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Abstract. We study the parameterized complexity of the classical Edge
Hamiltonian Path problem and give several fixed-parameter tractabil-
ity results. First, we settle an open question of Demaine et al. by showing
that Edge Hamiltonian Path is FPT parameterized by vertex cover,
and that it also admits a cubic kernel. We then show fixed-parameter
tractability even for a generalization of the problem to arbitrary hyper-
graphs, parameterized by the size of a (supplied) hitting set. We also
consider the problem parameterized by treewidth or clique-width. Sur-
prisingly, we show that the problem is FPT for both of these standard
parameters, in contrast to its vertex version, which is W[1]-hard for
clique-width. Our technique, which may be of independent interest, relies
on a structural characterization of clique-width in terms of treewidth and
complete bipartite subgraphs due to Gurski and Wanke.

1 Introduction

The focus of this paper is the Edge Hamiltonian Path problem, which can
be defined as follows: given an undirected graph G(V,E), does there exist a
permutation of E such that every two consecutive edges in the permutation
share an endpoint? This is a very well-known graph-theoretic problem, which
corresponds to the restriction of (vertex) Hamiltonian Path to line graphs.
Despite some superficial similarity to the problem of finding an Eulerian path,
this problem has long been known to be NP-complete, even for graphs which are
bipartite or have maximum degree 3 [1,25,29].

The Edge Hamiltonian Path problem is a very natural graph-theoretic
problem with a long history (see e.g. [4–8,24]). In this paper, we investigate the
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complexity of this problem from the parameterized complexity perspective. More
specifically, we consider the case where some structural parameter of the input
graph G, such as its treewidth, has a moderate value. Despite the problem’s
prominence, to the best of our knowledge, Edge Hamiltonian Path has never
before been studied in this setting. Such an investigation is of inherent interest
from the point of view of graph theory and parameterized complexity. Beyond
this, we are partially motivated by a specific question recently asked explicitly
by Demaine et al. [14]. In their investigation of the card game UNO, the authors
of [14] present an XP (i.e. running in nf(k)) dynamic programming algorithm
for Edge Hamiltonian Path on bipartite graphs, where k is the size of the
smaller part. They then, quite naturally, ask if this can be improved to an FPT
algorithm. In this paper, we present a number of results that positively settle
not only this, but several other more general such questions (the question from
[14] was also independently settled by Dey et al. [15]).

Overview of results. We give fixed-parameter tractability results for Edge
Hamiltonian Path and its variant Edge Hamiltonian Cycle, which we
show to be essentially equivalent. Our first task is to consider the problem para-
meterized by the size of the vertex cover of the input graph. We establish that,
not only is the problem FPT, but it also admits a cubic kernel through an algo-
rithm that locates and deletes irrelevant edges. This result settles the question
from [14] as for a bipartite graph, one part being small implies a small vertex
cover. We then go on to give a much more general direct FPT algorithm for the
problem, which can still be applied even if we consider the problem on arbitrary
hypergraphs with the parameter being the size of a hitting set which is supplied
with the input. As a corollary, we note that this result implies that (vertex)
Hamiltonian Path is FPT when parameterized by the chromatic number of
the complement of the input graph.

Our next direction is to consider the problem on graphs parameterized
by treewidth and clique-width. The complexity of Edge Hamiltonian Path
for these parameters was previously unknown, since this is also a more general
question than the one posed in [14]. Our first observation is that fixed-parameter
tractability for Edge Hamiltonian Cycle parameterized by treewidth can be
obtained from standard meta-theorems, if one relies on an alternative character-
ization of the problem first given by Harary and Nash-Williams almost 50 years
ago [22]. This alternative characterization allows one to recast the ordering prob-
lem as the problem of finding a connected Eulerian subgraph whose vertices form
a vertex cover of the original graph. The alternative problem with a little work,
can be expressed in a variant of Monadic Second Order logic. For the sake of
completeness, we also sketch a direct treewidth-based dynamic programming
algorithm using this formulation.

