The Maximum Labeled Path Problem

Basile Couëtoux^(⊠), Elie Nakache, and Yann Vaxès

Aix-Marseille Université, CNRS, LIF UMR 7279, 13288 Marseille, France {basile.couetoux,elie.nakache,yann.vaxes}@univ-amu.fr

Abstract. In this paper, we study the approximability of the Maximum Labeled Path problem: given a vertex-labeled directed acyclic graph D, find a path in D that collects a maximum number of distinct labels. Our main results are a \sqrt{OPT} -approximation algorithm for this problem and a self-reduction showing that any constant ratio approximation algorithm for this problem can be converted into a PTAS. This last result, combined with the APX-hardness of the problem, shows that the problem cannot be approximated within a constant ratio unless P = NP.

1 Introduction

Optimization network design problems over labeled graphs have been widely studied in the literature [2-8, 10, 11]. Since these problems are usually NP-hard, they have been mainly investigated toward the goal of finding efficiently approximate solutions. Most of these studies consider edge-labels that represent kinds of connections and the optimization concerns the number of different kinds of connections used. Our motivation is different, we consider vertex-labels that represent membership to different components. Our goal is then to maximize the number of components visited by a path in a directed graph. More precisely, the problem is defined on a directed graph with labels on the vertices and the objective is to find a path visiting a maximum number of distinct labels. We call this problem MAX-LABELED-PATH. Actually, the vertex-labeled and edgelabeled versions of this problem are equivalent but the vertex-labeled version is closer to our initial motivation. To our knowledge, there is no prior work on this simple and natural problem. A related problem is the Min LP s-t problem that asks to find a path between s and t minimizing the number of different labels in this path. In [7] Hassin et al. achieves a \sqrt{n} ratio for this problem and they show that it is hard to approximate within $O(\log n)$. We used a similar approach for our hardness result and the comparison is interesting since the maximization requires a much more precise analysis.

1.1 Contributions

In this paper we report both positive and negative results about the MAX-LABELED-PATH. Namely, we prove that this problem does not admit a constant factor approximation algorithm unless P = NP and we propose an algorithm that returns a solution of value at least \sqrt{OPT} where OPT is the value of an

[©] Springer International Publishing Switzerland 2014

D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 152-163, 2014.

DOI: 10.1007/978-3-319-12340-0_13

optimal solution. In Sect. 2, the hardness proof starts with a reduction from MAX 3SAT preserving the approximation and therefore proving that MAX-LABELED-PATH is APX-hard. In Sect. 3, a polynomial self-reduction shows that finding a solution on a more complex graph enables us to find a solution with a better ratio on the initial graph. This, combined with the APX-hardness of the problem, shows that the problem cannot be approximated within a constant ratio unless P = NP. In Sect. 4, we describe a \sqrt{OPT} -approximation algorithm for MAX-LABELED-PATH. This algorithm requires a specific preprocessing and an inductive analysis that uses the poset structure of the problem.

1.2 Preliminaries

A vertex-labeled Directed Acyclic Graph D = (V, A) is a DAG whose vertices are labeled by a function $l: V \to \mathcal{L}$. For each vertex $u \in V$, we denote by $\lambda(u)$ and call the *level* of u, the maximum number of vertices in a path having u as end-vertex. The *i*th level set L_i of D consists of all vertices $u \in V$ such that $\lambda(u) = i$. The vertices of L_1 , i.e. having no ingoing arcs, are called the *sources* of D. The vertices having no outgoing arcs are called the sink. Let k be the largest integer such that $L_k \neq \emptyset$. L_k is a subset of the sinks. Let P be a (directed) path in D. P is maximal by inclusion if and only if it connects a source to a sink. The set of labels *collected* by P is the set $\{l(u) : u \in P\}$ of labels of vertices in P. Given a vertex-labeled DAG D, the problem MAX-LABELED-PATH consists in finding a path P in D maximizing the number of distinct labels collected by P. Any solution can be extended into a maximal path without decreasing its value, therefore we only consider solutions that connects a source to a sink. In this paper, we consider only maximization problem. Let D be an instance of a maximization problem, we denote by OPT(D) its optimum. We say that an algorithm achieves a constant performance ratio α , if for every instance D, it returns a solution of value at least $\alpha OPT(D)$.

2 Maximum Labeled Path Is APX-Hard

In this section, we describe a reduction from MAX-3SAT establishing that MAX-LABELED-PATH is APX-hard even when restricted to instances satisfying the following conditions:

- (C1) All maximal (by inclusion) paths of D contain the same number k of vertices.
- (C2) D contains a path that collects all the labels, $OPT(D) = |\mathcal{L}|$.
- (C3) D contains a path that collects each label exactly once, $OPT(D) = k = |\mathcal{L}|$.
- (C4) $OPT(D) = k = |\mathcal{L}|$ is a power of two.

