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Abstract. In 2-neighbourhood bootstrap percolation on a graph G, an
infection spreads according to the following deterministic rule: infected
vertices of G remain infected forever and in consecutive rounds healthy
vertices with at least 2 already infected neighbours become infected.
Percolation occurs if eventually every vertex is infected. The maximum
time t(G) is the maximum number of rounds needed to eventually infect
the entire vertex set. In 2013, it was proved [7] that deciding if t(G) ≥ k
is polynomial time solvable for k = 2, but is NP-Complete for k = 4
and is NP-Complete if the graph is bipartite and k = 7. In this paper,
we solve the open questions. Let n = |V (G)| and m = |E(G)|. We
obtain an Θ(mn5)-time algorithm to decide if t(G) ≥ 3 in general graphs.
In bipartite graphs, we obtain an Θ(mn3)-time algorithm to decide if
t(G) ≥ 3 and an O(mn13)-time algorithm to decide if t(G) ≥ 4. We also
prove that deciding if t(G) ≥ 5 is NP-Complete in bipartite graphs.

Keywords: 2-Neighbour bootstrap percolation · P3-convexity · Maxi-
mum time · Infection on graphs

1 Introduction

We consider a problem in which an infection spreads over the vertices of a con-
nected simple graph G following a deterministic spreading rule in such a way
that an infected vertex will remain infected forever. Given a set S ⊆ V (G) of
initially infected vertices, we build a sequence S0, S1, S2, . . . in which S0 = S and
Si+1 is obtained from Si using such spreading rule.

Under r-neighbour bootstrap percolation on a graph G, the spreading rule is
a threshold rule in which Si+1 is obtained from Si by adding to it the vertices
of G which have at least r neighbours in Si. We say that a set S0 percolates G
(or that S0 is a percolating set of G) if eventually every vertex of G becomes
infected, that is, there exists a t such that St = V (G). In that case, we define
tr(S) as the minimum t such that St = V (G). And define, the percolation time
of G as tr(G) = max{tr(S) : S percolates G}. In this paper, we shall focus on
the case where r = 2 and in such case we omit the subscript of the functions
tr(S) and tr(G).
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Bootstrap percolation was introduced by Chalupa, Leath and Reich [13] as a
model for certain interacting particle systems in physics. Since then it has found
applications in clustering phenomena, sandpiles [19], and many other areas of
statistical physics, as well as in neural networks [1] and computer science [15].

There are two broad classes of questions one can ask about bootstrap per-
colation. The first, and the most extensively studied, is what happens when the
initial configuration S0 is chosen randomly under some probability distribution?
For example, vertices are included in S0 independently with some fixed proba-
bility p. One would like to know how likely percolation is to occur, and if it does
occur, how long it takes.

The answer to the first of these questions is now well understood for var-
ious graphs. An interesting case is the one of the lattice graph [n]d, in which
d is fixed and n tends to infinity, since the probability of percolation under
the r-neighbour model displays a sharp threshold between no percolation with
high probability and percolation with high probability. The existence of thresh-
olds in the strong sense just described first appeared in papers by Holroyd,
Balogh, Bollobás, Duminil-Copin and Morris [3,5,20]. Sharp thresholds have also
been proved for the hypercube (Balogh and Bollobás [2], and Balogh, Bollobás
and Morris [6]). There are also very recent results due to Bollobás, Holmgren,
Smith and Uzzell [10], about the time percolation take on the discrete torus
T
d
n = (Z/nZ)d for a randomly chosen set S0.

The second broad class of questions is the one of extremal questions. For
example, what is the smallest or largest size of a percolating set with a given
property? The size of the smallest percolating set in the d-dimensional grid, [n]d,
was studied by Pete and a summary can be found in [4]. Morris [22] and Riedl
[24], studied the maximum size of minimal percolating sets on the square grid
and the hypercube {0, 1}d, respectively, answering a question posed by Bollobás.
However, it was proved in [12,14] that finding the smallest percolating set is NP-
complete for general graphs. Another type of question is: what is the minimum
or maximum time that percolation can take, given that S0 satisfies certain prop-
erties? Recently, Przykucki [23] determined the precise value of the maximum
percolation time on the hypercube 2[n] as a function of n, and Benevides and
Przykucki [8,9] have similar results for the square grid, [n]2, also answering a
question posed by Bollobás. In particular, they have a polynomial time algorithm
to compute the maximal percolation time on square grids.

