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Preface

The 40th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2014) took place in Le Domaine de Chalés, near Orléans in France, during June
25–27, 2014.

The WG conference series has a long tradition. Since 1975, it has taken place
twenty-two times in Germany, four times in The Netherlands, three times in France,
twice in Austria and the Czech Republic, as well as once in Italy, Slovakia, Switzer-
land, Norway, Greece, Israel, and the UK.

The WG conferences aim to connect theory and practice by demonstrating how
graph-theoretic concepts can be applied to various areas of computer science and by
extracting new graph problems from applications. Their goal is to present new research
results and to identify and explore directions of future research.

WG 2014 received 80 submissions. Each submission was carefully reviewed by at
least three members of the Program Committee. The Program Committee accepted 32
papers for presentation at WG 2014. The WG 2014 Student Paper Award was attrib-
uted to Felix Joos for his paper on “A Characterization of Mixed Unit Interval Graphs.”
Furthermore, three submissions were selected by the Program Committee for a possible
publication in a special section of Algorithmica. The program also included two
inspiring invited talks: Reinhard Diestel (Universität Hamburg, Germany) presented
“A unified duality theorem for width parameters in graphs and matroids” and Pierre
Fraigniaud (LIAFA Paris, France) gave a talk on “Local distributed computing.”

We would like to thank the authors of the papers submitted for possible presentation
at WG 2014, the speakers of the thirty-two talks and the speakers of the two invited
talks, the members of the Program Committee, and the external reviewers. Special
thanks to the Local Organizing Committee from the LIFO of the Université d’Orléans;
without their performance WG 2014 could not have been such a success.

We are grateful to our sponsors, the Région Centre, the Université d’Orléans, the
LIFO (Laboratory of Fundamental Informatics, Orléans), and the CNRS for their
financial support.

August 2014 Dieter Kratsch
Ioan Todinca
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Unifying Duality Theorems for Width
Parameters in Graphs and Matroids

(Extended Abstract)

Reinhard Diestel1(B) and Sang-il Oum2

1 Mathematisches Seminar, Universität Hamburg, Hamburg, Germany
R.Diestel@math.uni-hamburg.de

2 Department of Mathematical Sciences, KAIST, Daejeon, South Korea

Abstract. We prove a general duality theorem for width parameters in
combinatorial structures such as graphs and matroids. It implies the clas-
sical such theorems for path-width, tree-width, branch-width and rank-
width, and gives rise to new width parameters with associated duality
theorems. The dense substructures witnessing large width are presented
in a unified way akin to tangles, as orientations of separation systems
satisfying certain consistency axioms.

1 Introduction

There are a number of theorems in the structure theory of sparse graphs that
assert a duality between certain ‘dense objects’ and an overall tree structure.
For example, a graph has small tree-width if and only if it contains no large-
order bramble. The aim of this paper is to prove one such theorem in a general
setting, a theorem that will imply all the classical duality theorems as special
cases, but with a unified and simpler proof. Our theory will give rise to new
width parameters as well, with dual ‘dense objects’, and conversely provide dual
tree-like structures for notions of dense objects that have been considered before
but for which no duality theorems were known.

Amini, Mazoit, Nisse, and Thomassé [1] have also established a theory of
dualities of width parameters, which pursues (and achieves) a similar aim. Our
theory differs from theirs in two respects: we allow more general separations of a
given ground set than just partitions, including ordinary separations of graphs;
and our ‘dense objects’ are modelled after tangles, while theirs are modelled
on brambles. Hence while our main results can both be used to deduce those
classical duality theorems for width parameters, they differ in substance. And so
do their corollaries for the various width parameters, even if they imply the same

This is an extended abstract of arXiv:1406.3797, which contains all the proofs omit-
ted here. See also arXiv:1406.3798 for further work in this direction.
Sang-il Oum: Supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (2011-0011653).

c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 1–14, 2014.
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2 R. Diestel and S. Oum

classical results. Moreover, while the main results of [1] can easily be deduced
from ours, the converse seems less clear. And finally, our theory gives rise to
duality theorems for new width parameters that can only be expressed in our
setup.

All we need in our set-up is that we have a notion of ‘separation’ for the com-
binatorial structure to be considered, by which we mean an ordered pair (A,B)
of subsets of some ground set V such that A∪B = V .1 For example, V might be
the vertex set of a graph or the ground set of a matroid, and ‘separations’ would
be defined as is usual for graphs and matroids. In order to apply our theorem
we may need in addition that there is a submodular function defined on these
separations, such as their order, but our main result can be stated without such
an assumption.

Our unified treatment of ‘dense objects’ is gleaned from the notion of tangles
in graph minor theory [10], or of ultrafilters in set theory. The idea is as follows.
Consider any set S of separations of a given graph or matroid. In order to
deserve its name with respect to S, we expect of a ‘dense object’ that for every
separation in S it lies on one side but not the other. For example, if S is the
set of all separations (A,B) of a graph G such that |A ∩ B| < k, then every Kn

minor of G with n ≥ k will have a branch set in A�B or in B �A, but not both.
Our dense object D therefore orients every separation in S by choosing exactly
one of the two ordered pairs (A,B), (B,A) in such cases,2 and our paradigm is
that this orientation of S is the only information about D that we ever use. We
formalize this by defining ‘dense objects’ as certain orientations of S.

To deserve their name, ‘dense objects’ cannot be arbitrary orientations of S
but have to satisfy some consistency rules. For example, if in a graph G we have
two separations (A,B), (C,D) and their inverses in S, and A ⊆ C and B ⊇ D,
then D should not orient {A,B} towards A by selecting (B,A) and {C,D}
towards D by selecting (C,D). While this rule will be common to all the ‘dense
objects’ we shall consider, there may be further rules depending on the type of
object, so that we can tell them apart. These additional rules will stipulate that
the orientation of S given by a dense object D must not contain certain subsets
of S, such as the set {(B,A), (C,D)} in the above example. Thus, each type of
dense object will be specified by a collection F of ‘forbidden’ subsets of S.

The tree-like structure that is dual to a dense object D, i.e., which will exist
in a graph or matroid if and only if it contains no instance of D, will be defined by
this same collection F of separation sets forbidden in D. It will typically come as
a subset of S that is nested, and which thus cuts up the underlying set in a tree-
like way, and the ‘stars of separations’ by which this tree branches will be required
to lie in F . Tangles, for example, are defined in this way: with F the set of all
1 In fact, we need even less. It would be enough to consider instead of ‘separations’
any poset with an involution that commutes with its ordering, just as the ordering
of separations introduced below satisfies (A, B) ≤ (C, D) ⇔ (B, A) ≥ (D, C).
It is only for the sake of readability that we are writing this paper in terms of
separations, as readers are likely to have graphs or matroids in mind.

2 Our notational convention will be that we think of (A, B) as pointing towards B.
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triples (A1, B1), (A2, B2), (A3, B3) of separations whose ‘small’ sides A1, A2, A3

cover the entire graph or matroid, and branch decompositions, their dual objects,
as nested sets of separations branching at precisely such triples.

The following familiar dualities between dense objects and tree structures can
be captured in this way, and their duality theorems will follow from our theorem.
For graphs, we can capture path-decompositions and blockages [2], tree-decom-
positions and brambles [11], branch-decompositions and tangles of graphs [10].
For matroids, our framework captures branch-decompositions and tangles [4,10],
as well as matroid tree-decompositions [5] and their dual objects proposed by
Amini, Mazoit, Nisse, and Thomassé [1]. Our framework also captures branch-
decompositions and tangles of symmetric submodular functions [4,10], which
includes branch-width of graphs and matroids, carving-width of graphs [12], and
rank-width of graphs [8].

Since blockages and brambles are not defined in terms of orientations of sets
of separations, the duality theorems we obtain when we specify S and F to
capture path- or tree-width (of graphs or matroids) will differ from their known
duality theorems. But they will be easily interderivable with these. Since S and
F can be chosen in many other ways too, our results also imply dualities for new
width parameters.

Our unifying duality theorem comes in three flavours: as weak , strong , and
general duality. In this extended abstract we only present the Strong Duality
Theorem, along with applications indicating how to derive duality theorems for
all the classical width parameters.

2 Terminology and Basic Facts

A separation of a set V is a pair (A,B) of subsets such that A ∪ B = V . Its
inverse is the separation (B,A). A set S of separations is symmetric if (B,A) ∈ S
whenever (A,B) ∈ S, and antisymmetric if (B,A) /∈ S whenever (A,B) ∈ S.
A symmetric set of separations of a set V is a separation system on V .

The separation (A,B) is proper if A,B �= V , and improper otherwise. The
separations of V are partially ordered by

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D.

Note that this is equivalent to (D,C) ≤ (B,A), and that (A,B) is proper if and
only if (A,B) and (B,A) are incomparable with respect to ≤.

Informally, we think of (A,B) as pointing towards B and away from A.
Similarly, if (A,B) ≤ (C,D), then (A,B) points towards (C,D) and (D,C),
while (C,D) points away from (A,B) and (B,A).

A set S of separations of V is nested if each of them is comparable with
every other or its inverse. Thus, two nested separations are either comparable,
or point towards each other, or point away from each other. Two separations
that are not nested are said to cross.

A set of separations is a star if they point towards each other (Fig. 1). Thus,
S is a star if (A,B) ≤ (D,C) for distinct (A,B), (C,D) ∈ S. In particular, stars
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E
F

C
D

A

B

B ∩ D ∩ F

A ∩ B

Fig. 1. The separations (A, B), (C, D), (E, F ) form a 3-star

are nested. They need not be antisymmetric, but if not they contain an inverse
pair (A,B), (B,A), then any other separation they contain must be improper.

Let F ⊆ 2S be a collection of sets of separations in S, and S− ⊆ S. An S-tree
over F and rooted in S− is a pair (T, α) of a tree T with at least one edge and
a function α : �E(T ) → S from the set

�E(T ) := {(s, t) : {s, t} ∈ E(T )}

of all orientations of edges of T satisfying the following:

(i) For each edge xy of T , if α(x, y) = (A,B) then α(y, x) = (B,A).
(ii) For each internal node t of T , the set {α(s, t) : st ∈ E(T )} is in F .
(iii) For each leaf s of T with neighbour t, say, α(s, t) ∈ S−.

We say that the separation α(s, t) in (iii) is associated with, or simply at, the
leaf s. The separations at leaves are the leaf separations of (T, α).

s
t

u v

C D

A B

Fig. 2. An S-tree with (C, D) = α(s, t) ≤ α(u, v) = (A, B)

An important example are the S-trees over stars: the S-trees over some F
all whose elements are stars of separations. In such an S-tree (T, α) the map α

preserves the natural partial ordering on �E(T ) defined by letting (s, t) ≤ (u, v) if
the unique {s, t}–{u, v} path in T starts at t and ends at u. Indeed, the images
under α of the oriented stars

St = {(s, t) : t an internal node of T},
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which by (ii) are sets in F , are then stars of separations. This means precisely
that α preserves the partial ordering on the sets St as induced by �E(T ), which
in turn easily implies that α preserves the ordering on all of �E(T ) (Fig. 2).

Let S be a separation system. An orientation of S is a subset O ⊆ S that
contains, for every (A,B) ∈ S, exactly one of (A,B) and (B,A). A partial
orientation of S is an orientation of some symmetric subset of S.

A set P of separations is consistent if it contains no two separations pointing
away from each other: if (C,D) ≤ (A,B) ∈ P implies (D,C) /∈ P .3 Note that
this does not imply (C,D) ∈ P : it may also happen that P contains neither
(C,D) nor (D,C). Note that consistent sets of separations are antisymmetric.

If P ⊆ S is consistent, it is clearly a partial orientation of S. Conversely, if P
is an orientation of all of S, it is consistent if and only if it is closed down in the
partial ordering of S, i.e., if and only if (C,D) ∈ P whenever (C,D) ≤ (A,B) ∈ P
and (C,D) ∈ S.

Whenever P ⊆ O ⊆ S we say that P extends to O, and O extends P .

Proposition 1. Every consistent partial orientation of a separation system S
extends to a consistent orientation of S.

3 The (Strong) Duality Theorem

Our paradigm is to capture the notion of a ‘dense object’ D in a structure on
a set V by orientations of suitable separation systems S on V . Here, ‘suitable’
means that for every separation in S the object D should ‘lie on’ one of its sides
but not the other, and S should ideally contain all separations of V for which
this is the case.

If D was a concrete subset X of V , for example, such as a set spanning a
large complete subgraph in a graph, there would then be a unique orientation
O of S that describes D: the set {(A,B) ∈ S : X ⊆ B}. What makes the
orientations paradigm so attractive, however, is that it is more general than
this. For example, a large grid H in a graph G defines a high-order tangle T –
for every small-order separation of G, most of H will lie on one side but not the
other – yet the intersection of the ‘large sides’ B of all the oriented separations
(A,B) ∈ T will be empty. What the existence of a large grid H in G does imply,
however, is that G has no three low-order separations (Ai, Bi) (i = 1, 2, 3) such
that H ⊆ G[A1] ∪ G[A2] ∪ G[A3]. So Robertson and Seymour [10] chose this
latter property as the defining axiom for a tangle.

In this spirit, we seek to define our ‘dense objects’ as orientations of separa-
tion systems S that do not contain certain subsets of S. We say that a partial
3 It is a good idea to work with this formal definition of consistency, since the
more intuitive notion of ‘pointing away from each other’ can be counterintuitive.
For example, we shall need that no consistent set of separations of V contains a
separation of the form (V, A); this follows readily from the formal definition, as
(A, V ) ≤ (V, A), but is less obvious from the informal.
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orientation P of a separation system S avoids F ⊆ 2S if P has no subset in F ,
i.e., if 2P ∩ F = ∅.

Before we can state our duality theorem, we have to introduce the somewhat
technical notion of ‘shifting’ an S-tree of a graph G across a separation (X,Y )
of G to give, essentially, two S-trees of G[X] and of G[Y ]. The idea behind this
is as follows.

We prove the duality theorem by inverse induction on the size of S−. Given a
separation {X,Y } such that {(X,Y ), (Y,X)} ⊆ S�S−, the induction hypothesis
will give us an S-tree (TY , αY ) of G rooted in S−

X = S− ∪ {(X,Y )} (which, if
(X,Y ) is indeed associated with a leaf and hence certifies that X is small, can
be viewed as an S-tree of G[Y ]), and another S-tree (TX , αX) of G rooted in
S−
Y = S− ∪ {(Y,X)} (which can be viewed as an S-tree of G[X]). We shall then

seek to combine these two trees to an S-tree (T, α) of G, rooted in the given S−.
In order to make the separations associated with the two trees compatible

(i.e., nested with each other), we have to regard the separations (of G) in the
image of αX as ‘essentially separations of G[X]’, which we shall do by adding
all of Y to one of their sides. Similarly, we add X to one side of every separation
in the image of αY . The next few paragraphs describe how exactly to do this.

Let (X,Y ) ≤ (U,W ) be elements of a set S of separations of a set V . Assume
that U �= V , and that (W,U) is associated with a leaf w of an S-tree (T, α) over
some set F ⊆ 2S of stars. Our aim is to ‘shift’ (T, α) to a new S-tree (T, α′)
based on the same tree T , by shifting the separations in the image of α over
to X.

Given a separation (A,B) ≤ (U,W ), let us define (Fig. 3, left)

f↓(U,W )
(X,Y ) (A,B) := (A ∩ X,B ∪ Y ) and f↓(U,W )

(X,Y ) (B,A) := (B ∪ Y,A ∩ X).

This defines a shifting map f↓(U,W )
(X,Y ) on the set S(U,W ) of separations (A,B) ≤

(U,W ) and their inverses. Since (W,U) is a leaf separation of (T, α) and F
consists of stars, the image of α lies in S(U,W ) (Fig. 3, right). Hence the concate-
nation

α′ := f↓(U,W )
(X,Y ) ◦ α

is well defined. However it is not clear for now whether α′ takes all its images
in S.

U W

A B

e

X Y

U
W

A

B

A

B

Fig. 3. Shifting α(�e) = (A, B) to α′(�e) = (A′, B′)
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What is immediate, however, is that f↓(U,W )
(X,Y ) maps stars to stars:

Lemma 1. The map f↓(U,W )
(X,Y ) preserves the ordering ≤ of separations.

Lemma 1 not only implies that f↓(U,W )
(X,Y ) maps stars to stars,4 it also implies

that all leaf separations of (T, α), other than (W,U), get smaller in the transition
to α′.5 Indeed, if α(s, t) = (A,B) with s �= w a leaf of T , then (A,B) ≤ (U,W )
and hence

f↓(U,W )
(X,Y ) (A,B) = (A ∩ X,B ∪ Y ) ≤ (A,B).

It remains to ensure that α′ takes its image in S if α does. The following
condition on S will ensure the existence of a separation (X,Y ) for which this is
the case. Let us say that (X,Y ) ∈ S is linked to (U,W ) ∈ S if (X,Y ) ≤ (U,W )
and

(A ∩ X,B ∪ Y ) ∈ S

for all (A,B) ∈ S with (A,B) ≤ (U,W ). Let us call S separable if for every pair
(W ′, U ′) ≤ (U,W ) of separations in S there exists (X,Y ) ∈ S such that (X,Y )
is linked to (U,W ) and (Y,X) is linked to (U ′,W ′).

Finally, we need a condition on F to ensure that the shifts of stars that occur
as images under α of oriented stars at nodes of T are not only again stars but
are also again in F (see Footnote 4). Let us say that a separation (X,Y ) ∈ S is
F-linked to (U,W ) ∈ S with U �= V if (X,Y ) is linked to (U,W ) and the image
under f↓(U,W )

(X,Y ) of any star S′ ⊆ S(U,W ) in F that contains a separation (A,B)
with (B,A) ≤ (U,W ) is again in F . We say that S is F-separable if for every pair
(W ′, U ′) ≤ (U,W ) of separations in S, with U,U ′ �= V , there exists (X,Y ) ∈ S
such that (X,Y ) is F-linked to (U,W ) and (Y,X) is F-linked to (U ′,W ′). And
a set F of stars in S is closed under shifting if whenever (X,Y ) ∈ S is linked to
(U,W ) ∈ S with U �= V it is even F-linked to (U,W ).

The following observation is immediate from the definitions:

Lemma 2. If S is separable and F is closed under shifting, then S is F-separable.

In Sect. 4 we shall see that for all sets F describing classical ‘dense objects’,
such as tangles and brambles (as well as many others), the usual separation
systems S are F-separable. In many cases, F will even be closed under shifting,
in which case we will simply prove this stronger property.

Theorem 1 (Strong Duality Theorem). Let S be a separation system of a
set V , and let F ⊆ 2S be a set of stars. Let S− be a down-closed subset of S
containing all its separations of the form (A, V ). If S is F-separable, then exactly
one of the following holds:

(i) There exists an S-tree over F rooted in S−.
(ii) There exists a consistent F-avoiding orientation of S extending S−.

4 This will help us show that (T, α′) is over F if (T, α) is.
5 This will help us show that (T, α′) is rooted in S− if (T, α) is.
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Thus, in order to derive from Theorem 1 a specific duality theorem for some
given width parameter, it remains to do two things: to specify the F that
describes this parameter, and then to show that the set S of separations we
are considering is F-separable.

We shall do this in the next section for some standard examples.

4 Applications of Strong Duality

In this section we show that the separation systems usually considered for graphs
and matroids are all separable, and that the collections F needed to capture
‘dense objects’ such as tangles, brambles and blockages are closed under shifting.
This will make our strong duality theorem imply the classical duality theorems
for graphs and matroids. We also obtain some interesting new such theorems.

Let us call a separation system a universe if for any two of its separations
(A,B) and (C,D) it also contains (A ∩ C,B ∪ D). For instance, the set of all
partitions of the ground set of a matroid is a universe, and so is the set of all
vertex separations of a graph (which does not normally include all its vertex
partitions).

We shall call a real function (A,B) �→ |A,B| on a universe U an order function
if it is symmetric and submodular, that is, if |A,B| = |B,A| and

|A ∩ C,B ∪ D| + |A ∪ C,B ∩ D| ≤ |A,B| + |C,D|

for all (A,B), (C,D) ∈ U . We then call |A,B| the order of the separation (A,B).
Given a universe U with an order function, our focus will often be on the sub-
system

Sk = {(A,B) ∈ U : |A,B| < k}
for some positive integer k.

Lemma 3. Every such Sk is separable.

For the remainder of this section, whenever we consider a graph G = (V,E)
we let U be its universe of vertex separations, the set of pairs (A,B) of vertex
sets A,B such that A ∪ B = V and G has no edge between A � B and B � A.
We then take |A,B| := |A ∩ B| as our order function for U , and put

S−
k :=

{
(A,B) ∈ Sk : |A| < k

}
.

This is obviously closed down in Sk, and Sk is separable by Lemma 3.
We remark that any consistent orientation O of Sk must extend the subset

of S−
k consisting of its separations of the form (A, V ). This is because otherwise

O would contain (V,A), with (A, V ) ≤ (V,A) ∈ O violating consistency.
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4.1 Branch-Width and Tangles

Let G = (V,E) be a finite graph. A tangle of order k in G is (easily seen to be
equivalent to) an F-avoiding orientation of Sk extending S−

k for

F :=
{
{(A1, B1), (A2, B2), (A3, B3)} ⊆ Sk : G[A1] ∪ G[A2] ∪ G[A3] = G

}
.

(The three separations (A1, B1), (A2, B2), (A3, B3) need not be distinct.) Notice
that any orientation of Sk that avoids this F is consistent, since for any pair of
separations (C,D) ≤ (A,B) we have G[D]∪G[A] ⊇ G[B]∪G[A] = G and hence
{(D,C), (A,B)} ∈ F .

Since our duality theorems, so far, only work with F consisting of stars of
separations, let us consider the set F∗ of those sets in F that are stars. Using
submodularity one can easily show that an F∗-avoiding orientation of Sk in fact
avoids all of F – but only if we assume consistency:

Lemma 4. Every consistent F∗-avoiding orientation O of Sk avoids F .

It is easy to check that F∗ is closed under shifting, and so we have our first
application:

Theorem 2. The following are equivalent for finite graphs G �= ∅ and k > 0:

(i) G has a tangle of order k.
(ii) Sk has an F-avoiding orientation extending S−

k .
(iii) Sk has a consistent F∗-avoiding orientation extending S−

k .
(iv) G has no Sk-tree over F∗ rooted in S−

k .
(v) G has branch-width at least k, or k ≤ 2 and G is a disjoint union of stars

and isolated vertices and has at least one edge.

4.2 Tree-Width and Path-Width

We now apply our strong duality theorem to obtain a duality theorem for tree-
width in graphs. Its dual ‘dense objects’ will be orientations of Sk, like tangles,
and thus different from brambles (or ‘screens’), the dual objects in the classical
tree-width duality theorem of Seymour and Thomas [11].

This latter theorem, which ours easily implies, says that a finite graph either
has a tree-decomposition of width less than k−1 or a bramble of order at least k,
but not both. The original proof of this theorem is as mysterious as the result
is beautiful. The shortest known proof is given in [3] (where we refer the reader
also for definitions), but it is hardly less mysterious. A more natural, if slightly
longer, proof was given recently by Mazoit [7]. The proof by our strong duality
theorem, as outlined below, is perhaps the most basic proof one can have.6

Consider a finite graph G = (V,E), with sets of vertex separations S−
k ⊆ Sk

for some integer k > 0 as defined at the start of Sect. 4. Let

Fk :=
{

S ⊆ Sk | S = {(Ai, Bi) : i = 0, . . . , n} is a star with
∣
∣ ⋂n

i=0 Bi

∣
∣ < k

}
.

6 For example, we do not need Menger’s theorem, as all the other proofs do.
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We have seen that Sk is separable (Lemma 3). To apply Theorem 1 we thus
only need the following lemma – whose very easy proof contains the only bit of
magic now left in the tree-width duality theorem:

Lemma 5. Fk is closed under shifting.

It is easy to check that G has an Sk-tree (T, α) over Fk rooted in S−
k if and

only if it has a tree-decomposition (T,V) of width less than k−1. The translation
between orientations of Sk and brambles in a graph G is more interesting. Before
the notion of a bramble was introduced in [11] (under the name of ‘screen’),
Robertson and Seymour had looked for an object dual to small tree-width that
was more akin to our orientations of Sk: maps β assigning to every set X of fewer
than k vertices one component of G − X. The question was how to make these
choices consistent, so that they would define the desired ‘dense object’ dual
to small tree-width. The obvious consistency requirement, that β(Y ) ⊆ β(X)
whenever X ⊆ Y , is easily seen to be too weak, while asking that β(X)∩β(Y ) �= ∅
for all X,Y turned out to be too strong. In [11], Seymour and Thomas then found
a requirement that worked: that any two such sets, β(X) and β(Y ), should touch:
that either they share a vertex or G has an edge between them. Such maps β
are now called havens, and it is easy to show that G admits a haven of order k
(one defined on all sets X of less than k vertices) if and only if G has a bramble
of order at least k.

The notion of ‘touching’ was perhaps elusive because it appeals directly to the
structure of G, its edges: it is not be phrased purely in terms of set containment.
It turns out, however, that it can be phrased in such terms after all, as the
consistency of orientations of Sk:

Lemma 6. G has a bramble of order at least k if and only if Sk has a consistent
Fk-avoiding orientation extending S−

k .

The next application of our duality theorem includes the tree-width duality
theorem of Seymour and Thomas [11], and extends it by the new width para-
meter of Sk-trees over Fk:

Theorem 3. The following are equivalent for all finite graphs G and k > 0:

(i) G has a bramble of order at least k.
(ii) Sk has a consistent Fk-avoiding orientation extending S−

k .
(iii) G has no Sk-tree over Fk rooted in S−

k .
(iv) G has tree-width at least k − 1.

We can also bound the adhesion of a tree-decomposition independently from
its width. For integers k < w, setting

Fw =
{
S ⊆ Sk | S = {(Ai, Bi) : i = 0, . . . , n} is a star with

∣
∣ ⋂n

i=0 Bi

∣
∣ < w

}

yields the following new duality theorem:

Theorem 4. The following are equivalent for all graphs G and w ≥ k > 0:
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(i) Sk has a consistent Fw-avoiding orientation extending S−
k .

(ii) G has no Sk-tree over Fw rooted in S−
k .

(iii) G has no tree-decomposition of width < w − 1 and adhesion < k.

Similarly, setting

F (2)
k :=

{
S ⊆ Sk | S = {(A1, B1), (A2, B2)} is a star with

∣
∣B1 ∩ B2

∣
∣ < k

}

yields a duality theorem for path-width:

Theorem 5. The following are equivalent for all finite graphs G and k > 0:

(i) Sk has a consistent F (2)
k -avoiding orientation extending S−

k .
(ii) G has no Sk-tree over F (2)

k rooted in S−
k .

(iii) G has path-width at least k − 1.

4.3 Carving Width, Rank Width, and Matroid Tangles

The concepts of branch-width and tangles were introduced by Robertson and
Seymour [10] not only for graphs but more generally for hypergraphs. As the
order of a separation (A,B) they already considered, instead of |A ∩ B|, also
arbitrary symmetric submodular order functions |A,B| and proved the relevant
lemmas more generally for these. Geelen, Gerards, Robertson, and Whittle [4]
applied this explicitly to a submodular connectivity function.

Our aim in this section is to derive from Theorem 1 a duality theorem for
branch-width and tangles in arbitrary separation universes with an order func-
tion, as introduced at the start of Sect. 4. This will imply the above branch-width
duality theorems for hypergraphs and matroids, as well as their cousins for carv-
ing width [12] and rank-width of graphs [8].

Let U be any universe of separations of some set E of at least two elements,
with an order function (A,B) �→ |A,B|. Let k > 0 be an integer, and consider

Sk =
{
(A,B) ∈ U : |A,B| < k

}
and S−

k =
{
(A,B) ∈ Sk : |A| ≤ 1

}
.

Let us call an orientation of Sk a tangle of order k if it extends S−
k and avoids

F =
{
{(A1, B1), (A2, B2), (A3, B3)} ⊆ Sk : A1 ∪ A2 ∪ A3 = E

}
,

where (A1, B1), (A2, B2), (A3, B3) need not be distinct; in particular, tangles
are consistent. This extends the existing notions of tangles for hypergraphs and
matroids, with their edge set or ground set as E, partitions as separations, and
the appropriate order functions.

Let F∗ ⊆ F be the set of stars in F . It is easy to prove that F∗ is closed
under shifting, and we have the following analogue of Lemma 4:

Lemma 7. Every consistent F∗-avoiding orientation of Sk avoids F .
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Let us say that U has branch-width < k if there exists an Sk-tree over F∗

that is rooted in S−
k . As before, this definition agrees with the usual ones when

U is a hypergraph or matroid. By Lemmas 3 and 7, Theorem 1 now specializes
as follows:

Theorem 6. Given a separation universe U with an order function, and k > 0,
the following assertions are equivalent:

(i) U has a tangle of order k.
(ii) Sk has a consistent F∗-avoiding orientation extending S−

k .
(iii) U does not have branch-width < k.

4.4 Matroid Tree-Width

Hliněný and Whittle [5,6] generalized the notion of tree-width from graphs to
matroids.7 Our aim in this section is to specialize our strong duality theorem to
a duality theorem for tree-width in matroids.

Let M = (E, I) be a matroid with rank function r. Its connectivity function
is defined as

λ(X) := r(X) + r(E � X) − r(M).

We consider the universe U of all bipartitions (X,Y ) of E. Since

|X,Y | := λ(X) = λ(Y )

is submodular and symmetric, it is an order function on U .
A tree-decomposition of M is a pair (T, τ), where T is a tree and τ : E → V (T )

is any map. Let t be a node of T , and let T1, . . . , Td be the components of T − t.
Then the width of t is the number

d∑

i=1

r(E � Fi) − (d − 1) r(M),

where Fi = f−1(V (Ti)). (If t is the only node of T , we let its width be r(M).)
The width of (T, τ) is the maximum width of the nodes of T . The tree-width
of M is the minimum width over all tree-decompositions of M .

Matroid tree-width generalizes the tree-width of graphs in the expected way:

Theorem 7 (Hliněný and Whittle [5,6]). The tree-width of a finite graph
containing at least one edge equals the tree-width of its cycle matroid.

In order to specialize Theorem 1 to a duality theorem for tree-width in
matroids, we consider

Sk = { (A,B) ∈ U : |A,B| < k } and S−
k = { (A,B) ∈ U : r(A) < k } ⊆ Sk.

7 In our matroid terminology we follow Oxley [9].
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Since λ is symmetric and submodular, Sk is separable by Lemma 3. Let

Fk :=
{

S ⊆ U
∣
∣ S = {(Ai, Bi) : i = 0, . . . , n} is a star with n ≥ 1

and
n∑

i=0

r(Bi) − n r(M) < k
}

.

Even without requiring this in the definition, one can show that every S ∈ Fk

is a subset of Sk, and that Sk is Fk-separable.
Theorem 1 now yields the following duality theorem for matroid tree-width.

Theorem 8. Let M = (E, I) be a matroid with the rank function r, and let k
be an integer. Then the following statements are equivalent:

(i) M has tree-width at least k.
(ii) M has no Sk-tree over Fk rooted in S−

k .
(iii) Sk has a consistent Fk-avoiding orientation extending S−

k .

5 Algorithms

We have not considered the algorithmic task of finding, given fixed types of S,
S− and F , for any input graph G the right one of the two alternatives from
our duality theorem: an S-tree over F rooted in S−, or a consistent F-avoiding
orientation of S extending S−. As far as we are aware, such algorithmic results do
not even exist for the classical duality theorems, such as the one for tree-width
and brambles. Our setup makes it possible to treat this in greater generality,
which seems like a fitting challenge for this conference’s academic environment.

References

1. Amini, O., Mazoit, F., Nisse, N., Thomassé, S.: Submodular partition functions.
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Abstract. We tackle local distributed testing of graph properties. This
framework is well suited to contexts in which data dispersed among the
nodes of a network can be collected by some central authority (like in,
e.g., sensor networks). In local distributed testing, each node can provide
the central authority with just a few information about what it perceives
from its neighboring environment, and, based on the collected informa-
tion, the central authority is aiming at deciding whether or not the net-
work satisfies some property. We analyze in depth the prominent example
of checking cycle-freeness, and establish tight bounds on the amount of
information to be transferred by each node to the central authority for
deciding cycle-freeness. In particular, we show that distributedly testing
cycle-freeness requires at least �log d�−1 bits of information per node in
graphs with maximum degree d, even for connected graphs. Our proof is
based on a novel version of the seminal result by Naor and Stockmeyer
(1995) enabling to reduce the study of certain kinds of algorithms to
order-invariant algorithms, and on an appropriate use of the known fact
that every free group can be linearly ordered.

1 Introduction

1.1 Context and Objective

We are interested in monitoring structural properties of networks. Our setting
is the one of a large-scale distributed system in which nodes are linked together
so as to form a network G. Our objective is to discuss the ability of the nodes to
decide whether or not the network satisfies certain structural properties, which
may in turn govern the ability of the network to perform certain tasks efficiently.
Examples of such structural properties are, e.g., large expansion, which governs
the ability to disseminate information quickly, or cycle-freeness, which prevents
communication packets to enter into infinite loops. For the purpose of decid-
ing structural properties of the network, each of its nodes can perform some
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local computation, and eventually produce an individual output based on struc-
tural information gathered in its vicinity, and reflecting the local structure of
the network around the node. This information is then transmitted to a central
authority, which is in charge of taking the final decision about G, as a combi-
nation of all individual outputs produced by the nodes. The crucial point here
is that the communication channel available between the central authority and
each of the nodes is supposed to be narrow, and hence the amount of information
that can be transmitted from each node to the central authority is limited. Yet,
we want the central authority to be able to decide whether or not G satisfies
some given structural property. A typical example of such a setting is a sensor
network, in which the sensed data are gathered at a distant base station, either
directly, or via intermediate routers and/or other sensors.

The setting presented above shares characteristics with both property test-
ing [14] and distributed decision [12,13]. Indeed, at a conceptual level, property
testing on graphs can be viewed as: (1) querying a small number of nodes, typ-
ically o(n), or even O(1) nodes, in n-node networks; (2) extracting information
from each query, typically O(log n) bits of information (e.g., the identity of a
neighbor of the queried node); and (3) deciding whether the queried graph satis-
fies some given property P, on the basis of the collection of information obtained
from the queried nodes. It is the role of the tester algorithm to choose which
nodes to query, and to eventually take the decision about the tested graph.
The lack of information resulting from querying just a small subset of nodes is
balanced by relaxing the decision requirement, which is subject to probabilistic
errors, and does not impose to reject illegal instances that are “close” to legal
instances.

Similarly, distributed decision in graphs [12,13] can be viewed as (1) querying
all nodes; (2) having every node providing a single bit of information (true
or false) based on local information gathered in its vicinity; and (3) deciding
whether the queried graph satisfies some given property P, on the basis of the
collection of boolean information obtained from the queried nodes. In distributed
decision, the instance is accepted if and only if the logical conjunction of the
boolean information computed at each node is true. That is, if the input graph
satisfies P, then every node must individually accept. Otherwise, at least one
node must individually reject. Distributed decision assumes no gap between, on
the one hand, the instances to be accepted, and, on the other hand, the ones to
be rejected. Furthermore, the decision is usually deterministic and error-free.

The formal model used in this paper for monitoring structural properties of
networks relaxes property testing in the sense that, as for distributed decision,
all nodes are queried. It also relaxes distributed decision in the sense that, as
for property testing, the decision is made by an algorithm taking as input struc-
tured information provided by the nodes (and not only boolean information).
Therefore, as far as the computational constraints are concerned, our model is
very liberal, by taking the best of property testing, and of distributed decision.
On the other hand, the model is very conservative regarding the final output,
by allowing no errors, and by requiring perfect dichotomy between the legal
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Table 1. Distributed testing

#queried Amount of Decision Gap Error

nodes information mechanism

Property testing [14] o(n) O(logn) Algorithm ε-far Yes

Distributed decision [12,13] n 1 Logical conjunction None No

Distributed testing n O(logn) Algorithm None No

instances and the illegal instances. We call this model distributed testing. Its
main characteristics are summarized in Table 1.

One illustrative example of the differences between, on the one hand, distrib-
uted testing, and, on the other hand, property testing and distributed decision, is
cycle-freeness (see Table 2). For 2-sided error, it is known [15] that cycle-freeness
in graphs with maximum degree d can be property tested with O( 1

ε3 + d
ε2 ) queries

returning Θ(log n) bits per queried node, where ε ∈ (0, 1) is the gap parame-
ter between the legal and illegal instances. For 1-sided error, Ω(

√
n) queries

are required [15], and this is sufficient [8]. If one does not allow errors, it is
folklore that, even in connected graphs, cycle-freeness cannot be distributedly
decided1. It is however known [18] that cycle-freeness in connected graphs can
be verified distributedly with the help of O(log n)-bit additional information
(i.e., certificates) per node. As for distributed decision, each node just outputs
a boolean, and the global decision is the logical conjunction of these booleans.
Moreover, [9,19] proved that Ω(log n)-bit certificates are necessary for verifying
trees. In [3], the size of the certificates is nevertheless decreased to constant, by
allowing nodes to output just 2 bits instead of 1. (We call this latter setting
distributed certification).

Of course, there is a very simple algorithm for distributedly testing cycle-
freeness in connected graphs: each node v output its degree deg(v), and the
central authority accepts if and only if

∑
v deg(v) = 2(n − 1). The number of

bits returned by each queried node is �log d� in graphs with maximum degree d.
One question is: can we do better, i.e., with less bits of information transmitted
from each node? Note that the answer is yes for subdivided graphs, where a
subdivided graph [1] is a graph in which no two vertices of degree different
from 2 are adjacent. Indeed, in such graphs with n ≥ 3, the following algorithm
works, with only four different kinds of outputs (i.e., 2-bit outputs): a node with
degree �= 2 outputs 0, and a node with degree 2 outputs 2, 3 or 4 depending on
1 To see why, assume there exists a local algorithm A deciding cycle-freeness locally.
Run A on the path with consecutive identities from 1 to n (nodes with identities 1
and n being the two extremities). In this configuration, the n/2 middle nodes output
“true”. Then, run A on the same path with identities n/2, . . . , n, 1, . . . , n/2 − 1.
Again, the n/2 middle nodes output “true”. Therefore, on the cycle with consecutive
identities from 1 to n, all nodes output “true”, yielding A to accept the cycle, a
contradiction.
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Table 2. Monitoring cycle-freeness in n-node max-degree-d (connected) graphs

#queried Amount of Success Comments

nodes information probability

Property testing [15] O( 1
ε3

+ d
ε2
) �logn� 2-sided ε-far

Property testing [8,15] Θ(
√

n) �logn� 1-sided ε-far

Distributed decision
[folklore]

n 1 Impossible –

Distributed
verification [9,18,19]

n 1 Deterministic Θ(log n)-bit
certificates

Distributed
certification [3]

n 2 Deterministic O(1)-bit
certificates

Distributed testing
[this paper]

n log d ± Θ(1) Deterministic –

whether it is adjacent to 0, 1 or 2 nodes with degree �= 2, respectively. The central
authority then accepts if and only if the sum of the outputs equals 2(n − 1).

In this paper, we question the existence of a distributed tester for cycle-
freeness in arbitrary graphs, returning less than �log d� bits from each of the n
queried nodes.

1.2 Our Results

We prove that every distributed tester for cycle-freeness in graphs with maxi-
mum degree d requires that at least one node outputs at least �log d� − 1 bits.
Hence, the distributed tester in which every node simply outputs its degree
is essentially optimal. This tight result completes the whole picture regarding
checking cycle-freeness (see Table 2). That is, if one can stand errors and slacks
then property-testing enables to query just a few nodes. On the other hand, if
one insists on deterministically systematically rejecting graphs with cycles, and
accepting graphs without cycles, then distributed testing seems to be the right
option. Indeed, it consumes moderate bandwidth resources to gather the out-
puts of the nodes, and needs not to provide certificates (as opposed to distributed
verification, and distributed certification).

Establishing that every distributed tester for cycle-freeness must output
�log d� − 1 bits at some node requires to combine several techniques. First, we
show that one can reduce our concern to order-invariant testers, that is, roughly,
to algorithms whose output at a node does not depend on the actual value of
the identities of the nodes in its vicinity, but solely on the relative order of these
values. The celebrated result by Naor and Stockmeyer [20] enabling to reduce
the study of certain kinds of algorithms to order-invariant algorithms cannot be
applied in our context because our instances are not necessarily in the class LCL
of so-called locally checkable languages. Nevertheless, we were able to provide a
novel reduction, that does not require LCL membership, by using the infinite
version of Ramsey Theorem.
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Our second main technique is the construction, for every order-invariant dis-
tributed tester supposed to decide cycle-freeness with too few information pro-
vided by each node, of two explicit instances, one with a cycle, and one without,
that cannot be distinguished by the tester. This construction is difficult because,
as mentioned before, cycle-freeness can be distributedly tested with just a 2-bit
output per node in subdivided graphs. Nevertheless, by an appropriate use of
the known fact that every free group can be linearly ordered, we were able to
construct legal and illegal instances that cannot be distinguished locally by the
assumed order-invariant distributed tester.

1.3 Related Work

Local computing is a wide domain of studies in distributed network computing,
and the reader is referred to the textbook [21] for an excellent introduction to
local computing, providing pointers to the most relevant techniques for solving
prominent problems (e.g., MIS, coloring, etc.) locally. The question of what
can be computed in a constant number of communication rounds was actually
introduced in the seminal work by Naor and Stockmeyer in [20]. In particular,
[20] introduced the class of locally checkable languages (LCL), and studied the
question of how to deterministically or randomly construct instances of LCL
languages in a constant number of rounds.

With the objective of providing distributed network computing with a com-
plexity theory based on decision problems, following the guidelines of classical
(sequential) complexity theory, [12,13] introduced several decision classes for
local computing, and studied the relationships between these classes (which are
depending on the number of allowed rounds, on the potential access to oracles,
on the potential use of non-determinism and/or of randomization, etc.). Paper
[12] generated several following up contributions, including, e.g., studies on the
impact of randomization [11], studies on the impact of node identifiers [10],
studies on verification tasks where certificates include node IDs [17], etc. See
also [16] for other forms of local checking, and for their impact on distributed
graph-optimization problems.

Local distributed testing was introduced in [3] (although [3] does not use
this terminology). Beside introducing complexity classes related to local distrib-
uted testing, and studying the relationships between these classes, [3] focused
attention to verification, and on the size of the certificates involved in the ver-
ification. Our paper is also very much related to [4,5], which use models that
resemble local distributed testing, but where nodes are restricted to perform just
one round of communication before outputting a value on O(log n) bits. In the
restricted setting of [4,5], even checking the presence of a 4-cycle in the network
may not be feasible. Instead, in local distributed testing, the number of com-
munication rounds is just restricted to be constant, but one aims at producing
smaller output values, e.g., on O(1) bits.
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2 Local Distributed Testing

Let us consider a network modeled as a simple connected graph G. We are inter-
ested in the task consisting, for the nodes of G, to collectively decide whether G
satisfies some given property P, like, say, being planar, being a tree, etc. For
this purpose, nodes can exchange information, so that every node eventually
produces an output. The computational model considered in this paper is the
classical LOCAL model [21], which is a standard distributed computing model
capturing the essence of locality. In this model, nodes have pairwise distinct
identities (the identity of node v is denoted by id(v) ∈ N). They are woken up
simultaneously, and computation proceeds in fault-free synchronous rounds dur-
ing which every node exchanges messages of unlimited size with its neighbors in
the underlying network G, and performs arbitrary individual computations on
its data. The running time of an algorithm is defined as the maximum number
of rounds it takes to terminate at all nodes, over all possible networks, and all
possible identity assignments for the nodes in these networks. Similarly to [20],
we consider algorithms whose running time is independent of the size of the net-
work, and independent of the size of the identities. That is, they run in constant
time.