Note that (C4) is stronger than (C3) which is stronger than (C2). Applying our initial reduction to satisfiable instances of MAX-3SAT, we produce instances MAX-LABELED-PATH satisfying conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2) and proves Theorem 2. Then, we proceed in two steps: first we establish the APXhardness for instances satisfying conditions (C1) and (C3) in Theorem 3 and then the APX-hardness for instances satisfying conditions (C1) and (C4) in Theorem 4. In the next section we use a self-reduction of MAX-LABELED-PATH to prove that MAX-LABELED-PATH does not belong to APX. This self-reduction is valid only for instances satisfying conditions (C1) and (C4).

Theorem 1. (Håstad [9]) Assuming $P \neq NP$, no polynomial-time algorithm can achieve a performance ratio exceeding $\frac{7}{8}$ for MAX-3SAT even when restricted to satisfiable instances of the problem.

Theorem 2. Assuming $P \neq NP$, no polynomial-time algorithm can achieve a performance ratio exceeding $\frac{7}{8}$ for MAX-LABELED-PATH even when restricted to instances satisfying conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2).

Before proving Theorem 2, we establish the following lemma showing that (C1) is not a strong requirement in the sense that each instance of MAX-LABELED-PATH can be converted into an equivalent instance satisfying (C1). The proof of Lemma 1 is omitted due to space limitation.

Lemma 1. Given an instance D of MAX-LABELED-PATH, it is possible to construct an instance D' satisfying condition (C1) and such that there exists a mapping between the set of maximal paths in D and the set of maximal paths in D' preserving the number of labels collected.

Proof (of Theorem 2). Given an instance F of MAX-3SAT, we define an instance $D_F = (V, A)$ of MAX-LABELED-PATH as follows. Let $\{w^1, w^2, ..., w^q\}$ be the set of variables of F. For all $j \in \{1, ..., q\}$, we denote by $|w^j|$ the number of occurrences of the literal w^j and by $|\neg w^j|$ the number of occurrences of its negation. We create $|w^j| + |\neg w^j|$ vertices and call them $w_1^j, w_2^j, ..., w_{|w^j|}^j$ and $\neg w_1^j, \neg w_2^j, ..., \neg w_{|\neg w^j|}^j$. We connect in a directed path $P(w^j)$ the vertices which represent the literal w^j , i.e. we create an arc (w_i^j, w_{i+1}^j) for all $i \in \{1, \ldots, |w^j| - 1\}$. In the same way, we connect in a directed path $P(\neg w^j)$ the vertices representing $\neg w^j$. For all $j \in \{1, ..., q-1\}$, we connect by an arc the last vertices of $P(w^j)$ and $P(\neg w^j)$ to the first vertices of $P(w^{j+1})$ and $P(\neg w^{j+1})$. Let us define the labeling function $l : V \rightarrow \mathcal{L} := \{1, \ldots, m\}$ where m is the cardinality of the set of clauses $\{C_1, C_2, \ldots, C_m\}$ of F. There is a one to one correspondence between the occurrences of the literals in the clauses and the vertices of D_F . A vertex u receives the label j if u corresponds to an occurrence of a literal in the clause C_j (see Fig. 1).

Applying the reduction to a satisfiable instance F of MAX-3SAT, we obtain an instance D_F of MAX-LABELED-PATH that contains a path collecting all the labels, i.e. that satisfies condition (C2). Moreover, since each clause contains at most three literals, the number k of vertices in a maximal path of D_F is at most thrice the number m of labels, i.e. $k \leq 3m$. In the resulting graph D_F , each maximal path P is a path from a vertex in $\{w_1^1, \neg w_1^1\}$ to a vertex in $\{w_{|w^q|}^q, \neg w_{|\neg w^q|}^q\}$ that contains for all $j \in \{1, \ldots, q\}$ either $P(w_j)$ or $P(\neg w_j)$ but not both. Therefore, it represents in an obvious way an assignment of the variables $(w_j = true \Leftrightarrow P(w_j) \subset P)$. From the choice of the labeling of vertices in D_F , it is easy to verify that an assignment of the variables satisfying n clauses corresponds to a maximal path collecting n labels. This transformation produces in polynomial time an instance D_F satisfying the conditions (C2) with $k \leq 3|\mathcal{L}|$. It remains to ensure (C1), this can be done by applying the transformation of Lemma 1. Together with Theorem 1, this concludes the proof of Theorem 2. \Box

Fig. 1. The digraph D_F for the formula $F = (a \lor b \lor c) \land (\neg a \lor b \lor \neg c) \land (\neg b \lor c)$ before the transformation of Lemma 1 (to the left) and after (to the right).

The next step consists in showing that the problem MAX-LABELED-PATH remains APX-hard even when restricted to instances such that all maximal paths have the same number of vertices and contain a path collecting each label exactly once.