Here, we consider the decision version of the maximum time percolation
problem, as stated below.

percolation time
Input: A graph G and an integer k.
Question: Is t(G) ≥ k?

In 2013, Benevides et al. [7] proved that deciding if t(G) ≥ k is polynomial
time solvable for k = 2, but is NP-Complete for k = 4 and is NP-Complete if
the graph is bipartite and k = 7. In this paper, we solve the open questions.
Let n = |V (G)| and m = |E(G)|. We obtain a Θ(mn5)-time algorithm to decide
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if t(G) ≥ 3 in general graphs. In bipartite graphs, we obtain O(mn13)-time
algorithm to decide if t(G) ≥ 4 and prove that deciding if t(G) ≥ 5 is NP-
Complete.

1.1 Related Works and Some Notation

It is interesting to notice that infection problems appear in the literature under
many different names and were studied by researches of various fields. The par-
ticular case in which r = 2 in r-neighbourhood bootstrap percolation is also a
particular case of a infection problem related to convexities in graph.

A finite convexity space [21,25] is a pair (V, C) consisting of a finite ground
set V and a set C of subsets of V satisfying ∅, V ∈ C and if C1, C2 ∈ C, then
C1 ∩ C2 ∈ C. The members of C are called C-convex sets and the convex hull of
a set S is the minimum convex set H(S) ∈ C containing S.

A convexity space (V, C) is an interval convexity [11] if there is a so-called
interval function I :

(
V
2

)
→ 2V such that a subset C of V belongs to C if

and only if I({x, y}) ⊆ C for every two distinct elements x and y of C. With
no risk of confusion, for any S ⊆ V , we also denote by I(S) the union of S
with

⋃
x,y∈S I({x, y}). In interval convexities, the convex hull of a set S can

be computed by exhaustively applying the corresponding interval function until
obtaining a convex set.

The most studied graph convexities defined by interval functions are those
in which I({x, y}) is the union of paths between x and y with some particular
property. Some common examples are the P3-convexity [17], geodetic convex-
ity [18] and monophonic convexity [16]. We observe that the spreading rule in
2-neighbours bootstrap percolation is equivalent to Si+1 = I(Si) where I is the
interval function which defines the P3-convexity: I(S) contains S and every ver-
tex belonging to some path of 3 vertices whose extreme vertices are in S. For
these reasons, sometimes we call a percolating set by hull set.

2 t(G) ≥ 5 Is NP-Complete in Bipartite Graphs

In [7], it was proved that deciding if t(G) ≥ 7 is NP-Complete in bipartite graphs.
The following theorem improves this result.

Theorem 1. Deciding if t(G) ≥ k is NP-Complete in bipartite graphs for any
k ≥ 5.

Proof (Sketch of the proof). Given m clauses C = {C1, . . . , Cm} on variables
X = {x1, . . . , xn} as an instance of 3-SAT, we denote the three literals of Ci

by �i,1, �i,2 and �i,3. We construct a graph G as follows. For each clause Ci of
C, add to G a gadget as the one of Fig. 1. Then, for each pair of literals �i,a, �j,b
such that one is the negation of the other, add a vertex y(i,a),(j,b) adjacent to
wi,a and wj,b. Let Y be the set of all vertices created this way. Finally, add a
vertex z adjacent to all vertices in Y and a pendant vertex z′ adjacent to only z.
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Fig. 1. Bipartite gadget for each clause Ci.

Denote the sets {uA
i,1, u

A
i,2, u

A
i,3, u

B
i,1, u

B
i,2, u

B
i,3} and {wi,1, wi,2, wi,3} by Ui and Wi,

respectively. Let U = ∪1≤i≤mUi, W = ∪1≤i≤mWi and L be the set of vertices
of degree one in G.

We first consider the case k = 5. We show that C is satisfiable if and only if
G contains a hull set with percolation time at least 5.

