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Abstract. The Hadwiger number of a graph G is the largest integer h
such that G has the complete graph Kh as a minor. We show that the
problem of determining the Hadwiger number of a graph is NP-hard on
co-bipartite graphs, but can be solved in polynomial time on cographs
and on bipartite permutation graphs. We also consider a natural gener-
alization of this problem that asks for the largest integer h such that G
has a minor with h vertices and diameter at most s. We show that this
problem can be solved in polynomial time on AT-free graphs when s ≥ 2,
but is NP-hard on chordal graphs for every fixed s ≥ 2.

1 Introduction

The Hadwiger number of a graph G, denoted by h(G), is the largest integer h
such that the complete graph Kh is a minor of G. The Hadwiger number has
been the subject of intensive study, not in the least due to a famous conjecture by
Hugo Hadwiger from 1943 [8] stating that the Hadwiger number of any graph
is greater than or equal to its chromatic number. In a 1980 paper, Bollobás
et al. [2] called Hadwiger’s conjecture “one of the deepest unsolved problems in
graph theory.” Despite many partial results the conjecture remains wide open
more than 70 years after it first appeared in the literature.

Given the vast amount of graph-theoretic results involving the Hadwiger
number, it is natural to study the computational complexity of the Hadwiger
Number problem, which is to decide, given an n-vertex graph G and an integer
h, whether the Hadwiger number of G is greater than or equal to h (or, equiva-
lently, whether G has Kh as a minor). Rather surprisingly, it was not until 2009
that this problem was shown to be NP-complete by Eppstein [6]. Two years ear-
lier, Alon et al. [1] observed that the problem is fixed-parameter tractable when
parameterized by h due to deep results by Robertson and Seymour [10]. This
shows that the problem of determining the Hadwiger number of a graph is in
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some sense easier than the closely related problem of determining the clique num-
ber of a graph, as the decision version of the latter problem is W[1]-hard when
parameterized by the size of the clique. Alon et al. [1] showed that the same
holds from an approximation point of view: they provided a polynomial-time
approximation algorithm for the Hadwiger Number problem with approxi-
mation ratio O(

√
n), contrasting the fact that it is NP-hard to approximate the

clique number of an n-vertex graph in polynomial time to within a factor better
than n1−ε for any ε > 0 [13].

Bollobás et al. [2] referred to the Hadwiger number as the contraction clique
number. This is motivated by the observation that for any integer h, a connected
graph G has Kh as a minor if and only if G has Kh as a contraction. In this con-
text, it is worth mentioning another problem that has recently attracted some
attention from the parameterized complexity community. The Clique Con-
traction problem takes as input an n-vertex graph G and an integer k, and
asks whether G can be modified into a complete graph by a sequence of at most
k edge contractions. Since every edge contraction reduces the number of vertices
by exactly 1, it holds that (G, k) is a yes-instance of the Clique Contrac-
tion problem if and only if G has the complete graph Kn−k as a contraction
(or, equivalently, as a minor). Therefore, the Clique Contraction problem
can be seen as the parametric dual of the Hadwiger Number problem, and is
NP-complete on general graphs. When parameterized by k, the Clique Con-
traction problem was recently shown to be fixed-parameter tractable [4,9],
but the problem does not admit a polynomial kernel unless NP ⊆ coNP/poly [4].

In this paper, we study the computational complexity of the Hadwiger
Number problem on several graph classes of bounded chordality. For chordal
graphs, which form an important subclass of 4-chordal graphs, the Hadwiger
Number problem is easily seen to be equivalent to the problem of finding a
maximum clique, and can therefore be solved in linear time on this class [12]. In
Sect. 3, we present polynomial-time algorithms for solving the Hadwiger Num-
ber problem on two other well-known subclasses of 4-chordal graphs: cographs
and bipartite permutation graphs. We also prove that the problem remains NP-
complete on co-bipartite graphs, and hence on 4-chordal graphs. The latter result
implies that the problem is also NP-complete on AT-free graphs, a common
superclass of cographs and bipartite permutation graphs.

