
The Maximum Labeled Path Problem
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Abstract. In this paper, we study the approximability of the Maximum
Labeled Path problem: given a vertex-labeled directed acyclic graph D,
find a path in D that collects a maximum number of distinct labels. Our
main results are a

√
OPT -approximation algorithm for this problem and

a self-reduction showing that any constant ratio approximation algorithm
for this problem can be converted into a PTAS. This last result, combined
with the APX-hardness of the problem, shows that the problem cannot
be approximated within a constant ratio unless P = NP .

1 Introduction

Optimization network design problems over labeled graphs have been widely
studied in the literature [2–8,10,11]. Since these problems are usually NP -hard,
they have been mainly investigated toward the goal of finding efficiently approx-
imate solutions. Most of these studies consider edge-labels that represent kinds
of connections and the optimization concerns the number of different kinds of
connections used. Our motivation is different, we consider vertex-labels that rep-
resent membership to different components. Our goal is then to maximize the
number of components visited by a path in a directed graph. More precisely,
the problem is defined on a directed graph with labels on the vertices and the
objective is to find a path visiting a maximum number of distinct labels. We
call this problem Max-Labeled-Path. Actually, the vertex-labeled and edge-
labeled versions of this problem are equivalent but the vertex-labeled version is
closer to our initial motivation. To our knowledge, there is no prior work on this
simple and natural problem. A related problem is the Min LP s− t problem that
asks to find a path between s and t minimizing the number of different labels
in this path. In [7] Hassin et al. achieves a

√
n ratio for this problem and they

show that it is hard to approximate within O(log n). We used a similar approach
for our hardness result and the comparison is interesting since the maximization
requires a much more precise analysis.

1.1 Contributions

In this paper we report both positive and negative results about the Max-
Labeled-Path. Namely, we prove that this problem does not admit a constant
factor approximation algorithm unless P = NP and we propose an algorithm
that returns a solution of value at least

√
OPT where OPT is the value of an
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optimal solution. In Sect. 2, the hardness proof starts with a reduction from
MAX 3SAT preserving the approximation and therefore proving that Max-
Labeled-Path is APX-hard. In Sect. 3, a polynomial self-reduction shows that
finding a solution on a more complex graph enables us to find a solution with
a better ratio on the initial graph. This, combined with the APX-hardness of
the problem, shows that the problem cannot be approximated within a constant
ratio unless P = NP . In Sect. 4, we describe a

√
OPT -approximation algorithm

for Max-Labeled-Path. This algorithm requires a specific preprocessing and
an inductive analysis that uses the poset structure of the problem.

1.2 Preliminaries

A vertex-labeled Directed Acyclic Graph D = (V,A) is a DAG whose vertices
are labeled by a function l : V → L. For each vertex u ∈ V , we denote by λ(u)
and call the level of u, the maximum number of vertices in a path having u as
end-vertex. The ith level set Li of D consists of all vertices u ∈ V such that
λ(u) = i. The vertices of L1, i.e. having no ingoing arcs, are called the sources of
D. The vertices having no outgoing arcs are called the sink. Let k be the largest
integer such that Lk �= ∅. Lk is a subset of the sinks. Let P be a (directed) path
in D. P is maximal by inclusion if and only if it connects a source to a sink.
The set of labels collected by P is the set {l(u) : u ∈ P} of labels of vertices in
P. Given a vertex-labeled DAG D, the problem Max-Labeled-Path consists
in finding a path P in D maximizing the number of distinct labels collected by
P. Any solution can be extended into a maximal path without decreasing its
value, therefore we only consider solutions that connects a source to a sink. In
this paper, we consider only maximization problem. Let D be an instance of
a maximization problem, we denote by OPT (D) its optimum. We say that an
algorithm achieves a constant performance ratio α, if for every instance D, it
returns a solution of value at least α OPT (D).