Suppose that C has a truth assignment. For each clause Ci, let ki denote
an integer in {1, 2, 3} such that �i,ki

is true. Let S′ = {uA
i,ki

: 1 ≤ i ≤ m} and
S = S′∪L. It is easy to see (from Fig. 1) that all vertices in the clause gadgets are
infected in time at most 4. It is also easy to see that {wi,ki

: 1 ≤ i ≤ m} ⊂ I1(S)
(that is, S infects wi,ki

in time 1 for every 1 ≤ i ≤ m). Moreover, {wi,k′
i

: k′
i �=

ki, 1 ≤ i ≤ m} ⊂ I3(S), but {wi,k′
i

: k′
i �= ki, 1 ≤ i ≤ m} ∩ (I1(S) ∪ I2(S)) = ∅

(that is, S infects all the other wi,k′
i

in time exactly 3). Since we used a truth
assignment, we have that all vertices of Y are infected in time exactly 4 and
consequently the vertex z is infected in time 5. Therefore, G has percolation
time at least 5.

Now, suppose that t(G) ≥ 5 and let S be any hull set of G with t(S) ≥ 5. Note
that L ⊆ S; also for any clause Ci, we have Ui∩S �= ∅ because |N(uA

i,j)−Ui| ≤ 1
and |N(uB

i,j) − Ui| ≤ 1, for all i, j. This implies that W ⊆ I3(S), U ∪ Y ⊆ I4(S)
and z ∈ I5(S). Furthermore, if Y ∩ I3(S) �= ∅ then z ∈ I4 and t(S) ≤ 4,
a contradiction. Then Y ∩ I3(S) = ∅, which means that no pair {uC

i,a, u
D
j,b},

C,D ∈ {A,B}, where �i,a is the negation of �j,b, is in S. This means that
assigning true to each �i,j for which uC

i,j ∈ S, C ∈ {A,B}, gives us an assignment
that satisfies C.
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For values k > 5, it suffices to subdivide the edge zz′ into a path P of length
k − 5, appending a new leaf vertex to each vertex in P . �

3 t(G) ≥ 3 Is Θ(mn3)-Time Decidable in Bipartite
Graphs

The following theorem is the main result of this section.

Theorem 2. Deciding if t(G) ≥ 3 is Θ(mn3)-time solvable in bipartite graphs.

To prove this, we obtain an important structural result. Given a vertex u of a
graph G, let Nd(u) be the set of all vertices at distance d from u. Let N(u) =
N1(u), N [u] = N(u) ∪ {u} and N≥d′(u) = ∪d≥d′Nd(u). Let T0 be the set of
vertices with degree 1.

Lemma 1. Let G be a bipartite graph. Then t(G) ≥ 3 if and only if there are
three vertices u, v and s such that v ∈ N(u), s ∈ N2(u) and T0 ∪N≥3(u)∪{v, s}
percolates u at time 3.

Because of space restrictions, we give only the main ideas of the proof (the proofs
are in the appendix).

Proof (Sketch of the proof). Firstly, suppose that t(G) ≥ 3. Then there exists a
hull set S′ and a vertex u such that S′ percolates u at time 3. It is not difficult
to see that T0 ⊆ S′ and that S = S′ ∪ N≥3(u) is also a hull set which percolates
u at time 3. If S contains a vertex in N(u), let v be such a vertex. Otherwise, let
v be a neighbour of u with smaller percolating time with respect to the hull set
S. Since the graph is bipartite, the distance from v to any other vertex of N(u)
is at least two. Then it is not difficult to see that all vertices in N(u) percolated
at time ≥ 2 by S are also percolated at time ≥ 2 by S ∪ {v}. By analysing
two possibilities about the vertices in N(u) − {v}, we can conclude (using the
fact that the graph is bipartite) that there exists a vertex s ∈ N2(u) \ N(v)
such that S ∪ {v, s} also percolates u at time 3. Moreover we can prove that
(S \ (N(u) ∪ N2(u))) ∪ {v, s} percolates u at time 3 and we are done.

Secondly, suppose that there are three vertices u, v and s such that v ∈ N(u),
s ∈ N2(u) and S0 = T0 ∪ N≥3(u) ∪ {v, s} percolates u at time 3. We then show
how to construct a hull set S such that t(S) ≥ 3. We begin with S = S0. Each
step adds one vertex to S and, at the end of each step, it is guaranteed that Si

percolates u at time ≥ 2 and percolates at least one vertex in {u}∪N(u) at time
≥ 3. Let Si be the constructed set at the end of step i. If Si is not a hull set, we
can prove that there are two adjacent vertices q ∈ N2(u) and w ∈ N(u) which
are not percolated by Si. Let Si+1 = Si ∪ {q}. It is not difficult to see that Si+1

also percolates u at time ≥ 2. We then prove that Si+1 percolates w at time
≥ 3. If Si+1 is a hull set, we are done. Otherwise, repeat the construction until
obtaining a hull set. �
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The idea of the algorithm is as follows. Considering that the graph is con-
nected, the algorithm selects in each step a vertex u and obtains the sets N(u),
N2(u), N≥3(u) and T0 in time O(m). After, the algorithm selects a vertex v in
N(u) and a vertex s in N2(u) and, then, computes the percolation process of
T0 ∪ N≥3(u) ∪ {v, s} in time O(m) for, at most, three steps. If, for some triple
(u, v, s), u is percolated in time 3, return that t(G) ≥ 3. Otherwise, return that
t(G) < 3.