In Sect. 4, we consider a natural generalization of the Hadwiger Number
problem, and provide additional results about finding large minors of bounded
diameter. We show that the problem of determining the largest integer h such
that a graph G has a minor with h vertices and diameter at most s can be solved
in polynomial time on AT-free graphs if s ≥ 2. In contrast, we show that this
problem is NP-hard on chordal graphs for every fixed s ≥ 2, and remains NP-
hard for s = 2 even when restricted to split graphs. Observe that when s = 1,
the problem is equivalent to the Hadwiger Number problem and thus NP-
hard on AT-free graphs and linear-time solvable on chordal graphs due to our
aforementioned results.
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Due to space restrictions, proofs are either omitted or just sketched in this
extended abstract. The full version of the paper is available at [5].

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. For each of
the graph problems considered in this paper, we let n = |V (G)| and m = |E(G)|
denote the number of vertices and edges, respectively, of the input graph G.
For a graph G and a subset U ⊆ V (G) of vertices, we write G[U ] to denote the
subgraph of G induced by U . We write G−U to denote the subgraph of G induced
by V (G) \ U , and G − u if U = {u}. For a vertex v, we denote by NG(v) the set
of vertices that are adjacent to v in G. The distance distG(u, v) between vertices
u and v of G is the number of edges on a shortest path between them. The
diameter diam(G) of G is max{distG(u, v) | u, v ∈ V (G)}. The complement of
G is the graph G with vertex set V (G), where two distinct vertices are adjacent
in G if and only if they are not adjacent in G. For two disjoint vertex sets
X,Y ⊆ V (G), we say that X and Y are adjacent if there are x ∈ X and y ∈ Y
that are adjacent in G.

We say that P is a (u, v)-path if P is a path that joins u and v. The vertices
of P different from u and v are the inner vertices of P . We denote by Pn and
Cn the path and the cycle on n vertices respectively. The length of a path is
the number of edges in the path. A set of pairwise adjacent vertices is a clique.
A matching is a set M of edges such that no two edges in M share an end-vertex.
A vertex incident to an edge of a matching M is said to be saturated by M . We
write Kn to denote the complete graph on n vertices, i.e., graph whose vertex
set is a clique. For two integers a ≤ b, the (integer) interval [a, b] is defined as
[a, b] = {i ∈ Z | a ≤ i ≤ b}. If a > b, then [a, b] = ∅.

The chordality chord(G) of a graph G is the length of a longest induced
cycle in G; if G has no cycles, then chord(G) = 0. For a non-negative integer k,
a graph G is k-chordal if chord(G) ≤ k. A graph is chordal if it is 3-chordal.
A graph is chordal bipartite if it is both 4-chordal and bipartite. A graph is a
split graph if its vertex set can be partitioned in an independent set and a clique.
For a graph F , we say that a graph G is F -free if G does not contain F as an
induced subgraph. A graph is a cograph if it is P4-free. Let σ be a permutation
of {1, . . . , n}. A graph G is said to be a permutation graph for σ if G has vertex
set {1, . . . , n} and two vertices i, j are adjacent if and only if i, j are reversed
by the permutation. A graph G is a permutation graph if G is a permutation
graph for some σ. A graph is a bipartite permutation graph if it is bipartite and
permutation. An asteroidal triple (AT) is a set of three non-adjacent vertices
such that between each pair of them there is a path that does not contain a
neighbor of the third. A graph is AT-free if it contains no AT. Each of the
above-mentioned graph classes can be recognized in polynomial (in most cases
linear) time, and they are closed under taking induced subgraphs [3,7]. See the
monographs by Brandstädt et al. [3] and Golumbic [7] for more properties and
characterizations of these classes and their inclusion relationships.
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Minors, Induced Minors, and Contractions. Let G be a graph and let
e ∈ E(G). The contraction of e removes both end-vertices of e and replaces
them by a new vertex adjacent to precisely those vertices to which the two end-
vertices were adjacent. We denote by G/e the graph obtained from G be the
contraction of e. For a set of edges S, G/S is the graph obtained from G by the
contraction of all edges of S. A graph H is a contraction of G if H = G/S for
some S ⊆ E(G). We say that G is k-contractible to H if H = G/S for some
set S ⊆ E(G) with |S| ≤ k. A graph H is an induced minor of G if a H is a
contraction of an induced subgraph of G. Equivalently, H is an induced minor
of G if H can be obtained from G by a sequence of vertex deletions and edge
contractions. A graph H is a minor of a graph G if H is a contraction of a
subgraph of G. Equivalently, H is a minor of G if H can be obtained from G by
a sequence of vertex deletions, edge deletions, and edge contractions.

