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Abstract. We give a complete characterization of mixed unit inter-
val graphs, the intersection graphs of closed, open, and half-open unit
intervals of the real line. This is a proper superclass of the well known
unit interval graphs. Our result solves a problem posed by Dourado, Le,
Protti, Rautenbach and Szwarcfiter (Mixed unit interval graphs. Dis-
crete Math. 312, 3357–3363 (2012)). Our characterization also leads to
a polynomial-time recognition algorithm for mixed unit interval graphs.
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1 Introduction

A graph G is an interval graph, if there is a function I from the vertex set of G to
the set of intervals of the real line such that two vertices are adjacent if and only
if their assigned intervals intersect. The function I is an interval representation
of G. Interval graphs are well known and investigated – algorithmically as well as
structurally [4,6,9]. There are several efficient algorithms that decide, if a given
graph is an interval graph. See for example [2].

An important subclass of interval graphs are unit interval graphs. An inter-
val graph G is a unit interval graph, if there is an interval representation I of
G such that I assigns to every vertex a closed interval of unit length. This sub-
class is well understood and also easy to characterize structurally [11] as well as
algorithmically [1].

Frankl and Maehara [5] showed that it does not matter, if we assign the
vertices of G only to closed intervals or only to open intervals of unit length.
Rautenbach and Szwarcfiter [10] characterized, by a finite list of forbidden induced
subgraphs, all interval graphs G such that there is an interval representation of G
that uses only open and closed unit intervals.

Dourado et al. [3] gave a characterization of all diamond-free interval graphs
that have an interval representation such that all vertices are assigned to unit
intervals, where all kinds of unit intervals are allowed and a diamond is a com-
plete graph on four vertices minus an edge. Furthermore, they made a conjecture
concerning the general case.
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We prove that their conjecture is not completely correct and give a complete
characterization of this class. Since the conjecture is rather technical and not
given by a list of forbidden subgraphs, we refer the reader to [3] for a detailed
formulation of the conjecture, but roughly speaking, they missed the class of
forbidden subgraphs shown in Fig. 6. Moreover, we provide a polynomial-time
recognition algorithm for this graph class.

In Sect. 2 we introduce all definitions and relate our results to other work. In
Sect. 3 we state and prove our results.

2 Preliminary Remarks

We only consider finite, undirected, and simple graphs. Let G be a graph. We
denote by V (G) and E(G) the vertex and edge set of G, respectively. If C is a
set of vertices, then we denote by G[C] the subgraph of G induced by C. Let
M be a set of graphs. We say G is M-free, if for every H ∈ M, the graph
H is not an induced subgraph of G. For a vertex v ∈ V (G), let the neighbor-
hood NG(v) of v be the set of all vertices that are adjacent to v and let the
closed neighborhood NG[v] be defined by NG(v) ∪ {v}. Two distinct vertices u
and v are twins (in G) if NG[u] = NG[v]. If G contains no twins, then G is
twin-free.

Let N be a family of sets. We say a graph G has an N -intersection repre-
sentation, if there is a function f : V (G) → N such that for any two distinct
vertices u and v, there is an edge joining u and v if and only if f(u) ∩ f(v) �= ∅.
If there is an N -intersection representation for G, then G is an N -graph. Let
x, y ∈ R. We denote by

[x, y] = {z ∈ R : x ≤ z ≤ y}

the closed interval, by

(x, y) = {z ∈ R : x < z < y}

the open interval, by
(x, y] = {z ∈ R : x < z ≤ y}

the open-closed interval, and by

[x, y) = {z ∈ R : x ≤ z < y}

the closed-open interval of x and y. For an interval A, let �(A) = inf{x ∈
R : x ∈ A} and r(A) = sup{x ∈ R : x ∈ A}. If I is an interval representa-
tion of G and v ∈ V (G), then we write �(v) and r(v) instead of �(I(v)) and
r(I(v)), respectively, if there are no ambiguities. Let I++ be the set of all closed
intervals, I−− be the set of all open intervals, I−+ be the set of all open-
closed intervals, I+− be the set of all closed-open intervals, and I be the set of
all intervals. In addition, let U++ be the set of all closed unit intervals, U−− be
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the set of all open unit intervals, U−+ be the set of all open-closed unit inter-
vals, U+− be the set of all closed-open unit intervals, and U be the set of all unit
intervals. We call a U-graph a mixed unit interval graph.