Let outA(G, id, v) denotes the output of node v ∈ V (G) running Algorithm
A in G with identity assignment id. We denote by outA(G, id) the global output,
that is,

outA(G, id) = {outA(G, id, v), v ∈ V (G)}
is the multiset of all individual outputs (the same individual output may appear
more than once in outA(G, id)). By “collectively decide” a graph property P, we
mean the following. To each output corresponds a global state of the system.
We question the ability to define two classes of global states, one called accept,
and one called reject, so that the following holds. If G satisfies P, then the nodes
must compute outputs that yields the system to be in an accept state, while if G
does not satisfy P, then the nodes must compute outputs that yields the system
to be in a reject state. More specifically, assume that each node of an n-node
network can output one of the different values in a set S. Let Mn,S =

((
S
n

))
be

the set of all multisets of cardinality n, with elements taken from S. We say that
a graph property P can be distributedly tested with output set S if there exists a
local distributed algorithm D, and a decomposition of Mn,S for every n ≥ 1, into
two computable sets Yn (the “yes”-set, or accept set) and Mn,S\Yn (the reject
set) such that, for every n-node graph G, and for every identity assignment id
to the nodes in G, the following holds:

G satisfies P ⇐⇒ outD(G, id) ∈ Yn.

In other words, a distributed tester for P consists in a local distributed algo-
rithm D producing an output at every node, coupled with a sequential algo-
rithm S which takes as input the collection of all outputs produced by the
nodes, and accepts or rejects, under the constraint that it must accept if and
only if G satisfies P.
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An example (borrowed from [13]) of a graph property that can be distrib-
utedly tested is: clique-width at most 2. Indeed, a graph has clique-width at
most 2 if and only if it is a cograph – see [7]. Now, cographs have also been
characterized as the family of P4-free graphs (i.e., the graphs which do not
contain the path on 4 nodes as an induced subgraph) – see [6]. Hence, to
decide clique-width at most 2, each node can simply communicate at bounded
distance to check whether it contains an induced P4 in its vicinity, and out-
put 0 if it is the case, and 1 otherwise. The accept set is simply defined as
Yn = {{x1, . . . , xn} ∈ Mn,{0,1} :

∏n
i=1 xi = 1}. Distributed testing restricted

to this latter class of accept sets actually reduces to distributed decision [13].
(See [2] for the difficulty of property testing cographs).

The size of S needs not be constant, and may actually vary with n. This
is for instance the case of the aforementioned task of testing cycle-freeness, for
which every node simply returns its degree. In this case, Yn = {{x1, . . . , xn} ∈
Mn,[n] :

∑n
i=1 xi = 2(n − 1)}, where [n] = {1, . . . , n}.

Note that every computable graph property P can be distributedly tested in
this model. Indeed, each node can just output its identity, and the set of all the
identities of its neighbors. In other words, each node v outputs its identity and
its adjacency list Lv in the current graph G. In this case,

Yn = {{L1, . . . , Ln} : graph (L1, . . . , Ln) satisfies P}

would enable to distinguish graphs that satisfy P from those that do not. How-
ever, such a trivial solution involves individual outputs of size Ω(n log n) bits in
dense graphs. Our objective is to study the ability of distributedly testing graph
properties with individual outputs having size as small as possible, ideally con-
stant, independent of the network size, and of the range of identities. We define
the output size of a distributed tester in a graph family G as the maximum,
taken over all instances (G, id) where G ∈ G, of the maximum number of bits
outputted by a node in this instance.

3 Order-Invariance Revisited

Our first result in the paper is a key ingredient for the proof of our main result.
This ingredient may have its interest on its own, and it is worth dedicating an
entire section to it. We show that, w.l.o.g., one can consider only order-invariant
distributed testers. Recall that an order-invariant distributed algorithm is a dis-
tributed algorithm for which the output at any given node does not depend on
the actual values of the identities of the nodes in its vicinity, but only on the rel-
ative order of these identities. More precisely, let BG(v, t) be the ball of radius t
around node v in graph G, that is, BG(v, t) is the subgraph of G induced by
all nodes at distance at most t from v, excluding the edges between the nodes
at distance exactly t from v. An algorithm A is order-invariant if the following
holds: for any graph G, for any node v, and for any two identity assignments id
and id′ of the nodes in G, if the ordering of the nodes in BG(v, t) induced by id,
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and the one induced by id′ are identical, then the output of A at node v is the
same in both (G, id) and (G, id′).

A distributed language L is defined by a collection of labeled graphs, or con-
figurations (G, �) where G is a connected graph, and � : V (G) → {0, 1}∗ is
a function that labels each node v with the label �(v). The construction task
defined by a language L consists, for every node v of every graph G, to compute
out(v) such that the global output satisfies (G, out) ∈ L. In their seminal paper,
Naor and Stockmeyer [20] consider the subclass LCL of locally checkable lan-
guages. Languages in LCL are distributed languages that are defined on graph
families with constant maximum degree, and with constant label size at every
node (i.e., |�(v)| = O(1) for every node v). A language L is locally checkable,
or, alternatively, is in LD according to the terminology of [13], if there exists
a distributed algorithm performing in a constant number of rounds such that,
for any (G, �) ∈ L, all nodes accept, and, for any (G, �) /∈ L, at least one node
rejects. (See [13,20] for more details). Theorem 3.3 in [20] establishes that, for
every language L ∈ LCL, if there exists a construction algorithm for L perform-
ing in t = O(1) rounds, then there exists a t-round order-invariant construction
algorithm for L.

In the context of this paper, the language corresponding to a distributed
tester (D,S) is determined by the accept set, that is by the set of multisets of
outputs that S accepts. In general, the language corresponding to a distributed
tester (D,S) for a property P is

L = {(G, �) : S accepts � ⇐⇒ G satisfies P}

where � is the collection of values �(v), v ∈ V (G), and �(v) is the value owned
by node v. In particular, the language corresponding to the distributed tester
(D,S) for cycle-freeness where D outputs deg(v) at each node v is

Lcycle-free = {(G, �) :
∑

v∈V G
�(v) = 2(n − 1) ⇐⇒ G is an n-node tree}.

Observe that such languages are not necessarily locally checkable. For instance,
Lcycle-free /∈ LCL (even if restricted on graphs with maximum degree d, for some
constant d). Hence, Theorem 3.3 in [20] does not apply to our setting. The result
below extends this latter theorem to non locally checkable languages. We define
the domain of a language L as the set of all values taken by the labels �(v) in L,
for all graphs G, and all nodes v of G. Note that, in a construction task defined
by a distributed language L, nodes may be a priori provided with inputs. In this
context, x(v) denotes the input to node v, and every node v has to compute an
output y(v) such that (G, (x, y)) ∈ L.

Theorem 1. For every non-negative integers k, t, d, and every language L
defined on connected graphs with maximum degree d, and k-valued domain, if
there exists a t-round construction algorithm A for L, then there is a t-round
order-invariant construction algorithm A′ for L.

Proof. For any set X, and any positive integer r, let us denote by X(r) the set
of all subsets of X with size exactly r. Let X be a countably infinite set, let r
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and s be two positive integers, and let c : X(r) → [s] be a “coloring” of each
set in X(r) by an integer in [s] = {1, . . . , s}. Recall that (the infinite version of)
Ramsey’s Theorem states that there exists an infinite set Y ⊆ X such that the
image by c of Y (r) is a singleton (that is, all sets in Y (r) are colored the same
by c). We make use of this theorem as follows.

Let us consider the collection B of all graphs isomorphic to some ball BG(v, t)
of radius t, centered at some node v in some graph G with maximum degree d.
If the language L is described by labels encoding input-output relations, then B
is the collection of all labeled graphs isomorphic to some labeled ball BG(v, t).
Since the domain of the labels has k values, there are at most k different inputs,
and thus there is a finite number β of pairwise non-isomorphic balls in B.

We enumerate these (labeled) balls from 1 to β, and let ni be the number of
vertices in the ith ball, for i = 1, . . . , β. For every i, the vertices of the ith ball
can be ordered in ni! different manners, corresponding to the ni! permutations
in Σni

. We consider the N =
∑β

i=1 ni! ordered balls Bi,σ, for i = 1, . . . , β, and
σ ∈ Σni

, and we enumerate these ordered balls as B1, . . . ,BN in an arbitrary
order. Using these balls, we define an infinite set I of identities as follows.

Let X0 = N, and assume that we have already secured the existence of a
sequence of infinite sets X0 ⊇ X1 ⊇ · · · ⊇ Xj , 0 ≤ j < N , such that, for every i,
1 ≤ i ≤ j, the output of A at the center of Bi is the same for all possible identity
assignments to the nodes in Bi with values in Xi, and respecting the ordering
of the nodes in Bi. We define the coloring c : X

(r)
j → [k] where r is the number

of nodes in Bj+1, as follows: for each r-element set I ∈ X
(r)
j , assign r pairwise

distinct identities to the nodes of Bj+1 using the r values in I, and respecting
the order of the nodes in Bj+1. Then, define c(I) as the output of Algorithm A
at the center of Bj+1 under this identity assignment to the nodes of Bj+1. By
Ramsey’s Theorem, there exists an infinite set Yj ⊆ Xj such that all r-element
sets I ∈ Y

(r)
j are given the same color. We set Xj+1 = Yj . We proceed that way

until we exhaust all balls Bi, i = 1, . . . , N , and we set I = XN .
By construction, the set I satisfies that, for every ball Bi,σ, for i = 1, . . . , β,

and σ ∈ Σni
, the output of A at the center of Bi,σ is the same for all identity

assignments to the nodes of Bi,σ with identities taken from I and assigned to
the nodes in the order σ.

We now define the order-invariant algorithm A′ as follows. Every node v
inspects its radius-t ball BG(v, t) around it in the actual graph G. In particular,
it collects the identities of the nodes in that ball. Let σ be the ordering of the
nodes in BG(v, t) induced by their identities. Node v simulates A by reassigning
identities to the nodes of BG(v, t) using the r = |BG(v, t)| smallest values in I,
in the order specified by σ, and outputs what would have outputted A if nodes
were given these identities.

A′ is well defined, as nodes can be provided with the ν =
∑t

i=0 di smallest inte-
gers in the set I. (I.e., nodes do not need to know the entire set I, but only a finite
number of values in I). Also, by construction, A′ is order-invariant. To establish
that A′ is correct, let us consider some n-node input graph G, with nodes pro-
vided with pairwise distinct identities in I, and let out = {out(v), v ∈ V (G)}
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be the output of A in this context. This output is precisely the multi-set out-
putted by A′ in G. Indeed, every node v relabels its radius-t ball with identities in
I, respecting the order induced by the original identities in I, and I is precisely
defined so that the output of v will be the same in both cases. In other words, the
output of A′ is precisely the output of A if nodes were assigned identities restricted
to be in I. Hence, since A is correct, it follows that A′ is correct as well. ��

4 Distributedly Testing Cycle-Freeness

In this section, we prove our main result:

Theorem 2. For any positive even integer d, every distributed tester for cycle-
freeness in connected graphs with maximum degree at most d has output size at
least �log d� − 1 bits.

The rest of the section is entirely dedicated to prove this result. The proof is
by contradiction. Let d be a positive even integer. We assume the existence of a
distributed tester (D,S) for cycle-freeness in connected graphs with maximum
degree d, where D runs in t rounds, for some constant t ≥ 0, and outputs at most
�log d� − 2 bits at each node. We first start by shrinking the set of candidate
algorithms D. Indeed, as a direct consequence of Theorem 1, we get the following:

Corollary 1. If there exists a t-round distributed tester (D,S) for cycle-freeness
with k-valued outputs in connected graphs with maximum degree d, then there is
distributed tester (D′,S) satisfying the same, but where D′ is order-invariant.

Based on this latter result, we now show that every distributed tester (D,S) for
cycle-freeness in connected graphs with maximum degree at most d, where D is
order-invariant, has output size at least �log d� − 1 bits.

The intuition is as follows. We will focus our attention on so-called type-i
nodes, with i being an even integer between 2 and d. Intuitively, such nodes are
defined as nodes of degree i that only “see” a tree of nodes of degree i in their
neighborhood up to distance t, and with a particular ordering of their identities.
We will construct two (connected) graphs, with their corresponding identity
assignments, such that only one of this two graphs is a tree, and the multi-set of
the local views gathered by the nodes in the two graphs will only differ by their
numbers of type-i and type-j nodes, for some i �= j. Any distributed tester for
cycle-freeness has to distinguish the two graphs and has thus to give different
output values to type-i and type-j nodes. This will prove that any distributed
tester for cycle-freeness must have at least d/2 different output values, thus
proving our main theorem.

We now define formally two families of trees, which will be used as building
blocks in our constructions. (See Fig. 1). Let i, 1 ≤ i ≤ d, be an even integer.
We define the trees Ti and T ′

i as follows. For Ti, we start from one single node,
called the downtown node (this node is considered as a leaf). For T ′

i , we start
from i+1 nodes organized as a star (i.e., with one center and i leaves), and also
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Fig. 1. The trees T2, for t = 3, and T ′
4, for t = 1. The downtown, suburb, and country-

side nodes are depicted as black, grey, and white nodes respectively. Port numbers are
only indicated for the central downtown node. The other port numbers can be inferred
using the same cyclic ordering of port numbers around the nodes.

called downtown nodes. Then, we replace each of the leaves of these two “seeds”
by a (i − 1)-ary tree of height t. As a consequence, all the internal nodes of the
resulting two trees are of degree i. Moreover, the downtown node closest to every
leaf is at distance exactly t + 1. The internal nodes of the resulting trees that
are not downtown nodes are called suburb nodes. For the ease of description of
our constructions, and for simplifying our arguments, we assign numbers to the
edges incident to the internal nodes of these two trees. More specifically, for each
internal node v, a distinct label between 1 and deg(v) is assigned to every edge e
incident to v. This label is called the port number of the edge e at node v. The
port numbers are assigned in such a way that, for each edge whose extremities
are two nodes with the same degree i, if p ∈ [1, i] is one of the port numbers
assigned to the edge, then i − p + 1 is the other port number assigned to this
edge. Then, we apply another transformation, which consists in replacing every
edge of these two trees that is incident to a leaf by a path of length 2t + 1. The
trees Ti and T ′

i are the trees resulting from this second transformation. In these
two trees, all the nodes that are neither downtown nodes, nor suburb nodes, are
called countryside nodes.

Before describing the identity assignments for these trees, let us make the
following observations. An infinite regular tree of degree i can be viewed as the
Cayley graph of the free group of rank i/2. More precisely, let {a1, a2, . . . , ai/2}
be the set of the i/2 generators of the free group (F, 	) of rank i/2. The Cayley
graph associated to this group is a directed arc-labeled graph with the following
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properties: the set of nodes is the set F , and there is an arc with label ap, with
1 ≤ p ≤ i/2 from node g to node g′ if and only if g′ = g 	 ap. If each arc
(g, g′) with label ap is replaced by an (undirected) edge {u, v} with port label p
at u and i − p + 1 at v, then we get the infinite regular tree of degree i with a
port-labeling similar to the one we have described for Ti and T ′

i . More precisely,
for each node in this infinite tree, the edges incident to it are assigned a local
port number from 1 to i such that if p is one of the port numbers assigned to
an edge, then i − p + 1 is the other port number assigned to this edge. Besides,
any finitely generated free group is bi-ordered, i.e., admits a total order � such
that, for any three elements a, b, and c of the group, if a � b, then a 	 c � b 	 c
and c 	 a � c 	 b.

Let us now describe the identity assignments for the trees Ti and T ′
i . The

construction is similar in both cases. The countryside nodes will receive the lower
identities, while the suburb and downtown nodes will receive the larger identities.
More specifically, to every countryside node u, we associate its distance j to
the closest leaf, and the sequence s of the t + 1 port numbers describing the
path going from the closest downtown node to u. The countryside nodes are
assigned identities respecting the lexicographic order of their pair (s, j), with
ties broken arbitrarily. The suburb and downtown nodes are assigned identities
that are compatible with the total order � of the corresponding free group.
Again, see Fig. 1 for examples of these identity assignments.

A node having the same local view up to distance t as the local view up to dis-
tance t of a downtown node of Ti, except for actual identity values but respecting
the order of these identities, is called a type-i node.

For the purpose of contradiction, assume that there exists an order-invariant
distributed tester for cycle-freeness using less than d/2 output values. Therefore
there must exist two even integers i, j with i < j ≤ d, such that the distributed
tester outputs the same value for type-i and type-j nodes. Hence, let G′

1 be the
graph formed by the disjoint union of one copy of T ′

i and j −1 copies of Tj , with
disjoint ranges of identity values assigned to the nodes in these copies. Connect
j −1 disjoint pairs of leaves by an edge to make the graph connected. We denote
by G1 the resulting graph. Note that G1 is a tree. Similarly, let G′

2 be the graph
formed by the disjoint union of i−1 copies of Ti and one copy of T ′

j , with disjoint
ranges of identities assigned to the nodes in these copies. Connect i − 1 disjoint
pairs of leaves by as many edges to make the graph connected. Further, connect
j − i other pairs of leaves to create cycles. We denote by G2 the resulting graph.
Note that G2 is connected but is not a tree.

The multiset of local views up to distance t, ignoring the identity values but
taking into account their relative order, is exactly the same in both graphs G1

and G2, with the only exception that G1 has two more type-i nodes than G2,
and two less type-j nodes than G2. The distributed tester (D,S) will thus take
the same decision for both graphs, which contradicts the fact that it is a correct
distributed tester for cycle-freeness. This contradiction completes the proof of
the theorem. ��
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10. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: Proceedings of the 32nd ACM Symposium on Principles of
Distributed Computing (PODC), pp. 157–165 (2013)

11. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized distributed deci-
sion. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 371–385. Springer,
Heidelberg (2012)

12. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: Proceed-
ings of the 52nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 708–717 (2011)

13. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

14. Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg (2010)
15. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica

32(2), 302–343 (2002)
16. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. J.

ACM 60(5), 39 (2013)
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Abstract. We consider the Dynamic Map Visitation Problem (DMVP),
in which a team of agents must visit a collection of critical locations
as quickly as possible, in an environment that may change rapidly and
unpredictably during the agents’ navigation. We apply recent formula-
tions of time-varying graphs (TVGs) to DMVP, shedding new light on
the computational hierarchy R ⊃ B ⊃ P of TVG classes by analyzing
them in the context of graph navigation. We provide hardness results
for all three classes, and for several restricted topologies, we show a sep-
aration between the classes by showing severe inapproximability in R,
limited approximability in B, and tractability in P. We also give topolo-
gies in which DMVP in R is fixed parameter tractable, which may serve
as a first step toward fully characterizing the features that make DMVP
difficult.

1 Introduction

In navigation-oriented application domains such as autonomous mobile robots,
wireless sensor networks, security, surveillance, mechanical inspection, and more,
graph representations are commonly employed for formulating and analyzing
the central navigation or area inspection problems. Many approaches to cov-
erage problems [11–13] are based on static graph representations, as are visi-
tation problems [1] or related combinatorial optimization problems such as the
k-Chinese Postman Problem [3,7] and k-Traveling Repairman Problem [14,15].
But static graph structures do not represent the dynamic environments that
can occur in applications of autonomous robots or non-player characters in video
games and virtual worlds. In this paper, we present the Dynamic Map Visita-
tion Problem (DMVP), applying recent formulations of highly dynamic graphs
(or time-varying graphs (TVGs)) [9,23] to an essential graph navigation problem:
In DMVP, a team of agents must inspect a collection of critical locations on a
map (represented as a graph) as quickly as possible, but the agents’ environment
may change during navigation.

The application of TVG models is essential to DMVP. In applications
such as planetary exploration [26], search and rescue in hazardous environments
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 29–41, 2014.
DOI: 10.1007/978-3-319-12340-0 3
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(e.g., natural disasters, areas of armed conflict), or even ad-hoc network inspec-
tion, many aspects of the structure of graph waypoints and edges governing
navigation can change during agent navigation, and TVG models can capture
variation in graph structure in ways that static graphs cannot. Our paper presents
new results about DMVP complexity and demonstrates distinctions among
classes of TVGs; details of our main results are summarized in Sect. 1.2.

When incorporating dynamics into a problem such as DMVP, there are many
options for how to constrain/model the dynamics of the graph. Dynamics can
be deterministic (e.g., [8,19,20,24,27]) or stochastic (e.g., [5,10]). In this paper,
to provide a foundation for future work, and exemplify the aspects of topologies
and dynamics that make our problem easy or hard, we focus on the deterministic
case. The deterministic approach is also particularly relevant for situations in
which some prediction of changes is feasible. Quite a bit of this previous work
has required that the graph be connected at all times [10,20,22]. Indeed, for
complete map visitation to be possible, every critical location must be eventually
reachable. However, in application environments such as those outlined above,
at any given time the waypoint graph may be disconnected. Our model must be
general enough to allow for this phenomenon.

We adopt three classes of TVGs, each of which places constraints on edge
dynamics. In R, edges must reappear eventually; in B, edges must appear within
some time bound; in P edge appearances are periodic. These classes have proven
to be critical to the TVG taxonomy [9]. They have been studied with respect to
problems such as broadcast [8] and exploration [16,19], with results relating to
feasibility of computation and bounds on broadcast and exploration time. R, B,
and P place intuitive constraints on the nature of dynamic navigation domains.
Even the assumption of periodicity of edges has applications to navigation of
transportation networks [16,19], as well as environments periodically patrolled
by other agents, who can prohibit or guarantee safe traversal of an edge.

In this paper, we shed further light on the computational hierarchy of R, B,
and P [8], by analyzing them in the context of DMVP, a natural but difficult
problem in global navigation. We provide hardness results for all three classes.
For several restricted topologies, we demonstrate separation between the classes
by showing severe inapproximability in R, limited approximability in B, and
tractability in P. We also give topologies in which DMVP in R is tractable and
fixed parameter tractable, which may serve as a first step towards fully charac-
terizing the topological features that make DMVP difficult. Because our goal in
this paper is to cleanly differentiate the classes of dynamics we are exploring,
rather than explore the interactions between multiple agents, our results here
focus on the case of a single agent.

1.1 Definitions and TVG Concepts

As a foundation for our work, we adopt the definitions below from Santoro
et al. [9].
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Definition 1. A TVG (time-varying graph, dynamic graph, or dynamic
network) is a five-tuple G = (V,E, T , ρ, ζ), where T ⊆ T is the lifetime of
the system, presence function ρ(e, t) = 1 ⇐⇒ edge e ∈ E is available at time
t ∈ T , and latency function ζ(e, t) gives the time it takes to cross e if starting at
time t. The graph G = (V,E) is called the underlying graph of G, with |V | = n.

In the most general case, T can be R, and edges can be directed. However, in our
work we consider the discrete case in which T = N, edges are undirected, and
all edges have uniform travel cost ζ(e, t) = 1 at all times. If agent a is at u, and
edge (u, v) is available at time τ , then a can take (u, v) during this time step,
visiting v at time τ + 1. As a traverses G we say a both visits and covers the
vertices in its traversal, and we will henceforth use these terms interchangeably.
A temporal subgraph of a TVG G results from restricting the lifetime T of G to
some T ′ ⊆ T .

Definition 2. J = {(e1, t1), ..., (ek, tk)} is a journey ⇐⇒ {e1, ..., ek} is a walk
in G (called the underlying walk of J ), ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for
all i < k. The topological length of J is k, the number of edges traversed. The
temporal length is the duration of the journey: (arrival date)−(departure date).

Given a date t, a journey from u to v departing on or after t whose arrival date
t′ is soonest is called foremost ; whose topological length is minimal is called
shortest ; and whose temporal length is minimal is called fastest.

In [9], a hierarchy of thirteen classes of TVG’s is presented. In related work
on exploration [16] and broadcast [8], focus is primarily on the chain R ⊃ B ⊃ P
defined below. We adopt these classes into our domain, which we believe enforce
natural constraints in our application environments.

Definition 3 (Recurrent edges). R is the class of all TVG’s G such that G is
connected, and ∀e ∈ E,∀t ∈ T ,∃t′ > t s.t. ρ(e, t′) = 1.

Definition 4 (Time-bounded recurrent edges). B is the class of all TVG’s G
such that G is connected, and ∀e ∈ E,∀t ∈ T ,∃t′ ∈ [t, t+Δ) s.t. ρ(e, t′) = 1, for
some integer Δ.

Definition 5 (Periodic edges). P is the class of all TVG’s G such that G is
connected, and ∀e ∈ E,∀t ∈ T ,∀k ∈ N, ρ(e, t) = ρ(e, t + kp) for some integer p.
p is called the period of G.

As much as possible, we also take standard notation and terms from the graph
theory literature. We rely on several underlying graph topologies. A star is a
tree in which at most one vertex has degree greater than one. The leaves of a
star are called points. A spider is a tree in which at most one vertex has degree
greater than two. In other words, a spider consists of a set of vertex-disjoint
paths, called arms, each of which has exactly one endpoint connected to the
common central vertex c. A comb is a max-degree 3 tree, in which there exists a
simple path containing every vertex of degree 3. Such a path is called a backbone
of the comb. Paths edge-disjoint to the backbone are called arms. A leaf distance
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1 from the backbone is called a tooth. An r-almost-tree is a connected graph with
|V | + r − 1 edges, that is, r edges can be removed to produce a tree.

Problem. Given a TVG G and a set of starting locations S for k agents in G,
the TVG foremost coverage or dynamic map visitation problem (DMVP) is the
task of finding journeys starting at time 0 for each of these k agents such that
every node in V is in some journey, and the maximum temporal length among
all k journeys is minimized. The decision variant asks whether these journeys
can be found such that no journey ends after time t.

We think of the input G as a temporal subgraph of some TVG G∞ with lifetime N
and the same edge constraints as G. Thus, the limited information provided in G
is used to compute complete solutions for agents covering G∞. When unspecified,
assume that DMVP refers to DMVP for a single agent.

1.2 Main Results

Our results are summarized in Table 1. We show that DMVP in R is NP-hard
to approximate within any factor, when the underlying graph G is restricted to
a star or tree of max degree 3. We show that in B this problem is NP-hard to
approximate within any factor less than Δ, when G is restricted to a spider or
tree of max degree 3. We show that in P, DMVP is NP-complete when p = 1,
and that there is a nontrivial class of graphs for which p = 2 is NP-hard, but
p = 1 is not.

We show that in R, DMVP is solvable in O(T ) when G is a path, O(Tn) when
G is a cycle, and O(Tn3 + n22n) for general graphs, where T is the duration of
G, as defined in Sect. 2. Furthermore, in R, DMVP is fixed parameter tractable
when G is an m-leaf O(1)-almost tree, and poly-time solvable when m = O(lg n).
In B, we demonstrate a tight Δ-approximation for trees, and a 2Δ-approximation
for general graphs. We demonstrate a class of problems which are NP-hard in B,
but solvable by an online algorithm in P. We show that DMVP in P is solvable
in polynomial time when G is a spider, for fixed p, and we show that when p = 2,
DMVP is solvable in linear time for general trees.

Table 1. DMVP separations and results by TVG class and graph class

DMVP separations

TVG class spiders max-degree 3 trees general trees

R no approx. no approx. no approx.

B tight Δ-approx. tight Δ-approx. tight Δ-approx.

P in P, for fixed p O(n) exact, for p = 2 O(n) exact, for p = 2

∃ graph class s.t. DMVP NP-hard in P with p = 2, easy with p = 1.

Complexity of exact algorithms in R
path cycle general graphs m-leaf c-almost trees O(lg n)-leaf c-almost trees

O(T ) O(Tn) O(Tn3 + n22n) in FPT in P
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The remainder of this paper is organized as follows: preliminaries (2), lower
bounds (3), upper bounds (4), open problems and discussion (5). Details of all
missing proofs can be found in the full version of this paper [2].

2 Preliminaries

For the minimization problem DMVP(G, S) and the corresponding decision prob-
lem DMVP(G, S, t), input is viewed as a sequence of graphs Gi each repre-
sented as an adjacency matrix, with an associated integer duration ti, i.e. G =
(G1, t1), (G2, t2), ..., (Gm, tm), where G1 appears initially at time zero. Let T =∑m

i=1 ti. Note that since each ti can be encoded in O(lg ti) space, it is possible
for T to be exponential in the size of G. The following observation is required to
show that the number of time steps of G that need to be considered for DMVP
is in fact polynomial in the size of G.

Observation 1. When computing DMVP over G, it is not necessary to consider
each static temporal subgraph (Gi, ti) for more than 2n − 3 time steps.

The idea is that on a static graph anything that can be accomplished in more
than 2n−3 steps can be accomplished in 2n−3 steps or fewer. By Observation 1,
for any ti > 2n − 3, when computing DMVP, all time steps after the first 2n − 3
can be ignored (skipped). DMVP over G can be computed by computing DMVP
over G′ = (G1,min(t1, 2n − 3)), ..., (Gm,min(tm, 2n − 3)), and adding back the
cumulative time skipped before completion. G′ can clearly be derived from G in
O(m) time. The total duration of G′ is T ′ =

∑m
i=1 min(ti, 2n − 3) < 2nm − 3m,

which is polynomial in |G|. Let ε(τ) be the time skipped through time τ . ε(τ) can
be simply calculated for all τ ≤ T ′ in O(T ′) time. A similar O(T ′) preprocessing
step can be run to associate each time τ ∈ T ′ with the corresponding available
static graph Gi, enabling O(1) edge presence lookups ρ(e, τ).

Since all of the algorithms we present run in Ω(T ′) time, we can run these
preprocessing steps for every instance of DMVP and not affect the asymptotic
running time. Therefore, for the sake of simplicity, for the rest of our results we
assume that this preprocessing has taken place, i.e., we think of G as G′ and T
as T ′, thereby avoiding the exponential nature of T . Note also that for the case
of P, the constraint of periodicity implies that it is only necessary to look at p
consecutive time steps of the input.

3 Lower Bounds

As motivation for many of the results in this paper, it is important to note that
MVP for a single agent is solvable in linear time on trees [1]. To characterize the
difficulty of DMVP in R, we first show inapproximability over stars. A similar
theorem was independently discovered in [25].

Theorem 1. DMVP for a single agent in R is NP-hard to approximate within
any factor, even when the underlying graph is a star.
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This inapproximability also holds over the restriction of underlying graphs to
trees of max-degree 3, in particular, combs.

Theorem 2. DMVP for a single agent in R is NP-hard to approximate within
any factor, even when the underlying graph is a comb.

We have a similar set of lower bounds for the case of B, but with some ability
to approximate. We later show (Theorem 11) that these approximation bounds
are indeed tight for all trees.

Theorem 3. DMVP for a single agent in B is NP-hard to approximate within
any factor less than Δ, even when the underlying graph is a spider, ∀Δ > 1.

Theorem 4. DMVP for a single agent in B is NP-hard to approximate within
any factor less than Δ, even when the underlying graph is a comb, ∀Δ > 1.

As is shown in Sect. 4, there is a much greater potential for tractability of DMVP
in P than in B or R. However, the next result follows immediately via reduction
from hamiltonian path by simply restricting t to n − 1.

Theorem 5. DMVP for a single agent in P is NP-complete, when p = 1.

DMVP in P for p = 1 is then also NP-complete for all classes of graphs for
which hamiltonian path is NP-complete, in particular, planar graphs of max-
imum degree 3, bridgeless undirected planar 3-regular bipartite graphs, and
3-connected 3-regular bipartite graphs [4]. To show that P is an interesting
dynamics class for DMVP in its own right, it is important to show that DMVP
yields different hardness results over P than over static graphs. Thus, we con-
struct a class of graphs for the following result:

Theorem 6. There is an infinite class of graphs C such that DMVP for a single
agent in P over graphs in C is NP-complete when p = 2, but trivial when p = 1.

4 Upper Bounds

In this section, we map out a class of graphs over which DMVP in R is solvable
in polynomial time. We first start with a very useful lemma. Note that a related
observation (about turning around on a ring) was made in [20].

Lemma 1 (Turning around lemma). There is always an optimal solution J
that never turns around at a degree 2 vertex of the edge-induced subgraph of J
in G.

See Fig. 1. The idea is that if an agent turns around at such a vertex, that vertex
must also be reached at some other time in J . We apply Lemma 1 to get the
following solvability results for restricted classes of underlying graphs.

Theorem 7. DMVP for a single agent in R on a path is solvable in O(T ) time.
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v0 v1 v2 v3 v4 v5

Fig. 1. The 7 ways, satisfying Lemma 1, of covering the vertices of a length 5 path with
degree 2 intermediate nodes.

Theorem 8. DMVP for a single agent in R on a cycle is solvable in O(Tn)
time.

Now we show that despite the severe inapproximability of DMVP over R, we
can always compute an optimal solution in exponential time.

Theorem 9. DMVP for a single agent in R is solvable in O(Tn3 +n22n) time.

Proof. The proposed algorithm first computes all-pairs-all-times-foremost-
journey for input TVG G, using a straightforward dynamic programming
algorithm, then uses this information to run another dynamic programming algo-
rithm, conceived along the lines of a standard method for TSP [6].

Let dtuv be the length of the foremost journey from u to v, starting at time t.
Algorithm 1 computes dtuv for all vertex pairs (u, v), and times t ∈ T for a given
TVG G.

At all times t, for all vertices u ∈ V , dtuu is clearly 0. At time T , the time limit
has been reached, so an agent cannot move to another vertex in any guaranteed
time, and thus we set dTuv = ∞ for all u �= v. For all T − 1 ≥ t ≥ 0, in the worst
case an agent can wait at u for one step, and take the foremost journey to v
starting at time t + 1. If there is a better journey than this, it must consist of
not waiting, rather taking one of the edges available at time t from u to some
vertex k. Subsequently taking the foremost journey from k to v starting at time
t+1 results in an optimal journey through k. Algorithm 1 clearly runs in O(Tn3)
time, and uses O(Tn2) space.

Algorithm 2 uses the dtuv values computed by Algorithm 1 to compute the
cost of a minimal solution to DMVP for a single agent in R. Let V ′ ⊆ V and
c(V ′, v) be the minimal time it takes to visit all vertices in V ′ starting at vertex
s at time 0 and ending at vertex v ∈ V ′.

After initializing the minimal costs for visiting subsets up to size 2, the
algorithm repeatedly uses the minimal costs for size i subsets to calculate c(V ′, v)
for each size i + 1 subset V ′ and v �= s ∈ V ′. Once computed up to size n, the
algorithm returns the minimal cost among journeys that cover all vertices. This
is an optimal solution to DMVP as it is the minimum cost of taking foremost
journeys between vertices that results in a complete cover. There are 2n subsets
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Algorithm 1. All-pairs-all-times-foremost-journey(G)
for all u, v ∈ V × V do � Initialize base case for t = T .

if u = v then
dT
uv = 0

else
dT
uv = ∞ � Since input ends at T , agent cannot move.

for t = T − 1, ..., 0 do � Work backwards until start time t = 0.
for all u, v ∈ V × V do

if u = v then
dt
uv = 0

else
dt
uv = dt+1

uv + 1 � In worst case, just wait at u.
for all k ∈ V do

if ρ((u, k), t) = 1 then � Check for better route.
dt
uv = min(dt

uv, d
t+1
kv + 1)

Algorithm 2. DMVP(G, {s})
c({s}, s) = 0 � Initialize subset of size 1.
for all v �= s ∈ V do � Initialize subsets of size 2.

c({s, v}, v) = d0
sv

for i = 3,...,n do � Build up to subsets of size n.
for all S ⊆ V s.t.|S| = i do

for all v �= s ∈ V do

c(V ′, v) = minu �=s∈V ′\{v}(c(V ′ \ {v}, u) + d
c(V ′\{v},u)
uv )

return minv �=s∈V (c(V, v))

of V , and so n2n subset-vertex pairs of the form (V ′, v). For each of these, the
algorithm computes the minimum of O(n) values. So, Algorithm 2 has running
time O(n22n). Since it saves one cost for each subset-vertex pair, Algorithm 2 also
uses O(n2n) space. Sequentially running Algorithm1 followed by Algorithm 2,
we have a complete algorithm for DMVP for a single agent in R, with combined
running time O(Tn3 + n22n). �

We use Theorem 9 to generalize Theorems 7 and 8 with the following:

Theorem 10. DMVP in R is fixed parameter tractable, when G is an m-leaf
c-almost-tree, for fixed parameter m, and c constant.

Proof. First, consider the restricted case where G is an m-leaf tree. Since every
leaf must be visited, and visiting all leaves implies coverage of the entire tree,
there is a minimal solution that can be thought of as an ordering of the set of
leaves of G, and the foremost journeys between them. In this case, there is only
one way to visit any node, namely, on the way to a leaf. Using this observa-
tion and Algorithm 2 from the proof of Theorem9, we see that we only need
to consider all orderings of leaves, instead of all orderings of vertices, yielding
a run time of O(Tn3 + m22m), which is indeed fixed parameter tractable for
parameter m.
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Suppose the underlying graph G of G is an m-leaf c-almost-tree. Consider all
edges e such that removing e from G results in a (c−1)-almost-tree. Each of these
edges lies on some path P such that removing any edge of P will similarly result
in a (c − 1)-almost-tree, and every intermediate vertex on the path has degree
2. Suppose P is the path v0...vl. Since G is an m-leaf c-almost-tree, there are
O(m) paths of this type. The edge-induced subgraph G′ of the underlying walk
of an optimal covering of G can be any (c − c′)-almost-tree ⊆ G, for 0 ≤ c′ ≤ c.
For each c′, a solution involves selecting c′ paths, each of O(n) length, from
which to remove an edge. So, there are O(mc′

nc′
) possible choices of (c − c′)-

almost-trees, and thus O(
∑c

c′=0(m
c′

nc′
)) = O(mcnc) choices for G′. Every G′

has no more than m + 2c leaves. Since every edge of G′ is covered, by Lemma 1,
there are at most 2 ways to cover each of the remaining O(m) paths v0...vl
of intermediate vertex degree 2, namely: entering at v0 and exiting at vl, or
entering at vl and exiting at v0. Augment the set of leaves to be ordered in
a solution with the selected ways of covering these paths, that is, select one
of the consecutive subsequences v0vl or vlv0 to be in the ordering. With this
augmentation, we still have a set of O(m) elements to be ordered, the optimal
ordering of which can be computed via Theorem9 in O(Tn3 +m22m) time. The
minimum over all ways of covering G′ can then be computed in O(2m)O(Tn3 +
m22m) = O(Tn32m + m222m). The overall minimum cost for covering G can
then be computed by taking the minimum cost over all O(mcnc) edge-induced
subgraphs in O(mc′

nc)O(Tn32m + m222m) = O(Tn3+cf(m)) time. �

The following result follows immediately for the case when m = O(lg n).

Corollary 1. DMVP in R is solvable in polynomial time, if G is an O(lg n)-leaf
c-almost-tree, for c constant.

We conjecture (see Sect. 5) that the maximal class of graphs over which DMVP
in R is poly-time solvable is the class of all graphs with polynomially many
spanning trees, all of which have O(lg n) leaves.

Since DMVP in B is bounded by 2Δn, the running time of the algorithm in
Theorem 9 on TVGs over B reduces to O(Δn4 + n22n). We also see that we are
able to greatly improve on approximation from R to B:

Theorem 11. DMVP in B over a tree can be Δ-approximated in O(n) time.
This approximation is tight.

Theorem 12. DMVP in B can be 2Δ-approximated by any online spanning tree
traversal of G.

These approximation upper bounds derive from static solutions [1], but waiting
at most Δ−1 steps for each edge to appear. Theorems 3 and 4 show the tightness
of Theorem 11. Here, B is starkly differentiated from R in that we have at least
some ability to approximate in B. See Sect. 5 for a further discussion of the
relationship between these two classes.

Similar to the case for B, DMVP in P is bounded by 2pn, so the running
time of the algorithm in Theorem9 reduces to O(pn4 + n22n). To exemplify the
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differences between P and B, and motivate interest in the tractability of DMVP
over P, we first give the following simple example:

Theorem 13. For any p, there is a class of problems over combs, for which
DMVP in B is NP-hard, but in P is solvable by the online algorithm: take arms
when you get to them.

The quality of P we take advantage of above is that if the fastest journey between
two nodes takes d steps, the foremost journey can take no longer than d+(p−1),
while in B it can be as bad as dΔ. We again harness this effect in the following
result, a stronger theorem in the context of our inapproximability results for R
and B (Theorems 1 and 3):

Theorem 14. DMVP in P over a spider is solvable in polynomial time, for
fixed p.

Proof Sketch: Each arm can be classified into one of O(p3) equivalence classes,
based on the return time and cost above fastest of taking that arm for all time
t ≡ i mod p. A solution is an ordering of arms by when they are traversed.
Suppose S is an optimal solution. Every length p subsequence of S must contain
a shortest subsequence (called a pattern) that begins and ends at an equivalent
time t, t′ ≡ j mod p. Patterns can be moved to any location beginning at some
t′′ ≡ j mod p without changing the cost of the solution. We can then cluster
patterns by start time, without changing the cost of the solution, so that pairs
of consecutive clusters are separated by no more than p−1 arms. There are only
O((p − 1)!p5n(p3)p+1

) = O(n(p3)p+1
) solutions of this form, one of which must be

minimal. ��
This polynomial runtime can be significantly improved for the case of p = 2.

Theorem 15. DMVP in P over a tree is solvable in O(n) time, when p = 2.

Proof Sketch: Consider the problem for an agent starting at root o at time
0. We can show by induction that there is always an optimal solution that
never enters any of the subtrees of o’s children more than once. We then show
each subtree is of one of three types: (11) fastest coverage is always available,
(10) fastest coverage is available at even times, and (01) fastest coverage is
available at odd times, with both 01 and 10 subtrees taking odd time to cover
fastest, and 11’s taking even time. Alternating between 10’s and 01’s, and then
taking the remaining subtrees in any order, before ending at a furthest leaf,
results in an optimal solution, as we maximize how many subtrees are traversed
optimally. Using dynamic programming, we can compute bottom-up the type
and cost of the maximal subtree rooted at each node v, in O(deg(v)) time for
each. ��

5 Open Problems and Discussion

This paper presents significant advances towards isolating the maximal class of
graphs over which DMVP in R is solvable in polynomial time. We conjecture that
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this maximal class is the class of all graphs with polynomially many spanning
trees, all of which have O(lg n) leaves. Furthermore, we conjecture that this class
is equivalent for R and B. But we are very interested in expanding this class
with respect to P, motivated by our solvability results for P over subclasses of
trees. We have shown that for the case of p = 2, DMVP for a single agent over
general trees can be computed in linear time. This result relies on the fact that
we know how to optimally piece together patterns with period 2. New methods
for finding optimal pattern sequences could greatly reduce computation for cases
of p > 2. We are hopeful that DMVP in P will be shown to be poly-time solvable
over arbitrary trees or at least bounded degree trees, for greater values p both
fixed and not fixed.

Considering B and R, B is clearly differentiated from R in that we have at
least some ability to approximate in B. There remains, however, an important
open question: Is there any class C of underlying graphs such that DMVP is
NP-hard over C in R, but not in B? We are particularly interested in whether
or not DMVP in B is NP-hard when the underlying graph is a star and Δ is
fixed, in particular, when Δ = 2. Note: The proof of Theorem1 implies it is
hard when Δ is some relatively small function of the input. We conjecture that
even for Δ = 2 this problem is NP-hard, but the highly-restricted nature of the
input makes an answer to this problem more elusive than some of the others
we have results for. Towards an answer to this question, we give the following
observation:

Observation 2. DMVP in R over a spider with arms of uniform length l, e.g.,
a star (when l = 1), can be decided in polynomial time, when t disallows waiting,
i.e., t = 2n − l − d, where d is topological distance from s to c.

Proof Idea: We can reduce this problem to the problem of finding a perfect
bipartite matching between arms and blocks of time, for which there are many
known efficient polynomial time algorithms, e.g., [18].