2 Maximum Labeled Path Is APX-Hard

In this section, we describe a reduction from Max-3SAT establishing that Max-
Labeled-Path is APX-hard even when restricted to instances satisfying the
following conditions:

(C1) All maximal (by inclusion) paths of D contain the same number k of vertices.
(C2) D contains a path that collects all the labels, OPT (D) = |L|.
(C3) D contains a path that collects each label exactly once, OPT (D) = k = |L|.
(C4) OPT (D) = k = |L| is a power of two.

Note that (C4) is stronger than (C3) which is stronger than (C2). Applying
our initial reduction to satisfiable instances of Max-3SAT, we produce instances
Max-Labeled-Path satisfying conditions (C1) with k ≤ 3|L| and (C2) and
proves Theorem 2. Then, we proceed in two steps: first we establish the APX-
hardness for instances satisfying conditions (C1) and (C3) in Theorem3 and
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then the APX-hardness for instances satisfying conditions (C1) and (C4) in
Theorem 4. In the next section we use a self-reduction of Max-Labeled-Path
to prove that Max-Labeled-Path does not belong to APX. This self-reduction
is valid only for instances satisfying conditions (C1) and (C4).

Theorem 1. (H̊astad [9]) Assuming P �= NP , no polynomial-time algorithm
can achieve a performance ratio exceeding 7

8 for Max-3SAT even when restricted
to satisfiable instances of the problem.

Theorem 2. Assuming P �= NP, no polynomial-time algorithm can achieve a
performance ratio exceeding 7

8 for Max-Labeled-Path even when restricted to
instances satisfying conditions (C1) with k ≤ 3|L| and (C2).

Before proving Theorem2, we establish the following lemma showing that (C1)
is not a strong requirement in the sense that each instance of Max-Labeled-
Path can be converted into an equivalent instance satisfying (C1). The proof of
Lemma 1 is omitted due to space limitation.

Lemma 1. Given an instance D of Max-Labeled-Path, it is possible to con-
struct an instance D′ satisfying condition (C1) and such that there exists a
mapping between the set of maximal paths in D and the set of maximal paths in
D′ preserving the number of labels collected.

Proof (of Theorem2). Given an instance F of Max-3SAT, we define an instance
DF = (V,A) of Max-Labeled-Path as follows. Let {w1, w2, ..., wq} be the
set of variables of F. For all j ∈ {1, ..., q}, we denote by |wj | the number
of occurrences of the literal wj and by |¬wj | the number of occurrences of
its negation. We create |wj | + |¬wj | vertices and call them wj

1, w
j
2, ..., w

j
|wj |

and ¬wj
1,¬wj

2, ...,¬wj
|¬wj |. We connect in a directed path P (wj) the vertices

which represent the literal wj , i.e. we create an arc (wj
i , w

j
i+1) for all i ∈

{1, . . . , |wj | − 1}. In the same way, we connect in a directed path P (¬wj) the
vertices representing ¬wj . For all j ∈ {1, ..., q−1}, we connect by an arc the last
vertices of P (wj) and P (¬wj) to the first vertices of P (wj+1) and P (¬wj+1).
Let us define the labeling function l : V → L := {1, . . . , m} where m is
the cardinality of the set of clauses {C1, C2, . . . , Cm} of F. There is a one to
one correspondence between the occurrences of the literals in the clauses and
the vertices of DF . A vertex u receives the label j if u corresponds to an occur-
rence of a literal in the clause Cj (see Fig. 1).

