The Maximum Labeled Path Problem

Basile Couétoux™), Elie Nakache, and Yann Vaxes

Aix-Marseille Université, CNRS, LIF UMR 7279, 13288 Marseille, France

{basile .couetoux,elie.nakache,yann. vaxes}@univ—amu fr

Abstract. In this paper, we study the approximability of the Maximum
Labeled Path problem: given a vertex-labeled directed acyclic graph D,
find a path in D that collects a maximum number of distinct labels. Our
main results are a v O PT-approximation algorithm for this problem and
a self-reduction showing that any constant ratio approximation algorithm
for this problem can be converted into a PTAS. This last result, combined
with the APX-hardness of the problem, shows that the problem cannot
be approximated within a constant ratio unless P = N P.

1 Introduction

Optimization network design problems over labeled graphs have been widely
studied in the literature [2-8,10,11]. Since these problems are usually N P-hard,
they have been mainly investigated toward the goal of finding efficiently approx-
imate solutions. Most of these studies consider edge-labels that represent kinds
of connections and the optimization concerns the number of different kinds of
connections used. Our motivation is different, we consider vertex-labels that rep-
resent membership to different components. Our goal is then to maximize the
number of components visited by a path in a directed graph. More precisely,
the problem is defined on a directed graph with labels on the vertices and the
objective is to find a path visiting a maximum number of distinct labels. We
call this problem MAX-LABELED-PATH. Actually, the vertex-labeled and edge-
labeled versions of this problem are equivalent but the vertex-labeled version is
closer to our initial motivation. To our knowledge, there is no prior work on this
simple and natural problem. A related problem is the Min LP s —¢ problem that
asks to find a path between s and ¢ minimizing the number of different labels
in this path. In [7] Hassin et al. achieves a /n ratio for this problem and they
show that it is hard to approximate within O(logn). We used a similar approach
for our hardness result and the comparison is interesting since the maximization
requires a much more precise analysis.

1.1 Contributions

In this paper we report both positive and negative results about the MAX-
LABELED-PATH. Namely, we prove that this problem does not admit a constant
factor approximation algorithm unless P = NP and we propose an algorithm
that returns a solution of value at least vVOPT where OPT is the value of an

© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 152-163, 2014.
DOI: 10.1007/978-3-319-12340-0_13

The Maximum Labeled Path Problem 153

optimal solution. In Sect. 2, the hardness proof starts with a reduction from
MAX 3SAT preserving the approximation and therefore proving that MAX-
LABELED-PATH is APX-hard. In Sect. 3, a polynomial self-reduction shows that
finding a solution on a more complex graph enables us to find a solution with
a better ratio on the initial graph. This, combined with the APX-hardness of
the problem, shows that the problem cannot be approximated within a constant
ratio unless P = N P. In Sect. 4, we describe a v OPT-approximation algorithm
for MAX-LABELED-PATH. This algorithm requires a specific preprocessing and
an inductive analysis that uses the poset structure of the problem.

1.2 Preliminaries

A vertex-labeled Directed Acyclic Graph D = (V, A) is a DAG whose vertices
are labeled by a function [: V' — L. For each vertex u € V, we denote by A(u)
and call the level of u, the maximum number of vertices in a path having u as
end-vertex. The ith level set L; of D consists of all vertices u € V such that
A(u) = 4. The vertices of Ly, i.e. having no ingoing arcs, are called the sources of
D. The vertices having no outgoing arcs are called the sink. Let k be the largest
integer such that Ly # 0. Ly is a subset of the sinks. Let P be a (directed) path
in D. P is maximal by inclusion if and only if it connects a source to a sink.
The set of labels collected by P is the set {I(u) : w € P} of labels of vertices in
P. Given a vertex-labeled DAG D, the problem MAX-LABELED-PATH consists
in finding a path P in D maximizing the number of distinct labels collected by
P. Any solution can be extended into a maximal path without decreasing its
value, therefore we only consider solutions that connects a source to a sink. In
this paper, we consider only maximization problem. Let D be an instance of
a maximization problem, we denote by OPT(D) its optimum. We say that an
algorithm achieves a constant performance ratio «, if for every instance D, it
returns a solution of value at least « OPT(D).

