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Abstract. We present a characterization of the linear rank-width of
distance-hereditary graphs. Using the characterization, we show that the
linear rank-width of every n-vertex distance-hereditary graph can be
computed in time O(n2 · log(n)), and a linear layout witnessing the lin-
ear rank-width can be computed with the same time complexity. For our
characterization, we combine modifications of canonical split decomposi-
tions with an idea of [Megiddo, Hakimi, Garey, Johnson, Papadimitriou:
The complexity of searching a graph. JACM 1988], used for computing the
path-width of trees. We also provide a set of distance-hereditary graphs
which contains the set of distance-hereditary vertex-minor obstructions
for linear rank-width. The set given in [Jeong, Kwon, Oum: Excluded
vertex-minors for graphs of linear rank-width at most k. STACS 2013:
221–232] is a subset of our obstruction set.

1 Introduction

Rank-width [18] is a graph parameter introduced by Oum and Seymour with
the goal of efficient approximation of the clique-width [5] of a graph. Linear
rank-width can be seen as the linearized variant of rank-width, similar to path-
width, which in turn can be seen as the linearized variant of tree-width. While
path-width is a well-studied notion, much less is known about linear rank-width.
Computing linear rank-width is NP-complete in general (this follows from [10]).
Therefore it is natural to ask which graph classes allow for an efficient com-
putation. Until now, the only (non-trivial) known such result is for forests [2].
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A graph G is distance-hereditary, if for any two vertices u and v of G, the distance
between u and v in any connected, induced subgraph of G that contains both
u and v, is the same as the distance between u and v in G. Distance-hereditary
graphs are exactly the graphs of rank-width ≤ 1 [17]. They include co-graphs
(i.e. graphs of clique-width 2), complete (bipartite) graphs and forests.

We show that the linear rank-width of n-vertex distance-hereditary graphs
can be computed in time O(n2 · log(n)) (Theorem 5). Moreover, we show that
a layout of the graph witnessing the linear rank-width can be computed with
the same time complexity (Corollary 2). Given that computing the path-width
of distance-hereditary graphs is NP-complete [15], this is indeed surprising. We
give a new characterization of linear rank-width of distance-hereditary graphs
(Theorem 4), which we use for our algorithm. We also provide, for each k, a
set Ψk of distance-hereditary graphs such that any distance-hereditary graph of
linear rank-width at least k+1 contains a vertex-minor isomorphic to a graph in
Ψk. The set Ψk generalizes the set of obstructions given in [14] and we conjecture
a subset of it to be the set of distance-hereditary vertex-minor obstructions for
linear rank-width k.

Our characterization makes use of the special structure of canonical split
decompositions [6] of distance-hereditary graphs. Roughly, these decompositions
decompose the distance-hereditary graph in a tree-like fashion into cliques and
stars, and our characterization is recursive along the subtrees of the decompo-
sition. While a similar idea has been exploited in [2,9,16], here we encounter a
new problem: The decomposition may have vertices that are not present in the
original graph. It is not at all obvious how to deal with these vertices in the
recursive step. We handle this by introducing limbs of canonical split decompo-
sitions, that correspond to certain vertex-minors of the original graphs, and have
the desired properties to allow our characterization. We think that the notion of
limbs may be useful in other contexts, too, and hopefully, it can be extended to
other graph classes and allow for further new efficient algorithms.

The paper is structured as follows. Section 2 introduces the basic notions, in
particular linear rank-width, vertex-minors and split decompositions. In Sect. 3,
we define limbs and show some important properties. We use them in Sect. 4 for
our characterization of linear rank-width of distance-hereditary graphs. Finally,
Sect. 5 presents the algorithm for computing the linear rank-width of distance-
hereditary graphs and we discuss vertex-minor obstructions in Sect. 6.

2 Preliminaries

For a set A, we denote the power set of A by 2A. We let A\B := {x ∈ A | x /∈ B}
denote the difference of two sets A and B. For a subset X of a ground set A, let
X := A\X.

In this paper, graphs are finite, simple and undirected, unless stated other-
wise. Our graph terminology is standard, see for instance [8]. Let G be a graph.
We denote the vertex set of G by V (G) and the edge set by E(G). An edge
between x and y is written xy (equivalently yx). If X is a subset of the ver-
tex set of G, we denote the subgraph of G induced by X by G[X], and we let
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G\X := G[V (G)\X]. For a vertex x ∈ V (G) we let NG(x) := {y ∈ V (G) | x �=
y, xy ∈ E(G)} denote the set of neighbors of x (in G). The degree of x (in G) is
degG(x) := |NG(x)|. A partition of V (G) into two sets X and Y is called a cut
in G. We denote it by (X,Y ).