Applying the reduction to a satisfiable instance F of Max-3SAT, we obtain
an instance DF of Max-Labeled-Path that contains a path collecting all the
labels, i.e. that satisfies condition (C2). Moreover, since each clause contains
at most three literals, the number k of vertices in a maximal path of DF is
at most thrice the number m of labels, i.e. k ≤ 3m. In the resulting graph
DF , each maximal path P is a path from a vertex in {w1

1,¬w1
1} to a vertex

in {wq
|wq|,¬wq

|¬wq|} that contains for all j ∈ {1, . . . , q} either P (wj) or P (¬wj)
but not both. Therefore, it represents in an obvious way an assignment of the
variables (wj = true ⇔ P (wj) ⊂ P ). From the choice of the labeling of vertices
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in DF , it is easy to verify that an assignment of the variables satisfying n clauses
corresponds to a maximal path collecting n labels. This transformation produces
in polynomial time an instance DF satisfying the conditions (C2) with k ≤ 3|L|.
It remains to ensure (C1), this can be done by applying the transformation of
Lemma 1. Together with Theorem 1, this concludes the proof of Theorem2. �

Fig. 1. The digraph DF for the formula F = (a∨ b∨ c)∧ (¬a∨ b∨¬c)∧ (¬b∨ c) before
the transformation of Lemma 1 (to the left) and after (to the right).

The next step consists in showing that the problem Max-Labeled-Path
remains APX-hard even when restricted to instances such that all maximal paths
have the same number of vertices and contain a path collecting each label exactly
once.

Theorem 3. Assuming P �= NP, no polynomial time algorithm can achieve a
performance ratio exceeding 23

24 for Max-Labeled-Path even when restricted
to instances satisfying (C1) and (C3).

Proof. Consider a DAG D = (V,A) with a labeling function l that satisfies the
conditions (C1) with k ≤ 3|L| and (C2). Every maximal path in D contains the
same number k of vertices. Let m := |L| ≤ k be the number of labels of vertices
in D. We construct a DAG D′ by adding to D, for each vertex v ∈ V, a set
{v1, . . . , vr} of r := k − m copies of the vertex v. There is an arc between two
vertices in D′ if and only if there is an arc between their preimages in D (the
preimage of a vertex v ∈ V is v itself). Every maximal path in D′ corresponds
to a maximal path in D, in particular it contains exactly k vertices. The set of
labels of D′ is L′ := L ∪ {m + 1,m + 2, . . . ,m + r = k}. For each vertex v of D
and each integer j ∈ {1, 2, . . . , r} the label of the vertex vj is m + j. The labels
in D′ of the vertices that belong to D remain unchanged. We call the resulting
instance D′ the extension of the instance D.

The following two lemmata (whose proofs are omitted due to space lim-
itation) establish a close relationship between the optimum of the instances
D and D′.
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Lemma 2. If there is a path in D collecting n labels then there is a path in D′

collecting n + r labels. If there is a path in D′ collecting n labels then there is a
path in D collecting at least n − r labels.

Lemma 3. If there exists a polynomial time algorithm that achieves a perfor-
mance ratio 1−ε for Max-Labeled-Path restricted to instances satisfying con-
ditions (C1) and (C3) then there exists a polynomial time algorithm that achieves
a performance ratio 1 − 3ε for Max-Labeled-Path restricted to instances sat-
isfying conditions (C1) with k ≤ 3|L| and (C2).

To complete the proof of Theorem 3, suppose that there exists a polynomial time
algorithm ALG′ achieving a ratio exceeding 23

24 for the problem Max-Labeled-
Path restricted to instances satisfying conditions (C1) and (C3). Then, by
Lemma 3, we deduce that there exists a polynomial time algorithm ALG achiev-
ing a ratio exceeding 7

8 for the problem Max-Labeled-Path restricted to the
instances satisfying conditions (C1) with k ≤ 3|L| and (C2), this cannot occur
by Theorem 2, unless P = NP . �

The last result of this section shows that the problem remains APX-hard if
we add the condition that the number of vertices in any maximal path is a power
of two. The proof of Theorem4 is similar to the one of Theorem 3 and has been
omitted due to space limitation.

Theorem 4. Assuming P �= NP, no polynomial time algorithm can achieve a
performance ratio exceeding 47

48 for Max-Labeled-Path even when restricted
to instances satisfying conditions (C1) and (C4).

