The Maximum Labeled Path Problem

Basile Couëtoux^(\boxtimes), Elie Nakache, and Yann Vaxès

Aix-Marseille Université, CNRS, LIF UMR 7279, 13288 Marseille, France {basile.couetoux,elie.nakache,yann.vaxes}@univ-amu.fr

Abstract. In this paper, we study the approximability of the Maximum Labeled Path problem: given a vertex-labeled directed acyclic graph D, find a path in D that collects a maximum number of distinct labels. Our main results are a \sqrt{OPT} -approximation algorithm for this problem and a self-reduction showing that any constant ratio approximation algorithm for this problem can be converted into a PTAS. This last result, combined with the APX-hardness of the problem, shows that the problem cannot be approximated within a constant ratio unless $P = NP$.

1 Introduction

Optimization network design problems over labeled graphs have been widely studied in the literature $[2-8, 10, 11]$ $[2-8, 10, 11]$ $[2-8, 10, 11]$ $[2-8, 10, 11]$ $[2-8, 10, 11]$. Since these problems are usually NP-hard, they have been mainly investigated toward the goal of finding efficiently approximate solutions. Most of these studies consider edge-labels that represent kinds of connections and the optimization concerns the number of different kinds of connections used. Our motivation is different, we consider vertex-labels that represent membership to different components. Our goal is then to maximize the number of components visited by a path in a directed graph. More precisely, the problem is defined on a directed graph with labels on the vertices and the objective is to find a path visiting a maximum number of distinct labels. We call this problem Max-Labeled-Path. Actually, the vertex-labeled and edgelabeled versions of this problem are equivalent but the vertex-labeled version is closer to our initial motivation. To our knowledge, there is no prior work on this simple and natural problem. A related problem is the Min LP $s-t$ problem that asks to find a path between s and t minimizing the number of different labels in this path. In [\[7\]](#page-11-4) Hassin et al. achieves a \sqrt{n} ratio for this problem and they show that it is hard to approximate within $O(\log n)$. We used a similar approach for our hardness result and the comparison is interesting since the maximization requires a much more precise analysis.

1.1 Contributions

In this paper we report both positive and negative results about the Max-LABELED-PATH. Namely, we prove that this problem does not admit a constant factor approximation algorithm unless $P = NP$ and we propose an algorithm that returns a solution of value at least \sqrt{OPT} where OPT is the value of an

⁻c Springer International Publishing Switzerland 2014

D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 152–163, 2014.

DOI: 10.1007/978-3-319-12340-0_13

optimal solution. In Sect. [2,](#page-1-0) the hardness proof starts with a reduction from MAX 3SAT preserving the approximation and therefore proving that Max-LABELED-PATH is APX -hard. In Sect. [3,](#page-4-0) a polynomial self-reduction shows that finding a solution on a more complex graph enables us to find a solution with a better ratio on the initial graph. This, combined with the APX-hardness of the problem, shows that the problem cannot be approximated within a constant ratio unless $P = NP$. In Sect. [4,](#page-9-0) we describe a \sqrt{OPT} -approximation algorithm for MAX-LABELED-PATH. This algorithm requires a specific preprocessing and for MAX-LABELED-PATH. This algorithm requires a specific preprocessing and an inductive analysis that uses the poset structure of the problem.

1.2 Preliminaries

A vertex-labeled Directed Acyclic Graph $D = (V, A)$ is a DAG whose vertices are labeled by a function $l : V \to \mathcal{L}$. For each vertex $u \in V$, we denote by $\lambda(u)$ and call the *level* of u , the maximum number of vertices in a path having u as end-vertex. The *ith level set* L_i of D consists of all vertices $u \in V$ such that $\lambda(u) = i$. The vertices of L_1 , i.e. having no ingoing arcs, are called the *sources* of D. The vertices having no outgoing arcs are called the sink. Let k be the largest integer such that $L_k \neq \emptyset$. L_k is a subset of the sinks. Let P be a (directed) path in D. P is maximal by inclusion if and only if it connects a source to a sink. The set of labels *collected* by P is the set $\{l(u) : u \in P\}$ of labels of vertices in P. Given a vertex-labeled DAG D , the problem MAX-LABELED-PATH consists in finding a path P in D maximizing the number of distinct labels collected by P. Any solution can be extended into a maximal path without decreasing its value, therefore we only consider solutions that connects a source to a sink. In this paper, we consider only maximization problem. Let D be an instance of a maximization problem, we denote by $OPT(D)$ its optimum. We say that an algorithm *achieves a constant performance ratio* α , if for every instance D , it returns a solution of value at least α OPT(D).

2 Maximum Labeled Path Is APX-Hard

In this section, we describe a reduction from Max-3SAT establishing that Max-LABELED-PATH is APX-hard even when restricted to instances satisfying the following conditions:

- $(C1)$ All maximal (by inclusion) paths of D contain the same number k of vertices.
- (C2) D contains a path that collects all the labels, $OPT(D) = |\mathcal{L}|$.
- (C3) D contains a path that collects each label exactly once, $OPT(D) = k = |\mathcal{L}|$.
- (C4) $OPT(D) = k = |\mathcal{L}|$ is a power of two.

Note that $(C4)$ is stronger than $(C3)$ which is stronger than $(C2)$. Applying our initial reduction to satisfiable instances of Max-3SAT, we produce instances MAX-LABELED-PATH satisfying conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2) and proves Theorem [2.](#page-2-0) Then, we proceed in two steps: first we establish the APX-hardness for instances satisfying conditions (C1) and (C[3](#page-3-0)) in Theorem 3 and then the APX-hardness for instances satisfying conditions $(C1)$ and $(C4)$ in Theorem [4.](#page-4-1) In the next section we use a self-reduction of $MAX-LABELED-PATH$ to prove that Max-Labeled-Path does not belong to APX. This self-reduction is valid only for instances satisfying conditions (C1) and (C4).