Overall, our results show some instances where DMVP is tractable as well
as showing that DMVP faces difficult computational challenges for some nat-
ural classes of underlying topologies and dynamics. These challenges motivate
research into online, multi-agent solutions to the problem, since in many cases
having a complete global view of the present and future does not appear to
be very helpful; moreover, in agent-oriented applications ranging from soft-
ware agents to mobile robots, the information available to teams of agents
can be bounded both temporally and geographically, and such online, multi-
agent approaches could be well suited to agent dynamics without diminishing
tractability.
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10. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
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Abstract. We present a characterization of the linear rank-width of
distance-hereditary graphs. Using the characterization, we show that the
linear rank-width of every n-vertex distance-hereditary graph can be
computed in time O(n2 · log(n)), and a linear layout witnessing the lin-
ear rank-width can be computed with the same time complexity. For our
characterization, we combine modifications of canonical split decomposi-
tions with an idea of [Megiddo, Hakimi, Garey, Johnson, Papadimitriou:
The complexity of searching a graph. JACM 1988], used for computing the
path-width of trees. We also provide a set of distance-hereditary graphs
which contains the set of distance-hereditary vertex-minor obstructions
for linear rank-width. The set given in [Jeong, Kwon, Oum: Excluded
vertex-minors for graphs of linear rank-width at most k. STACS 2013:
221–232] is a subset of our obstruction set.

1 Introduction

Rank-width [18] is a graph parameter introduced by Oum and Seymour with
the goal of efficient approximation of the clique-width [5] of a graph. Linear
rank-width can be seen as the linearized variant of rank-width, similar to path-
width, which in turn can be seen as the linearized variant of tree-width. While
path-width is a well-studied notion, much less is known about linear rank-width.
Computing linear rank-width is NP-complete in general (this follows from [10]).
Therefore it is natural to ask which graph classes allow for an efficient com-
putation. Until now, the only (non-trivial) known such result is for forests [2].
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A graph G is distance-hereditary, if for any two vertices u and v of G, the distance
between u and v in any connected, induced subgraph of G that contains both
u and v, is the same as the distance between u and v in G. Distance-hereditary
graphs are exactly the graphs of rank-width ≤ 1 [17]. They include co-graphs
(i.e. graphs of clique-width 2), complete (bipartite) graphs and forests.

We show that the linear rank-width of n-vertex distance-hereditary graphs
can be computed in time O(n2 · log(n)) (Theorem 5). Moreover, we show that
a layout of the graph witnessing the linear rank-width can be computed with
the same time complexity (Corollary 2). Given that computing the path-width
of distance-hereditary graphs is NP-complete [15], this is indeed surprising. We
give a new characterization of linear rank-width of distance-hereditary graphs
(Theorem 4), which we use for our algorithm. We also provide, for each k, a
set Ψk of distance-hereditary graphs such that any distance-hereditary graph of
linear rank-width at least k+1 contains a vertex-minor isomorphic to a graph in
Ψk. The set Ψk generalizes the set of obstructions given in [14] and we conjecture
a subset of it to be the set of distance-hereditary vertex-minor obstructions for
linear rank-width k.

Our characterization makes use of the special structure of canonical split
decompositions [6] of distance-hereditary graphs. Roughly, these decompositions
decompose the distance-hereditary graph in a tree-like fashion into cliques and
stars, and our characterization is recursive along the subtrees of the decompo-
sition. While a similar idea has been exploited in [2,9,16], here we encounter a
new problem: The decomposition may have vertices that are not present in the
original graph. It is not at all obvious how to deal with these vertices in the
recursive step. We handle this by introducing limbs of canonical split decompo-
sitions, that correspond to certain vertex-minors of the original graphs, and have
the desired properties to allow our characterization. We think that the notion of
limbs may be useful in other contexts, too, and hopefully, it can be extended to
other graph classes and allow for further new efficient algorithms.

The paper is structured as follows. Section 2 introduces the basic notions, in
particular linear rank-width, vertex-minors and split decompositions. In Sect. 3,
we define limbs and show some important properties. We use them in Sect. 4 for
our characterization of linear rank-width of distance-hereditary graphs. Finally,
Sect. 5 presents the algorithm for computing the linear rank-width of distance-
hereditary graphs and we discuss vertex-minor obstructions in Sect. 6.

2 Preliminaries

For a set A, we denote the power set of A by 2A. We let A\B := {x ∈ A | x /∈ B}
denote the difference of two sets A and B. For a subset X of a ground set A, let
X := A\X.

In this paper, graphs are finite, simple and undirected, unless stated other-
wise. Our graph terminology is standard, see for instance [8]. Let G be a graph.
We denote the vertex set of G by V (G) and the edge set by E(G). An edge
between x and y is written xy (equivalently yx). If X is a subset of the ver-
tex set of G, we denote the subgraph of G induced by X by G[X], and we let
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G\X := G[V (G)\X]. For a vertex x ∈ V (G) we let NG(x) := {y ∈ V (G) | x �=
y, xy ∈ E(G)} denote the set of neighbors of x (in G). The degree of x (in G) is
degG(x) := |NG(x)|. A partition of V (G) into two sets X and Y is called a cut
in G. We denote it by (X,Y ).

A tree is a connected, acyclic graph. A leaf of a tree is a vertex of degree
one. A path is a tree where every vertex has degree at most two. The length of
a path is the number of its edges. A rooted tree is a tree with a distinguished
vertex r, called the root. A complete graph is the graph with all possible edges.
A graph G is called distance-hereditary (or DH for short) if for every two vertices
x and y of G the distance of x and y in G equals the distance of x and y in any
connected induced subgraph containing both x and y [3]. A star is a tree with
a distinguished vertex, called its center, adjacent to all other vertices.

2.1 Linear Rank-Width and Vertex-Minors

Linear rank-width. For sets R and C an (R,C)-matrix is a matrix where the
rows are indexed by elements in R and columns indexed by elements in C. (Since
we are only interested in the rank of matrices, it suffices to consider matrices
up to permutations of rows and columns.) For an (R,C)-matrix M , if X ⊆ R
and Y ⊆ C, we let M [X,Y ] be the submatrix of M where the rows and the
columns are indexed by X and Y respectively.

Let AG be the adjacency (V (G), V (G))-matrix of G over the binary field.
For a graph G, let x1, . . . , xn be a linear layout of V (G). Every index i ∈
{1, . . . , n} induces a cut (Xi,Xi), where Xi := {x1, . . . , xi} (and hence Xi =
{xi+1, . . . , xn}). The cutrank of the ordering x1, . . . , xn is defined as

cutrkG(x1, . . . , xn) := max{rank(AG[Xi,Xi]) | i ∈ {1, . . . , n}}.

The linear rank-width of G is defined as

lrw(G) := min{cutrkG(x1, . . . , xn) | x1, . . . , xn is a linear layout of V (G)}.

Disjoint unions of caterpillars have linear rank-width ≤ 1. Ganian [11] gives
an alternative characterization of the graphs of linear rank-width ≤ 1 as thread
graphs. It is proved in [2] that linear rank-width and path-width coincide on
trees. It is easy to see that the linear rank-width of a graph is the maximum
over the linear rank-widths of its connected components.

Vertex-minors. For a graph G and a vertex x of G, the local complementation
at x of G consists in replacing the subgraph induced on the neighbors of x by
its complement. The resulting graph is denoted by G ∗ x. If H can be obtained
from G by a sequence of local complementations, then G and H are called
locally equivalent. A graph H is called a vertex-minor of a graph G if H is a
graph obtained from G by applying a sequence of local complementations and
deletions of vertices.

For an edge xy of G, let W1 := NG(x) ∩ NG(y), W2 = (NG(x)\NG(y))\{y},
and W3 = (NG(y)\NG(x))\{x}. Pivoting on xy of G, denoted by G ∧ xy, is
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the operation which consists in complementing the adjacencies between distinct
sets Wi and Wj , and swapping the vertices x and y. It is known that G ∧ xy =
G ∗ x ∗ y ∗ x = G ∗ y ∗ x ∗ y [17].

Lemma 1 [17]. Let G be a graph and let x be a vertex of G. Then for every
subset X of V (G), we have cutrkG(X) = cutrkG∗x(X). Therefore, every vertex-
minor H of G satisfies lrw(H) ≤ lrw(G).

2.2 Split Decompositions and Local Complementations

Split decompositions. We will follow the definitions in [4]. Let G be a con-
nected graph. A split in G is a cut (X,Y ) in G such that |X|, |Y | ≥ 2 and
rank(AG[X,Y ]) = 1. In other words, (X,Y ) is a split in G if |X|, |Y | ≥ 2 and
there exist non-empty sets X ′ ⊆ X and Y ′ ⊆ Y such that {xy ∈ E(G) | x ∈
X, y ∈ Y } = {xy | x ∈ X ′, y ∈ Y ′}. Notice that not all connected graphs have a
split, and those that do not have a split are called prime graphs.

A marked graph D is a connected graph D with a distinguished set of edges
M(D), called marked edges, that form a matching, and such that every edge in
M(D) is a bridge, i.e., its deletion increases the number of components. The ends
of the marked edges are called marked vertices, and the components of D\M(D)
are called bags of D. If (X,Y ) is a split in G, we construct a marked graph D
with vertex set V (G) ∪ {x′, y′} for two distinct new vertices x′, y′ /∈ V (G) and
edge set E(G[X]) ∪ E(G[Y ]) ∪ {x′y′} ∪ E′ where we define x′y′ as marked and

E′ := {x′x | x ∈ X and there exists y ∈ Y such that xy ∈ E(G)}∪
{y′y | y ∈ Y and there exists x ∈ X such that xy ∈ E(G)}.

The marked graph D is called a simple decomposition of G. A decomposition
of a connected graph G is a marked graph D defined inductively to be either G or
a marked graph defined from a decomposition D′ of G by replacing a component
H of D′\M(D′) by a simple decomposition of H. We call the transformation of
D′ into D a refinement of D′. Notice that in a decomposition of a connected
graph G, the two ends of a marked edge do not have a common neighbor. For a
marked edge xy in a decomposition D, the recomposition of D along xy is the
decomposition D′ := (D ∧ xy)\{x, y}. For a decomposition D, we let D̂ denote
the connected graph obtained from D by recomposing all marked edges. Note
that if D is a decomposition of G, then D̂ = G. Since marked edges of a decom-
position D are bridges and form a matching, if we contract all the unmarked
edges in D, we obtain a tree called the decomposition tree of G associated with
D and denoted by TD. Obviously, the vertices of TD are in bijection with the
bags of D, and we will also call them bags.

A decomposition D of G is called a canonical split decomposition if each
bag of D is either prime, or a star or a complete graph, and D is not the
refinement of a decomposition with the same property. Shortly, we call it a
canonical decomposition. The following is due to Cunningham and Edmonds [6],
and Dahlhaus [7].
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Theorem 1 [6,7]. Every connected graph G has a unique canonical decompo-
sition, up to isomorphism, that can be computed in time O(|V (G)| + |E(G)|).

For a given connected graph G, by Theorem 1, we can talk about only one
canonical decomposition of G because all canonical decompositions of G are
isomorphic.

Let D be a decomposition of G with bags that are either primes, or complete
graphs or stars (it is not necessarily a canonical decomposition). The type of a
bag of D is either P , or K or S depending on whether it is a prime, or a complete
graph or a star. The type of a marked edge uv is AB where A and B are the
types of the bags containing u and v respectively. If A = S or B = S, we can
replace S by Sp or Sc depending on whether the end of the marked edge is a leaf
or the center of the star.

Theorem 2 [4]. Let D be a decomposition of a graph with bags of types P or K
or S. Then D is a canonical decomposition if and only if it has no marked edge
of type KK or SpSc.

We will use the following characterization of distance-hereditary graphs.

Theorem 3 [4]. A connected graph is a distance-hereditary graph if and only if
each bag of its canonical decomposition is of type K or S.

Local complementations in decompositions. We now relate the decom-
positions of a graph and the ones of its locally equivalent graphs. Let D be a
decomposition. A vertex v of D represents an unmarked vertex x (or is a rep-
resentative of x) if v = x or there is a path from v to x in D starting with a
marked edge such that marked edges and unmarked edges appear alternately in
the path. Two unmarked vertices x and y are linked in D if there is a path from
x to y in D such that unmarked edges and marked edges appear alternately in
the path.

Lemma 2. Let D be a decomposition of a graph. Let v′ and w′ be two marked
vertices in a same bag of D, and let v and w be two unmarked vertices of D
represented by v′ and w′, respectively. Then v and w are linked in D if and only
if vw ∈ E(D̂) if and only if v′w′ ∈ E(D).

A local complementation at an unmarked vertex v in a decomposition D, denoted
by D ∗ v, is the operation which consists in replacing each bag B containing a
representative w of v with B ∗w. Observe that D ∗v is a decomposition of D̂ ∗v,
and that M(D) = M(D∗v). Two decompositions D and D′ are locally equivalent
if D can be obtained from D′ by applying a sequence of local complementations.

Lemma 3 [4]. Let D be the canonical decomposition of a graph and let v be an
unmarked vertex of D. Then D ∗ v is the canonical decomposition of D̂ ∗ v.

Let v and w be linked unmarked vertices in a decomposition D, and let Bv and
Bw be the bags containing v and w, respectively. Note that if B is a bag of type S
in the path from Bv to Bw in TD, then the center of B is a representative of either
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v or w. Pivoting on vw of D, denoted by D ∧vw, is the decomposition obtained
as follows: for each bag B on the path from Bv to Bw in TD, if v′, w′ ∈ V (B)
represent v and w in D, respectively, then we replace B with B ∧ v′w′. (Note
that by Lemma 2, we have v′w′ ∈ E(B), hence B ∧ v′w′ is well-defined).

Lemma 4. Let D be a decomposition of a distance-hereditary graph, and let
xy ∈ E(D̂). Then D ∧ xy = D ∗ x ∗ y ∗ x.

The proof of Lemma 4, as well as all omitted proofs, can be found in the appen-
dix. As a corollary of Lemmas 3 and 4, we get the following.

Corollary 1. Let D be the canonical decomposition of a distance-hereditary
graph and xy ∈ E(D̂). Then D ∧ xy is the canonical decomposition of D̂ ∧ xy.

3 Limbs in Canonical Decompositions

In this section we define the notion of limb that is the key ingredient in our
characterization. Intuitively, a limb in the canonical decomposition of a distance-
hereditary graph G is a subtree of the decomposition with the property that the
linear rank-width of the graph obtained from the subtree by recomposing all
marked edges is invariant under taking local complementations.

Let D be the canonical decomposition of a distance-hereditary graph. We
recall from Theorem 2 that each bag of D is of type K or S, and marked edges
of types KK or SpSc do not occur. Given a bag B of D, an unmarked vertex y
of D represented by some marked vertex w ∈ V (B), let T be the component of
D\V (B) containing y and let v ∈ V (T ) be the neighbor of w in D. We define
the limb L := L[D,B, y] as follows:

1. if B is of type K, then L := T ∗ v\v,
2. if B is of type S and w is a leaf, then L := T\v,
3. if B is of type S and w is the center, then L := T ∧ vy\v.

Note that in T , v becomes an unmarked vertex, so a limb is well-defined. While
T is a canonical decomposition, L may not be a canonical decomposition at all,
because deleting v may create a bag of size 2. Suppose a bag B′ of size 2 appears
in L. If B′ has one neighbor bag B1 and a marked vertex v1 ∈ B1 is adjacent
to a marked vertex of B′ and r is the unmarked vertex of B′ in L, then we can
transform the limb into a canonical decomposition by removing the bag B′ and
replacing v1 with r. If B′ has two neighbor bags B1 and B2 and two marked
vertices v1 ∈ B1 and v2 ∈ B2 are adjacent to the marked vertices of B′, then we
can first transform the limb into a decomposition by removing B′ and adding a
marked edge v1v2. However, the new marked edge v1v2 still could be of type KK
or SpSc. Then by recomposing along v1v2, we finally transform the limb into a
canonical decomposition.

Let L̃ = L̃[D,B, y] be the canonical decomposition obtained from L[D,B, y],
and let L̂ = L̂[D,B, y] be the graph obtained from L[D,B, y] by recomposing all
marked edges. See Fig. 1 for an example. If the original canonical decomposition
D is clear from the context, we remove D in the notation L[D,B, y].
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Fig. 1. In (a), we have a canonical decomposition D of a distance-hereditary graph
and a bag B of D. The dashed edges are marked edges in D. In (b), we have limbs L
associated with the components of D\V (B). The canonical decompositions ˜L associated
with limbs L are shown in (c).

Lemma 5. Let B be a bag of D. If two unmarked vertices x and y are rep-
resented by a marked vertex w ∈ V (B), then L̂[B, x] is locally equivalent to
L̂[B, y].

For a bag B in D and a component T of D\V (B), we define f(D,B, T ) as the
linear rank-width of L̂[D,B, y] for some unmarked vertex y ∈ V (T ). In fact, by
Lemma 5, f(D,B, T ) does not depend on the choice of y. As in the notation
L[D,B, x], if the canonical decomposition D is clear from the context, we remove
D in the notation f(D,B, T ).

Proposition 1. Let B be a bag of D. Let x ∈ V (D̂) and let y be an unmarked
vertex represented in D by v ∈ V (B). If y′ is represented by v in D ∗ x, then
L̂[D,B, y] is locally equivalent to L̂[D ∗ x,B, y′]. Therefore, f(D,B, T ) = f(D ∗
x,B, Tx) where Tx is the component of (D ∗ x)\V (B) containing y.

Proposition 2. Let B1 and B2 be two bags of D. Let T1 be a component of
D\V (B1) such that T1 does not contain the bag B2, and let T2 be the component
of D\V (B2) such that T2 contains the bag B1. Then f(B1, T1) ≤ f(B2, T2).

4 Characterizing the Linear Rank-Width of DH Graphs

In this section, we prove the main theorem of the paper, which characterizes
distance-hereditary graphs of linear rank-width k.

Theorem 4 (Main Theorem). Let k be a positive integer and let D be the
canonical decomposition of a distance-hereditary graph. Then lrw(D̂) ≤ k if and
only if for each bag B of D, D has at most two components T of D\V (B) such
that f(B, T ) = k, and for all the other components T ′ of D\V (B), f(B, T ′) ≤
k − 1.
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To prove the converse direction, we use the following technical lemmas. Let k
be a positive integer and let D be the canonical decomposition of a distance-
hereditary graph.

Proposition 3. Let B be a bag of D with two unmarked vertices x, y. If for
every component T of D\V (B), f(B, T ) ≤ k − 1, then the graph D̂ has a linear
layout of width at most k such that the first vertex and the last vertex of it are
x and y, respectively.

Lemma 6. Suppose for each bag B of D, there are at most two components T of
D\V (B) satisfying f(B, T ) = k and for all the other components T ′ of D\V (B),
f(B, T ′) ≤ k − 1. Then TD has a path P such that for each bag B in P and a
component T of D\V (B) not containing a bag of P , f(B, T ) ≤ k − 1.

We are now ready to prove Theorem 4.

Proof (of Theorem 4). For the forward direction, it is sufficient to show that if
B is a bag of D such that D\V (B) has at least three components T1, T2, T3 such
that f(B, Ti) = k, then lrw(D̂) ≥ k + 1. The proof idea is the same as the one
used in [9]. We start from a linear layout assumed to have width k and we prove
using Lemmas 1, 3 and Proposition 1 and tools from linear algebra that there
exists i ∈ {1, 2, 3} such that f(B, Ti) ≤ k − 1, contradicting that f(B, Ti) = k.
The details are omitted due to space constraints.

Now we prove the converse direction. Let P := B0 −B1 −· · ·−Bn −Bn+1 be
the path in TD such that for each bag B in P and a component T of D\V (B)
not containing a bag of P , f(B, T ) ≤ k − 1 (such a path exists by Lemma 6). If
B0 does not have an unmarked vertex, then we add one unmarked vertex to B0

and we call it a0. Similarly for Bn+1, but the added unmarked vertex is called
bn+1.

Now for each 0 ≤ i ≤ n, let bi be the marked vertex of Bi adjacent to
Bi+1 and let ai+1 be the marked vertex of Bi+1 adjacent to bi. And for each
0 ≤ i ≤ n + 1, let Di be the subdecomposition of D induced on the bag Bi and
the components of D\V (Bi) which do not contain a vertex of P . Notice that
the vertices ai and bi are unmarked vertices in Di. Since every component T of
Di\V (Bi) is such that f(Di, Bi, T ) ≤ k − 1, by Proposition 3, D̂i has a linear
layout L′

i of width k such that the first vertex of it is ai and the last vertex of it is
bi. For each 1 ≤ i ≤ n, let Li be the linear layout obtained from L′

i by removing
ai and bi. Let L1 and Ln+1 be obtained from L′

1 and L′
n+1 by removing b0 and

an+1, respectively, and also the vertices a0 and bn+1, respectively, if they were
added. Then we can easily check that L := L0⊕L1⊕· · ·⊕Ln+1 is a linear layout
of D̂ having width at most k. Therefore lrw(D̂) ≤ k. �

5 Computing the Linear Rank-Width of DH Graphs

In this section, we describe an algorithm to compute the linear rank-width of
distance-hereditary graphs. Since the linear rank-width of a graph is the max-
imum linear rank-width over all its connected components, we will focus on
connected distance-hereditary graphs.
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Theorem 5. The linear rank-width of any connected graph with n vertices can
be computed in time O(n2 · log n).

We say that a canonical decomposition D is rooted if we distinguish either a bag
of D or a marked edge of D, and call it the root of D. In a rooted canonical
decomposition with the root bag, the parent of a bag is defined analogously as
in rooted trees, and when the root is a marked edge, every bag has a parent
according to the convention below: if the marked edge between two bags B1 and
B2 is the root, then we call B2 the artificial parent of B1, and similarly B1 is also
called the artificial parent of B2. We remark that the (artificial) parent will be
used to define certain limbs. For two bags B and B′ in D, B is called a descendant
of B′ if B′ is on the unique path from B to the root in TD. Two bags in D are
called comparable if one bag is a descendant of the other bag. Otherwise, they
are called incomparable. If two canonical decompositions D1 and D2 are locally
equivalent and B is the root bag of D1, then we say D2[V (B)] is also the root
of D2. Similarly, if a marked edge e is the root of D1, then we say e is also the
root of D2.

To easy the understanding and to avoid the choice of y in the definition of
limbs, we will deal with a set of pairwise locally equivalent canonical decom-
positions. For a canonical decomposition D of a distance-hereditary graph, we
define ΓD as the set of all canonical decompositions locally equivalent to D. We
remark that for D1,D2 ∈ ΓD and B ⊆ V (D), B induces a bag in D1 if and only
if B induces a bag in D2. We also have M(D1) = M(D2).

For a bag B of a canonical decomposition D and a marked edge e adja-
cent to B in D, let G(ΓD, B, e) be the set of all canonical decompositions
L̃[D′,D′[V (B)], y] where D′ ∈ ΓD, T is the component of D′\V (B) incident
with e, and y ∈ V (T ) is an unmarked vertex represented by a vertex of D′[V (B)]
in D′.

Proposition 4. G(ΓD, B, e) = ΓD′ for some canonical decomposition D′.

Let D be the rooted canonical decomposition of a distance-hereditary graph
G with the root R. We introduce two ways to take a set of limbs from the
decompositions in ΓD. Let B be a non-root bag of D and let B′ be the (possibly
artificial) parent of B and let e be the marked edge connecting B and B′ in D.

1. Let Γ1(ΓD, B) := G(ΓD, B′, e) and F1(ΓD, B) := lrw(D̂′) for D′ ∈ Γ1(ΓD, B).
2. Let Γ2(ΓD, B) := G(ΓD, B, e) and F2(ΓD, B) := lrw(D̂′) for D′ ∈ Γ2(ΓD, B).

By Proposition 4, Γi(ΓD, B) = ΓD′ for some canonical decomposition D′ and so
we can apply this function recursively, for instance, Γ2(Γ1(ΓD, B1), B2).

In the algorithm, we will compute decompositions in Γ1(ΓD, B) or Γ2(ΓD, B).
As explained in Sect. 3, we need sometimes to merge two bags to be able to turn
a limb into a canonical decomposition. Whenever a merging operation on two
bags B1 and B2 appears, if B2 is a descendant of B1, then we regard the merged
bag as B1, and if they are incomparable, then we regard it as a new one.

For Di ∈ Γi(ΓD, B), we define the root R′ of Di as follows. If the root R of
D exists in Di, then let R′ := R. Assume the root R does not exist in Di. In this
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case, some bag, which was either the root R itself or incident with the root edge
R, is removed, and two children of it are merged or linked by a marked edge. If
two children of the removed bag are merged, then let R′ be the merged bag, and
if otherwise, let R′ be the marked edge between them. We have the following.

Lemma 7. Let B be a non-root bag of D and let Di ∈ Γi(ΓD, B). If B′ is a
non-root bag of Di, then B′ is a non-root bag of D (for i = 1, 2).

Our algorithm uses methods of the algorithm for vertex separation of trees [9].
Our algorithm works bottom-up on D, and computes F1(ΓD, B) for all bags B
in D using dynamic programming. Let B be a bag of D, and let B1, B2, . . . , Bm

be the children of B in D. Let k := max1≤i≤m F1(ΓD, Bi). We can easily observe
that k ≤ F1(ΓD, B) ≤ k + 1. We discuss now how to determine F1(ΓD, B). A
bag B of D is called k-critical if F1(ΓD, B) = k and B has two children B1

and B2 such that F1(ΓD, B1) = F1(ΓD, B2) = k. We first observe the following
which can be derived from Theorem 4 and Proposition 2.

Proposition 5. Let k = max{F1(ΓD, B)| B is a non-root bag of D}. Assume
thatD has neither a bagB having at least three childrenB′ such thatF1(ΓD, B′) = k
nor two incomparable bags B1 and B2 with a k-critical bag B1 and F1(ΓD, B2) = k.
Let B be a k-critical bag of D. Then B is the unique k-critical bag of D. Moreover,
lrw(G) = k + 1 if and only if F2(ΓD, B) = k.

By Proposition 5, the computation of F1(ΓD, B) is reduced to the computation
of F2(Γ1(ΓD, B), Bc) if D′ ∈ Γ1(ΓD, B) has the unique k-critical bag Bc. In order
to compute F2(Γ1(D,B), Bc), we can recursively call the algorithm. However,
we will prove that these recursive calls are not needed if we compute more than
the linear rank-width, and it is the key for the O(n2 · log(n)) time algorithm
(Table 1).

Table 1. Examples of PD(B, j) and LD(B, j).

j PD(B, j) LD(B, j) Status

10 8 9 D′ ∈ D(B, 10) has no 10-critical bags.

9 8 9 D′ ∈ D(B, 9) has no 9-critical bags.

8 8 9 D′ ∈ D(B, 8) has the unique 8-critical bag Bc and the
maximum F1 value over all bags B′ except the root in
Γ1(D

′, Bc, v) is 7.

7 7 8 D′ ∈ D(B, 7) has a bag having three children B′ such that
F1(D

′, B′) = 7. Thus, LD(B, 7) = 8.

6 - - Once we have LD(B, �) = � + 1, it is unnecessary to
compute D(B, j) where j < �.

For each bag B of D and 0 ≤ j ≤ �log|V (G)|�, we recursively define a set
D(B, j) of canonical decompositions. The integer j will be at most the linear
rank-width. The choice of j ≤ �log|V (G)|� comes from the following fact.
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Lemma 8. For a distance-hereditary graph G, lrw(G) ≤ log|V (G)|.

Let D(B, �log|V (G)|�) := Γ1(ΓD, B). For each bag B, j and D′ ∈ D(B, j), let
PD(B, j) be the maximum F1(ΓD′ , B′) over all non-root bags B′ in D′, and let
LD(B, j) := lrw(D̂′).

1. Let D(B, �log|V (G)|�) := Γ1(ΓD, B).
2. For all 1 ≤ j ≤ �log|V (G)|�, if PD(B, j) �= j, let D(B, j − 1) := D(B, j). If

PD(B, j) = j, then for D′ ∈ D(B, j),
(a) if (D′ has a bag with 3 children B1 such that LD(B1, j) = j) or (D′ has two

incomparable bags B1 and B2 with a j-critical bag B1 and LD(B2, j) = j)
or (D′ has no j-critical bags), then let D(B, j − 1) := D(B, j),

(b) ifD′ has the unique j-critical bagBc, then letD(B, j−1) := Γ2(D(B, j), Bc).

The essential cases are when PD(B, j) = j, and in these cases, we want to
determine whether LD(B, j) = j or j + 1. We prove the following.

Proposition 6. Let B be a non-root bag of D. Let i be an integer such that
0 ≤ i ≤ �log|V (G)|� and PD(B, i) ≤ i. Let D′ ∈ D(B, i) and let B′ be a non-
root bag of D′. Then B′ is also a non-root bag of D and PD(B′, i) ≤ i. Moreover,
Γ1(D(B, i), B′) = D(B′, i). Therefore, F1(D(B, i), B′) = LD(B′, i).

Now we describe the algorithm explicitly. For convenience, we modify the given
decomposition as follows. For the canonical decomposition D′ of a distance-
hereditary graph G, we modify D′ into a canonical decomposition D by adding
a bag R adjacent to a bag R′ in D so that f(D,R,D′) = lrw(G). So, if we regard
R as the root bag of D, then F1(ΓD, R′) = lrw(G) = LD(R′, �log|V (G)|�).
The basic strategy is to compute LD(B, i) for all non-root bags B of D and
integers i such that PD(B, i) ≤ i. If B is a non-root leaf bag of D, then clearly
F1(ΓD, B) = 1, so let LD(B, i) = 1 for all 0 ≤ i ≤ �log|V (G)|�. For convenience,
let t = �log|V (G)|�.

1. Compute the canonical decomposition D′ of G, and obtain a canonical decom-
position D from D′ by adding a root bag R adjacent to a bag R′ in D so that
lrw(G) = LD(R′, t).

2. For all non-root leaf bags B in D, set LD(B, j) := 1 for all 0 ≤ j ≤ t.
3. While (D has a non-root bag B such that LD(B, t) is not computed).
(a) Choose a non-root bag B in D such that for every child B′ of B, LD(B′, t)

is computed.
(b) Compute a decomposition Dt in Γ1(ΓD, B) = D(B, t).
(c) Compute k := PD(B, t) and set Dk := Dt and i := k.
(d) Let S be a stack.
(e) While (true) do.

i. If either (Di has a bag with at least 3 children B1 such that LD(B1, i) =
i) or (Di has two incomparable bags B1 and B2 with B1 an i-critical
bag and LD(B2, i) = i) or (Di has no i-critical bags), then stop this
loop.

ii. Find the unique i-critical bag in Di.
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iii. Compute Di−1 ∈ D(B, i − 1) and push(S, i).
iv. Set j := i − 1 and i := PD(B, i − 1) and Di := Dj .

(f) If either (Di has a bag with at least 3 children B1 such that LD(B1, i) = i)
or (Di has two incomparable bags B1 and B2 with B1 an i-critical bag and
LD(B2, i) = i), then set LD(B, i) := i + 1, else, LD(B, i) := i.

(g) While (S �= ∅) do.
i. Set j := pull(S).
ii. If LD(B, i) = j, then LD(B, j) := j + 1, else LD(B, j) := j.
iii. For � = i + 1 to j − 1, set LD(B, �) := LD(B, i).
iv. Set i := j.

(h) Set LD(B, j) := LD(B, k) for all k < j ≤ t.
4. Return LD(R′, t).

Proof (of Theorem 5). By Propositions 5 and 6 the steps of the algorithm
outlined above computes the linear rank-width of every connected distance-
hereditary graph G. Let us now analyze its running time. Let n and m be the
number of vertices and edges of G. Its canonical decomposition D′ can be com-
puted in time O(n + m) by Theorem 1, and one can of course add a new bag
to obtain a new canonical decomposition D and root it in constant time. The
number of bags in D is bounded by O(n) (see [12, Lemma 2.2]). For each bag
B, LD(B, j) for all 0 ≤ j ≤ t can be computed in time O(n · log(n)). In fact,
Steps 3(a-c) can be done in time O(n). The loop in 3(e) runs log(n) times since
k ≤ log(n), and all the steps in 3(e) can be implemented in time O(n). Since
Steps 3(f-h) can be done in time O(n), we conclude that this algorithm runs in
time O(n2 · log n). �

Corollary 2. For every connected distance-hereditary graph G, we can compute
in time O(n2 · log(n)) a layout of the vertices of G witnessing lrw(G).

6 Obstructions

A graph H is a vertex-minor obstruction for (linear) rank-width k if it has (lin-
ear) rank-width k+1 and every proper vertex-minor of H has (linear) rank-width
at most k. The set of pairwise locally non-equivalent vertex-minor obstructions
for (linear) rank-width k is not known, but for rank-width k a bound on their
size is known [17], which is not the case for linear rank-width k. For k = 1,
Adler, Farley, and Proskurowski [1] characterized the distance-hereditary vertex-
minor obstructions for linear rank-width at most 1 by two pairwise locally non-
equivalent graphs. For general k, Jeong, Kwon, and Oum recently provided a
2Ω(3k) lower bound on the number of pairwise locally non-equivalent distance-
hereditary vertex-minor obstructions for linear rank-width at most k [14]. Using
our characterization, we generalize the construction in [14] and conjecture a sub-
set of the given set to be the set of distance-hereditary vertex-minor obstructions.

We will use the notion of one-vertex extensions introduced in [13]. We call
a graph G′ an one-vertex extension of a distance-hereditary graph G if G′ is a
graph obtained from G by adding a new vertex v with some edges and G′ is again
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distance-hereditary. For convenience, if D and D′ are canonical decompositions
of G and G′, respectively, then D′ is also called an one-vertex extension of D.
For example, any one-vertex extension of K2 is isomorphic to either K3 or K1,2.
For a set D of canonical decompositions, we define

D+ = D ∪ {D′|D′ is an one vertex extension of D ∈ D}.

For a set D of canonical decompositions, we define a new set Δ(D) of canonical
decompositions D as follows:

– Choose three decompositions D1,D2,D3 in D and take one-vertex extensions
D′

i of Di with new vertices wi for each i. We introduce a new bag B of type
K or S having three vertices v1, v2, v3 and
1. if vi is in a complete bag, then D′′

i = D′
i ∗ wi,

2. if vi is the center of a star bag, then D′′
i = D′

i ∧ wizi for some zi linked to
wi in D′,

3. if vi is a leaf of a star bag, then D′′
i = D′

i.
Let D be the canonical decomposition obtained by the disjoint union of
D′′

1 ,D′′
2 ,D′′

3 and B by adding the marked edges v1w1, v2w2, v3w3.

For each non-negative integer k, we construct the sets Ψk and Φk of canonical
decompositions as follows.

1. Ψ0 = Φ0 := {K2} (K2 is the canonical decomposition of the graph K2).
2. For k ≥ 0, let Ψk+1 := Δ(Ψ+

k ).
3. For k ≥ 0, let Φk+1 := Δ(Φk).

We prove the following.

Theorem 6. Let k ≥ 0 and let G be a distance-hereditary graph such that
lrw(G) ≥ k + 1. Then there exists a canonical decomposition D in Ψk such
that G contains a vertex-minor isomorphic to D̂.

In order to prove that Ψk is the set of canonical decompositions of distance-
hereditary vertex-minor obstructions for linear rank-width at most k, we need
to prove that for every D ∈ Ψk, D̂ has linear rank-width k + 1 and every of its
proper vertex-minors has linear rank-width ≤ k. However, we were not able to
prove it, and we showed this property for Φk instead of Ψk.

Proposition 7. Let k ≥ 0 and let D ∈ Φk. Then lrw(D̂) = k + 1 and every
proper vertex-minor of D̂ has linear rank-width at most k.

One can observe that the obstructions constructed in [1,14] are contained in Φk

for all k ≥ 1.
We leave open the question to identify a set Φk ⊂ Θk ⊂ Ψk that forms the

set of canonical decompositions of distance-hereditary vertex-minor obstructions
for linear rank-width k.
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Abstract. We study Vertex Contact representations of Paths on a Grid
(VCPG). In such a representation the vertices of G are represented by
a family of interiorly disjoint grid-paths. Adjacencies are represented by
contacts between an endpoint of one grid-path and an interior point of
another grid-path. Defining u → v if the path of u ends on path of v we
obtain an orientation on G from a VCPG. To get hand on the bends of
the grid path the orientation is not enough. We therefore consider pairs
(α, ψ): a 2-orientation α and a flow ψ in the angle graph. The 2-orientation
describes the contacts of the ends of a grid-path and the flow describes the
behavior of a grid-path between its two ends. We give a necessary and suf-
ficient condition for such a pair (α, ψ) to be realizable as a VCPG.

Using realizable pairs we show that every planar (2, 2)-tight graph
admits a VCPG with at most 2 bends per path and that this is tight.
Using the same we show that simple planar (2, 1)-sparse graphs have a 4-
bend representation and simple planar (2, 0)-sparse graphs have
6-bend representation. We do not believe that the latter two are tight,
we conjecture that simple planar (2, 0)-sparse graphs have a 3-bend
representation.

1 Introduction

Outline of results. In this paper we consider the question whether a planar graph
G admits a VCPG, i.e. a Vertex Contact representation of Paths on a Grid. In
such a representation the vertices are represented by a family of interiorly disjoint
grid-paths. An endpoint of one grid-path coincides with an interior point of
another grid-path if and only if the two represented vertices are adjacent.

A VCPG induces a unique orientation of the edges of G: Orienting the edge
uv as u → v if the grid-path of u ends on grid-path of v we obtain an orientation
of G. As each grid-path has two ends, in the induced orientation each vertex has
outdegree at most two. We denote such an orientation simply 2-orientation.

On the other hand, for a planar graph, every 2-orientation induces a VCPG
(Sect. 1.1). However, a 2-orientation of G defines the representation of the edges
in a VCPG but not how the grid-paths behave (e.g. how many bends a grid-
path has). To get a description of the behavior of the grid-paths between its
endpoints, we introduce a flow network in the angle graph (Sect. 2.1).

To obtain a full combinatorial description of a VCPG we consider a pair
(α,ψ): a 2-orientation α in the graph and a flow ψ in the angle graph. Our main
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 56–68, 2014.
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contribution is a necessary and sufficient condition for such a pair (α,ψ) to be
realizable as a VCPG. We will then use such realizable pairs to give bounds on
the number of bends needed for certain graph classes.

When the number of bends of each path is at most k we denote the represen-
tation by Bk-VCPG and when every path has precisely k bends we speak about
strict Bk-VCPG.

Related results. Contact and intersection representations of graphs and partic-
ularly of planar graphs have been studied for decades. The by now best known
result in the area may be the Koebe-Andreev-Thurston circle packing theorem.
A more recent highlight in the area is a result of Chalopin and Gonçalves: every
planar graph is an intersection graph of segments in the plane. This boosted the
study of intersection and contact graphs of restricted classes of curves. In [9]
Kobourov, Ueckerdt and Verbeek show that all planar Laman graphs admit an
L-contact representation, i.e. a strict B1-VCPG. A graph G = (V,E) is Laman
if |E| = 2|V | − 3 and every subset of k vertices induces at most 2k − 3 edges.
It is immediate that every subgraph of a planar Laman graph also admits a
strict B1-VCPG. There are graphs that are not Laman that admit a strict B1-
VCPG, e.g. K4. In [9] the question was posed which conditions are necessary
and sufficient for a graph to have such a representation.

Vertex intersection graphs of paths on a grid (VPG-graphs) have been inves-
tigated by Asinowski et al. [2]. They showed that all planar graphs are B3-VPG,
i.e., each vertex is represented by a path with at most three bends and the edges
are intersections of two grid-paths. They conjectured that this bound was tight.
Chaplick and Ueckerdt disproved this by showing that every planar graph is
B2-VPG [3].

In orthogonal graph drawing there have been many results on minimizing
bend numbers, i.e. vertices are points in the plane and edges are grid-paths
between these points and the number of bends is minimized. Note that in this
setting vertices have at most degree four, or as a workaround, the vertices can be
represented as boxes. An early result of Tamassia gives an algorithm to obtain
an orthogonal drawing with minimal bend number which preserves the embed-
ding [11]. Optimizing the bend number locally (for each path) has gotten much
attention too, Schäffter gives an algorithm to draw 4-regular graphs in a grid
with at most two bends per edge (which is tight when not restricted to planar
graphs) [10]. For orthogonal drawings without degree restriction, Fößmeier, Kant
and Kaufmann have shown that every plane graph has an orthogonal drawing
preserving the embedding with at most one bend per edge [7].

Outline of the paper. The remainder of this Section we will give the definitions
and show some necessary conditions based on 2-orientations. In Sect. 2 we will
introduce the flow network. We then give the necessary and sufficient condition
for a pair, a 2-orientation and a flow, to be realizable as a VCPG. In Sects. 3
and 4 we show how to use realizable pairs to give bounds on the number of bends
in a VCPG.
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1.1 Preliminaries: On (2, l)-Sparse Graphs

In an orientation that is induced by a VCPG, all edges of a graph G = (V,E)
are oriented and each vertex has outdegree at most two. Therefore the number
of edges of G is at most twice the number of vertices: |E| ≤ 2|V |. Moreover, this
bound must hold for all induced subgraphs as well.

Definition 1 (Sparse and Tight Graphs). Let G = (V,E) a graph and k, l ≥
0 integers. If ∀W ⊆ V : |EW | ≤ k|W | − l, where EW is the set of edges induced
by W , then G is called (k, l)-sparse. If also |E| = k|V | − l holds, the graph is
called (k, l)-tight.

Graphs that admit a VCPG must be planar and (2, 0)-sparse. In this paper
we focus on (2, 0)-tight graphs, (2, 1)-tight graphs and (2, 2)-tight graphs which
are simple and planar. Note that for every (2, l)-sparse graph H there exists a
(2, l)-tight graph G such that H is a subgraph of G.

First we show that every planar (2, l)-tight graph, l ≥ 0, admits a VCPG.

Lemma 1. Every planar (2, l)-tight graph has a 2-orientation.

Proof. Let G = (V,E) a planar (2, l)-tight graph. Suppose there is a subset W
of the vertices of G that has less than 2|W | incident edges. Then G[V −W ] must
induce at least 2|V |− l − (2|W |− 1) = 2|V −W |− l +1 edges, which contradicts
(2, l)-tightness. Hence every subset W of the vertices of G has at least 2|W |
incident edges. Now we construct a bipartite graph B. The first vertex class, V1,
consists of two copies of the vertices of G. When l �= 0, l copies of one vertex are
removed from V1. The second class, V2, contains all the edges of G. The edge
set of B is defined by the incidences in G. By (2, l)-tightness of G the graph B
satisfies Hall’s marriage condition and hence it has a perfect matching. A perfect
matching defines a 2-orientation of G. �	

When l �= 0 there must be at least one vertex that has outdegree less than 2.
An end of a grid-path that does not end on another grid-path is denoted by free
end. Let v a vertex that has outdegree p < 2 in the 2-orientation that comes from
a VCPG R. Then the grid-path that represents v in R has 2 − p free ends. Free
ends require special attention. Therefore we consider a 2-orientation such that
the vertices with outdegree less than 2 are on the boundary of the outer face.

When a planar graph has a 2-orientation it easily follows that it has a VCPG.

Lemma 2. Let l ≥ 0. Every planar (2, l)-tight graph admits a VCPG.

Proof. Consider an embedding of a planar (2, l)-tight graph G and a 2-orientation
α of G. Subdivide each loop twice. Every pair of vertices is connected by at most
two edges (since the graph is (2, l)-tight and l ≥ 2) and if so one of the multiple
edges is subdivided. The result is a simple plane graph, which has a straight line
drawing by Fàry’s theorem. Replace each straight line edge in such a drawing
by an axis-aligned grid-path leaving the start and endpoint intact and such that
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two grid-paths starting in the same point only coincide in this point. The subdi-
vided edges are merged without changing the grid-paths. A vertex is identified
with its outgoing edge(s). The last step is to perturb the last straight part of a
grid-path pv that ends on a grid-path pw in such a way that this point is not
used by any grid-path other than pv and pw. This procedure gives a VCPG of
G that realizes the chosen embedding. �	

An obvious question is: how many bends are needed in a VCPG of a certain
graph. As mentioned before, Kobourov, Ueckerdt and Verbeek have shown that
all planar (2, 3)-tight graphs (Laman graphs) admit a strict B1-VCPG [9]. They
also gave the following bound on the number of edges of a graph that admits a
(strict) B1-VCPG.