2 Maximum Labeled Path Is APX-Hard

In this section, we describe a reduction from MAX-3SAT establishing that MAX-
LABELED-PATH is APX-hard even when restricted to instances satisfying the
following conditions:

(C1) All maximal (by inclusion) paths of D contain the same number k of vertices.
(C2) D contains a path that collects all the labels, OPT(D) = |L]|.

(C3) D contains a path that collects each label exactly once, OPT(D) = k = |L|.
(C4) OPT (D) = k = |L] is a power of two.

Note that (C4) is stronger than (C3) which is stronger than (C2). Applying
our initial reduction to satisfiable instances of MAX-3SAT, we produce instances
MAX-LABELED-PATH satisfying conditions (C1) with k¥ < 3|£| and (C2) and
proves Theorem 2. Then, we proceed in two steps: first we establish the APX-
hardness for instances satisfying conditions (C1) and (C3) in Theorem 3 and

154 B. Couétoux et al.

then the APX-hardness for instances satisfying conditions (C1) and (C4) in
Theorem 4. In the next section we use a self-reduction of MAX-LABELED-PATH
to prove that MAX-LABELED-PATH does not belong to APX. This self-reduction
is valid only for instances satisfying conditions (C1) and (C4).

Theorem 1. (Hastad [9]) Assuming P # NP, no polynomial-time algorithm
can achieve a performance ratio exceeding % for MAX-3SAT even when restricted
to satisfiable instances of the problem.

Theorem 2. Assuming P # NP, no polynomial-time algorithm can achieve a
performance ratio exceeding % for MAX-LABELED-PATH even when restricted to
instances satisfying conditions (C1) with k < 3|L| and (C2).

Before proving Theorem 2, we establish the following lemma showing that (C1)
is not a strong requirement in the sense that each instance of MAX-LABELED-
PATH can be converted into an equivalent instance satisfying (C1). The proof of
Lemma 1 is omitted due to space limitation.

Lemma 1. Given an instance D of MAX-LABELED-PATH, it is possible to con-
struct an instance D' satisfying condition (C1) and such that there exists a
mapping between the set of maximal paths in D and the set of mazximal paths in
D’ preserving the number of labels collected.

Proof (of Theorem 2). Given an instance F' of MAX-3SAT, we deﬁne an instance
Dr = (V,A) of MAX-LABELED-PATH as follows. Let {w w?,...,wl} be the
set of variables of F. For all j € {1,...,q}, we denote by |wj| the number
of occurrences of the literal w’ and by |-w’| the number of occurrences of

its negatlon We create |wI| + |-~w| vertices and call them wi,ws, ..., wfwjl

and ﬁwl,—'wQ, ey T We connect in a directed path P(w’) the vertices

\ﬁwﬂl
which represent the literal w’, i.e. we create an arc (wf ,w{ 4q) for all i €
{1,...,|Jw’| — 1}. In the same way, we connect in a directed path P(—w’) the
vertices representing —w’. For all j € {1, ...,q— 1}, we connect by an arc the last
vertices of P(w?) and P(—w’) to the first vertices of P(w’*1) and P(—w’/*1).
Let us define the labeling function I : V. — £ := {1,...,m} where m is
the cardinality of the set of clauses {C1,Cs,...,Cy,} of F. There is a one to
one correspondence between the occurrences of the literals in the clauses and
the vertices of Dp. A vertex u receives the label j if u corresponds to an occur-
rence of a literal in the clause C; (see Fig. 1).