Theorem 3. Assuming $P \neq NP$, no polynomial time algorithm can achieve a performance ratio exceeding $\frac{23}{24}$ for MAX-LABELED-PATH even when restricted to instances satisfying (C1) and (C3).

Proof. Consider a DAG D = (V, A) with a labeling function l that satisfies the conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2). Every maximal path in D contains the same number k of vertices. Let $m := |\mathcal{L}| \leq k$ be the number of labels of vertices in D. We construct a DAG D' by adding to D, for each vertex $v \in V$, a set $\{v^1, \ldots, v^r\}$ of r := k - m copies of the vertex v. There is an arc between two vertices in D' if and only if there is an arc between their preimages in D (the preimage of a vertex $v \in V$ is v itself). Every maximal path in D' corresponds to a maximal path in D, in particular it contains exactly k vertices. The set of labels of D' is $\mathcal{L}' := \mathcal{L} \cup \{m+1, m+2, \ldots, m+r=k\}$. For each vertex v of D and each integer $j \in \{1, 2, \ldots, r\}$ the label of the vertex v^j is m + j. The labels in D' of the vertices that belong to D remain unchanged. We call the resulting instance D' the extension of the instance D.

The following two lemmata (whose proofs are omitted due to space limitation) establish a close relationship between the optimum of the instances D and D'. **Lemma 2.** If there is a path in D collecting n labels then there is a path in D' collecting n + r labels. If there is a path in D' collecting n labels then there is a path in D collecting at least n - r labels.

Lemma 3. If there exists a polynomial time algorithm that achieves a performance ratio $1 - \epsilon$ for MAX-LABELED-PATH restricted to instances satisfying conditions (C1) and (C3) then there exists a polynomial time algorithm that achieves a performance ratio $1 - 3\epsilon$ for MAX-LABELED-PATH restricted to instances satisfying conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2).

To complete the proof of Theorem 3, suppose that there exists a polynomial time algorithm ALG' achieving a ratio exceeding $\frac{23}{24}$ for the problem MAX-LABELED-PATH restricted to instances satisfying conditions (C1) and (C3). Then, by Lemma 3, we deduce that there exists a polynomial time algorithm ALG achieving a ratio exceeding $\frac{7}{8}$ for the problem MAX-LABELED-PATH restricted to the instances satisfying conditions (C1) with $k \leq 3|\mathcal{L}|$ and (C2), this cannot occur by Theorem 2, unless P = NP.

The last result of this section shows that the problem remains APX-hard if we add the condition that the number of vertices in any maximal path is a power of two. The proof of Theorem 4 is similar to the one of Theorem 3 and has been omitted due to space limitation.

Theorem 4. Assuming $P \neq NP$, no polynomial time algorithm can achieve a performance ratio exceeding $\frac{47}{48}$ for MAX-LABELED-PATH even when restricted to instances satisfying conditions (C1) and (C4).

3 Maximum Labeled Path Does Not Belong to APX

In this section, using a self-reduction of the problem MAX-LABELED-PATH, we will prove the following result:

Theorem 5. Assuming $P \neq NP$, no polynomial time algorithm can achieve a constant performance ratio for MAX-LABELED-PATH even when restricted to instances satisfying conditions (C1) and (C4).

3.1 Self-reduction

In Sect. 3, we will consider only instances of MAX-LABELED-PATH satisfying conditions (C1) and (C4). Namely, a DAG D = (V, A) whose vertices are labeled by a function $l: V \to \mathcal{L} = \{1, \ldots, k\}$ such that there exists a path collecting each label exactly once and the number $k = |\mathcal{L}|$ of vertices in any maximal path is a power of two. We will prove that such instances of the problem MAX-LABELED-PATH cannot be approximated in polynomial time within a constant factor. For the sake of simplicity, we also assume that there is only one source s and one sink t. Therefore, any maximal path is a path from s to t and all vertices of Dbelong to a path from s to t. Recall that, for each vertex $u \in V$, $\lambda(u)$ is the number of vertices in a path from s to u (all such paths have the same length because D satisfies (C4)). For all $u \in V$, $\lambda(s) = 1 \leq \lambda(u) \leq k = \lambda(t)$. **Pseudo Square and Pseudo Cubic Acyclic Digraph.** The pseudo square digraph \overline{D} of D is obtained from D by replacing each vertex $u \in V$ by a copy D_u of the digraph D. We denote by v_u the copy of the vertex $v \in V$ in the digraph D_u . There is an arc $v_u w_u$ in \overline{D} if and only if there is an arc vw in D. In addition to the arcs of the subgraphs D_u , $u \in V$, we add to \overline{D} an arc $t_u s_v$ for each arc from uv in D. The pseudo cubic digraph D of D is obtained from \overline{D} by replacing each vertex v_u of \overline{D} by a path $P(v_u)$ with k vertices. Each arc entering a vertex v_u in \overline{D} is replaced by an arc of D entering the first vertex of $P(v_u)$. Analogously, each arc leaving the vertex v_u in \overline{D} is replaced by an arc of D leaving the last vertex of $P(v_u)$ (see Fig. 2). We define a new instance of MAX-LABELED-PATH on the digraph D with the first vertex of $P(s_s)$ as a source and the last vertex of $P(t_t)$ as a sink and a labeling function \tilde{l} defined as follows.