3 Maximum Labeled Path Does Not Belong to APX

In this section, using a self-reduction of the problem Max-Labeled-Path, we
will prove the following result:

Theorem 5. Assuming P �= NP, no polynomial time algorithm can achieve
a constant performance ratio for Max-Labeled-Path even when restricted to
instances satisfying conditions (C1) and (C4).

3.1 Self-reduction

In Sect. 3, we will consider only instances of Max-Labeled-Path satisfying
conditions (C1) and (C4). Namely, a DAG D = (V,A) whose vertices are labeled
by a function l : V → L = {1, . . . , k} such that there exists a path collecting each
label exactly once and the number k = |L| of vertices in any maximal path is a
power of two. We will prove that such instances of the problem Max-Labeled-
Path cannot be approximated in polynomial time within a constant factor. For
the sake of simplicity, we also assume that there is only one source s and one
sink t. Therefore, any maximal path is a path from s to t and all vertices of D
belong to a path from s to t. Recall that, for each vertex u ∈ V , λ(u) is the
number of vertices in a path from s to u (all such paths have the same length
because D satisfies (C4)). For all u ∈ V, λ(s) = 1 ≤ λ(u) ≤ k = λ(t).
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Pseudo Square and Pseudo Cubic Acyclic Digraph. The pseudo square
digraph D̄ of D is obtained from D by replacing each vertex u ∈ V by a copy Du

of the digraph D. We denote by vu the copy of the vertex v ∈ V in the digraph
Du. There is an arc vuwu in D̄ if and only if there is an arc vw in D. In addition
to the arcs of the subgraphs Du, u ∈ V , we add to D̄ an arc tusv for each arc
from uv in D. The pseudo cubic digraph D̃ of D is obtained from D̄ by replacing
each vertex vu of D̄ by a path P (vu) with k vertices. Each arc entering a vertex
vu in D̄ is replaced by an arc of D̃ entering the first vertex of P (vu). Analogously,
each arc leaving the vertex vu in D̄ is replaced by an arc of D̃ leaving the last
vertex of P (vu) (see Fig. 2). We define a new instance of Max-Labeled-Path
on the digraph D̃ with the first vertex of P (ss) as a source and the last vertex
of P (tt) as a sink and a labeling function l̃ defined as follows.

Fig. 2. An example of pseudo square digraph D̄ with k = |L| = 4. An optimal path P in
D and the corresponding optimal path P̄ in D̄ are drawn in bold. In the subgraph Da,
each vertex v of D̄ is labeled by the subset of labels received by the vertices of the path
P (v) of D̃. In D̃, the vertex fd of D̄ is replaced by the path P (fd) = (f1

d , f2
d , f3

d , f4
d ).

Labeling. Let vu be a vertex of D̃, the set of labels of the vertices of P (vu)
will depend on the labels of u and v in D and on the level of u in D. Since either
all vertices of P (vu) are visited by a path from the source to the sink or none
of them are, our labeling function assigns a set of labels to the path P (vu) and
does not precise the order in which the labels appear on P (vu). The set of labels
L̃ used to define the labeling of D̃ consists of k disjoint subsets L̃1, . . . , L̃k such
that |L̃1| = . . . = |L̃k| = k2. For each label c ∈ L and each level i ∈ {1, . . . , k},
we construct a partition Si,c := {Si,c(c′) : c′ ∈ L} of L̃c into k subsets of size k
such that any two subsets arising from different partitions intersect in exactly
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one label, i.e. if i1 �= i2 for all c′, c′′ ∈ L, |Si1,c(c′) ∩ Si2,c(c′′)| = 1. Since k2 is a
power of two (k2 = 2r), such partitions can be easily constructed as classes of
parallel lines of a finite affine plane (each class of parallel lines induces a partition
in which the subsets are the lines). The construction of finite affine planes from
finite fields is described for instance in [1]. This construction can be done in
polynomial time in the size of D by first identifying an irreducible polynomial
of degree r by brute force and then constructing the corresponding finite fields
GF (2r). The labeling function l̃ assigns to the vertices of P (vu) the labels that
belong to the subset Sλ(u),l(u)(l(v)) of the partition Sλ(u),l(u).