Having settled the problem for treewidth, the natural next step is to consider
Edge Hamiltonian Cycle parameterized by clique-width, a prominent struc-
tural graph parameter that generalizes treewidth. It is important to note here
that the (more common) vertex version of the problem exhibits a sharp com-
plexity jump between these two parameters: Hamiltonian Cycle is FPT for
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treewidth but for clique-width the problem is W[1]-hard and therefore does not
admit an FPT algorithm under standard complexity assumptions [19]. In what
is perhaps the most surprising result of this paper, we show that Edge Hamil-
tonian Cycle remains FPT even for clique-width, despite this parameter’s
additional generality. On a high level, our strategy is to rely on a characteri-
zation of bounded clique-width graphs given by Gurski and Wanke [20] which
states roughly that if a graph has small clique-width and no large complete bipar-
tite subgraphs, then it has small treewidth. We devise an algorithm that locates
and “reduces” large complete bipartite subgraphs in the input graph, without
affecting the answer or increasing the clique-width. By repeatedly applying this
step, we end up with a graph of small treewidth for which the problem is FPT.
This idea, which was also used in [28], is a rare algorithmic application of the
characterization of [20], and may be of independent interest.

2 Preliminaries

We assume that the reader is familiar with the basics of parameterized complex-
ity. In particular, we use the definitions of the classes FPT, XP as well as the
notion of a kernelization algorithm and of polynomial kernels (see [16,18,26]).

We will use the definition of treewidth, and in particular the notion of “nice”
tree decompositions (see the survey [3]). We also use the notion of clique-width
(see [13,17,23]). Let us briefly review the definition. The class of graphs of clique-
width k contains all single-vertex graphs where the only vertex has a label from
{1, . . . , k}. Furthermore, the class is closed under the following operations: dis-
joint union of two graphs; renaming of all vertices with some label i to some
label j; and joining by new edges of all vertices with some label i to all vertices
with some label j. All graph classes with bounded treewidth also have bounded
clique-width, but the reverse is not true [10].

We will also rely on the following theorem of Gurski and Wanke which intu-
itively states that large complete bipartite graphs are what separates treewidth
from clique-width:

Theorem 1 [20]. Let G be a graph of clique-width k. If G does not contain the
complete bipartite graph Kt,t as a subgraph, then tw(G) ≤ 3kt.

We will consider the Edge Hamiltonian Path and Edge Hamiltonian
Cycle problems. As mentioned, in these problems we are looking for a permu-
tation of the edges of the input graph so that any two consecutive edges share
an endpoint (in the latter problem, also the first and last edge must share an
endpoint). We call such a permutation an edge-Hamiltonian path (respectively
an edge-Hamiltonian cycle). We will mostly view these as graph problems, but
this problem definition applies equally well to hypergraphs, if we require that
two consecutive hyperedges share a common vertex. Hypergraphs are the subject
of Sect. 4. Recall that for a graph or hypergraph G(V,E), its line graph is the
graph G′(E,H) where (e1, e2) ∈ H if and only if e1, e2 share a vertex in G. The
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Edge Hamiltonian Path problem on G is equivalent to the Hamiltonian
Path problem on G′.

For the graph case, it will be useful to recast these ordering problems as
subgraph problems. First, recall that a graph is Eulerian if it is connected and
all its vertices have even degree. A Dominating Eulerian Subgraph of a
graph G(V,E) is a subgraph G′(V ′, E′) of G such that all edges of E have an
endpoint in V ′, that is, V ′ is a vertex cover of G, and G′ is Eulerian. We will
use the following classical observation of Harary and Nash-Williams:

Theorem 2 [22]. A graph has an edge-Hamiltonian cycle if and only if it
contains a dominating Eulerian subgraph.

Finally, let us mention that we will deal with Edge Hamiltonian Path
and Edge Hamiltonian Cycle interchangeably, depending on which problem
makes the description of our algorithms easier. The reader can easily verify that
all our arguments apply to both problems with very minor modifications. It is
also not hard to show the following:

Lemma 1. For the following parameters and for sufficiently large graphs, Edge
Hamiltonian Path is FPT if and only if Edge Hamiltonian Cycle is FPT:
vertex cover, treewidth, clique-width and hypergraph hitting set.

Proof of Lemma 1 as well as all other missing proofs appears in the full
version of the paper.

3 Vertex Cover

In this section we consider the Edge Hamiltonian Path problem parameter-
ized by the size of the vertex cover k. We show that the problem has a cubic in
k kernel. As in the following sections, we assume that together with the input
graph G(V,E) we are given a vertex cover S of G with |S| = k. Note though,
that this assumption is not important, since a 2-approximate vertex cover can
be found in polynomial time [9].

Below follow some definitions which will make the presentation of the results
smoother. We assume that the vertices of G are labeled in some lexicographically
ordered fashion, and in particular that S = {u1, . . . , uk}.