A tree is a connected, acyclic graph. A leaf of a tree is a vertex of degree
one. A path is a tree where every vertex has degree at most two. The length of
a path is the number of its edges. A rooted tree is a tree with a distinguished
vertex r, called the root. A complete graph is the graph with all possible edges.
A graph G is called distance-hereditary (or DH for short) if for every two vertices
x and y of G the distance of x and y in G equals the distance of x and y in any
connected induced subgraph containing both x and y [3]. A star is a tree with
a distinguished vertex, called its center, adjacent to all other vertices.

2.1 Linear Rank-Width and Vertex-Minors

Linear rank-width. For sets R and C an (R,C)-matrix is a matrix where the
rows are indexed by elements in R and columns indexed by elements in C. (Since
we are only interested in the rank of matrices, it suffices to consider matrices
up to permutations of rows and columns.) For an (R,C)-matrix M , if X ⊆ R
and Y ⊆ C, we let M [X,Y ] be the submatrix of M where the rows and the
columns are indexed by X and Y respectively.

Let AG be the adjacency (V (G), V (G))-matrix of G over the binary field.
For a graph G, let x1, . . . , xn be a linear layout of V (G). Every index i ∈
{1, . . . , n} induces a cut (Xi,Xi), where Xi := {x1, . . . , xi} (and hence Xi =
{xi+1, . . . , xn}). The cutrank of the ordering x1, . . . , xn is defined as

cutrkG(x1, . . . , xn) := max{rank(AG[Xi,Xi]) | i ∈ {1, . . . , n}}.

The linear rank-width of G is defined as

lrw(G) := min{cutrkG(x1, . . . , xn) | x1, . . . , xn is a linear layout of V (G)}.

Disjoint unions of caterpillars have linear rank-width ≤ 1. Ganian [11] gives
an alternative characterization of the graphs of linear rank-width ≤ 1 as thread
graphs. It is proved in [2] that linear rank-width and path-width coincide on
trees. It is easy to see that the linear rank-width of a graph is the maximum
over the linear rank-widths of its connected components.

Vertex-minors. For a graph G and a vertex x of G, the local complementation
at x of G consists in replacing the subgraph induced on the neighbors of x by
its complement. The resulting graph is denoted by G ∗ x. If H can be obtained
from G by a sequence of local complementations, then G and H are called
locally equivalent. A graph H is called a vertex-minor of a graph G if H is a
graph obtained from G by applying a sequence of local complementations and
deletions of vertices.

For an edge xy of G, let W1 := NG(x) ∩ NG(y), W2 = (NG(x)\NG(y))\{y},
and W3 = (NG(y)\NG(x))\{x}. Pivoting on xy of G, denoted by G ∧ xy, is
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the operation which consists in complementing the adjacencies between distinct
sets Wi and Wj , and swapping the vertices x and y. It is known that G ∧ xy =
G ∗ x ∗ y ∗ x = G ∗ y ∗ x ∗ y [17].

Lemma 1 [17]. Let G be a graph and let x be a vertex of G. Then for every
subset X of V (G), we have cutrkG(X) = cutrkG∗x(X). Therefore, every vertex-
minor H of G satisfies lrw(H) ≤ lrw(G).

2.2 Split Decompositions and Local Complementations

Split decompositions. We will follow the definitions in [4]. Let G be a con-
nected graph. A split in G is a cut (X,Y ) in G such that |X|, |Y | ≥ 2 and
rank(AG[X,Y ]) = 1. In other words, (X,Y ) is a split in G if |X|, |Y | ≥ 2 and
there exist non-empty sets X ′ ⊆ X and Y ′ ⊆ Y such that {xy ∈ E(G) | x ∈
X, y ∈ Y } = {xy | x ∈ X ′, y ∈ Y ′}. Notice that not all connected graphs have a
split, and those that do not have a split are called prime graphs.

A marked graph D is a connected graph D with a distinguished set of edges
M(D), called marked edges, that form a matching, and such that every edge in
M(D) is a bridge, i.e., its deletion increases the number of components. The ends
of the marked edges are called marked vertices, and the components of D\M(D)
are called bags of D. If (X,Y ) is a split in G, we construct a marked graph D
with vertex set V (G) ∪ {x′, y′} for two distinct new vertices x′, y′ /∈ V (G) and
edge set E(G[X]) ∪ E(G[Y ]) ∪ {x′y′} ∪ E′ where we define x′y′ as marked and

E′ := {x′x | x ∈ X and there exists y ∈ Y such that xy ∈ E(G)}∪
{y′y | y ∈ Y and there exists x ∈ X such that xy ∈ E(G)}.

