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schaudto@uni-koeln.de

Abstract. The boxicity of a graph G is the least integer d such that G
has an intersection model of axis-aligned d-dimensional boxes. Boxicity,
the problem of deciding whether a given graph G has boxicity at most d,
is NP-complete for every fixed d ≥ 2. We show that Boxicity is fixed-
parameter tractable when parameterized by the cluster vertex deletion
number of the input graph. This generalizes the result of Adiga et al. [4],
that Boxicity is fixed-parameter tractable in the vertex cover number.
Moreover, we show that Boxicity admits an additive 1-approximation
when parameterized by the pathwidth of the input graph.

Finally, we provide evidence in favor of a conjecture of Adiga et al.
[4] that Boxicity remains NP-complete even on graphs of constant
treewidth.

1 Introduction

Every graph G can be represented as an intersection graph of axis-aligned boxes
in R

d, provided d is large enough. The boxicity of G, denoted by box(G), intro-
duced by Roberts [21], is the smallest dimension d for which this is possible. We
denote the corresponding decision problem by Boxicity: given G and d ∈ N,
determine whether G has boxicity at most d.

Boxicity has received a fair amount of attention. This is partially due to the
wider context of graph representations, but also because graphs of low boxicity
are interesting from an algorithmic point of view. While many hard problems
remain so for graphs of bounded boxicity, some become solvable in polynomial
time, notably max-weighted clique (as observed by Spinrad [23, p. 36]).

Cozzens [13] showed that Boxicity is NP-complete. To cope with this hard-
ness result, several authors [1,4,18] studied the parameterized complexity of
Boxicity. Since the problem remains NP-complete for constant d ≥ 2
(Yannakakis [25] and Kratochv́ıl [20]), boxicity itself is ruled out as parame-
ter. Instead more structural parameters have been considered. Our work follows
this line. We prove:

Theorem 1. Boxicity is fixed-parameter tractable when parameterized by clus-
ter vertex deletion number.
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 117–128, 2014.
DOI: 10.1007/978-3-319-12340-0 10



118 H. Bruhn et al.

The cluster vertex deletion number is the minimum number of vertices that have
to be deleted to get a disjoint union of complete graphs or cluster graph. As dis-
cussed by Doucha and Kratochv́ıl [15] cluster vertex deletion is an intermediate
parameterization between vertex cover and cliquewidth. A d-box representation
of a graph G is a representation of G as intersection graph of axis-aligned boxes
in R

d.

Theorem 2. Finding a d-box representation of G such that d ≤ box(G) + 1 can
be done in f(pw(G)) · |V (G)| time where pw(G) is the pathwidth of G.

A natural parameter for Boxicity is the treewidth tw(G) of a graph G, in partic-
ular as Chandran and Sivadasan [11] proved that box(G) ≤ tw(G)+2. However,
Adiga, Chitnis and Saurabh [4] conjecture that Boxicity is NP-complete on
graphs of bounded treewidth. Our last result provides evidence in favor of this
conjecture. For this, we mention the observation of Roberts [21] that a graph G
has boxicity d if and only if G can be expressed as the intersection of d interval
graphs.

Theorem 3. There is an infinite family of graphs G of boxicity 2 and band-
width O(1) such that, among any pair of interval graphs whose intersection
is G ∈ G, at least one has treewidth Ω(|V (G)|).
Why do we see the result as evidence? An algorithm solving Boxicity on graphs
of bounded treewidth (or even stronger, of bounded bandwidth) is likely to
exploit the local structure of the graph in order to make dynamic programming
work. Yet, Theorem 3 implies that this locality may be lost in some dimensions,
which constitutes a serious obstacle for any dynamic programming based app-
roach. We discuss this in more detail in Sect. 5.

Figure 1 summarizes previously known parameterized complexity results on
boxicity along with those obtained in this article. Adiga et al. [4] initiated this
line of research when they parameterized Boxicity by the minimal size k of
a vertex cover in order to give an 2O(2kk2) · n-time algorithm, where n denotes
the number of vertices of the input graph, as usual. This result had already
been observed earlier by Fellows et al. [17] in the context of well-quasi orders of
certain graph classes. Adiga et al. [4] also described an approximation algorithm
that, in time 2O(k2 log k) · n, returns a box representation of at most box(G) + 1
dimensions. Both results were extended by Ganian [18] to the less restrictive
parameter twin cover. Our Theorem1 includes Ganian’s.