Fig. 2. An example of pseudo square digraph \overline{D} with $k = |\mathcal{L}| = 4$. An optimal path P in D and the corresponding optimal path \overline{P} in \overline{D} are drawn in bold. In the subgraph D_a , each vertex v of \overline{D} is labeled by the subset of labels received by the vertices of the path P(v) of D. In D, the vertex f_d of \overline{D} is replaced by the path $P(f_d) = (f_d^1, f_d^2, f_d^3, f_d^4)$.

Labeling. Let v_u be a vertex of \tilde{D} , the set of labels of the vertices of $P(v_u)$ will depend on the labels of u and v in D and on the level of u in D. Since either all vertices of $P(v_u)$ are visited by a path from the source to the sink or none of them are, our labeling function assigns a set of labels to the path $P(v_u)$ and does not precise the order in which the labels appear on $P(v_u)$. The set of labels $\tilde{\mathcal{L}}$ used to define the labeling of \tilde{D} consists of k disjoint subsets $\tilde{\mathcal{L}}_1, \ldots, \tilde{\mathcal{L}}_k$ such that $|\tilde{\mathcal{L}}_1| = \ldots = |\tilde{\mathcal{L}}_k| = k^2$. For each label $c \in \mathcal{L}$ and each level $i \in \{1, \ldots, k\}$, we construct a partition $\mathcal{S}_{i,c} := \{S_{i,c}(c') : c' \in \mathcal{L}\}$ of $\tilde{\mathcal{L}}_c$ into k subsets of size ksuch that any two subsets arising from different partitions intersect in exactly one label, i.e. if $i_1 \neq i_2$ for all $c', c'' \in \mathcal{L}$, $|S_{i_1,c}(c') \cap S_{i_2,c}(c'')| = 1$. Since k^2 is a power of two $(k^2 = 2^r)$, such partitions can be easily constructed as classes of parallel lines of a finite affine plane (each class of parallel lines induces a partition in which the subsets are the lines). The construction of finite affine planes from finite fields is described for instance in [1]. This construction can be done in polynomial time in the size of D by first identifying an irreducible polynomial of degree r by brute force and then constructing the corresponding finite fields $GF(2^r)$. The labeling function \tilde{l} assigns to the vertices of $P(v_u)$ the labels that belong to the subset $S_{\lambda(u),l(u)}(l(v))$ of the partition $S_{\lambda(u),l(u)}$.

Claim. There is a path in \tilde{D} that collects each label in $\tilde{\mathcal{L}}$ exactly once.

Proof. Let P be the path of D collecting all the labels in \mathcal{L} . Consider the path \tilde{P} passing via each subgraph D_u for all $u \in P$ and such that the subpath \tilde{P}_u of \tilde{P} inside the subgraph D_u consists of the vertices v_u for all $v \in P$ (see Fig. 2). Since P collects each label in \mathcal{L} once, the subpath \tilde{P}_u collects every subset of the partition $\mathcal{S}_{\lambda(u),l(u)}$. This implies that \tilde{P}_u collects each label of $\mathcal{L}_{l(u)}$ once. Applying this assertion to all vertices $u \in P$ and using again that P collects each label in \mathcal{L} , we conclude that \tilde{P} collects all the labels of $\mathcal{L} = \bigcup_{u \in P} \tilde{\mathcal{L}}_{l(u)}$ once.

The previous claim and the fact that $|\tilde{\mathcal{L}}|$ is a power of two ensure that \tilde{D} is an instance of MAX-LABELED-PATH satisfying the conditions of (C1) and (C4). Clearly, the instance \tilde{D} can be constructed in polynomial time from the instance D.

3.2 Proof of Theorem 5

Let g denote the reciprocal function on the interval [0, 1] of the following continuous and strictly increasing function h:

$$h(x) := \begin{cases} h_1(x) := x(x^2 - x + 1) \text{ if } 0 < x < \frac{1}{2}; \\ h_2(x) := x^2 - \frac{1}{4}x + \frac{1}{4} \text{ if } \frac{1}{2} \le x \le 1. \end{cases}$$

Lemma 4. For each $0 < \beta < 1$, the sequence β_n defined by $\beta_0 = \beta$ and $\beta_{n+1} = g(\beta_n)$ has a limit of 1.

In the next section, we show the following two results:

Lemma 5. Given any path Q in \tilde{D} that collects at least βk^3 labels, a path P in D that collects at least $g(\beta)k$ labels can be computed in polynomial time.