Definition 1. An edge e ∈ E is defined to be of type i if it is incident to ui ∈ S
but not incident to any other uj ∈ S for j < i.

Definition 2. Let P be an edge-Hamiltonian path of G. For i ∈ {1, . . . , k}, a
group of type i is a maximal set of edges of type i which are consecutive in P .
We say that an edge is special if it is the first or the last edge of a group.

The special edges essentially form the backbone of the edge-Hamiltonian
path P . A piece of intuition that will become useful later is that, if one fixes
these edges in a proper edge-path, the remaining edges will be easy to deal with,
because they are allowed to move freely in and out of groups.
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Our next goal then is to show that if a graph has an edge-Hamiltonian path
P , then it has one where few edges are special. This is summarized in Lemma 2
and Corollary 1. Intuitively, the core idea is a flipping argument: if the same
group types appear too many times in a solution, we can reverse a sub-path to
obtain a solution with fewer groups.

Lemma 2. Let G be an edge-Hamiltonian graph. Then, there exists an edge-
Hamiltonian path P of G with the following property: for any i, j ∈ {1, . . . , k},
an edge of type j appears directly after an edge of type i at most once.

Proof. (sketch)
Suppose that P ′ is an edge-Hamiltonian path of G in which some group of

type i immediately precedes some group of type i. Then, we can create a valid
path P by reversing the middle part of this path and merging the two groups of
type i and those of type j.

The new path has strictly fewer groups. Repeating this process at most a
linear (in |E|) number of times results in an edge-Hamiltonian path P with the
stated property. ��
Corollary 1. Let G be an edge-Hamiltonian graph. Then, there exists an edge-
Hamiltonian path P of G such that for all i ∈ {1, . . . , k}, P contains at most k
groups of type i. Therefore, P contains at most k2 groups in total, and for each
i ∈ {1, . . . , k} there exist at most 2k special edges of type i.

We have now proved that if a solution exists, it must have a certain nice
form. Let us make one more easy observation.

Lemma 3. Let G(V,E) be an edge-Hamiltonian graph. Then, there exists an
edge-Hamiltonian path P such that, for all i ∈ {1, . . . , k} for which there exist
at least k + 1 edges of type i, P has a group of type i with size at least 2.

Let us note that Lemma 2, Corollary 1 and Lemma 3 still hold even if G is a
hypergraph. We will make use of this in the next section.

We are now ready to state the main reduction rule and sketch its correctness.

Lemma 4. Let G(V,E) be a graph, and S = {u1, . . . , uk} a vertex cover of G
of size k. Suppose that there exists an edge (ui, w) satisfying the following:

1. w /∈ S
2. There are at least k + 2 edges of type i in G
3. For all uj ∈ S such that (uj , w) ∈ E we have |(N(ui) ∩ N(uj)) \ S| > 4k

Then G(V,E) has an edge-Hamiltonian path if and only if G′(V,E\{(ui, w)})
does.

Proof. (sketch)
For the one direction, suppose that G has an edge-Hamiltonian path P . We

construct a path P ′ where (ui, w) is removed. Let e1, e2 be the edges appearing
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immediately before and after (ui, w) in P . Suppose they do not share an endpoint
(if they do, we can construct P ′ by deleting (ui, w) from P ). Since they both
share an endpoint with (ui, w) we assume without loss of generality that e1 is
incident on ui and e2 = (uj , w). (Observe that here we have used the fact that
G is a graph, so the rest of our argument does not generalize to hypergraphs).

We know now by the last condition that N(uj) ∩ N(ui) contains at least
4k + 1 vertices of V \S. By Corollary 1 and pigeonhole principle, there exists
a vertex of (N(ui) ∩ N(uj))\S, call it z, such that (ui, z) and (uj , z) are not
special.

Because (ui, z) is not special, the two edges appearing immediately before
and after it are both incident on ui. Therefore, deleting (ui, z) still leaves us
with a valid edge-path. Similar reasoning can be used for (uj , z). We construct
a path P ′ as follows: delete (ui, w), (ui, z) and (uj , z) from P and then insert
(ui, z), (uj , z) between e1 and e2. This is a valid solution for G′. ��

The proof of the other direction is easy and appears in the full version.

Lemma 4 now leads to the following theorem.

Theorem 3. Edge Hamiltonian Path has a kernel with O(k3) edges, where
k is the size of the input graph’s vertex cover.