Let G and H be two graphs. An H-witness structure W of G is a partition
{W (x) | x ∈ V (H)} of the vertex set of a (not necessarily proper) subgraph of
G into |V (H)| sets called bags, such that the following two conditions hold:

(i) each bag W (x) induces a connected subgraph of G;
(ii) for all x, y ∈ V (H) with xy ∈ E(H), bags W (x) and W (y) are adjacent

in G.

In addition, we may require an H-witness structure to satisfy one or both of
the following additional conditions:

(iii) for all x, y ∈ V (H) with xy /∈ E(H), bags W (x) and W (y) are not adjacent
in G;

(iv) every vertex of G belongs to some bag.

By contracting each of the bags into a single vertex we observe that H is a
contraction, an induced minor, or a minor of G if and only if G has an H-witness
structure W that satisfies conditions (i)–(iv), (i)–(iii), or (i)–(ii), respectively.
We will refer to such a structure W as an H-contraction structure, an H-induced
minor structure, and an H-minor structure, respectively. Observe that, in gen-
eral, such a structure W is not uniquely defined.

Let W be an H-witness structure of G, and let W (x) be a bag of W. We say
that W (x) is a singleton if |W (x)| = 1 and W (x) is an edge-bag if |W (x)| = 2.
We say that W (x) is a big bag if |W (x)| ≥ 2.

We conclude this section by presenting three structural lemmas that will
be used in the polynomial-time algorithms presented in Sect. 3. The first lemma
readily follows from the definitions of a minor, an induced minor, and a
contraction.

Lemma 1. For every connected graph G and non-negative integer p, the follow-
ing statements are equivalent:

– G has Kp as a contraction;
– G has Kp as an induced minor;
– G has Kp as a minor.
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We say that an H-induced minor structure W = {W (x) | x ∈ V (H)} is
minimal if there is no H-induced minor structure W ′ = {W ′(x) | x ∈ V (H)}
with W ′(x) ⊆ W (x) for every x ∈ V (H) such that at least one inclusion is
proper.

Lemma 2. For any minimal Kp-induced minor structure of a graph G, each
bag induces a subgraph of diameter at most max{chord(G) − 3, 0}.

Note that Lemma 2 immediately implies the aforementioned equivalence on
chordal graphs between the Hadwiger Number problem and the problem of
finding a maximum clique. Lemma2 also implies the following result.

Corollary 1. If G is a graph of chordality at most 4, then for any minimal
Kp-induced minor structure in G, each bag is a clique.

We say that a Kp-induced minor structure is nice if each bag is either a
singleton or an edge-bag.

Lemma 3. Let G be a C6-free graph of chordality at most 4. If Kp is an induced
minor of G, then G has a nice Kp-induced minor structure.

3 Computing the Hadwiger Number

First, we show that Hadwiger Number problem can be solved in polynomial
time on bipartite permutation graphs.

Let us for a moment consider the class of chordal bipartite graphs. Recall
that these are exactly the bipartite graphs that have chordality at most 4. It is
well-known that chordal bipartite graphs form a proper superclass of the class of
bipartite permutation graphs. Since chordal bipartite graphs have chordality at
most 4 and are C6-free due to the absence of triangles, we can apply Lemma3
to this class. Let us additionally observe that the number of singletons in any
Kp-induced minor structure of a bipartite graph is at most 2.