By a result of [3,10], every interval graph is an I++-graph. With our notation
unit interval graphs equals U++-graphs. An interval graph G is a proper interval
graph if there is an interval representation of G such that I(u) �⊆ I(v) for every
distinct u, v ∈ V (G).

The next result due to Roberts characterizes unit interval graphs.

Theorem 1 (Roberts [11]). The classes of unit interval graphs, proper interval
graphs, and K1,3-free interval graphs are the same.

The second result shows that several natural subclasses of mixed unit interval
graphs actually coincide with the class of unit interval graphs.

Theorem 2 (Dourado et al., Frankl and Maehara [3,5]). The classes of
U++-graphs, U−−-graphs, U+−-graphs, U−+-graphs, and U+− ∪U−+-graphs are
the same.

A graph G is a mixed proper interval graph (respectively an almost proper interval
graph) if G has an interval representation I : V (G) → I (respectively I : V (G) →
I++ ∪ I−−) such that

– there are no two distinct vertices u and v of G with I(u), I(v) ∈ I++, I(u) ⊆
I(v), and I(u) �= I(v), and

– for every vertex u of G with I(u) /∈ I++, there is a vertex v of G with
I(v) ∈ I++, �(u) = �(v), and r(u) = r(v).

A natural class extending the class of unit interval graphs are U++∪U−−-graphs.
These were characterized by Rautenbach and Szwarcfiter.

Theorem 3 (Rautenbach and Szwarcfiter [10]). For a twin-free interval
graph G, the following statements are equivalent.

• G is a {K1,4,K
∗
1,4,K

∗
2,3,K

∗
2,4}-free graph. (See Fig. 1 for an illustration.)

• G is an almost proper interval graph.
• G is a U++ ∪ U−−-graph.

Note that an interval representation can assign the same interval to twins
and hence the restriction to twin-free graphs does not weaken the statement but
simplifies the description.

K1,4 K∗
1,4 K∗

2,3 K∗
2,4

Fig. 1. Forbidden induced subgraphs for twin-free U++ ∪ U−−-graphs.
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Fig. 2. A graph, which is a U-graph, but not a U++ ∪ U−−-graph.

The next step is to allow all different types of unit intervals. The class of
U-graphs is a proper superclass of the U++ ∪ U−−-graphs, because the graph
illustrated in Fig. 2 is a U-graph, but not a U++ ∪ U−−-graph (it contains a
K∗

1,4). Dourado et al. already made some progress in characterizing this class.

Theorem 4 (Dourado et al. [3]). For a graph G, the following two statements
are equivalent.

• G is a mixed proper interval graph.
• G is a mixed unit interval graph.

They also characterized diamond-free mixed unit interval graphs. There is
another approach by Le and Rautenbach [8] to understand the class of U-graphs
by restricting the ends of the unit intervals to integers. They found a infinite
list of forbidden induced subgraphs, which characterize these so-called integral
U-graphs.

3 Results

In this section we state and prove our main results. We start by introducing
a list of forbidden induced subgraphs. See Figs. 3, 4, 5, and 6 for illustration.
Let R =

⋃∞
i=0{Ri}, S =

⋃∞
i=1{Si}, S ′ =

⋃∞
i=1{S′

i}, and T =
⋃

i≥j≥0{Ti,j}. For
k ∈ N let the graph Qk arise from the graph Rk by deleting two vertices of degree
one, which have a common neighbor. We call the common neighbor of the two
deleted vertices and its neighbor of degree two special vertices of Qk. Note that
if a graph G is twin-free, then the interval representation of G is injective.