Other structural parameters that were considered by Adiga et al. [4] for
parameterized approximation algorithms are the size of a feedback vertex set –
the minimum number of vertices that need to be deleted to obtain a forest – and
maximum leaf number – the maximum number of leaves in a spanning tree of
the graph. They proved that finding a d-box representation of a graph G such
that d ≤ 2box(G)+2 (resp. d ≤ box(G)+2) can be done in f(k)·|V (G)|O(1) time
(resp. 2O(k3 log k) · |V (G)|O(1) time) where k is the size of a feedback vertex set
(resp. maximum leaf number). In [1], Adiga, Babu, and Chandran generalized
these approximation algorithms to parameters of the type “distance to C”, where
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Fig. 1. Navigation map through our parameterized complexity results for Boxicity.
An arc from a parameter k2 to a parameter k1 means that there exists some function h
such that k1 ≤ h(k2). A rectangle means fixed-parameter tractability for this parameter
and a dashed rectangle means an approximation algorithm with running time f(k) ·
nO(1) is known.

C is any graph class of bounded boxicity. More precisely, the parameter measures
the minimum number of vertices whose deletion results in a graph that belongs C.

The algorithm of Theorem 2 generalizes the approximation algorithm for
the parameter vertex cover number, and improves the guarantee bound of the
approximation algorithm for the parameter maximum leaf number.

There is merit in studying approximation algorithms from a parameterized
perspective: not only is Boxicity NP-complete, but the associated minimization
problem cannot be approximated in polynomial time within a factor of n1−ε for
any ε > 0 even when the input is restricted to bipartite, co-bipartite or split
graphs (provided NP�=ZPP). This is a result due to Chalermsook et al. [10]
using the hardness reduction of Adiga, Bhowmick and Chandran [2]. There is,
however, an approximation algorithm with factor o(n) for general graphs; see
Adiga et al. [1].

While Roberts [21] was the first to study the boxicity parameter, he was
hardly the first to consider box representations of graphs. Already in 1948
Bielecki [6] asked, here phrased in modern terminology, whether triangle-free
graphs of boxicity ≤ 2 had bounded chromatic number. This was answered affir-
matively by Asplund and Grünbaum in [5]. Kostochka [19] treats this question
in a much more general setting.

Following Roberts who proved that box(G) ≤ n
2 , other authors obtained

bounds for boxicity. Adiga et al. [3], for instance, showed that box(G) ≤
Δ(G) log2 Δ(G), while Scheinerman [22] established that every outerplanar graph
has boxicity at most two. This, in turn, was extended by Thomassen [24], who
showed that planar graphs have boxicity at most three.

In the next section, we will give formal definitions of the necessary concepts
for this article. We prove our main results in Sects. 3–5. Finally, we discuss the
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impact and limitations of our results in Sect. 6, where we also outline some future
directions for research. Due to space limitation, some proofs are deferred to a
full version [8].

2 Preliminaries

Graph terminology. We follow the notation of Diestel [14], where also all basic
definitions concerning graphs may be found.

Let X be some finite set. With a slight abuse of notation, we consider a
collection I = ([�v, rv])v∈X of closed intervals in the real line to be an interval
graph: I has vertex set X, and two of its vertices u and v are adjacent if and
only if the corresponding intervals [�u, ru] and [�v, rv] intersect. By perturbing
the endpoints of the intervals we can ensure that no two intervals have a common
endpoint, and that for every interval the left endpoint is distinct from the right
endpoint. We always tacitly assume the intervals to be of that form.

The bandwidth of a graph G, say with vertex set V (G) = {v1, v2, . . . , vn},
is the least number k for which the vertices of G can be labeled with distinct
integers �(vi) such that k = max{|�(vi) − �(vj)| : vivj ∈ E}. Equivalently, it is
the least integer k for which the vertices of G can be placed at distinct integer
points on the real line such that the length of the longest edge is at most k. We
denote the bandwidth of a graph G by bw(G).

The pathwidth of a graph G, denoted pw(G), is the minimum size of the
largest clique of any interval supergraph of G, minus 1.

The treewidth of a graph G, denoted tw(G), is the minimum size of the largest
clique of any chordal supergraph of G, minus 1.

For the purpose of our paper it is important to remark that for every graph G
we have tw(G) ≤ pw(G) ≤ bw(G).

