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Abstract. We present an approach for the traveling salesman problem
with graph metric based on Steiner cycles. A Steiner cycle is a cycle that
is required to contain some specified subset of vertices. For a graph G,
if we can find a spanning tree T and a simple cycle that contains the
vertices with odd-degree in T , then we show how to combine the classic
“double spanning tree” algorithm with Christofides’ algorithm to obtain
a TSP tour of length at most 4n

3
. We use this approach to show that a

graph containing a Hamiltonian path has a TSP tour of length at most
4n/3.

Since a Hamiltonian path is a spanning tree with two leaves, this moti-
vates the question of whether or not a graph containing a spanning tree
with few leaves has a short TSP tour. The recent techniques of Mömke
and Svensson imply that a graph containing a depth-first-search tree
with k leaves has a TSP tour of length 4n/3 + O(k). Using our app-
roach, we can show that a 2(k−1)-vertex connected graph that contains
a spanning tree with at most k leaves has a TSP tour of length 4n/3.
We also explore other conditions under which our approach results in a
short tour.

1 Introduction

We consider the well studied Traveling Salesman problem with graph metric,
also known as graph-TSP. Throughout this paper, the input graph G = (V,E)
is assumed to be an undirected, unweighted, 2-(vertex) connected graph, and all
edge lengths in the complete graph can be obtained via the shortest path metric
on the given graph. Our goal is to find a tour of minimum length that visits each
vertex at least once. In this paper, we focus on a connection between graph-TSP
and that of finding Steiner cycles.

1.1 Background

Graph-TSP has received much attention recently. Oveis Gharan, Saberi and
Singh were the first to improve on the approximation ratio of 3/2 by an infini-
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Fig. 1. In this (non-simple) cycle C, the number of unique vertices |C| = 8, but the
length of the cycle �(C) = 10.

tesimal, but constant, factor [12]. This was quickly followed by the breakthrough
work of Mömke and Svensson, who introduced a new approach leading to a sub-
stantial improvement in the approximation ratio [19]. Subsequently, Mucha gave
a refined analysis of their approach, proving an approximation ratio of 13/9 for
graph-TSP [20]. More recently, Sebő and Vygen presented an approximation
algorithm with ratio 7/5 for the problem [23].

It is widely believed that an approximation ratio of at most 4/3 should be
efficiently computable. The approach of Mömke and Svensson is based on setting
up a circulation network and showing that a low-cost circulation leads to a low
cost TSP tour. They obtained a 4/3-approximation for subcubic graphs, but
high-degree graphs appear to be more challenging for their framework. Vishnoi
recently gave a randomized algorithm that finds a TSP tour very close to n
with high probability for a k-regular graph when k is sufficiently large [26]. Our
goal is to consider other techniques that are applicable for graphs that are not
low-degree or regular.

2 Steiner Cycles

The Steiner cycle problem has been previously, but not extensively, studied under
varying definitions [8,13,25]. For our purposes, a Steiner cycle is defined to be
a simple cycle that contains a specified subset S ⊆ V of vertices. It may also
contain any subset of vertices from the set V \S. We use the following definition:

Definition 1. Given a graph G = (V,E) and a subset of vertices, S ⊆ V , a
Steiner cycle, C ⊂ E, is a simple cycle whose vertices contains the set S.

It is important to observe that in our definition of a Steiner cycle, there are no
repeated vertices, since a Steiner cycle is a simple cycle. We define an approxi-
mate Steiner cycle as one in which we are allowed to repeat vertices. For a cycle
C, we will use |C| to denote the number of unique vertices it contains. We define
the cycle length, �(C), to be total length of a traversal of the cycle. If C is a
simple cycle, then |C| = �(C). For example, in Fig. 1, the non-simple cycle has
eight unique vertices and has length ten. Our definition of cycle length is the
same as the standard definition for the length of a TSP tour in the graph metric.
Now we can define an approximate Steiner cycle.