Lemma 6. If there is a polynomial-time algorithm with a ratio β for MAX-LABELED-PATH then there is a polynomial-time algorithm with a ratio $g(\beta)$ for MAX-LABELED-PATH.

Proof. Suppose there exists a polynomial time algorithm ALG_{β} with a ratio at least β for MAX-LABELED-PATH. Let D be an instance of MAX-LABELED-PATH, we use the following algorithm:

Function ALG(D): a maximal path in D that collects $g(\beta)k$ labels

Construct the digraph \tilde{D} from the digraph D; Perform $\operatorname{ALG}_{\beta}$ to obtain a path Q of \tilde{D} that collects βk^3 labels; Derive from Q a path P of D that collects at least $g(\beta)k$ labels; Return P;

This algorithm is clearly polynomial because all the steps are, thus we have a polynomial time algorithm with a ratio $g(\beta)$ for MAX-LABELED-PATH.

Suppose there exists an approximation algorithm with a constant factor β for MAX-LABELED-PATH. By Lemma 4, there exists an integer n such that $\beta_n > \frac{47}{48}$. Applying n times Lemma 6, we derive a polynomial-time algorithm for the problem MAX-LABELED-PATH with a ratio exceeding $\frac{47}{48}$. A similar argument shows that any constant factor approximation algorithm for MAX-LABELED-PATH can be converted into a PTAS for this problem. Such an algorithm does not exist unless P = NP by Theorem 4. Assuming Lemma 5, this concludes the proof of Theorem 5.

3.3 Proof of Lemma 5

We explain how to construct in polynomial time a path P in D that collects a set $\mathcal{L}^P \subseteq \mathcal{L}$ containing at least $g(\beta)k$ labels from a path Q in \tilde{D} that collects a set $\tilde{\mathcal{L}}^Q \subseteq \tilde{\mathcal{L}}$ containing at least βk^3 labels. We denote by $V^Q \subseteq V$ the set of vertices u such that Q passes via D_u and by $\mathcal{L}^Q \subseteq \mathcal{L}$ the set of labels of the vertices in V^Q . For each vertex $u \in V^Q$, we define $W_u^Q \subseteq V$ the set of vertices v such that Q contains $P(v_u)$ as a subpath and by $\mathcal{L}_u^Q \subseteq \mathcal{L}$ the set of labels of the vertices in W_u^Q . Let $\alpha_u := |\mathcal{L}_u^Q|/k$. We will prove that either $|\mathcal{L}_q^Q| \geq g(\beta)k$ or there exists a vertex $u \in V^Q$ such that $|\mathcal{L}_u^Q| = \alpha_u k \geq g(\beta)k$. In the first case, the vertices of V^Q induce in D a path that collects $g(\beta)k$ labels. In the second case, the vertices of Q that belong to the subgraph D_u induce in D a path that collects $g(\beta)k$ labels. Therefore, if one of the two assertions hold, one can derive in polynomial time a path P of D collecting $g(\beta)k$ labels and we are done.

Suppose by way of contradiction that none of the two assertions hold. Namely, $|\mathcal{L}^Q| < g(\beta)k$ and for all $u \in V^Q$, $\alpha_u < g(\beta)$. Let c be a label in \mathcal{L}^Q . We denote by $V_c^Q \subseteq V^Q$ the set of vertices $u \in V^Q$ such that l(u) = c and we define $\alpha_c := \max_{u \in V_c^Q} \alpha_u$ and $u_c := \arg\max_{u \in V_c^Q} \alpha_u$. By assumption, $\alpha_c < g(\beta)$. In D_{u_c}, Q collects $\sum_{c' \in \mathcal{L}^Q_{u_c}} |S_{c,\lambda(u)}(c')| = \sum_{c' \in \mathcal{L}^Q_{u_c}} k = \alpha_c k^2$ labels.

Let u be a vertex of $V_c^Q - \{u_c\}$. The number of labels collected by Q in D_u that are not collected by Q in D_{u_c} is the sum over all labels $c' \in \mathcal{L}_u^Q$ of

.

$$\begin{vmatrix} S_{c,\lambda(u)}(c') - \bigcup_{c'' \in \mathcal{L}_{u_c}^Q} S_{c,\lambda(u_c)}(c'') \end{vmatrix} = k - \left| \bigcup_{c'' \in \mathcal{L}_{u_c}^Q} \left(S_{c,\lambda(u)}(c') \cap S_{c,\lambda(u_c)}(c'') \right) \right| \\ = k - \sum_{c'' \in \mathcal{L}_{u_c}^Q} \left| S_{c,\lambda(u)}(c') \cap S_{c,\lambda(u_c)}(c'') \right| \\ = k - \sum_{c'' \in \mathcal{L}_{u_c}^Q} 1 \\ = k - \alpha_c k \end{aligned}$$