The above observations allow us to reduce the Hadwiger Number problem
on chordal bipartite graphs to a special matching problem as follows. We say
that a matching M in a graph G is a clique-matching if for any two distinct
edges e1, e2 ∈ M , there is an edge in G between an end-vertex of e1 and an
end-vertex of e2. Now consider the following decision problem:

Clique-Matching
Instance: A graph G and a positive integer k.
Question: Is there a clique-matching of size at least k in G?

Lemma 4. If the Clique-Matching problem can be solved in f(n,m) time on
chordal bipartite graphs, then the Hadwiger Number problem can be solved in
O((n + m) · f(n,m)) time on this graph class.
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We will use the following characterization of bipartite permutation graphs
given by Spinrad et al. [11] (see also [3]). Let G be a bipartite graph and let
V1, V2 be a bipartition of V (G). An ordering of vertices of V2 has the adjacency
property if for every u ∈ V1, NG(u) consists of vertices which are consecutive
in the ordering of V2. An ordering of vertices of V2 has the enclosure property
if for every pair of vertices u, v ∈ V1 such that NG(u) ⊆ NG(v), vertices in
NG(v) \ NG(u) occur consecutively in the ordering of V2.

Lemma 5 [11]. Let G be a bipartite graph with bipartition V1, V2. The graph G
is a bipartite permutation graph if and only there is an ordering of V2 that has
the adjacency and enclosure properties. Moreover, bipartite permutation graphs
can be recognized and the corresponding ordering of V2 can be constructed in
linear time.

Theorem 1. The Clique-Matching problem can be solved in O(mn4) time
on bipartite permutation graphs.

Proof. Let G be a bipartite permutation graph and let V1, V2 be a bipartition
of the vertex set. We assume without loss of generality that G has no isolated
vertices. Let n1 = |V1| and n2 = |V2|. We present a dynamic programming algo-
rithm for the problem. For simplicity, the algorithm we describe only finds the
size of a maximum clique-matching M in G, but the algorithm can be modified
to find a corresponding clique-matching as well.

Our algorithm starts by constructing an ordering σ2 of V2 that has the adja-
cency and enclosure properties, which can be done in linear time due to Lemma 5.
From now on, we denote the vertices of V2 by their respective rank in σ2, that is
V2 = {1, . . . , n2}. Observe that for every vertex u ∈ V1, NG(u) forms an interval
of σ2. The rightmost (resp. leftmost) neighbor of u in σ2 is the vertex of NG(u)
which is the largest (resp. smallest) in σ2.

Let uv ∈ E(G) with u ∈ V1 and v ∈ V2 be an edge in G such that uv belongs
to some maximum clique-matching in G and there is no v′ ∈ V2 with v′ < v such
that v′ is saturated by a maximum clique-matching in G. Our algorithm guesses
the edge uv by trying all different edges of G. For each guess of uv, it does as
follows.

By the definition of uv, we can safely delete all vertices v′ ∈ V2 with v′ < v. To
simplify notation, we assume without loss of generality that v = 1, so uv = u1.
Denote by r the rightmost neighbor of u. Then, by the adjacency property of
σ2, we have that NG(u) = [1, r].

The algorithm now performs the following preprocessing procedure.

– Find the vertices v1, . . . , vl ∈ V1 \ {u} (decreasingly ordered with respect to
their rightmost neighbor) such that [1, r] ⊆ NG(vi). By consecutively checking
the intervals NG(v1), . . . , NG(vl) and selecting the rightmost available (i.e.,
not selected before) vertex in the considered interval, find the maximum set
S = {j1, . . . , jh} of integers such that j1 > . . . > jh > r and ji ∈ NG(vi) for
i ∈ {1, . . . , h}. Delete v1, . . . , vh from G.
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NG(xs)

NG(yt)

1 r

NG(y1)
NG(u)

NG(x1)

Fig. 1. Structure of the neighborhoods of u, x1, . . . , xs and y1, . . . , yt after the pre-
processing procedure.

– Find the vertices x1, . . . , xs ∈ V1 \ {u} (decreasingly ordered with respect to
their rightmost neighbor) such that [1, 2] ⊆ NG(xi).