Definition 2. Given a graph G = (V,E) and a subset of vertices, S ⊆ V , an
approximate Steiner cycle, C ⊂ E, with relative length β ≥ 1 is a cycle whose
vertices contains the set S and for which �(C)/|C| ≤ β.
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In an approximate Steiner cycle, since we are allowed to repeatedly visit vertices
as we traverse the cycle, it may be the case that the number of unique vertices
will be smaller than the length, |C| < �(C). Throughout this paper, whenever
we refer simply to a “cycle”, we mean a simple cycle.

Other natural definitions of the Steiner cycle problem are concerned with
such aspects as minimizing the number of non-required (Steiner) vertices in
the cycle. In our definition of the approximate Steiner cycle problem, the only
objective that we wish to minimize is the ratio of the length of a cycle, �(C), to
the number of unique vertices, |C|, it contains. Thus, the measure of an optimal
solution is independent of the size of the set of required vertices. The work that
appears to be most related to the Steiner cycle problem as we have defined it
concerns the concept of cyclability: A set of vertices X ⊆ V is called cyclable
if it is contained in some cycle. The quantity cyc(G) is the maximum number
such that all subsets containing at most cyc(G) vertices are cyclable. Note that
cyc(G) = n if and only G is Hamiltonian. It seems that most of the work on
cyclability has been done with the intention of eventually using it to prove that
certain graphs are Hamiltonian or because it can be viewed as a relaxation of
Hamiltonicity. An interesting list of theorems on cyclability can be found in [21].
Here, we explore cyclability as a tool to obtain approximate TSP tours.

2.1 Our Approach

Graph-TSP can clearly be cast as a special case of the Steiner cycle problem in
which all of the vertices in V are required to belong to the Steiner cycle. In this
paper, we show that even if the required set of vertices is possibly much smaller
than the entire vertex set V , an (approximation) algorithm for the Steiner cycle
problem can still be used to approximate graph-TSP.

Suppose we can find a spanning tree T for the graph G and a simple cycle CT

that contains all of the vertices that have an odd-degree in the tree T . When |CT |
is large, we show that we can use the folklore “double spanning tree” algorithm to
find a short tour. When |CT | is small, then there is a small matching on the odd-
degree vertices in T and we can therefore show that Christofides algorithm [5]
yields a short tour. Thus, our algorithm, described in Sect. 3, can be viewed as
a combination of these two standard algorithms for graph-TSP.

We are not aware of any previous work studying how to combine these
two classic algorithms for graph-TSP. However, a similar algorithm that com-
bines these two algorithms was given by Guttman-Beck, Hassin, Khuller and
Raghavachari for the s, t-path TSP [15]. In their algorithm, they first find an
MST for the input graph. If the path from s to t in this MST is long, they
double edges in the MST that do not belong to this path. If the path from s
to t is short, they modify the input graph by adding an edge from s to t with
length equal to the shortest s, t-path in G and run Christofides on this modified
graph as in the algorithm by Hoogeveen [17]. Taking the better of these two
algorithms results in a 5/3-approximation for the s, t-path problem, which does
not improve on the worst-case approximation ratio of Hoogeveen’s algorithm.
Nevertheless, this approach was used to design algorithms for special variants of
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Fig. 2. A graph G with a spanning tree T (second figure, blue edges) and a simple
cycle CT (third figure, purple edges) containing all of the odd-degree nodes of T (Color
figure online).

the path TSP problem [15], and the ideas were also eventually used to obtain
improved approximation guarantees for the s, t-path TSP itself [22]. In our algo-
rithm, rather than basing the subcases on the path length from s to t in an
MST, we are basing the two subcases on the length of a cycle containing the
nodes with odd degree in a particular MST.

2.2 Overview of Our Results

In Sect. 3, we give a complete description of our algorithm. In Sect. 4, we use
this algorithm to show that if the input graph contains a Hamiltonian path,
then it has a TSP tour of length at most 4n/3. Moreover, if we are given the
Hamiltonian path, then we can efficiently find such a tour. This theorem was
first proved by Gupta using a different approach [14].

One can view a Hamiltonian path as a spanning tree with two leaves.
A natural question is how well we can approximate a TSP tour in a graph that
contains a spanning tree with few leaves. In Sect. 5, we show how our approach
can be used to address this question in some special cases. In Sect. 6, we discuss
how approximate Steiner cycles can also be used to obtain an approximation
guarantee for graph-TSP. Finally, in Sect. 7, we consider some examples (Fig. 2).