Applying the reduction to a satisfiable instance F' of MAX-3SAT, we obtain
an instance Dp of MAX-LABELED-PATH that contains a path collecting all the
labels, i.e. that satisfies condition (C2). Moreover, since each clause contains
at most three literals, the number k of vertices in a maximal path of Dpg is
at most thrice the number m of labels, i.e. & < 3m. In the resulting graph
D, each maximal path P is a path from a vertex in {w},~wi} to a vertex
in {wf,., "w,.} that contains for all j € {1,...,q} either P(w;) or P(-w;)
but not both. Therefore, it represents in an obvious way an assignment of the
variables (w; = true < P(w;) C P). From the choice of the labeling of vertices

The Maximum Labeled Path Problem 155

in Dp, it is easy to verify that an assignment of the variables satisfying n clauses
corresponds to a maximal path collecting n labels. This transformation produces
in polynomial time an instance Dp satisfying the conditions (C2) with k& < 3|L].
It remains to ensure (C1), this can be done by applying the transformation of
Lemma 1. Together with Theorem 1, this concludes the proof of Theorem2. O

1 a -ar 2 1 a -ayp 2

1 b —b 3 1 b —by 3

2 by 2 by 3
K

1 & e 2 1 a —c; 2

3 c2 3 C2 2

Fig. 1. The digraph D for the formula F' = (aVbVec)A(-a VbV —c)A(=bV c) before
the transformation of Lemmal (to the left) and after (to the right).

The next step consists in showing that the problem MAX-LABELED-PATH
remains APX-hard even when restricted to instances such that all maximal paths
have the same number of vertices and contain a path collecting each label exactly
once.

Theorem 3. Assuming P # NP, no polynomial time algorithm can achieve a
performance ratio exceeding % for MAX-LABELED-PATH even when restricted
to instances satisfying (C1) and (C3).

Proof. Consider a DAG D = (V, A) with a labeling function ! that satisfies the
conditions (C1) with k£ < 3|£| and (C2). Every maximal path in D contains the
same number k of vertices. Let m := |£| < k be the number of labels of vertices
in D. We construct a DAG D’ by adding to D, for each vertex v € V, a set
{vl,...,v"} of r := k — m copies of the vertex v. There is an arc between two
vertices in D’ if and only if there is an arc between their preimages in D (the
preimage of a vertex v € V is v itself). Every maximal path in D’ corresponds
to a maximal path in D, in particular it contains exactly k vertices. The set of
labels of D is £ := LU{m+1,m+2,...,m +r = k}. For each vertex v of D
and each integer j € {1,2,...,r} the label of the vertex v’ is m + j. The labels
in D’ of the vertices that belong to D remain unchanged. We call the resulting
instance D’ the extension of the instance D.

The following two lemmata (whose proofs are omitted due to space lim-

itation) establish a close relationship between the optimum of the instances
D and D'.

156 B. Couétoux et al.

Lemma 2. If there is a path in D collecting n labels then there is a path in D’
collecting n + r labels. If there is a path in D' collecting n labels then there is a
path in D collecting at least n — r labels.

Lemma 3. If there exists a polynomial time algorithm that achieves a perfor-
mance ratio 1 —e for MAX-LABELED-PATH restricted to instances satisfying con-
ditions (C1) and (C8) then there exists a polynomial time algorithm that achieves
a performance ratio 1 — 3¢ for MAX-LABELED-PATH restricted to instances sat-
isfying conditions (C1) with k < 3|L| and (C2).

To complete the proof of Theorem 3, suppose that there exists a polynomial time
2

algorithm ALG’ achieving a ratio exceeding ﬁ for the problem MAX-LABELED-
PATH restricted to instances satisfying conditions (C1) and (C3). Then, by
Lemma 3, we deduce that there exists a polynomial time algorithm ALG achiev-
ing a ratio exceeding % for the problem MAX-LABELED-PATH restricted to the
instances satisfying conditions (C1) with k& < 3|£| and (C2), this cannot occur
by Theorem 2, unless P = NP. O

The last result of this section shows that the problem remains APX-hard if
we add the condition that the number of vertices in any maximal path is a power
of two. The proof of Theorem 4 is similar to the one of Theorem 3 and has been

omitted due to space limitation.