4 t(G) ≥ 3 Is Θ(mn5)-Time Decidable in General Graphs

The following theorem is the main result of this section.

Theorem 3. Deciding if t(G) ≥ 3 is Θ(mn5)-time solvable in general graphs.

To prove this, we obtain an important structural result. Let u and v be vertices
of G. Let k be such that v ∈ Nk(u). The following definitions are technical,
but represent a simple fact: if v is a separator (that is, its removal disconnects
the graph) and some connected component of G − v contains only vertices of
Nk+1(u), then any hull set must contain at least one vertex of this component.

Let T u
0 be the family of subsets of V (G) such that T0 ∈ T u

0 if and only if,
for every separator v and every connected component Hv,i of G − v such that
u �∈ V (Hv,i) and V (Hv,i ⊆ N(v), T0 contains exactly one vertex of Hv,i, and
every vertex of T0 satisfies this property.

Lemma 2. Let G be a simple graph. Then t(G) ≥ 3 if and only if there is a
vertex u, a subset T0 ∈ T u

0 and a subset F with |F | ≤ 4 such that T0∪N≥3(u)∪F
percolates u at time 3.

Moreover, we prove that any set of the family T u
0 can be chosen. That is, if

T0 ∪ N≥3(u) ∪ F percolates u at time 3 for some T0 ∈ T u
0 , then T ′

0 ∪ N≥3(u) ∪ F
also percolates u at time 3 for any T ′

0 ∈ T u
0 .

Because of space restrictions, we give only the main ideas of the proof (the
proofs are in the appendix).

Proof (Sketch of the proof). Firstly, suppose that t(G) ≥ 3. Then there exists a
hull set S′ and a vertex u such that S′ percolates u at time 3. Since S′ is a hull
set, we can prove that there is a subset T0 ⊆ S′ such that T0 ∈ T u

0 . It is not
difficult to see that S = S′ ∪N≥3(u) is also a hull set which percolates u at time
3. Let F ′ = S \ (T0 ∪ N≥3(u)) = (S ∩ N≤2(u)) \ T0. If |F ′| ≤ 4, then let F = F ′

and we are done. Otherwise, we can prove with some effort that there exists a
subset F ⊆ N≤2(u) with |F | ≤ 4 such that (S \ F ′) ∪ F percolates u at time 3,
and we are done.

Now suppose that there is a vertex u, a subset T0 ∈ T u
0 and a subset F with

|F | ≤ 4 such that S0 = T0 ∪ N≥3(u) ∪ F percolates u at time 3. We then show
how to construct a hull set S such that t(S) ≥ 3. We begin with S = S0. Each
step adds one vertex to S and, at the end of each step, it is guaranteed that Si

percolates some vertex ui at time ≥ 3 (u0 = u) and percolates u at time ≥ 2.
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Let Si be the constructed set at the end of step i. If Si is a hull set, we are done.
So, assume that Si is not a hull set. Let Yi be the set of vertices not percolated
by Si.

At first, assume that there exists a vertex yi ∈ Yi ∩N2(ui) with no neighbour
percolated by Si at time ≥ 2. Let S′

i+1 = Si ∪ {yi}. Clearly, ui has at most one
neighbour percolated by Si at time ≤ 1 and, by the choice of yi, ui is not adjacent
to yi. It is not difficult to prove that every neighbour of ui percolated by Si at
time ≥ 2 is also percolated by S′

i+1 at time ≥ 2. Finally, if some neighbour z of
ui is not percolated by Si, but is percolated by S′

i+1, it is not difficult to prove
that its percolating time is ≥ 2, since, otherwise, z should have a neighbour in
Si, a contradiction because z would have two neighbours percolated by Si. Then
S′
i+1 also percolates ui at time ≥ 3 (and we let ui+1 = ui) and it is not difficult