Parameterized complexity. A decision problem parameterized by a problem-
specific parameter k is called fixed-parameter tractable if there exists an
algorithm that solves it in time f(k) · nO(1), where n is the instance size. The
function f is typically super-polynomial and only depends on k. One of the
main tools to design such algorithms is the kernelization technique. A kerneliza-
tion algorithm transforms in polynomial time an instance I of a given problem
parameterized by k into an equivalent instance I ′ of the same problem parame-
terized by k′ ≤ k such that the size of I ′ is bounded by g(k) for some computable
function g. The instance I ′ is called a kernel of size g(k). The following folklore
result is well known.

Theorem 4. A parameterized problem P is fixed-parameter tractable if and only
if P has a kernel.

In the remainder of this paper, the kernel size is expressed in terms of the number
of vertices.

For more background on parameterized complexity the reader is referred to
Downey and Fellows [16].
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Problem definition. We call an axis-aligned d-dimensional box (or d-box ) a Carte-
sian product of d closed real intervals. A d-box representation of a graph G is
a mapping that maps every vertex v ∈ V (G) to a d-box Bv such that two
vertices u, v ∈ V (G) are adjacent if and only if their associated boxes have a
non-empty intersection. The boxicity of G, denoted by box(G), is the minimum
integer d such that G admits a d-box representation. We consider the following
problem.

Boxicity
Input: A graph G and an integer d.
Question: Is box(G) ≤ d?

Given a d-box representation of G, we denote by [�i(v), ri(v)] the interval
representing v in the i-th dimension.

Throughout the article, we make frequent use of the reformulation of boxicity
in terms of interval graphs:

Theorem 5 (Roberts [21]). The boxicity of a graph G is equal to the smallest
integer d so that G can be expressed as the intersection of d interval graphs.

3 Cluster Vertex Deletion

Theorem 1 follows immediately from the following lemma:

Lemma 1. Boxicity admits a kernel of at most k2O(k)
vertices, where k is the

cluster vertex deletion number of the input graph.

In the course of this section, we present the sequence of lemmas that are needed
to prove the above kernelization result.

Two adjacent vertices u, v in a graph G are true twins if u and v have the
same neighbourhoods in G−{u, v}. As observed by Ganian [18], deleting one of
two true twins does not change the boxicity.

Lemma 2. Let u, v be true twins of a graph G. Then box(G) = box(G − u).

We remark, without proof, that there is also a reduction for false twins (those
that are non-adjacent): if there are at least three of them, then one may be
deleted without changing the boxicity. We will not, however, make use of this
observation.

Recall that a cluster graph is the disjoint union of complete graphs, called
clusters. In what follows, we implicitly identify a cluster with its vertex set.

Let G−X be a cluster graph for some X ⊆ V (G). We call two clusters C,C ′

of G−X equivalent if there is a bijection C → C ′, v �→ v′, such that NG(v)∩X =
NG(v′) ∩ X. Observe that, if G − X has no true twins, then two clusters C and
C ′ are equivalent if and only if {NG(u) ∩ X : u ∈ C} = {NG(v) ∩ X : v ∈ C ′}.

Lemma 3. Let G be a graph without true twins, and let X be a set of k vertices
so that G−X is a cluster graph. Then every cluster in G−X contains at most 2k

vertices.
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We also need the following result.

Theorem 6 (Chandran and Sivadasan [11]). It holds that box(G) ≤ tw(G)+
2 for any graph G.

In particular, box(G) ≤ pw(G) + 2 for any graph G.

Lemma 4. Let G be a graph without true twins, and let X be a set of k vertices so
that G − X is a cluster graph. Moreover, let D be an equivalence class of clusters
with |D| ≥ 2(2k + 2)2

k+1(2k+k+1). For every C∗ ∈ D, box(G) = box(G − C∗).

Proof. As deleting vertices may only decrease the boxicity, it suffices to prove
that box(G) ≤ box(G − C∗).

Set H = G − C∗, d = box(H), k = |X| and C = D \ {C∗}. We claim that

d = box(H) ≤ 2k + k + 1. (1)

Indeed, define a path decomposition with a bag WC for every cluster C of H −X
such that WC = X ∪ C. This gives a path decomposition of H with width at
most k + 2k − 1, by Lemma 3. Theorem 6 now implies (1).