Theorem 4. Assuming P # NP, no polynomial time algorithm can achieve a
performance ratio exceeding % for MAX-LABELED-PATH even when restricted
to instances satisfying conditions (C1) and (C4).

3 Maximum Labeled Path Does Not Belong to APX

In this section, using a self-reduction of the problem MAX-LABELED-PATH, we
will prove the following result:

Theorem 5. Assuming P # NP, no polynomial time algorithm can achieve
a constant performance ratio for MAX-LABELED-PATH even when restricted to
instances satisfying conditions (C1) and (C4).

3.1 Self-reduction

In Sect.3, we will consider only instances of MAX-LABELED-PATH satisfying
conditions (C1) and (C4). Namely, a DAG D = (V, A) whose vertices are labeled
by a function { : V' — £ = {1, ..., k} such that there exists a path collecting each
label exactly once and the number k = |£| of vertices in any maximal path is a
power of two. We will prove that such instances of the problem MAX-LABELED-
PATH cannot be approximated in polynomial time within a constant factor. For
the sake of simplicity, we also assume that there is only one source s and one
sink t. Therefore, any maximal path is a path from s to ¢ and all vertices of D
belong to a path from s to t. Recall that, for each vertex u € V, A(u) is the
number of vertices in a path from s to u (all such paths have the same length
because D satisfies (C4)). For all u € V, A(s) =1 < Mu) < k = A(t).

The Maximum Labeled Path Problem 157

Pseudo Square and Pseudo Cubic Acyclic Digraph. The pseudo square
digraph D of D is obtained from D by replacing each vertex u € V by a copy D,
of the digraph D. We denote by v, the copy of the vertex v € V in the digraph
D,. There is an arc v,w, in D if and only if there is an arc vw in D. In addition
to the arcs of the subgraphs D,, u € V, we add to D an arc t,s, for each arc
from uv in D. The pseudo cubic digraph D of D is obtained from D by replacing
each vertex v, of D by a path P(v,) with k vertices. Each arc entering a vertex
vy in D is replaced by an arc of D entering the first vertex of P(vy). Analogously,
each arc leaving the vertex v, in D is replaced by an arc of D leaving the last
vertex of P(v,) (see Fig.2). We define a new instance of MAX-LABELED-PATH
on the digraph D with the first vertex of P(s4) as a source and the last vertex
of P(t;) as a sink and a labeling function ! defined as follows.

b — d Ce =» €c Ce =) €c

NN / \.
f(-)(1,(,
) . 512 S1,2(3 \
// Ca =) €a / bﬂd b — de \ cp =y ef
: /\\ /\
\ ‘312 Qq fa Si12(4 fr
by — dg \ c, — €p Cd — €q / by — dy
\\\ S1,2(3 S1,2(2 / \ \ / \ \
S~ fo — aa o

N
bb — db bd — dd \\fd R f&‘,’

P(fa)

Fig. 2. An example of pseudo square digraph D with k = |£| = 4. An optimal path P in
D and the corresponding optimal path P in D are drawn in bold. In the subgraph Dy,
each vertex v of D is labeled by the subset of labels received by the vertices of the path
P(v) of D. In D, the vertex fq of D is replaced by the path P(fs) = (f2, f2, /3, f4).

Labeling. Let v, be a vertex of D, the set of labels of the vertices of P(v,)
will depend on the labels of v and v in D and on the level of u in D. Since either
all vertices of P(v,) are visited by a path from the source to the sink or none
of them are, our labeling function assigns a set of labels to the path P(v,) and
does not precise the order in which the labels appear on P(v,,). The set of labels
L used to define the labeling of D consists of k disjoint subsets L1, ..., Ly such
that |[£1] = ... = |£x| = k2. For each label ¢ € £ and each level i € {17 ok}
we construct a partition S; . 1= {S;.(¢') : ¢ € L} of L. into k subsets of size k
such that any two subsets arising from different partitions intersect in exactly