Proposition 1. If G = (V,E) admits a B1-VCPG then

∀W ⊆ V : |EW | ≤ 2|W | − 2 . (1)

Proof: cf. appendix.
Therefore the candidate graphs that admit a B1-VCPG are planar (2, 2)-

sparse graphs. In this paper we show that planar (2, 2)-tight graphs admit a B2-
VCPG and that this is tight. Thus condition (1) is necessary but not sufficient.
The proof is based on realizable pairs.

2 Realizable Pairs

A VCPG is not completely described by a plane graph G and a 2-orientation.
Therefore we introduce a flow network. We will use a flow in such a network
to obtain a full description of a VCPG. We denote the 2-orientation by α and
the flow by ψ. In this section we identify a property of a pair (α,ψ) that comes
from a VCPG of a plane graph G, hence this property is necessary. On the other
hand, not every pair (α,ψ) on G induces a VCPG of G (an example is shown
in Fig. 1(c)). We call a pair (α,ψ) realizable when it does. We will prove that
the necessary property is also sufficient, hence realizable pairs are in bijection
to VCPGs. Our proof method is algorithmic, it shows how one can construct a
VCPG (the geometric setting) from a realizable pair (the combinatorial setting).

2.1 The Flow Network

From here on, we consider the graph to be simple and 2-connected. Note that
any (2, l)-tight graph can easily be extended to a 2-connected (2, l)-tight graph
by adding an appropriate number of degree two vertices. The angle graph A(G)
of a plane 2-connected graph G is a plane bipartite graph that arises from G by
setting the union of the vertices and faces of G as the vertices of A(G) and the
edges of A(G) are the pairs vf , v ∈ V (G), f ∈ F (G), such that v is a vertex on
f in G. The angle graph is a plane maximal bipartite graph.

Intuitively, a unit of flow in the angle graph from f1 to f2 through v is a bend
of pv (the grid-path that represents v) such that the convex angle of this bend
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Fig. 1. Given a graph G, the figure shows (a) a VCPG of G, the arrows correspond to
the orientation of the edges; (b) the agreeing realizable pair, the orientation is given on
the edges, the flow is given by the red arrows between faces through vertices; (c) a flow
ψ such that there is no 2-orientation α for which (α, ψ) is realizable, as the orientation
must orient 5 → 7 and 8 → 7 hence 7 can only have outdegree one (Color figure online).

lies in f1 and the concave angle lies in f2 (see e.g. Fig. 1(a) and (b)). More precise,
a flow ψ is a weighted directed graph, with as underlying graph the angle graph
A(G). The face-vertices of A(G) can be a source or a sink, depending on the
degree. The vertex-vertices of A(G) are neither sources nor sinks. The capacity
of the edges is unbounded. The number of bends prescribed by the flow ψ for
a vertex v is denoted with ψ(v), which is the sum of incoming flow, which in
turn is equal to the sum of outgoing flow. We define c(f) to be the excess of
an interior face-vertex f of A(G). The excess prescribes the amount of outgoing
flow minus the amount of incoming flow of this face.

Following the boundary of an interior region of a VCPG and adding the
changes in direction one should obtain 2π. Each edge is represented as a proper
contact and therefore changes the direction with π/2. A convex angle changes the
direction with π/2 as well and a concave angle changes the direction with −π/2.
By the following equation: 2π = π/2 · |f | + π/2 · c(f) where |f | is the number of
edges on the boundary of f , the excess of each interior face is:

c(f) = 4 − |f |. (2)

For the outer face f∞ of a (2, l)-tight graph we set the excess c(f∞) = (2l − 4)−
|f∞|. With |f∞| we denote the number of vertices on the outer face.

Let ψ be a flow in A(G) that satisfies the excess of each face, then the value
of the flow ψ is

w(ψ) =
∑

v∈V (G)

ψ(v). (3)

The sum of the excess over all faces cancels out and there is no capacity restraint
on the edges, therefore there exists a flow that satisfies the excess of every face.
A vertex cannot absorb any flow, as having a convex corner means having a
concave corner on the other side. Therefore the minimum value of a flow that



Vertex Contact Graphs of Paths on a Grid 61

satisfies the facial excesses is a lower bound on the number of bends needed for
a VCPG1. As shown by Fig. 1(c) not every flow that satisfies the facial excesses
is related to a VCPG.

Necessary and Sufficient Condition. Given a simple, plane, 2-connected
(2, l)-tight graph, a 2-orientation α and a flow ψ that satisfies the facial excesses.
We will give a necessary and sufficient condition on the pair (α,ψ). When this
condition is satisfied, there exists a VCPG that maintains the embedding such
that:

(a) The grid-path of u ends on the grid-path of v if and only if the edge uv is
oriented from u to v in α, and,

(b) The grid-path of v has precisely ψ(v) bends.

We denote a pair that satisfies the condition realizable. Let A[NA(G)[v]] denote
the angle graph induced by the closed neighborhood of a vertex v, i.e. induced
by v and all its neighbors in A(G).

Let n1, n2 be the neighbors of v along the outgoing edges of v in α. If v has
outdegree 0, then n1, n2 are its neighbors on the outer face. If v has outdegree 1,
then n1 is its neighbor along the outgoing edge. The vertex n2 is the neighbor
of v on the outer face, chosen such that the units of flow are equally distributed
on the clockwise and counterclockwise side of the path n1, v, n2. Informally, a
unit of flow through a vertex v represents a bend of the grid-path of v. Follow-
ing the grid-path from n1 to n2, looking left and right, the bends are met at
the same time. This implies that the flow through a vertex must be laminar,
i.e., non-crossing.

Definition 2 (Realizability Condition). The pair (α,ψ) satisfies the realiz-
ability condition at vertex v if and only if, given A[NA(G)[v]] and the flow in this
subgraph, (see Fig. 3)

(a) There is a decomposition of the flow into non-crossing paths, and,
(b) Every path of such a decomposition crosses the path n1, v, n2.

When the pair (α,ψ) satisfies the realizability condition at each vertex we say
that the pair is realizable.

Theorem 1. The realizable pairs are in bijection with VCPGs.

The remainder of this section is dedicated to the proof of Theorem 1. First we
will show that a VCPG induces a realizable pair (α,ψ) and then the converse,
i.e. we will construct a VCPG from a realizable pair.

Lemma 3. A pair (α,ψ) that comes from a VCPG is realizable.

1 Note that there might be different bounds for different embeddings of a graph.
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Proof. First note that a VCPG of G describes an embedding of G. If there is a
grid-path with one free end, then before proceeding we reduce all unnecessary
bends, i.e. if a grid-path has bends between its last neighbor and its free end,
these bends are removed. A 2-orientation can be constructed from a VCPG by
orienting an edge u → v if and only if the grid-path of u ends on the grid-path of
v. Consider the grid-path that represents a vertex v. If this path has no bends,
the realizability condition is satisfied at this vertex. Suppose the path has k
bends. Draw an arrow from the face containing a convex corner to the face in
which the associated concave corner lies. Now the set of arrows represents the
flow ψ(v). This flow is non-crossing through v and every unit of flow is cut by
the grid-path of v. When these arrows are introduced for all bends of all grid-
paths, the flow given by these arrows satisfies the excess of each face. Contract
the strictly interior steps of the grid-path to a vertex and every unit of the
non-crossing flow through v is now cut by the outermost two segments of the
grid-path, which correspond to the outgoing edges of v, or to the outgoing edge
and the location of the last incoming edge before the free end of the grid-path.
Hence the realizability condition is satisfied at each vertex, therefore the pair
obtained from the VCPG is realizable. �	

To prove the converse we will show how to construct a VCPG given an
realizable pair. Note that an embedding follows from the map A(G) (in which
the flow ψ is defined). Consider a realizable pair (α,ψ) (see Fig. 2(a)). The proof
consists of four steps, which we first outline here:

Step 1: First we expand the vertices that have k units of flow going through
them, to a path of length k. We obtain a bipartite graph.

Step 2: We introduce help edges and vertices in the bipartite graph to construct
a quadrangulation (see Fig. 2(b)).

Step 3: We then find a segment contact representation of the quadrangulation.
It has been shown that the 2-orientations of maximal bipartite planar graphs
are in bijection with separating decompositions of this graph (e.g. [4]). In turn a
separating decomposition induces a segment contact representation (cf. [5,6,8]).
Hence we can construct a segment contact representation where the represen-
tation of the edges is in bijection with the given 2-orientation. An example is
shown in Fig. 2(c).

Step 4: Last we will show that the extra edges that have been introduced to
make a quadrangulation of the bipartite graph can be deleted in order to obtain
a VCPG of G (see Fig. 2(d)).

Step 1. Given a realizable pair (α,ψ) for G. We expand all vertices with non-
zero flow. The plane graph we obtain is denoted by G̃. For every vertex v for
which ψ(v) �= 0, expanding v denotes the following steps (see Fig. 3):

1. Expand v to a circle, we will denote this the bag of v.
2. Between the two outgoing edges of v, or the special incoming and the outgoing

edge of v if v has outdegree one, inside the circle, add a path with ψ(v) + 1
vertices.
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Fig. 2. From a realizable pair to a VCPG: (a) a plane (2, 0)-tight graph with a real-
izable pair (ψ in red); (b) expanding the vertices according to the flow (in blue) and
extending the bipartite graph to a quadrangulation (in green); (c) a segment contact
representation of the quadrangulation with the segments that belong to the original
graph highlighted; (d) a VCPG (Color figure online).

3. Connect the edges that end on the circle to the path vertex in such a way
that the flow between two faces only crosses an edge of the path.

Step 2. After all the expansions have been done, we obtain a graph where all
faces have even length. Each face gets |4 − |f || + 2k extra vertices due to the
expanding step, where k is the amount of flow proceeding through the face. The
resulting faces in G̃ have size |f |+ |4−|f ||+2k, for |f | = 3 this gives 4+2k and
for |f | > 3 this gives 2|f | − 4 + 2k, both are even. So in G̃ all faces have even
length and therefore G̃ is a bipartite graph. Now we add help edges to extend G̃
to a quadrangulation. We denote the quadrangulation GQ. We will also orient
the new edges to obtain a 2-orientation of GQ. In order to explain how the help
edges are added, we need the following lemma.

Lemma 4. Every interior face f̃ of G̃ has (|f̃ | − 4)/2 units of incoming flow.

Proof: cf. appendix.
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1n 2n 1n 2n

Fig. 3. Expanding a vertex. The flow ψ
is depicted by blue arcs, the red arcs rep-
resent the outgoing edges of the vertex in
α, the black lines are the incoming edges
(Color figure online).

Fig. 4. Adding help edges in a face. The
flow ψ is depicted by blue arcs. The
red half-arcs together with the dashed
extensions represent the help edges (Color
figure online).

Using (|f̃ | − 4)/2 edges one can quadrangulate f̃ . The help edges should be
added in such a way that every bag (vertex expansion) gets as many help edges
as it has flow going into f̃ in the flow ψ. Informally, a concave corner arises
from two segments that both end in one point. The theory of segment contact
representations that we will use, there are only proper contacts or free ends.
Each help edge represents a segment of a concave corner that proceeds into the
face, this part will later be removed. Such a help edge will be oriented outgoing
from the bag.

Later the segment contact representation is constructed and for this it is
necessary that every interior vertex has outdegree two. Therefore the help-edges
must be added in such a way that this is possible for all vertices. Each interior
bag vertex should gain precisely two outgoing arcs (which are not edges in the
original graph) and the vertices on the boundary of the bag gain precisely one
outgoing arc that is not in the original graph. The help edges are added along
flow from a vertex into a face, this will give the correct amount of new edges for
every bag.

Lemma 5. Each inner face f̃ of G̃ can be quadrangulated in such a way that
each bag through which k units of flow enter f̃ gets k new outgoing arcs. The
outer face of G̃ can be quadrangulated using four help-vertices (vt, vr, vb, vl), in
such a way that each bag through which k units of flow enter the outer face gets
k new outgoing arcs.

Proof: cf. appendix.
An example of quadrangulating an interior face is depicted in Fig. 4. The

flow ψ is given by the blue arrows. First half-arcs are added, the red solid arcs.
Then these half-arcs are subsequently connected in such a way that they close
one 4-face (red dashed lines). The quadrangulation of the outer face is based on
the same idea.

To obtain a quadrangulation GQ with a 2-orientation, we still need to orient
the edges that are strictly inside the bags and the four boundary edges. The
orientation of all other edges comes from α. Each bag bv contains |bv|−1 = ψ(v)
edges which are not yet oriented, all others are oriented and such that bv has
outdegree |bv| + 1.
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Lemma 6. Each bag bv in GQ has precisely outdegree |bv| + 1 and each vertex
(∈ bv) has outdegree at most two.

Proof: cf. appendix.
Orient (vl, vt), (vr, vt), (vl, vb) and (vr, vb) towards vt, respectively vb, the

two poles of the 2-orientation. The remaining not oriented edges can be oriented
greedily.

Lemma 7. The path edges can be oriented (greedily) such that the resulting
orientation is a 2-orientation of GQ.

Proof: cf. appendix.
Step 3. From G and the realizable pair (α,ψ) we constructed the quadran-

gulation GQ with a 2-orientation α̂ (vt and vb are the only two vertices with
outdegree zero instead of outdegree two). We construct a segment contact repre-
sentation, i.e. the vertices of the two color classes become horizontal respectively
vertical segments and the edges are proper contacts between the segments sat-
isfying α̂ (cf. [5,6,8]).

Step 4. Last to show is that this segment representation of GQ is equivalent
to a VCPG of G where the path of a vertex v is given by its outgoing arcs in
α and ψ(v) denotes the number of bends of the path of v. For this we need the
following lemma, which shows that the sets of segments ending on different sides
of a segment s can be moved independently.

Lemma 8. Given a horizontal segment in a segment contact representation,
then its (vertical) bottom neighbors can be shifted independently from its (verti-
cal) top neighbors. The same holds for a vertical segment and its left resp. right
incoming neighbors.

Proof: cf. appendix.

Theorem 2. The segment representation of GQ obtained from an realizable pair
(α,ψ) induces a VCPG of G.

Sketch of proof. The complete proof is moved to the appendix. Consider a seg-
ment representation of GQ.

First identify the grid-path of each vertex v of the original graph by highlight-
ing the parts of the segments that belong to v. Then by shifting we make sure
that all edges are contacts on highlighted segments. Deleting the not highlighted
segments gives a VCPG of G.

With the four steps we have obtained a VCPG from an realizable pair. This
completes the proof of Theorem 1. In the remainder of this paper we will use
realizable pairs to give bounds on the number of bends for certain graph classes.

3 Not All (2, 2)-Tight Graphs Admit a B1-VCPG

In a B1-VCPG each vertex is represented by a grid-path with at most one bend.
Strict B1-VCPG is a proper subclass of B1-VCPG (this is shown in the full
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Fig. 5. Two embeddings of a planar (2, 2)-tight graph that does not admit a B1-VCPG.

version of this paper [1]). Suppose a graph admits a B1-VCPG, then there must
be a realizable pair (α,ψ) such that 0 ≤ ψ(v) ≤ 1 for all vertices v. Consider the
plane graph on the right of Fig. 5. The two grey-colored K4 subgraphs both need
at least three units of flow leaving the K4. So there must be 6 units of flow going
out, but there are only 5 different vertices bounding the two K4 subgraphs. We
conclude that there is no flow that satisfies all excesses such that there is at most
one unit of flow going through each vertex.

4 Locally Minimizing Bends

For simple (2, 2)-tight graphs we show that for every 2-orientation α (with sink(s)
on the outer face), there exists a flow ψ such that ψ(v) ≤ 2 for all vertices v and
the pair (α,ψ) is realizable. Sinks are the vertices with outdegree less than two.

Theorem 3. Every planar (2, 2)-tight graph admits a B2-VCPG.

Proof. Let G a planar (2,2)-tight graph and E a planar embedding of G. Hence
we have a dual graph G∗. The excess of the face-vertices is given by c(f) = 4−|f |
and for the outer face it is c(f∞) = −|f∞|. Consider a flow in the dual graph
where each edge has capacity one and at each face the excess is satisfied, then
given any orientation of the edge, this flow can be translated into a flow in the
angle graph through the vertex for which this edge is outgoing.

We will show that for every subset of face-vertices H there are at least
|
∑

f∈H c(f)| edges leaving H in the dual graph. Let b the number of edges
leaving H, i.e. the number of boundary edges in the primal w.r.t. H and eH the
number of edges induced by H. Note that we only count interior faces (when we
use Euler’s formula).

|
∑

f∈H

c(f)| = |
∑

f∈H

4 − |f || = |4|H| − 2eH + b| ≤ b (4)

Hence we can satisfy all excesses in the dual graph by using every edge at
most once. Let φ be such an edge-disjoint flow in the dual graph. Consider
any orientation α of G such that every vertex has outdegree 2 except for one
sink, and such that the sink is on the outer face. We construct the flow ψ in the
angle graph as follows: If there is a flow in φ from f1 to f2 crossing edge uv, then
if u → v we add f1 → u and u → f2 to ψ. If v → u we add f1 → v and v → f2
to ψ.
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Since φ is edge-disjoint and each vertex has at most two outgoing edges we
have ψ(v) ≤ 2 for all vertices v. At each vertex the flow cuts off the outgoing
edge, hence the realizability condition is satisfied at each vertex.

We conclude that the pair (α,ψ) is realizable, which concludes the proof. �	

Similarly we obtain the following results (cf. appendix for the proofs).

Theorem 4. Every simple planar (2, 1)-tight graph admits a B4-VCPG.

Theorem 5. Every simple planar (2, 0)-tight graph admits a B6-VCPG. If the
graph has no separating triangle it admits a B4-VCPG.

5 Conclusion

We have shown that there exist planar (2, 2)-tight graphs that do not admit a
B1-VCPG. In such a graph there are a number of tight subsets Vi of the vertices,
i.e. the induced graphs have 2|Vi| − 2 edges, which have precisely one vertex in
common. Do all planar (2, 2)-tight graphs that have no vertex in the intersection
of different tight sets admit a B1-VCPG?

We have obtained bounds for simple (2, 1)-tight and (2, 0)-tight planar graphs,
however we believe that these bounds are not tight. Three bends are necessary,
as shown by the octahedron minus one edge and the octahedron respectively.

Conjecture 1. Simple planar (2, 0)-tight graphs admit a B3-VCPG.

The bounds that we have shown do not depend on a chosen 2-orientation
(i.e. the bounds hold for every 2-orientation). There are easy examples of a
(2, 0)-tight graph with a particular 2-orientation such that there is a vertex
represented by a 4-bend path for every flow. Hence it would be interesting to
find a sufficient condition on a flow such that, when satisfied, there exists a
2-orientation such that the pair is realizable. Is there a way to construct an
realizable pair simultaneously? Is there a way to find that minimal flow that
belongs to an realizable pair?
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Abstract. The paper [J. Balogh, B. Bollobás, D. Weinreich, A jump
to the Bell number for hereditary graph properties, J. Combin. Theory
Ser. B 95 (2005) 29–48] identifies a jump in the speed of hereditary graph
properties to the Bell number Bn and provides a partial characterisation
of the family of minimal classes whose speed is at least Bn. In the present
paper, we give a complete characterisation of this family. Since this family
is infinite, the decidability of the problem of determining if the speed of
a hereditary property is above or below the Bell number is questionable.
We answer this question positively for properties defined by finitely many
forbidden induced subgraphs. In other words, we show that there exists
an algorithm which, given a finite set F of graphs, decides whether the
speed of the class of graphs containing no induced subgraphs from the
set F is above or below the Bell number.

Keywords: Hereditary class of graphs · Speed of hereditary properties ·
Bell number · Decidability

1 Introduction

A graph property (or a class of graphs1) is a set of graphs closed under isomor-
phism. Given a property X , we write Xn for the number of graphs in X with
vertex set {1, 2, . . . , n} (that is, we are counting labelled graphs). Following [5],
we call Xn the speed of the property X .

A property is hereditary if it is closed under taking induced subgraphs. It
is well-known (and can be easily seen) that a graph property X is hereditary if
and only if X can be described in terms of forbidden induced subgraphs. More
formally, for a set F of graphs we write Free(F) for the class of graphs containing
no induced subgraph isomorphic to any graph in the set F . A property X is

This research was supported by DIMAP: the Centre for Discrete Mathematics and
its Applications at the University of Warwick, and by EPSRC, grant EP/I01795X/1.

1 Throughout the paper we use the two terms – graph property and class of graphs –
interchangeably.
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hereditary if and only if X = Free(F) for some set F . We call F a set of
forbidden induced subgraphs for X and say that graphs in X are F-free.

The speeds of hereditary properties and their asymptotic structure have been
extensively studied, originally in the special case of a single forbidden subgraph
[9–11,13–15], and more recently in general [1,4–7,16]. These studies showed,
in particular, that there is a certain correlation between the speed of a prop-
erty X and the structure of graphs in X , and that the rates of the speed growth
constitute discrete layers. The first four lower layers have been distinguished
in [16]: these are constant, polynomial, exponential, and factorial layers. In other
words, the authors of [16] showed that some classes of functions do not appear
as the speed of any hereditary property, and that there are discrete jumps, for
example, from polynomial to exponential speeds.

Independently, similar results were obtained by Alekseev in [2]. Moreover,
Alekseev provided the first four layers with the description of all minimal classes,
that is, he identified in each layer the family of all classes every proper hereditary
subclass of which belongs to a lower layer (see also [5] for some more involved
results). In each of the first four lower layers the set of minimal classes is finite
and each of them is defined by finitely many forbidden induced subgraphs. This
provides an efficient way of determining whether a property X belongs to one of
the first three layers.

One more jump in the speed of hereditary properties was identified in [7]
and it separates – within the factorial layer – the properties with speeds strictly
below the Bell number Bn from those whose speed is at least Bn. The importance
of this jump is due to the fact that all the properties below the Bell number are
well-structured. In particular, all of them have bounded clique-width [3] and all
of them are well-quasi-ordered by the induced subgraph relation [12]. From the
results in [5,12] it follows that every hereditary property below the Bell number
can be characterised by finitely many forbidden induced subgraphs and hence
the membership problem for each of them can be decided in polynomial time.

Even so, very little is known about the boundary separating the two fami-
lies, that is, very little is known about the minimal classes on or above the Bell
number. Paper [7] distinguishes two cases in the study of this question: the case
where a certain parameter associated with each class of graphs is finite and the
case where this parameter is infinite. In the present paper, we call this parameter
distinguishing number. For the case where the distinguishing number is infinite,
[7] provides a complete description of minimal classes, of which there are pre-
cisely 13. For the case where the distinguishing number is finite, [7] mentions
only one minimal class above the Bell number (linear forests) and leaves the
question of characterising other minimal classes open.

In the present paper, we give a complete answer to the above open question:
we provide a structural characterisation of all minimal classes above the Bell
number with a finite distinguishing number. This family of minimal classes is
infinite, which makes the problem of deciding whether a hereditary class is above
or below the Bell number questionable. Nevertheless, for properties defined by
finitely many forbidden induced subgraphs, our characterisation allows us to
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prove decidability of this problem: we show that there exists an algorithm which,
given a finite set F of graphs, decides whether the class Free(F) is above or below
the Bell number.

2 Preliminaries and Preparatory Results

2.1 Basic Notation and Terminology

All graphs we consider are undirected without multiple edges. The graphs in
our hereditary classes have no loops; however, we allow loops in some auxiliary
graphs, called “density graphs” and denoted usually by H, that are used to
represent the global structure of our hereditary classes.

If G is a graph, V (G) stands for its vertex set, E(G) for its edge set and |G|
for the number of vertices (the order) of G. The edge joining two vertices u and
v is uv (we do not use any brackets); uv is the same edge as vu.

If W ⊆ V (G), then G[W ] is the subgraph of G induced by W . For W1,W2

disjoint subsets of V (G) we define G[W1,W2] to be the bipartite subgraph of G
with vertex set W1 ∪ W2 and edge set {uv : u ∈ W1, v ∈ W2, uv ∈ E(G)}. The
bipartite complement of G[W1,W2] is the bipartite graph in which two vertices
u ∈ W1, v ∈ W2 are adjacent if and only if they are not adjacent in G[W1,W2].

The neighbourhood N(u) of a vertex u in G is the set of all vertices adjacent
to u, and the degree of u is the number of its neighbours. Note that if (and only
if) there is a loop at u then u ∈ N(u).

As usual, Pn, Cn and Kn denote the path, the cycle and the complete graph
with n vertices, respectively. Furthermore, K1,n is a star (i.e., a tree with n + 1
vertices one of which has degree n), and G1 + G2 is the disjoint union of two
graphs. In particular, mKn is the disjoint union of m copies of Kn.

A forest is a graph without cycles, i.e., a graph every connected component
of which is a tree. A star forest is a forest every connected component of which
is a star, and a linear forest is a forest every connected component of which is
a path.

A quasi-order is a binary relation which is reflexive and transitive. A well-
quasi-order is a quasi-order which contains neither infinite strictly decreasing
sequences nor infinite antichains (sets of pairwise incomparable elements). That
is, in a well-quasi-order any infinite sequence of elements contains an infinite
increasing subsequence.

Recall that the Bell number Bn, defined as the number of ways to partition
a set of n labelled elements, satisfies the asymptotic formula ln Bn/n = ln n −
ln lnn + Θ(1).

Balogh, Bollobás and Weinreich [7] showed that if the speed of a hereditary
graph property is at least n(1−o(1))n, then it is actually at least Bn; hence we
call any such property a property above the Bell number. Note that this includes
hereditary properties whose speed is exactly equal to the Bell numbers (such as
the class of disjoint unions of cliques).
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2.2 (�, d)-graphs and Sparsification

Given a graph G and two vertex subsets U,W ⊂ V (G), define Δ(U,W ) =
max{|N(u) ∩ W |, |N(w) ∩ U | : u ∈ U,w ∈ W}. With N(u) = V (G)\(N(u) ∪
{u}), let Δ(U,W ) = max{|N(u) ∩ W |, |N(w) ∩ U | : w ∈ W,u ∈ U}. Note that
Δ(U,U) is simply the maximum degree in G[U ].

Definition 2.1. Let G be a graph. A partition π = {V1, V2, . . . , V�′} of V (G) is
an (�, d)-partition if �′ ≤ � and for each pair of not necessarily distinct integers
i, j ∈ {1, 2, . . . , �′} either Δ(Vi, Vj) ≤ d or Δ(Vi, Vj) ≤ d. We call the sets Vi

bags. A graph G is an (�, d)-graph if it admits an (�, d)-partition.

It should be clear that, given an (�, d)-partition {V1, V2, . . . , V�′} of V (G), for
each x ∈ V (G) and i ∈ {1, 2, . . . , �′} either |N(x) ∩ Vi| ≤ d or |N(x) ∩ Vi| ≤ d.
In the former case we say that x is d-sparse with respect to Vi and in the latter
case we say x is d-dense with respect to Vi. Similarly, if Δ(Vi, Vj) ≤ d, we say
Vi is d-sparse with respect to Vj , and if Δ(Vi, Vj) ≤ d, we say Vi is d-dense
with respect to Vj . We will also say that the pair (Vi, Vj) is d-sparse or d-dense,
respectively. Note that if the bags are large enough (i.e., min{|Vi|} > 2d + 1),
the terms d-dense and d-sparse are mutually exclusive.

Definition 2.2. A strong (�, d)-partition is an (�, d)-partition each bag of which
contains at least 5 × 2�d vertices; a strong (�, d)-graph is a graph which admits
a strong (�, d)-partition.

Given any strong (�, d)-partition π = {V1, V2, . . . , V�′} we define an equivalence
relation ∼ on the bags by putting Vi ∼ Vj if and only if for each k, either Vk is
d-dense with respect to both Vi and Vj , or Vk is d-sparse with respect to both
Vi and Vj . Let us call a partition π prime if all its ∼-equivalence classes are
of size 1. If the partition π is not prime, let p(π) be the partition consisting of
unions of bags in the ∼-equivalence classes for π.

In the full version of this paper we prove that the partition p(π) of a strong
(�, d)-graph is an (�, �d)-partition whose dense (sparse) pairs correspond to the
dense (sparse) pairs of π, and that it does not depend on the choice of a strong
(�, d)-partition π:

Theorem 2.3. Let G be a strong (�, d)-graph with strong (�, d)-partitions π and
π′. Then p(π) = p(π′). 	


With any strong (�, d)-partition π = {V1, V2, . . . , V�′} of a graph G we can asso-
ciate a density graph (with loops allowed) H = H(G, π): the vertex set of H
is {1, 2, . . . , �′} and there is an edge joining i and j if and only if (Vi, Vj) is a
d-dense pair (so there is a loop at i if and only if Vi is d-dense).

For a graph G, a vertex partition π = {V1, V2, . . . , V�′} of G and a graph
with loops allowed H with vertex set {1, 2, . . . , �′}, we define (as in [5]) the H,π-
transform ψ(G, π,H) to be the graph obtained from G by replacing G[Vi, Vj ]
with its bipartite complement for every pair (Vi, Vj) for which ij is an edge



Deciding the Bell Number for Hereditary Graph Properties 73

of H, and replacing G[Vi] with its complement for every Vi for which there is a
loop at the vertex i in H.

Moreover, if π is a strong (�, d)-partition we define φ(G, π)= ψ(G, π,H(G, π));
recall that both p(π) and p(π′) are (not necessarily strong) (�, �d)-partitions of G.
Note that π is a strong (�, d)-partition for φ(G, π) and each pair (Vi, Vj) is d-
sparse in φ(G, π). We now show that the result of this “sparsification” does not
depend on the initial strong (�, d)-partition.

Proposition 2.4. Let G be a strong (�, d)-graph. Then for any two strong (�, d)-
partitions π and π′, the graph φ(G, π) is identical to φ(G, π′).

Proof. Suppose that π = {U1, U2, . . . , U�̂} and π′ = {V1, V2, . . . , V�̂′}. By The-
orem 2.3, p(π) = p(π′) = {W1,W2, . . . , W�̂′′}. Consider two vertices x, y of G.
Let i, j, i′, j′, i′′, j′′ be the indices such that x ∈ Ui, x ∈ Vi′ , x ∈ Wi′′ , y ∈ Uj ,
y ∈ Vj′ , y ∈ Wj′′ . As the partitions have at least 5×2�d vertices in each bag, �d-
dense and �d-sparse are mutually exclusive properties. Hence the pair (Ui, Uj) is
d-sparse if and only if (Wi′′ ,Wj′′) is �d-sparse if and only if (Vi′ , Vj′) is d-sparse;
and analogously for dense pairs. Therefore xy is an edge of φ(G, π) if and only
if it is an edge of φ(G, π′). 	


Proposition 2.4 motivates the following definition, originating from [5].

Definition 2.5. For a strong (�, d)-graph G, its sparsification is φ(G) = φ(G, π)
for any strong (�, d)-partition π of G.

2.3 Distinguishing Number kX

Given a graph G and a set X = {v1, . . . , vt} ⊆ V (G), we say that the disjoint
subsets U1, . . . , Um of V (G) are distinguished by X if for each i, all vertices
of Ui have the same neighbourhood in X, and for each i �= j, vertices x ∈ Ui and
y ∈ Uj have different neighbourhoods in X. We also say that X distinguishes
the sets U1, U2, . . . , Um.

Definition 2.6. Given a hereditary property X , we define the distinguishing
number kX as follows:

(a) If for all k,m ∈ N we can find a graph G ∈ X that admits some X ⊂ V (G)
distinguishing at least m sets, each of size at least k, then put kX = ∞.

(b) Otherwise, there must exist a pair (k,m) such that any vertex subset of any
graph G ∈ X distinguishes at most m sets of size at least k. We define kX
to be the minimum value of k in all such pairs.

In [5] Balogh, Bollobás and Weinreich show that the speed of any hereditary
property X with kX = ∞ is above the Bell number. To study the classes with
kX < ∞ in the next sections we will use the following results from their paper:

Lemma 2.7 ([5], Lemma 27). If X is a hereditary property with finite dis-
tinguishing number kX , then there exist absolute constants �X , dX and cX such
that for all G ∈ X , the graph G contains an induced subgraph G′ such that G′ is
a strong (�X , dX )-graph and |V (G)\V (G′)| < cX . 	
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Theorem 2.8 ([5], Theorem 28). Let X be a hereditary property with kX <
∞. Then Xn ≥ n(1+o(1))n if and only if for every m there exists a strong (�X , dX )-
graph G in X such that its sparsification φ(G) has a component of order at
least m. 	


3 Structure of Minimal Classes Above Bell

In this section, we describe minimal classes with speed above the Bell num-
ber. In [7], Balogh, Bollobás and Weinreich characterised all minimal classes
with infinite distinguishing number. In Sect. 3.1 we report this result and show
additionally that each of these classes can be characterised by finitely many for-
bidden induced subgraphs. Then in Sect. 3.2 we move on to the case of finite
distinguishing number, which had been left open in [7].

3.1 Infinite Distinguishing Number

Theorem 3.1 (Balogh–Bollobás–Weinreich [7]). Let X be a hereditary
graph property with kX = ∞. Then X contains at least one of the following
(minimal) classes:

(a) the class K1 of all graphs each of whose connected components is a clique;
(b) the class K2 of all star forests;
(c) the class K3 of all graphs whose vertex set can be split into an independent

set I and a clique Q so that every vertex in Q has at most one neighbour
in I;

(d) the class K4 of all graphs whose vertex set can be split into an independent
set I and a clique Q so that every vertex in I has at most one neighbour
in Q;

(e) the class K5 of all graphs whose vertex set can be split into two cliques Q1, Q2

so that every vertex in Q2 has at most one neighbour in Q1;
(f) the class K6 of all graphs whose vertex set can be split into two independent

sets I1, I2 so that the neighbourhoods of the vertices in I1 are linearly ordered
by inclusion (that is, the class of all chain graphs);

(g) the class K7 of all graphs whose vertex set can be split into an independent
set I and a clique Q so that the neighbourhoods of the vertices in I are
linearly ordered by inclusion (that is, the class of all threshold graphs);

(h) the class Ki of all graphs whose complement belongs to Ki as above, for
some i ∈ {1, 2, . . . , 6} (note that the complementary class of K7 is K7 itself).

Before showing the characterisation of the classes K1–K6 in terms of forbid-
den subgraphs, we introduce some of the less commonly appearing graphs: the
claw K1,3, the 3-fan F3, the diamond K−

4 , and the H-graph H6 (Fig. 1).

Theorem 3.2. Each of the classes of Theorem3.1 is defined by finitely many
forbidden induced subgraphs, namely
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K1,3 F3 K−
4 H6

Fig. 1. Some small graphs

(a) K1 = Free(P3),
(b) K2 = Free(K3, P4, C4),
(c) K3 = Free(F) for F = {2K2, C4, C5,K1,3, F3},
(d) K4 = Free(F) for F = {2K2, C4, C5,K

−
4 },

(e) K5 = Free(F) for F = {3K1, C5, P4 +K1, 2K2 +K1, C4 +K2, C4 + 2K1, H6},
(f) K6 = Free(2K2,K3, C5) [17],
(g) K7 = Free(2K2, P4, C4) [8],
(h) Free(F) = Free(F).

3.2 Finite Distinguishing Number

In this section we provide a characterisation of the minimal classes for the case of
finite distinguishing number kX . It turns out that these minimal classes consist
of (�X , dX )-graphs, that is, the vertex set of each graph is partitioned into at
most �X bags and dense pairs are defined by a density graph H (see Lemma 2.7).
The condition of Theorem 2.8 is enforced by long paths (indeed, an infinite path
in the infinite universal graph). Thus actually dX ≤ 2 for the minimal classes X .

Let A be a finite alphabet. A word is a mapping w : S → A, where S =
{1, 2, . . . , n} for some n ∈ N or S = N; |S| is the length of w, denoted by |w|.
We write wi for w(i), and we often use the notation w = w1w2w3 . . . wn or
w = w1w2w3 . . .. For n ≤ m and w = w1w2 . . . wn, w′ = w′

1w
′
2 . . . w′

m (or w′ =
w′

1w
′
2 . . .), we say that w is a factor of w′ if there exists a non-negative integer s

such that wi = w′
i+s for 1 ≤ i ≤ n; w is an initial segment of w′ if we can take

s = 0.
Let H be an undirected graph with loops allowed and with vertex set V (H) =

A, and let w be a (finite or infinite) word over the alphabet A. For any increasing
sequence u1 < u2 < · · · < um of positive integers such that um ≤ |w|, define
Gw,H(u1, u2, . . . , um) to be the graph with vertex set {u1, u2, . . . , um} and an
edge between ui and uj if and only if

– either |ui − uj | = 1 and wui
wuj

/∈ E(H),
– or |ui − uj | > 1 and wui

wuj
∈ E(H).

Let G = Gw,H(u1, u2, . . . , um) and define Va = {ui ∈ V (G) : wui
= a} for

any a ∈ A. Then π = πw(G) = {Va : a ∈ A} is an (|A|, 2)-partition, and so
G is an (|A|, 2)-graph. Moreover, ψ(G, π,H) is a linear forest whose paths are
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formed by the consecutive segments of integers within the set {u1, u2, . . . , um}.
This partition πw(G) is called the letter partition of G.

Define P(w,H) to be the hereditary class of graphs consisting of graphs
Gw,H(u1, u2, . . . , um) for all finite increasing sequences u1 < u2 < · · · < um of
positive integers.

It can be shown that any such class P(w,H) has finite distinguishing number.
Our goal here is to prove that any hereditary class above the Bell number with
finite distinguishing number contains the class P(w,H) for some word w and
graph H. Moreover, we describe sufficient conditions on the graph H and the
word w so that P(w,H) is a minimal class above the Bell number.

Definition 3.3. If u1, u2, . . . , um is a sequence of consecutive integers (i.e.,
uk+1 = uk +1 for each k), we call the graph Gw,H(u1, u2, . . . , um) an |H|-factor.
Notice that each |H|-factor is an (|H|, 2)-graph; if its letter partition is a strong
(|H|, 2)-partition, we call it a strong |H|-factor.

Note that if G = Gw,H(u1, u2, . . . , um) is a strong �-factor, then its sparsification
φ(G) = ψ(G, πw(G),H) is an induced path of length m − 1.

Proposition 3.4. If w is an infinite word over a finite alphabet A and H is a
graph on A, with loops allowed, then the class P(w,H) is above the Bell number.

Proof. We may assume that every letter of A appears in w infinitely many times:
otherwise we can remove a sufficiently long starting segment of w to obtain a
word w′ satisfying this condition, replace H with its induced subgraph H ′ on
the alphabet A′ of w′, and obtain a subclass P(w′,H ′) of P(w,H). Then for
sufficiently large k, the |A|-factor Gk = Gw,H(1, . . . , k) is a strong |A|-factor;
thus φ(Gk) is an induced path of length k − 1. Hence by Theorem 2.8, the class
P(w,H) is above the Bell number. 	


Definition 3.5. A word w is called almost periodic if for any factor f of w
there is a constant kf such that any factor of w of size at least kf contains f as
a factor.

The next theorem asserts that any class with finite distinguishing number, if it
is above Bell, contains one of the classes P(w,H). Consequently any minimal
class will be of the form P(w,H).

Theorem 3.6. Suppose X is a hereditary class above the Bell number with kX
finite. Then X ⊇ P(w,H) for an infinite almost periodic word w and a graph H
of order at most �X with loops allowed.

Sketch of proof. From Theorem 2.8 it follows that for each m there is a graph
Gm ∈ X which admits a strong (�X , dX )-partition {V1, V2, . . . , V�m} with �m ≤
�X such that the sparsification φ(Gm) has a connected component Cm of order at
least (�X dX )m. Fix an arbitrary vertex v of Cm. As Cm is an induced subgraph
of φ(Gm), the maximum degree in Cm is bounded by d = �X dX . Therefore Cm

contains an induced path v = v1, v2, . . . , vm = v′ of length m − 1. Then the
induced subgraph Gm[v1, v2, . . . , vm] is an �X -factor of order m contained in X .
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The existence of arbitrarily large �X -factors in X implies that X contains
arbitrarily large strong �X -factors: It can be shown that by removing the small
bags (repeatedly, if necessary) we cannot decrease the size of the �X -factor too
much.

Having established that each class X with speed above the Bell number with
finite distinguishing number kX contains an infinite set S of strong �X -factors of
increasing order, we can assume that each of the strong �X -factors is of the form
Gw,H(1, . . . , m) for some prime graph H and that its letter partition is prime.
For each H on {1, 2, . . . , �} with 1 ≤ � ≤ �X let SH = {Gw,H(1, . . . , m) ∈ S}
be the set of all �X -factors in S whose adjacencies are defined using the density
graph H. Then for some (at least one) fixed graph H0 the set SH0 is infinite.
Hence also L = {w : Gw,H0(1, . . . , m) ∈ X} is an infinite language. As X is
a hereditary class, the language L is closed under taking word factors (it is a
factorial language).

It is not hard to prove that any infinite factorial language contains a minimal
infinite factorial language. So let L′ ⊆ L be a minimal infinite factorial language.
It follows from minimality that L′ is well quasi-ordered by the factor relation,
because removing one word from any infinite antichain and taking all factors
of the remaining words would generate an infinite factorial language strictly
contained in L′. Thus there exists an infinite chain w(1), w(2), . . . of words in L′

such that for any i < j, the word w(i) is a factor of w(j). More precisely, for
each i there is a non-negative integer si such that w

(i)
k = w

(i+1)
k+si

. Let g(i, k) =

k +
∑i−1

j=1 si. Now we can define an infinite word w by putting wk = w
(i)
g(i,k) for

the least value of i for which the right-hand side is defined. (Without loss of
generality we get that w is indeed an infinite word; otherwise we would need to
take the reversals of all the words w(i).)

Observe that any factor of w is in the language L′; if w is not almost periodic,
then there exists a factor f of w such that there are arbitrarily long factors f ′ of w
not containing f . These factors f ′ generate an infinite factorial language L′′ ⊆ L′

which does not contain f ∈ L′, contradicting the minimality of L′.
Because any factor of w is in L, any Gw,H(u1, . . . , um) is an induced subgraph

of some �X -factor in X . Therefore P(w,H) ⊆ X . 	

As a matter of fact, we can also show that if H is a graph with loops allowed

and w is an almost periodic infinite word, then P(w,H) is a minimal property
above the Bell number. This implies the following characterisation.

Theorem 3.7. Let X be a class of graphs with kX < ∞. Then X is a minimal
hereditary class above the Bell number if and only if there exists a finite graph H
with loops allowed and an infinite almost periodic word w over V (H) such that
X = P(w,H).

4 Decidability of the Bell Number

Our main goal is to provide an algorithm that decides for an input consisting of
a finite number of graphs F1, . . . , Fn whether the speed of X = Free(F1, . . . , Fn)
is above the Bell number. That is, we are interested in the following problem.
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Problem 4.1. Input: A finite set of graphs F = {F1, F2, . . . , Fn}
Output: Yes, if the speed of X = Free(F) is above the Bell number; no other-
wise.

Our algorithm, following the characterisation of minimal classes above the
Bell number, distinguishes two cases depending on whether the distinguishing
number kX is finite or infinite. First we show how to discriminate between these
two cases.

Problem 4.2. Input: A finite set of graphs F = {F1, F2, . . . , Fn}
Output: Yes, if kX = ∞ for X = Free(F); no otherwise.