– Find the vertices y1, . . . , yt ∈ V1 (increasingly ordered with respect to their
leftmost neighbor) such that 1 /∈ NG(yi) and r ∈ NG(yi).

– Delete the vertices r + 1, . . . , n2 from V2.

The structure of the neighborhoods of u, x1, . . . , xs and y1, . . . , yt after this
preprocessing procedure is shown in Fig 1.

We prove that the preprocessing procedure is safe in the following claim.

Claim 1. Let M be a clique-matching of maximum size in G such that u1 ∈ M .
Then there is a clique-matching M ′ of maximum size such that u1 ∈ M ′ and

(i) v1j1, . . . , vhjh ∈ M ′,
(ii) for any vj ∈ M ′ such that vj �= u1 and v /∈ {v1, . . . vh}, it holds that

v ∈ {x1, . . . , xs} ∪ {y1, . . . , yt} and j ∈ [2, r].

In the next stage of the algorithm we apply dynamic programming. For every
i ∈ {0, . . . , s}, j ∈ {0, . . . , t} and non-negative integer �, let c(i, j, �) denote the
size of a maximum clique-matching M such that

(a) u1 ∈ M ,
(b) for any vp ∈ M such that vp �= u1, it holds that v ∈ {x1, . . . , xi} ∪

{y1, . . . , yj}, and
(c) there are at most � vertices in [ai,j , bi,j ] = (

⋂i
p=1 NG(xp)) ∩ (

⋂j
q=1 NG(yq))

saturated by M .

Recall that the vertices of X and Y are ordered with respect to their right-
most and leftmost neighbors, respectively. Hence, for any 1 ≤ p < q ≤ i, we
have 1 ∈ NG(xq) ⊆ NG(xp) ⊆ [1, r], and for any 1 ≤ p < q ≤ j, we have
1 /∈ NG(yq) ⊆ NG(yp) ⊆ [2, r]. In particular, [ai,j , bi,j ] = NG(xi) ∩ NG(yj) for
i, j > 0. In other words, if [ai,j , bi,j ] �= ∅, then ai,j is the left end-point of the inter-
val NG(yj) and bi,j is the right end-point of the interval NG(xj). Observe that it
can happen that [ai,j , bi,j ] = ∅. Observe also that c(i, j, �) = c(i, j, bi,j − ai,j + 1)
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if [ai,j , bi,j ] �= ∅ and � > bi,j − ai,j + 1. Hence, it is sufficient to compute c(i, j, �)
for � ≤ bi,j − ai,j + 1 ≤ n2.

Because all the vertices in [ai,j , bi,j ] have the same neighbors in {x1, . . . , xi}∪
{y1, . . . , yj}, we can make the following observation.

Claim 2. Let M be a clique-matching of maximum size such that M satisfies (a)–
(c) and M has exactly f saturated vertices in [ai,j , bi,j ], and let W ⊆ [ai,j , bi,j ]
be a set of size f . Then there is a clique-matching M ′ of maximum size that
satisfies (a)–(c) such that W is the set of vertices of [ai,j , bi,j ] saturated by M ′.

If i = j = 0, then we set c(i, j, �) = 1 taking into account the matching with
the unique edge u1. For other values of i, j, c(i, j, �) is computed as follows. To
simplify notation, we assume that x0 = y0 = u.

Computation of c(i, j, �) for i > 0, j = 0. Because 1 ∈ NG(xq) ⊆ NG(xp) ⊆
[1, r] for every 1 ≤ p < q ≤ i, any matching with edges incident to x1, . . . , xi is
a clique-matching. This observation also implies that a maximum matching can
be obtained in greedy way. Notice that [ai,0, bi,0] = NG(xi). By consecutively
checking the intervals NG(x1), . . . , NG(xi) and selecting the rightmost available
(i.e., not selected before) vertex in the considered interval, we find the maximum
set {p1, . . . , pq} of integers such that t ≥ p1 > . . . > pq > 1, pf ∈ NG(xf ) for
f ∈ {1, . . . , q}, and |{p1, . . . , pq} ∩ [ai,0, bi,0]| ≤ � − 1. Taking into account the
edge u1, we observe that M = {u1, x1p1, . . . , xqpq} is a required matching, and
we have that c(i, j, �) = q + 1.