3 TSP Tours from Steiner Cycles

Given an undirected, unweighted graph, G = (V,E), with graph metric, our goal
is to find a TSP tour of minimum length. A TSP tour must visit each vertex
at least once. As stated previously in the introduction, we assume that G is a
2-connected graph and we define n = |V |.

Let T be a spanning tree of G and let ST ⊂ V be the vertices that have odd
degree in T . Suppose there is a simple cycle CT that contains all the vertices in
ST . Note that the simple cycle CT can be of arbitrary length, i.e. can contain
arbitrarily many vertices in V \ ST .

Theorem 1. For a given graph G, suppose we have a minimum spanning tree
T and a simple cycle CT that contains all vertices with odd degree in T . Then
we can construct a TSP tour of G with length at most 4n/3.

Proof: Consider the following cases. Recall that |CT | denotes the number of
unique vertices contained in the cycle CT . Since CT is a simple cycle, |CT | also
denotes its length.
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(i) |CT | > 2n/3. In this case, we can contract the cycle CT to a single vertex.
The resulting graph has at most n/3 vertices. We can then find a minimum
spanning tree on this graph and double each edge. When we uncontract the
vertex corresponding to the cycle CT , we obtain an Eulerian tour whose total
length is at most 4n/3.

(ii) |CT | ≤ 2n/3. In this case, since all of the vertices of ST are contained in CT ,
there is a matching of the vertices in ST with length at most n/3. Using this
matching plus T , we obtain an Eulerian tour of G of length at most 4n/3.

��
We can therefore see that if G has a tree T and a simple cycle CT that

contains all of the vertices with odd degree in T , then G has a TSP tour of
length at most 4n/3. We now show how to apply this theorem to some special
classes of graphs.

4 Graphs Containing a Hamiltonian Path

Recall that a Hamiltonian path in G is a path that visits each vertex in V
exactly once. Note that the first and last vertices on the path might not be
adjacent vertices in G. More generally, G might not be Hamiltonian. In this
section, we show that for an unweighted graph G = (V,E) with graph metric, if
G contains a Hamiltonian path, then G has a TSP tour of length at most 4n/3.

Theorem 2. Suppose G contains a Hamiltonian path. Then G has a TSP tour
of length at most 4n/3.

Proof: Suppose that the first and last vertices of the Hamiltonian path are adja-
cent in the graph. Then G is Hamiltonian and, moreover, given the Hamiltonian
path, we can find this tour.

If the first and last vertices of the Hamiltonian path are not adjacent in G,
then since G is 2-vertex connected, we can use Menger’s theorem [10,18], which
states that there are two vertex disjoint paths between any two non-adjacent
vertices in a 2-vertex connected graph. Thus, we have a simple cycle including
the odd-degree nodes on the tree (the first and last nodes in the Hamiltonian
path) and the proof of the theorem follows directly from applying Theorem1. ��
Since there are constructive proofs of Menger’s Theorem, Theorem 2 results in
an efficient algorithm, assuming the Hamiltonian path is given.

5 Graphs Containing a Spanning Tree with k Leaves

A Hamiltonian path can be viewed as a spanning tree with two leaves. A natural
extension is to ask what happens when a graph does not contain a Hamiltonian
path but rather a spanning tree with few leaves. Does it still have a short TSP
tour? Suppose G has a spanning tree with k leaves. If G is well-connected, we
can use a well-known theorem of Dirac to obtain an upper bound on the length
of a TSP tour of G.
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Theorem 3. Suppose G is 2(k−1)-connected and contains a spanning tree with
k leaves. Then G has a TSP tour of length at most 4n/3.