Claim. There is a path in D̃ that collects each label in L̃ exactly once.

Proof. Let P be the path of D collecting all the labels in L. Consider the path
P̃ passing via each subgraph Du for all u ∈ P and such that the subpath P̃u

of P̃ inside the subgraph Du consists of the vertices vu for all v ∈ P (see Fig. 2).
Since P collects each label in L once, the subpath P̃u collects every subset of
the partition Sλ(u),l(u). This implies that P̃u collects each label of L̃l(u) once.
Applying this assertion to all vertices u ∈ P and using again that P collects
each label in L, we conclude that P̃ collects all the labels of L̃ =

⋃
u∈P L̃l(u)

once. �

The previous claim and the fact that |L̃| is a power of two ensure that D̃ is
an instance of Max-Labeled-Path satisfying the conditions of (C1) and (C4).
Clearly, the instance D̃ can be constructed in polynomial time from the instance
D.

3.2 Proof of Theorem5

Let g denote the reciprocal function on the interval [0, 1] of the following con-
tinuous and strictly increasing function h:

h(x) :=
{

h1(x) := x(x2 − x + 1) if 0 < x < 1
2 ;

h2(x) := x2 − 1
4x + 1

4 if 1
2 ≤ x ≤ 1.

Lemma 4. For each 0 < β < 1, the sequence βn defined by β0 = β and βn+1 =
g(βn) has a limit of 1.

In the next section, we show the following two results:

Lemma 5. Given any path Q in D̃ that collects at least βk3 labels, a path P in
D that collects at least g(β)k labels can be computed in polynomial time.

Lemma 6. If there is a polynomial-time algorithm with a ratio β for Max-
Labeled-Path then there is a polynomial-time algorithm with a ratio g(β) for
Max-Labeled-Path.

Proof. Suppose there exists a polynomial time algorithm ALGβ with a ratio at
least β for Max-Labeled-Path. Let D be an instance of Max-Labeled-Path,
we use the following algorithm:
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Function ALG(D): a maximal path in D that collects g(β)k labels

Construct the digraph D̃ from the digraph D;
Perform ALGβ to obtain a path Q of D̃ that collects βk3 labels;
Derive from Q a path P of D that collects at least g(β)k labels;
Return P ;

This algorithm is clearly polynomial because all the steps are, thus we have
a polynomial time algorithm with a ratio g(β) for Max-Labeled-Path. �

Suppose there exists an approximation algorithm with a constant factor β
for Max-Labeled-Path. By Lemma 4, there exists an integer n such that βn >
47
48 . Applying n times Lemma 6, we derive a polynomial-time algorithm for the
problem Max-Labeled-Path with a ratio exceeding 47

48 . A similar argument
shows that any constant factor approximation algorithm for Max-Labeled-
Path can be converted into a PTAS for this problem. Such an algorithm does
not exist unless P = NP by Theorem 4. Assuming Lemma 5, this concludes the
proof of Theorem5.

3.3 Proof of Lemma 5

We explain how to construct in polynomial time a path P in D that collects a
set LP ⊆ L containing at least g(β)k labels from a path Q in D̃ that collects
a set L̃Q ⊆ L̃ containing at least βk3 labels. We denote by V Q ⊆ V the set of
vertices u such that Q passes via Du and by LQ ⊆ L the set of labels of the
vertices in V Q. For each vertex u ∈ V Q, we define WQ

u ⊆ V the set of vertices
v such that Q contains P (vu) as a subpath and by LQ

u ⊆ L the set of labels of
the vertices in WQ

u . Let αu := |LQ
u |/k. We will prove that either |LQ| ≥ g(β)k

or there exists a vertex u ∈ V Q such that |LQ
u | = αuk ≥ g(β)k. In the first

case, the vertices of V Q induce in D a path that collects g(β)k labels. In the
second case, the vertices of Q that belong to the subgraph Du induce in D a
path that collects g(β)k labels. Therefore, if one of the two assertions hold, one
can derive in polynomial time a path P of D collecting g(β)k labels and we are
done.