to see that S′
i+1 also percolates u at time ≥ 2. Let Si+1 = S′

i+1 ∪ N≥3(ui+1).
Since the set S′

i+1 percolates ui+1 at time ≥ 3, it is easy to see that the set Si+1

also percolates ui+1 at time ≥ 3.
Secondly, assume that every vertex yi ∈ Yi∩N2(ui) has exactly one neighbour

percolated by Si and its percolating time is ≥ 2. Let yi ∈ Yi ∩ N2(ui), let Ci be
the connected component of G[Yi] which contains yi and let zi be the neighbour
of yi with percolating time ≥ 2. If every vertex of Ci is adjacent to zi, then Ci

has only vertices in N(u) or only vertices in N2(u) (otherwise, there would be
one vertex in N2(u) adjacent to u, a contradiction), and every vertex of Ci has
no neighbour in N3(u) (and consequently zi is a separator). Therefore, T0 has a
vertex � in Ci, a contradiction since there are no vertices percolated by Si in Ci.

We then conclude that there exist a vertex y′
i in Ci whose neighbour z′

i

with percolating time ≥ 2 is distinct from zi (that is, z′
i �= zi). Let Si+1 =

Si ∪{yi}∪N≥3(y′
i). It is not difficult to see that all vertices in Ci are percolated

by Si+1. We can prove that Si+1 percolates y′
i at time ≥ 3 and, letting ui = y′

i,
we are done.

After some time steps, say t time steps, St percolates all vertices of N2(ui),
since we are only including vertices from N2(ui). It is not difficult to see that
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Fig. 2. Vertices of the component Ci before and after the addition of yi to S.
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this fact implies that St is a hull set and, since St percolates ut at time ≥ 3, we
have that t(G) ≥ 3. �

The idea of the algorithm is as follows. Considering that the graph is con-
nected, the algorithm selects in each step a vertex u and obtains a set T0 ∈ T u

0

in time O(m) (applying breadth-first search, for example). After, the algorithm
selects a subset F with at most 4 vertices and computes the percolation process
of T0 ∪ N≥3(u) ∪ F in time O(m) for, at most, three steps. If, for some pair
(u, F ), u is percolated in time 3, return that t(G) ≥ 3. Otherwise, return that
t(G) < 3 (Fig. 2).

5 t(G) ≥ 4 Is Θ(mn13)-Time Decidable in Bipartite
Graphs

The following theorem is the main result of this section.

Theorem 4. Deciding if t(G) ≥ 4 is Θ(mn13)-time solvable in bipartite graphs.

To prove this, we obtain an important structural result. Let T0 be the family of
subsets of V (G) such that T0 ∈ T0 if and only if T0 contains all vertices with
degree one and, for every pair of adjacent vertices u and v, both with degree
two, T0 has either u or v. It is easy to see that every hull set must contain
a set T0 ∈ T0, since each edge uv with that property induces a co-convex set
(that is, V (G) − {u, v} is convex). Clearly, the size of T0 can be exponential in
the number of vertices. However, we can prove that we need to check only a
polynomial number of subsets T0 ∈ T0.

Let V u be the subset of vertices v ∈ N [u] such that there is an induced P3

vxy, where x and y have degree two. Given a vertex u and a vertex v ∈ V u, we
also define the sets Cu

v and Du
v : for every induced P3 vxy, where x and y have

degree two, x ∈ Cu
v and y ∈ Du

v . It is worth noting that, for every x ∈ Cu
v and

y in Du
v ∩ N(x), T0 must contain either x or y.

Let T u
0 be a family such that T0 ∈ T u

0 if and only if N≥4(u) ⊆ T0, T0 contains
all vertices that have degree 0, and exactly one of the cases below occurs:

– there is a vertex v ∈ V u such that T0 has at least one vertex in Du
v , at most

one vertex in Cu
v and, for every v′ ∈ V u, v′ �= v, and every x ∈ Cu

v′ and
y ∈ Du

v′ ∩ N(x) where x, y �∈ Cu
v ∪ Du

v , T0 contains {x, y} ∩ Nk(u), where
k = 2, if v ∈ N(u), and k = 3, if v = u.

– for each vertex v ∈ V u, T0 contains all vertices in Cu
v , except at most one

vertex v′ ∈ V u, in which case T0 contains at most one vertex in Cu
v′ .