Proof: A spanning tree with k leaves contains at most 2(k − 1) vertices with
odd degree. A theorem of Dirac states that if a graph is c-vertex connected,
then any subset X ⊆ V of vertices with |X| ≤ c is contained in some simple
cycle [3,9]. Thus, if c = 2(k − 1), then G is c-connected by the assumption of
the theorem. Moreover, G has at most c odd-degree vertices if it has k leaves.
We can therefore let X be the set of odd-degree vertices and the theorem follows
directly from applying Theorem1. ��
Finding a simple cycle containing c vertices in a c-connected graph can be done
efficiently (see Chap. 9 in [3]). Thus, Theorem 3 results in an efficient algorithm
assuming the spanning with k leaves is given.

More generally, Steiner cycles have been studied by the Graph Theory com-
munity and if a set of vertices X ⊆ V is contained in a cycle, then the set
X is called cyclable. This terminology is attributed to Chvatal [6]. Moreover,
cyclability of a graph G, i.e. cyc(G), is the maximum number such that every
subset of at most cyc(G) vertices is cyclable. If a graph G has a cyclable number
c = cyc(G) and it also contains a spanning tree with at most c/2+1 leaves, then
this spanning tree contains at most c odd-degree vertices. Thus, it will contain
a TSP tour of length 4n/3 via Theorem 1. Considerable effort has been invested
in computing the cyclablity of certain graph classes. For example, we cite the
following two theorems:

Theorem 4 [16]. For every 3-connected cubic graph G, cyc(G) ≥ 9. This bound
is sharp (the Petersen graph).

Theorem 5 [2]. For every 3-connected cubic planar graph G, cyc(G) ≥ 23. This
bound is sharp.

Theorem 4 implies that if a 3-connected, cubic graph G contains a spanning tree
with at most five leaves, then G has a TSP tour of length at most 4n/3. The-
orem 5 shows that if a 3-connected, planar, cubic graph G contains a spanning
tree with at most 12 leaves, then G has a TSP tour of length at most 4n/3. We
remark that showing that a 3-connected cubic graph has a spanning trees with
at most five leaves as a means to bounding the length of a TSP tour would only
be an alternative approach, as it is already known that a cubic graph has a TSP
tour of length at most 4n/3 [1,4,14,19].

A well-known theorem of Dirac states that every graph with minimum degree
at least n/2 is Hamiltonian. A analogous theorem can be shown for cyclability.
Let X ⊆ V be a subset of vertices and define σ2(X) := min{∑

y∈Y d(y) : Y ⊆
X, |Y | = 2, Y is an independent set}. In other words, if we choose each pair of
non-adjacent vertices in X and add up their degrees, σ2(X) is the minimum of
this quantity. This is used in the following theorem due to Shi:

Theorem 6 [24]. Let G = (V,E) be a 2-connected graph and X ⊂ V .
If σ2(X) ≥ n, then X is cyclable in G.
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If we find a spanning tree T such that all non-adjacent pairs of vertices with
odd-degree in T have total degree at least n (in G), then G has a TSP tour
of length at most 4n/3. The vertices that have an even degree in the tree are
allowed to have low degree in G. Another nice theorem on cyclability is due to
Fournier:

Theorem 7 [11]. Let G be a 2-connected graph and X ⊆ V . If α(X) ≤ κ(G),
then X is cyclable in G.

Here, α(X) means the largest independent set in X, and κ(G) is the connectivity
of G. It is known that if α(G) ≤ κ(G), then G is Hamiltonian [7]. Theorem 7
implies that if the set of odd-degree vertices in a spanning tree has a maximum
independent set that is smaller than the connectivity of G, then G has a TSP
tour of length at most 4n/3.

In relation to Theorem 3, it is reasonable to ask if, for sufficiently large k,
a 2(k − 1)-connected graph has a spanning tree with k leaves. This is not the
case as demonstrated by the following example. Consider the complete bipartite
graph G = Kc,n where n >> c. Then G is c-connected, but the minimum length
TSP tour is roughly 2n. So G cannot contain a spanning tree with at most c/2+1
leaves.