Computation of c(i, j, �) for i = 0, j > 0. Now we have that r ∈ NG(yq) ⊆
NG(yp) ⊆ [2, r] for every 1 ≤ p < q ≤ j. Hence, any matching with edges
incident to y1, . . . , yj is a clique-matching and a maximum matching can be
obtained in greedy way. Notice that [a0,j , b0,j ] = NG(yj). By consecutively check-
ing the intervals NG(y1), . . . , NG(yj) and selecting the leftmost available (i.e.,
not selected before) vertex in the considered interval, we find the maximum
set {p1, . . . , pq} of integers such that 1 < p1 < . . . < pq ≤ r, pf ∈ NG(yf )
for f ∈ {1, . . . , q}, and |{p1, . . . , pq} ∩ [a0,j , b0,j ]| ≤ �. It is straightforward to
see that M = {u1, y1p1, . . . , yqpq} is a required matching, and we have that
c(i, j, �) = q + 1.

Computation of c(i, j, �) for i > 0, j > 0. We compute c(i, j, �) using the
tables of already computed values c(i − 1, j′, �′) for j′ ≤ j. We find the size of a
maximum clique-matching M by considering all possible choices for the vertex
xi and then take the maximum among the obtained values. We distinguish three
cases. Recall that [ai,j , bi,j ] = NG(xi) ∩ NG(yj).

Case 1. The vertex xi is not saturated by M . We have that [ai−1,j , bi−1,j ] =
NG(xi−1) ∩ NG(yj) ⊆ [ai,j , bi,j ] and |[ai,j , bi,j ] \ [ai−1,j , bi−1,j ]| = bi−1,j − bi,j .
By Claim 2 implies that for any maximum clique-matching M that satisfies
(a)–(c) and has no edge incident to xi, it holds that a clique-matching M ′ of
maximum size that satisfies (a)–(b), has no edge incident to xi, and has at most
�′ = � + bi−1,j − bi,j saturated vertices in [ai−1,j , bi−1,j ] has the same size as M .
Hence c(i, j, �) = c(i − 1, j, �′).
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Case 3

NG(yj)

NG(y1)

1 r

NG(u)
NG(x1)

NG(xi)

ai,j = ai−1,j

bi,j bi−1,jp

1 r

NG(u)
NG(x1)

NG(xi)

bi,j bi−1,j′

Case 2

ai,j

p

NG(y1)

NG(yj)

NG(yj′)

ai−1,j′

Fig. 2. Structure of the neighborhoods of u, x1, . . . , xi and y1, . . . , yj in Cases 2 and 3.

Now we consider the cases when xi is saturated by M . Denote by p ∈ NG(xi)
the vertex such that xip ∈ M .

Case 2. Vertex p ∈ [ai,j , bi,j ] (see Fig. 2). Observe that p is adjacent to every
vertex in {x1, . . . , xi−1} ∪ {y1, . . . , yj}. Hence, for any edge vq such that v ∈
{u} ∪ {x1, . . . , xi−1} ∪ {y1, . . . , yj} and q �= p, xip and vq have adjacent end-
vertices, i.e., this choice of p does not influence the selection of other edges of
M except that we can have at most � − 1 other saturated vertices in [ai,j , bi,j ].
We have that [ai−1,j , bi−1,j ] = NG(xi−1) ∩ NG(yj) ⊆ [ai,j , bi,j ] and |[ai,j , bi,j ] \
[ai−1,j , bi−1,j ]| = bi−1,j − bi,j . By Claim 2, we obtain that for any maximum
clique-matching M that satisfies (a)–(c) and xip ∈ M , a clique-matching M ′ of
maximum size that satisfies (a)–(b), has no edge incident to xi and has at most
�′ = � + bi−1,j − bi,j − 1 saturated vertices in [ai−1,j , bi−1,j ] has the same size as
M . Hence c(i, j, �) = c(i − 1, j, �′).