It is worth noting that the set T u
0 , for any vertex u, is a subset of the set

{T0 ∪ N≥4(u) : ∀T0 ∈ T0}. It is also important to observe that the set T u
0 can

be obtained in O(n2) time.

Lemma 3. Let G be a bipartite graph. Then t(G) ≥ 4 if and only if there is
a vertex u, a subset T0 ∈ T u

0 and a subset F with |F | ≤ 10 such that T0 ∪ F
percolates some vertex at time 4.
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Proof (Sketch of the proof). Firstly, suppose that t(G) ≥ 4. Then there is a hull
set S′′ and a vertex u such that S′′ percolates u at time 4. It is easy to see that
the set S = S′′ ∪ N≥4(u) is a also a hull set that percolates u at time 4. With
this, there is a set T ∈ T0 such that T0 = T ∪ N≥4(u) ⊆ S.

Assume that there is a vertex v ∈ V u percolated at time ≥ 3 by S and a
vertex x ∈ Cu

v \ S. It is not difficult to see that x is percolated at time ≥ 4 by
S. Let k = 2, if v ∈ N(u), or k = 3, if v = u. Let S′ be the union of S with all
sets {y1, y2} ∩ Nk(u) such that y1 ∈ Cu

v′ and y2 ∈ Du
v′ ∩ N(y1) for some v′ ∈ V u,

v′ �= v, and y1, y2 �∈ Cu
v ∪ Du

v . Since the graph is bipartite, each vertex added to
S is either at distance 4 from x or, if it is at distance 2 from x, they share only
one common neighbor, which is the only vertex z in the set {N(x) ∩ Du

V } (in
this case, we have that z ∈ S). Then S′ percolates x at time ≥ 4. Therefore, we
have that there is a set T ′

0 ∈ T u
0 such that T0 ⊆ S′. Since S′ percolates x at time

≥ 4, it percolates some vertex at time 4. Thus, it is possible to prove that there
is a set F , with |F | ≤ 10, such that, F ∪ T ′

0 percolates some vertex at time 4.
Now assume that all vertices in V u percolated at time ≥ 3 by S are such that

all vertices in Cu
v are in S. Since u is percolated at time 4 by S, then either (a)

there is a vertex v ∈ V u percolated at time ≥ 3 by S and some vertex x ∈ Cu
v

such that S′ = (S−{x})∪(N(x)∩Du
v ) percolates v at time ≥ 3, or, since there is

at most one vertex in V u that is percolated at time ≤ 2, (b) there is at most one
vertex v ∈ V u such that there is a vertex x ∈ Cu

v \S. If (a), then x is percolated
at time ≥ 4, and we are in the same case of the previous paragraph. If (b), then,
if v is percolated at time ≤ 1 by S, then it is easy to see that S′ = S ∪ Cu

v

percolates u at time 4 and, if v is percolated at time 2 by S, then S′ = S has at
most one vertex in Cu

v . If we have that v is percolated at time ≤ 1 or 2 by S,
then there is a set T ′

0 ∈ T u
0 such that T ′

0 ⊆ S′. Since S′ percolates some vertex
x′ at time 4, it is possible to prove that there is a set F , with |F | ≤ 10, such
that, F ∪ T ′

0 percolates x′ at time 4.
Now, suppose that there is a vertex u, a set F , with |F | ≤ 10, and a set

T0 ∈ T u
0 such that the set F ∪ T0 percolates some vertex x at time 4. Then, we

have that the set S0 = F ∪ T0 ∪ N≥4(x) percolates x at time 4.
We then show how to construct a hull set S such that t(S) ≥ 4. We begin

with S = S0, and, at each step, we add one vertex to S and, at the end of each
step, it is guaranteed that Si percolates some vertex at time 4. Let Si be the
constructed set at the end of step i. If Si is a hull set, we are done. So, assume
that Si is not a hull set. Let Yi be the set of vertices not percolated by Si.

Suppose that there exists a vertex yi ∈ Yi ∩ N2(x) with no neighbour per-
colated by Si at time ≥ 2. Let Si+1 = Si ∪ {yi}. Clearly, x has at most one
neighbour percolated by Si at time ≤ 1 and, by the choice of yi, ui is not adja-
cent to yi. It is possible to prove, basing ourselves heavily on the fact that the
graph is bipartite, that every neighbour of x that either is percolated by Si at
time ≥ 3 or it is not percolated by Si, if it is percolated by Si+1, it is percolated
by Si+1 at time ≥ 3.