The first equation follows $|S_{c,\lambda(u)}(c')| = k$ and trivial set properties. For the second equation, recall that the family $\{S_{c,\lambda(u_c)}(c'') : c'' \in \mathcal{L}_{u_c}^Q\}$ is a partition of $\tilde{\mathcal{L}}_c$. The choice of the partitions used to define the labeling function of \tilde{D} ensures that $|S_{c,\lambda(u)}(c') \cap S_{c,\lambda(u_c)}(c'')| = 1$ and yields the third equation. For the last equation, we use $|\mathcal{L}_{u_c}^Q| = \alpha_c k$. We conclude that the number of labels collected by Q in D_u and not collected by Q in D_{u_c} is $|\mathcal{L}_u^Q|(k - \alpha_c k)$. Since $(k - \alpha_c k) \ge 0$ and $|\mathcal{L}_u^Q| = \alpha_u k \le \alpha_c k$, this number is at most $\alpha_c k(k - \alpha_c k)$. Using this bound for all vertices $u \in V_c^Q - \{u_c\}$ and the fact that $\alpha_c k^2$ labels

Using this bound for all vertices $u \in V_c^Q - \{u_c\}$ and the fact that $\alpha_c k^2$ labels are collected by Q in D_{u_c} , we obtain that the following bound on the number of labels of $\tilde{\mathcal{L}}_c$ collected by Q:

$$\begin{aligned} \left| \tilde{\mathcal{L}}^Q \cap \tilde{\mathcal{L}}_c \right| &\leq \alpha_c k^2 + (|V_c^Q| - 1)\alpha_c k(k - \alpha_c k) \\ &\leq k^2 (\alpha_c + \alpha_c (|V_c^Q| - 1)(1 - \alpha_c)) \end{aligned}$$

Summing over all labels $c \in \mathcal{L}^Q$, we obtain that the total number of labels collected by Q is upper bounded as follows:

$$\begin{aligned} \left| \tilde{\mathcal{L}}^{Q} \right| &\leq k^{2} \sum_{c \in \mathcal{L}^{Q}} \left(\alpha_{c} + \alpha_{c} (|V_{c}^{Q}| - 1)(1 - \alpha_{c}) \right) \\ &< k^{2} \sum_{c \in \mathcal{L}^{Q}} \left(g(\beta) + \alpha_{c} (|V_{c}^{Q}| - 1)(1 - \alpha_{c}) \right) \end{aligned} \tag{*}$$

This last inequality is obtained using the initial assumption $\alpha_c < q(\beta)$.

We distinguish two cases depending on the value of $g(\beta)$. First, suppose that $g(\beta) \geq \frac{1}{2}$. Note that the maximum $\frac{1}{4}$ of the function x(1-x) on the interval [0,1] is realized for $x = \frac{1}{2}$. Therefore for all $c \in \mathcal{L}^Q$, $\alpha_c (1-\alpha_c) \leq \frac{1}{4}$ and we derive from (*):

$$\begin{split} \left| \tilde{\mathcal{L}}^{Q} \right| &< k^{2} \sum_{c \in \mathcal{L}^{Q}} \left(g(\beta) + \frac{1}{4} (|V_{c}^{Q}| - 1) \right) \\ &< k^{2} \left(\left(g(\beta) - \frac{1}{4} \right) \sum_{c \in \mathcal{L}^{Q}} 1 + \frac{1}{4} \sum_{c \in \mathcal{L}^{Q}} |V_{c}^{Q}| \right) \\ &< k^{2} \left(\left(g(\beta) - \frac{1}{4} \right) g(\beta)k + \frac{1}{4}k \right) \\ &< k^{3} \left(g(\beta)^{2} - \frac{1}{4} g(\beta) + \frac{1}{4} \right) \\ &< k^{3} \left(h(g(\beta)) \right) \\ &< k^{3} \beta \end{split}$$

In the third inequality, the upper bound on the left operand follows from the initial assumption $g(\beta)k > |\mathcal{L}^Q| = \sum_{c \in \mathcal{L}^Q} 1$ and $(g(\beta) - \frac{1}{4}) \ge 0$. The upper bound on the right operand follows from the fact that any path in D from s to t contains exactly k vertices, therefore $\sum_{c \in \mathcal{L}^Q} |V_c^Q| = k$. The last equation contradicts the choice of Q and concludes the proof for the case $g(\beta) \geq \frac{1}{2}$.