5.1 Graphs Containing a k-Leaf DFS Spanning Tree

If G has a depth-first-search (DFS) spanning tree with k leaves, then we note
that the techniques of Mömke and Svensson [19] can be used to obtain a TSP
tour of length at most 4n/3 + 2k/3. Specifically, in this case, it is not difficult
to see that there is a circulation (as defined by Mömke and Svensson) of cost
at most k. This implies that one can also use the techniques from Mömke and
Svensson to prove Theorem 2. We emphasize that a DFS spanning tree must be
used to directly apply the techniques of Mömke and Svensson. In comparison, in
Theorem 3, we can use any spanning tree with k leaves. The proof of Lemma 1
is straightforward, but we include it for the sake of completeness.

Lemma 1. If G has a DFS spanning tree with at most k leaves, then it has a
circulation, as defined by Mömke and Svensson [19], of cost at most k.

Proof: We will demonstrate a 2-connected subgraph of G such that the cost of
a circulation on this subgraph is at most k.

Consider a path from the root of the DFS tree to a leaf. Let us call this path
p1. Suppose that the vertices on p1 are labeled sequentially from the root to the
leaf in increasing order, 1, 2, ...�(p1), where �(p1) denotes the number of vertices
in the path p1. We find a back-edge from the leaf or the vertex labeled �(p1)
to a vertex with the smallest label. Suppose that this edge goes from �(p1) to
h. Then at the next step, we find the back-edge (i, j) where �(p1) > i > h and
j < i and j is as small as possible. Since G is 2-connected, we will always be
able to find such an edge. Otherwise G would contain a cut vertex, which would
contradict the 2-connectivity of G.
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Now consider a path on the DFS tree from some vertex on p1 to another
leaf. Call the path from the root to this leaf p2. Perform the same procedure as
above: starting at the leaf, find some back-edges, so that the resulting subgraph
containing paths p1 and p2 and these back-edges is 2-connected. At some point,
we will add a back edge that intersects with the path p1. If this is a branching
node, i.e. the last node that belongs to both p1 and p2, we will add one more
back edge so that the resulting subgraph is 2-connected.

Note that each vertex in p2 that is below this branching node, i.e. has a
higher label, has only one back-dge coming into it. The only vertices that may
have more than one back-edge coming into them are the branch node and another
node with a lower label. However, since in Lemma 4.1 of [19], each subtree of
a branch node is accounted separately in the circulation network, if the branch
node now has, say, two back-edges, it also has two subtrees, so its contribution
to the circulation is still zero. A node above the branch node with B back-edges
coming into it will contribute at most B − 1 to the cost of the circulation.

As we add each root-leaf path in the DFS tree, and we add the new path and
a set of back-edges to make the subgraph 2-connected, we will add at most one
back-edge to a vertex that already has incoming back-edges. Thus, the circulation
is upper bounded by k if the DFS tree has k leaves. ��
Theorem 8. If G has a DFS spanning tree with at most k leaves, then it has a
TSP tour of at most 4n/3 + 2k/3.

Proof: This follows from Lemma 1 and Lemma 4.1 of Mömke and Svensson
[19]. ��

6 Cycle Length and Approximation Ratio Tradeoff

We have shown that a simple cycle that contains the odd-degree nodes in some
spanning tree yields a TSP tour of length at most 4n/3. Suppose we can only
obtain an approximate Steiner cycle. Then what is the guarantee on the length
of the TSP tour? We now show that we can obtain the following tradeoff. For
a cycle C in G that is not necessarily simple, recall that |C| is the number of
unique vertices in the cycle C and �(C) denotes its length.

Theorem 9. Given G, a minimum spanning tree T and an approximate Steiner
cycle CT that contains all the odd-degree vertices in T such that �(CT ) ≤ (1 +
γ)|CT |, we can construct a TSP tour of G of length at most 4n

3−γ .

Proof: We consider two cases based on the number of unique vertices in the
cycle CT :

(i) |CT | > 2n
3−γ . Then we contract the cycle CT to a single vertex, find a min-

imum spanning tree on the resulting graph and double each edge in this
spanning tree. Since the length of cycle �(CT ) ≤ (1+γ)|CT |, the total length
of the resulting Eulerian tour is at most:
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Fig. 3. Any spanning tree of this graph has too many leaves to be spanned by a simple
cycle. However, note that the solution to the Held-Karp LP relaxation will be |E| = 2n
for this graph, certifying that the lower bound is much greater than 4n/3 in this case.