When all vertices in the set Yi ∩ N2(x) have a neighbour percolated by Si at
time ≥ 2, suppose that there exists a vertex yi ∈ Yi ∩ N3(x) with no neighbour
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percolated by Si at time ≥ 2. Let Si+1 = Si∪{yi}. Since all vertices in Yi∩N2(x)
have a neighbour percolated by Si at time ≥ 2, it is not difficult to prove that,
if a vertex in N2(x) ∩ Yi is percolated by Si+1, it is percolated by Si+1 at time
≥ 2. Thus, all vertices in N(x) that either are percolated at time ≥ 3 by Si or
are not percolated by Si+1 are percolated by Si+1 at time ≥ 3. Therefore, x is
percolated by Si+1 at time 4. It is worth noting the fact that yi is at distance at
least two of every vertex that is percolated at time ≥ 2 by Si and is adjacent to
some vertex in N2(x)∩Yi, which implies that it is not possible to go back to the
previous state, i.e., it is not possible that there is a vertex in Yi ∩ N2(x) with no
neighbour percolated by Si+1 at time ≥ 2.

When all vertices in the set Yi ∩ N2(x) and in the set Yi ∩ N3(x) have a
neighbour percolated by Si at time ≥ 2, let Ci be any connected component of
G[Yi]. We have that every vertex of Ci has exactly one neighbour outside Ci,
which is percolated at time ≥ 2 by Si. We have that Ci has at least 3 vertices
because, otherwise, one vertex of Ci would also be in T0 and, consequently, in
Xi. Thus, since the graph is bipartite, there are two vertices yi and y′

i that
are at distance 2 of each other. It is possible to prove that the set Si ∪ {yi}
percolates y′

i at time ≥ 4 because it percolates all vertices adjacent to yi at
time ≥ 3. Also, in every connected component of G[Yi], there is at least one
vertex in N2(x) and one vertex in either N(x) or N3(x). If y′

i is in N2(x) (resp.
N(x) or N3(x)), let Si+1 = Si ∪ {yi} ∪ ((Yi − V (Ci)) ∩ N2(x)) (resp. Si+1 =
Si ∪ {yi} ∪ ((Yi − V (Ci)) ∩ (N(x) ∪ N3(x)))). It is possible to prove that Si+1

percolates all the remaining connected component of G[Yi] and, thus, it is be
a hull set. Also, it is possible to prove that Si+1 percolates y′

i at time ≥ 4.
Therefore, Si+1 is a hull set that percolates y′

i at time ≥ 4. �

The idea of the algorithm is as follows. Considering that the graph is bipartite
and connected, the algorithm selects in each step a vertex u, a set T0 ∈ T u

0 and
a subset F with at most 10 vertices, and computes the percolation process of
T0∪F for at most 4 steps (recall that T0 ⊇ N≥4(u)). If, for some triple (u, T0, F ),
some vertex x is percolated in time 4, return that t(G) ≥ 4. Otherwise, return
that t(G) < 4. Since there are O(n2) sets in T u

0 that can also be computed in
O(n2)-time, then the algorithm decides if t(G) ≥ 4 in O(mn13) time (Fig. 3).
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≥ 2

≥ 2
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0

≥ 4 ≥ 3

≥ 3
≥ 1

≥ 2

≥ 2

Fig. 3. Vertices of the component Ci before and after the addition of yi to S.
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6 Conclusion

In this paper, we showed the NP-Completeness of the maximum time perco-
lation problem for a fixed k = 5 for bipartite graphs, and showed polynomial
computable characterizations of general and bipartite graphs for a fixed k = 3
and of bipartite graphs for a fixed k = 4. Using these results, since the NP-
Completeness was proved in [7] for a fixed k ≥ 4 for general graphs, we were
able to solve the remaining open questions regarding the maximum time per-
colation problem for a fixed k and showed the threshold for polynomiality in
general graphs (k = 3) and in bipartite graphs (k = 4).

We conclude with some interesting directions for future investigation. Can
the maximum time percolation problem in induced subgraphs and subgraphs
of d-dimensional grids be solved in polynomial time? Can the complexity of
the algorithms, which is directly related to the size of the sets that initially
percolate some vertex at time k, be improved? Is there a relation between the
P3-Caratheódory number [26] and the size of the sets that initially percolate
some vertex at time k?
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