Theorem 1. *(Håstad [\[9\]](#page-11-5))* Assuming $P \neq NP$, no polynomial-time algorithm *can achieve a performance ratio exceeding* $\frac{7}{8}$ *for* MAX-3SAT *even when restricted to satisfiable instances of the problem.*

Theorem 2. Assuming $P \neq NP$, no polynomial-time algorithm can achieve a $performance \; ratio \; exceeding \frac{7}{8} \; for \; MAX-LABELED-PATH \; even \; when \; restricted \; to$ *instances satisfying conditions (C1) with* $k \leq 3|\mathcal{L}|$ *and (C2).*

Before proving Theorem [2,](#page-2-0) we establish the following lemma showing that (C1) is not a strong requirement in the sense that each instance of MAX-LABELED-PATH can be converted into an equivalent instance satisfying $(C1)$. The proof of Lemma [1](#page-2-1) is omitted due to space limitation.

Lemma 1. *Given an instance* D of MAX-LABELED-PATH, it is possible to con*struct an instance* D' *satisfying condition (C1)* and *such that there exists a mapping between the set of maximal paths in* D *and the set of maximal paths in* D' preserving the number of labels collected.

Proof (of Theorem [2\)](#page-2-0). Given an instance F of Max-3SAT, we define an instance $D_F = (V, A)$ of MAX-LABELED-PATH as follows. Let $\{w^1, w^2, ..., w^q\}$ be the set of variables of F. For all $j \in \{1, ..., q\}$, we denote by $|w^j|$ the number of occurrences of the literal w^j and by $|\neg w^j|$ the number of occurrences of its negation. We create $|w^j| + |\neg w^j|$ vertices and call them $w_1^j, w_2^j, ..., w_{|w^j|}^j$ and $\neg w_1^j, \neg w_2^j, ..., \neg w_{|\neg w^j|}^j$. We connect in a directed path $P(w^j)$ the vertices which represent the literal w^j , i.e. we create an arc (w_i^j, w_{i+1}^j) for all $i \in$
 $\{1, \ldots, |w^j|-1\}$ In the same way we connect in a directed path $P(-w^j)$ the $\{1,\ldots, |w^j|-1\}$. In the same way, we connect in a directed path $P(\neg w^j)$ the vertices representing $\neg w^j$. For all $j \in \{1, ..., q-1\}$, we connect by an arc the last vertices of $P(w^j)$ and $P(\neg w^j)$ to the first vertices of $P(w^{j+1})$ and $P(\neg w^{j+1})$. Let us define the labeling function $l : V \rightarrow \mathcal{L} := \{1, ..., m\}$ where m is the cardinality of the set of clauses $\{C_1, C_2, \ldots, C_m\}$ of F. There is a one to one correspondence between the occurrences of the literals in the clauses and the vertices of D_F . A vertex u receives the label j if u corresponds to an occurrence of a literal in the clause C_i (see Fig. [1\)](#page-3-1).

Applying the reduction to a satisfiable instance F of MAX-3SAT, we obtain an instance D_F of MAX-LABELED-PATH that contains a path collecting all the labels, i.e. that satisfies condition (C2). Moreover, since each clause contains at most three literals, the number k of vertices in a maximal path of D_F is at most thrice the number m of labels, i.e. $k \leq 3m$. In the resulting graph D_F , each maximal path P is a path from a vertex in $\{w_1^1, \neg w_1^1\}$ to a vertex
in $\int w_1^q = w_1^q$ that contains for all $i \in I_1$ at either $P(w_1)$ or $P(\neg w_1)$ in $\{w_{|w^q|}^q, \neg w_{|-\bar{w}^q}^q\}$ that contains for all $j \in \{1,\ldots,q\}$ either $P(w_j)$ or $P(\neg w_j)$
but not both. Therefore, it represents in an elyious way an essignment of the but not both. Therefore, it represents in an obvious way an assignment of the variables $(w_i = true \Leftrightarrow P(w_i) \subset P)$. From the choice of the labeling of vertices in D_F , it is easy to verify that an assignment of the variables satisfying n clauses corresponds to a maximal path collecting n labels. This transformation produces in polynomial time an instance D_F satisfying the conditions (C2) with $k \leq 3|\mathcal{L}|$. It remains to ensure $(C1)$, this can be done by applying the transformation of Lemma [1.](#page-2-1) Together with Theorem [1,](#page-2-2) this concludes the proof of Theorem [2.](#page-2-0)

Fig. 1. The digraph D_F for the formula $F = (a \vee b \vee c) \wedge (\neg a \vee b \vee \neg c) \wedge (\neg b \vee c)$ before the transformation of Lemma [1](#page-2-1) (to the left) and after (to the right).

The next step consists in showing that the problem MAX-LABELED-PATH remains APX-hard even when restricted to instances such that all maximal paths have the same number of vertices and contain a path collecting each label exactly once.