R0 R1 R2

i triangles Ri

Fig. 3. The class R.
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S1 S2 i triangles Si

Fig. 4. The class S.

S′
2S′

1 i triangles S′
i

Fig. 5. The class S ′.

Lemma 5. (Dourado et al. [3]). Let k ∈ N.

(a) Every U-representation of the claw K1,3 arises by translation of the following
U-representation I : V (K1,3) → U of K1,3, where I(V (K1,3)) consists of the
following intervals

• either [0, 1] or (0, 1],
• [1, 2] and (1, 2), and
• either [2, 3] or [2, 3).

(b) Every injective U-representation of Qk arises by translation and inversion
of one of the two injective U-representations I : V (Qk) → U of Qk, where
I(V (Qk)) consists of the following intervals

• either [0, 1] or (0, 1],
• [1, 2] and (1, 2), and
• [i, i + 1] and [i, i + 1) for 2 ≤ i ≤ k + 1.

(c) The graphs in {T0,0} ∪ R are minimal forbidden subgraphs for the class of
U-graphs with respect to induced subgraphs.

(d) If G is a U-graph, then every induced subgraph H in G that is isomorphic to
Qk and every vertex u∗ ∈ V (G) \ V (H) such that u∗ is adjacent to exactly
one of the two special vertices of H, the vertex u∗ has exactly one neighbor
in V (H).

Lemma 6. If a graph G is a twin-free mixed unit interval graph, then G is
{K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free.

For the sake of space restrictions, we omit the proof of Lemma 6 and proceed to
our main result.

Theorem 7. A twin-free graph G is a mixed unit interval graph if and only if
G is a {K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph.

Proof of Theorem 7: By Lemma 6, we know if G is a twin-free mixed unit interval
graph, then G is a {K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph. Let now G be
a twin-free {K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph. We show that G is a
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T0,0 T1,0 T2,1

i triangles j triangles
Ti,j

Fig. 6. The class T .

mixed proper interval graph. By Theorem 4, this proves Theorem 7. Since G is
an interval graph, G has an I++-representation I. As in [10] we call a pair (u, v)
of distinct vertices a bad pair if I(u) ⊆ I(v). Let I be such that the number
of bad pairs is as small as possible. If I has no bad pair, then we are done by
Theorem 1. Hence we assume that there is at least one bad pair. The strategy
of the proof is as follows. Claims 1 to 6 collect properties of G and I, before
we modify our interval representation of G to show that G is a mixed proper
interval graph. In Claims 7 to 10 we prove that our modification of the interval
representation preserves all intersections and non-intersections. Claims 1 to 3 are
similar to Claims 1 to 3 in [10], respectively. For the sake of space restrictions
we omit the proofs.

Claim 1. If (u, v) is a bad pair, then there are vertices x and y such that �(v) ≤
r(x) < �(u) and r(u) < �(y) ≤ r(v).

Let a1 and a2 be two distinct vertices. Claim 1 implies that �(a1) �= �(a2) and
r(a1) �= r(a2). Suppose �(a1) < �(a2). Let ε be the smallest distance between
two distinct endpoints of intervals of I. If r(a1) = �(a2), then I ′ : V (G) → I++

be such that I ′(a1) = [�(a1), r(a1) + ε/2], and I ′(z) = I(z) for z ∈ V (G) \ {a1}.
By the choice of ε, we conclude that I ′ is an interval representation of G with
as many bad pairs as I. Therefore, we assume without loss of generality that
we chose I such that all endpoints of the intervals of I are distinct. Hence the
inequalities in Claim 1 are strict inequalities.

Claim 2. If (u,w) and (v, w) are bad pairs, then u = v, that is, no interval
contains two distinct intervals.

Claim 3. If (u, v) and (u,w) are bad pairs, then v = w, that is, no interval is
contained in two distinct intervals.