4 Hypergraphs

In this section we present an FPT algorithm for Edge Hamiltonian Path on
hypergraphs parameterized by the size of a (supplied) hitting set. As an interest-
ing consequence, our algorithm also establishes fixed-parameter tractability for
a novel parameterization of Hamiltonian Path, namely when the parameter
is the chromatic number of the input graph’s complement.

In this section, G(V,E) will be a hypergraph (that is, E is a collection of
arbitrary subsets of V ). We assume that the input also contains a hitting set
S ⊂ V of size k, that is, a set of vertices that intersects all hyperedges. Unlike
the previous section, this is not an inconsequential assumption, since finding
even an approximate hitting set is generally a hard problem. However, observe
that for hypergraphs of bounded rank (i.e. hyperedge size), a hitting set can be
computed in FPT time and hence this requirement is nullified on such instances.

We will rely on the fact that much of the material of the previous section car-
ries through unchanged. In particular, Definitions 1, 2, also apply to hypergraphs.
Then, Lemma 2, Corollary 1, and Lemma 3 hold for the case of hypergraphs as
well. Unfortunately, Lemma 4 does not seem to generalize naturally in this case.

Let us thus describe a different algorithm for this problem. As mentioned,
one way to proceed is to try to identify the special hyperedges which form the
backbone of a path. Once these have been found, the problem becomes much
easier. We will use a color-coding scheme to assist us in selecting these special
hyperedges. The high-level idea is the following: for every i ∈ {1, . . . , k} such that
there are at least 2k hyperedges of type i, color these hyperedges with 2k colors
uniformly at random. Then, merge (that is, take the union) of all hyperedges of
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type i that took the same color to a single hyperedge. This process results in a
hypergraph G′ with O(k2) hyperedges. We want to show that if this hypergraph
has an edge-Hamiltonian path then G does as well, while if G has an edge-
Hamiltonian path then G′ has one with non-negligible probability. The “good
colorings” that give us this non-negligible probability are those that assign a
different color to each special edge.

We are now ready to state the main result of this section.

Theorem 4. Given a hypergraph G(V,E) and a hitting set S = {u1, . . . , uk}
of G, there is an FPT algorithm that decides if G has an Edge Hamiltonian
Path in time 2O(k2)nO(1).

An interesting consequence of Theorem 4 is that it implies fixed-parameter
tractability for a non-standard parameterization of Hamiltonian Path. The
parameterization we are considering is by the complement chromatic number,
that is, the chromatic number of the input graph’s complement. We are naturally
led to this observation, because the line graph of a hypergraph with a hitting
set of size k has a vertex set that can be partitioned into at most k cliques. To
the best of our knowledge, this parameterization of Hamiltonian Path has not
been considered before.

Corollary 2. Given a graph G(V,E) and a proper k-coloring of its complement
graph, there exists an FPT algorithm that decides if G has a Hamiltonian Path
in time 2O(k2)nO(1).

5 Treewidth and Clique-Width

In this section we consider the Edge Hamiltonian Cycle problem parame-
terized by treewidth or clique-width. As is customary for these parameters, we
will assume that a decomposition of width k (or a clique-width expression with
k labels) is given to us with the input. This assumption is not necessary though,
as both parameters can be approximated in FPT time (see [2,27]).

Let us first consider treewidth. One obvious approach we could try to follow
is to use the fact that if G has treewidth k, its line graph has clique-width O(k)
[21]. Since deciding Edge Hamiltonian Cycle on G is equivalent to deciding
Hamiltonian Cycle on its line graph, this would give an XP algorithm using
known results for the latter problem (this is similar to the approach of [14]).
Unfortunately, since Hamiltonian Cycle is W[1]-hard for clique-width, this
approach could not lead to an FPT algorithm for Edge Hamiltonian Cycle
on treewidth. We thus have to recast the problem.

We will rely on Theorem 2, which states that the existence of an edge-
Hamiltonian cycle is equivalent to the existence of a dominating Eulerian sub-
graph. Thus, we can view Edge Hamiltonian Cycle as a subgraph problem
rather than an ordering problem. This formulation allows us to express the prob-
lem in a variant of MSO logic, without reference to orderings. We can then invoke
standard meta-theorems to obtain fixed-parameter tractability for treewidth.
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Let us sketch the basic idea. Recall that MSO2 logic allows one to express
properties involving sets of vertices or edges (see [12]). Dominating Eulerian
Subgraph is the problem of looking for a set of vertices V ′ and a set of edges
E′ such that: all edges of E have an endpoint in V ′; the graph G′(V ′, E′) is
connected; all vertices of G′(V ′, E′) have even degree. The first two properties
are well-known to be expressible in MSO logic. Interestingly, the third property
is expressible in Counting MSO2 (CMSO2) logic, an extension of MSO2 which is
still FPT for treewidth [11,23]. Thus, Edge Hamiltonian Cycle is expressible
in CMSO2 and is therefore FPT for treewidth.