Theorem 3. Assuming $P \neq NP$, no polynomial time algorithm can achieve a performance ratio exceeding $\frac{23}{24}$ for MAX-LABELED-PATH *even when restricted to instances satisfying (C1) and (C3).*

Proof. Consider a DAG $D = (V, A)$ with a labeling function l that satisfies the conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2). Every maximal path in D contains the same number k of vertices. Let $m := |\mathcal{L}| \leq k$ be the number of labels of vertices in D. We construct a DAG D' by adding to D, for each vertex $v \in V$, a set $\{v^1,\ldots,v^r\}$ of $r := k - m$ copies of the vertex v. There is an arc between two vertices in D' if and only if there is an arc between their preimages in D (the preimage of a vertex $v \in V$ is v itself). Every maximal path in D' corresponds to a maximal path in D , in particular it contains exactly k vertices. The set of labels of D' is $\mathcal{L}' := \mathcal{L} \cup \{m+1, m+2, \ldots, m+r=k\}$. For each vertex v of D and each integer $j \in \{1, 2, ..., r\}$ the label of the vertex v^j is $m + j$. The labels in D' of the vertices that belong to D remain unchanged. We call the resulting instance D' the *extension* of the instance D .

The following two lemmata (whose proofs are omitted due to space limitation) establish a close relationship between the optimum of the instances D and D' .

Lemma 2. *If there is a path in* D *collecting* n *labels then there is a path in* D *collecting* $n + r$ *labels. If there is a path in* D' *collecting* n *labels then there is a path in* D *collecting at least* n [−] r *labels.*

Lemma 3. *If there exists a polynomial time algorithm that achieves a performance ratio* 1− ϵ *for* MAX-LABELED-PATH *restricted to instances satisfying conditions (C1) and (C3) then there exists a polynomial time algorithm that achieves a performance ratio* 1 − 3 ϵ *for* MAX-LABELED-PATH *restricted to instances satisfying conditions (C1) with* $k \leq 3|\mathcal{L}|$ *and (C2).*

To complete the proof of Theorem [3,](#page-3-0) suppose that there exists a polynomial time algorithm ALG' achieving a ratio exceeding $\frac{23}{24}$ for the problem MAX-LABELED-PATH restricted to instances satisfying conditions $(C1)$ and $(C3)$. Then, by Lemma [3,](#page-4-2) we deduce that there exists a polynomial time algorithm ALG achieving a ratio exceeding $\frac{7}{8}$ for the problem MAX-LABELED-PATH restricted to the instances satisfying conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2), this cannot occur
by Theorem 2, unless $P = NP$.

by Theorem [2,](#page-2-0) unless $P = NP$. \Box
The last result of this section shows that the problem remains APX-hard if we add the condition that the number of vertices in any maximal path is a power of two. The proof of Theorem [4](#page-4-1) is similar to the one of Theorem [3](#page-3-0) and has been omitted due to space limitation.

Theorem 4. Assuming $P \neq NP$, no polynomial time algorithm can achieve a performance ratio exceeding $\frac{47}{48}$ for MAX-LABELED-PATH *even when restricted to instances satisfying conditions (C1) and (C4).*

3 Maximum Labeled Path Does Not Belong to APX

In this section, using a self-reduction of the problem MAX-LABELED-PATH, we will prove the following result:

Theorem 5. Assuming $P \neq NP$, no polynomial time algorithm can achieve *a constant performance ratio for* Max-Labeled-Path *even when restricted to instances satisfying conditions (C1) and (C4).*

3.1 Self-reduction

In Sect. [3,](#page-4-0) we will consider only instances of MAX-LABELED-PATH satisfying conditions (C1) and (C4). Namely, a DAG $D = (V, A)$ whose vertices are labeled by a function $l : V \to \mathcal{L} = \{1, \ldots, k\}$ such that there exists a path collecting each label exactly once and the number $k = |\mathcal{L}|$ of vertices in any maximal path is a power of two. We will prove that such instances of the problem MAX-LABELED-Path cannot be approximated in polynomial time within a constant factor. For the sake of simplicity, we also assume that there is only one source s and one sink t. Therefore, any maximal path is a path from s to t and all vertices of D belong to a path from s to t. Recall that, for each vertex $u \in V$, $\lambda(u)$ is the number of vertices in a path from s to u (all such paths have the same length because D satisfies (C4)). For all $u \in V$, $\lambda(s) = 1 \leq \lambda(u) \leq k = \lambda(t)$.

Pseudo Square and Pseudo Cubic Acyclic Digraph. The *pseudo square digraph* \bar{D} of D is obtained from D by replacing each vertex $u \in V$ by a copy D_u of the digraph D. We denote by v_u the copy of the vertex $v \in V$ in the digraph D_u . There is an arc $v_u w_u$ in \bar{D} if and only if there is an arc vw in D. In addition to the arcs of the subgraphs $D_u, u \in V$, we add to \overline{D} an arc $t_u s_v$ for each arc from uv in D. The *pseudo cubic digraph* \ddot{D} of D is obtained from \ddot{D} by replacing each vertex v_u of \overline{D} by a path $P(v_u)$ with k vertices. Each arc entering a vertex v_u in \bar{D} is replaced by an arc of \tilde{D} entering the first vertex of $P(v_u)$. Analogously, each arc leaving the vertex v_u in \overline{D} is replaced by an arc of \overline{D} leaving the last vertex of $P(v_u)$ (see Fig. [2\)](#page-5-0). We define a new instance of MAX-LABELED-PATH on the digraph \tilde{D} with the first vertex of $P(s_s)$ as a source and the last vertex of $P(t_t)$ as a sink and a labeling function l defined as follows.

Fig. 2. An example of pseudo square digraph \bar{D} with $k = |\mathcal{L}| = 4$. An optimal path P in D and the corresponding optimal path \bar{P} in \bar{D} are drawn in bold. In the subgraph D_a , each vertex v of \bar{D} is labeled by the subset of labels received by the vertices of the path $P(v)$ of \tilde{D} . In \tilde{D} , the vertex f_d of \bar{D} is replaced by the path $P(f_d)=(f_d^1, f_d^2, f_d^3, f_d^4)$.