A vertex x is to the left (respectively right) of a vertex y (in I), if r(x) < �(y)
(respectively r(y) < �(x)). Two adjacent vertices x and y are distinguishable by
vertices to the left (respectively right) of them, if there is a vertex z, which is
adjacent to exactly one of them and to the left (respectively right) of one of
them. The vertex z distinguishes x and y. Next, we show that for a bad pair
(u, v) there is the structure as shown in Fig. 7 in G. We introduce a positive
integer �max

u,v that, roughly speaking, indicates how large this structure is.
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�max
u,v − 1 triangles rmax

u,v − 1 triangles

v

u

x1
u,v

x1
u,v

′

x
�max
u,v −1

u,v

x
�max
u,v −1

u,v

′

x
�max
u,v

u,v y1
u,v

y1
u,v

′

y
rmax
u,v −1

u,v

y
rmax
u,v −1

u,v

′

y
rmax
u,v

u,v

X0
u,v

X1
u,vX

�max
u,v −1

u,v

X
�max
u,v

u,v

Y 1
u,v Y

rmax
u,v −1

u,v

Y
rmax
u,v

u,v

v

u

X1
u,v

X2
u,v

X3
u,v Y 1

u,v

Fig. 7. The structure in G forced by a bad pair (u, v).

For a bad pair (u, v) let v = X0
u,v and let X1

u,v be the set of vertices that
are adjacent to v and to the left of u. Let yu,v be a vertex to the right of u
and adjacent to v. Claim 1 guarantees |X1

u,v| ≥ 1 and the existence of yu,v.
If |X1

u,v| = 1, then let �max
u,v = 1 and we stop here. Suppose |X1

u,v| ≥ 2. Since
G is R0-free, X1

u,v is a clique and since G is S′
1-free, we conclude |X1

u,v| = 2.
Let {x, x′} = X1

u,v such that r(x) < r(x′). For contradiction, we assume that
there is a vertex z to the right of x that distinguishes x and x′. We conclude
�(v) < �(z). By Claim 2, r(v) < r(z). This implies that (u, z) is a bad pair, which
contradicts Claim 3. Thus z does not exist. In addition (x, x′) is not a bad pair,
otherwise Claim 1 guarantees a vertex z such that r(x) < �(z) < r(x′), which is
a contradiction. Thus �(x) < �(x′) < r(x) < r(x′). Let x1

u,v = x and x1
u,v

′ = x′.
Note that NG(x1

u,v
′) ⊂ NG(x1

u,v).
Let X2

u,v = NG(x1
u,v) \ NG(x1

u,v
′). Note that all vertices in X2

u,v are to the
left of x1

u,v
′. Since G is twin-free, |X2

u,v| ≥ 1. If |X2
u,v| = 1, then let �max

u,v = 2
and we stop here. Suppose |X2

u,v| ≥ 2. Since G is R1-free, X2
u,v is a clique

and since G is S′
2-free, we conclude |X2

u,v| = 2. Let {x, x′} = X2
u,v such that

r(x) < r(x′). For contradiction, we assume that there is a vertex z to the right
of x that distinguishes x and x′. Since z /∈ X2

u,v, we conclude �(x1
u,v

′) < r(z).
If r(z) < �(v), then G[{z, x, x′, x1

u,v, x
1
u,v

′
, v, u, yu,v}] is isomorphic to S2, which

is a contradiction. Thus �(v) < r(z). If r(z) < �(u), then |X1
u,v| = 3, which

is a contradiction. Thus �(u) < r(z). If r(u) < r(z), then (u, v) and (u, z) are
bad pairs, which is a contradiction to Claim 3. Thus �(u) < r(z) < r(u). Now
G[{z, x′, x1

u,v
′
, v, u, yu,v}] is isomorphic to T0,0, which is the final contradiction.
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Note that (x, x′) is not a bad pair, otherwise Claim 1 guarantees a vertex
z such that r(x) < �(z) < r(x′), which is a contradiction. Thus �(x) < �(x′) <

r(x) < r(x′). Let x2
u,v = x and x2

u,v
′ = x′. Note that NG(x2

u,v
′) ⊂ NG(x2

u,v). Let
X3

u,v = NG(x2
u,v) \ NG(x2

u,v
′). Note that all vertices in X3

u,v are to the left of
x2
u,v

′.
We assume that for k ≥ 3, i ∈ [k − 1] and j ∈ [k]