We can use standard techniques to obtain the following:

Theorem 5. Given a graph G and a tree decomposition of width k, there exists
an algorithm deciding if G has an edge-Hamiltonian cycle in time kO(k)nO(1).

Let us now move to the main result of this section, which is the tractability
of Edge Hamiltonian Cycle parameterized by clique-width. Our high-level
strategy will be to eliminate complete bipartite subgraphs from the input graph,
without increasing the graph’s clique-width and without affecting the answer of
the problem. If we can repeat this process, we will in the end have a graph with
small clique-width and no large complete bipartite subgraphs. By Theorem 1,
the graph will have small treewidth and we can use Theorem 5.

Our main tool will be a reduction lemma (Lemma 6). Roughly speaking, the
lemma states that if we find a sufficiently large complete bipartite graph in G
with bipartition A,B, we can reduce it as follows: first we remove all its edges
and then we add three new vertices which are connected to all vertices of both
A and B. This transformation should not affect the answer.

To prove Lemma 6, it will be useful to first prove the following statement.
Roughly speaking, it says that if a graph contains a K3,3 (or larger) complete
bipartite subgraph, then any Dominating Eulerian Subgraph can be edited
to produce a solution using all its vertices.

Lemma 5. Let G(V,E) be a graph and A,B ⊆ V , with A,B disjoint sets,
|A|, |B| ≥ 3 and A × B ⊆ E. If G has a dominating Eulerian subgraph then
it also has a dominating Eulerian subgraph G0(V0, E0) such that (A ∪ B) ⊆ V0

and E0 ∩ (A × B) �= ∅.
Proof. Suppose that G has a dominating Eulerian subgraph G0(V0, E0). We will
edit this solution by adding vertices and adding or removing edges until the
stated properties are achieved. In the remainder, when we say that we flip an
edge e we mean that, if e ∈ E0 then we remove it from E0, otherwise we add it
to E0 and add its endpoints to V0.

Let us first establish that |(A ∪ B)\V0| ≤ 1 as follows: if V0 does not fully
contain one of the two sets A,B, it must fully contain the other (because V0 is
a vertex cover). Suppose without loss of generality that B ⊆ V0. If there exist
v1, v2 ∈ A\V0, then pick two vertices u1, u2 ∈ B. We can flip all the edges of
{u1, u2} × {v1, v2} and produce a valid solution with more vertices.

Now, if there is a single vertex v1 ∈ A\V0 then we have two cases: if there
exist u1 ∈ B, v2 ∈ A such that (u1, v2) /∈ E0, we pick an arbitrary u2 ∈ B and



356 M. Lampis et al.

flip the edges {u1, u2} × {v1, v2}. This produces a valid dominating Eulerian
subgraph that contains v1. In the final case, all edges of A × B not incident on
v1 are used in E0. Then, picking two arbitrary u1, u2 ∈ B and a vertex v2 ∈ A
and flipping the edges {u1, u2}×{v1, v2} produces a valid solution that includes
v1. We can conclude that A ⊆ V0.

For the second property, observe that if E0 does not use any edges of A×B
then we can add an arbitrary cycle to E0 using edges of A×B producing a valid
solution. ��
Lemma 6. Let G(V,E) be a graph and A,B ⊆ V with A,B disjoint sets,
|A|, |B| ≥ 5 and A × B ⊆ E. Let C = {c1, c2, c3} be a set of three new ver-
tices. Consider the graph G′(V ′, E′) where V ′ = V ∪ C and E′ = (E\A × B) ∪
(A×C)∪(B×C). Then G′ has an edge-Hamiltonian cycle if and only if G does.