Labeling. Let v_u be a vertex of D, the set of labels of the vertices of $P(v_u)$ will depend on the labels of u and v in D and on the level of u in D . Since either all vertices of $P(v_u)$ are visited by a path from the source to the sink or none of them are, our labeling function assigns a set of labels to the path $P(v_u)$ and does not precise the order in which the labels appear on $P(v_u)$. The set of labels $\tilde{\mathcal{L}}$ used to define the labeling of \tilde{D} consists of k disjoint subsets $\tilde{\mathcal{L}}_1, \ldots, \tilde{\mathcal{L}}_k$ such that $|\tilde{\mathcal{L}}_1| = -|\tilde{\mathcal{L}}_1| = k^2$. For each label $c \in \mathcal{L}$ and each lavel $i \in \{1, \ldots, k\}$ that $|\tilde{\mathcal{L}}_1| = \ldots = |\tilde{\mathcal{L}}_k| = k^2$. For each label $c \in \mathcal{L}$ and each level $i \in \{1, \ldots, k\}$, we construct a partition $S_1 \to S_1$ (c') $c' \in \mathcal{L}$ of $\tilde{\mathcal{L}}$ into k subsets of size k we construct a partition $S_{i,c} := \{ S_{i,c}(c') : c' \in \mathcal{L} \}$ of $\tilde{\mathcal{L}}_c$ into k subsets of size k
such that any two subsets arising from different partitions intersect in exactly such that any two subsets arising from different partitions intersect in exactly

one label, i.e. if $i_1 \neq i_2$ for all $c', c'' \in \mathcal{L}$, $|S_{i_1,c}(c') \cap S_{i_2,c}(c'')| = 1$. Since k^2 is a nower of two $(k^2 = 2^r)$ such partitions can be easily constructed as classes of power of two $(k^2 = 2^r)$, such partitions can be easily constructed as classes of parallel lines of a finite affine plane (each class of parallel lines induces a partition in which the subsets are the lines). The construction of finite affine planes from finite fields is described for instance in [\[1\]](#page-11-6). This construction can be done in polynomial time in the size of D by first identifying an irreducible polynomial of degree r by brute force and then constructing the corresponding finite fields $GF(2^r)$. The labeling function l assigns to the vertices of $P(v_u)$ the labels that belong to the subset $S_{\lambda(u),l(u)}(l(v))$ of the partition $S_{\lambda(u),l(u)}$.

Claim. There is a path in \tilde{D} that collects each label in $\tilde{\mathcal{L}}$ exactly once.

Proof. Let P be the path of D collecting all the labels in \mathcal{L} . Consider the path \tilde{P} passing via each subgraph D_u for all $u \in P$ and such that the subpath \tilde{P}_u of P inside the subgraph D_u consists of the vertices v_u for all $v \in P$ (see Fig. [2\)](#page-5-0). Since P collects each label in $\mathcal L$ once, the subpath $\tilde P_u$ collects every subset of the partition $S_{\lambda(u),l(u)}$. This implies that \tilde{P}_u collects each label of $\tilde{\mathcal{L}}_{l(u)}$ once. Applying this assertion to all vertices $u \in P$ and using again that P collects each label in \mathcal{L} , we conclude that \tilde{P} collects all the labels of $\tilde{\mathcal{L}} = \bigcup_{u \in P} \tilde{\mathcal{L}}_{l(u)}$ once. \Box

The previous claim and the fact that $|\tilde{\mathcal{L}}|$ is a power of two ensure that \tilde{D} is an instance of MAX-LABELED-PATH satisfying the conditions of $(C1)$ and $(C4)$. Clearly, the instance \ddot{D} can be constructed in polynomial time from the instance D .

3.2 Proof of Theorem [5](#page-4-3)

Let q denote the reciprocal function on the interval $[0, 1]$ of the following continuous and strictly increasing function h :

$$
h(x) := \begin{cases} h_1(x) := x(x^2 - x + 1) & \text{if } 0 < x < \frac{1}{2}; \\ h_2(x) := x^2 - \frac{1}{4}x + \frac{1}{4} & \text{if } \frac{1}{2} \le x \le 1. \end{cases}
$$

Lemma 4. *For each* $0 < \beta < 1$ *, the sequence* β_n *defined by* $\beta_0 = \beta$ *and* $\beta_{n+1} =$ $g(\beta_n)$ *has a limit of* 1.

In the next section, we show the following two results:

Lemma 5. *Given any path* Q *in* \tilde{D} *that collects at least* βk^3 *labels, a path* P *in* D *that collects at least* g(β)k *labels can be computed in polynomial time.*

Lemma 6. *If there is a polynomial-time algorithm with a ratio* β *for* Max-LABELED-PATH *then there is a polynomial-time algorithm with a ratio* $q(\beta)$ *for* Max-Labeled-Path*.*

Proof. Suppose there exists a polynomial time algorithm ALG_β with a ratio at least β for MAX-LABELED-PATH. Let D be an instance of MAX-LABELED-PATH, we use the following algorithm:

Function ALG(D): a maximal path in D that collects $q(\beta)k$ labels

Construct the digraph \tilde{D} from the digraph D ; Perform ALG_β to obtain a path Q of \tilde{D} that collects βk^3 labels; Derive from Q a path P of D that collects at least $g(\beta)$ k labels; Return P;

This algorithm is clearly polynomial because all the steps are, thus we have a polynomial time algorithm with a ratio $q(\beta)$ for MAX-LABELED-PATH. \Box