Case 3. Vertex p /∈ [ai,j , bi,j ], i.e., p < ai,j (see Fig. 2). Let j′ = max{f | p ∈
NG(yf ), 0 ≤ f ≤ j}. As p < ai,j , it holds that j′ < j.

Let f ∈ {j′ + 1, . . . , j}, g ∈ NG(yf ) and g > bi,j . Recall that bi,j is the
right end-point of NG(xi). Hence, xig /∈ E(G). Because f > j′, xfp /∈ E(G).
We conclude that such edges cannot be in M . Similarly, let f ∈ {j′ + 1, . . . , j},
g ∈ NG(yf ) and g ≤ bi,j . Then for any v ∈ {x1, . . . , xi} ∪ {y1, . . . , yj′}, it
holds that vg ∈ E(G). Also if j′ + 1 ≤ f < f ′ ≤ j, then for any g ∈ NG(xf ′),
xfg ∈ E(G). We have that it is safe to include in a clique-matching edges xfq for
f ∈ {j′+1, . . . , j}, g ∈ NG(yf ) and g ≤ bi,j . We select such edges in a greedy way.
By consecutively checking the intervals NG(yj′+1), . . . , NG(yj) and selecting the
leftmost available (i.e., not selected before) vertex in the considered interval, we
find the maximum set {g1, . . . , gq} of integers such that p < g1 < . . . < gq ≤ bi,j ,
gf ∈ NG(yf+j′) for f ∈ {1, . . . , q} and |{g1, . . . , gq} ∩ [ai,j , bi,j ]| ≤ �.

Claim 3. Let M be a clique-matching of maximum size that satisfies (a)–(c)
and xip ∈ M . Then there is a clique-matching M ′ of maximum size that satisfies
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(a)–(c) and xip ∈ M ′ such that yj′+1g1, . . . , yj′+qgq ∈ M ′ and for any vf ∈ M ′,
it holds that v ∈ {yj′+1, . . . , yj′+q} ∪ {x1, . . . , xi} ∪ {y1, . . . , yj′}.

Observe that the total number of saturated vertices in [ai−1,j′ , bi−1,j′ ] should
be at most (ai,j − ai−1,j′) + (bi−1,j′ − bi,j) + �. Using Claims 2 and 3 and taking
into account that xip ∈ M , we obtain that c(i, j, �) = c(i − 1, j′, �′) for �′ =
(ai,j − ai−1,j′) + (bi−1,j′ − bi,j) + � − (q + 1).

By our dynamic programming algorithm we eventually compute c(s, t, �) for
� = 0 if [ai,j , bi,j ] = ∅ or � = bi,j − ai,j + 1 if [ai,j , bi,j ] �= ∅. Then c(s, t, �) is the
size of a maximum clique-matching M such that

(a) u1 ∈ M ,
(b) for any yp ∈ M such that vp �= u1, it holds that v ∈ {x1, . . . , xi} ∪

{y1, . . . , yj}.

By Claim 1, the size of a maximum clique-matching M in G such that u1 ∈ M is
c(s, t, �)+ |S|, where S is the set of vertices constructed during the preprocessing
procedure. Recall that the algorithm tries all possible choices for the edge uv,
implying that our algorithm indeed computes the size of a maximum clique-
matching in G.

It remains to evaluate the running time to complete the proof. Constructing
the ordering σ2 of V2 can be done in O(n+m) time by Lemma 5. The algorithm
considers m choices for the edge uv. For each of these choices, the preprocessing
procedure can be performed in O(n) time given the orderings of V1 and V2

(notice that Lemma 5 is symmetric with respect to V1, V2, so we can obtain an
ordering of V1 with the adjacency and enclosure properties, too). Each step of
the dynamic programming can be done in O(n2) time using the orderings of
V1, V2. Observe that in this time we can compute c(i, j, �) for all values of �.
Hence, the dynamic programming algorithm runs in time O(n4). We conclude
that the total running time is O(mn4). ��

Combining Lemma 4 and Theorem 1 yields the following result.