Proof. For the first direction, suppose thatG has a dominating Eulerian subgraph
G0(V0, E0). We will now describe a dominating Eulerian subgraph G′

0(V
′
0 , E

′
0) of

G′. We set V ′
0 = V0 ∪C, which is clearly a vertex cover of G′. To construct E′

0, we
begin with the set of edges E0\(A × B). Now, we need to consider the bipartite
subgraph GA∪B

0 of G0 induced by A ∪ B. In this subgraph, there will be an even
number of vertices of odd degree. For each such vertex u, we add an edge inG′

0 from
u to each of the vertices ofC. This ensures that uwill still have an odd degree in the
subgraphG′A∪B∪C

0 ofG′
0 induced byA∪B∪C. Furthermore, all vertices ofC inG′

0

should currently have even degree. LetD be the set of remaining vertices ofGA∪B
0 ,

with even degree. If |D| is a multiple of 3, we connect a third of these vertices with
c1 and c2, a third with c1 and c3 and a third with c2 and c3. If |D| = 2 mod 3, then
we connect two vertices of D with c1, c2 and for the rest we act as in the previous
case. IfD = 1 mod 3, and |D| ≥ 4, we connect four vertices ofD with c1, c2 and act
as before for the rest. Last, for the case that there is only one vertex of even degree,
we connect it to c1 and c2 while at the same time we remove the edges (v, c1) and
(v, c2) for some other vertex v of odd degree. Observe that this process ensures that
in the end all vertices of A,B have degree in G′A∪B∪C

0 with the same parity as in
GA∪B

0 and all vertices of C have even degree in G′
0. Furthermore, the constructed

graph is always connected because the bipartite subgraph is sufficiently large.
For the converse direction, suppose we have a dominating Eulerian subgraph

G′
0(V

′
0 , E

′
0) of G′. By Lemma 5, because C, (A∪B) form two parts of a sufficiently

large complete bipartite subgraph we can assume that (A ∪ B ∪ C) ⊆ V ′
0 .

We build a dominating Eulerian subgraph G0(V0, E0) of G as follows. First,
V0 = V ′

0\C, which is a vertex cover of G. Let EC be the set of edges of E′
0

incident on C. It must be the case that |EC | is even, since all vertices of C
have even degree in G′

0 and C is an independent set. We start building E0 by
including all the edges of E′

0\EC . We will now go through two phases of “fixing”
E0 by adding to it edges of A × B.

Initially, we concentrate on making all degree parities even. We will say that
we flip an edge e to mean that, if e ∈ E0 then we remove it from E0, otherwise
we add it to E0. Observe that, for our current selection of E0, the number of
vertices of A ∪ B with odd degree in G0 is even. This is a consequence of the
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fact that |EC | is even and that all vertices have even degree in G′
0. As long as

there exist two vertices u, v of A ∪ B with odd degree in G0, select a shortest
path connecting u and v in G and flip its edges. This will only change the parity
of the degree of u and v in G0. Repeating this process will eventually produce a
set E0 that makes the degree of all vertices even.

We now need to augment E0 to make sure that G0 is connected. It is not
hard to see that if G0 is not connected, there must be two vertices of A ∪ B in
different components (otherwise, we could find a disconnected component in G′

0).
Our intermediate goal is to create a solution where each part (excluding possibly
at most one vertex) belongs as a whole in one connected component. Starting
from part A, let’s assume that it doesn’t belong as a whole in one component,
in other words assume that there exist two vertices v1, v2 such that v1, v2 are in
different components.

One of v1, v2 should have at least two neighbors in B, otherwise we can
find two common non-neighbors u1, u2 and add the edges of {u1, u2} × {v1, v2}
to E0 to obtain a valid solution with fewer components. So assume that v2 has
at least two neighbors in B, u′, u′′.

Now, for each additional vertex v3 of A, if v3 is not at the same connected
component as v2, we can add all edges between {u′, u′′} and {v1, v3} and obtain
a solution with fewer connected components. Therefore, every vertex of A except
for v1 belongs to the same connected component as v2.

With similar reasoning, we can conclude that every vertex of B but (possibly)
one vertex (call this u1 if it exists) also belongs in one connected component.
Additionally, we can easily conclude that, in the case the big components from
each part are disconnected, we can connect them by joining two pairs of vertices
from each of them.