The marked graph D is called a simple decomposition of G. A decomposition
of a connected graph G is a marked graph D defined inductively to be either G or
a marked graph defined from a decomposition D′ of G by replacing a component
H of D′\M(D′) by a simple decomposition of H. We call the transformation of
D′ into D a refinement of D′. Notice that in a decomposition of a connected
graph G, the two ends of a marked edge do not have a common neighbor. For a
marked edge xy in a decomposition D, the recomposition of D along xy is the
decomposition D′ := (D ∧ xy)\{x, y}. For a decomposition D, we let ̂D denote
the connected graph obtained from D by recomposing all marked edges. Note
that if D is a decomposition of G, then ̂D = G. Since marked edges of a decom-
position D are bridges and form a matching, if we contract all the unmarked
edges in D, we obtain a tree called the decomposition tree of G associated with
D and denoted by TD. Obviously, the vertices of TD are in bijection with the
bags of D, and we will also call them bags.

A decomposition D of G is called a canonical split decomposition if each
bag of D is either prime, or a star or a complete graph, and D is not the
refinement of a decomposition with the same property. Shortly, we call it a
canonical decomposition. The following is due to Cunningham and Edmonds [6],
and Dahlhaus [7].
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Theorem 1 [6,7]. Every connected graph G has a unique canonical decompo-
sition, up to isomorphism, that can be computed in time O(|V (G)| + |E(G)|).
For a given connected graph G, by Theorem 1, we can talk about only one
canonical decomposition of G because all canonical decompositions of G are
isomorphic.

Let D be a decomposition of G with bags that are either primes, or complete
graphs or stars (it is not necessarily a canonical decomposition). The type of a
bag of D is either P , or K or S depending on whether it is a prime, or a complete
graph or a star. The type of a marked edge uv is AB where A and B are the
types of the bags containing u and v respectively. If A = S or B = S, we can
replace S by Sp or Sc depending on whether the end of the marked edge is a leaf
or the center of the star.

Theorem 2 [4]. Let D be a decomposition of a graph with bags of types P or K
or S. Then D is a canonical decomposition if and only if it has no marked edge
of type KK or SpSc.

We will use the following characterization of distance-hereditary graphs.

Theorem 3 [4]. A connected graph is a distance-hereditary graph if and only if
each bag of its canonical decomposition is of type K or S.

Local complementations in decompositions. We now relate the decom-
positions of a graph and the ones of its locally equivalent graphs. Let D be a
decomposition. A vertex v of D represents an unmarked vertex x (or is a rep-
resentative of x) if v = x or there is a path from v to x in D starting with a
marked edge such that marked edges and unmarked edges appear alternately in
the path. Two unmarked vertices x and y are linked in D if there is a path from
x to y in D such that unmarked edges and marked edges appear alternately in
the path.

Lemma 2. Let D be a decomposition of a graph. Let v′ and w′ be two marked
vertices in a same bag of D, and let v and w be two unmarked vertices of D
represented by v′ and w′, respectively. Then v and w are linked in D if and only
if vw ∈ E( ̂D) if and only if v′w′ ∈ E(D).

A local complementation at an unmarked vertex v in a decomposition D, denoted
by D ∗ v, is the operation which consists in replacing each bag B containing a
representative w of v with B ∗w. Observe that D ∗v is a decomposition of ̂D ∗v,
and that M(D) = M(D∗v). Two decompositions D and D′ are locally equivalent
if D can be obtained from D′ by applying a sequence of local complementations.

Lemma 3 [4]. Let D be the canonical decomposition of a graph and let v be an
unmarked vertex of D. Then D ∗ v is the canonical decomposition of ̂D ∗ v.

Let v and w be linked unmarked vertices in a decomposition D, and let Bv and
Bw be the bags containing v and w, respectively. Note that if B is a bag of type S
in the path from Bv to Bw in TD, then the center of B is a representative of either
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v or w. Pivoting on vw of D, denoted by D ∧vw, is the decomposition obtained
as follows: for each bag B on the path from Bv to Bw in TD, if v′, w′ ∈ V (B)
represent v and w in D, respectively, then we replace B with B ∧ v′w′. (Note
that by Lemma 2, we have v′w′ ∈ E(B), hence B ∧ v′w′ is well-defined).

Lemma 4. Let D be a decomposition of a distance-hereditary graph, and let
xy ∈ E( ̂D). Then D ∧ xy = D ∗ x ∗ y ∗ x.

The proof of Lemma 4, as well as all omitted proofs, can be found in the appen-
dix. As a corollary of Lemmas 3 and 4, we get the following.

