G, π(G) ≥ log
⌊

ω(G)
2

⌋
, where ω(G) is the size of a

largest clique in G.

3.6 Random Graphs

Definition 22 (Erdős-Rényi model). G(n, p), n ∈ N and 0 ≤ p ≤ 1, is the
discrete probability space of all simple undirected graphs G on n vertices with each
pair of vertices of G being joined by an edge with a probability p independent of
the choice for every other pair of vertices.

Definition 23. A property P is said to hold for G(n, p) asymptotically almost
surely (a.a.s) if the probability that P holds for G ∈ G(n, p) tends to 1 as n tends
to ∞.

Theorem 24. For G ∈ G(n, p(n))

π(G) ≥ log(np(n)) − log log(np(n)) − 2.5 a.a.s.

Note that the expected average degree of a graph in G(n, p) is Ep[d̄] = (n − 1)p.
And hence the above bound can be written as log Ep[d̄] − log log Ep[d̄] − 2.5.
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4 Separation Dimension of Hypergraphs

4.1 Separation Dimension and Size of a Hypergraph

Using a direct probabilistic argument similar to the one used in Theorem10 we
obtain the following theorem.

Theorem 25. For any rank-r hypergraph H on n vertices

π(H) ≤ e ln 2
π
√

2
4r

√
r log n.

Tightness of Theorem25. Let Kr
n denote a complete r-uniform graph on n

vertices. Then by Theorem 27, π(Kr
n) ≥ 1

27
4r√
r−2

log n for n sufficiently larger
than r. Hence the bound in Theorem25 is tight by factor of 64r.

4.2 Maximum Degree

Theorem 26. For any rank-r hypergraph H of maximum degree D, π(H) ≤
O

(
rD log2(rD)

)
.

Proof. This is a direct consequence of the nontrivial fact that boxicity(G) ∈
O

(
Δ log2 Δ

)
for any graph G of maximum degree Δ [1]. ��

It is known that there exist graphs of maximum degree Δ whose boxicity can be
as high as cΔ log Δ [1], where c is a small positive constant. Let G be one such
graph. Consider the following hypergraph H constructed from G. Let V (H) =
E(G) and E(H) = {Ev : v ∈ V (G)} where Ev is the set of edges incident on
the vertex v in G. It is clear that G = L(H). Hence π(H) = boxicity(G) ≥
cΔ(G) log Δ(G). Note that the rank of H is r = Δ(G) and the maximum degree
of H is 2. Thus π(H) ≥ cr log(r) and hence the dependence on r in the upper
bound cannot be considerably brought down in general.

4.3 Lower Bound

Now we illustrate one method of extending the above lower bounding technique
from graphs to hypergraphs. Let Kr

n denote the complete r-uniform hypergraph
on n vertices. We show that the upper bound of O (4r

√
r log n) obtained for Kr

n

from Theorem 25 is tight up to a factor of r. The lower bound argument below
is motivated by an argument used by Radhakrishnan to prove a lower bound
on the size of a family of scrambling permutations [19]. From Corollary 21 we
know that the separation dimension of Kn, the complete graph on n vertices, is
in Ω (log n). Below we show that given any separating embedding of Kr

n in R
d,

the space R
d contains

(
2r−4
r−2

)
orthogonal subspaces such that the projection of

the given embedding on to these subspaces gives a separating embedding of a
Kn−2r+4.
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Theorem 27. Let Kr
n denote the complete r-uniform hypergraph on n vertices

with r > 2. Then

c1
4r

√
r − 2

log n ≤ π(Kr
n) ≤ c24r

√
r log n,

for n sufficiently larger than r and where c1 = 1
27 and c2 = e ln 2

π
√
2

< 1
2 .

5 Discussion and Open Problems

Since π(G) is the boxicity of the line graph of G, it is interesting to see how
it is related to boxicity of G itself. But unlike separation dimension, boxicity is
not a monotone parameter. For example the boxicity of Kn is 1, but deleting
a perfect matching from Kn, if n is even, blows up its boxicity to n/2. Yet we
couldn’t find any graph G such that boxicity(G) > 2π(G). Hence we are curi-
ous about the following question: Does there exist a function f : N → N such
that boxicity(G) ≤ f(π(G))? Note that the analogous question for π�(G) has an
affirmative answer. If there exists a vertex v of degree d in G, then any 3-mixing
family of permutations of V (G) should contain at least log d different permu-
tations because any single permutation will leave �d/2� neighbours of v on the
same side of v. Hence log Δ(G) ≤ π�(G). From [1], we know that boxicity(G) ∈
O

(
Δ(G) log2 Δ(G)

)
and hence boxicity(G) ∈ O

(
2π�(G)(π�(G))2

)
.

Another interesting direction of enquiry is to find out the maximum number
of hyperedges (edges) possible in a hypergraph (graph) H on n vertices with
π(H) ≤ k. Such an extremal hypergraph H, with π(H) ≤ 0, is seen to be a
maximum sized intersecting family of subsets of [n]. A similar question for order
dimension of a graph has been studied [3,4] and has found applications in ring
theory. We can also ask a three dimensional analogue of the question answered
by Schnyder’s theorem in two dimensions. Given a collection P of non-parallel
planes in R

3, can we embed a graph G in R
3 so that every pair of disjoint edges

is separated by a plane parallel to one in P . Then |P | has to be at least π(G)
for this to be possible. This is because the permutations induced by projecting
such an embedding onto the normals to the planes in P gives a pairwise suitable
family of permutations of G of size |P |. Can |P | be upper bounded by a function
of π(G)?

We know that Theorem 7 yields a linear time algorithm for recognizing graphs
of separation dimension at most 1. This gives rise to a very natural question. Is
it possible to recognize graphs of separation dimension at most 2 in polynomial
time?
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