�(TSP ) ≤ (1 + γ)|CT | + 2(n − |CT |) (1)
= 2n + (1 + γ − 2)|CT | (2)
= 2n − (1 − γ)|CT | (3)

< 2n − 2n

(3 − γ)
(1 − γ) (4)

=
4n

3 − γ
. (5)

(ii) |CT | ≤ 2n
3−γ . In this case, we find a matching of the odd-degree vertices in T

with length at most (1+γ)|CT |/2. The total length of the resulting Eulerian
tour S is at most:

�(TSP ) ≤ n + (1 + γ)
|CT |

2
(6)

≤ n +
(1 + γ)

2
2n

(3 − γ)
(7)

=
4n

3 − γ
. (8)

��

6.1 Approximation Guarantees from LP Bounds

In general, it could be the case that there does not exist a spanning tree whose
odd-degree vertices can be contained in a simple cycle. An example of such a
graph can be found in Fig. 3. However, suppose we can compute, via an LP
relaxation or some other means, a lower bound on the length of a TSP tour,
e.g. OPT ≥ (1 + α)n for 0 ≤ α ≤ 1. Then the following Corollary of Theorem9
states a sufficient condition for a 4

3 -approximation to the optimal TSP tour.

Corollary 1. If an optimal tour is lowerbounded by OPT ≥ (1 + α)n and G
contains a spanning tree T and a cycle CT containing the odd-degree nodes of
T such that �(CT ) ≤ (1 + 4α)|CT |/(1 + α), then G has a TSP tour of length at
most 4

3 · OPT .
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Note that Theorem 9 says that if we can find a tree T and a cycle CT such that
�(CT )/|CT | < 4/3, then we can find a TSP tour less than 3n/2. To find a tour
shorter than 7n/5 (which is currently the best known bound when the solution
to the standard LP relaxation equals n [23]), we require that �(CT )/|CT | < 8/7.

7 Discussion

We have reduced the problem of finding a short TSP tour to the problem of
finding an (approximate) Steiner cycle where the required vertices are the odd-
degree nodes in some spanning tree, and we have flexibility as to whether or not
we include the non-required vertices in the cycle. But is this problem any easier
than graph-TSP itself? For example, in Fig. 4, we give an example of a graph
and a spanning tree such that the odd-degree vertices of the spanning tree is the
entire vertex set! Thus, finding a Steiner cycle for these vertices is no easier than
finding a TSP tour. However, in this example, we can see that there are many
other possible spanning trees. Figure 5 shows two other possible spanning trees
and corresponding Steiner cycles. We note that given a spanning tree, the Steiner
cycle including the odd-degree nodes may not be unique. Another example of a
graph G and a spanning tree in which every vertex can have odd degree is shown
in Fig. 6. But, again, there are many other spanning trees in which only a subset
of the vertices have odd degree (Fig. 7).

Each of the examples we have considered so far actually contains a Hamil-
tonian path. Thus, by applying Theorem2, we can see that they have a TSP tour
of length at most 4n/3. There are actually interesting examples of cubic, 3-edge
connected graphs that do not contain a Hamiltonian path. The graph shown
in Fig. 8 is such a graph due to Zamfirescu [27]. We see that we can construct
a spanning tree and Steiner cycle containing all of the vertices that have odd
degree in the spanning tree.In conclusion, let us consider the following question:

Fig. 4. A graph G and a spanning tree.

Fig. 5. Alternative spanning trees for G and corresponding Steiner cycles.

Fig. 6. The wheel graph has a spanning tree in which all vertices have odd degree.
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Fig. 7. Alternative spanning trees with fewer odd-degree vertices for the wheel graph.

Fig. 8. A cubic, 3-edge connected graph with no Hamiltonian paths. We show a span-
ning tree and a corresponding Steiner cycle containing all the nodes with odd degree
in the spanning tree.

Suppose the standard linear programming relaxation for Graph TSP has value
n on a fixed graph. Then is there a spanning tree T and a simple cycle CT that
contains all of the vertices that are odd-degree in T? If a graph is Hamiltonian,
then this is (trivially) true for any spanning tree.
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