• we defined Xj
u,v,

• |Xi
u,v| = 2 holds,

• we defined xi
u,v and xi

u,v
′,

• �(xi
u,v) < �(xi

u,v
′) < r(xi

u,v) < r(xi
u,v

′) holds,
• the vertices in Xi+1

u,v are to the left of xi
u,v

′, and
• the vertices in Xi

u,v are not distinguishable to the right.

If |Xk
u,v| = 1, then let �max

u,v = k and we stop here. Suppose |Xk
u,v| ≥ 2. Since

G is Rk−1-free, Xk
u,v is a clique and since G is S′

k-free, we obtain |Xk
u,v| = 2.

Let {x, x′} = Xk
u,v such that r(x) < r(x′). For contradiction, we assume that

there is a vertex z to the right of x that distinguishes x and x′. Since z /∈ Xk
u,v,

we conclude �(xk−1
u,v

′) < r(z). If r(z) < �(xk−2
u,v ), then G[{z, x, x′, v, u, yu,v} ∪

⋃k−1
i=1 Xi

u,v] is isomorphic to Sk, which is a contradiction. Thus �(xk−2
u,v ) < r(z). If

r(z) < �(xk−2
u,v

′), then |Xk−1
u,v | = 3, which is a contradiction. Thus �(xk−2

u,v
′) < r(z).

If r(z) < �(xk−3
u,v ), then G[{z, x′, xk−1

u,v
′
, v, u, yu,v} ∪

⋃k−2
i=1 Xi

u,v] is isomorphic to
Tk−3,0, which is a contradiction. Thus �(xk−3

u,v ) < r(z). If r(z) < r(xk−2
u,v ), then

|Xk−2
u,v | = 3, which is a contradiction. Thus r(xk−2

u,v ) < r(z) and hence (xk−1
u,v

′
, z)

and (xk−2
u,v , z) are bad pairs, which is a contradiction to Claim 2. Thus x, x′

are not distinguishable to the right. We obtain that (x, x′) is not a bad pair,
otherwise Claim 1 guarantees a vertex z such that r(x) < �(z) < r(x′), which is
a contradiction. Thus �(x) < �(x′) < r(x) < r(x′). Let xk

u,v = x and xk
u,v

′ = x′.
Note that NG(xk

u,v
′) ⊂ NG(xk

u,v). Let Xk+1
u,v = NG(xk

u,v) \ NG(xk
u,v

′). Note that
all vertices in Xk+1

u,v are to the left of xk
u,v

′. By induction, this leads to the
following properties.

Claim 4. If (u, v) is a bad pair, k ∈ [�max
u,v − 1], then the following holds:

(a) |Xk
u,v| = 2.

(b) The vertices in Xk
u,v are not distinguishable by vertices to the right of them.

(c) We have �(xi
u,v) < �(xi

u,v
′) < r(xi

u,v) < r(xi
u,v

′), that is (xk
u,v, x

k
u,v

′) and
(xk

u,v
′
, xk

u,v) are not bad pairs.

Note that �max
u,v is the smallest integer k such that |Xk−1

u,v | ≥ 2 and |Xk
u,v| = 1.

Due to space restrictions, we omit the proofs of Claims 5 and 6.
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Claim 5. If (u, v) is a bad pair and k ∈ [�max
u,v − 1], then the following holds.

(a) xk
u,v

′ is not contained in a bad pair.
(b) There is no vertex z ∈ V (G) such that (xk

u,v, z) is a bad pair.