For the sake of simplicity, let us introduce the following notions. Fix a d-box
representation of H. The set of corners of a box of a vertex is the Cartesian
product ×d

i=1{�i(v), ri(v)}. By rescaling every dimension, we can ensure that
every endpoint of an interval of a vertex in X lies in {1, 2, . . . , 2k}. Thus every
corner of a box of X lies in the grid {1, 2, . . . , 2k}d. We may moreover assume that
every other box of H is contained in [0, 2k +1]d. Points of {0, 1, . . . , 2k +1}d are
called grid points, and any set [z1, z1+1]×. . .×[zd, zd+1], where zi ∈ {0, . . . , 2k},
is a grid cell. In each dimension i we say that the grid induces the grid intervals
[0, 1], [1, 2], . . . , [2k, 2k + 1]. A box of a vertex in H − X is a cluster box.

By perturbing the boxes slightly we may always assume that

if s is a corner of a cluster box of a cluster C of H − X, and if
t is a corner of the box of any vertex z ∈ V (H − C) then si �= ti
for all dimensions i = 1, . . . , d.

(2)

Moreover, we may assume that any corner of a cluster box lies in the interior of a
grid cell. A cluster box that does not contain any grid point is called a thin box.

We concentrate on thin clusters, that is, clusters that consist of thin boxes
only. We claim that

at least (2k + 2)2
k+1(2k+k+1) clusters in C are thin. (3)

To prove this claim, observe that no grid point lies in a cluster box of two different
clusters as then two vertices in distinct clusters would be adjacent. Thus, there
is at most one cluster per grid point so that one of its cluster boxes contains
the grid point. As, by (1), there are (2k + 2)d ≤ (2k + 2)2

k+2k+1 grid points,
it follows that C has at least |C| − (2k + 2)2

k+2k+1 ≥ (2k + 2)2
k+1(2k+k+1) thin

clusters.
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Fig. 2. Boxes A,B are in the same position, as are C and D; F is not thin.

We say that two cluster boxes B and B′ are in the same position if every
grid cell containing a corner of B also contains a corner of B′ and vice versa
(see Fig. 2). Note that if two vertices v, v′ ∈ V (H) − X have boxes in the same
position then NH(v)∩X = NH(v′)∩X. (Here we use the fact that cluster boxes
have their corner strictly in the interior of grid cells).

For every cluster C ∈ C we fix a point p(C) that lies in every cluster box
of C: such a point exists by the Helly property for boxes in R

d. We claim that,
using this Helly point, we can modify our box representation of H so that

for all thin clusters C ∈ C and for each dimension i ∈ {1, . . . , d}
holds the following: if p(C) and a corner t of a box of C lie in
the same grid interval in dimension i, that is, if there is a j so
that pi(C), ti ∈ [j, j + 1], then ti = pi(C).

(4)

To achieve (4), we proceed as follows. Let v be a vertex of any thin cluster
C ∈ C. Consider a dimension i where �i(v) or ri(v) lie in the same grid interval
as pi(C). Note that �i(v) ≤ pi(C) ≤ ri(v). In dimension i, we shrink the box
of v in the following way: if �i(v) lies in the same grid interval as pi(C), we
replace �i(v) by pi(C). Similarly, if ri(v) lies in the same grid interval as pi(C),
we replace �i(v) by pi(C). This procedure is illustrated in Fig. 3.

Since by shrinking a box we may only lose edges of the corresponding graph,
it suffices to show that every edge is still present. Since the new box of v still
contains p(C), the vertex v is still adjacent to every other vertex in C. As we
change the box of v only within a grid interval, the old and the new box of v are
in the same position. Thus, we do not lose any edge from v to X. Performing
this transformation iteratively for every box of C in every dimension, and for
every thin cluster C ∈ C, we obtain a box representation of H satisfying (4).

Next, we claim that

there is a pair of distinct thin clusters C,C ′ ∈ C such that for
every v ∈ C and v′ ∈ C ′ with NH(v) ∩ X = NH(v′) ∩ X, the
boxes of v and v′ are in the same position.

(5)
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Fig. 3. Shrinking the boxes.

Note that, as C and C ′ are equivalent, there is indeed a bijection between the
vertices of C and C ′ that maps a vertex v to v′ ∈ C ′ with NH(v) ∩ X =
NH(v′) ∩ X.

Observe that for the endpoints �i(v), ri(v) of the interval representing a ver-
tex v ∈ V (H) in the i-th dimension, there are at most (2k + 1)2 many choices
to select the grid intervals they lie in. Thus, any set of thin boxes, pairwise not
in the same position, has size at most (2k + 1)2d. Because G is devoid of true
twins, no cluster has two vertices whose boxes are in the same position.