Suppose there exists an approximation algorithm with a constant factor β for MAX-LABELED-PATH. By Lemma [4,](#page-6-0) there exists an integer n such that $\beta_n >$ $\frac{47}{48}$. Applying *n* times Lemma [6,](#page-6-1) we derive a polynomial-time algorithm for the problem MAX-LABELED-PATH with a ratio exceeding $\frac{47}{4}$. A similar argument problem MAX-LABELED-PATH with a ratio exceeding $\frac{47}{48}$. A similar argument
shows that any constant factor approximation algorithm for MAX-LABELEDshows that any constant factor approximation algorithm for MAX-LABELED-Path can be converted into a PTAS for this problem. Such an algorithm does not exist unless $P = NP$ by Theorem [4.](#page-4-1) Assuming Lemma [5,](#page-6-2) this concludes the proof of Theorem [5.](#page-4-3)

3.3 Proof of Lemma [5](#page-6-2)

We explain how to construct in polynomial time a path P in D that collects a set $\mathcal{L}^P \subset \mathcal{L}$ containing at least $q(\beta)k$ labels from a path Q in \tilde{D} that collects a set $\tilde{\mathcal{L}}^Q \subseteq \tilde{\mathcal{L}}$ containing at least βk^3 labels. We denote by $V^Q \subseteq V$ the set of vertices u such that Q passes via D_u and by $\mathcal{L}^Q \subseteq \mathcal{L}$ the set of labels of the vertices in V^Q . For each vertex $u \in V^Q$, we define $W_u^Q \subseteq V$ the set of vertices use that Q contains $P(u)$ as a subpath and by $\mathcal{L}^Q \subset \mathcal{L}$ the set of labels of v such that Q contains $P(v_u)$ as a subpath and by $\mathcal{L}_u^Q \subseteq \mathcal{L}$ the set of labels of the vertices in W^Q . Let $\alpha := |{\mathcal{L}}_u^Q|/k$. We will prove that either $|{\mathcal{L}}_u^Q| > a(\beta)k$ the vertices in W_u^Q . Let $\alpha_u := |\mathcal{L}_u^Q|/k$. We will prove that either $|\mathcal{L}_u^Q| \ge g(\beta)k$
or there exists a vertex $u \in V^Q$ such that $|\mathcal{L}_u^Q| = \alpha |k| > g(\beta)k$. In the first or there exists a vertex $u \in V^Q$ such that $|\mathcal{L}_u^Q| = \alpha_u k \ge g(\beta)k$. In the first case the vertices of V^Q induce in D a path that collects $g(\beta)k$ labels. In the case, the vertices of V^Q induce in D a path that collects $g(\beta)k$ labels. In the second case, the vertices of Q that belong to the subgraph D_u induce in D a path that collects $g(\beta)$ k labels. Therefore, if one of the two assertions hold, one can derive in polynomial time a path P of D collecting $g(\beta)$ k labels and we are done.

Suppose by way of contradiction that none of the two assertions hold. Namely, $|\mathcal{L}^Q| < g(\beta)k$ and for all $u \in V^Q$, $\alpha_u < g(\beta)$. Let c be a label in \mathcal{L}^Q . We denote by $V_c^Q \subseteq V^Q$ the set of vertices $u \in V^Q$ such that $l(u) = c$ and we define by $V_c^Q \subseteq V^Q$ the set of vertices $u \in V^Q$ such that $l(u) = c$ and we define $\alpha \leq a(\beta)$. In $\alpha_c := \max_{u \in V_c^Q} \alpha_u$ and $u_c := \arg \max_{u \in V_c^Q} \alpha_u$. By assumption, $\alpha_c < g(\beta)$. In D_{u_c} , Q collects $\sum_{c' \in \mathcal{L}_{u_c}^Q} |S_{c,\lambda(u)}(c')| = \sum_{c' \in \mathcal{L}_{u_c}^Q} k = \alpha_c k^2$ labels.

Let u be a vertex of $V_c^Q - \{u_c\}$. The number of labels collected by Q in D_u
t are not collected by Q in D is the sum over all labels $c' \in \mathcal{L}^Q$ of that are not collected by Q in D_{u_c} is the sum over all labels $c' \in \mathcal{L}_u^Q$ of

$$
\begin{aligned}\n\left| S_{c,\lambda(u)}(c') - \bigcup_{c'' \in \mathcal{L}_{uc}^Q} S_{c,\lambda(u_c)}(c'') \right| &= k - \left| \bigcup_{c'' \in \mathcal{L}_{uc}^Q} \left(S_{c,\lambda(u)}(c') \cap S_{c,\lambda(u_c)}(c'') \right) \right| \\
&= k - \sum_{c'' \in \mathcal{L}_{uc}^Q} \left| S_{c,\lambda(u)}(c') \cap S_{c,\lambda(u_c)}(c'') \right| \\
&= k - \sum_{c'' \in \mathcal{L}_{uc}^Q} 1 \\
&= k - \alpha_c k\n\end{aligned}
$$