For a bad pair (u, v) define Y k
u,v as Xk

u,v by interchanging in the definition
right by left. Let rmax

u,v be the smallest integer k such that |Y k−1
u,v | = 2 and

|Y k
u,v| = 1. By symmetry, one can prove a “y”-version of Claims 4, 5 and 6(a)

and (b). Let {yk
u,v, y

k
u,v

′} = Y k
u,v such that NG(yk

u,v
′) ⊂ NG(yk

u,v) for k ≤ rmax
u,v −1.

Claim 6. Let (u, v) and (w, z) be bad pairs and k ∈ [�max
u,v ].

(a) If Xk
u,v ∩ X k̃

w,z �= ∅, then xk−1
u,v = xk̃−1

w,z for k̃ ∈ [�max
w,z ].

(b) If Xk
u,v ∩ X k̃

w,z �= ∅, then Xk
u,v = X k̃

w,z for k̃ ∈ [�max
w,z ].

(c) If Xk
u,v ∩ Y k̃

w,z �= ∅, then Xk
u,v ∩ Y k̃

w,z = xk
u,v = yk̃

w,z for k̃ ∈ [rmax
w,z ]

Next, we define step by step new interval representations of G as follows. First
we shorten the intervals of Xk

u,v for every bad pair (u, v) and k ∈ [�max
u,v ]. Let

I ′ : V (G) → I++ be such that I ′(x) = [�(x), �(xk−1
u,v )] if x ∈ Xk

u,v for some bad
pair (u, v) and I ′(x) = I(x) otherwise. By Claim 6(a), I ′ is well-defined; that is,
if x ∈ Xk

u,v ∩ X k̃
w,z, then �(xk−1

u,v ) = �(xk̃−1
w,z ). Let �′(x) and r′(x) be the left and

right endpoint of the interval I ′(x) for x ∈ V (G), respectively.

Claim 7. I ′ is an interval representation of G.

Proof of Claim 7: Trivially, if two intervals do not intersect in I, then they do
not intersect in I ′. For contradiction, we assume that there are two vertices
a, b ∈ V (G) such that I(a) ∩ I(b) �= ∅ and I ′(a) ∩ I ′(b) = ∅. At least one interval
is shorten by changing the interval representation. Say a ∈ Xk

u,v for some bad
pair (u, v) and k ∈ [�max

u,v ]. Hence b �= xk−1
u,v and �(xk−1

u,v ) < �(b) and by Claim 4(b),
�(b) < r(xk

u,v). We conclude that (b, xk−1
u,v ) is not a bad pair, otherwise Claim 1

implies the existence of a vertex z ∈ Xk
u,v to the left of b, but z /∈ {xk

u,v, x
k
u,v

′},
which is a contradiction to Claim 4(a). Thus r(xk−1

u,v ) < r(b). If k = 1, then
(u, b) is also a bad pair, which is a contradiction to Claim 3. Thus k ≥ 2. Since
�(b) < r(xk

u,v), we obtain �(b) < �(xk−1
u,v

′). Since (xk−1
u,v

′
, b) is not a bad pair

by Claim 5(a), r(b) < r(xk−1
u,v

′). Thus b ∈ Xk−1
u,v , which is a contradiction to

|Xk−1
u,v | = 2. �

Claim 8. The change of the interval representation of G from I to I ′ creates
no new bad pair (a, b) such that {a, b} �= Xk

u,v for some k ∈ [�max
u,v ] and some bad

pair (u, v).