158 B. Couétoux et al.

one label, i.e. if i1 # is for all ¢/, " € L, |S;,.(¢') N Si,.e(¢”)| = 1. Since k? is a
power of two (k? = 27), such partitions can be easily constructed as classes of
parallel lines of a finite affine plane (each class of parallel lines induces a partition
in which the subsets are the lines). The construction of finite affine planes from
finite fields is described for instance in [1]. This construction can be done in
polynomial time in the size of D by first identifying an irreducible polynomial
of degree r by brute force and then constructing the corresponding finite fields
GF(2"). The labeling function [assigns to the vertices of P(v,) the labels that
belong to the subset Sy, ([(v)) of the partition Sy () i(u)-

Claim. There is a path in D that collects each label in £ exactly once.

Proof. Let P be the path of D collecting all the labels in £. Consider the path
P passing via each subgraph D, for all u € P and such that the subpath P,
of P inside the subgraph D, consists of the vertices v, for all v € P (see Fig. 2).
Since P collects each label in £ once, the subpath P, collects every subset of
the partition Sy(u),i(u). This implies that P, collects each label of El(u) once.
Applying this assertion to all vertices u € P and using again that P collects
each label in £, we conclude that P collects all the labels of £ = U ﬁl(u)

O

once.

ueP

The previous claim and the fact that |£| is a power of two ensure that D is
an instance of MAX-LABELED-PATH satisfying the conditions of (C1) and (C4).

Clearly, the instance D can be constructed in polynomial time from the instance
D.

3.2 Proof of Theorem 5

Let g denote the reciprocal function on the interval [0,1] of the following con-
tinuous and strictly increasing function h:

| hi(z) = 2(2? —J:+1)1f0<x<%;
h(x)'_{hz() ?—jr+i fi<a<l

Lemma 4. For each 0 < 3 < 1, the sequence (3, defined by By = B and Bp41 =
9(Br) has a limit of 1.

In the next section, we show the following two results:

Lemma 5. Given any path Q in D that collects at least Sk3 labels, a path P in
D that collects at least g(8)k labels can be computed in polynomial time.

Lemma 6. If there is a polynomial-time algorithm with a ratio B for MAX-
LABELED-PATH then there is a polynomial-time algorithm with a ratio g(3) for
MAX-LABELED-PATH.

Proof. Suppose there exists a polynomial time algorithm ALGg with a ratio at
least B for MAX-LABELED-PATH. Let D be an instance of MAX-LABELED-PATH,
we use the following algorithm:

The Maximum Labeled Path Problem 159

Function ALG(D): a maximal path in D that collects g(5)k labels

Construct the digraph D from the digraph D;

Perform ALGg to obtain a path @) of D that collects k3 labels;
Derive from Q) a path P of D that collects at least g(83)k labels;
Return P;

This algorithm is clearly polynomial because all the steps are, thus we have
a polynomial time algorithm with a ratio g(3) for MAX-LABELED-PATH. O

Suppose there exists an approximation algorithm with a constant factor g
for MAX-LABELED-PATH. By Lemma 4, there exists an integer n such that 3, >
%. Applying n times Lemma 6, we derive a polynomial-time algorithm for the
problem MAX-LABELED-PATH with a ratio exceeding j—g. A similar argument
shows that any constant factor approximation algorithm for MAX-LABELED-
PATH can be converted into a PTAS for this problem. Such an algorithm does
not exist unless P = NP by Theorem 4. Assuming Lemma 5, this concludes the

proof of Theorem 5.

3.3 Proof of Lemmab

We explain how to construct in polynomial time a path P in D that collects a
set £LF C £ containing at least g(8)k labels from a path Q in D that collects
aset L2 C L containing at least k3 labels. We denote by V? C V the set of
vertices u such that Q passes via D, and by £9 C L the set of labels of the
vertices in V9. For each vertex u € VQ7 we define W§ C V the set of vertices
v such that Q contains P(v,) as a subpath and by £ C L the set of labels of
the vertices in W%. Let a,, := |£2|/k. We will prove that either |£?| > g(8)k
or there exists a vertex u € V@ such that [£?]| = a,k > g(B)k. In the first
case, the vertices of V¥ induce in D a path that collects g(3)k labels. In the
second case, the vertices of @) that belong to the subgraph D, induce in D a
path that collects g(8)k labels. Therefore, if one of the two assertions hold, one
can derive in polynomial time a path P of D collecting g(8)k labels and we are
done.