The first equation follows $|S_{c,\lambda(u)}(c')| = k$ and trivial set properties. For the partition recall that the family $\{S_{c,\lambda(u)}(c'') : c'' \in C^Q\}$ is a partition of second equation, recall that the family $\{S_{c,\lambda(u_c)}(c'') : c'' \in \mathcal{L}_{u_c}^Q\}$ is a partition of \tilde{c} . The choice of the partitions used to define the labeling function of \tilde{D} ensures $\tilde{\mathcal{L}}_c$. The choice of the partitions used to define the labeling function of \tilde{D} ensures that $|S_{c,\lambda(u)}(c') \cap S_{c,\lambda(u_c)}(c'')| = 1$ and yields the third equation. For the last equation we use $|C^Q| = \alpha k$. We conclude that the number of labels collected equation, we use $|\mathcal{L}_{u_c}^Q| = \alpha_c k$. We conclude that the number of labels collected
by Q in D, and not collected by Q in D, is $|\mathcal{L}^Q|(k-\alpha k)$. Since $(k-\alpha k) > 0$ by Q in D_u and not collected by Q in D_{u_c} is $|\mathcal{L}_{u}^Q|(k - \alpha_c k)$. Since $(k - \alpha_c k) \ge 0$
and $|\mathcal{L}_{u}^Q| = \alpha \cdot k \le \alpha \cdot k$ this number is at most $\alpha \cdot k(k - \alpha \cdot k)$. and $|\mathcal{L}_u^Q| = \alpha_u k \leq \alpha_c k$, this number is at most $\alpha_c k(k - \alpha_c k)$.
Using this bound for all vertices $u \in V^Q - \{u_{\alpha}\}\$ and the fact

Using this bound for all vertices $u \in V_c^Q - \{u_c\}$ and the fact that $\alpha_c k^2$ labels collected by O in D_u , we obtain that the following bound on the number of are collected by Q in D_{u_c} , we obtain that the following bound on the number of labels of \mathcal{L}_c collected by Q :

$$
\left| \tilde{\mathcal{L}}^Q \cap \tilde{\mathcal{L}}_c \right| \leq \alpha_c k^2 + (|V_c^Q| - 1)\alpha_c k(k - \alpha_c k)
$$

$$
\leq k^2 (\alpha_c + \alpha_c(|V_c^Q| - 1)(1 - \alpha_c))
$$

Summing over all labels $c \in \mathcal{L}^Q$, we obtain that the total number of labels collected by Q is upper bounded as follows:

$$
\left| \tilde{\mathcal{L}}^Q \right| \leq k^2 \sum_{c \in \mathcal{L}^Q} \left(\alpha_c + \alpha_c (|V_c^Q| - 1)(1 - \alpha_c) \right) \n< k^2 \sum_{c \in \mathcal{L}^Q} \left(g(\beta) + \alpha_c (|V_c^Q| - 1)(1 - \alpha_c) \right) \tag{*}
$$

This last inequality is obtained using the initial assumption $\alpha_c < g(\beta)$.

We distinguish two cases depending on the value of $g(\beta)$. First, suppose that $g(\beta) \geq \frac{1}{2}$. Note that the maximum $\frac{1}{4}$ of the function $x(1-x)$ on the interval
[0, 1] is realized for $x = 1$. Therefore for all $c \in \mathcal{L}^Q$, $\alpha(1-\alpha) \leq 1$ and we [0, 1] is realized for $x = \frac{1}{2}$. Therefore for all $c \in \mathcal{L}^Q$, $\alpha_c (1 - \alpha_c) \leq \frac{1}{4}$ and we derive from $(*)$: derive from (∗):

$$
\left| \tilde{\mathcal{L}}^Q \right| < k^2 \sum_{c \in \mathcal{L}^Q} \left(g(\beta) + \frac{1}{4} (|V_c^Q| - 1) \right) < k^2 \left(\left(g(\beta) - \frac{1}{4} \right) \sum_{c \in \mathcal{L}^Q} 1 + \frac{1}{4} \sum_{c \in \mathcal{L}^Q} |V_c^Q| \right) < k^2 \left(\left(g(\beta) - \frac{1}{4} \right) g(\beta) k + \frac{1}{4} k \right) < k^3 \left(g(\beta)^2 - \frac{1}{4} g(\beta) + \frac{1}{4} \right) < k^3 \left(h(g(\beta)) \right) < k^3 \beta
$$

In the third inequality, the upper bound on the left operand follows from the initial assumption $g(\beta)k > |\mathcal{L}^Q| = \sum_{c \in \mathcal{L}^Q} 1$ and $(g(\beta) - \frac{1}{4}) \geq 0$. The upper
bound on the right operand follows from the fact that any path in D from s bound on the right operand follows from the fact that any path in D from s

to t contains exactly k vertices, therefore $\sum_{c \in \mathcal{L}^Q} |V_c^Q| = k$. The last equation contradicts the choice of O and concludes the proof for the case $g(\beta) > \frac{1}{2}$ contradicts the choice of Q and concludes the proof for the case $g(\beta) \geq \frac{1}{2}$.

Now, suppose that $g(\beta) < \frac{1}{2}$. Since the function $x(1-x)$ is a strictly increasing
ction on the interval $[0, \frac{1}{2}]$ and $|V^Q| = 1 > 0$ for all $c \in \mathcal{L}^Q$ we can replace function on the interval $[0, \frac{1}{2}]$ and $|V_c^Q| - 1 \ge 0$ for all $c \in \mathcal{L}^Q$, we can replace α_c by $g(\beta)$ in the inequality $(*)$: α_c by $g(\beta)$ in the inequality (*):

$$
\begin{aligned}\n|\tilde{\mathcal{L}}^{Q}| &< k^{2} \sum_{c \in \mathcal{L}^{Q}} \left(g(\beta) + g(\beta)(|V_{c}^{Q}| - 1) (1 - g(\beta)) \right) \\
&< k^{2} g(\beta) \left(\sum_{c \in \mathcal{L}^{Q}} 1 - (1 - g(\beta)) + |V_{c}^{Q}| (1 - g(\beta)) \right) \\
&< k^{2} g(\beta) \left(g(\beta) \sum_{c \in \mathcal{L}^{Q}} 1 + (1 - g(\beta)) \sum_{c \in \mathcal{L}^{Q}} |V_{c}^{Q}| \right) \\
&< k^{2} g(\beta) \left(g(\beta)^{2} k + (1 - g(\beta)) k \right) \\
&< k^{3} g(\beta) \left(g(\beta)^{2} - g(\beta) + 1 \right) \\
&< k^{3} h(g(\beta)) \\
&< k^{3} \beta\n\end{aligned}
$$