Recall that every cluster has at most 2k vertices. Thus, among any choice of
more than (2k + 1)2d·2k thin clusters there are two thin clusters satisfying (5).
As (2k + 1)2d·2k ≤ (2k + 1)2(2

k+k+1))·2k , by (1), and since C contains at least
(2k + 2)2

k+1(2k+k+1) thin clusters, by (3), the claim follows.
Consider clusters C,C ′ as in (5). We now embed the deleted cluster C∗ in the

box representation of H = G − C∗. For this, choose ε > 0 small enough so that

for all v ∈ C and w ∈ V (H − C) and all dimensions i it holds
that |si − ti| > ε, when s is a corner of the box of v and t is a
corner of the box of w.

(6)

(If such an ε does not exist, we may again perturb the box representation slightly
so as to guarantee (2) while keeping (4)).

Define q ∈ R
d by setting

qi =

⎧
⎪⎨

⎪⎩

1 if pi(C) < pi(C ′)
−1 if pi(C) > pi(C ′)
0 if pi(C) = pi(C ′).

Let v �→ v∗ be the bijection between C and C∗ with NG(v) ∩ X = NG(v∗) ∩ X.
We define a box for every v∗ ∈ C∗ by taking a copy of the box of v and shifting
its coordinates by the vector ε · q, that is, for every dimension i we set

�i(v∗) = �i(v) + εqi and ri(v∗) = ri(v) + εqi.

Note that, by choice of ε, the box of v∗ and the box of v are in the same position.
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Let G̃ be the graph defined by this new box representation. We claim that
G̃ = G, which then finishes the proof of the lemma.

To prove this, we first note that we only added edges between vertices in C∗

and H, while all other adjacencies remain unchanged. Next, as p(C) + εq is a
point that lies in every box of C∗, it follows that G̃[C∗] is a complete graph.
Moreover, by choice of ε, we have

NG̃(v∗) \ (C ∪ C∗) = NG(v) \ (C ∪ C∗)

for any v ∈ C. In particular, NG̃(v∗) ∩ C ′ = ∅. It remains to show that also
NG̃(v∗) ∩ C = ∅.

For this, let w∗ ∈ C∗ and v ∈ C be arbitrary, where we allow that v = w.
Let us show that the boxes of v and w∗ do not intersect.

Since v and w′ are nonadjacent in H, there is a dimension i such that either
ri(v) < �i(w′) or ri(w′) < �i(v). By symmetry, we may assume ri(v) < �i(w′).
Let I be the grid interval such that ri(v) ∈ I. If �i(w′) /∈ I, then ri(v) <
�i(w∗), since by our construction �i(w∗) is in the same grid interval as �i(w′).
This means that the boxes of v and w∗ do not intersect. Thus, we may assume
that �i(w∗) ∈ I. As v and w are in the same cluster and thus adjacent, it
follows that �i(w) ≤ ri(v), which implies that pi(C) ∈ [�i(w), ri(v)] ⊆ I. Now,
(4) implies that ri(v) = pi(C) = �i(w).

Since pi(C) = ri(v) < �i(w′), it follows that pi(C) < pi(C ′). Thus, ri(v) =
�i(w) < �i(w)+ε = �i(w∗). Consequently, the boxes of v and w∗ do not intersect.
This completes the proof. �

4 An Additive 1-Approximation Algorithm

Bounded pathwidth suggests a dynamic programming approach, and this is pre-
cisely what we do. There is a hitch, though. The standard approach would be
to solve the Boxicity problem on one bag after another of the path decompo-
sition, so that the local solutions can be combined to a global one. Boxicity,
however, does not permit this: as we are constructing the box representation of
the graph, we may have to completely rearrange the previous boxes to add a
new one.

Thus, the key issue is to force the problem to become “localized”. To this end,
we introduce a special interval graph I∗ that reflects the path structure of the
graph: two vertices are adjacent if and only if they appear in the same bag of the
path decomposition. Doing so, we can safely compute local box representations
of the subgraphs induced by the bags without paying attention to how these
representations overlap. Indeed, the interval graph I∗ gets rid of any unwanted
adjacency.

Theorem 7. There is an algorithm that, for any graph G with a given path
decomposition of width w, determines in 2O(w2 log w) · |V (G)| time a d ∈ N so
that d ≤ box(G) ≤ d + 1 together with a box representation of dimension d + 1.
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Together with the algorithm of Bodlaender [7] that computes a path-
decomposition of a graph G of width pw(G) in f(pw(G)) · |V (G)| time, we obtain
Theorem 2. We note that the running time could conceivably be improved
by using a faster approximation algorithm with, say, a constant approximation
factor.