Proof of Claim 8: For contradiction, we assume that (a, b) is a new bad pair
and {a, b} �= Xk

u,v. Since (a, b) is a new bad pair, I ′(a) is a proper subset of
I(a). Thus let a ∈ Xk

u,v and b /∈ Xk
u,v. If a ∈ Xk

u,v and |Xk
u,v| = 2, then �(b) <

�(xk
u,v

′) and r′(a) = �(xk−1
u,v ) < r(b) < r(xk

u,v
′), because of Claim 5(a). Thus



A Characterization of Mixed Unit Interval Graphs 333

b ∈ Xk
u,v, which is a contradiction. If a ∈ Xk

u,v and |Xk
u,v| = 1, then �(b) <

�(xk
u,v) and r′(a) = �(xk−1

u,v ) < r(b) < r(xk
u,v). Thus b ∈ Xk

u,v, which is the final
contradiction. �
In a second step, we shorten the intervals of Y i

u,v for every bad pair (u, v) and
i ∈ [rmax

u,v ]. Let I ′′ : V (G) → I++ be such that I ′′(y) = [r′(yk−1
u,v ), r′(y)] if y ∈ Y k

u,v

for some bad pair (u, v) and I ′′(y) = I ′(y) else. Note that bad pairs are only
referred to the interval representation I. Let �′′(x) and r′′(x) be the left and
right endpoints of the interval I ′′(x) for x ∈ V (G), respectively.

Claim 9. I ′′ is an interval representation of G.

Due to space restrictions, we omit the proof of Claim 9.

Claim 10. The change of the interval representation of G from I to I ′′ creates
no new bad pair (a, b) such that {a, b} �= Xk

u,v for some k ∈ [�max
u,v ] or {a, b} �= Y i

u,v

for some i ∈ [rmax
u,v ] and some bad pair (u, v).

Proof of Claim 10: For contradiction, we assume that (a, b) is a new bad pair
and Y i

u,v �= {a, b} �= Xk
u,v. Thus a ∈ Xk

u,v or a ∈ Y i
u,v and b /∈ Xk

u,v or b /∈ Y i
u,v,

respectively. If a ∈ Xk
u,v and |Xk

u,v| = 2, then �(b) < �(xk
u,v

′) and �(xk−1
u,v ) <

r(b) < r(xk
u,v

′). Thus b ∈ Xk
u,v, which is a contradiction. If a ∈ Xk

u,v and |Xk
u,v| =

1, then �(b) < �(xk
u,v) and �(xk−1

u,v ) < r(b) < r(xk
u,v). Thus b ∈ Xk

u,v, which is a
contradiction. If a ∈ Y i

u,v the proof is almost exactly the same. �
Now we are in a position to blow up some intervals to open or half-open intervals
to get a mixed proper interval graph. Let I∗ : V (G) → I be such that

I∗(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(�(v), r(v)), if (x, v) is a bad pair,
(�′′(xk

u,v), r
′′(xk

u,v)], if x = xk
u,v

′ for some bad pair (u, v) and
k ∈ [�max

u,v − 1],
[
�′′(yi

u,v), r
′′(yi

u,v)
)
, if x = yi

u,v
′ for some bad pair (u, v) and

i ∈ [rmax
u,v − 1],

[�′′(x), r′′(x)] , else.

Note that I∗ is well-defined by Claims 5 and 6; that is, the four cases in the
definition of I∗ induces a partition of the vertex set of G. Moreover, the interval
representation I∗ defines a mixed proper interval graph. As a final step, we prove
that I ′′ and I∗ define the same graph. Since we make every interval bigger, we
show that for every two vertices a, b such that I ′′(a) ∩ I ′′(b) = ∅, we still have
I∗(a) ∩ I∗(b) = ∅. For contradiction, we assume the opposite. Let a, b be two
vertices such that I ′′(a) ∩ I ′′(b) = ∅ and I∗(a) ∩ I∗(b) �= ∅. It follows by our
approach and definition of our interval representation I ′′, that both a and b are
blown up intervals.