We are now almost done. We describe the process to attach v1 to the big
connected component (u1, if it exists, can be handled in a similar way). If there
exists at least one vertex of the big component in A with two non-neighbors in
B, then we completely join these three vertices together with v1 in a K2,2. In
the other case, all vertices of A from the big component have at most one non-
neighbor in B. This means that the big component is very well-connected, so we
can take an arbitrary vertex of A together with two arbitrary vertices of B and
flip all edges between them while adding all edges from v1 to these two vertices
of B. After performing this step, the connectivity of the graph is increased. ��

We are now almost ready to proceed with our algorithm. To simplify pre-
sentation, we will only apply Lemma 6 to subgraphs which are at least as large
as K7,7. Observe that in such a case, G′ has strictly fewer edges than G. It is
then clear that the reduction is making progress and after a bounded number of
applications we get a graph with no large complete bipartite subgraphs.

There is, however, one problem that remains. We must also show that we
can apply Lemma 6 repeatedly without increasing the graph’s clique-width. If
we cannot guarantee this, then, even though we will have eliminated large Kt,t

subgraphs, we will not be able to invoke Theorem 1 in the end. We therefore
have to take care to only apply the reduction rule in some specific situations.
For this, we will have to work with the given clique-width expression of G.
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Our first step is to handle an obvious part of the given clique-width expression
where large bipartite subgraphs are constructed, namely, the join operation.

Lemma 7. Given a graph G and a clique-width expression with k labels, it is
possible to produce in polynomial time a graph G′ and a clique-width expression
with k + 2 labels such that:

1. G has an edge-Hamiltonian cycle if and only if G′ does
2. For every join operation in the expression of G′, one of the two involved sets

of vertices contains at most 6 vertices.

Unfortunately, Lemma 7 is not enough to guarantee the elimination of large
complete bipartite subgraphs, since these may also be constructed gradually.
However, eliminating big joins gives our clique-width expression a certain struc-
ture which we can leverage to deal with the remaining bi-cliques efficiently.

Lemma 8. Given a graph G(V,E) and a clique-width expression with k labels
and the property that for all join operations one involved set has size at most 6,
we can in polynomial time produce a graph G′ with clique-width k + 2 such that
G′ does not contain K21k,21k as a subgraph.

We can now describe our algorithm. Given a graph G and a clique-width
expression with k labels, we first invoke the algorithms of Lemmata 7,8. We
are thus left with a graph with clique-width at most k + 4 and no complete
bipartite subgraph larger than Kt,t for t = O(k). By Theorem 1, this graph has
treewidth O(k2). We can now apply an FPT algorithm to obtain a reasonable
tree decomposition (see e.g. [2]) and then invoke Theorem 5.

Theorem 6. Given a graph G and a clique-width expression with k labels, there
exists an algorithm that decides if G has an edge-Hamiltonian cycle in time
kO(k2)nO(1).

References

1. Bertossi, A.A.: The edge Hamiltonian path problem is NP-complete. Inf. Process.
Lett. 13(4), 157–159 (1981)

2. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An O(ckn) 5-Approximation algorithm for treewidth. In: FOCS,
pp. 499–508. IEEE Computer Society (2013)

3. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255–269 (2008)

4. Brualdi, R.A., Shanny, R.F.: Hamiltonian line graphs. J. Graph Theory 5(3), 307–
314 (1981)

5. Catlin, P.A.: Supereulerian graphs: a survey. J. Graph Theory 16(2), 177–196
(1992)

6. Chartrand, G.: On Hamiltonian line-graphs. Trans. Am. Math. Soc. 134, 559–566
(1968)

7. Chen, Z.-H., Lai, H.-J., Li, X., Li, D., Mao, J.: Eulerian subgraphs in 3-edge-
connected graphs and Hamiltonian line graphs. J. Graph Theory 42(4), 308–319
(2003)



Parameterized Edge Hamiltonicity 359

8. Clark, L.: On Hamiltonian line graphs. J. Graph Theory 8(2), 303–307 (1984)
9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to Algo-

rithms, vol. 2. MIT press Cambridge, Cambridge (2001)
10. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.

SIAM J. Comput. 34(4), 825–847 (2005)
11. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of

finite graphs. Inf. Comput. 85(1), 12–75 (1990)
12. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A

Language-Theoretic Approach. Cambridge University Press, New York (2012)
13. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-

lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

14. Demaine, E.D., Demaine, M.L., Harvey, N.J.A., Uehara, R., Uno, T., Uno, Y.:
UNO is hard, even for a single player. Theor. Comput. Sci. 521, 51–61 (2014)

15. Dey, P., Goyal, P., Misra, N.: UNO gets easier for a single player. In: Ferro, A.,
Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 147–157. Springer,
Heidelberg (2014)

16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

17. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B.
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