Again we use $\sum_{c \in \mathcal{L}^Q} 1 < g(\beta)k$ and $\sum_{c \in \mathcal{L}^Q} |V_c^Q| = k$ to derive the fourth inequality. In the two cases, we obtain a contradiction with the assumption that the path Q collects at least βk^3 labels. This concludes the proof of Lemma [5.](#page-6-2)

⁴ *[√]OP T* **-Approximation for** Max-Labeled-Path

4.1 Algorithm

In this section, we describe a polynomial algorithm that computes for each instance D of MAX-LABELED-PATH, a path of D collecting $\sqrt{OPT(D)}$ labels. Again, for the sake of simplicity, we assume that there is only one source s and one sink t. Our algorithm can be easily adapted to handle the case with several sources and several sinks. First, we define a function $F: V \to \mathbb{N}$ such that $F(u)$ can be computed for all vertices $u \in V$ in time $O(|V|^3)$. Then, we prove that, for any vertex $u \in V$ $F(u)$ is an upper bound on the number of labels collected by a any vertex $u \in V$, $F(u)$ is an upper bound on the number of labels collected by a path from s to u. Finally, we describe an algorithm that computes for any vertex $u \in V$ a path that collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels. Applying this algorithm to f we obtain a path from a to f that collects at least $\lfloor \sqrt{OPT} \rfloor$ labels. t, we obtain a path from s to t that collects at least $\lfloor \sqrt{OPT} \rfloor$ labels.
For each pair of vertices $u, v \in V$ let D be the subgraph of D

For each pair of vertices $u, v \in V$, let $D_{u,v}$ be the subgraph of D consisting of all paths from u to v. We denote by $\Gamma(u, v)$ the number of labels in $D_{u,v}$. Let $F: V \to \mathbb{N}$ be the function recursively defined as follows:

$$
F(u) := \begin{cases} 1, & \text{if } u = s ; \\ \max_{P \in \mathcal{P}^u} \min_{ww' \in P} F(w) + \Gamma(w', u), & \text{otherwise.} \end{cases}
$$

where \mathcal{P}^u denotes the set of the paths from s to u. Let $P(u)$ be a path in \mathcal{P}^u that realizes the maximum, i.e. such that $F(u) = \min_{ww' \in P(u)} F(w) + \Gamma(w', u)$.

The following lemma shows that, for any vertex $u \in V$, $F(u)$ is an upper bound on the number of labels that can be collected by a path from s to u .

Lemma 7. If $P = (s = u_0, u_1, ..., u_n = u)$ *is a path between* s and u *that collects* α *labels then* $F(u) > \alpha$.

Proof. By induction on n. For $n = 0$, $F(u_0) = F(s) = 1$. For $n > 0$, consider a path $P = (s = u_0, u_1, ..., u_n = u)$ that collects α labels. For any $i = 1, ..., n$, let α_i be the number of labels collected by the path $(u_0, u_1, ..., u_i)$. The path $(u_i, ..., u_n)$ collects at least $\alpha - \alpha_{i-1}$ labels and belongs to $D_{u_i,u}$, therefore $\Gamma(u_i, u) \ge \alpha - \alpha_{i-1}$. Since, by induction, $F(u_{i-1}) \ge \alpha_{i-1}$, $F(u_{i-1}) + \Gamma(u_i, u) \ge \alpha$
for any $i-1$ a vielding $F(u) > \alpha$ for any $i = 1, \ldots, n$ yielding $F(u) \geq \alpha$.

Corollary 1. *If* OPT *is the maximum number of labels that can be collected by a path from s to t then* $F(t) \geq OPT$.

Suppose that $F(v)$ and $P(v)$ have been already computed for all $v \in V$, this can be done in $O(|V|^3)$ using standard data structures. Let u be a vertex in V. The algorithm Compute Path returns a path between s and u that collects at least algorithm ComputePath returns a path between s and u that collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels. By Corollary [1,](#page-10-0) applying this procedure with $u = t$ we obtain a path from s to t that collects at least $\lfloor \sqrt{OPT} \rfloor$ labels.

Function ComputePath $(u \in V)$: a su-path that collects $\lfloor \sqrt{F(u)} \rfloor$ labels

if $u = s$ **then** \vert **return** (s) **else** Let ww' be an arc of $P(u)$ with $F(w) \leq ($
 $F(w') \geq ($ Let ww' be an arc of $P(u)$ with $F(w) \leq (\sqrt{F(u)} - 1)^2$ and $F(w') \geq (\lfloor \sqrt{F(u)} \rfloor - 1)^2;$
 $P' \leftarrow$ Compute
 $\text{Path}(w')$: $P' \leftarrow \texttt{ComputePath}(w') \; ;$ **if** P' collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels **then**
 $\lfloor \sqrt{F(u)} \rfloor$ **return** P' \cap where \cap is any path from **return** $P'.Q$ where Q is any path from w' to u ; **else** Perform a BFS in $D_{w',u}$ to find a vertex v with $l(v)$ not in P' ;
return P' Q where Q is a $w'u$ -path passing via v: **return** $P'.Q$ where Q is a $w'u$ -path passing via v ;

The following lemma is useful to prove that the algorithm ComputePath is correct.