Corollary 1. Let D be the canonical decomposition of a distance-hereditary
graph and xy ∈ E( ̂D). Then D ∧ xy is the canonical decomposition of ̂D ∧ xy.

3 Limbs in Canonical Decompositions

In this section we define the notion of limb that is the key ingredient in our
characterization. Intuitively, a limb in the canonical decomposition of a distance-
hereditary graph G is a subtree of the decomposition with the property that the
linear rank-width of the graph obtained from the subtree by recomposing all
marked edges is invariant under taking local complementations.

Let D be the canonical decomposition of a distance-hereditary graph. We
recall from Theorem 2 that each bag of D is of type K or S, and marked edges
of types KK or SpSc do not occur. Given a bag B of D, an unmarked vertex y
of D represented by some marked vertex w ∈ V (B), let T be the component of
D\V (B) containing y and let v ∈ V (T ) be the neighbor of w in D. We define
the limb L := L[D,B, y] as follows:

1. if B is of type K, then L := T ∗ v\v,
2. if B is of type S and w is a leaf, then L := T\v,
3. if B is of type S and w is the center, then L := T ∧ vy\v.

Note that in T , v becomes an unmarked vertex, so a limb is well-defined. While
T is a canonical decomposition, L may not be a canonical decomposition at all,
because deleting v may create a bag of size 2. Suppose a bag B′ of size 2 appears
in L. If B′ has one neighbor bag B1 and a marked vertex v1 ∈ B1 is adjacent
to a marked vertex of B′ and r is the unmarked vertex of B′ in L, then we can
transform the limb into a canonical decomposition by removing the bag B′ and
replacing v1 with r. If B′ has two neighbor bags B1 and B2 and two marked
vertices v1 ∈ B1 and v2 ∈ B2 are adjacent to the marked vertices of B′, then we
can first transform the limb into a decomposition by removing B′ and adding a
marked edge v1v2. However, the new marked edge v1v2 still could be of type KK
or SpSc. Then by recomposing along v1v2, we finally transform the limb into a
canonical decomposition.

Let ˜L = ˜L[D,B, y] be the canonical decomposition obtained from L[D,B, y],
and let ̂L = ̂L[D,B, y] be the graph obtained from L[D,B, y] by recomposing all
marked edges. See Fig. 1 for an example. If the original canonical decomposition
D is clear from the context, we remove D in the notation L[D,B, y].
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Fig. 1. In (a), we have a canonical decomposition D of a distance-hereditary graph
and a bag B of D. The dashed edges are marked edges in D. In (b), we have limbs L
associated with the components of D\V (B). The canonical decompositions ˜L associated
with limbs L are shown in (c).

Lemma 5. Let B be a bag of D. If two unmarked vertices x and y are rep-
resented by a marked vertex w ∈ V (B), then ̂L[B, x] is locally equivalent to
̂L[B, y].

For a bag B in D and a component T of D\V (B), we define f(D,B, T ) as the
linear rank-width of ̂L[D,B, y] for some unmarked vertex y ∈ V (T ). In fact, by
Lemma 5, f(D,B, T ) does not depend on the choice of y. As in the notation
L[D,B, x], if the canonical decomposition D is clear from the context, we remove
D in the notation f(D,B, T ).

Proposition 1. Let B be a bag of D. Let x ∈ V ( ̂D) and let y be an unmarked
vertex represented in D by v ∈ V (B). If y′ is represented by v in D ∗ x, then
̂L[D,B, y] is locally equivalent to ̂L[D ∗ x,B, y′]. Therefore, f(D,B, T ) = f(D ∗
x,B, Tx) where Tx is the component of (D ∗ x)\V (B) containing y.

Proposition 2. Let B1 and B2 be two bags of D. Let T1 be a component of
D\V (B1) such that T1 does not contain the bag B2, and let T2 be the component
of D\V (B2) such that T2 contains the bag B1. Then f(B1, T1) ≤ f(B2, T2).

4 Characterizing the Linear Rank-Width of DH Graphs

In this section, we prove the main theorem of the paper, which characterizes
distance-hereditary graphs of linear rank-width k.

Theorem 4 (Main Theorem). Let k be a positive integer and let D be the
canonical decomposition of a distance-hereditary graph. Then lrw( ̂D) ≤ k if and
only if for each bag B of D, D has at most two components T of D\V (B) such
that f(B, T ) = k, and for all the other components T ′ of D\V (B), f(B, T ′) ≤
k − 1.
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To prove the converse direction, we use the following technical lemmas. Let k
be a positive integer and let D be the canonical decomposition of a distance-
hereditary graph.