Theorem 4.3. There is a polynomial-time algorithm that solves Problem4.2.

Proof. By Theorem 3.1, kX = ∞ if and only if X contains one of the thirteen
minimal classes listed there. By Theorem 3.2, each of the minimal classes is
defined by finitely many forbidden induced subgraphs; thus membership can be
tested in polynomial time. Then the answer to Problem4.2 is no if and only if
each of the minimal classes given by Theorem 3.1 contains at least one of the
graphs in F , which can also be tested in polynomial time. 	


By Theorem 3.7, the minimal hereditary classes with finite distinguishing
number with speed above the Bell number can be described as P(w,H) with
an almost periodic infinite word w. Here we give a more precise characterisation
restricted to classes defined by finitely many forbidden induced subgraphs.

Definition 4.4. Let w = w1w2 . . . be an infinite word over a finite alphabet A.
If there exists some p such that wi = wi+p for all i ∈ N, we call the word w
periodic and the number p its period. If, moreover, for some period p the letters
w1, w2, . . . , wp are all distinct, we call the word w cyclic.

If w is a finite word, then w′ = (w)∞ is the periodic word obtained by con-
catenating infinitely many copies of the word w; thus w′

i = wk for k = imod |w′|.
A class X of graphs is called a periodic class ( cyclic class, respectively) if

there exists a graph H with loops allowed and a periodic (cyclic, respectively)
word w such that X = P(w,H).

Definition 4.5. Let A = {1, 2, . . . , �} be a finite alphabet, H a graph on A with
loops allowed, and M a positive integer. Define a graph SH,M with vertex set
V (SH,M ) = A × {1, 2, . . . ,M} and an edge between (a, j) and (b, k) if and only
if one of the following holds:

– ab ∈ E(H) and either |a − b| �= 1 or j �= k;
– ab /∈ E(H) and |a − b| = 1 and j = k.

The graph SH,M is called an (�,M)-strip.

Notice that a strip can be viewed as the graph obtained from the union of M
disjoint paths (1, j)−(2, j)− · · · −(�, j) for j ∈ {1, 2, . . . ,M} by swapping edges
with non-edges between vertices (a, j) and (b, k) if ab ∈ E(H).
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Theorem 4.6. Let X = Free(F1, F2, . . . , Fn) with the distinguishing number kX
finite. Then the following conditions are equivalent:

(a) The speed of X is above the Bell number.
(b) X contains a periodic class.
(c) For every p ∈ N, X contains a cyclic class with period at least p.
(d) There exists a cyclic word w and a graph H on the alphabet of w such

that X contains the �-factor Gw,H(1, 2, . . . , 2�m) with � = |V (H)| and m =
max

{
|Fi| : i ∈ {1, 2, . . . , n}

}
.

(e) For any positive integers �, m, the class X contains an (�,m)-strip.

We omit the proof of Theorem 4.6 here (it can be found in the full version of
this paper). Finally, we are ready to tackle the decidability of Problem4.1.

Algorithm 4.7. Input: A finite set of graphs F = {F1, F2, . . . , Fn}
Output: Yes, if the speed of X = Free(F) is above the Bell number; no other-
wise.

(1) Using Theorem 4.3, decide whether kX = ∞. If it is, output yes and stop.
(2) Set m := max{|F1|, |F2|, . . . , |Fn|} and � := 1.
(3) Loop:

(3a) For each graph (with loops allowed) H on {1, 2, . . . , �} construct the
(�, �)-strip SH,�. Check if some Fi is an induced subgraph of SH,�. If for
each H the strip SH,� contains some Fi, output no and stop.

(3b) For each graph (with loops allowed) H on {1, 2, . . . , �} and for each
word w consisting of � distinct letters from {1, 2, . . . , �} check if the �-
factor Gw∞,H(1, 2, . . . , 2�m) contains some Fi as an induced subgraph.
If one of these �-factors contains no Fi, output yes and stop.

(3c) Set � := � + 1 and repeat.

It remains to prove the correctness of this algorithm.

Theorem 4.8. Algorithm4.7 correctly solves Problem4.1.

Proof. We show that if the algorithm stops, it gives the correct answer, and
furthermore that it will stop on any input without entering an infinite loop.
First, if it stops in step (1), the answer is correct by [7], since any class with
infinite distinguishing number has speed above the Bell number.

Assume that the algorithm stops in step (3a) and outputs no. This is because
every (�, �)-strip contains some forbidden subgraph Fi, hence no (�, �)-strip belongs
to X . By Theorem 4.6(e), the speed of X is below the Bell number.

Next suppose that the algorithm stops in step (3b) and answers yes. Then
X contains the �-factor Gw∞,H(1, 2, . . . , 2�m), where w∞ is a cyclic word. Hence
by Theorem 4.6(d) the speed of X is above the Bell number.

Finally, if kX = ∞ the algorithm stops in step (1). If kX < ∞ and the speed
of X is above the Bell number, then by Theorem4.6(d) the algorithm will stop in
step (3b). If, on the other hand, the speed of X is below the Bell number, then by
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Theorem 4.6(e) there exist positive integers �, M such that X contains no (�,M)-
strip. Let N = max{�,M}. Obviously, X contains no (N,N)-strip, because any
(N,N)-strip contains some (many) (�,M)-strips as induced subgraphs and X is
hereditary. Therefore the algorithm will stop in step (3a) after finitely many
steps. 	


Our result leaves many open questions. For instance, what is the computa-
tional complexity of Problem4.1?
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Abstract. A family F of permutations of the vertices of a hypergraph
H is called pairwise suitable for H if, for every pair of disjoint edges in
H, there exists a permutation in F in which all the vertices in one edge
precede those in the other. The cardinality of a smallest such family
of permutations for H is called the separation dimension of H and is
denoted by π(H). Equivalently, π(H) is the smallest natural number k
so that the vertices of H can be embedded in R

k such that any two
disjoint edges of H can be separated by a hyperplane normal to one of
the axes. We show that the separation dimension of a hypergraph H
is equal to the boxicity of the line graph of H. This connection helps
us in borrowing results and techniques from the extensive literature on
boxicity to study the concept of separation dimension.

Keywords: Separation dimension · Boxicity · Scrambling permutation ·
Line graph · Acyclic chromatic number

1 Introduction

Let σ : U → [n] be a permutation of elements of an n-set U . For two disjoint
subsets A,B of U , we say A ≺σ B when every element of A precedes every
element of B in σ, i.e., σ(a) < σ(b),∀(a, b) ∈ A × B. Otherwise, we say A ⊀σ B.
We say that σ separates A and B if either A ≺σ B or B ≺σ A. We use a ≺σ b to
denote {a} ≺σ {b}. For two subsets A,B of U , we say A �σ B when A \ B ≺σ

A ∩ B ≺σ B \ A.
In this paper, we introduce and study a notion called pairwise suitable family

of permutations for a hypergraph H and the separation dimension of H.
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Definition 1. A family F of permutations of V (H) is pairwise suitable for
a hypergraph H if, for every two disjoint edges e, f ∈ E(H), there exists a
permutation σ ∈ F which separates e and f . The cardinality of a smallest family
of permutations that is pairwise suitable for H is called the separation dimension
of H and is denoted by π(H).

A family F = {σ1, . . . , σk} of permutations of a set V can be seen as an embed-
ding of V into R

k with the i-th coordinate of v ∈ V being the rank of v in the σi.
Similarly, given any embedding of V in R

k, we can construct k permutations by
projecting the points onto each of the k axes and then reading them along the
axis, breaking the ties arbitrarily. From this, it is easy to see that π(H) is the
smallest natural number k so that the vertices of H can be embedded into R

k

such that any two disjoint edges of H can be separated by a hyperplane normal
to one of the axes. This motivates us to call such an embedding a separating
embedding of H and π(H) the separation dimension of H.

The notion of separation dimension introduced here seems so natural but, to
the best of our knowledge, has not been studied in this generality before. The
authors of [15] provide suggested applications motivating the study of permuta-
tion covering and separation problems on event sequencing of tasks. Apart from
that, a major motivation for us to study this notion of separation is its interest-
ing connection with a certain well studied geometric representation of graphs.
In fact, we show that π(H) is same as the boxicity of the intersection graph of
the edge set of H, i.e., the line graph of H.

An axis-parallel k-dimensional box or a k-box is a Cartesian product R1 ×
· · · × Rk, where each Ri is a closed interval on the real line. For example, a line
segment lying parallel to the X axis is a 1-box, a rectangle with its sides parallel
to the X and Y axes is a 2-box, a rectangular cuboid with its sides parallel to
the X, Y , and Z axes is a 3-box and so on. A box representation of a graph G
is a geometric representation of G using axis-parallel boxes as follows.

Definition 2. The k-box representation of a graph G is a function f that maps
each vertex in G to a k-box in R

k such that, for all vertices u, v in G, the pair
{u, v} is an edge if and only if f(u) intersects f(v). The boxicity of a graph
G, denoted by boxicity(G), is the minimum positive integer k such that G has a
k-box representation.

The concept of boxicity was introduced by F.S. Roberts in 1969 [20]. He showed
that every graph on n vertices has an �n/2	-box representation. The n-vertex
graph whose complement is a perfect matching is an example of a graph whose
boxicity is equal to n/2. Upper bounds for boxicity in terms of other graph
parameters like maximum degree, treewidth, minimum vertex cover, degeneracy
etc. are available in literature. Studies on box representations of special graph
classes too are available in abundance. Scheinerman showed that every outerpla-
nar graph has a 2-box representation [21] while Thomassen showed that every
planar graph has a 3-box representation [23]. Results on boxicity of series-parallel
graphs [8], Halin graphs [12], chordal graphs, AT-free graphs, permutation graphs
[14], circular arc graphs [7], chordal bipartite graphs [11] etc. can be found in
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literature. Here we are interested in boxicity of the line graph of hypergraphs.
The line graph of a hypergraph H, denoted by L(H), is the graph with vertex
set V (L(H)) = E(H) and edge set E(L(H)) = {{e, f} : e, f ∈ E(H), e∩ f 
= ∅}.

For the line graph of a graph G with maximum degree Δ, it was shown by
Chandran, Mathew and Sivadasan that its boxicity is in O (Δ log log Δ) [13].
It was in their attempt to improve this result that the authors stumbled upon
pairwise suitable family of permutations and its relation with the boxicity of the
line graph of G. In an arXiv preprint version of this paper available at [6], we
improve the upper bound for boxicity of the line graph of G to 29log

�ΔΔ, where
log�Δ denotes the iterated logarithm of Δ to the base 2, i.e. the number of
times the logarithm function (to the base 2) has to be applied so that the result
is less than or equal to 1. In a recent joint work with Noga Alon, we have shown
that there exist graphs of maximum degree Δ whose line graphs have boxicity
in Ω(Δ). Bounds for separation dimension of a graph based on its treewidth,
degeneracy etc. are also established in the arXiv version.

1.1 Outline of the Paper

The remainder of this paper1 is organised as follows. A brief note on some
standard terms and notations used throughout this paper is given in Sect. 1.2.
Section 2 demonstrates the equivalence of separation dimension of a hypergraph
H and boxicity of the line graph of H. In Sect. 3.1, we characterize graphs of
separation dimension 1. Using a probabilistic argument, in Sect. 3.2, we prove a
tight (up to constants) upper bound for separation dimension of a graph based on
its size. Section 3.3 relates separation dimension with acyclic chromatic number.
In Sect. 3.4, using Schnyder’s celebrated result on planar drawing, we show that
the separation dimension of a planar graph is at most 3. This bound is the
best possible as we know of series-parallel graphs (that are subclasses of planar
graphs) of separation dimension 3. In Sect. 3.5, we prove the theorem that yields
a non-trivial lower bound to the separation dimension of a graph. This theorem
and its corollaries are used in establishing the tightness of the upper bounds
proved. Moreover, the theorem is used to prove a lower bound for the separation
dimension of a random graph in Sect. 3.6.

Once again, in Sect. 4.1, we use a probabilistic argument to show an upper
bound on the separation dimension of a rank-r hypergraph based on its size. This
is followed by an upper bound based on maximum degree in Sect. 4.2. We get
this upper bound as a consequence of a non-trivial result in the area of boxicity.
In Sect. 4.3, we prove a lower bound on the separation dimension of a complete
r-uniform hypergraph by extending the lower bounding technique used in the
context of graphs. Finally, in Sect. 5, we conclude with a discussion of a few open
problems that we find interesting.
1 The full version of this paper, which includes all the proofs, is available at http://
arxiv.org/abs/1404.4486.

http://arxiv.org/abs/1404.4486
http://arxiv.org/abs/1404.4486
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1.2 Notational Note

A hypergraph H is a pair (V,E) where V , called the vertex set, is any set and E,
called the edge set, is a collection of subsets of V . The vertex set and edge set
of a hypergraph H are denoted respectively by V (H) and E(H). The rank of a
hypergraph H is maxe∈E(H) |e| and H is called k-uniform if |e| = k,∀e ∈ E(H).
The degree of a vertex v in H is the number of edges of H which contain v. The
maximum degree of H, denoted as Δ(H) is the maximum degree over all vertices
of H. All the hypergraphs considered in this paper are finite.

A graph is a 2-uniform hypergraph. For a graph G and any S ⊆ V (G), the
subgraph of G induced by the vertex set S is denoted by G[S]. For any v ∈ V (G),
we use NG(v) to denote the neighbourhood of v in G, i.e., NG(v) = {u ∈ V (G) :
{v, u} ∈ E(G)}.

A closed interval on the real line, denoted as [i, j] where i, j ∈ R and i ≤ j,
is the set {x ∈ R : i ≤ x ≤ j}. Given an interval X = [i, j], define l(X) = i and
r(X) = j. We say that the closed interval X has left end-point l(X) and right
end-point r(X). For any two intervals [i1, j1], [i2, j2] on the real line, we say that
[i1, j1] < [i2, j2] if j1 < i2.

For any finite positive integer n, we shall use [n] to denote the set {1, . . . , n}.
A permutation of a finite set V is a bijection from V to [|V |]. The logarithm
of any positive real number x to the base 2 and e are respectively denoted by
log(x) and ln(x).

2 Pairwise Suitable Family of Permutations and a Box
Representation

In this section we show that a family of permutations of cardinality k is pairwise
suitable for a hypergraph H (Definition 1) if and only if the line graph of H has
a k-box representation (Definition 2). Before we proceed to prove it, let us state
an equivalent but more combinatorial definition for boxicity.

Lemma 3 (Roberts [20]). For every graph G, boxicity(G) ≤ k if and only if
there exist k interval graphs I1, . . . , Ik, with V (I1) = · · · = V (Ik) = V (G) such
that G = I1 ∩ · · · ∩ Ik.

From the above lemma, we get an equivalent definition of boxicity.

Definition 4. The boxicity of a graph G is the minimum positive integer k for
which there exist k interval graphs I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.

Note that if G = I1 ∩ · · · ∩ Ik, then each Ii is a supergraph of G. Moreover, for
every pair of vertices u, v ∈ V (G) with {u, v} /∈ E(G), there exists some i ∈ [k]
such that {u, v} /∈ E(Ii). Now we are ready to prove the main theorem of this
section.

Theorem 5. For a hypergraph H, π(H) = boxicity(L(H)).
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Proof. First we show that π(H) ≤ boxicity(L(H)). Let boxicity(L(H)) = b.
Then, by Lemma 3, there exists a collection of b interval graphs, say I = {I1, . . . ,
Ib}, whose intersection is L(H). For each i ∈ [b], let fi be an interval represen-
tation of Ii. For each u ∈ V (H), let EH(u) = {e ∈ E(H) : u ∈ e} be the set
of edges of H containing u. Consider an i ∈ [b] and a vertex u ∈ V (H). The
closed interval Ci(u) =

⋂
e∈EH(u) fi(e) is called the clique region of u in fi. Since

any two edges in EH(u) are adjacent in L(H), the corresponding intervals have
non-empty intersection in fi. By the Helly property of intervals, Ci(u) is non-
empty. We define a permutation σi of V (H) from fi such that ∀u, v ∈ V (H),
Ci(u) < Ci(v) =⇒ u ≺σi

v. It suffices to prove that {σ1, . . . , σb} is a family of
permutations that is pairwise suitable for H.

Consider two disjoint edges e, e′ in H. Hence {e, e′} /∈ E(L(H)) and since
L(H) =

⋂b
i=1 Ii, there exists an interval graph, say Ii ∈ I, such that {e, e′} /∈

E(Ii), i.e., fi(e) ∩ fi(e′) = ∅. Without loss of generality, assume fi(e) < fi(e′).
For any v ∈ e and any v′ ∈ e′, since Ci(v) ⊆ fi(e) and Ci(v′) ⊆ f(e′), we have
Ci(v) < Ci(v′), i.e. v ≺σi

v′. Hence e ≺σi
e′. Thus the family {σ1, . . . , σb} of

permutations is pairwise suitable for H.
Next we show that boxicity(L(H)) ≤ π(H). Let π(H) = p and let F =

{σ1, . . . , σp} be a pairwise suitable family of permutations for H. From each
permutation σi, we shall construct an interval graph Ii such that L(H) =

⋂p
i=1 Ii.

Then by Lemma 3, boxicity(L(H)) ≤ π(H).
For a given i ∈ [p], to each edge e ∈ E(H), we associate the closed interval

fi(e) =
[
min
v∈e

σi(v) , max
v∈e

σi(v)
]

,

and let Ii be the intersection graph of the intervals fi(e), e ∈ E(H). Let e, e′ ∈
V (L(H)). If e and e′ are adjacent in L(H), let v ∈ e ∩ e′. Then σi(v) ∈ fi(e) ∩
fi(e′), ∀i ∈ [p]. Hence e and e′ are adjacent in Ii for every i ∈ [p]. If e and e′

are not adjacent in L(H), then there is a permutation σi ∈ F such that either
e ≺σi

e′ or e′ ≺σi
e. Hence by construction fi(e) ∩ fi(e′) = ∅ and so e and e′ are

not adjacent in Ii. This completes the proof. ��

3 Separation Dimension of Graphs

3.1 Characterizing Graphs of Separation Dimension 1

“When is π(G) = 0?” Clearly, if π(G) = 0, then G may have at most one non-
trivial connected component and every pair of edges must share an endpoint.
The following is a simple exercise answering the question:

Proposition 6. For a graph G, π(G) = 0 if and only if G has at most one
connected component of size greater than one and this component is either a
clique of size at most 3 or a star.



86 M. Basavaraju et al.

A caterpillar is a tree consisting of a chordless path [v1, v2, . . . , vk] called the
spine, plus an unlimited number of pendant vertices. A caterpillar with single
humps is formed from a caterpillar by adding at most one new vertex xi adjacent
to vi and vi+1 for every i = 1, . . . , k − 1. Without loss of generality, we may
assume that the first and last vertex of the spine have no pendent vertices (i.e.,
the spine is longest possible.) The diamond, denoted here by D, is the graph
with 4 vertices and 5 edges; the 3-net N3 consists of a triangle with a pendant
vertex attached to each of its vertices; the graph T2 is the tree with 6 edges
{cx, cy, cz, xx′, yy′, zz′}; and the graph Ck (k ≥ 4) denotes the cycle of size k.

Theorem 7. Let G be a graph. The following conditions are equivalent:

(i) π(G) ≤ 1,
(ii) G is a disjoint union of caterpillars with single humps,
(iii) G has no partial subgraph Ck (k ≥ 4), N3 or T2,
(iv) G is a chordal graph with no induced subgraph D, K4, T2, N3, G1, G2 or

G3, where G1 = T2 ∪ {cx′}, G2 = G1 ∪ {cy′} and G3 = G2 ∪ {cz′},
(v) The line graph L(G) is an interval graph.

The proof of Theorem7 suggests a linear time algorithm for recognizing whether
a graph G has separation dimension 1 and constructing its representation as
a caterpillar with single humps: (1) Using either Lexicographic Breadth First
Search or Maximum Cardinality Search, obtain an ordering of the vertices
a1, a2, . . . , an (but do not bother to test whether it is a perfect elimination order-
ing2; (2) Starting with an and proceeding in reverse order, follow the rules in
the proof of (iii) ⇒ (ii) to construct the spine, pendant vertices and the humps.
If either (1) or (2) fails, then π(G) > 1.

3.2 Separation Dimension and the Size of a Graph

For graphs, sometimes we work with a notion of suitability that is stronger than
the pairwise suitability of Definition 1. This will come in handy in proving certain
results later in this article.

Definition 8. For a graph G, a family F of permutations of G is 3-mixing if,
for every two adjacent edges {a, b}, {a, c} ∈ E(G), there exists a permutation
σ ∈ F such that either b ≺σ a ≺σ c or c ≺σ a ≺σ b.

Notice that a family of permutations F of V (G) is pairwise suitable and 3-mixing
for G if, for every two edges e, f ∈ E(G), there exists a permutation σ ∈ F such
that either e �σ f or f �σ e. Let π�(G) denote the cardinality of a smallest
family of permutations that is pairwise suitable and 3-mixing for G. From their
definitions, π(G) ≤ π�(G).

2 If G is chordal, any LexBFS or MCS ordering will be a perfect elimination ordering,
but testing whether each vi has exactly one forward neighbor or two connected
forward neighbors will be enough.
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Observation 9. π(G) and π�(G) are monotone increasing properties.

The following theorem is the special case of Theorem 25 when the rank-r hyper-
graph under consideration is a graph. Theorem25 yields a bound of π(G) ≤
9.596 log n.

Theorem 10. For a graph G on n vertices, π(G) ≤ π�(G) ≤ 6.84 log n.

Proof. From the definitions of π(G) and π�(G) and Observation 9, we have
π(G) ≤ π�(G) ≤ π�(Kn), where Kn denotes the complete graph on n vertices.
Here we prove that π�(Kn) ≤ 6.84 log n.

Choose r permutations, σ1, . . . , σr, independently and uniformly at random
from the n! distinct permutations of [n]. Let e, f be two distinct edges of Kn.
The probability that e �σi

f is 1/6, for each i ∈ [r]. (4 out of 4! outcomes are
favourable when e and f are non-adjacent and 1 out of 3! outcomes is favourable
otherwise.) Therefore, the probability that e �σi

f or f �σi
e is 1/3. Let B(e, f)

denote the “bad” event of e �σi
f and f �σi

e for all i ∈ [r]. Then, Pr[B(e, f)] =
(2/3)r. Taking union bound over all distinct pairs of edges e and f , we get

Pr[
⋃

∀ pairs of distinct edges e,f

B(e, f)] < n4

(
2
3

)r

When r = 6.84 log n, the left hand side of the above inequality is a quantity less
than 1. That is, there exists a family of permutations of V (Kn) of cardinality at
most 6.84 log n which is pairwise suitable and 3 mixing for Kn. ��

Tightness of Theorem10. Let Kn denote a complete graph on n vertices.
Since ω(Kn) = n, it follows from Corollary 21 that π(Kn) ≥ log �n/2	. Hence
the bound proved in Theorem10 is tight up to a constant factor.

3.3 Acyclic and Star Chromatic Number

Definition 11. The acyclic chromatic number of a graph G, denoted by χa(G),
is the minimum number of colours needed to do a proper colouring of the vertices
of G such that the graph induced on the vertices of every pair of colour classes
is acyclic. The star chromatic number of a graph G, denoted by χs(G), is the
minimum number of colours needed to do a proper colouring of the vertices of
G such that the graph induced on the vertices of every pair of colour classes is a
star forest.

We know that that a star forest is a disjoint union of stars. Therefore, χs(G) ≥
χa(G) ≥ χ(G), where χ(G) denotes the chromatic number of G. In order to
bound π(G) in terms of χa(G) and χs(G), we first bound π(G) for forests and
star forests. Then the required result follows from an application of Lemma14.
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Since forests are outerplanar graphs, the following lemma follows directly
from the discussion on outerplanar graphs in Sect. 3.4.

Lemma 12. For a forest G, π(G) ≤ 2.

Lemma 13. For a star forest G, π(G) = 1.

Proof. Follows directly from Theorem 7. ��

Lemma 14. Let PG = {V1, . . . , Vr} be a partitioning of the vertices of a graph
G, i.e., V (G) = V1 � · · · � Vr. Let π̂(PG) = maxi,j∈[r] π(G[Vi ∪ Vj ]). Then,
π(G) ≤ 13.68 log r + π̂(PG)r.

Theorem 15. For a graph G, π(G) ≤ 2χa(G) + 13.68 log(χa(G)). Further,
π(G) ≤ χs(G) + 13.68 log(χs(G)).

Proof. The theorem follows directly from Lemmas 12, 13, and 14. ��

This, together with some existing results from literature, gives us a few easy
corollaries. Alon, Mohar, and Sanders have showed that a graph embeddable
in a surface of Euler genus g has an acyclic chromatic number in O(g4/7) [5].
It is noted by Esperet and Joret in [17], using results of Nesetril, Ossona de
Mendez, Kostochka, and Thomassen, that graphs with no Kt minor have an
acyclic chromatic number in O

(
t2 log t

)
. Hence the following corollary.

Corollary 16. (i) For a graph G with Euler genus g, π(G) ∈ O(g4/7); and
(ii) for a graph G with no Kt minor, π(G) ∈ O(t2 log t).

3.4 Planar Graphs

Since planar graphs have acyclic chromatic number at most 5 [9], it follows
from Theorem 15 that, for every planar graph G, π(G) ≤ 42. Using Schnyder’s
celebrated result on non-crossing straight line plane drawings of planar graphs
we improve this bound to the best possible.

Theorem 17 (Schnyder, Theorem 1.1 in [22]). Let λ1, λ2, λ3 be three
pairwise non-parallel straight lines in the plane. Then, each plane graph has a
straight line embedding in which any two disjoint edges are separated by a straight
line parallel to λ1, λ2 or λ3.

This immediately gives us the following tight bound for planar graphs.

Theorem 18. Separation dimension of a planar graph is at most 3. Moreover
there exist planar graphs with separation dimension 3.

Outerplanar and Series-Parallel Graphs. We know that outerplanar graphs
form a subclass of series-parallel graphs which in turn form a subclass of planar
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graphs. It is not difficult to see that the separation dimension of outerplanar
graphs is at most 2. The idea is to take one permutation by reading the vertices
from left to right along the spine in a one page embedding of the graph and the
second permutation in the order in which we see the vertices when we recursively
peel off the outermost edge till every vertex is enlisted. As for series-parallel
graphs, we know of series-parallel graphs that require separation dimension 3.

3.5 Lower Bounds

The tightness of many of the upper bounds we showed in the previous section
relies on the lower bounds we derive in this section. First, we show that if a
graph contains a uniform bipartite subgraph, then it needs a large separation
dimension. This immediately gives a lower bound on separation dimension for
complete bipartite graphs and hence a lower bound for every graph G in terms
ω(G). The same is used to obtain a lower bound on the separation dimension for
random graphs of all density. Finally, it is used as a critical ingredient in proving
a lower bound on the separation dimension for complete r-uniform hypergraphs.

Theorem 19. For a graph G, let V1, V2 � V (G) such that V1 ∩ V2 = ∅. If there
exists an edge between every s1-subset of V1 and every s2-subset of V2, then
π(G) ≥ min

{
log |V1|

s1
, log |V2|

s2

}
.

The next two corollaries are immediate.

Corollary 20. For a complete bipartite graph Km,n with m ≤ n, π(Km,n) ≥
log(m).

Corollary 21. For a graph G, π(G) ≥ log
⌊

ω(G)
2

⌋
, where ω(G) is the size of a

largest clique in G.

3.6 Random Graphs

Definition 22 (Erdős-Rényi model). G(n, p), n ∈ N and 0 ≤ p ≤ 1, is the
discrete probability space of all simple undirected graphs G on n vertices with each
pair of vertices of G being joined by an edge with a probability p independent of
the choice for every other pair of vertices.

Definition 23. A property P is said to hold for G(n, p) asymptotically almost
surely (a.a.s) if the probability that P holds for G ∈ G(n, p) tends to 1 as n tends
to ∞.

Theorem 24. For G ∈ G(n, p(n))

π(G) ≥ log(np(n)) − log log(np(n)) − 2.5 a.a.s.

Note that the expected average degree of a graph in G(n, p) is Ep[d̄] = (n − 1)p.
And hence the above bound can be written as log Ep[d̄] − log log Ep[d̄] − 2.5.
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4 Separation Dimension of Hypergraphs

4.1 Separation Dimension and Size of a Hypergraph

Using a direct probabilistic argument similar to the one used in Theorem10 we
obtain the following theorem.

Theorem 25. For any rank-r hypergraph H on n vertices

π(H) ≤ e ln 2
π
√

2
4r

√
r log n.

Tightness of Theorem25. Let Kr
n denote a complete r-uniform graph on n

vertices. Then by Theorem 27, π(Kr
n) ≥ 1

27
4r√
r−2

log n for n sufficiently larger
than r. Hence the bound in Theorem25 is tight by factor of 64r.

4.2 Maximum Degree

Theorem 26. For any rank-r hypergraph H of maximum degree D, π(H) ≤
O

(
rD log2(rD)

)
.

Proof. This is a direct consequence of the nontrivial fact that boxicity(G) ∈
O

(
Δ log2 Δ

)
for any graph G of maximum degree Δ [1]. ��

It is known that there exist graphs of maximum degree Δ whose boxicity can be
as high as cΔ log Δ [1], where c is a small positive constant. Let G be one such
graph. Consider the following hypergraph H constructed from G. Let V (H) =
E(G) and E(H) = {Ev : v ∈ V (G)} where Ev is the set of edges incident on
the vertex v in G. It is clear that G = L(H). Hence π(H) = boxicity(G) ≥
cΔ(G) log Δ(G). Note that the rank of H is r = Δ(G) and the maximum degree
of H is 2. Thus π(H) ≥ cr log(r) and hence the dependence on r in the upper
bound cannot be considerably brought down in general.

4.3 Lower Bound

Now we illustrate one method of extending the above lower bounding technique
from graphs to hypergraphs. Let Kr

n denote the complete r-uniform hypergraph
on n vertices. We show that the upper bound of O (4r

√
r log n) obtained for Kr

n

from Theorem 25 is tight up to a factor of r. The lower bound argument below
is motivated by an argument used by Radhakrishnan to prove a lower bound
on the size of a family of scrambling permutations [19]. From Corollary 21 we
know that the separation dimension of Kn, the complete graph on n vertices, is
in Ω (log n). Below we show that given any separating embedding of Kr

n in R
d,

the space R
d contains

(
2r−4
r−2

)
orthogonal subspaces such that the projection of

the given embedding on to these subspaces gives a separating embedding of a
Kn−2r+4.
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Theorem 27. Let Kr
n denote the complete r-uniform hypergraph on n vertices

with r > 2. Then

c1
4r

√
r − 2

log n ≤ π(Kr
n) ≤ c24r

√
r log n,

for n sufficiently larger than r and where c1 = 1
27 and c2 = e ln 2

π
√
2

< 1
2 .

5 Discussion and Open Problems

Since π(G) is the boxicity of the line graph of G, it is interesting to see how
it is related to boxicity of G itself. But unlike separation dimension, boxicity is
not a monotone parameter. For example the boxicity of Kn is 1, but deleting
a perfect matching from Kn, if n is even, blows up its boxicity to n/2. Yet we
couldn’t find any graph G such that boxicity(G) > 2π(G). Hence we are curi-
ous about the following question: Does there exist a function f : N → N such
that boxicity(G) ≤ f(π(G))? Note that the analogous question for π�(G) has an
affirmative answer. If there exists a vertex v of degree d in G, then any 3-mixing
family of permutations of V (G) should contain at least log d different permu-
tations because any single permutation will leave �d/2� neighbours of v on the
same side of v. Hence log Δ(G) ≤ π�(G). From [1], we know that boxicity(G) ∈
O

(
Δ(G) log2 Δ(G)

)
and hence boxicity(G) ∈ O

(
2π�(G)(π�(G))2

)
.

Another interesting direction of enquiry is to find out the maximum number
of hyperedges (edges) possible in a hypergraph (graph) H on n vertices with
π(H) ≤ k. Such an extremal hypergraph H, with π(H) ≤ 0, is seen to be a
maximum sized intersecting family of subsets of [n]. A similar question for order
dimension of a graph has been studied [3,4] and has found applications in ring
theory. We can also ask a three dimensional analogue of the question answered
by Schnyder’s theorem in two dimensions. Given a collection P of non-parallel
planes in R

3, can we embed a graph G in R
3 so that every pair of disjoint edges

is separated by a plane parallel to one in P . Then |P | has to be at least π(G)
for this to be possible. This is because the permutations induced by projecting
such an embedding onto the normals to the planes in P gives a pairwise suitable
family of permutations of G of size |P |. Can |P | be upper bounded by a function
of π(G)?

We know that Theorem 7 yields a linear time algorithm for recognizing graphs
of separation dimension at most 1. This gives rise to a very natural question. Is
it possible to recognize graphs of separation dimension at most 2 in polynomial
time?
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Abstract. An induced matching in a graph is a set of edges whose
endpoints induce a 1-regular subgraph. It is known that every n-vertex
graph has at most 10n/5 ≈ 1.5849n maximal induced matchings, and this
bound is best possible. We prove that every n-vertex triangle-free graph
has at most 3n/3 ≈ 1.4423n maximal induced matchings, and this bound
is attained by every disjoint union of copies of the complete bipartite
graph K3,3. Our result implies that all maximal induced matchings in an
n-vertex triangle-free graph can be listed in time O(1.4423n), yielding
the fastest known algorithm for finding a maximum induced matching in
a triangle-free graph.

1 Introduction

A celebrated result due to Moon and Moser [8] states that every graph on n
vertices has at most 3n/3 ≈ 1.4423n maximal independent sets. Moon and Moser
also proved that this bound is best possible by characterizing the extremal graphs
as follows: a graph on n vertices has exactly 3n/3 maximal independent sets if
and only if it is the disjoint union of n/3 triangles. Given the structure of these
extremal graphs, it is natural to investigate how many maximal independent sets
a triangle-free graph can have. Hujter and Tuza [6] showed that a triangle-free
graph on n vertices has at most 2n/2 ≈ 1.4143n maximal independent sets; this
bound is attained by every 1-regular graph. Later, Byskov [1] gave an algorithmic
proof of the same result, along with more general results.

More recently, Gupta, Raman, and Saurabh [4] showed that for any fixed
non-negative integer r, there exists a constant c < 2 such that every graph on
n vertices has at most cn maximal r-regular induced subgraphs. The aforemen-
tioned result by Moon and Moser implies that if r = 0, then c = 31/3 is the
best possible upper bound. Gupta et al. [4] complement this by proving tight
upper bounds for the case where r ∈ {1, 2}. In particular, their result for r = 1
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shows that every n-vertex graph has at most 10n/5 ≈ 1.5849n maximal induced
matchings, and this upper bound is attained by every disjoint union of complete
graphs on five vertices. The structure of these extremal graphs again raises the
question how much the upper bound can be improved for triangle-free graphs.
We answer this question by proving the following result.

Theorem 1. Every triangle-free graph on n vertices contains at most 3n/3 max-
imal induced matchings, and this bound is attained by every disjoint union of
copies of K3,3.

We would like to mention some implications of the above theorem. There exist
algorithms that list the maximal independent sets of any graph with polynomial
delay [7,9], which means that the time spent between the output of two successive
maximal independent sets is polynomial in the size of the graph. Together with
the aforementioned upper bounds on the number of maximal independent sets,
this implies that the maximal independent sets of an n-vertex graph G can be
listed in time O∗(3n/3), or in time O∗(2n/2) in case G is triangle-free.1

Cameron [2] observed that the maximal induced matchings of a graph G are
exactly the maximal independent sets in the square of the line graph of G. Con-
sequently, the maximal induced matchings of any graph can be listed with poly-
nomial delay. Combining this with the aforementioned upper bound by Gupta
et al. [4] yields an algorithm for listing all maximal induced matchings of an
n-vertex graph in time O∗(10n/5) = O(1.5849n). Gupta et al. [4] also obtained
an algorithm for finding a maximum induced matching in an n-vertex graph in
time O(1.4786n), which is the current fastest algorithm for solving this problem.
Theorem 1 implies that we can do better on triangle-free graphs, as the fol-
lowing two results show. We point out that the problem of finding a maximum
induced matching remains NP-hard on subcubic planar bipartite graphs [5], a
small subclass of triangle-free graphs.

Corollary 1. For every triangle-free graph on n vertices, all its maximal induced
matchings can be listed in time O∗(3n/3) = O(1.4423n) with polynomial delay.

Corollary 2. For every triangle-free graph G on n vertices, a maximum induced
matching in G can be found in time O∗(3n/3) = O(1.4423n).

2 Definitions and Notations

All graphs we consider are finite, simple and undirected. We refer the reader to
the monograph by Diestel [3] for graph terminology and notation not defined
below.

Let G be a graph. For a vertex v ∈ V (G), we write NG(v) and NG[v] to
denote open and closed neighborhoods of v, respectively. Let A ⊆ V (G). The
closed neighborhood of A is defined as NG[A] =

⋃
v∈A NG[v], and the open

1 We use the O∗-notation to suppress polynomial factors, i.e., we write O∗(f(n))
instead of O(f(n) · nO(1)) for any function f .
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neighborhood of A is NG(A) = NG[A]\A. We write G[A] to denote the subgraph
of G induced by A, and we write G − A to denote the graph G[V (G) \ A]. If
A = {v}, then we simply write G − v instead of G − {v}. For any non-negative
integer r, we say that G is r-regular if the degree of every vertex in G is r.
A 3-regular graph is called cubic. A cycle C with vertices v1, v2 . . . , vk and edges
v1v2, . . . , vk−1vk, vkv1 is denoted by C = v1v2 · · · vk.

A matching in G is a subset M ⊆ E(G) such that no two edges in M share
an endpoint. For a matching M in G and a vertex v ∈ V (G), we say that M
covers v if v is an endpoint of an edge in M . A matching M is called induced if
the subgraph induced by endpoints of the edges in M is 1-regular. An induced
matching M in G is maximal if there exists no induced matching M ′ in G such
that M � M ′. We write MG to denote the set of all maximal induced matchings
in G. Let X and Y be two disjoint subsets of V (G). We define MG(X,Y ) to be
the set of all maximal induced matchings of G that cover no vertex of X and
every vertex of Y . Clearly, MG = MG(∅, ∅). When there is no ambiguity we omit
subscripts from the notations.

3 Twins and Maximal Induced Matchings

Let G be a graph. Two vertices u, v ∈ V (G) are (false) twins if NG(u) = NG(v).
In this paper, whenever we write twin, we mean false twin. For every vertex
u ∈ V (G), the twin set of u is defined as TG(u) = {v ∈ V (G) | NG(u) = NG(v)},
i.e., TG(u) consists of the vertex u and all its twins. All the twin sets together
form a partition of the vertex set of G, and we write τ(G) to denote the number
of sets in this partition, i.e., τ(G) denotes the number of twin sets in G.

Definition 1. Let G be a graph. For any two non-adjacent vertices u, v ∈ V (G),
we define Gu→v to be the graph obtained from G by making u into a twin of v
by deleting the edge ux for every x ∈ NG(u) \ NG(v) and adding the edge uy for
every y ∈ NG(v) \ NG(u).

The following lemma identifies certain pairs of vertices u and v for which the
operation in Definition 1 does not decrease the number of maximal induced
matchings in the graph. This lemma will play a crucial role in the proof of our
main result. Note that this lemma holds for general graphs G, and not only for
triangle-free graphs.

Lemma 1. Let G be a graph and let u, v ∈ V (G). If no maximal induced match-
ing in G covers both u and v, then |MGu→v

| ≥ |MG| or |MGv→u
| ≥ |MG|.

Proof. Without loss of generality, we assume that the number of matchings in
MG that cover u is greater than or equal to the number of matchings in MG

that cover v, i.e., |MG(∅, {u})| ≥ |MG(∅, {v})|. Since every matching in MG that
covers u does not cover v due to the assumption that MG(∅, {u, v}) = ∅, it holds
that MG(∅, {u}) = MG({v}, {u}). By symmetry, we also have that MG(∅, {v}) =
MG({u}, {v}). This implies that |MG({v}, {u})| ≥ |MG({u}, {v})|. We now use
this fact to prove that |MGv→u

| ≥ |MG|.
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For convenience, we write G′ = Gv→u. The set MG of all maximal induced
matchings in G can be partitioned as follows:

MG = MG({v}, {u}) � MG({u}, {v}) � MG(∅, {u, v}) � MG({u, v}, ∅).

We can partition MG′ in the same way:

MG′ = MG′({v}, {u}) � MG′({u}, {v}) � MG′(∅, {u, v}) � MG′({u, v}, ∅).

We claim that MG({v}, {u}) = MG′({v}, {u}). Let M ∈ MG({v}, {u}). We
claim that M ∈ MG′({v}, {u}). It is easy to verify that M is an induced matching
in G′, as we only change edges incident with v when transforming G into G′,
and M does not cover v. For contradiction, suppose M is not a maximal induced
matching in G′. Then there is an edge xy ∈ E(G′) such that M ∪ {xy} is an
induced matching in G′. Since u and v are twins in G′ and M covers u, we find
that v /∈ {x, y}. This implies that xy ∈ E(G), so M ∪ {xy} is a matching in G
that does not cover v. In fact, M ∪ {xy} is an induced matching in G, since
every edge in E(G) \ E(G′) is incident with v. This contradicts the maximality
of M in G. Hence we have that MG({v}, {u}) ⊆ MG′({v}, {u}). To show why
MG′({v}, {u}) ⊆ MG({v}, {u}), let M ′ ∈ MG′({v}, {u}). For similar reasons as
before, M ′ is an induced matching in G. To show that M ′ is maximal in G,
suppose for contradiction that there is an edge xy ∈ E(G) such that M ′ ∪ {xy}
is an induced matching in G. Then v /∈ {x, y}, this time due to the assumption
that no maximal induced matching in G covers both u and v. Now we can use
similar arguments as before to conclude that M ′ ∪{x, y} is an induced matching
in G′, yielding the desired contradiction.

By assumption, we have MG(∅, {u, v}) = ∅. Since u and v are twins in G′

by construction, we also know that MG′(∅, {u, v}) = ∅ and MG′({v}, {u}) =
MG′({u}, {v}). Recall that |MG({v}, {u})| ≥ |MG({u}, {v})|, which implies that
|MG′({u}, {v})| ≥ |MG({u}, {v})|. Hence, in order to show that |MG′ | ≥ |MG|,
it suffices to show that |MG′({u, v}, ∅)| ≥ |MG({u, v}, ∅)|.

Let M ∈ MG({u, v}, ∅). We claim that M ∈ MG′({u, v}, ∅). It is easy to
see that M is an induced matching in G′, as the only edges that are modified
are incident with v and M does not cover v. Suppose, for contradiction, that
M is not a maximal induced matching in G′. Then there exists an edge xy ∈
E(G′) such that M ∪ {xy} is an induced matching in G′. If v /∈ {x, y}, then
M ∪ {xy} is also an induced matching in G, contradicting the maximality of
M . Thus we have v ∈ {x, y}. Without loss of generality, suppose x = v. Let
M ′ = M ∪ {vy}. Now consider M ′′ = M ∪ {uy}. Since M ′ is induced matching
and u and v are twins in G′, we infer that M ′′ is also an induced matching in
G′. Note that the edge uy is also present in G, so M ′′ is an induced matching
in G. This contradicts the maximality of M , implying that M ∈ MG′({u, v}, ∅)
and consequently MG({u, v}, ∅) ⊆ MG′({u, v}, ∅). This completes the proof of
Lemma 1. 	


For our purposes, we need to extend Definition 1 as follows.
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Definition 2. Let G be a graph. For any two non-adjacent vertices u, v ∈ V (G),
the graph GTG(u)→v is the graph obtained from G by making each vertex of TG(u)
into a twin of v as follows: for every u′ ∈ TG(u), delete the edge u′x for every
x ∈ NG(u) \ NG(v) and add the edge u′y for every y ∈ NG(v) \ NG(u).