First we suppose a and b are intervals that are blown up to open intervals,
that is, there are distinct vertices ã and b̃ such that (a, ã) and (b, b̃) are bad pairs.
Furthermore, the intervals of ã and b̃ intersect not only in one point. By Claims 2
and 3, we assume without loss of generality, that �′′(ã) < �′′(b̃) < r′′(ã) < r′′(b̃).
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Therefore, by the construction of I ′′, we obtain a is adjacent to b̃ and ã is
adjacent to b, and in addition they intersect in one point, respectively. Now,
G[{x1

a,ã, a, ã, b, b̃, y1
b,b̃

}] is isomorphic to T0,0, which is a contradiction.
Now we suppose a is blown up to an open interval and b is blown up to an

open-closed interval (the case closed-open is exactly symmetric). Let ã be the
vertex such that (a, ã) is a bad pair. Let b̃, u, v ∈ V (G) and k ∈ N such that
{b, b̃} = Xk

u,v. We suppose ã �= b̃. We conclude �′′(ã) < �′′(b̃) < r′′(ã) < r′′(b̃). As
above, we conclude a is adjacent to b̃ and ã is adjacent to b, and in addition they
intersect in one point, respectively. Thus G[{x1

a,ã, a, ã, v, u, y1
u,v} ∪

⋃k
i=1 Xi

u,v]
induces a Tk,0, which is a contradiction. Now we suppose ã = b̃. We conclude that
G[{x1

a,ã, a, v, u, y1
u,v} ∪

⋃k
i=1 Xi

u,v] is isomorphic to Rk, which is a contradiction.
It is easy to see that a and b cannot be both blown up to closed-open or both

open-closed intervals, because G is Rk-free for k ≥ 0 and the definition of I ′′.
Therefore, we consider finally the case that a is blown up to a closed-open

and b to an open-closed interval. Let ã, b̃, u, v, w, z ∈ V (G) and k, k̃ ∈ N such
that {a, ã} = Y k

u,v and {b, b̃} = X k̃
w,z. First we suppose ã �= b̃. Again, we obtain

�′′(ã) < �′′(b̃) < r′′(ã) < r′′(b̃) and a is adjacent to b̃ and ã is adjacent to b, and fur-
thermore they intersect in one point, respectively. Thus G[{x1

u,v, u, v, w, z, y1
w,z}∪

⋃k
i=1 Y i

u,v ∪
⋃k̃

i=1 Xi
w,z] is isomorphic to Tk,k̃. Next we suppose ã = b̃ and hence

G[{x1
u,v, u, v, w, z, y1

w,z} ∪
⋃k

i=1 Y i
u,v ∪

⋃k̃
i=1 Xi

w,z] is isomorphic to Rk+k̃. This is
the final contradiction and completes the proof of Theorem 7. �
In Theorem 7 we only consider twin-free U-graphs to reduce the number of
case distinctions in the proof. In Corollary 8 we resolve this technical condition.
See Figs. 8 and 9 for illustration. Let S ′′ =

⋃∞
i=2{S′′

i }. For the sake of space
restrictions, we omit the proof.

Corollary 8. A graph G is a mixed unit interval graph if and only if G is a
{G1} ∪ R ∪ S ∪ S ′′ ∪ T -free interval graph.

S′′
2 S′′

3 S′′
ii triangles

Fig. 8. The class S ′′
i .

G1

Fig. 9. The graph G1.
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It is possible to extract a polynomial-time algorithm from the proof of The-
orem 7. Given a graph G, then first start with a polynomial-time algorithm [2]
which decides whether G is an interval graph and if yes computes an interval
representation I of G. Second, go along the claims of Theorem 7. By suitable
modifications of I either I becomes a mixed proper interval representation or the
algorithm finds a forbidden induced subgraph. Note that by Theorem 4, the class
of mixed proper interval graphs coincides with the class of mixed unit interval
graphs.

Theorem 9. There is a polynomial-time algorithm which decides whether a
graph has an interval representation using unit intervals only.

Remark 1: I was informed by Alan Shuchat, Randy Shull, Ann Trenk and Lee
West that they independently found a proof for a characterization of mixed unit
interval graphs by forbidden induced subgraphs.
Remark 2: A full version of this paper appeared in [7].
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