Suppose by way of contradiction that none of the two assertions hold. Namely,
|LP| < g(B)k and for all u € V?, a,, < g(B). Let ¢ be a label in £L%. We denote
by V2 C V@ the set of vertices u € V? such that I(u) = c and we define
Qe 1= MaX, e Oy and u. := arg max, cyQ Qy- By assumption, a. < ¢g(f3). In
Dy, Q collects > [S.xw) ()= X k= ack? labels.

el ceLy,

Let u be a vertex of V.® — {u.}. The number of labels collected by @ in D,

that are not collected by @ in D,,_ is the sum over all labels ¢’ € L% of

160 B. Couétoux et al.

Sc,)\(u) (CI) - U Sc,)\(uc)(cn) =k- U (Sc,)\(u)(cl) n Sc,)\(uc)(cll))

crecs, e,
=k— X [Seaw(€)NSeawo (e
c”EEgC
=k— > 1
e,
=k —a.k

The first equation follows |SC, A (€)| = k and trivial set properties. For the
second equation, recall that the family {S. (. (c”) : ¢” € LY } is a partition of
L.. The choice of the partitions used to define the labeling function of D ensures
that |SC,,\(u) ()N SC7,\(uC)(c”)| = 1 and yields the third equation. For the last
equation, we use |L | = ack. We conclude that the number of labels collected
by Q in D, and not collected by Q in D, is |£?|(k — a.k). Since (k — a.k) >0
and |£2| = a,k < a.k, this number is at most a.k(k — a.k).

Using this bound for all vertices u € V.9 — {u.} and the fact that a.k? labels
are collected by @ in D, , we obtain that the following bound on the number of

labels of £, collected by Q:

‘EQ N L) < ack? + (V| — Vack(k — ack)
<K ae + ac(|VE - 1)(1 - ae))

Summing over all labels ¢ € L@, we obtain that the total number of labels
collected by @ is upper bounded as follows:

|29) <K S ocra (e + ac(VE] = 1)(1 - ac))
<K Y cca (00 +ac(VE - D1 —a)) ()

This last inequality is obtained using the initial assumption a. < g(8).
We distinguish two cases depending on the value of g(3). First, suppose that

g(B) > 1. Note that the maximum 1 of the function (1 — x) on the interval

[0,1] is realized for « = %. Therefore for all ¢ € LY, a.(1—) < § and we

4
derive from (*):

1£9] < I X, c o (6(8) + £V - 1)
< k? ((9(5) - %) ZCECQ T+ iECGCQ ‘VCQD
<K ((9(8) — 1) 9(B)k + 1K)
<K (9(8)° - Lg(B) + 1)
< K (h(g(8)))
< kg

In the third inequality, the upper bound on the left operand follows from
the initial assumption g(8)k > [L9] =Y ;0 1 and (g(8) — 1) > 0. The upper
bound on the right operand follows from the fact that any path in D from s

The Maximum Labeled Path Problem 161

to ¢ contains exactly k vertices, therefore 3" ..o [V.?| = k. The last equation
contradicts the choice of @ and concludes the proof for the case g(5) > 1

Now, suppose that g(3) < 5. Since the function 2(1—z) is a strictly 1ncreasing
function on the interval [0, 1] and [VR| -1 >0 for all ¢ € L, we can replace
a. by g(0) in the inequality (x):

L9 < kY eca (9(8) +9(B)(IVE| = 1) (1 - g(8)))
< k*g(B) (Zcem 1—(1-g(8) + V2 (1 - g(8)))

<k 9(B) (9(B) X eere 1+ (1= 9(B) X ocra V)
< Kk*g(B) (9(8 k + (1—g(8) k)

< K’g(8) (9(B))+1)

< E°h(g(9))

< kg

Again we use Y., .,0 1 < g(B)k and Y o [V@| = k to derive the fourth
inequality. In the two cases, we obtain a contradiction with the assumption that
the path @ collects at least 3k3 labels. This concludes the proof of Lemma 5.