Proposition 3. Let B be a bag of D with two unmarked vertices x, y. If for
every component T of D\V (B), f(B, T ) ≤ k − 1, then the graph ̂D has a linear
layout of width at most k such that the first vertex and the last vertex of it are
x and y, respectively.

Lemma 6. Suppose for each bag B of D, there are at most two components T of
D\V (B) satisfying f(B, T ) = k and for all the other components T ′ of D\V (B),
f(B, T ′) ≤ k − 1. Then TD has a path P such that for each bag B in P and a
component T of D\V (B) not containing a bag of P , f(B, T ) ≤ k − 1.

We are now ready to prove Theorem 4.

Proof (of Theorem 4). For the forward direction, it is sufficient to show that if
B is a bag of D such that D\V (B) has at least three components T1, T2, T3 such
that f(B, Ti) = k, then lrw( ̂D) ≥ k + 1. The proof idea is the same as the one
used in [9]. We start from a linear layout assumed to have width k and we prove
using Lemmas 1, 3 and Proposition 1 and tools from linear algebra that there
exists i ∈ {1, 2, 3} such that f(B, Ti) ≤ k − 1, contradicting that f(B, Ti) = k.
The details are omitted due to space constraints.

Now we prove the converse direction. Let P := B0 −B1 −· · ·−Bn −Bn+1 be
the path in TD such that for each bag B in P and a component T of D\V (B)
not containing a bag of P , f(B, T ) ≤ k − 1 (such a path exists by Lemma 6). If
B0 does not have an unmarked vertex, then we add one unmarked vertex to B0

and we call it a0. Similarly for Bn+1, but the added unmarked vertex is called
bn+1.

Now for each 0 ≤ i ≤ n, let bi be the marked vertex of Bi adjacent to
Bi+1 and let ai+1 be the marked vertex of Bi+1 adjacent to bi. And for each
0 ≤ i ≤ n + 1, let Di be the subdecomposition of D induced on the bag Bi and
the components of D\V (Bi) which do not contain a vertex of P . Notice that
the vertices ai and bi are unmarked vertices in Di. Since every component T of
Di\V (Bi) is such that f(Di, Bi, T ) ≤ k − 1, by Proposition 3, ̂Di has a linear
layout L′

i of width k such that the first vertex of it is ai and the last vertex of it is
bi. For each 1 ≤ i ≤ n, let Li be the linear layout obtained from L′

i by removing
ai and bi. Let L1 and Ln+1 be obtained from L′

1 and L′
n+1 by removing b0 and

an+1, respectively, and also the vertices a0 and bn+1, respectively, if they were
added. Then we can easily check that L := L0⊕L1⊕· · ·⊕Ln+1 is a linear layout
of ̂D having width at most k. Therefore lrw( ̂D) ≤ k. �


5 Computing the Linear Rank-Width of DH Graphs

In this section, we describe an algorithm to compute the linear rank-width of
distance-hereditary graphs. Since the linear rank-width of a graph is the max-
imum linear rank-width over all its connected components, we will focus on
connected distance-hereditary graphs.



50 I. Adler et al.

Theorem 5. The linear rank-width of any connected graph with n vertices can
be computed in time O(n2 · log n).

We say that a canonical decomposition D is rooted if we distinguish either a bag
of D or a marked edge of D, and call it the root of D. In a rooted canonical
decomposition with the root bag, the parent of a bag is defined analogously as
in rooted trees, and when the root is a marked edge, every bag has a parent
according to the convention below: if the marked edge between two bags B1 and
B2 is the root, then we call B2 the artificial parent of B1, and similarly B1 is also
called the artificial parent of B2. We remark that the (artificial) parent will be
used to define certain limbs. For two bags B and B′ in D, B is called a descendant
of B′ if B′ is on the unique path from B to the root in TD. Two bags in D are
called comparable if one bag is a descendant of the other bag. Otherwise, they
are called incomparable. If two canonical decompositions D1 and D2 are locally
equivalent and B is the root bag of D1, then we say D2[V (B)] is also the root
of D2. Similarly, if a marked edge e is the root of D1, then we say e is also the
root of D2.

To easy the understanding and to avoid the choice of y in the definition of
limbs, we will deal with a set of pairwise locally equivalent canonical decom-
positions. For a canonical decomposition D of a distance-hereditary graph, we
define ΓD as the set of all canonical decompositions locally equivalent to D. We
remark that for D1,D2 ∈ ΓD and B ⊆ V (D), B induces a bag in D1 if and only
if B induces a bag in D2. We also have M(D1) = M(D2).