Suppose by way of contradiction that none of the two assertions hold. Namely,
|LQ| < g(β)k and for all u ∈ V Q, αu < g(β). Let c be a label in LQ. We denote
by V Q

c ⊆ V Q the set of vertices u ∈ V Q such that l(u) = c and we define
αc := maxu∈V Q

c
αu and uc := arg maxu∈V Q

c
αu. By assumption, αc < g(β). In

Duc
, Q collects

∑

c′∈LQ
uc

|Sc,λ(u)(c′)| =
∑

c′∈LQ
uc

k = αck
2 labels.

Let u be a vertex of V Q
c − {uc}. The number of labels collected by Q in Du

that are not collected by Q in Duc
is the sum over all labels c′ ∈ LQ

u of
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∣
∣
∣
∣
∣
∣

Sc,λ(u)(c
′) − ⋃

c′′∈LQ
uc

Sc,λ(uc)(c
′′)

∣
∣
∣
∣
∣
∣

= k −
∣
∣
∣
∣
∣
∣

⋃

c′′∈LQ
uc

(

Sc,λ(u)(c
′) ∩ Sc,λ(uc)(c

′′)
)

∣
∣
∣
∣
∣
∣

= k − ∑

c′′∈LQ
uc

∣
∣Sc,λ(u)(c

′) ∩ Sc,λ(uc)(c
′′)
∣
∣

= k − ∑

c′′∈LQ
uc

1

= k − αck

The first equation follows
∣
∣Sc,λ(u)(c′)

∣
∣ = k and trivial set properties. For the

second equation, recall that the family {Sc,λ(uc)(c
′′) : c′′ ∈ LQ

uc
} is a partition of

L̃c. The choice of the partitions used to define the labeling function of D̃ ensures
that

∣
∣Sc,λ(u)(c′) ∩ Sc,λ(uc)(c

′′)
∣
∣ = 1 and yields the third equation. For the last

equation, we use |LQ
uc

| = αck. We conclude that the number of labels collected
by Q in Du and not collected by Q in Duc

is |LQ
u |(k − αck). Since (k − αck) ≥ 0

and |LQ
u | = αuk ≤ αck, this number is at most αck(k − αck).

Using this bound for all vertices u ∈ V Q
c −{uc} and the fact that αck

2 labels
are collected by Q in Duc

, we obtain that the following bound on the number of
labels of L̃c collected by Q:

∣
∣
∣L̃Q ∩ L̃c

∣
∣
∣ ≤ αck

2 + (|V Q
c | − 1)αck(k − αck)

≤ k2(αc + αc(|V Q
c | − 1)(1 − αc))

Summing over all labels c ∈ LQ, we obtain that the total number of labels
collected by Q is upper bounded as follows:

∣
∣
∣L̃Q
∣
∣
∣ ≤ k2∑

c∈LQ

(

αc + αc(|V Q
c | − 1)(1 − αc)

)

< k2∑

c∈LQ

(

g(β) + αc(|V Q
c | − 1)(1 − αc)

)

(∗)

This last inequality is obtained using the initial assumption αc < g(β).
We distinguish two cases depending on the value of g(β). First, suppose that

g(β) ≥ 1
2 . Note that the maximum 1

4 of the function x(1 − x) on the interval
[0, 1] is realized for x = 1

2 . Therefore for all c ∈ LQ, αc (1 − αc) ≤ 1
4 and we

derive from (∗):
∣
∣
∣L̃Q
∣
∣
∣ < k2∑

c∈LQ

(
g(β) + 1

4
(|V Q

c | − 1)
)