The following lemma is an immediate corollary of Lemma 1, since we can repeat-
edly apply the operation in Definition 1 on all the vertices in TG(u).

Lemma 2. Let G be a graph and let u, v ∈ V (G). If no maximal induced match-
ing in G covers both u and v, then |MGTG(u)→v

| ≥ |MG| or |MGTG(v)→u
| ≥ |MG|.

We also need the following two lemmas in the proof of our main result.

Lemma 3. Let G be a triangle-free graph. For any two non-adjacent vertices
u, v ∈ V (G), the graph GTG(u)→v is triangle-free.

Proof. Let u, v ∈ V (G). For contradiction, suppose that GTG(u)→v contains a
triangle C. Observe that every edge that was added to G in order to create
GTG(u)→v is incident with a vertex in TG(u) and a vertex in NG(v) \ NG(u).
Hence, C contains an edge u′x such that u′ ∈ TG(u) and x ∈ NG(v)\NG(u). Let
y be the third vertex of C. Since G is triangle-free, NG(v) forms an independent
set in both G and GTG(u)→v. This implies in particular that y is not adjacent
to v in GTG(u)→v, and since we did not delete any edge incident with v when
creating GTG(u)→v, it holds that y is not adjacent to v in G either. Moreover,
since both u′ and y do not belong to NG(v) \ NG(u), the edge u′y is present in
G. But then, by Definition 2, the edge u′y should have been deleted when G was
transformed into GTG(u)→v. This yields the desired contradiction. 	


Lemma 4. Let G be a triangle-free graph and let u, v ∈ V (G) be two non-
adjacent vertices. If u and v are not twins, then τ(GTG(u)→v) < τ(G).

Proof. Suppose u and v are not twins. Then TG(u) and TG(v) are two different
twin sets in G. By Definition 2, the vertices of TG(u) ∪ TG(v) all belong to the
same twin set in GTG(u)→v, namely the twin set TGTG(u)→v

(u) = TGTG(u)→v
(v).

Let x ∈ V (G) \ (TG(u) ∪ TG(v)). We prove that all the vertices in TG(x) belong
to the same twin set in GTG(u)→v, which implies that τ(GTG(u)→v) < τ(G).

Suppose there is a vertex y ∈ TG(x) such that x and y are not twins in
GTG(u)→v. Without loss of generality, suppose there is a vertex z ∈ NGTG(u)→v

(y) \ NGTG(u)→v
(x). Since x and y are twins in G, we either have xz, yz ∈ E(G)

or xz, yz /∈ E(G). In the first case, the edge xz is deleted from G when GTG(u)→v

is created, which implies that x ∈ NG(u)\NG(v) by Definition 2. However, since
x and y are twins in G, it holds that y ∈ NG(u) \ NG(v) as well, implying that
the edge yz should not exist in GTG(u)→v. This contradicts the definition of z.
If xz, yz /∈ E(G), then we can use similar argument to conclude that xz should
be an edge in GTG(u)→v, again yielding a contradiction. 	
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4 Proof of Theorem 1

This section is devoted to proving Theorem 1. We first prove that every triangle-
free graph on n vertices has at most 3n/3 maximal induced matchings. At the
end of the section, we show why the bound in Theorem 1 is best possible.

A triangle-free graph on n vertices that has more than 3n/3 maximal induced
matchings is called a counterexample. For contradiction, let us assume that there
exists a counterexample. Then there exists a counterexample G such that for
every counterexample G′, it holds that either |V (G′)| > |V (G)|, or |V (G′)| =
|V (G)| and τ(G′) ≥ τ(G). Let n = |V (G)|. By definition of a counterexample,
|MG| > 3n/3. We will prove a sequence of structural properties of G, and finally
conclude that G does not exist, yielding the desired contradiction.

Lemmas that appear without proofs below are repeated with proofs in a
separate appendix at the end.

Lemma 5. G is connected and has at least three vertices.

Lemma 6. Let u, v ∈ V (G). If there is no maximal induced matching in G that
covers both u and v, then u and v are twins.

Proof. Suppose there is no maximal induced matching in G that covers both
u and v. In particular, this implies that u and v are not adjacent. Let G′ =
GTG(u)→v and G′′ = GTG(v)→u. By Lemma 2, we have that |MG′ | ≥ |MG| or
|MG′′ | ≥ |MG|. Without loss of generality, suppose |MG′ | ≥ |MG|. The graph
G′ is triangle-free due to Lemma 3. This, together with the fact that |MG′ | ≥
|MG| > 3n/3, implies that G′ is a counterexample. But by Lemma 4, it holds
that τ(G′) < τ(G), which contradicts the choice of G. 	


Lemma 7. For every edge uv ∈ E(G) and every set X ⊆ V (G)\{u, v}, it holds
that |MG(X, {u, v})| ≤ 3(n−|X∪N [{u,v}]|)/3.

Proof. Let G′ = G − (X ∪ NG[{u, v}]). We first show that for every matching
M ∈ MG(X, {u, v}), it holds that M \ {uv} ∈ MG′ . Let M ∈ MG(X, {u, v}).
Since uv ∈ E(G) and M covers both u and v, the edge uv belongs to M . Since
M does not cover any vertex in X, it is clear that the set M ′ = M \ {uv} is
an induced matching in G′. We show that M ′ is maximal. For contradiction,
suppose there exists an edge xy ∈ E(G′) such that M ′ ∪ {xy} is an induced
matching in G′. Since neither x nor y belongs to the set X ∪NG[{u, v}], we have
in particular that there is no edge between the sets {x, y} and {u, v}. Hence,
adding the edge xy to M yields an induced matching in G, contradicting the
assumption that M is a maximal induced matching in G.

We now know that for every matching M ∈ MG(X, {u, v}), it holds that M \
{uv} ∈ MG′ . Note that, for any two matchings M1,M2 ∈ MG(X, {u, v}) with
M1 �= M2, the sets M1 \ {uv} and M2 \ {uv} are not equal, as both M1 and
M2 contain the edge uv. Hence we have that |MG(X, {u, v})| ≤ |MG′ |. Since
G′ has less vertices than G and is thus not a counterexample, we have that
|MG′ | ≤ 3|V (G′)|/3 = 3(n−|X∪N [{u,v}]|)/3. We conclude that |MG(X, {u, v})| ≤
|MG′ | ≤ 3(n−|X∪N [{u,v}]|)/3. 	
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Lemma 8. G has no vertex of degree less than 2.

Lemma 9. G has no 5-cycle containing two non-adjacent vertices of degree 2.

Lemma 10. G has no 4-cycle containing exactly one vertex of degree 2.

Lemma 11. G has no two adjacent vertices of degree 2.

Proof. For contradiction, suppose there are two vertices u and v such that d(u) =
d(v) = 2 and uv ∈ E(G). Let a and b denote the other neighbors of u and v,
respectively. Since G is triangle-free, we have that a �= b. We first show that
ab /∈ E(G). For contradiction, assume that ab ∈ E(G) and both a and b have
degree 2. Then G is isomorphic to C4, implying that |MG| = 4 ≤ 34/3. This
contradicts the fact that G is a counterexample. Hence a or b has degree more
than 2. Assume without loss of generality that d(a) ≥ 3. Then a and v are not
twins, and there is no matching in MG covering both a and v. This contradiction
to Lemma 6 implies that ab /∈ E.

We now partition MG into three sets M(∅, {a}), M({a}, {b}), and M({a, b}, ∅),
and find an upper bound on the size of each of these sets.

We first consider M(∅, {a}). Clearly, |M(∅, {a})| =
∑

p∈N(a) |M(∅, {a, p})|.
Let p = u. Since |N [{a, u}]| = d(a) + 2, from Lemma 7 we have |M(∅, {a, u})| ≤
3(n−(d(a)+2))/3. Now consider the case that p �= u. In this case, |N [{a, p}]| =
d(a) + d(p) and d(p) ≥ 2 due to Lemma 8, and thus Lemma 7 implies
|M(∅, {a, p})| ≤ 3(n−(d(a)+2))/3. Consequently, we obtain

|M(∅, {a})| =
∑

p∈N(a)

|M(∅, {a, p})| ≤ d(a) · 3
n−(d(a)+2)

3 .

We now find an upper bound on |M({a}, {b})|. Since no matching in the
set M({a}, {b}) covers u, it holds that M({a}, {b}) = M({a, u}, {b}). We use
the fact that |M({a, u}, {b})| =

∑
q∈N(b) |M({a, u}, {b, q})|. If q = v, then

|M({a, u}, {b, v})| ≤ 3(n−(d(b)+3))/3 due to Lemma 7 and the fact that d(v) = 2
and a /∈ N [{b, v}]. Let now q �= v. First suppose q is adjacent to a. Then
qauvb is a 5-cycle, and hence Lemma 9 implies that d(q) ≥ 3. Consequently,
|N [{b, q}]| = d(b) + d(q) ≥ d(b) + 3, and since u /∈ N [{b, q}], we find that
|M({a, u}, {b, q})| ≤ 3(n−(d(b)+4))/3 due to Lemma 7. Now suppose that q is not
adjacent to a. Then N [{b, q}] contains neither a nor u. Hence, Lemma 7 and the
fact that |N [{b, q}] ≥ d(b) + 2 imply that |M({a, u}, {b, q})| ≤ 3(n−(d(b)+4))/3.
We conclude that

|M({a}, {b})| ≤ 3
n−(d(b)+3)

3 + (d(b) − 1) · 3
n−(d(b)+4)

3 .

Finally, we consider M({a, b}, ∅). Every matching in M({a, b}, ∅) is maximal
and covers neither a nor b, so it must contain edge uv. Hence, it holds that
M({a, b}, ∅) = M({a, b}, {u, v}). Since |N [{u, v}]| = 4, Lemma 7 gives

|M({a, b}, ∅)| = |M({a, b}, {u, v})| ≤ 3
n−4
3 .
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Combining the obtained upper bounds, we find that

|MG| ≤ f(d(a), d(b)) · 3
n
3 ,

where the function f is defined as follows:

f(d(a), d(b)) = d(a) · 3− d(a)+2
3 + 3− d(b)+3

3 + (d(b) − 1) · 3− d(b)+4
3 + 3− 4

3 .

Recall that both a and b have degree at least 2 due to Lemma 8. We observe
that f(2, 2) < 0.965, yielding an upper bound of 0.965 · 3n/3 on |MG| in case
d(a) = d(b) = 2. Now consider the case where d(a) = 2 and d(b) ≥ 3. Then
the function f is decreasing with respect to d(b). Since f(2, 3) < 0.959, we find
that |MG| < 0.959 · 3n/3 in this case. By using similar arguments, we find that
|MG| < 0.984 · 3n/3 when d(b) = 2 and d(a) ≥ 3. Finally, when both d(a) ≥ 3
and d(b) ≥ 3, then the function f is decreasing with respect to both variables
d(a) and d(b) and is maximum when d(a) = d(b) = 3. Since f(3, 3) < 0.978, we
find that |MG| < 0.978 · 3n/3 whenever d(a) ≥ 3 and d(b) ≥ 3. Summarizing, we
obtain a contradiction to the assumption that |MG| > 3n/3 in each case, which
completes the proof of this case. 	


Lemma 12. Let u ∈ V (G). If u has degree 2, then both its neighbors have
degree 3.

Lemma 13. G has no vertex of degree more than 4.

Lemma 14. G has no 4-cycle containing a vertex of degree 2.

Lemma 15. G has no vertex of degree 2.

Lemma 16. G is cubic.

Proof. Due to Lemmas 8, 13, and 15, every vertex in G has degree 3 or 4. Hence,
in order to prove Lemma 16, it suffices to prove that G has no vertex of degree 4.
For contradiction, suppose there exists a vertex u such that d(u) = 4. Let v be a
neighbor of u. To find an upper bound on |MG|, we partition MG into two sets
M(∅, {v}) and M({v}, ∅) and find upper bounds on the sizes of these sets.

Observe that |M(∅, {v})| =
∑

q∈N(v) |M(∅, {v, q})|. If q = u, then |N [{v, q}]| =
d(v) + 4 and hence |M(∅, {u, v})| ≤ 3(n−(d(v)+4))/3 by Lemma 7. For any vertex
q ∈ N(v)\{u}, the fact that |N [{q, v}]| ≥ d(v)+3 together with Lemma 7 implies
that |M(∅, {q, v})| ≤ 3(n−(d(v)+3))/3. Hence we find that

|M(∅, {v})| ≤ 3
n−(d(v)+4)

3 + (d(v) − 1) · 3
n−(d(v)+3)

3 .

Since M({v}, ∅) = MG−v and G − v is not a counterexample, we have that

|M({v}, ∅)| ≤ 3
n−1
3 .
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Hence we conclude that

|MG| ≤ 3
n−(d(v)+4)

3 + (d(v) − 1) · 3
n−(d(v)+3)

3 + 3
n−1
3 .

For every fixed value of d(v) ∈ {3, 4}, it can easily be verified that |MG| ≤ 3n/3,
yielding the desired contradiction. 	


Lemma 17. Let u, v ∈ V (G). If u and v are contained in a 5-cycle C, then u
and v have no common neighbor in V (G) \ V (C).

Lemma 18. G contains at least one 4-cycle.

Lemma 19. G is isomorphic to K3,3.

Proof. Let uv be an edge of G such that no edge in E(G) \ {uv} is contained
in more 4-cycles than uv is. Since u and v are adjacent and G is triangle-free, u
and v have no common neighbor. Recall that G is cubic due to Lemma 16. Let
N(u) = {a, d} and N(v) = {b, c}. It is easy to see that edge uv is contained in
at most four 4-cycles.

If uv is contained in exactly four 4-cycles, then G is isomorphic to K3,3 and
the lemma holds. Suppose uv is contained in at most three 4-cycles. Due to
Lemma 18 and the choice of uv, edge uv belongs to at least one 4-cycle. Hence,
there is at least one edge between sets {a, d} and {b, c}. Note that ad /∈ E(G)
and bc /∈ E(G), as G is triangle-free. We distinguish four cases, depending on
the adjacencies between vertices in {a, d} and {b, c}.

Case 1: ab ∈ E(G) and ac, db, dc /∈ E(G).
Case 2: ab, ac ∈ E(G) and db, dc /∈ E(G).
Case 3: ab, cd ∈ E(G) and ac, db /∈ E(G).
Case 4: ab, ac, bd ∈ E(G) and dc /∈ E(G).

Note that uv belongs to exactly one 4-cycle in Case 1, to exactly two 4-cycles in
Cases 2 and 3, and to exactly three 4-cycles in Case 4.

Observe that MG is equal to

M(∅, {a}) � M({a}, {b}) � M({a, b}, {c}) � M({a, b, c}, {d}) � M({a, b, c, d}, ∅) .

In Claims 1–5 below, we prove upper bounds on the sizes of the five sets in the
above expression. We then combine these five upper bounds in order to obtain
an upper bound on |MG|.
Claim 1. |M(∅, {a})| ≤ 3 · 3(n−6)/3.
Since G is cubic due to Lemma 16, the closed neighborhood of any of the
three edges incident with a consists of six vertices. Hence Lemma 7 ensures
that |M(∅, {a, q})| ≤ 3(n−6)/3 for every q ∈ N(a), implying the upper bound
given in Claim 1.

Claim 2. |M({a}, {b})| ≤ 2 · 3(n−6)/3.
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Note that in all four cases, ab belongs to E(G). By definition, there is no matching
in M({a}, {b}) that contains ab. For any of the other two edges incident with b,
its closed neighborhood has size 6. Hence the correctness of the claimed upper
bound again follows from Lemma 7.

Claim 3. |M({a, b}, {c})| ≤ 3(n−6)/3 + 3(n−7)/3.
First we consider Case 1. In this case, the closed neighborhood of cv contains
vertex b and it does not contain a. Therefore, |{a, b} ∪ N [{c, v}]| = 7 and conse-
quently, by Lemma 7 we have that |M({a, b}, {c, v})| ≤ 3(n−7)/3. Let cq be one
of the other edges incident with c. Recall that uv belongs to exactly one 4-cycle
in Case 1. Hence, vertex q is not adjacent to b, as otherwise bv belongs to two
4-cycles, contradicting the choice of uv. We claim that q is not adjacent to a.
For contradiction, suppose q is adjacent to a. Then qabvc is a 5-cycle containing
a and v, so a and v cannot have a common neighbor in V (G) \ {q, a, b, v, c} due
to Lemma 17. The fact that both a and v are adjacent to u gives the desired
contradiction. Hence, for any q ∈ N(c) \ {v}, we have that |{a, b} ∪ N [{c, q}]| =
8, and thus Lemma 7 implies that |M({a, b}, {c, q})| ≤ 3(n−8)/3. We obtain
that |M({a, b}, {c})| ≤ 3(n−7)/3 + 2 · 3(n−8)/3, which is strictly smaller than
3(n−6)/3 + 3(n−7)/3.

Let us now consider Case 2. Observe that no matching in M({a, b}, {c})
contains edge ac. Hence |M({a, b}, {c})| = |M({a, b}, {c, v})|+|M({a, b}, {c, q})|,
where q is the neighbor of c other than v and a. Both vertices a and b belong
to N [{c, v}] and hence |{a, b} ∪ N [{c, v}]| = 6. Therefore, Lemma 7 guarantees
that |M({a, b}, {c, v})| ≤ 3(n−6)/3. Note that a /∈ N [{c, q}]. We claim that b /∈
N [{c, q}]. For contradiction, suppose b ∈ N [{c, q}]. Then b is adjacent to q, and
hence bv belongs to three 4-cycles, namely bvua, bvcq, and bvca. Since uv belongs
to only two 4-cycles in Case 2, this contradicts the choice of uv. Hence, we have
that |{a, b} ∪ N [{c, q}]| = 7 and consequently |M({a, b}, {c, q})| ≤ 3(n−7)/3 by
Lemma 7. We can now conclude that |M({a, b}, {c})| ≤ 3(n−6)/3 + 3(n−7)/3.

For Case 3, let q be the neighbor of c other than d and v. Since b ∈ N [{c, v}]
and a /∈ N [{c, v}] in Case 3, we have that |{a, b} ∪ N [{c, v}]| = 7 and therefore
|M({a, b}, {c, v})| ≤ 3(n−7)/3 due to Lemma 7. Moreover, since N [{c, d}] contains
neither a nor b, Lemma 7 implies that |M({a, b}, {c, d})| ≤ 3(n−8)/3. We now
consider edge cq. Since no matching in M({a, b}, {c, q}) covers u, it holds that
M({a, b}, {c, q}) = M({a, b, u}, {c, q}). Recall that N(u) = {v, a, d}, so q /∈ N [u].
For contradiction, suppose a ∈ N [q]. Then qauvc is a 5-cycle containing two
vertices, namely u and c, that have a common neighbor, namely d, in the set
V (G) \ {q, a, u, v, c}. This contradicts Lemma 17, so we conclude that a /∈ N [q].
Consequently, we have that |{a, b, u} ∪ N [{c, p}]| = 8, so Lemma 7 implies that
|M({a, b}, {c, p})| ≤ 3(n−8)/3. We conclude that |M({a, b}, {c})| ≤ 3(n−7)/3 + 2 ·
3(n−8)/3 < 3(n−6)/3 + 3(n−7)/3.

Finally, we consider Case 4. Let N(c = {a, v, q}. Since no matching in
M({a, b}, {c}) covers a, we have that |M({a, b}, {c})| = |M({a, b}, {c, v})| +
|M({a, b}, {c, q})|. The fact that |N [{c, v}]| = 6 together with Lemma 7 implies
that |M({a, b}, {c, v})| ≤ 3(n−6)/3. Since N(a) = {u, b, c} and N(b) = {v, a, c} in
this case, neither a nor b belongs to N [{c, q}]. Hence, |{a, b}∪N [{c, q}]| = 8 and
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using Lemma 7, we deduce that |M({a, b}, {c, q})| ≤ 3(n−8)/3. We can therefore
conclude that |M({a, b}, {c})| ≤ 3(n−6)/3 + 3(n−8)/3 < 3(n−6)/3 + 3(n−7)/3.

Claim 4. |M({a, b, c}, {d})| ≤ 3(n−7)/3 + 3(n−8)/3.
First we consider Cases 1 and 2. In both of these cases, the closed neighborhood
of du contains a, but neither b nor c belong to N [{d, u}]. Therefore, |{a, b, c} ∪
N [{d, u}]| = 8 and consequently, by Lemma 7, we have that |M({a, b, c}, {d, u})|
≤ 3(n−8)/3. Let q ∈ N(d) \ {u}. Since no matching in the set M({a, b, c}, {d, q})
covers vertex v, we have that M({a, b, c}, {d, q}) = M({a, b, c, v}, {d, q}). Edge
au belongs to all the 4-cycles to which uv belongs. By the choice of uv, edge au
does not belong to any other 4-cycle. In particular, the vertices {a, q, d, u} do not
induce a C4, which implies that a /∈ N [q]. We claim that b is also not adjacent
to q. For contradiction, suppose b ∈ N [q]. Then vertices b and u are contained
in a 5-cycle, namely bpduv, so the fact that they are adjacent to a contradicts
Lemma 17. Finally, we observe that v /∈ N [q], since N(v) = {u, b, c}. From this,
we deduce that |{a, b, c, v} ∪ N [{d, q}]| = 9, and hence |M({a, b, c}, {d, q})| ≤
3(n−9)/3 due to Lemma 7. We conclude that |M({a, b, c}, {d})| ≤ 3(n−8)/3 + 2 ·
3(n−9)/3, which is less than 3(n−7)/3 + 3(n−8)/3.

Now we consider Case 3. Since no matching in M({a, b, c}, {d}) contains edge
dc, we have that |M({a, b, c}, {d})| = |M({a, b, c}, {d, u})|+ |M({a, b, c}, {d, q})|,
where q is the neighbor of d other than c and u. In Case 3, both vertices a and c
are in N [{d, u}] and b /∈ N [{d, u}]. Hence |{a, b, c}∪N [{d, u}]| = 7, and therefore
Lemma 7 implies that |M({a, b, c}, {d, u})| ≤ 3(n−7)/3. From the observation that
no matching in M({a, b, c}, {d}) covers v, it follows that M({a, b, c}, {d, q}) =
M({a, b, c, v}, {d, q}). We claim that neither v nor b belong to N [{d, q}]. The fact
that neither v nor b belongs to N [d] follows from the triangle-freeness of G and
the fact that we are in Case 3. Moreover, since N(v) = {u, b, c}, we have that
v /∈ N [q]. For contradiction, suppose b ∈ N [q]. Then the vertices {q, b, v, u, d}
induce a 5-cycle. Vertices b and u lie on this 5-cycle and have a common neigh-
bor, namely a, in V (G) \ {q, b, v, u, d}. This contradiction to Lemma 17 implies
that {v, b} ∩ N [{d, q}] = ∅. Hence |{a, b, c, v} ∪ N [{d, q}]| ≥ 8, and we can use
Lemma 7 to find that M({a, b, c}, {d, q})| ≤ 3(n−8)/3. Consequently, we have
that |M({a, b, c}, {d})| ≤ 3(n−7)/3 + 3(n−8)/3.

It remains to consider Case 4. Let q be the neighbor of d other than b and u.
Since edge db is not contained in any of the matchings in M({a, b, c}, {d}), we
have that |M({a, b, c}, {d}| = |M({a, b, c}, {d, u})| + |M({a, b, c}, {d, q})|. Since
c /∈ N [{d, u}], we have that |{a, b, c} ∪ N [{d, u}]| = 7 and hence |M({a, b, c},
{d, u})| ≤ 3(n−7)/3 due to Lemma 7. Observe that vertex v is not covered by
any matching in M({a, b, c}, {d, q}), which implies that M({a, b, c}, {d, q}) =
M({a, b, c, v}, {d, q}). Since N(a) = N(v) = {u, b, c}, we have that neither a nor
v belongs to N [{d, q}]. We now show that c does not belong to N [{d, q}] either.
For contradiction, suppose otherwise. Since c is not adjacent to d in Case 4,
vertex c must be adjacent to q. Hence the vertices {c, q, d, u, v} induce a 5-cycle.
By Lemma 17, no two vertices on this cycle have a common neighbor outside the
cycle, contradicting the fact that both u and c are adjacent to a. This implies that
|{a, b, c, v} ∪ N [{d, q}]| ≥ 9, so |M({a, b, c}, {d, q})| ≤ 3(n−9)/3 due to Lemma 7.
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We conclude that |M({a, b, c}, {d})| ≤ 3(n−7)/3+3(n−9)/3, which is clearly upper
bounded by 3(n−7)/3 + 3(n−8)/3.

Claim 5. |M({a, b, c, d}, ∅)| ≤ 3(n−6)/3.
Every maximal induced matching in G that does not cover any vertex in {a, b, c, d}
contains edge uv. Therefore, M({a, b, c, d}, ∅) = M({a, b, c, d}, {u, v}). Since
|N [{u, v}]| = 6 due to the fact that G is cubic by Lemma 16, it follows from
Lemma 7 that |M({a, b, c, d}, {u, v})| ≤ 3(n−6)/3. This completes the proof of
Claim 5.

Combining the upper bounds in Claims 1–5 yields the following:

|MG| ≤ 7 · 3
n−6
3 + 2 · 3

n−7
3 + 3

n−8
3 < 3

n
3 .

This contradicts the assumption that G is a counterexample. 	


Lemma 19 states that G is isomorphic to K3,3, so in particular n = 6. Since every
maximal induced matching in K3,3 consists of a single edge, we have that |MG| =
|E(K3,3)| = 9 = 3n/3, contradicting the assumption that G is a counterexample.
This contradiction implies that every triangle-free graph on n vertices has at
most 3n/3 maximal induced matchings.

It remains to show that the bound in Theorem 1 is best possible. Let G be
the disjoint union of p copies of K3,3 for some positive integer p. Every maximal
induced matching in G contains exactly one edge of each connected component
of G, which implies that |MG| = 9p = 9n/6 = 3n/3. This completes the proof of
Theorem 1.
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Abstract. We study the following independent set reconfiguration prob-
lem: given two independent sets I and J of a graph G, both of size at
least k, is it possible to transform I into J by adding and removing ver-
tices one-by-one, while maintaining an independent set of size at least k
throughout? This problem is known to be PSPACE-hard in general. For
the case that G is a cograph on n vertices, we show that it can be solved
in polynomial time. More generally, we show that for a graph class G that
includes all chordal and claw-free graphs, the problem can be solved in
polynomial time for graphs that can be obtained from a collection of
graphs from G using disjoint union and complete join operations.

1 Introduction

Reconfiguration problems have been studied often in recent years. These arise
in settings where the goal is to transform feasible solutions to a problem in a
step-by-step manner, while maintaining a feasible solution throughout. A recon-
figuration problem is obtained by defining feasible solutions (or configurations)
for instances of the problem, and a (symmetric) adjacency relation between solu-
tions. This defines a solution graph for every instance, which is usually exponen-
tially large in the input size. Usually, it is assumed that adjacency and being
a feasible solution can be tested in polynomial time. Typical questions that
are studied are deciding the existence of a path between two given solutions
(reachability), finding shortest paths between solutions, deciding whether the
solution graph is connected or giving sufficient conditions for this, and giving
bounds on its diameter. For example, the literature contains such results on the
reconfiguration of vertex colorings [1,3,7,9–11], boolean assignments that satisfy
a given formula [16], independent sets [17,20,22,24], matchings [20], shortest
paths [4,5,21], subsets of a (multi-)set of integers [14,19], etc. Techniques for
many different reconfiguration problems are discussed in [20,24]. See the recent
survey by Van den Heuvel [18] for an overview of and introduction to reconfig-
uration problems, and a discussion of their various applications.

One of the most well-studied problems of this kind is the reconfiguration of
independent sets (which are sets of pairwise nonadjacent vertices). For a graph G
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and integer k, the independent sets of size at least/exactly k of G form the fea-
sible solutions. Independent sets are also called token configurations, where the
independent set vertices are viewed as tokens. Three types of adjacency relations
have been studied in the literature: in the token jumping (TJ) model [20,22], a
token can be moved from any vertex to any other vertex. In the token sliding
(TS) model, tokens can be moved along edges of the graph [17,22]. In the token
addition and removal (TAR) model [20,22], tokens can be removed and added
in arbitrary order, though at least k tokens should remain at any time (k is the
token lower bound). Of course, in all of these cases, an independent set should
be maintained.

The reachability problem has received the most attention in this context:
given two independent sets I and J of a graph G, and possibly a token lower
bound k ≤ min{|I|, |J |}, is there a path (or reconfiguration sequence) from I to
J in the solution graph? We call this problem TJ-Reachability, TS-Reachability
or TAR-Reachability, depending on the adjacency relation that is used. Kamiński
et al. [22] showed that the TAR-Reachability problem generalizes the TJ-
Reachability problem. For all three adjacency relations, this problem is PSPACE-
hard, even in perfect graphs [22], and even in planar graphs of maximum degree
3 [17] (see also [7]). In [20] an alternative, simple PSPACE-hardness proof is
given. In addition, in [22], the problem of deciding whether there exists a path
of length at most l between two solutions is shown to be strongly NP-hard, for
all three adjacency models.

On the positive side, these problems can be solved in polynomial time for
various restricted graph classes. The result on matching reconfiguration by Ito
et al. [20] implies that for line graphs, TJ-Reachability and TAR-Reachability can
be solved efficiently. This result has recently been generalized to claw-free graphs,
also for TS-Reachability [8]. Kamiński et al. [22] give an efficient algorithm for
TS-Reachability in cographs, and show that for TJ-Reachability in even-hole-
free graphs, a reconfiguration sequence of length |I\J | exists between every pair
of independent sets I and J . TAR-Reachability has also been studied under
the name Vertex Cover Reconfiguration in [24], where parameterized complexity
results for the problem are given. (Recall that I is an independent set of G if
and only if V (G)\I is a vertex cover of G.)

New results and techniques. In this paper, we show that TAR-Reachability
can be solved in polynomial time for cographs. Using [22], it follows that the
same holds for TJ-Reachability. This answers an open question from [22]. Recall
that a graph is a cograph iff it has no induced path on four vertices. Alternatively,
cographs can be defined as graphs that can be obtained from a collection of triv-
ial (one vertex) graphs by repeatedly applying (disjoint) union and (complete)
join operations. The order of these operations can be described using a rooted
cotree. This characterization allows efficient dynamic programming (DP) algo-
rithms for various NP-hard problems. Our algorithm is also a DP algorithm over
the cotree, albeit more complex than many known DP algorithms on cographs.
For both solutions I and J , certain values are computed, using first a bottom up
DP phase, and next a top down DP phase over the cotree. Using these values, we
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can conclude whether J is reachable from I. Because of this method, we in fact
obtain a stronger result: TJ- and TAR-Reachability can be decided efficiently for
any graph that can be obtained using join and union operations, when starting
with a collection of base graphs from a graph class G that satisfies the following
properties: (i) For any graph in G, the TAR-Reachability problem can be decided
efficiently, and (ii) for any graph in G and independent set I, the size of a maxi-
mum independent set that is TAR-reachable from I can be computed efficiently,
for all token lower bounds k ≤ |I|. Results from [8,15,22,23,25] can easily be
combined to show that chordal graphs and claw-free graphs satisfy these prop-
erties. In all, this yields quite a rich graph class for which this PSPACE-hard
problem can be solved efficiently. Considering the fact that TAR-Reachability
is PSPACE-hard for perfect graphs [22], the boundary between hard and easy
graph classes for this problem starts to become clear.

This paper presents one of the first nontrivial examples of how dynamic
programming over graph decompositions can be used to solve reconfiguration
problems. (We remark that a DP approach has also been used to show that the
PSPACE-hard Shortest Path Reconfiguration problem can be solved in polyno-
mial time on planar graphs [4], using a problem-specific layer decomposition of
the graph.) This is especially interesting since cographs form the base class for
various graph width measures: cographs are exactly the graphs of cliquewidth
at most two, and exactly the graphs of modular-width two [13]. We expect that
our method forms a first step towards efficiently solving various reconfigura-
tion problems for graphs of bounded modular-width, and provides useful con-
cepts for addressing other graph classes/decompositions. However, for graphs of
bound cliquewidth, similar efficient algorithms should not be expected, since it
was shown very recently that many reconfiguration problems, including TAR-
Reachability and TJ-Reachability, remain PSPACE-hard for graphs of band-
width/treewidth/cliquewidth at most k, for some constant k [27].

Our DP algorithm for the TAR-Reachability problem is presented in
Sects. 3–5. First, in Sect. 3, an example is given, the proof of this statement is
outlined, and a detailed overview of Sects. 4 and 5 is given. In Sect. 6, examples
of graph classes are given to which this algorithm applies. We start in Sect. 2
with precise definitions, and end in Sect. 7 with a discussion. Statements for
which additional proof details can be found in the full version of this paper [6]
are marked with a star.

2 Preliminaries

By α(G) we denote the maximum size of an independent set in G. In this paper,
we use the token addition and removal (TAR) model for independent set recon-
figuration. For a graph G and integer k, the vertex set of the graph TARk(G) is
the set of all independent sets of size at least k in G. Two distinct independent
sets I and J are adjacent in TARk(G) if there exists a vertex v ∈ V (G) such
that I ∪ {v} = J or I = J ∪ {v}. Vertices from independent sets will also be
called tokens, and we will also say that J is obtained from I by adding one token
on v resp. removing one token from v.
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For an integer k and two independent sets I and J of G with |I| ≥ k and
|J | ≥ k, we write I ↔G

k J if TARk(G) contains a walk from I to J . Such a walk
in TARk(G) (a sequence of independent sets) is also called a k-TAR-sequence for
G from I to J . To avoid discussing trivial cases in our proofs, we allow that a k-
TAR-sequence contains consecutive sets that are identical. Observe that I ↔G

0 J
always holds, and that the relation ↔G

k is an equivalence relation, for all G and k.
The superscript G is omitted if the graph in question is clear. If G and k are
clear from the context, we will also simply say that J is reachable from I.

A generalized cotree is a binary tree T with root r, together with

– a partition of the nonleaf vertices into union nodes and join nodes, and
– a graph Gu for every leaf u of T , such that for any two leaves u and v, the

graphs Gu and Gv are vertex and edge disjoint.

Vertices of T are called nodes. With every node u ∈ V (T ) we associate a graph
Gu in the following way: for leaves u, Gu is as given. Otherwise, u has two child
nodes; denote these by v and w. If u is a union node, then Gu is the disjoint union
of Gv and Gw. If u is a join node, then Gu is obtained by taking the complete
join of Gv and Gw. This operation is defined as follows: start with the disjoint
union of Gv and Gw, and add edges yz for every combination of y ∈ V (Gv) and
z ∈ V (Gw). For a node u ∈ V (T ), we denote Vu = V (Gu). A generalized cotree
T is called a cotree if for every leaf v ∈ V (T ), the graph Gv consists of a single
vertex. Such a leaf is called a trivial leaf. (See Fig. 1(d) for an example.)

Let T be a (generalized) cotree, with root r. For a graph G, we say that T
is a (generalized) cotree for G if Gr = G. A graph G is called a cograph if there
exists a cotree for G. Let G be a graph class. We say that a generalized cotree
T for a graph G is a cotree decomposition of G into G-graphs if for every leaf
v ∈ V (T ), the graph Gv ∈ G.

3 Example and Proof Outline

In Fig. 1, three independent sets A, B and C are shown for a cograph G. In order
to go from A to B in TAR5(G), an independent set must be visited which has no
tokens on the component Gx, and therefore at least five tokens on the other two
components. The only such independent set of G is C. Using similar observations,
it can be verified that the shortest 5-TAR-sequence from A (or B) to C is unique
up to symmetries, and has length twelve (six additions and deletions). Hence
the shortest 5-TAR-sequence from A to B has length 24. In general, deciding
whether A ↔G

k B requires computing the following values λI
k(v), which indicate

the minimum number of vertices of Vv that must be contained in any independent
set reachable from I.

Definition 1. Let T be a generalized cotree for a graph G, I be an independent
set of G, and k ≤ |I|. For v ∈ V (T ), define λI

k(v) = min |J ∩ Vv| over all
independent sets J of G with I ↔G

k J .
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Fig. 1. (a), (b), (c): A cograph G, with independent sets A, B and C indicated by the
white vertices. Any 5-TAR-sequence from A to B must visit C and use all vertices of
G. (d): A cotree of G with root r, with join nodes v, w and x corresponding to the
components of G.

For instance, in the example from Fig. 1, λA
5 (x) = 0 = λB

5 (x), and this fact
is essential for concluding that A ↔G

5 B in this case. The following theorem
characterizes whether B is reachable from A, using the values from Definition 1.

Theorem 2. Let T be a generalized cotree for a graph G. Let A and B be two
independent sets of G of size at least k. Then A ↔G

k B if and only if

1. for all nodes u ∈ V (T ), λA
k (u) = λB

k (u), and
2. for all leaves u ∈ V (T ), (A ∩ Vu) ↔Gu

� (B ∩ Vu), where � = λA
k (u).

The forward direction of the proof is straightforward: if A ↔G
k B, then since

↔G
k is an equivalence relation, any independent set J is reachable from A if and

only if it is reachable from B. It follows that λA
k (v) = λB

k (v) for all v ∈ V (T ). The
second property follows by restricting all independent sets in a k-TAR-sequence
from A to B to the subgraph Gu for any leaf u ∈ V (T ). By definition, these all
have size at least � = λA

k (u), so this yields an �-TAR-sequence from A ∩ Vu to
B ∩ Vu for Gu. In Sect. 5, the backward direction of the proof is given.

In order to efficiently decide whether A ↔G
k B, it remains to compute the

values λI
k(v) for all v ∈ V (T ) and I = A,B. In the example from Fig. 1, it holds

that λA
5 (x) = 0. This is because on the subgraph Gu, which is the disjoint union

of components Gv and Gw (see Fig. 1(d)), it is possible to reconfigure from the
initial independent set A to an independent set with at least five tokens on Gu,
while keeping at least two tokens on Gu throughout. This indicates that in order
to compute the values λI

k(v), the following values must be computed.

Definition 3. Let T be a generalized cotree for G, and let I be an independent
set of G. For v ∈ V (T ) and � ∈ {0, . . . , |I ∩ Vv|}, denote by μI

� (v) the maximum
of |J | over all independent sets J of Gv with (I ∩ Vv) ↔Gv

� J .

Note that μI
0(v) = α(Gv) (regardless of the choice of I). The value μI

� (v) depends
only on the situation in the subgraph Gv; not on the entire graph. This is in
contrast to the values λI

k(v). So the values μI
� (u) for a node u with children v and
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w can be computed using only the values μI
�′(v) and μI

�′(w) for different choices
of �′, so using a bottom up dynamic programming algorithm. This can then be
used to compute values λI

k(u), which requires considering the entire graph, so
this uses a top down dynamic programming algorithm. The DP rules are given in
Sect. 4. Together with Theorem 2, this yields our main algorithmic result, given
in the next theorem, which is also proved in Sect. 5.

Theorem 4. Let T be a generalized cotree for a graph G on n vertices, let k ∈ N

and let A and B be independent sets of G. If for every nontrivial leaf v ∈ V (T )
and relevant integer �, (1) the values μA

� (v) and μB
� (v) are known, and (2) it is

known whether (A∩Vv) ↔Gv

� (B ∩Vv), then in polynomial time it can be decided
whether A ↔G

k B.

In particular, Theorem4 implies that for any two independent sets A and B for
a cograph G, it can be decided in polynomial time whether A ↔G

k B.
For all of our proofs, an essential (easy to see) fact is that for every node u,

the vertex set Vu is a module of G. A module of a graph G is a set M ⊆ V (G) such
that for every v ∈ V (G)\M , either M ⊆ N(v) or M ∩ N(v) = ∅. Note that we
will also consider V (G) to be a (trivial) module of G. Modules are very useful for
independent set reconfiguration, since to some extent, we can reconfigure within
the module and outside of the module independently; only the number of tokens
on the module matters. The following two lemmas make this more precise, and
present two useful properties for the proofs below.

Lemma 5. (*) Let M be a module of a graph G, let k and � be integers, and
let A be an independent set of G, with |A ∩ M | ≥ max{1, �} and |A| ≥ k.
Denote H = G[M ]. If there exists an independent set B of G with A ↔G

k B and
|B ∩M | ≤ �, and if there exists an independent set C of H with (A∩M) ↔H

� C,
then there exists an independent set D of G with A ↔G

k D and D ∩ M = C.

Lemma 6. (*) Let M be a module of a graph G, such that M can be parti-
tioned into two sets M1 and M2 with no edges between M1 and M2. Let A be
an independent set of G, let B1 be an independent set of G with A ↔G

k B1, that
maximizes |B1 ∩ M1| among all such sets, and let B2 be an independent set of
G with A ↔G

k B2. Then there exists an independent set C of G with A ↔G
k C

and C ∩ Mi = Bi ∩ Mi for i ∈ {1, 2}.

4 Dynamic Programming Rules

Throughout this section, T denotes a generalized cotree of G and I denotes an
independent set of G. We first show how to compute the values μI

� (u) for every
type of node u. For trivial leaf nodes, this is easy.

Proposition 7. Let u ∈ V (T ) be a trivial leaf node. Then μI
� (u) = 1 for all �.

For join nodes u, the computation of μI
� (u) is still relatively straightforward.

Note that for any independent set I, u has a child w with Vw ∩ I = ∅.
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Proposition 8. Let u ∈ V (T ) be a join node. Let w be a child of u with I∩Vv =
∅, and let v be the other child of u. Then μI

� (u) = μI
� (v) for all � ≥ 1, and

μI
0(u) = max{μI

0(v), μI
0(w)}.

Proof: Because all edges are present between Gv and Gw, a maximum inde-
pendent set of Gu is either a maximum independent set of Gv or of Gw, so
μI
0(u) = α(Gu) = max{α(Gv), α(Gw)} = max{μI

0(v), μI
0(w)}. Now consider the

case � ≥ 1, and thus |I ∩ Vu| ≥ 1. Then initially all tokens of I are on the child
Gv. As long as there is at least one token on Gv, no tokens can be added to Gw.
So essentially, Gw can be ignored, and thus μI

� (u) = μI
� (v). 
�

For union nodes u with children v and w, computing the values μI
� (u) is more

complicated, and requires studying �-TAR-sequences for Gu of the following type.
Let x0 = I ∩Vv. Observe that from the initial independent set I ∩Vu we can reach
an independent set with μI

x0
(v) tokens on Vv, and y0 := max{0, �−μI

x0
(v)} tokens

on Vw, while keeping at least � tokens on Vu throughout. Call this an independent
set of type (μI

x0
(v), y0). From this, we can subsequently reach an independent set

of type (x1, μ
I
y0

(w)), with x1 := max{0, � − μI
y0

(w)}. Next, an independent set of
type (μI

x1
(v), y1) with y1 := max{0, � − μI

x1
(v)} can be reached, etc. This process

continues with finding ever lower x- and y-values, until a ‘stable tuple’ (x, y) is
obtained. This motivates the following definition.

Definition 9. For a union node u ∈ V (T ) with left child v and right child w,
and integer � ≤ |I ∩ Vu|, call a tuple (x, y) of integers with x ≤ |I ∩ Vv| and
y ≤ |I ∩ Vw| �-stable if x = max{0, � − μI

y(w)} and y = max{0, � − μI
x(v)}. Call

an �-stable tuple (x, y) maximum if there is no �-stable tuple (x′, y′) with x′ ≥ x,
y′ ≥ y and (x, y) �= (x′, y′).

It can be shown that there is a unique maximum �-stable tuple, which can be
characterized as follows. Using this characterization, Lemma 11 shows how the
values μI

� (u) can be computed for a join node u.

Lemma 10. (*) Let u ∈ V (T ) be a union node, with left child v and right
child w. For � ∈ {0, . . . , |I ∩ Vu|}, let x = min |J ∩ Vv| and y = min |J ∩ Vw|,
where in both cases the minimum is taken over all independent sets J of Gu with
(I ∩ Vu) ↔Gu

� J . Then (x, y) is the unique maximum �-stable tuple for I and u.