4 +OPT-Approximation for MAX-LABELED-PATH

4.1 Algorithm

In this section, we describe a polynomial algorithm that computes for each
instance D of MAX-LABELED-PATH, a path of D collecting /OPT(D) labels.
Again, for the sake of simplicity, we assume that there is only one source s and
one sink ¢. Our algorithm can be easily adapted to handle the case with several
sources and several sinks. First, we define a function F': V' — N such that F'(u)
can be computed for all vertices u € V in time O(|V|?). Then, we prove that, for
any vertex u € V, F'(u) is an upper bound on the number of labels collected by a
path from s to u. Finally, we describe an algorithm that computes for any vertex
u € V a path that collects at least [y/F(u)] labels. Applying this algorithm to
t, we obtain a path from s to ¢ that collects at least [vVOPT| labels.

For each pair of vertices u,v € V, let D, ,, be the subgraph of D consisting
of all paths from u to v. We denote by I'(u, v) the number of labels in D,, ,. Let
F :V — N be the function recursively defined as follows :

,ifu=s;

F(u) == { max min F(w)+ I'(w’,u), otherwise.
PePv ww'e€P

where P* denotes the set of the paths from s to u. Let P(u) be a path in P*

that realizes the maximum, i.e. such that F(u) = mi}r;()F(u)) + I'(w',u).
ww'€P(u

The following lemma shows that, for any vertex u € V, F(u) is an upper
bound on the number of labels that can be collected by a path from s to u.

162 B. Couétoux et al.

Lemma 7. If P = (s = ug, u1, ..., up, = u) is a path between s and u that collects
a labels then F(u) > «

Proof. By induction on n. For n = 0, F(ug) = F(s) = 1. For n > 0, consider
a path P = (s = ug, u1, ..., un, = u) that collects a labels. For any i = 1,...,n,
let a; be the number of labels collected by the path (ug,u,...,u;). The path
(Wsy ...y up) collects at least oo — a;_1 labels and belongs to D, ., therefore
I'(u;,u) > a—ay—1. Since, by induction, F'(u;—1) > a;—1, F(u;—1)+I'(u;,u) > «
for any i = 1,...,n yielding F(u) > a. O

Corollary 1. If OPT is the mazimum number of labels that can be collected by
a path from s to t then F(t) > OPT.

Suppose that F(v) and P(v) have been already computed for all v € V, this can
be done in O(|V]?) using standard data structures. Let u be a vertex in V. The
algorithm ComputePath returns a path between s and u that collects at least
|/ F(u)] labels. By Corollary 1, applying this procedure with u = ¢t we obtain
a path from s to t that collects at least |vVOPT| labels.

Function ComputePath(u € V'): a su-path that collects |1/ F(u)]| labels

if u = s then
| return (s)
else
Let ww' be an arc of P(u) with F(w) < (|\/F(u)] —1)? and
)= (WFu)] - 1)?
P’ «— ComputePath(w’) ;
if P’ collects at least |\/F(u)] labels then
L return P’.QQ where @ is any path from w’ to u ;
else
Perform a BFS in D,y , to find a vertex v with {(v) not in P’ ;
return P’.QQ where Q is a w'u-path passing via v ;

The following lemma is useful to prove that the algorithm ComputePath is
correct.

Lemma 8. If F(u) >4 then there is cm arc ww' in P(u) such that F(w) <

([VF(u)] —1)? and F(w (| F — 1)2. Moreover, for any such arc,

I'(w',u) > [/F(u)] + 1.