< k2
((

g(β) − 1
4

)∑

c∈LQ 1 + 1
4

∑

c∈LQ |V Q
c |)

< k2
((

g(β) − 1
4

)
g(β)k + 1

4
k
)

< k3
(

g(β)2 − 1
4
g(β) + 1

4

)

< k3 (h(g(β)))

< k3β

In the third inequality, the upper bound on the left operand follows from
the initial assumption g(β)k > |LQ| =

∑
c∈LQ 1 and (g(β) − 1

4 ) ≥ 0. The upper
bound on the right operand follows from the fact that any path in D from s
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to t contains exactly k vertices, therefore
∑

c∈LQ |V Q
c | = k. The last equation

contradicts the choice of Q and concludes the proof for the case g(β) ≥ 1
2 .

Now, suppose that g(β) < 1
2 . Since the function x(1−x) is a strictly increasing

function on the interval [0, 1
2 ] and |V Q

c | − 1 ≥ 0 for all c ∈ LQ, we can replace
αc by g(β) in the inequality (∗):

|L̃Q| < k2∑

c∈LQ

(

g(β) + g(β)(|V Q
c | − 1) (1 − g(β))

)

< k2g(β)
(∑

c∈LQ 1 − (1 − g(β)) + |V Q
c | (1 − g(β))

)

< k2g(β)
(

g(β)
∑

c∈LQ 1 + (1 − g(β))
∑

c∈LQ |V Q
c |)

< k2g(β)
(
g(β)2k + (1 − g(β)) k

)

< k3g(β)
(

g(β)2 − g(β) + 1
)

< k3h(g(β))

< k3β

Again we use
∑

c∈LQ 1 < g(β)k and
∑

c∈LQ |V Q
c | = k to derive the fourth

inequality. In the two cases, we obtain a contradiction with the assumption that
the path Q collects at least βk3 labels. This concludes the proof of Lemma 5.

4
√
OPT -Approximation for Max-Labeled-Path

4.1 Algorithm

In this section, we describe a polynomial algorithm that computes for each
instance D of Max-Labeled-Path, a path of D collecting

√
OPT (D) labels.

Again, for the sake of simplicity, we assume that there is only one source s and
one sink t. Our algorithm can be easily adapted to handle the case with several
sources and several sinks. First, we define a function F : V → N such that F (u)
can be computed for all vertices u ∈ V in time O(|V |3). Then, we prove that, for
any vertex u ∈ V, F (u) is an upper bound on the number of labels collected by a
path from s to u. Finally, we describe an algorithm that computes for any vertex
u ∈ V a path that collects at least �√F (u)� labels. Applying this algorithm to
t, we obtain a path from s to t that collects at least �√OPT � labels.

For each pair of vertices u, v ∈ V, let Du,v be the subgraph of D consisting
of all paths from u to v. We denote by Γ (u, v) the number of labels in Du,v. Let
F : V → N be the function recursively defined as follows :

F (u) :=

{
1, if u = s ;
max
P∈Pu

min
ww′∈P

F (w) + Γ (w′, u), otherwise.

where Pu denotes the set of the paths from s to u. Let P (u) be a path in Pu

that realizes the maximum, i.e. such that F (u) = min
ww′∈P (u)

F (w) + Γ (w′, u).

The following lemma shows that, for any vertex u ∈ V, F (u) is an upper
bound on the number of labels that can be collected by a path from s to u.



162 B. Couëtoux et al.

Lemma 7. If P = (s = u0, u1, ..., un = u) is a path between s and u that collects
α labels then F (u) ≥ α.