Lemma 11. (*) Let u ∈ V (T ) be a union node, with left child v and right child
w. For � ∈ {0, . . . , |I ∩ Vu|}, let (x, y) be the unique maximum �-stable tuple for
I and u. Then μI

� (u) = μI
x(v) + μI

y(w).

We will now show how the values λI
k(v) can be computed for all nodes v ∈

V (T ). For the case that v is a union node, this requires knowledge of the unique
maximum �-stable tuple. For the root node of T , the value is trivial.

Proposition 12. Let r be the root node of T . Then λI
k(r) = k.

Proposition 13. Let u ∈ V (T ) be a join node, with children v and w such that
I ∩ Vw = ∅. Then λI

k(v) = λI
k(u) and λI

k(w) = 0.



112 P. Bonsma

Proof: Considering I, λI
k(w) = 0 follows immediately. If λI

k(u) = 0, then obvi-
ously λI

k(v) = 0. Adding a token to Gw requires first reaching an independent
set with no tokens on Gv, and thus requires λI

k(u) = 0. So if λI
k(u) ≥ 1, then Gw

can essentially be ignored, and therefore λI
k(v) = λI

k(u) in that case. 
�

Lemma 14. Let u ∈ V (T ) be a union node, with left child v and right child w.
Let � = λI

k(u), and let (x, y) be the maximum �-stable tuple for I and u. Then
λI

k(v) = x and λI
k(w) = y.

Proof: Denote Iu = I∩Vu. We first show that λI
k(v) ≥ x and λI

k(w) ≥ y. Consider
a k-TAR-sequence I0, . . . , Ip for G with I0 = I and |Ip ∩ Vv| = λI

k(v). For every
i, denote I ′

i = Ii ∩ Vu, and consider the sequence I ′
0, . . . , I

′
p. By definition of

� = λI
k(u), for every i it holds that |I ′

i| ≥ �, so Iu ↔Gu

� I ′
p. Using Lemma 10 it

then follows that λI
k(v) = |Ip ∩ Vv| ≥ x. Analogously, λI

k(w) ≥ y follows.
We will now prove that λI

k(v) ≤ x and λI
k(w) ≤ y. The case � = 0 is obvious,

so assume � ≥ 1. By Lemma 10, there exist independent sets J1 and J2 of Gu

with Iu ↔Gu

� J1, Iu ↔Gu

� J2, |J1∩Vv| = x and |J2∩Vw| = y. By the definition of
� = λI

k(u), there exists an independent set B of G with I ↔G
k B and |B∩Vu| = �.

We can now apply Lemma 5 twice, with Vu and I in the role of M and A, and
J1 or J2 respectively in the role of C, to conclude that there exist independent
sets D1 and D2 of G with I ↔G

k D1, I ↔G
k D2, D1 ∩ Vu = J1 and D2 ∩ Vu = J2.

So |D1 ∩ Vv| = x and |D2 ∩ Vw| = y, and thus λI
k(v) ≤ x and λI

k(w) ≤ y. 
�

5 Algorithm Summary and Main Theorems

We can now prove our two main theorems; first we prove our characterization
of A ↔G

k B in terms of the values λI
k(u), and secondly we summarize how these

values can be computed efficiently.

Proof of Theorem 2: The forward direction of the proof was given in Sect. 3.
We now prove the backward direction. Assume that the two properties given in
the theorem statement hold. So we may denote λk(u) = λA

k (u) = λB
k (u) for all

nodes u. We prove the following claim by induction over T :

Claim A: For all nodes u ∈ V (T ): (A ∩ Vu) ↔Gu

λk(u)
(B ∩ Vu).

For leaf nodes u ∈ V (T ) (induction base), the statement follows immediately
from the second property. To prove the induction step, first consider a join
node u ∈ V (T ) with children v and w. Suppose that λk(v) ≥ 1. This implies
A ∩ Vv �= ∅ and B ∩ Vv �= ∅. Therefore, since u is a join node, A ∩ Vu = A ∩ Vv

and B ∩ Vu = B ∩ Vv. In addition, λk(u) = λk(v) (Proposition 13). From these
facts, and the induction assumption (A ∩ Vv) ↔Gv

λk(v)
(B ∩ Vv), we conclude that

(A ∩ Vu) ↔Gu

λk(u)
(B ∩ Vu). The case λk(w) ≥ 1 is analog. On the other hand, if

λk(v) = λk(w) = 0, then λk(u) = 0 (Proposition 13). Claim A follows for u since
(A ∩ Vu) ↔Gu

0 (B ∩ Vu) trivially holds.
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Next, consider the case that u ∈ V (T ) is a union node with left child v and
right child w. Denote � = λk(u), x = λk(v) and y = λk(w). By Lemma 14, (x, y)
is the maximum �-stable tuple for u, for both A and B. We define Cv to be an
independent set of Gv with (A ∩ Vv) ↔Gv

x Cv, with maximum size among all
such sets, and define Cw to be an independent set of Gw with (A∩Vw) ↔Gw

y Cw,
with maximum size among all such sets. By induction, (A ∩ Vv) ↔Gv

x (B ∩ Vv)
holds, so it also holds that (B ∩ Vv) ↔Gv

x Cv, and that Cv has maximum size
among all such reachable sets. Analogously, (B ∩ Vw) ↔Gw

y Cw holds, and Cw

has maximum size among all such reachable sets. Define Cu = Cv ∪ Cw. We
will now show that Cu is reachable from both A ∩ Vu and B ∩ Vu, which proves
Claim A for node u.

Lemma 10 shows that there exists an independent set J of Gu with (A ∩
Vu) ↔Gu

� J and |J ∩ Vv| = x. Using this, we argue that there exists an inde-
pendent set J1 of Gu with (A ∩ Vu) ↔Gu

� J1 and J1 ∩ Vv = Cv. If A ∩ Vv = ∅,
then this claim is trivial. Otherwise, we can apply (module) Lemma5 to draw
this conclusion (using Vv, Gu, J and Cv in the roles of the module M , entire
graph G, and independent sets B and C, respectively). Analogously, we may
conclude that there exists an independent set J2 of Gu with (A ∩ Vu) ↔Gu

� J2

and J2 ∩ Vw = Cw. Since Cu = Cv ∪ Cw, we can now apply (module) Lemma 6
(with Gu in the role of the entire graph, Vv and Vw in the roles of disjoint mod-
ules M1 and M2, and J1 and J2 in the roles of B1 and B2), to conclude that
A ∩ Vu ↔Gu

� Cu. For this, we require the fact that Cv has maximum size among
all independent sets of Gv that are reachable from A ∩ Vv.

The argument from the previous paragraph also holds when replacing A by
B, since Cv and Cw are also maximum reachable independent sets from B ∩ Vv

and B ∩ Vw. So B ∩ Vu ↔Gu

� Cu also holds. Hence A ∩ Vu ↔Gu

� Cu ↔Gu

� B ∩ Vu,
which proves Claim A for u.

This concludes the induction proof of Claim A. Applying Claim A to the root
node r of T shows that A ↔G

k B, since λk(r) = k (Proposition 12), and G = Gr,
and therefore concludes the proof of the theorem. 
�
Proof of Theorem 4: First we use a bottom up dynamic programming algo-
rithm, to compute the values μA

� (u) and μB
� (u) for every node u and relevant

integer �, and to compute the maximum �-stable tuples for every union node and
relevant integer �. This can be done in polynomial time using the rules given in
Proposition 7, Proposition 8 and Lemma 11. Note that maximum �-stable tuples
can easily be computed in polynomial time by testing a quadratic number of
possible tuples (Definition 9).

Next, we start the top down phase of the dynamic programming algorithm,
where we compute the values λA

k (u) and λB
k (u) for every node u. This can be

done in polynomial time using the rules given in Propositions 12 and 13, and
Lemma 14. Note that applying Lemma14 to a union node u requires the pre-
viously computed maximum �-stable tuple (x, y) for I = A,B, with � = λI

k(u).
This is why the bottom up phase is required. At this point, the characterization
given in Theorem 2 can be used to conclude whether A ↔G

k B. 
�
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6 Examples of Suitable Graph Classes

Consider T , G, A, B and k as in Theorem 4. If v ∈ V (T ) is a trivial leaf, then
for every relevant value �, μA

� = 1 and μB
� = 1 hold (Proposition 7), and clearly

(A∩Vv) ↔Gv

� (B∩Vv) holds. So combined with the fact that a cotree of a cograph
G can be found in linear time [12], Theorem 4 implies that the TAR-Reachability
problem can be decided in polynomial time for a cograph G.

Theorem 4 is however much stronger, and implies that TAR-Reachability
can be decided efficiently for much richer graph classes. Recall that a (simple)
graph G is chordal/even-hole-free/claw-free if it does not contain as an induced
subgraph a cycle of length at least four/a cycle of even length/a K1,3, respectively.
By applying independent set reconfiguration results from [22] for even-hole-free
graphs, and from [8] for claw-free graphs, one can easily prove the following two
theorems. Similar to Definition 3, for an independent set A of a graph G with
|A| ≥ k, we denote μA

k (G) = max{|J | : A ↔G
k J}.

Theorem 15. (*) Let A and B be independent sets of an even-hole-free or
claw-free graph G. Then in polynomial time, it can be decided whether A ↔G

k B.

Theorem 16. (*) Let A be an independent set of a graph G that is even-hole-
free or claw-free. Then μA

k (G) = |A| if A is a dominating set of size k, and
μA

k (G) = α(G) otherwise.

It follows that for an even-hole-free or claw-free graph G, μA
k (G) can be computed

efficiently if α(G) can be computed efficiently. Unfortunately, for even-hole-free
graphs G it is an open question whether this can be done (see [22,26]). Nev-
ertheless, for the subclass of chordal graphs, an efficient algorithm to compute
α(G) is known [15]. For claw-free graphs, α(G) can be computed efficiently as
well [23,25]. Denote by G∗ class of all graphs that are chordal or claw-free. We
conclude that if for G, a cotree decomposition into G∗-graphs is given, then the
conditions of Theorem4 are satisfied, and thus the TAR-Reachability problem
can be solved efficiently for G. It only remains to find such a cotree decomposi-
tion efficiently. Recall that for a graph G, by G the complement of G is denoted,
which is the graph G = (V (G), {uv | uv �∈ E(G)}).

Definition 17. A maximal cotree decomposition is a generalized cotree decom-
position T where for every leaf u ∈ V (T ), both Gu and Gu are connected.

Proposition 18. (*) For any graph G, a maximal cotree decomposition of G
can be computed in polynomial time.

A graph class G is called hereditary if for every G ∈ G and every induced subgraph
H of G, H ∈ G holds. Clearly, the aforementioned class G∗ is hereditary.

Lemma 19. (*) Let G be a hereditary graph class, and let G be a graph that
admits a cotree decomposition into G-graphs. Then every maximal cotree decom-
position of G is a cotree decomposition into G-graphs.
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From Proposition 18 and Lemma 19 it follows that a cotree decomposition into
G∗-graphs can be computed in polynomial time. Together, these statements yield
the main result of this section.

Theorem 20. (*) Let G be a graph that admits a cotree decomposition into
graphs that are chordal or claw-free, and let A and B be independent sets of G,
both of size at least k. Then in polynomial time, we can decide whether A ↔G

k B.

7 Discussion

In the full version of this paper [6], we show that our DP algorithm for cographs
G can be implemented to run in time O(n2), where n = |V (G)|. The key to
this is a more efficient computation of stable tuples, not based on Definition 9.
Secondly, in [6] we show that components of TARk(G) have diameter at most
4n − 2k, if G is a cograph.

The following question related to independent set reconfiguration in cographs
is still open: what is the complexity of deciding whether there exists a k-TAR-
sequence of length at most � between two independent sets of a cograph? (Recall
that for general graphs, this is strongly NP-hard [22].) In [6], we also asked if
it can be decided efficiently whether TARk(G) is connected, using similar tech-
niques. In subsequent research [2], this question has been answered affirmatively.
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Abstract. The boxicity of a graph G is the least integer d such that G
has an intersection model of axis-aligned d-dimensional boxes. Boxicity,
the problem of deciding whether a given graph G has boxicity at most d,
is NP-complete for every fixed d ≥ 2. We show that Boxicity is fixed-
parameter tractable when parameterized by the cluster vertex deletion
number of the input graph. This generalizes the result of Adiga et al. [4],
that Boxicity is fixed-parameter tractable in the vertex cover number.
Moreover, we show that Boxicity admits an additive 1-approximation
when parameterized by the pathwidth of the input graph.

Finally, we provide evidence in favor of a conjecture of Adiga et al.
[4] that Boxicity remains NP-complete even on graphs of constant
treewidth.

1 Introduction

Every graph G can be represented as an intersection graph of axis-aligned boxes
in R

d, provided d is large enough. The boxicity of G, denoted by box(G), intro-
duced by Roberts [21], is the smallest dimension d for which this is possible. We
denote the corresponding decision problem by Boxicity: given G and d ∈ N,
determine whether G has boxicity at most d.

Boxicity has received a fair amount of attention. This is partially due to the
wider context of graph representations, but also because graphs of low boxicity
are interesting from an algorithmic point of view. While many hard problems
remain so for graphs of bounded boxicity, some become solvable in polynomial
time, notably max-weighted clique (as observed by Spinrad [23, p. 36]).

Cozzens [13] showed that Boxicity is NP-complete. To cope with this hard-
ness result, several authors [1,4,18] studied the parameterized complexity of
Boxicity. Since the problem remains NP-complete for constant d ≥ 2
(Yannakakis [25] and Kratochv́ıl [20]), boxicity itself is ruled out as parame-
ter. Instead more structural parameters have been considered. Our work follows
this line. We prove:

Theorem 1. Boxicity is fixed-parameter tractable when parameterized by clus-
ter vertex deletion number.
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 117–128, 2014.
DOI: 10.1007/978-3-319-12340-0 10
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The cluster vertex deletion number is the minimum number of vertices that have
to be deleted to get a disjoint union of complete graphs or cluster graph. As dis-
cussed by Doucha and Kratochv́ıl [15] cluster vertex deletion is an intermediate
parameterization between vertex cover and cliquewidth. A d-box representation
of a graph G is a representation of G as intersection graph of axis-aligned boxes
in R

d.

Theorem 2. Finding a d-box representation of G such that d ≤ box(G) + 1 can
be done in f(pw(G)) · |V (G)| time where pw(G) is the pathwidth of G.

A natural parameter for Boxicity is the treewidth tw(G) of a graph G, in partic-
ular as Chandran and Sivadasan [11] proved that box(G) ≤ tw(G)+2. However,
Adiga, Chitnis and Saurabh [4] conjecture that Boxicity is NP-complete on
graphs of bounded treewidth. Our last result provides evidence in favor of this
conjecture. For this, we mention the observation of Roberts [21] that a graph G
has boxicity d if and only if G can be expressed as the intersection of d interval
graphs.

Theorem 3. There is an infinite family of graphs G of boxicity 2 and band-
width O(1) such that, among any pair of interval graphs whose intersection
is G ∈ G, at least one has treewidth Ω(|V (G)|).

Why do we see the result as evidence? An algorithm solving Boxicity on graphs
of bounded treewidth (or even stronger, of bounded bandwidth) is likely to
exploit the local structure of the graph in order to make dynamic programming
work. Yet, Theorem 3 implies that this locality may be lost in some dimensions,
which constitutes a serious obstacle for any dynamic programming based app-
roach. We discuss this in more detail in Sect. 5.

Figure 1 summarizes previously known parameterized complexity results on
boxicity along with those obtained in this article. Adiga et al. [4] initiated this
line of research when they parameterized Boxicity by the minimal size k of
a vertex cover in order to give an 2O(2kk2) · n-time algorithm, where n denotes
the number of vertices of the input graph, as usual. This result had already
been observed earlier by Fellows et al. [17] in the context of well-quasi orders of
certain graph classes. Adiga et al. [4] also described an approximation algorithm
that, in time 2O(k2 log k) · n, returns a box representation of at most box(G) + 1
dimensions. Both results were extended by Ganian [18] to the less restrictive
parameter twin cover. Our Theorem1 includes Ganian’s.

Other structural parameters that were considered by Adiga et al. [4] for
parameterized approximation algorithms are the size of a feedback vertex set –
the minimum number of vertices that need to be deleted to obtain a forest – and
maximum leaf number – the maximum number of leaves in a spanning tree of
the graph. They proved that finding a d-box representation of a graph G such
that d ≤ 2box(G)+2 (resp. d ≤ box(G)+2) can be done in f(k)·|V (G)|O(1) time
(resp. 2O(k3 log k) · |V (G)|O(1) time) where k is the size of a feedback vertex set
(resp. maximum leaf number). In [1], Adiga, Babu, and Chandran generalized
these approximation algorithms to parameters of the type “distance to C”, where
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Vertex Cover [4] Bandwidth
Maximum

leaf number [4]

Twin cover [18]
Pathwidth

(Th. 2)
Feedback

vertex set [4]

Cluster vertex
deletion (Th. 1)

Treewidth

Cliquewidth

Fig. 1. Navigation map through our parameterized complexity results for Boxicity.
An arc from a parameter k2 to a parameter k1 means that there exists some function h
such that k1 ≤ h(k2). A rectangle means fixed-parameter tractability for this parameter
and a dashed rectangle means an approximation algorithm with running time f(k) ·
nO(1) is known.

C is any graph class of bounded boxicity. More precisely, the parameter measures
the minimum number of vertices whose deletion results in a graph that belongs C.

The algorithm of Theorem 2 generalizes the approximation algorithm for
the parameter vertex cover number, and improves the guarantee bound of the
approximation algorithm for the parameter maximum leaf number.

There is merit in studying approximation algorithms from a parameterized
perspective: not only is Boxicity NP-complete, but the associated minimization
problem cannot be approximated in polynomial time within a factor of n1−ε for
any ε > 0 even when the input is restricted to bipartite, co-bipartite or split
graphs (provided NP�=ZPP). This is a result due to Chalermsook et al. [10]
using the hardness reduction of Adiga, Bhowmick and Chandran [2]. There is,
however, an approximation algorithm with factor o(n) for general graphs; see
Adiga et al. [1].

While Roberts [21] was the first to study the boxicity parameter, he was
hardly the first to consider box representations of graphs. Already in 1948
Bielecki [6] asked, here phrased in modern terminology, whether triangle-free
graphs of boxicity ≤ 2 had bounded chromatic number. This was answered affir-
matively by Asplund and Grünbaum in [5]. Kostochka [19] treats this question
in a much more general setting.

Following Roberts who proved that box(G) ≤ n
2 , other authors obtained

bounds for boxicity. Adiga et al. [3], for instance, showed that box(G) ≤
Δ(G) log2 Δ(G), while Scheinerman [22] established that every outerplanar graph
has boxicity at most two. This, in turn, was extended by Thomassen [24], who
showed that planar graphs have boxicity at most three.

In the next section, we will give formal definitions of the necessary concepts
for this article. We prove our main results in Sects. 3–5. Finally, we discuss the
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impact and limitations of our results in Sect. 6, where we also outline some future
directions for research. Due to space limitation, some proofs are deferred to a
full version [8].

2 Preliminaries

Graph terminology. We follow the notation of Diestel [14], where also all basic
definitions concerning graphs may be found.

Let X be some finite set. With a slight abuse of notation, we consider a
collection I = ([�v, rv])v∈X of closed intervals in the real line to be an interval
graph: I has vertex set X, and two of its vertices u and v are adjacent if and
only if the corresponding intervals [�u, ru] and [�v, rv] intersect. By perturbing
the endpoints of the intervals we can ensure that no two intervals have a common
endpoint, and that for every interval the left endpoint is distinct from the right
endpoint. We always tacitly assume the intervals to be of that form.

The bandwidth of a graph G, say with vertex set V (G) = {v1, v2, . . . , vn},
is the least number k for which the vertices of G can be labeled with distinct
integers �(vi) such that k = max{|�(vi) − �(vj)| : vivj ∈ E}. Equivalently, it is
the least integer k for which the vertices of G can be placed at distinct integer
points on the real line such that the length of the longest edge is at most k. We
denote the bandwidth of a graph G by bw(G).

The pathwidth of a graph G, denoted pw(G), is the minimum size of the
largest clique of any interval supergraph of G, minus 1.

The treewidth of a graph G, denoted tw(G), is the minimum size of the largest
clique of any chordal supergraph of G, minus 1.

For the purpose of our paper it is important to remark that for every graph G
we have tw(G) ≤ pw(G) ≤ bw(G).

Parameterized complexity. A decision problem parameterized by a problem-
specific parameter k is called fixed-parameter tractable if there exists an
algorithm that solves it in time f(k) · nO(1), where n is the instance size. The
function f is typically super-polynomial and only depends on k. One of the
main tools to design such algorithms is the kernelization technique. A kerneliza-
tion algorithm transforms in polynomial time an instance I of a given problem
parameterized by k into an equivalent instance I ′ of the same problem parame-
terized by k′ ≤ k such that the size of I ′ is bounded by g(k) for some computable
function g. The instance I ′ is called a kernel of size g(k). The following folklore
result is well known.

Theorem 4. A parameterized problem P is fixed-parameter tractable if and only
if P has a kernel.

In the remainder of this paper, the kernel size is expressed in terms of the number
of vertices.

For more background on parameterized complexity the reader is referred to
Downey and Fellows [16].
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Problem definition. We call an axis-aligned d-dimensional box (or d-box ) a Carte-
sian product of d closed real intervals. A d-box representation of a graph G is
a mapping that maps every vertex v ∈ V (G) to a d-box Bv such that two
vertices u, v ∈ V (G) are adjacent if and only if their associated boxes have a
non-empty intersection. The boxicity of G, denoted by box(G), is the minimum
integer d such that G admits a d-box representation. We consider the following
problem.

Boxicity
Input: A graph G and an integer d.
Question: Is box(G) ≤ d?

Given a d-box representation of G, we denote by [�i(v), ri(v)] the interval
representing v in the i-th dimension.

Throughout the article, we make frequent use of the reformulation of boxicity
in terms of interval graphs:

Theorem 5 (Roberts [21]). The boxicity of a graph G is equal to the smallest
integer d so that G can be expressed as the intersection of d interval graphs.

3 Cluster Vertex Deletion

Theorem 1 follows immediately from the following lemma:

Lemma 1. Boxicity admits a kernel of at most k2O(k)
vertices, where k is the

cluster vertex deletion number of the input graph.

In the course of this section, we present the sequence of lemmas that are needed
to prove the above kernelization result.

Two adjacent vertices u, v in a graph G are true twins if u and v have the
same neighbourhoods in G−{u, v}. As observed by Ganian [18], deleting one of
two true twins does not change the boxicity.

Lemma 2. Let u, v be true twins of a graph G. Then box(G) = box(G − u).

We remark, without proof, that there is also a reduction for false twins (those
that are non-adjacent): if there are at least three of them, then one may be
deleted without changing the boxicity. We will not, however, make use of this
observation.

Recall that a cluster graph is the disjoint union of complete graphs, called
clusters. In what follows, we implicitly identify a cluster with its vertex set.

Let G−X be a cluster graph for some X ⊆ V (G). We call two clusters C,C ′

of G−X equivalent if there is a bijection C → C ′, v �→ v′, such that NG(v)∩X =
NG(v′) ∩ X. Observe that, if G − X has no true twins, then two clusters C and
C ′ are equivalent if and only if {NG(u) ∩ X : u ∈ C} = {NG(v) ∩ X : v ∈ C ′}.

Lemma 3. Let G be a graph without true twins, and let X be a set of k vertices
so that G−X is a cluster graph. Then every cluster in G−X contains at most 2k

vertices.
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We also need the following result.

Theorem 6 (Chandran and Sivadasan [11]). It holds that box(G) ≤ tw(G)+
2 for any graph G.

In particular, box(G) ≤ pw(G) + 2 for any graph G.

Lemma 4. Let G be a graph without true twins, and let X be a set of k vertices so
that G − X is a cluster graph. Moreover, let D be an equivalence class of clusters
with |D| ≥ 2(2k + 2)2

k+1(2k+k+1). For every C∗ ∈ D, box(G) = box(G − C∗).

Proof. As deleting vertices may only decrease the boxicity, it suffices to prove
that box(G) ≤ box(G − C∗).

Set H = G − C∗, d = box(H), k = |X| and C = D \ {C∗}. We claim that

d = box(H) ≤ 2k + k + 1. (1)

Indeed, define a path decomposition with a bag WC for every cluster C of H −X
such that WC = X ∪ C. This gives a path decomposition of H with width at
most k + 2k − 1, by Lemma 3. Theorem 6 now implies (1).

For the sake of simplicity, let us introduce the following notions. Fix a d-box
representation of H. The set of corners of a box of a vertex is the Cartesian
product ×d

i=1{�i(v), ri(v)}. By rescaling every dimension, we can ensure that
every endpoint of an interval of a vertex in X lies in {1, 2, . . . , 2k}. Thus every
corner of a box of X lies in the grid {1, 2, . . . , 2k}d. We may moreover assume that
every other box of H is contained in [0, 2k +1]d. Points of {0, 1, . . . , 2k +1}d are
called grid points, and any set [z1, z1+1]×. . .×[zd, zd+1], where zi ∈ {0, . . . , 2k},
is a grid cell. In each dimension i we say that the grid induces the grid intervals
[0, 1], [1, 2], . . . , [2k, 2k + 1]. A box of a vertex in H − X is a cluster box.

By perturbing the boxes slightly we may always assume that

if s is a corner of a cluster box of a cluster C of H − X, and if
t is a corner of the box of any vertex z ∈ V (H − C) then si �= ti
for all dimensions i = 1, . . . , d.

(2)

Moreover, we may assume that any corner of a cluster box lies in the interior of a
grid cell. A cluster box that does not contain any grid point is called a thin box.

We concentrate on thin clusters, that is, clusters that consist of thin boxes
only. We claim that

at least (2k + 2)2
k+1(2k+k+1) clusters in C are thin. (3)

To prove this claim, observe that no grid point lies in a cluster box of two different
clusters as then two vertices in distinct clusters would be adjacent. Thus, there
is at most one cluster per grid point so that one of its cluster boxes contains
the grid point. As, by (1), there are (2k + 2)d ≤ (2k + 2)2

k+2k+1 grid points,
it follows that C has at least |C| − (2k + 2)2

k+2k+1 ≥ (2k + 2)2
k+1(2k+k+1) thin

clusters.
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A

B

C

D

F

Fig. 2. Boxes A,B are in the same position, as are C and D; F is not thin.

We say that two cluster boxes B and B′ are in the same position if every
grid cell containing a corner of B also contains a corner of B′ and vice versa
(see Fig. 2). Note that if two vertices v, v′ ∈ V (H) − X have boxes in the same
position then NH(v)∩X = NH(v′)∩X. (Here we use the fact that cluster boxes
have their corner strictly in the interior of grid cells).

For every cluster C ∈ C we fix a point p(C) that lies in every cluster box
of C: such a point exists by the Helly property for boxes in R

d. We claim that,
using this Helly point, we can modify our box representation of H so that

for all thin clusters C ∈ C and for each dimension i ∈ {1, . . . , d}
holds the following: if p(C) and a corner t of a box of C lie in
the same grid interval in dimension i, that is, if there is a j so
that pi(C), ti ∈ [j, j + 1], then ti = pi(C).

(4)

To achieve (4), we proceed as follows. Let v be a vertex of any thin cluster
C ∈ C. Consider a dimension i where �i(v) or ri(v) lie in the same grid interval
as pi(C). Note that �i(v) ≤ pi(C) ≤ ri(v). In dimension i, we shrink the box
of v in the following way: if �i(v) lies in the same grid interval as pi(C), we
replace �i(v) by pi(C). Similarly, if ri(v) lies in the same grid interval as pi(C),
we replace �i(v) by pi(C). This procedure is illustrated in Fig. 3.

Since by shrinking a box we may only lose edges of the corresponding graph,
it suffices to show that every edge is still present. Since the new box of v still
contains p(C), the vertex v is still adjacent to every other vertex in C. As we
change the box of v only within a grid interval, the old and the new box of v are
in the same position. Thus, we do not lose any edge from v to X. Performing
this transformation iteratively for every box of C in every dimension, and for
every thin cluster C ∈ C, we obtain a box representation of H satisfying (4).

Next, we claim that

there is a pair of distinct thin clusters C,C ′ ∈ C such that for
every v ∈ C and v′ ∈ C ′ with NH(v) ∩ X = NH(v′) ∩ X, the
boxes of v and v′ are in the same position.

(5)
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Fig. 3. Shrinking the boxes.

Note that, as C and C ′ are equivalent, there is indeed a bijection between the
vertices of C and C ′ that maps a vertex v to v′ ∈ C ′ with NH(v) ∩ X =
NH(v′) ∩ X.

Observe that for the endpoints �i(v), ri(v) of the interval representing a ver-
tex v ∈ V (H) in the i-th dimension, there are at most (2k + 1)2 many choices
to select the grid intervals they lie in. Thus, any set of thin boxes, pairwise not
in the same position, has size at most (2k + 1)2d. Because G is devoid of true
twins, no cluster has two vertices whose boxes are in the same position.

Recall that every cluster has at most 2k vertices. Thus, among any choice of
more than (2k + 1)2d·2k thin clusters there are two thin clusters satisfying (5).
As (2k + 1)2d·2k ≤ (2k + 1)2(2

k+k+1))·2k , by (1), and since C contains at least
(2k + 2)2

k+1(2k+k+1) thin clusters, by (3), the claim follows.
Consider clusters C,C ′ as in (5). We now embed the deleted cluster C∗ in the

box representation of H = G − C∗. For this, choose ε > 0 small enough so that

for all v ∈ C and w ∈ V (H − C) and all dimensions i it holds
that |si − ti| > ε, when s is a corner of the box of v and t is a
corner of the box of w.

(6)

(If such an ε does not exist, we may again perturb the box representation slightly
so as to guarantee (2) while keeping (4)).

Define q ∈ R
d by setting

qi =

⎧
⎪⎨

⎪⎩

1 if pi(C) < pi(C ′)
−1 if pi(C) > pi(C ′)
0 if pi(C) = pi(C ′).

Let v �→ v∗ be the bijection between C and C∗ with NG(v) ∩ X = NG(v∗) ∩ X.
We define a box for every v∗ ∈ C∗ by taking a copy of the box of v and shifting
its coordinates by the vector ε · q, that is, for every dimension i we set

�i(v∗) = �i(v) + εqi and ri(v∗) = ri(v) + εqi.

Note that, by choice of ε, the box of v∗ and the box of v are in the same position.
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Let G̃ be the graph defined by this new box representation. We claim that
G̃ = G, which then finishes the proof of the lemma.

To prove this, we first note that we only added edges between vertices in C∗

and H, while all other adjacencies remain unchanged. Next, as p(C) + εq is a
point that lies in every box of C∗, it follows that G̃[C∗] is a complete graph.
Moreover, by choice of ε, we have

NG̃(v∗) \ (C ∪ C∗) = NG(v) \ (C ∪ C∗)

for any v ∈ C. In particular, NG̃(v∗) ∩ C ′ = ∅. It remains to show that also
NG̃(v∗) ∩ C = ∅.

For this, let w∗ ∈ C∗ and v ∈ C be arbitrary, where we allow that v = w.
Let us show that the boxes of v and w∗ do not intersect.

Since v and w′ are nonadjacent in H, there is a dimension i such that either
ri(v) < �i(w′) or ri(w′) < �i(v). By symmetry, we may assume ri(v) < �i(w′).
Let I be the grid interval such that ri(v) ∈ I. If �i(w′) /∈ I, then ri(v) <
�i(w∗), since by our construction �i(w∗) is in the same grid interval as �i(w′).
This means that the boxes of v and w∗ do not intersect. Thus, we may assume
that �i(w∗) ∈ I. As v and w are in the same cluster and thus adjacent, it
follows that �i(w) ≤ ri(v), which implies that pi(C) ∈ [�i(w), ri(v)] ⊆ I. Now,
(4) implies that ri(v) = pi(C) = �i(w).

Since pi(C) = ri(v) < �i(w′), it follows that pi(C) < pi(C ′). Thus, ri(v) =
�i(w) < �i(w)+ε = �i(w∗). Consequently, the boxes of v and w∗ do not intersect.
This completes the proof. �

4 An Additive 1-Approximation Algorithm

Bounded pathwidth suggests a dynamic programming approach, and this is pre-
cisely what we do. There is a hitch, though. The standard approach would be
to solve the Boxicity problem on one bag after another of the path decompo-
sition, so that the local solutions can be combined to a global one. Boxicity,
however, does not permit this: as we are constructing the box representation of
the graph, we may have to completely rearrange the previous boxes to add a
new one.

Thus, the key issue is to force the problem to become “localized”. To this end,
we introduce a special interval graph I∗ that reflects the path structure of the
graph: two vertices are adjacent if and only if they appear in the same bag of the
path decomposition. Doing so, we can safely compute local box representations
of the subgraphs induced by the bags without paying attention to how these
representations overlap. Indeed, the interval graph I∗ gets rid of any unwanted
adjacency.

Theorem 7. There is an algorithm that, for any graph G with a given path
decomposition of width w, determines in 2O(w2 log w) · |V (G)| time a d ∈ N so
that d ≤ box(G) ≤ d + 1 together with a box representation of dimension d + 1.
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Together with the algorithm of Bodlaender [7] that computes a path-
decomposition of a graph G of width pw(G) in f(pw(G)) · |V (G)| time, we obtain
Theorem 2. We note that the running time could conceivably be improved
by using a faster approximation algorithm with, say, a constant approximation
factor.

5 Bounded Bandwidth does not Help

It is an open problem whether boxicity is polynomial-time solvable on graphs of
bounded treewidth. While we cannot solve the problem, we can offer an indica-
tion why we suspect boxicity to be hard.

The first approach to prove tractability is usually dynamic programming.
Evidently, this is because Courcelle [12] proved that a vast number of problems,
namely those expressible in monadic second order logic, can be solved in poly-
nomial time by a generic dynamic programming algorithm, if the treewidth is
bounded. However, nobody appears to know how to formulate “box(G) ≤ d?”
in monadic second order logic, and it is doubtful that this is possible at all.
More generally, dynamic programming seems to fail. Why is that so? We think
this is because the tree-like structure of the input graph does not translate to
a tree-like structure in the interval representation: given an input graph G of
bounded treewidth, it may very well be the case that at least one interval graph
in any optimal interval representation of G has unbounded treewidth.

To illustrate this, consider a K2,n, where the smaller bipartition class is
comprised of two vertices x and y, and the larger consists of v1, . . . , vn. Clearly,
K2,n has pathwidth 2 and boxicity 2 as well: in fact, K2,n +xy and K2,n +{vivj :
i, j} are two interval graphs whose intersection is K2,n. Now, let I1, I2 be any
two interval graphs with K2,n = I1 ∩ I2. The vertices x and y are not adjacent
in at least one of I1 and I2, say in I1. Suppose that I1 contains a pair of non-
adjacent vi, vj : then xviyvjx is an induced 4-cycle, which is impossible in an
interval graph. Thus, {vi}n

i=1 form a clique of size n in I1, and I1 has therefore
pathwidth at least n − 1.

What about stronger width-parameters? We have found a similar, albeit more
complicated, example for bounded bandwidth, a parameter even more restrictive
than pathwidth. Theorem3 is a direct consequence of the following lemma.

Lemma 5. For every n there is a graph Gn of bandwidth at most 16 and boxi-
city 2, so that in any interval representation G = I1 ∩ I2 one of I1 and I2 has
treewidth ≥ |V (Gn)|/32.

In light of the lemma, we would like to strengthen the conjecture of Adiga
et al. [4]: We believe that Boxicity remains NP-complete even for graphs of
bounded bandwidth.

6 Discussion

In some respect, the method of our first algorithm is a generalization of the true
twin reduction. The key insight is that if there are many vertex sets (the clusters)
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that are identical in the graph then many of these sets will have essentially the
same geometric realization. Deleting one of these many “geometric twins” is
unlikely to change boxicity.

We believe this approach can exploited further. Indeed, we are convinced that
with similar methods as developed in this article, we can also formulate a para-
meterized algorithm for Boxicity when the parameter is distance to stars – the
smallest number of vertices whose removal results in a disjoint union of stars.
Like cluster vertex deletion, distance to stars provides a non-trivial parame-
terization for Boxicity between vertex cover (solved) and feedback vertex set
(open). Moreover, given a graph G, computing a minimum set X ⊆ V (G) such
that G[V − X] is a disjoint union of stars can be done in f(|X|) · |V (G)|O(1)

time [9].
Our second algorithm yields an additive 1-approximation for Boxicity on

graphs of bounded pathwidth. Two questions that immediately arise are: can we
get rid of the additive 1, such that the algorithm computes box(G) exactly? Can
the algorithm be lifted to run on graphs of bounded treewidth?

We turn to the second question: why is it difficult to extend the algorithm
to graphs of bounded treewidth? We rely heavily on the fact that the one extra
dimension is sufficient to reflect the path decomposition of the whole graph. If
we mimick this approach for bounded treewidth we have to describe the tree
decomposition of the graph with as few extra dimensions as possible. How many
extra dimensions would we need? As many as the boxicity of the chordal super-
graph obtained by turning each bag of the decomposition into a clique. If we
started with a path decomposition, the boxicity will be one. For a general tree
decomposition, however, it could well be that the boxicity of this chordal graph
is about the treewidth of the input graph [11]. This suggests that there might
be input graphs G for which box(G) is much lower than the number of dimen-
sions required to describe their tree decomposition, which makes it impossible
to approximate using only the techniques of Sect. 4.
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Abstract. The class of graphs that do not contain an induced path on
k vertices, Pk-free graphs, plays a prominent role in algorithmic graph
theory. This motivates the search for special structural properties of Pk-
free graphs, including alternative characterizations.

Let G be a connected Pk-free graph, k ≥ 4. We show that G admits
a connected dominating set whose induced subgraph is either Pk−2-free,
or isomorphic to Pk−2. Surprisingly, it turns out that every minimum
connected dominating set of G has this property.

This yields a new characterization for Pk-free graphs: a graph G is Pk-
free if and only if each connected induced subgraph of G has a connected
dominating set whose induced subgraph is either Pk−2-free, or isomorphic
to Ck. This improves and generalizes several previous results; the partic-
ular case of k = 7 solves a problem posed by van ’t Hof and Paulusma
[A new characterization of P6-free graphs, COCOON 2008] [12].

In the second part of the paper, we present an efficient algorithm that,
given a connected graph G, computes a connected dominating set X of
G with the following property: for the minimum k such that G is Pk-free,
the subgraph induced by X is Pk−2-free or isomorphic to Pk−2.

As an application our results, we prove that Hypergraph 2-Colora-
bility, an NP-complete problem in general, can be solved in polynomial
time for hypergraphs whose vertex-hyperedge incidence graph is P7-free.

Keywords: Pk-free graph · Connected domination · Computational
complexity

1 Introduction

A dominating set of a graph G is a vertex subset X such that every vertex not
in X has a neighbor in X. Dominating sets have been intensively studied in
the literature. The main interest in dominating sets is due to their relevance on
both theoretical and practical side. Moreover, there are interesting variants of
domination and many of them are well-studied.

A connected dominating set of a graph G is a dominating set X whose induced
subgraph, henceforth denoted G[X], is connected. As usual, a connected dom-
inating set such that every proper subset is not a connected dominating set
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 129–138, 2014.
DOI: 10.1007/978-3-319-12340-0 11



130 E. Camby and O. Schaudt

is called a minimal connected dominating set. A connected dominating set of
minimum size is called a minimum connected dominating set.

We use the following standard notation. Let Pk be the induced path on k
vertices and let Ck be the induced cycle on k vertices. If G and H are two
graphs, we say that G is H-free if H does not appear as an induced subgraph of
G. Furthermore, if G is H1-free and H2-free for some graphs H1 and H2, we say
that G is (H1,H2)-free. If two graphs G and H are isomorphic, we write G ∼= H.

The class of Pk-free graphs has received a fair amount of attention in the
theory of graph algorithms. Given an NP-hard optimization problem, it is often
fruitful to study its complexity when the instances are restricted to Pk-free
graphs.

Let us mention two recent results in this direction: the polynomial time
algorithm to compute a stable set of maximum weight, given by Lokshtanov
et al. [10], and the result of Hoang et al. [6] showing that k-Colorability is
efficiently solvable on P5-free graphs. The proof of the latter result relies on the
fact that a connected P5-free graph has a dominating clique or a dominating P3.

Theorem 1 (Bácso and Tuza [1]). Let G be a connected P5-free graph. Then
G has a dominating clique or a dominating induced P3.

An immediate implication of this result is the following.

Theorem 2 (Bácso and Tuza [1], Cozzens and Kelleher [4]). Let G be a
graph. The following assertions are equivalent.

(i) G is P5-free.
(ii) Every induced subgraph H of G admits a connected dominating set X such

that H[X] is a clique or H[X] ∼= C5.

Later, van ’t Hof and Paulusma [13] obtained a characterization for the class
of P6-free graphs in the flavour of Theorem2. An earlier, slightly weaker result
was given by Liu et al. [8], and the particular case of triangle free graphs was
discussed before by Liu and Zhou [9].

Theorem 3 (van ’t Hof and Paulusma [13]). Let G be a graph. The following
assertions are equivalent.

(i) G is P6-free.
(ii) Every connected induced subgraph H of G admits a connected dominating set

X such that H[X] has a complete bipartite spanning subgraph or H[X] ∼= C6.

Complementing Theorem 3, van ’t Hof and Paulusma give a polynomial time
algorithm that, given a connected P6-free graph, computes a connected dom-
inating set X such that G[X] has a complete bipartite spanning subgraph or
G[X] ∼= C6.

In view of Theorems 2 and 3, two questions arise. The first one is whether
condition (ii) of Theorem3 can be tightened, such that H[X] is a P4-free graph
or G[X] ∼= C6. Note that if H[X] is P4-free, it is a connected cograph, and in
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particular has a complete bipartite spanning subgraph. This condition is the
direct analogue of condition (ii) of Theorem2 for P6-free graphs. The advan-
tage of the strengthened version is of course that the structure of cographs is
well understood and more restricted compared to the class of graphs having a
spanning complete bipartite graph.

The second question is whether similar characterizations can be given for the
class of Pk-free graphs, for k > 6. In their paper, van ’t Hof and Paulusma [13]
explicitly ask for such a characterization in the case of k = 7.

1.1 Our Contribution

In this paper, we give an affirmative answer to these two questions. We show
that every connected Pk-free graph, k ≥ 4, admits a connected dominating set
whose induced subgraph is either Pk−2-free, or isomorphic to Pk−2. Surprisingly,
it turns out that every minimum connected dominating set has this property.

Theorem 4. Let G be a connected Pk-free graph, k ≥ 4, and let X be any
minimum connected dominating set of G. Then G[X] is Pk−2-free, or G[X] ∼=
Pk−2.

From this result we derive the following characterization of Pk-free graphs.

Theorem 5. Let G be a graph and k ≥ 4. The following assertions are
equivalent.

(i) G is Pk-free.
(ii) Every connected induced subgraph H of G admits a connected dominating

set X such that H[X] is Pk−2-free or H[X] ∼= Ck.

We now come to the algorithmic dimension of the problem. The proof of Theo-
rem 4 is constructive in the sense that it yields an algorithm to compute, given
a Pk-free graph, a connected dominating set whose induced subgraph is either
Pk−2-free, or isomorphic to Pk−2. However, recall that the computation of a
longest induced path in a graph is an NP-hard problem, as shown in Garey and
Johnson [5, p. 196]. In other words, there is little hope of computing in polyno-
mial time the minimum k for which the input graph is Pk-free. To overcome this
obstacle, our algorithm can only make implicite use of the absent induced Pk,
which is the main difficulty here.