5 Bounded Bandwidth does not Help

It is an open problem whether boxicity is polynomial-time solvable on graphs of
bounded treewidth. While we cannot solve the problem, we can offer an indica-
tion why we suspect boxicity to be hard.

The first approach to prove tractability is usually dynamic programming.
Evidently, this is because Courcelle [12] proved that a vast number of problems,
namely those expressible in monadic second order logic, can be solved in poly-
nomial time by a generic dynamic programming algorithm, if the treewidth is
bounded. However, nobody appears to know how to formulate “box(G) ≤ d?”
in monadic second order logic, and it is doubtful that this is possible at all.
More generally, dynamic programming seems to fail. Why is that so? We think
this is because the tree-like structure of the input graph does not translate to
a tree-like structure in the interval representation: given an input graph G of
bounded treewidth, it may very well be the case that at least one interval graph
in any optimal interval representation of G has unbounded treewidth.

To illustrate this, consider a K2,n, where the smaller bipartition class is
comprised of two vertices x and y, and the larger consists of v1, . . . , vn. Clearly,
K2,n has pathwidth 2 and boxicity 2 as well: in fact, K2,n +xy and K2,n +{vivj :
i, j} are two interval graphs whose intersection is K2,n. Now, let I1, I2 be any
two interval graphs with K2,n = I1 ∩ I2. The vertices x and y are not adjacent
in at least one of I1 and I2, say in I1. Suppose that I1 contains a pair of non-
adjacent vi, vj : then xviyvjx is an induced 4-cycle, which is impossible in an
interval graph. Thus, {vi}n

i=1 form a clique of size n in I1, and I1 has therefore
pathwidth at least n − 1.

What about stronger width-parameters? We have found a similar, albeit more
complicated, example for bounded bandwidth, a parameter even more restrictive
than pathwidth. Theorem3 is a direct consequence of the following lemma.

Lemma 5. For every n there is a graph Gn of bandwidth at most 16 and boxi-
city 2, so that in any interval representation G = I1 ∩ I2 one of I1 and I2 has
treewidth ≥ |V (Gn)|/32.

In light of the lemma, we would like to strengthen the conjecture of Adiga
et al. [4]: We believe that Boxicity remains NP-complete even for graphs of
bounded bandwidth.

6 Discussion

In some respect, the method of our first algorithm is a generalization of the true
twin reduction. The key insight is that if there are many vertex sets (the clusters)
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that are identical in the graph then many of these sets will have essentially the
same geometric realization. Deleting one of these many “geometric twins” is
unlikely to change boxicity.

We believe this approach can exploited further. Indeed, we are convinced that
with similar methods as developed in this article, we can also formulate a para-
meterized algorithm for Boxicity when the parameter is distance to stars – the
smallest number of vertices whose removal results in a disjoint union of stars.
Like cluster vertex deletion, distance to stars provides a non-trivial parame-
terization for Boxicity between vertex cover (solved) and feedback vertex set
(open). Moreover, given a graph G, computing a minimum set X ⊆ V (G) such
that G[V − X] is a disjoint union of stars can be done in f(|X|) · |V (G)|O(1)

time [9].
Our second algorithm yields an additive 1-approximation for Boxicity on

graphs of bounded pathwidth. Two questions that immediately arise are: can we
get rid of the additive 1, such that the algorithm computes box(G) exactly? Can
the algorithm be lifted to run on graphs of bounded treewidth?

We turn to the second question: why is it difficult to extend the algorithm
to graphs of bounded treewidth? We rely heavily on the fact that the one extra
dimension is sufficient to reflect the path decomposition of the whole graph. If
we mimick this approach for bounded treewidth we have to describe the tree
decomposition of the graph with as few extra dimensions as possible. How many
extra dimensions would we need? As many as the boxicity of the chordal super-
graph obtained by turning each bag of the decomposition into a clique. If we
started with a path decomposition, the boxicity will be one. For a general tree
decomposition, however, it could well be that the boxicity of this chordal graph
is about the treewidth of the input graph [11]. This suggests that there might
be input graphs G for which box(G) is much lower than the number of dimen-
sions required to describe their tree decomposition, which makes it impossible
to approximate using only the techniques of Sect. 4.
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