Now, suppose that $g(\beta) < \frac{1}{2}$. Since the function x(1-x) is a strictly increasing function on the interval $[0, \frac{1}{2}]$ and $|V_c^Q| - 1 \ge 0$ for all $c \in \mathcal{L}^Q$, we can replace α_c by $g(\beta)$ in the inequality (*):

$$\begin{split} \tilde{\mathcal{L}}^{Q}| &< k^{2} \sum_{c \in \mathcal{L}^{Q}} \left(g(\beta) + g(\beta)(|V_{c}^{Q}| - 1) \left(1 - g(\beta) \right) \right) \\ &< k^{2}g(\beta) \left(\sum_{c \in \mathcal{L}^{Q}} 1 - (1 - g(\beta)) + |V_{c}^{Q}| \left(1 - g(\beta) \right) \right) \\ &< k^{2}g(\beta) \left(g(\beta) \sum_{c \in \mathcal{L}^{Q}} 1 + (1 - g(\beta)) \sum_{c \in \mathcal{L}^{Q}} |V_{c}^{Q}| \right) \\ &< k^{2}g(\beta) \left(g(\beta)^{2}k + (1 - g(\beta)) k \right) \\ &< k^{3}g(\beta) \left(g(\beta)^{2} - g(\beta) + 1 \right) \\ &< k^{3}h(g(\beta)) \\ &< k^{3}\beta \end{split}$$

Again we use $\sum_{c \in \mathcal{L}^Q} 1 < g(\beta)k$ and $\sum_{c \in \mathcal{L}^Q} |V_c^Q| = k$ to derive the fourth inequality. In the two cases, we obtain a contradiction with the assumption that the path Q collects at least βk^3 labels. This concludes the proof of Lemma 5.

4 \sqrt{OPT} -Approximation for MAX-LABELED-PATH

4.1 Algorithm

In this section, we describe a polynomial algorithm that computes for each instance D of MAX-LABELED-PATH, a path of D collecting $\sqrt{OPT(D)}$ labels. Again, for the sake of simplicity, we assume that there is only one source s and one sink t. Our algorithm can be easily adapted to handle the case with several sources and several sinks. First, we define a function $F: V \to \mathbb{N}$ such that F(u) can be computed for all vertices $u \in V$ in time $O(|V|^3)$. Then, we prove that, for any vertex $u \in V$, F(u) is an upper bound on the number of labels collected by a path from s to u. Finally, we describe an algorithm that computes for any vertex $u \in V$ a path that collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels. Applying this algorithm to t, we obtain a path from s to t that collects at least $\lfloor \sqrt{OPT} \rfloor$ labels.

For each pair of vertices $u, v \in V$, let $D_{u,v}$ be the subgraph of D consisting of all paths from u to v. We denote by $\Gamma(u, v)$ the number of labels in $D_{u,v}$. Let $F: V \to \mathbb{N}$ be the function recursively defined as follows :

$$F(u) := \begin{cases} 1, & \text{if } u = s ;\\ \max_{P \in \mathcal{P}^u} \min_{ww' \in P} F(w) + \Gamma(w', u), & \text{otherwise.} \end{cases}$$

where \mathcal{P}^u denotes the set of the paths from s to u. Let P(u) be a path in \mathcal{P}^u that realizes the maximum, i.e. such that $F(u) = \min_{ww' \in P(u)} F(w) + \Gamma(w', u)$.

The following lemma shows that, for any vertex $u \in V$, F(u) is an upper bound on the number of labels that can be collected by a path from s to u. **Lemma 7.** If $P = (s = u_0, u_1, ..., u_n = u)$ is a path between s and u that collects α labels then $F(u) \ge \alpha$.

Proof. By induction on *n*. For n = 0, $F(u_0) = F(s) = 1$. For n > 0, consider a path $P = (s = u_0, u_1, ..., u_n = u)$ that collects α labels. For any i = 1, ..., n, let α_i be the number of labels collected by the path $(u_0, u_1, ..., u_i)$. The path $(u_i, ..., u_n)$ collects at least $\alpha - \alpha_{i-1}$ labels and belongs to $D_{u_i,u}$, therefore $\Gamma(u_i, u) \ge \alpha - \alpha_{i-1}$. Since, by induction, $F(u_{i-1}) \ge \alpha_{i-1}$, $F(u_{i-1}) + \Gamma(u_i, u) \ge \alpha$ for any i = 1, ..., n yielding $F(u) \ge \alpha$. \Box

Corollary 1. If OPT is the maximum number of labels that can be collected by a path from s to t then $F(t) \ge OPT$.

Suppose that F(v) and P(v) have been already computed for all $v \in V$, this can be done in $O(|V|^3)$ using standard data structures. Let u be a vertex in V. The algorithm ComputePath returns a path between s and u that collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels. By Corollary 1, applying this procedure with u = t we obtain a path from s to t that collects at least $\lfloor \sqrt{OPT} \rfloor$ labels.

Function Compute Path $(u \in V)$: a su-path that collects $\lfloor \sqrt{F(u)} \rfloor$ labels

The following lemma is useful to prove that the algorithm ComputePath is correct.