For a bag B of a canonical decomposition D and a marked edge e adja-
cent to B in D, let G(ΓD, B, e) be the set of all canonical decompositions
˜L[D′,D′[V (B)], y] where D′ ∈ ΓD, T is the component of D′\V (B) incident
with e, and y ∈ V (T ) is an unmarked vertex represented by a vertex of D′[V (B)]
in D′.

Proposition 4. G(ΓD, B, e) = ΓD′ for some canonical decomposition D′.

Let D be the rooted canonical decomposition of a distance-hereditary graph
G with the root R. We introduce two ways to take a set of limbs from the
decompositions in ΓD. Let B be a non-root bag of D and let B′ be the (possibly
artificial) parent of B and let e be the marked edge connecting B and B′ in D.

1. Let Γ1(ΓD, B) := G(ΓD, B′, e) and F1(ΓD, B) := lrw(̂D′) for D′ ∈ Γ1(ΓD, B).
2. Let Γ2(ΓD, B) := G(ΓD, B, e) and F2(ΓD, B) := lrw(̂D′) for D′ ∈ Γ2(ΓD, B).

By Proposition 4, Γi(ΓD, B) = ΓD′ for some canonical decomposition D′ and so
we can apply this function recursively, for instance, Γ2(Γ1(ΓD, B1), B2).

In the algorithm, we will compute decompositions in Γ1(ΓD, B) or Γ2(ΓD, B).
As explained in Sect. 3, we need sometimes to merge two bags to be able to turn
a limb into a canonical decomposition. Whenever a merging operation on two
bags B1 and B2 appears, if B2 is a descendant of B1, then we regard the merged
bag as B1, and if they are incomparable, then we regard it as a new one.

For Di ∈ Γi(ΓD, B), we define the root R′ of Di as follows. If the root R of
D exists in Di, then let R′ := R. Assume the root R does not exist in Di. In this
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case, some bag, which was either the root R itself or incident with the root edge
R, is removed, and two children of it are merged or linked by a marked edge. If
two children of the removed bag are merged, then let R′ be the merged bag, and
if otherwise, let R′ be the marked edge between them. We have the following.

Lemma 7. Let B be a non-root bag of D and let Di ∈ Γi(ΓD, B). If B′ is a
non-root bag of Di, then B′ is a non-root bag of D (for i = 1, 2).

Our algorithm uses methods of the algorithm for vertex separation of trees [9].
Our algorithm works bottom-up on D, and computes F1(ΓD, B) for all bags B
in D using dynamic programming. Let B be a bag of D, and let B1, B2, . . . , Bm

be the children of B in D. Let k := max1≤i≤m F1(ΓD, Bi). We can easily observe
that k ≤ F1(ΓD, B) ≤ k + 1. We discuss now how to determine F1(ΓD, B). A
bag B of D is called k-critical if F1(ΓD, B) = k and B has two children B1

and B2 such that F1(ΓD, B1) = F1(ΓD, B2) = k. We first observe the following
which can be derived from Theorem 4 and Proposition 2.

Proposition 5. Let k = max{F1(ΓD, B)| B is a non-root bag of D}. Assume
thatD has neither a bagB having at least three childrenB′ such thatF1(ΓD, B′) = k
nor two incomparable bags B1 and B2 with a k-critical bag B1 and F1(ΓD, B2) = k.
Let B be a k-critical bag of D. Then B is the unique k-critical bag of D. Moreover,
lrw(G) = k + 1 if and only if F2(ΓD, B) = k.

By Proposition 5, the computation of F1(ΓD, B) is reduced to the computation
of F2(Γ1(ΓD, B), Bc) if D′ ∈ Γ1(ΓD, B) has the unique k-critical bag Bc. In order
to compute F2(Γ1(D,B), Bc), we can recursively call the algorithm. However,
we will prove that these recursive calls are not needed if we compute more than
the linear rank-width, and it is the key for the O(n2 · log(n)) time algorithm
(Table 1).

Table 1. Examples of PD(B, j) and LD(B, j).

j PD(B, j) LD(B, j) Status

10 8 9 D′ ∈ D(B, 10) has no 10-critical bags.

9 8 9 D′ ∈ D(B, 9) has no 9-critical bags.

8 8 9 D′ ∈ D(B, 8) has the unique 8-critical bag Bc and the
maximum F1 value over all bags B′ except the root in
Γ1(D

′, Bc, v) is 7.

7 7 8 D′ ∈ D(B, 7) has a bag having three children B′ such that
F1(D

′, B′) = 7. Thus, LD(B, 7) = 8.

6 - - Once we have LD(B, �) = � + 1, it is unnecessary to
compute D(B, j) where j < �.