Corollary 2. The Hadwiger Number problem can be solved in O((n + m) ·
mn4) time on bipartite permutation graphs.

We also show that the Hadwiger number of a cograph can be determined in
polynomial time.

Theorem 2. The Hadwiger Number problem can be solved in O(n3) time on
cographs.

We complement the aforementioned algorithmic results by showing that the
Hadwiger Number problem is NP-complete on co-bipartite graphs, another
well-known subclass of the class of 4-chordal graphs.

Theorem 3. The Hadwiger Number problem is NP-complete on co-bipartite
graphs.
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4 Minors of Bounded Diameter

In this section, we consider a generalization of the Hadwiger Number problem
where the aim is to obtain a minor of bounded diameter. Let s be a positive
integer. An s-club is a graph that has diameter at most s. We consider the
following problem:

Maximum s-Club Minor
Instance: A graph G and a non-negative integer h.
Question: Does G have a minor with h vertices and diameter at most s?

When s = 1, the above problem is equivalent to the Hadwiger Number
problem. Recall that, due to Lemma 1, the Hadwiger Number problem can
be seen as the parametric dual of the Clique Contraction problem. The
following straightforward lemma, which generalizes Lemma1, will allow us to
formulate the parametric dual of the Maximum s-Club Minor problem in a
similar way.

Lemma 6. For every connected graph G and non-negative integers p and s, the
following statements are equivalent:

– G has a graph with p vertices and diameter at most s as a contraction;
– G has a graph with p vertices and diameter at most s as an induced minor;
– G has a graph with p vertices and diameter at most s as a minor.

Lemma 6 implies that for any non-negative integer s, the parameteric dual
of the Maximum s-Club Minor problem can be formulated as follows:

s-Club Contraction
Instance: A graph G and a positive integer k.
Question: Does there exist a graph H with diameter at most s such that G

is k-contractible to H?

Observe that 1-Club Contraction is NP-complete on AT-free graphs as a
result of Theorem 3. This is in stark contrast with our next result.

Theorem 4. For any s ≥ 2, the s-Club Contraction problem can be solved
in O(m4n3) time on AT-free graphs, even if s is given as a part of the input.

On chordal graphs, the situation turns out to be opposite. Recall that the
Hadwiger Number problem, and hence the 1-Club Contraction problem,
can be solved in linear time on chordal graphs.

Theorem 5. For any s ≥ 2, the s-Club Contraction problem on chordal
graphs is NP-complete as well as W[2]-hard when parameterized by k. Moreover,
2-Club Contraction is NP-complete and W[2]-hard when parameterized by k
even on split graphs.
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5 Concluding Remarks

In Sect. 3, we showed that theHadwigerNumber problem can be solved in poly-
nomial time on cographs and on bipartite permutation graphs, respectively. A
natural question is how far the results in those two sections can be extended to
larger graph classes. An easy reduction from the Hadwiger Number problem
on general graphs, involving subdividing every edge of the input graph exactly
once, implies that the problem is NP-complete on bipartite graphs. Since bipartite
permutation graphs form exactly the intersection of bipartite graphs and permu-
tation graphs, and the class of permutation graphs properly contains the class of
cographs, our results naturally raise the question whether the Hadwiger
Number problem can be solved in polynomial time on permutation graphs. We
leave this as an open question. We point out that the problem is NP-complete
on co-comparability graphs, a well-known superclass permutation graphs, due to
Theorem 3 and the fact that co-bipartite graphs form a subclass of co-compara-
bility graphs.

In Sect. 4, we proved that the s-Club Contraction problem is polyno-
mial on AT-free graphs for s ≥ 2. An interesting direction for further research
is to identify other non-trivial graph classes for which the s-Club Contrac-
tion problem is polynomial-time solvable (or fixed-parameter tractable when
parameterized by k) for all values of s ≥ 2.
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8. Hadwiger, H.: Über eine klassifikation der streckenkomplexe. Vierteljschr. Natur-
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