Proof. By induction on n. For n = 0, F (u0) = F (s) = 1. For n > 0, consider
a path P = (s = u0, u1, ..., un = u) that collects α labels. For any i = 1, . . . , n,
let αi be the number of labels collected by the path (u0, u1, ..., ui). The path
(ui, ..., un) collects at least α − αi−1 labels and belongs to Dui,u, therefore
Γ (ui, u) ≥ α−αi−1. Since, by induction, F (ui−1) ≥ αi−1, F (ui−1)+Γ (ui, u) ≥ α
for any i = 1, . . . , n yielding F (u) ≥ α. �

Corollary 1. If OPT is the maximum number of labels that can be collected by
a path from s to t then F (t) ≥ OPT .

Suppose that F (v) and P (v) have been already computed for all v ∈ V, this can
be done in O(|V |3) using standard data structures. Let u be a vertex in V. The
algorithm ComputePath returns a path between s and u that collects at least
�√F (u)� labels. By Corollary 1, applying this procedure with u = t we obtain
a path from s to t that collects at least �√OPT � labels.

Function ComputePath(u ∈ V ): a su-path that collects �√F (u)� labels

if u = s then
return (s)

else
Let ww′ be an arc of P (u) with F (w) ≤ (�√F (u)� − 1)2 and
F (w′) ≥ (�√F (u)� − 1)2 ;
P ′ ← ComputePath(w′) ;
if P ′ collects at least �√F (u)� labels then

return P ′.Q where Q is any path from w′ to u ;

else
Perform a BFS in Dw′,u to find a vertex v with l(v) not in P ′ ;
return P ′.Q where Q is a w′u-path passing via v ;

The following lemma is useful to prove that the algorithm ComputePath is
correct.

Lemma 8. If F (u) ≥ 4 then there is an arc ww′ in P (u) such that F (w) ≤
(�√F (u)� − 1)2 and F (w′) ≥ (�√F (u)� − 1)2. Moreover, for any such arc,
Γ (w′, u) ≥ �√F (u)� + 1.

Proof. The first assertion is true because F (s) = 1 ≤ (�√F (u)�−1)2 and F (u) ≥
(�√F (u)� − 1)2. To verify the second assertion, let ww′ be an arc such that
F (w) ≤ (�√F (u)�−1)2 and F (w′) ≥ (�√F (u)�−1)2. Since ww′ ∈ P (u), F (w)+
Γ (w′, u) ≥ F (u). This implies Γ (w′, u) ≥ F (u)−F (w) ≥ �√F (u)�2−(�√F (u)�−
1)2 = 2�√F (u)� − 1 ≥ �√F (u)� + 1, because �√F (u)� ≥ 2. �
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Theorem 6. ComputePath(u) computes a path P that collects at least �√F (u)�
labels.

Proof. If F (u) < 4, any path from s to u collects at least �√F (u)� = 1 labels.
Now suppose that F (u) ≥ 4. We proceed by induction on the number of recursive
calls. If u = s the algorithm returns the path (s) that collects F (s) = 1 labels.
Otherwise, the first assertion of Lemma 8 ensures that P (u) contains an arc ww′

such that F (w) ≤ (�√F (u)� − 1)2 and F (w′) ≥ (�√F (u)� − 1)2. By induction
hypothesis, ComputePath(w′) returns a path P ′ collecting at least �√F (u)� − 1
labels. If P ′ collects at least �√F (u)� labels, the path P ′.Q returned by the
algorithm is a correct answer. Now, suppose that the path P ′ collects exactly
�√F (u)� − 1 labels. By Lemma 8, Γ (w′, u) ≥ �√F (u)� + 1. This implies that
Dw′,u − {w′} contains at least �√F (u)� labels. Among them at least one is not
collected by P ′. A BFS traversal of Dw′,u will find a vertex v having this label
together with a path Q from w′ to u passing via v. Finally, the path P ′.Q that
collects at least �√F (u)� labels is a correct answer. �

Using standard data structures, computing F (u) and P (u) for every vertex u ∈ V
can be done in time O(|V |3).

Acknowledgment. We are grateful to Jérôme Monnot for suggesting the use of a
self-reduction to prove the hardness result of Sect. 3.
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