For each bag B of D and 0 ≤ j ≤ �log|V (G)|�, we recursively define a set
D(B, j) of canonical decompositions. The integer j will be at most the linear
rank-width. The choice of j ≤ �log|V (G)|� comes from the following fact.
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Lemma 8. For a distance-hereditary graph G, lrw(G) ≤ log|V (G)|.
Let D(B, �log|V (G)|�) := Γ1(ΓD, B). For each bag B, j and D′ ∈ D(B, j), let
PD(B, j) be the maximum F1(ΓD′ , B′) over all non-root bags B′ in D′, and let
LD(B, j) := lrw(̂D′).

1. Let D(B, �log|V (G)|�) := Γ1(ΓD, B).
2. For all 1 ≤ j ≤ �log|V (G)|�, if PD(B, j) �= j, let D(B, j − 1) := D(B, j). If

PD(B, j) = j, then for D′ ∈ D(B, j),
(a) if (D′ has a bag with 3 children B1 such that LD(B1, j) = j) or (D′ has two

incomparable bags B1 and B2 with a j-critical bag B1 and LD(B2, j) = j)
or (D′ has no j-critical bags), then let D(B, j − 1) := D(B, j),

(b) ifD′ has the unique j-critical bagBc, then letD(B, j−1) := Γ2(D(B, j), Bc).

The essential cases are when PD(B, j) = j, and in these cases, we want to
determine whether LD(B, j) = j or j + 1. We prove the following.

Proposition 6. Let B be a non-root bag of D. Let i be an integer such that
0 ≤ i ≤ �log|V (G)|� and PD(B, i) ≤ i. Let D′ ∈ D(B, i) and let B′ be a non-
root bag of D′. Then B′ is also a non-root bag of D and PD(B′, i) ≤ i. Moreover,
Γ1(D(B, i), B′) = D(B′, i). Therefore, F1(D(B, i), B′) = LD(B′, i).

Now we describe the algorithm explicitly. For convenience, we modify the given
decomposition as follows. For the canonical decomposition D′ of a distance-
hereditary graph G, we modify D′ into a canonical decomposition D by adding
a bag R adjacent to a bag R′ in D so that f(D,R,D′) = lrw(G). So, if we regard
R as the root bag of D, then F1(ΓD, R′) = lrw(G) = LD(R′, �log|V (G)|�).
The basic strategy is to compute LD(B, i) for all non-root bags B of D and
integers i such that PD(B, i) ≤ i. If B is a non-root leaf bag of D, then clearly
F1(ΓD, B) = 1, so let LD(B, i) = 1 for all 0 ≤ i ≤ �log|V (G)|�. For convenience,
let t = �log|V (G)|�.
1. Compute the canonical decomposition D′ of G, and obtain a canonical decom-

position D from D′ by adding a root bag R adjacent to a bag R′ in D so that
lrw(G) = LD(R′, t).

2. For all non-root leaf bags B in D, set LD(B, j) := 1 for all 0 ≤ j ≤ t.
3. While (D has a non-root bag B such that LD(B, t) is not computed).
(a) Choose a non-root bag B in D such that for every child B′ of B, LD(B′, t)

is computed.
(b) Compute a decomposition Dt in Γ1(ΓD, B) = D(B, t).
(c) Compute k := PD(B, t) and set Dk := Dt and i := k.
(d) Let S be a stack.
(e) While (true) do.

i. If either (Di has a bag with at least 3 children B1 such that LD(B1, i) =
i) or (Di has two incomparable bags B1 and B2 with B1 an i-critical
bag and LD(B2, i) = i) or (Di has no i-critical bags), then stop this
loop.

ii. Find the unique i-critical bag in Di.
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iii. Compute Di−1 ∈ D(B, i − 1) and push(S, i).
iv. Set j := i − 1 and i := PD(B, i − 1) and Di := Dj .

(f) If either (Di has a bag with at least 3 children B1 such that LD(B1, i) = i)
or (Di has two incomparable bags B1 and B2 with B1 an i-critical bag and
LD(B2, i) = i), then set LD(B, i) := i + 1, else, LD(B, i) := i.

(g) While (S �= ∅) do.
i. Set j := pull(S).
ii. If LD(B, i) = j, then LD(B, j) := j + 1, else LD(B, j) := j.
iii. For � = i + 1 to j − 1, set LD(B, �) := LD(B, i).
iv. Set i := j.

(h) Set LD(B, j) := LD(B, k) for all k < j ≤ t.
4. Return LD(R′, t).