Lemma 8. *If* $F(u) \geq 4$ *then there is an arc* ww' *in* $P(u)$ *such that* $F(w) \leq$ $(\lfloor \sqrt{F(u)} \rfloor - 1)^2$ and $F(w') \ge (\lfloor \sqrt{F(u)} \rfloor - 1)^2$. Moreover, for any such arc, $\Gamma(w',u) \geq \lfloor \sqrt{F(u)} \rfloor + 1.$

Proof. The first assertion is true because $F(s) = 1 \le (\lfloor \sqrt{F(u)} \rfloor - 1)^2$ and $F(u) \ge$ $(\lfloor \sqrt{F(u)} \rfloor - 1)^2$. To verify the second assertion, let ww' be an arc such that $F(w) \leq (\lfloor \sqrt{F(w)} \rfloor - 1)^2$ and $F(w') \geq (\lfloor \sqrt{F(w)} \rfloor - 1)^2$. Since $ww' \in B(w)$, $F(w)$. $F(w) \leq (\lfloor \sqrt{F(u)} \rfloor - 1)^2$ and $F(w') \geq (\lfloor \sqrt{F(u)} \rfloor - 1)^2$. Since $ww' \in P(u), F(w) + F(w')$ $\Gamma(w', u) \geq F(u)$. This implies $\Gamma(w', u) \geq F(u) - F(w) \geq \lfloor \sqrt{F(u)} \rfloor^2 - (\lfloor \sqrt{F(u)} \rfloor - 1)^2 - 2 \lfloor \sqrt{F(u)} \rfloor - 1$ 1)² = 2[$\sqrt{F(u)}$] − 1 ≥ [$\sqrt{F(u)}$] + 1, because [$\sqrt{F(u)}$] ≥ 2.

Theorem 6. ComputePath (u) *computes a path* P *that collects at least* $\lfloor \sqrt{F(u)} \rfloor$ *labels.*

Proof. If $F(u) < 4$, any path from s to u collects at least $\lfloor \sqrt{F(u)} \rfloor = 1$ labels.
Now suppose that $F(u) > 4$ We proceed by induction on the number of recursive Now suppose that $F(u) \geq 4$. We proceed by induction on the number of recursive calls. If $u = s$ the algorithm returns the path (s) that collects $F(s) = 1$ labels. Otherwise, the first assertion of Lemma [8](#page-10-1) ensures that $P(u)$ contains an arc ww' such that $F(w) \le (\lfloor \sqrt{F(u)} \rfloor - 1)^2$ and $F(w') \ge (\lfloor \sqrt{F(u)} \rfloor - 1)^2$. By induction
hypothesis, Compute Path(w') returns a path P' collecting at least $\lfloor \sqrt{F(u)} \rfloor - 1$ hypothesis, ComputePath(w') returns a path P' collecting at least $\lfloor \sqrt{F(u)} \rfloor - 1$
labels. If P' collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels, the path P' O returned by the labels. If P' collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels, the path P'. Q returned by the algorithm is a correct answer. Now suppose that the path P' collects exactly algorithm is a correct answer. Now, suppose that the path P' collects exactly $\lfloor \sqrt{F(u)} \rfloor - 1$ labels. By Lemma [8,](#page-10-1) $\Gamma(w', u) \geq \lfloor \sqrt{F(u)} \rfloor + 1$. This implies that D_{max} function at least $\lfloor \sqrt{F(w)} \rfloor$ labels. Among th $\frac{D_{w'}}{c}$ oll $u_{n,u} - \{w'\}$ contains at least $\lfloor \sqrt{F(u)} \rfloor$ labels. Among them at least one is not
ected by P' A RES traversal of D ι will find a vertex v having this label collected by P'. A BFS traversal of $D_{w',u}$ will find a vertex v having this label
together with a path O from w' to u passing via v. Finally, the path P' O that together with a path Q from w' to u passing via v. Finally, the path P'.Q that collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels is a correct answer collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels is a correct answer. \Box

Using standard data structures, computing $F(u)$ and $P(u)$ for every vertex $u \in V$ can be done in time $O(|V|^3)$.

Acknowledgment. We are grateful to Jérôme Monnot for suggesting the use of a self-reduction to prove the hardness result of Sect. [3.](#page-4-0)

References

- 1. Batten, L.M.: Combinatorics of Finite Geometries. Cambridge University Press, New York (1997)
- 2. Broersma, H., Li, X.: Spanning trees with many or few colors in edge-colored graphs. Discuss. Math. Graph Theory **17**, 259–269 (1997)
- 3. Broersma, H., Li, X., Woeginger, G.J., Zhang, S.: Paths and cycles in colored graphs. Aust. J. Comb. **31**, 299–311 (2005)
- 4. Brüggemann, T., Monnot, J., Woeginger, G.J.: Local search for the minimum label spanning tree problem with bounded color classes. Oper. Res. Lett. **31**, 195–201 (2003)
- 5. Chang, R.-S., Leu, S.-J.: The minimum labeling spanning trees. IPL **31**, 195–201 (2003)
- 6. Couëtoux, B., Gourvès, L., Monnot, J., Telelis, O.: Labeled traveling salesman problems: complexity and approximation. Discrete Optim. **7**, 74–85 (2010)
- 7. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results for labeled connectivity problems. J. Comb. Optim. **14**, 437–453 (2007)
- 8. Hassin, R., Monnot, J., Segev, D.: The complexity of bottleneck labeled graph problems. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 328–340. Springer, Heidelberg (2007)
- 9. Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
- 10. Krumke, S.O., Wirth, H.-C.: Approximation algorithms and hardness results for labeled connectivity problems. IPL **66**, 81–85 (1998)
- 11. Monnot, J.: The labeled perfect matching in bipartite graphs. IPL **96**, 81–88 (2005)