Proof. The first assertion is true because F(s) = 1 < ([\/F(u)]—1)? and F(u) >
(|V/F(u)| — 1)2. To Verify the second assertion let ww’ be an arc such that

< (IVF(u 2 and F(w (| F J—l Sinceww € P(u), F(w)+
I'(w',u) > F(u). ThlSlmphesF(w u)>F(|V F(u)]2=(|/F(u)]—
1?2 =2[/F(u)] —1>|\/F(u)| + 1, because | \/ JZ?. O

The Maximum Labeled Path Problem 163

Theorem 6. ComputePath(u) computes a path P that collects at least | \/F (u)]
labels.

Proof. If F(u) < 4, any path from s to u collects at least |/F(u)| = 1 labels.
Now suppose that F'(u) > 4. We proceed by induction on the number of recursive
calls. If u = s the algorithm returns the path (s) that collects F'(s) = 1 labels.
Otherwise, the first assertion of Lemma 8 ensures that P(u) contains an arc ww’
such that F(w) < (|v/F(u)] —1)? and F(w') > (|\/F(u)] — 1)%. By induction
hypothesis, ComputePath(w’) returns a path P’ collecting at least |/ F(u)] — 1
labels. If P’ collects at least |y/F(u)| labels, the path P’.QQ returned by the
algorithm is a correct answer. Now, suppose that the path P’ collects exactly
[/ F(u)] — 1 labels. By Lemma8, I'(w’,u) > [v/F(u)] + 1. This implies that
D,y —{w'} contains at least |y/F(u)] labels. Among them at least one is not
collected by P’. A BFS traversal of D, ,, will find a vertex v having this label
together with a path Q from w’ to u passing via v. Finally, the path P’.Q that
collects at least |1/ F(u)] labels is a correct answer. O

Using standard data structures, computing F'(u) and P(u) for every vertex u € V/
can be done in time O(|V?).

Acknowledgment. We are grateful to Jérome Monnot for suggesting the use of a
self-reduction to prove the hardness result of Sect. 3.

References

1. Batten, L.M.: Combinatorics of Finite Geometries. Cambridge University Press,
New York (1997)

2. Broersma, H., Li, X.: Spanning trees with many or few colors in edge-colored
graphs. Discuss. Math. Graph Theory 17, 259-269 (1997)

3. Broersma, H., Li, X., Woeginger, G.J., Zhang, S.: Paths and cycles in colored
graphs. Aust. J. Comb. 31, 299-311 (2005)

4. Briiggemann, T., Monnot, J., Woeginger, G.J.: Local search for the minimum label
spanning tree problem with bounded color classes. Oper. Res. Lett. 31, 195-201
(2003)

5. Chang, R.-S., Leu, S.-J.: The minimum labeling spanning trees. IPL 31, 195-201
(2003)

6. Couétoux, B., Gourves, L., Monnot, J., Telelis, O.: Labeled traveling salesman
problems: complexity and approximation. Discrete Optim. 7, 74-85 (2010)

7. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. J. Comb. Optim. 14, 437-453 (2007)

8. Hassin, R., Monnot, J., Segev, D.: The complexity of bottleneck labeled graph
problems. In: Brandstadt, A., Kratsch, D., Miller, H. (eds.) WG 2007. LNCS, vol.
4769, pp. 328-340. Springer, Heidelberg (2007)

9. Hastad, J.: Some optimal inapproximability results. J. ACM 48, 798-859 (2001)

10. Krumke, S.O., Wirth, H.-C.: Approximation algorithms and hardness results for
labeled connectivity problems. IPL 66, 81-85 (1998)
11. Monnot, J.: The labeled perfect matching in bipartite graphs. IPL 96, 81-88 (2005)

	The Maximum Labeled Path Problem
	1 Introduction
	1.1 Contributions
	1.2 Preliminaries

	2 Maximum Labeled Path Is APX-Hard
	3 Maximum Labeled Path Does Not Belong to APX
	3.1 Self-reduction
	3.2 Proof of Theorem5
	3.3 Proof of Lemma5

	4 OPT-Approximation for Max-Labeled-Path
	4.1 Algorithm

	References