Proof (of Theorem 5). By Propositions 5 and 6 the steps of the algorithm
outlined above computes the linear rank-width of every connected distance-
hereditary graph G. Let us now analyze its running time. Let n and m be the
number of vertices and edges of G. Its canonical decomposition D′ can be com-
puted in time O(n + m) by Theorem 1, and one can of course add a new bag
to obtain a new canonical decomposition D and root it in constant time. The
number of bags in D is bounded by O(n) (see [12, Lemma 2.2]). For each bag
B, LD(B, j) for all 0 ≤ j ≤ t can be computed in time O(n · log(n)). In fact,
Steps 3(a-c) can be done in time O(n). The loop in 3(e) runs log(n) times since
k ≤ log(n), and all the steps in 3(e) can be implemented in time O(n). Since
Steps 3(f-h) can be done in time O(n), we conclude that this algorithm runs in
time O(n2 · log n). �

Corollary 2. For every connected distance-hereditary graph G, we can compute
in time O(n2 · log(n)) a layout of the vertices of G witnessing lrw(G).

6 Obstructions

A graph H is a vertex-minor obstruction for (linear) rank-width k if it has (lin-
ear) rank-width k+1 and every proper vertex-minor of H has (linear) rank-width
at most k. The set of pairwise locally non-equivalent vertex-minor obstructions
for (linear) rank-width k is not known, but for rank-width k a bound on their
size is known [17], which is not the case for linear rank-width k. For k = 1,
Adler, Farley, and Proskurowski [1] characterized the distance-hereditary vertex-
minor obstructions for linear rank-width at most 1 by two pairwise locally non-
equivalent graphs. For general k, Jeong, Kwon, and Oum recently provided a
2Ω(3k) lower bound on the number of pairwise locally non-equivalent distance-
hereditary vertex-minor obstructions for linear rank-width at most k [14]. Using
our characterization, we generalize the construction in [14] and conjecture a sub-
set of the given set to be the set of distance-hereditary vertex-minor obstructions.

We will use the notion of one-vertex extensions introduced in [13]. We call
a graph G′ an one-vertex extension of a distance-hereditary graph G if G′ is a
graph obtained from G by adding a new vertex v with some edges and G′ is again
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distance-hereditary. For convenience, if D and D′ are canonical decompositions
of G and G′, respectively, then D′ is also called an one-vertex extension of D.
For example, any one-vertex extension of K2 is isomorphic to either K3 or K1,2.
For a set D of canonical decompositions, we define

D+ = D ∪ {D′|D′ is an one vertex extension of D ∈ D}.

For a set D of canonical decompositions, we define a new set Δ(D) of canonical
decompositions D as follows:

– Choose three decompositions D1,D2,D3 in D and take one-vertex extensions
D′

i of Di with new vertices wi for each i. We introduce a new bag B of type
K or S having three vertices v1, v2, v3 and
1. if vi is in a complete bag, then D′′

i = D′
i ∗ wi,

2. if vi is the center of a star bag, then D′′
i = D′

i ∧ wizi for some zi linked to
wi in D′,

3. if vi is a leaf of a star bag, then D′′
i = D′

i.
Let D be the canonical decomposition obtained by the disjoint union of
D′′

1 ,D′′
2 ,D′′

3 and B by adding the marked edges v1w1, v2w2, v3w3.

For each non-negative integer k, we construct the sets Ψk and Φk of canonical
decompositions as follows.

1. Ψ0 = Φ0 := {K2} (K2 is the canonical decomposition of the graph K2).
2. For k ≥ 0, let Ψk+1 := Δ(Ψ+

k ).
3. For k ≥ 0, let Φk+1 := Δ(Φk).

We prove the following.

Theorem 6. Let k ≥ 0 and let G be a distance-hereditary graph such that
lrw(G) ≥ k + 1. Then there exists a canonical decomposition D in Ψk such
that G contains a vertex-minor isomorphic to ̂D.

In order to prove that Ψk is the set of canonical decompositions of distance-
hereditary vertex-minor obstructions for linear rank-width at most k, we need
to prove that for every D ∈ Ψk, D̂ has linear rank-width k + 1 and every of its
proper vertex-minors has linear rank-width ≤ k. However, we were not able to
prove it, and we showed this property for Φk instead of Ψk.

Proposition 7. Let k ≥ 0 and let D ∈ Φk. Then lrw(D̂) = k + 1 and every
proper vertex-minor of D̂ has linear rank-width at most k.

One can observe that the obstructions constructed in [1,14] are contained in Φk

for all k ≥ 1.
We leave open the question to identify a set Φk ⊂ Θk ⊂ Ψk that forms the

set of canonical decompositions of distance-hereditary vertex-minor obstructions
for linear rank-width k.
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