Lemma 8. If $F(u) \ge 4$ then there is an arc ww' in P(u) such that $F(w) \le (\lfloor \sqrt{F(u)} \rfloor - 1)^2$ and $F(w') \ge (\lfloor \sqrt{F(u)} \rfloor - 1)^2$. Moreover, for any such arc, $\Gamma(w', u) \ge \lfloor \sqrt{F(u)} \rfloor + 1$.

 $\begin{array}{l} \textit{Proof. The first assertion is true because } F(s) = 1 \leq (\lfloor \sqrt{F(u)} \rfloor - 1)^2 \text{ and } F(u) \geq \\ (\lfloor \sqrt{F(u)} \rfloor - 1)^2. \text{ To verify the second assertion, let } ww' \text{ be an arc such that } \\ F(w) \leq (\lfloor \sqrt{F(u)} \rfloor - 1)^2 \text{ and } F(w') \geq (\lfloor \sqrt{F(u)} \rfloor - 1)^2. \text{ Since } ww' \in P(u), F(w) + \\ \Gamma(w', u) \geq F(u). \text{ This implies } \Gamma(w', u) \geq F(u) - F(w) \geq \lfloor \sqrt{F(u)} \rfloor^2 - (\lfloor \sqrt{F(u)} \rfloor - 1)^2 = 2\lfloor \sqrt{F(u)} \rfloor - 1 \geq \lfloor \sqrt{F(u)} \rfloor + 1, \text{ because } \lfloor \sqrt{F(u)} \rfloor \geq 2. \end{array}$

Theorem 6. Compute Path(u) computes a path P that collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels.

Proof. If *F*(*u*) < 4, any path from *s* to *u* collects at least $\lfloor \sqrt{F(u)} \rfloor = 1$ labels. Now suppose that *F*(*u*) ≥ 4. We proceed by induction on the number of recursive calls. If *u* = *s* the algorithm returns the path (*s*) that collects *F*(*s*) = 1 labels. Otherwise, the first assertion of Lemma 8 ensures that *P*(*u*) contains an arc *ww'* such that *F*(*w*) ≤ $(\lfloor \sqrt{F(u)} \rfloor - 1)^2$ and *F*(*w'*) ≥ $(\lfloor \sqrt{F(u)} \rfloor - 1)^2$. By induction hypothesis, ComputePath(*w'*) returns a path *P'* collecting at least $\lfloor \sqrt{F(u)} \rfloor - 1$ labels. If *P'* collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels, the path *P'*.*Q* returned by the algorithm is a correct answer. Now, suppose that the path *P'* collects exactly $\lfloor \sqrt{F(u)} \rfloor - 1$ labels. By Lemma 8, *Γ*(*w'*, *u*) ≥ $\lfloor \sqrt{F(u)} \rfloor + 1$. This implies that $D_{w',u} - \{w'\}$ contains at least $\lfloor \sqrt{F(u)} \rfloor$ labels. Among them at least one is not collected by *P'*. A BFS traversal of $D_{w',u}$ will find a vertex *v* having this label together with a path *Q* from *w'* to *u* passing via *v*. Finally, the path *P'*.*Q* that collects at least $\lfloor \sqrt{F(u)} \rfloor$ labels is a correct answer.

Using standard data structures, computing F(u) and P(u) for every vertex $u \in V$ can be done in time $O(|V|^3)$.

Acknowledgment. We are grateful to Jérôme Monnot for suggesting the use of a self-reduction to prove the hardness result of Sect. 3.

References

- Batten, L.M.: Combinatorics of Finite Geometries. Cambridge University Press, New York (1997)
- Broersma, H., Li, X.: Spanning trees with many or few colors in edge-colored graphs. Discuss. Math. Graph Theory 17, 259–269 (1997)
- Broersma, H., Li, X., Woeginger, G.J., Zhang, S.: Paths and cycles in colored graphs. Aust. J. Comb. **31**, 299–311 (2005)
- Brüggemann, T., Monnot, J., Woeginger, G.J.: Local search for the minimum label spanning tree problem with bounded color classes. Oper. Res. Lett. 31, 195–201 (2003)
- Chang, R.-S., Leu, S.-J.: The minimum labeling spanning trees. IPL **31**, 195–201 (2003)
- Couëtoux, B., Gourvès, L., Monnot, J., Telelis, O.: Labeled traveling salesman problems: complexity and approximation. Discrete Optim. 7, 74–85 (2010)
- Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results for labeled connectivity problems. J. Comb. Optim. 14, 437–453 (2007)
- Hassin, R., Monnot, J., Segev, D.: The complexity of bottleneck labeled graph problems. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 328–340. Springer, Heidelberg (2007)
- 9. Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
- Krumke, S.O., Wirth, H.-C.: Approximation algorithms and hardness results for labeled connectivity problems. IPL 66, 81–85 (1998)
- 11. Monnot, J.: The labeled perfect matching in bipartite graphs. IPL 96, 81–88 (2005)