Theorem 6. Given a connected graph G on n vertices and m edges, one can
compute in time O(n5(n+m)) a connected dominating set X with the following
property: for the minimum k ≥ 3 such that G is Pk-free, G[X] is Pk−2-free or
G[X] ∼= Pk−2.

Our last result is an application of the previous theorems. A 2-coloring of a
hypergraph assigns to each vertex one of two colors, such that each hyperedge
contains vertices of both colors. The problem Hypergraph 2-Colorability
is to decide whether a given hypergraph admits a 2-coloring. Garey and Johnson
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[5, p. 221] explain that it is NP-complete in general. One successful approach to
deal with this hardness is to put restrictions on the bipartite vertex-hyperedge
incidence graph1 of the input hypergraph.

As an application of Theorem3, van ’t Hof and Paulusma [13] show that
Hypergraph 2-Colorability is solvable in polynomial time for hypergraphs
with P6-free incidence graph. Using our results, we settle the case of hypergraphs
with P7-free incidence graph.

Theorem 7. Hypergraph 2-Colorability can be solved in polynomial time
for hypergraphs with P7-free incidence graph. If it exists, a 2-coloring can be
computed in polynomial time.

The proof of Theorems 4, 5 and 6 we give in the next section. Due to space
limitations, the proof of Theorem7 is omitted. We close the paper with a short
discussion of our contribution.

2 Proofs

2.1 Proof of Theorems 4 and 5

We need the following lemma from an earlier paper of ours [3].

Lemma 1 (Camby and Schaudt [3]). Let G be a connected graph that is
(Pk, Ck)-free, for some k ≥ 4, and let X be a minimal connected dominating set
of G. Then G[X] is Pk−2-free.

When applied to Pk-free graphs, which are in particular (Pk+1, Ck+1)-free, the
above lemma implies that any minimal connected dominating set induces a Pk−1-
free graph, for k ≥ 3. We next prove a simple but useful lemma, which plays a
key role also in the proof of Theorem 6. Let X be a connected dominating set
of a graph G, and x ∈ X. Assuming that X is a minimal connected dominating
set and |X| ≥ 2, x is a cut-vertex of G[X] or x has a private neighbor : a vertex
y ∈ V (G)\X with NG(y) ∩ X = {x}.

Lemma 2. Let G be a Pk-free graph, for some k ≥ 4, and let X be a minimal
connected dominating set of G. Assume that there is an induced Pk−2 in G[X],
say on the vertices x1, x2, . . . , xk−2. Then any private neighbor y of x1 is such
that (X ∪ {y})\{xk−2} is a connected dominating set of G.

Proof. Note that G is in particular (Pk+1, Ck+1)-free and thus, by Lemma 1,
G[X] is Pk−1-free.

Let X ′ := {x1, x2, . . . , xk−2}. Moreover, let y be any private neighbor of
x1, and let Y := (X ∪ {y})\{xk−2}. We have to prove that Y is a connected
dominating set of G.
1 Recall that for a hypergraph H = (V,E) we define the bipartite vertex-hyperedge

incidence graph as the bipartite graph on the set of vertices V ∪ E with the edges
vY such that v ∈ V , Y ∈ E and v ∈ Y . In the following, we just say the incidence
graph.
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Suppose for a contradiction that G[Y ] is not connected. Hence, xk−2 is a cut-
vertex of G[X]. In particular, there is some vertex y′ ∈ X such that NG(y′)∩X ′ =
{xk−2}. But then G[X ′ ∪ {y′}] ∼= Pk−1, a contradiction.

It remains to show that Y is a dominating set. Suppose the contrary, that
is, there is some vertex x′ with NG[x′] ∩ Y = ∅. As X is a dominating set,
NG[x′] ∩ X = {xk−2}. Because xk−2 is adjacent to Y and x′ is not adjacent to
Y , x′ �= xk−2. But this means that G[X ′ ∪ {y, x′}] ∼= Pk, a contradiction. 	


Now we can state the proof of Theorem 4.

Proof (Proof of Theorem 4). Let X be a minimum connected dominating set of
G. As G is in particular (Pk+1, Ck+1)-free, G[X] is Pk−1-free, by Lemma 1. We
have to show that G[X] is Pk−2-free or isomorphic to Pk−2.

To see this, assume there is an induced Pk−2 in G[X], say on the vertices
x1, x2, . . . , xk−2. Let X ′ := {x1, x2, . . . , xk−2}. Note that x1 is not a cut-vertex of
G[X]: otherwise there is some vertex y′ ∈ X such that NG(y′) ∩X ′ = {x1}, and
hence G[X ′ ∪ {y′}] ∼= Pk−1. This is a contradiction. Thus, x1 is not a cut-vertex
of G[X] and therefore has a private neighbor w.r.t. X, say y1. By Lemma 2,
Y1 := (X ∪ {y1})\{xk−2} is a connected dominating set of G. As X is a min-
imum connected dominating set, Y1 is a minimum connected dominating set,
too. Moreover, y1 has no neighbor in X\{x1}, in particular in X\X ′.

By reapplying the argumentation to Y1 and the induced Pk−2 on y1, x1, x2, . . . ,
xk−3, We obtain a vertex y2 ∈ V (G)\Y1 such that Y2 := (Y1 ∪ {y2})\{xk−3} is a
minimum connected dominating set of G and G[Y2] contains an induced Pk−2 on
the vertices y2, y1, x1, x2, . . . , xk−4. Moreover, y2 has no neighbor in Y1\{y1}, in
particular in X\X ′.

Iteratively, we end up with a minimum connected dominating set Yk−2, which
is exactly (X\X ′)∪{y1, . . . , yk−2}. Since, for i = 1, 2, . . . , k−2, yi is not adjacent
to X\X ′ and G[Yk−2] is connected, X\X ′ must be empty, hence X = X ′. Thus,
G[X] = G[X ′] ∼= Pk−2. This completes the proof. 	


Proof (Proof of Theorem 5). Clearly Pk does not have a connected dominating
set satisfying (ii). Hence, (ii) implies (i).

Conversely, let H be any connected induced subgraph of G, and let X be a
minimum connected dominating set of H. By Theorem 4, H[X] is Pk−2-free or
H[X] ∼= Pk−2. If H[X] is Pk−2-free, the assertion of (ii) is satisfied. Otherwise,
let x1, x2, . . . , xk−2 be a consecutive ordering of the induced path H[X]. In par-
ticular, x1 and xk−2 are not cut-vertices of H[X]. As X is minimum, there exists
a private neighbor yi of xi, for i ∈ {1, k − 2}. It must be that y1yk−2 ∈ E(H),
since otherwise H[X ∪ {y1, yk−2}] ∼= Pk. Hence, H[X ∪ {y1, yk−2}] ∼= Ck, as
desired. So, (i) implies (ii). 	


2.2 Proof of Theorem6

Before we state our algorithm, we need to introduce some notation and defi-
nitions. For this, let us assume we are given a connected input graph G on n
vertices and m edges. Let X be an arbitrary connected dominating set of G.
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By NC (X) we denote the set of vertices in X that are non-cutting in G[X], i.e.
for every x ∈ NC (X), G[X\{x}] is connected. Let x be a degree-1 vertex of G[X].
We define the half-path starting in x to be the maximal path (x, x1, x2, . . . , xs)
in X such that |NG[X](xi)| = 2 for each i ∈ {1, 2, . . . , s− 1}. For example, if the
neighbor y ∈ X of x has degree at least 3, the half-path is simply (x, y). The
length of the half-path is then s. To each x ∈ X we assign a weight wX(x) as
follows:

1. if |NG[X](x)| ≥ 2, put wX(x) = 0, and
2. if |NG[X](x)| = 1, put wX(x) = s, where s is the length of the half-path

starting in x.

Finally, the weight w(X) of the set X given by

w(X) =
∑

x∈X

(wX(x))2.

See Fig. 1 for an illustration of these definitions.

2

0

0

0

0

0

0

1

Fig. 1. A graph G. The black vertices form a connected dominating set X of G, with
weights wX as shown. We have w(X) = 5.

Let X be the family of all connected dominating sets of G. We next define
a strict partial order ≺ on X as follows. For any two sets X,Y ∈ X , we put
X ≺ Y if

1. |X| > |Y |, or
2. |X| = |Y | and w(X) < w(Y ).

The height of the strict poset (X ,≺) is the maximum set of mutually comparable
elements of X .

Lemma 3. For a connected n-vertex graph G, the height of (X ,≺) is in O(n3).

Proof. If G[X] is not an induced path, every vertex in X of degree at most 2 in
G[X] is contained in at most one half-path. Hence,

∑
x∈X wX(x) ≤ |X|. If G[X]
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is an induced path, every vertex appears in at most two half-paths, implying∑
x∈X wX(x) ≤ 2|X|. Thus

w(X) =
∑

x∈X

(wX(x))2 ≤ (
∑

x∈X

wX(x))2 ≤ 4|X|2,

and so the weight of a connected dominating set is in O(n2). Since there are at
most n different possible sizes of connected dominating sets of G, the height of
(X ,≺) is in O(n3). 	


Proof (Proof of Theorem 6). Assume we are given a connected graph G on n
vertices and m edges as input. Our algorithm works as follows, starting with the
connected dominating set Y := V (G). Its output is a connected dominating set
X with the properties stated in Theorem 6.

1. Compute a minimal connected dominating set X ⊆ Y .
2. If G[X] is an induced path, return X and terminate the algorithm.
3. Compute the set NC (X) and the weight wX(x) for every x ∈ NC (X).
4. Order the vertices of NC (X) with non-increasing weight wX , breaking ties

arbitrarily. Let that order be v1, v2, . . . , v|NC (X)|.
5. For i from 1 to |NC (X)| do the following:

(a) Compute a private neighbor yi of vi w.r.t. X.
(b) For j from i + 1 to |NC (X)| do the following:

i. Check whether Yij := (X ∪ {yi})\{vj} is a connected dominating set.
ii. If yes, put X ← Yij and go to Step 1.

6. Return X and terminate the algorithm.

We remark that the computation of yi in Step 5a is always possible, since xi is
non-cutting in G[X] and X is a minimal connected dominating set. The proof
is completed by the following sequence of claims.

Claim 1. When the algorithm terminates, the output X is a connected domi-
nating set and G[X] is Pk−2-free or G[X] ∼= Pk−2.

Since Step 1 is applied before the return is called, X is a minimal connected
dominating set. If the algorithm terminates with Step 2, G[X] is Pk−1-free by
Lemma 1. Hence, either G[X] ∼= Pk−2 or G[X] is Pk−2-free.

Now assume that the algorithm terminates in Step 6. In particular, G[X] is
not an induced path. Suppose for a contradiction that G[X] contains an induced
Pk−2, say on the vertices x1, x2, . . . , xk−2. Like in the proof of Lemma 2, both
x1 and xk−2 cannot be cut-vertices of G[X]. Thus, x1, xk−2 ∈ NC (X ).

After Step 4, the vertices of NC (X) are ordered v1, v2, . . . , v|NC (X)| with non-
increasing weight. W.l.o.g. x1 = vi, xk−2 = vj , and i < j. As X is returned, the
set Yij := (X ∪ {yi})\{vj} is not a connected dominating set, in contradiction
to Lemma 2. This proves our claim.

Claim 2. Let X be a minimal connected dominating set considered in some
iteration of the algorithm. Assume that the ’go to’ is called in Step 5(b)ii because
Yij := (X ∪ {yi})\{vj} is a connected dominating set. Let X ′ be the minimal
connected dominating set computed in the subsequent Step 1. Then X ≺ X ′.
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Clearly |X ′| ≤ |X|. If |X ′| < |X|, X ≺ X ′ by definition. So we may assume that
|X ′| = |X|, and hence X ′ = Yij . It remains to show that w(X) < w(X ′).

Let z ∈ X\{vi, vj} be a degree-1 vertex of G[X], and let (z, x1, x2, . . . , xs)
be a half-path starting in z. As G[X] is not a path, xs is a cut-vertex of G[X].
In particular, xs �= vj . Hence, in G[Yij ], (z, x1, x2, . . . , xs) is the initial segment
of a half-path starting in z. In particular, wX′(z) ≥ wX(z).

If vi is not a degree-1 vertex of G[X], wX′(vi) = wX(vi) = 0, and (yi, vi) is
the initial segment of a half-path starting in yi. Hence, wX′(yi) ≥ 1, and thus

wX′(vi) = 0 and wX′(yi) ≥ wX(vi) + 1. (1)

If the degree of vi in G[X] is 1, let (vi, x1, x2, . . . , xs) be a half-path starting
in vi. Again, xs is a cut-vertex of G[X], and so xs �= vj . Hence, in G[X ′],
(yi, vi, x1, x2, . . . , xs) is the initial segment of a half-path starting in yi. Again (1)
holds.

Summing up, we see that (1) holds, and

wX′(z) ≥ wX(z) for every vertex z ∈ X ′\{yi, vi}. (2)

We now turn to the vertex vj . First assume that the degree of vj in G[X] is
at least 2, and thus wX(vj) = 0. Then, by (2),

w(X ′) − w(X) ≥ wX′(y)2 − wX(vj)2 > 0,

and so w(X ′) − w(X) > 0.
Now assume that vj is a vertex of degree 1 in G[X], and so wX(vj) ≥ 1. Let

NG[X](vj) = {x}. As G[X] is not a path, |NG[X](x)| ≥ 2, and so wX(x) = 0.
Thus wX′(x) = wX(vj)−1. Recall that (2) holds, and wX′(z) ≥ wX(z) for every
vertex z ∈ X ′\{yi, vi}. We obtain the following inequality.

w(X ′) − w(X) ≥ wX′(yi)2 + wX′(x)2 − wX(vi)2 − wX(vj)2

= (wX′(yi)2 − wX(vi)2) − (wX(vj)2 − wX′(x)2)

≥ [(wX(vi) + 1)2 − wX(vi)2] − [wX(vj)2 − (wX(vj) − 1)2]

But wX(vi) ≥ wX(vj) implies

(wX(vi) + 1)2 − wX(vi)2 > wX(vj)2 − (wX(vj) − 1)2,

and thus w(X ′) − w(X) > 0 holds as in the previous case.
Hence, X ≺ X ′, proving our claim.
See Fig. 2 for an illustration of Step 5(b)ii.

Claim 3. The algorithm terminates in O(n5(n + m)) time.

By Claim 2, each call of the ’go to’-step and the subsequent application of Step 1
result in a connected dominating set that is properly larger in the order ≺. By
Lemma 3, the height of the poset (X ,≺), and hence the number of iterations the
whole algorithm performs, is in O(n3).
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Fig. 2. Before (left) and after (right) an application of Step 5(b)ii. In the next iteration,
the algorithm terminates with the right connected dominating set as output.

It remains to discuss the complexity of the particular steps. For this, recall
that it can be checked in time O(n + m) whether a given vertex subset is
a connected dominating set. Consequently, Step 1 can be performed in time
O(n(n + m)) by the immediate greedy procedure.

Step 2 and the computation of the weights in Step 3 can both be performed
in linear time using the degree sequence of G[X]. The computation of the set
NC (X) in Step 3 can be done straightforwardly in time O(n(n + m)).

It remains to discuss the complexity of the loop of Step 5. The computation
of a private neighbor in Step 5a is clearly done in O(n + m) time. The inner
loop of Step 5b consumes O(n) checks whether some vertex set is a connected
dominating set, requiring O(n + m) time each. Hence, Step 5 can be done in
O(n2(n + m)) time.

The overall running time computes to O(n5(n + m)), which completes the
proof of both our claim and Theorem6. 	


3 Conclusion

In this paper we gave a description of the structure of connected dominating sets
in Pk-free graphs. We have shown that any connected Pk-free graph admits a
connected dominating set whose induced subgraph is Pk−2-free or isomorphic to
Pk−2. In fact, any minimum connected dominating set has this property. Loosely
speaking, this means that the restricted structure of connected Pk-free graphs
results in an even more restricted structure of the induced subgraph of their
minimum connected dominating sets.

Although we think that our results are of their own interest, our hope is
that they might be useful in other contexts, too. One example we gave is the
polynomial time solvability of Hypergraph 2-Colorability for hypergraphs
with P7-free incidence graph. It seems possible that, with more work, one could
push this result to hypergraphs with P8-free incidence graph. However, more
interesting would be to know whether there is any k for which Hypergraph
2-Colorability for hypergraphs with Pk-free incidence graph is not solvable
in polynomial time. So far, we do not have an opinion or an intelligent guess on
this question.
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Other possible future applications of our results include the coloring of Pk-
free graphs. As mentioned earlier, Hoang et al. [6] showed that k-Colorability
is efficiently solvable on P5-free graphs, using the fact that a connected P5-free
graph has a dominating clique or a dominating induced P3. To our knowledge, an
open problem, conjectured by Huang [7], in this context is whether 4-colorability
can be decided in polynomial time for P6-free graphs. From Theorem 6 it follows
that, given a P6-free graph, we can efficiently compute a connected dominating
set that induces a P4-free graph (that is a cograph) or a P4. Of course cographs
are less trivial than cliques, especially when it comes to coloring – but that
does not rule out an approach similar to that of Hoáng et al. [6]. The fact that
each vertex of the graph has some neighbor in this cograph leaves a 3-coloring
problem for the rest of the graph, once the coloring of the cograph is fixed.
Here, one might use the fact that 3-coloring is polynomial time solvable for P6-
free graphs, shown by Randerath and Schiermeyer [11], even in the pre-coloring
extension version, proven by Broersma et al. [2].
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Abstract. Planar graphs are known to have geometric representations
of various types, e.g. as contacts of disks, triangles or - in the bipartite
case - vertical and horizontal segments. It is known that such represen-
tations can be drawn in linear time, we here wonder whether it is as easy
to decide whether a partial representation can be completed to a repre-
sentation of the whole graph. We show that in each of the cases above,
this problem becomes NP-hard. These are the first classes of geometric
graphs where extending partial representations is provably harder than
recognition, as opposed to e.g. interval graphs, circle graphs, permuta-
tion graphs or even standard representations of plane graphs.

On the positive side we give two polynomial time algorithms for the
grid contact case. The first one is for the case when all vertical segments
are pre-represented (note: the problem remains NP-complete when a sub-
set of the vertical segments is specified, even if none of the horizontals
are). Secondly, we show that the case when the vertical segments have
only their x-coordinates specified (i.e., they are ordered horizontally) is
polynomially equivalent to level planarity, which is known to be solvable
in polynomial time.

1 Introduction

An intersection representation of a graph G = (V,E) is a set family {Sv : v ∈
V } such that uv is an edge of G iff Su ∩ Sv �= ∅. Geometric representations
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(i.e., intersection representations where each set is a geometric object) of graphs
have been intensively studied both for their practical motivations and interest-
ing algorithmic properties. The motivations stem from VLSI designs, graphic
layouts including the rectangular windows overlays, bioinformatics applications
(including DNA sequencing), cellular description of reachability and interference
in mobile networks, and many others. Geometric representations often also allow
problems which are NP-hard in general to be solved in polynomial time.

The oldest and probably best understood class of intersection graphs are
interval graphs, i.e., intersection graphs of intervals on a line [13]. They can
be recognized in linear time and all basic optimization problems like inde-
pendent set, clique or coloring can be solved on them in linear time as well.
Generalizations of interval graphs include circular arc graphs [12,25], the inter-
section graphs of arcs on a circle. Circle graphs [4] are intersection graphs of
chords of a circle and as such include permutation graphs [2,14], the intersec-
tion graphs of straight-line segments connecting points on two parallel lines.
Intersection graphs of curves connecting points on two parallel lines, sometimes
called the function graphs [14], are exactly the complements of comparability
graphs (graphs admitting a transitive orientation). All these classes can be recog-
nized in polynomial time and the independent set and clique problems can be
solved in polynomial time on them as well. An overview of these and many other
intersection-defined graph classes is given in many textbooks [5,22].

Geometric representations of graphs also help in visualizing the information
grasped by the graph structure. Thus, the question of recognizing these classes
and constructing a representation of a given type is rather important. Addition-
ally, in some cases the polynomial time algorithms mentioned above exploit geo-
metric representations. For the vast majority of the interesting classes of graphs
the complexity of their recognition is well understood on the level of Polyno-
mial versus NP-hard, with some cases where NP-membership is not known (for
intersection graphs of straight-line segments or intersection graphs of convex sets
in the plane, which are both known to be NP-hard to recognize, only PSPACE
membership of the recognition problem is known, as their recognition is complete
for the existential theory of the reals [24]). Recently, more attention has been
paid to the question of extending partial representations of graphs. This setting
corresponds to a situation where a part of the graph comes already represented
from the applied instance or when the visualization task comes from a customer
who does not want to see some part of the picture changed. Formally, we discuss
the following decision problem, parameterized by an intersection-defined class C:

RepExt(C)

Instance: A graph G and a C-representation R′ of an induced subgraph of G.

Question: Does there exist a C-representation R of G such that R′ ⊆ R?
This question falls into a natural paradigm of extending a partial solution of
a problem rather than building a solution from scratch, the latter approach
being often easier. This common knowledge of architects and engineers can be
observed in graph coloring problems where it is well known that every cubic
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bipartite graph is 3-edge-colorable, but extending a partial edge-coloring is NP-
complete [11], even for planar bipartite graphs [21]. Therefore it feels some-
what unexpected that for the resolved cases of geometric intersection graphs,
extending partial solutions has not been harder than recognizing the particular
classes1. In particular, RepExt(C) is decidable in polynomial time when C is:
interval graphs [16], proper interval graphs [16], unit interval graphs [19], circle
graphs [6], permutation graphs [17], and function graphs [17]. These algorithms
tend to extend the plain recognition ones in nontrivial ways through the use
of special data structures which capture all representations. Interestingly, even
though the classes of unit and proper interval graphs coincide, they are sepa-
rated by the partial representation extension problem; i.e., there are instances
of partial representations consisting of unit intervals that are extendible to a
proper interval representation, but not to a unit one [16].

In this paper we consider RepExt(C) when C is a contact graph class. This
work is motivated by several elegant theorems that show that all planar graphs
have geometric representations by contacts of various geometric objects. In gen-
eral, an intersection representation is a contact one if the interiors of any two
objects of the representation are disjoint. The classical example is Koebe’s theo-
rem, often referred to as the kissing lemma or the coin representation, which was
rediscovered several times by several authors. It states that every planar graph
is the contact graph of a collection of disks in the plane [20]. The proof of this
theorem is nonconstructive but later Mohar [23] gave a polynomial time algo-
rithm for producing an approximate representation (there are planar graphs that
require irrational coordinates for some disk centers in any coin representation,
and so approximate constructions are the best one can hope for, at least if we
want to describe the coordinates and radii by rational numbers). De Fraysseix
et al. [8] constructively proved that every planar graph is a contact graph of
triangles in the plane. In 1991, Hartman et al. [3] showed that every bipartite
planar graph has a grid contact representation, i.e., a contact representation in
which vertices of one class of bipartition are represented by vertical segments
and vertices of the other class by horizontal ones (this was also independently
shown by de Fraysseix et al. [7]).

We prove that in all of these cases, deciding whether a partial contact rep-
resentation of a planar (bipartite) graph can be extended to a contact represen-
tation of the entire graph is NP-hard. For geometric intersection graphs (i.e.,
for intersection graphs of planar objects defined by their shape or geometrical
properties), this collection of results provides the first examples where extend-
ing partial representations is harder than deciding or constructing representa-
tions with no initial constraints. Note that for extending partial representations
by triangles, convex sets, or disks, we only claim NP-hardness and not NP-
completeness. This is because the membership in the class NP is not known
1 The only exception is formed by partial subtree-in-tree or path-in-tree representa-

tions of chordal graphs, but there the NP-hardness follows from limited space issues,
not any geometrical ones [18].
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(similarly to recognizing intersection graphs of disks, convex sets or straight line
segments, where only PSPACE membership is known).

In the last section of the paper we refocus on grid contact representations
of planar graphs and show that the partial representation extension problem
remains NP-hard if only some of the vertical segments are prerepresented. On
the contrary, the problem becomes polynomially decidable if all of the vertical
segments are given in the input, and also if only their x-coordinates are given
(i.e., all horizontal segments and the vertical position of the vertical ones are
unspecified). The last mentioned case is shown to be polynomially equivalent to
testing level-planarity, a problem known to be decidable in linear time.

2 Grid Contact Graphs

For this section, let G = (V ∪ H,E) be a planar bipartite graph and let n1 =
|V |, n2 = |H|. As already mentioned, de Fraysseix et al. [7] proved that G has
a contact representation in which vertices of V are represented by vertical line-
segments, vertices of H by horizontal line-segments, no parallel segments inter-
sect, no two segments cross and any two segments u, v share a point (i.e., a point
of contact) if and only if uv ∈ E (for simplicity we use the same symbol for a
vertex and the segment representing it). In particular, both V and H are inde-
pendent sets of vertices in G. The proof [7] is based on bipolar orientations of
planar graphs and their visibility representations. Such a representation can be
constructed in polynomial time. We show that the task becomes harder if some
of the vertices are pre-represented. The proof of the following theorem plays an
important role in the rest of the paper. The NP-hardness reductions are all based
on modifications of the gadgets constructed in it.

Theorem 1. Given a planar bipartite graph G and some of its vertices repre-
sented by vertical or horizontal line-segments, it is NP-complete to decide if the
partial representation can be extended to a grid contact representation of G.

Proof. The NP-membership is straightforward, since a grid intersection repre-
sentation can be described by the linear quasi-orders of n1 coordinates for the
vertical segments and n2 coordinates for the horizontal ones.

For the NP-hardness proof we reduce from Planar-3-SAT. Given a Boolean
formula Φ with a set C of clauses over a set X of variables such that the graph
GΦ = (C ∪ X, {xc : (x ∈ c ∈ C) ∨ (¬x ∈ c ∈ C)}) is planar, it is NP-complete
to decide if Φ is satisfiable. This problem remains NP-complete even if every
variable occurs in 3 clauses, once negated and twice positive, and every clause
contains 2 or 3 literals [10] (in fact, Fellows et al. show NP-completeness even
in a stronger way, for planar clause-linked formulas, i.e., for formulas whose
incidence graphs remain planar after adding a cycle through all clause vertices,
but we do not need this assumption). Given such a formula, we first draw the
graph GΦ in a rectilinear way so that edges are piece-wise linear curves with all
segments either vertical or horizontal. We may further assume that the edges
leaving each variable are positioned so that the edges corresponding to the two
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Fig. 1. The brick and its two possible
representations.

false

Fig. 2. The brick and its two
possible representations.

positive occurrences start with horizontal segments while the edge corresponding
to the negative occurrence starts with a vertical one. The planarity of GΦ can be
tested in linear time, and a rectilinear drawing can be also constructed in linear
time, even with a bounded number of bends per edge.

From this drawing we construct a graph G by a sequence of local replace-
ments. Every variable is replaced by a copy of a variable gadget, every clause
by a copy of a clause gadget, and the edges are replaced by chains of gadgets
whose length depends on the number of bends on the edge. All gadgets are con-
structed from two building blocks. The basic one, the so called brick, is depicted
in Fig. 1. The left part of the figure shows the subgraph, the right one a represen-
tation by contacts of segments. In all figures the black vertices and segments are
those whose position is prescribed, and white vertices (dotted segments) are the
flexible ones. The middle vertical black segment is an isolated vertex and thus
cannot be crossed by any of the dotted ones. The dotted path connecting the
other two black vertices can be represented either above or below the middle
black segment. We use the schematic light grey rectangle depicted in Fig. 2 for
the brick, and the side which bears the dotted segment encodes the value false.
The bricks can also be rotated into a horizontal position, thus sending the false
value to the left or to the right.

The variable gadget consists of three bricks whose vertices are pairwise non-
adjacent. It is depicted in Fig. 3. From the overlapping corners of the bricks, it
either sends the value false along the vertical edge, in which case both horizontal
edges may transfer the value true, or it sends the value true along the vertical

+ +

− true

− −
+ false

Fig. 3. The variable gadget.
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edge, in which case both horizontal ones must send the value false. The former
case corresponds to the variable being evaluate as true, in the latter to false.

Each rectilinear edge of GΦ is replaced by a sequence of bricks, one for each
linear segment, where these segments are linked again by overlapping corners.
In every feasible representation, the value false is transferred along the edge, see
Fig. 4. Note that it is possible for the edge gadget to transmit the value false
even when its first brick is set to true, but this does not change the satisfiability
of Φ.

− −
+ false

false

Fig. 4. The edge gadget.

For the clause gadget we use a modified brick depicted in Fig. 5. In any
representation, at least one of the corners of the bounding rectangle must be
used by a dotted segment. The clause gadget consists of two normal bricks and
a modified one linked as depicted in Fig. 6. (For clauses containing 2 literals,
we use the same gadget with one dummy variable represented by a single brick
whose dotted path is pre-represented in the false position.) It is straightforward
to see that if all three literals in the clause evaluate to false, all of the corners
of the modified brick inside the clause gadget are blocked and the modified
brick itself cannot be represented. Thus if the graph constructed as above has a
representation, each clause must have at least one true literal and Φ is satisfiable.
On the other hand, if Φ is satisfiable, we construct a representation following the
lines and pictures above. Feasible representations of the clause gadget for the
cases when the bottom or a side incoming literal is true are depicted in Fig. 7.

Fig. 5. The modified brick.

+ +

−

Fig. 6. The clause gadget.
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3 Triangles, Disks, and Convex Sets

De Fraysseix et al. [8] proved that every planar graph is a contact graph of isosce-
les triangles with parallel bases. The construction is based on canonical ordering
of the vertices in planar triangulations and can be performed in polynomial time.
We show that again, given some vertices pre-represented, it is NP-hard to decide
if the representation can be extended to a contact representation of the entire
graph. We prove this in a stronger form, noting that triangles are convex sets.

Theorem 2. Given a planar graph G and a partial representation R′ by contacts
of isosceles triangles, the following questions are NP-hard to decide

1. if R′ can be extended to an intersection representation of G by convex sets,
2. if R′ can be extended to a contact representation of G by convex sets,
3. if R′ can be extended to a contact representation of G by isosceles triangles.

Proof. We modify the proof of Theorem 1. First, note that the graph G con-
structed in the proof is a disjoint union of isolated vertices and paths and all
flexible vertices (i.e., those whose segments are not prescribed) are of degree 2.
Thus, any intersection representation by closed convex sets can be reduced to a
contact representation by segments (take the sets representing flexible vertices
one by one and replace each of them by the segment connecting the closest inter-
section points with its two neighbors). These segments, however, do not need
to follow the vertical and horizontal directions. To force them to be “almost”
bi-directional, adjust the bricks by predrawing auxiliary guiding segments, very
close to each other, that leave a very narrow angle for the flexible (dotted) seg-
ments, as depicted in Fig. 8 (the guiding segments represent isolated vertices
and so must not be crossed or touched by any other segments of the repre-
sentation). If the width of the corridor between the guiding segments is small
enough with respect to the length of the central black segment, the corners of the
bounding rectangle are blocked by the dotted flexible segments as in the proof of
Theorem 1. A similar modification is applied to the modified brick. To keep all

true false false

true

Fig. 7. The representations of the clause gadget.
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Fig. 8. The brick
for the convex set reduction.

Fig. 9. Extra blockage
for the convex set reduction.

flexible segments under control, we add extra blocking predrawn segments – all
loose corners will be blocked by an extra black segment and every corner of the
modified brick will be filled with three predrawn segments in an H-position as
shown in Fig. 9.

So if G has a representation by intersections of convex sets (extending the
given partial representation), then G has a contact representation by segments
with similar properties propagating the false assignment of variables as in the
proof of Theorem 1, and Φ is satisfied by the corresponding valuation. Moreover,
if Φ is satisfiable, a contact representation by vertical and horizontal segments
is a contact (i.e., also intersection) representation by convex sets. To achieve a
contact representation by isosceles triangles, it suffices to replace vertical seg-
ments by very thin triangles and the horizontal segments by very fat ones (with
very small height and whose base corresponds to a horizontal segment).

A similar modification of the gadgets by leaving a controlled space for the
flexible vertices shows the next result on disk contact (intersection) graphs (the
proof will be given in the full version of the paper).

Theorem 3. Given a planar graph G and a partial representation R′ by contacts
of disks, the following questions are NP-hard to decide

1. if R′ can be extended to an intersection representation of G by disks,
2. if R′ can be extended to a contact representation of G by disks.

4 Contacts of Regions

One can further relax the conditions on the representation by geometrical objects.
From a non-crossing drawing of a planar graph one can easily construct a contact
graph of closed regions bounded by simple Jordan curves. (Disks are of course
such regions, but the proof for contacts of simple regions is much easier.) For
partial contact representations by regions we encounter a polynomially solvable
case. To maintain planarity, we insist that no three regions share a point.

Theorem 4. Given a graph G and a partial representation by contacts of simple
regions, one can decide in linear time if the representation can be extended to a
contact region representation of the entire graph G.
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Proof. Add a master point Mu inside every region representing a vertex u and
connect it by non-crossing curves to contact points on the boundary of its region.
Consider this as a non-crossing drawing of a graph H and add vertices for the
unrepresented vertices of G connected to the master points of their neighbors.
Call the graph obtained in this way H ′. Then G has a representation by contacts
of regions if and only if H ′ has a planar drawing that extends the fixed drawing
of H. This can be decided in linear time [1]. See an illustration in Fig. 10.

Fig. 10. Connecting region contact graphs and partially embedded planarity.

5 Grid Contact Graphs Revisited

In this section we modify the construction from the proof of Theorem 1 once
more. We note that we may require that the pre-represented vertices belong to
the same bipartition class.

Theorem 5. Given a planar bipartite graph G = (V ∪ H,E) and some of the
V vertices represented by vertical line-segments, it is NP-complete to decide if
the partial representation can be extended to a grid contact representation of the
entire graph.

Proof. From the construction in the proof of Theorem 1, we replace each pre-
represented horizontal segment as shown in Fig. 11. Specifically, we replace it
with a flexible horizontal segment with three prescribed vertical neighbors. The
new flexible horizontal segment has the same adjacency as the original prescribed
segment and is locked in the same place by its new black vertical neighbors.
We conclude by observing that for the NP-hardness, it is important that some
vertical vertices remain flexible:

Fig. 11. Lifting the pre-representation of horizontal segments.

Theorem 6. Given a planar bipartite graph G = (V ∪ H,E) with all of the
V vertices represented by vertical line-segments, it can be decided in polynomial
time if the partial representation can be extended to a grid contact representation
of the entire graph.
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Proof (Sketch). For every horizontal vertex u ∈ H, the x-coordinates of its
(vertical) neighbors determine the x-coordinates of the left and right endpoints
of the segment representing u. What remains to be determined is its height, i.e.,
the y-coordinate. The positions of its (vertical) neighbors determine a range I(u)
of possible y-coordinates of this segment. It can be shown that I(u) is a union
of at most |V | real intervals, and hence can be described in polynomial time.
Finally, one has to resolve conflicts among the horizontal segments as segments
with equal y-coordinates must not intersect (i.e., segments with overlapping
projections to the x axis must not have the same y-coordinate). The vertices u
with infinite I(u) can be disregarded for the moment, since their y-coordinates
can always be chosen different than y-coordinates of all other vertices (we are
processing a finite graph). It can be seen that if I(u) is finite, it contains at most
2 values. The choice of the y-coordinates of such vertices can then be modeled
by 2-Satisfiability.

Pseudocode for this algorithm, a detailed proof of its correctness, and its
running time analysis will be given in the full version of the paper.

A further relaxation is when the vertical segments do not come with specified
endpoints, but only their x-coordinates (or, equivalently, their left-to-right order)
are given:

Theorem 7. Given a planar bipartite graph G = (V ∪ H,E) and the order of
x-coordinates of the vertical segments V , there is a polynomial-time algorithm
to decide if there is a grid contact representation of G respecting this order.

Proof. Here we sketch a polynomial reduction from this problem to level-planarity
testing (a detailed proof will be given in the full version of the paper where we
also show that level-planarity testing can be reduced to this problem). In level-
planarity testing we are given a leveled graph G, i.e., a graph whose vertex set is
partitioned into independent sets (levels) S1, . . . , Sk. The goal is to determine if
there is a planar drawing of G where the vertices of each Si are represented by
points on the line x = i. (For convenience we represent levels vertically, rather
than horizontally.)

Level-planarity testing is known to be solvable in linear time [9,15]; the algo-
rithm proceeds level-by-level and uses PQ-trees to record possible orderings on
previous levels. Now to our problem.

Let G = (V ∪ H,E) be a given planar bipartite graph and let v1, v2, . . . , vn1

be a given ordering of V by prescribed x-coordinates. For simplicity we use the
same symbol for a vertex and the segment representing it.

We may assume that G is connected, otherwise we simply solve the corre-
sponding problem on each connected component of G and put the representations
one above the other. We may also assume that the degree of each vertex in H is
at least two; all vertices of degree one in H can be safely removed and reattached
later at arbitrary contact points.

The intuition regarding the connection between these problems comes from
the special case when every horizontal segment has degree two. In this case
we see the reduction immediately by respectively mapping vertical segments
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and horizontal segments to vertices and edges in the level-planarity instance. In
particular, by giving each vertical segment its own level and ordering the levels
by the x-coordinates of the verticals we are done.

We now turn to the more interesting case, when some horizontal segments
have high (≥3) degree. In this case we replace each high degree horizontal seg-
ment h by a gadget which involves O(degree of h) new segments where the hor-
izontal segments have degree two and the vertical segments have degree three.
This replacement is depicted in Fig. 12 and is formally described as Rule 1 below.
Rule 1. If H contains a vertex h of degree at least 3, then let vi0 , vi1 , . . . , vik+1

denote neighbors of h, where i0 < i1 < . . . < ik+1, and do the following:

(a) remove h from H and add a path

vi0 , z0, x
−
1 , y−

1 , vi1 , y
+
1 , x+

1 , z1, x
−
2 , y−

2 , vi2 , . . . , vik , y+
k , x+

k , zk, vik+1

where x−
j , x+

j , y−
j , y+

j , zj are new vertices such that:
x−

j , x+
j are put in V and the rest in H.

(b) add new vertices h1, h2, . . . , hk where each hi is adjacent to x−
i and x+

i ,
(c) modify the ordering of V by

– inserting x−
j right before and x+

j right after vij , for all j = 1, . . . , k.

Fig. 12. Replacing a horizontal segment.

Moreover, from Fig. 12, it is easy to see that any solution to the original
problem is preserved by applying Rule 1. So, we need to argue that any solution
to the instance post-replacement must correspond to a solution pre-replacement.
This amounts to two properties that we will need. The first is that the faces x−

j ,
hj , x+

j , y+
j , vij , y−

j are empty in any solution and the second is that the path

z0, x
−
1 , h1, x

+
1 , z1, x

−
2 , h2, x

+
2 , z2, . . . , x

−
k , hk, x+

k , zk
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can be “straightened”. Both of these conditions are easily observed, but require
a bit of care to prove formally. Moreover, once they are attained we then simply
reverse the replacement as in Fig. 12 to obtain a solution to our original instance.

Notice that the size of the instance of level-planarity we produced is linear
with respect to our input graph. Thus, via Rule 1 and our argument regarding
the degree two case, the reduction is complete.

6 Conclusion

In most of the cases we have encountered NP-hardness. One certainly wonders if
additional assumptions may make the partial representation extension problems
polynomially solvable. One possible direction is requiring the input graph to be
highly connected (since the graph used in the proof of Theorem 1 is very sparse):

Problem 1. Is extendability of partial grid contact representations of planar
quadrangulations decidable in polynomial time?

In view of Theorem 7 one may wonder what happens if only a part of the vertical
segments is partially described:

Problem 2. Given a planar bipartite graph and a linear order of the x-coordinates
of some of the vertical segments, can one decide in polynomial time if there is a
grid contact representation respecting this order?
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Abstract. In this paper, we study the approximability of the Maximum
Labeled Path problem: given a vertex-labeled directed acyclic graph D,
find a path in D that collects a maximum number of distinct labels. Our
main results are a

√
OPT -approximation algorithm for this problem and

a self-reduction showing that any constant ratio approximation algorithm
for this problem can be converted into a PTAS. This last result, combined
with the APX-hardness of the problem, shows that the problem cannot
be approximated within a constant ratio unless P = NP .

1 Introduction

Optimization network design problems over labeled graphs have been widely
studied in the literature [2–8,10,11]. Since these problems are usually NP -hard,
they have been mainly investigated toward the goal of finding efficiently approx-
imate solutions. Most of these studies consider edge-labels that represent kinds
of connections and the optimization concerns the number of different kinds of
connections used. Our motivation is different, we consider vertex-labels that rep-
resent membership to different components. Our goal is then to maximize the
number of components visited by a path in a directed graph. More precisely,
the problem is defined on a directed graph with labels on the vertices and the
objective is to find a path visiting a maximum number of distinct labels. We
call this problem Max-Labeled-Path. Actually, the vertex-labeled and edge-
labeled versions of this problem are equivalent but the vertex-labeled version is
closer to our initial motivation. To our knowledge, there is no prior work on this
simple and natural problem. A related problem is the Min LP s− t problem that
asks to find a path between s and t minimizing the number of different labels
in this path. In [7] Hassin et al. achieves a

√
n ratio for this problem and they

show that it is hard to approximate within O(log n). We used a similar approach
for our hardness result and the comparison is interesting since the maximization
requires a much more precise analysis.

1.1 Contributions

In this paper we report both positive and negative results about the Max-
Labeled-Path. Namely, we prove that this problem does not admit a constant
factor approximation algorithm unless P = NP and we propose an algorithm
that returns a solution of value at least

√
OPT where OPT is the value of an

c© Springer International Publishing Switzerland 2014
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optimal solution. In Sect. 2, the hardness proof starts with a reduction from
MAX 3SAT preserving the approximation and therefore proving that Max-
Labeled-Path is APX-hard. In Sect. 3, a polynomial self-reduction shows that
finding a solution on a more complex graph enables us to find a solution with
a better ratio on the initial graph. This, combined with the APX-hardness of
the problem, shows that the problem cannot be approximated within a constant
ratio unless P = NP . In Sect. 4, we describe a

√
OPT -approximation algorithm

for Max-Labeled-Path. This algorithm requires a specific preprocessing and
an inductive analysis that uses the poset structure of the problem.

1.2 Preliminaries

A vertex-labeled Directed Acyclic Graph D = (V,A) is a DAG whose vertices
are labeled by a function l : V → L. For each vertex u ∈ V , we denote by λ(u)
and call the level of u, the maximum number of vertices in a path having u as
end-vertex. The ith level set Li of D consists of all vertices u ∈ V such that
λ(u) = i. The vertices of L1, i.e. having no ingoing arcs, are called the sources of
D. The vertices having no outgoing arcs are called the sink. Let k be the largest
integer such that Lk �= ∅. Lk is a subset of the sinks. Let P be a (directed) path
in D. P is maximal by inclusion if and only if it connects a source to a sink.
The set of labels collected by P is the set {l(u) : u ∈ P} of labels of vertices in
P. Given a vertex-labeled DAG D, the problem Max-Labeled-Path consists
in finding a path P in D maximizing the number of distinct labels collected by
P. Any solution can be extended into a maximal path without decreasing its
value, therefore we only consider solutions that connects a source to a sink. In
this paper, we consider only maximization problem. Let D be an instance of
a maximization problem, we denote by OPT (D) its optimum. We say that an
algorithm achieves a constant performance ratio α, if for every instance D, it
returns a solution of value at least α OPT (D).

2 Maximum Labeled Path Is APX-Hard

In this section, we describe a reduction from Max-3SAT establishing that Max-
Labeled-Path is APX-hard even when restricted to instances satisfying the
following conditions:

(C1) All maximal (by inclusion) paths of D contain the same number k of vertices.
(C2) D contains a path that collects all the labels, OPT (D) = |L|.
(C3) D contains a path that collects each label exactly once, OPT (D) = k = |L|.
(C4) OPT (D) = k = |L| is a power of two.

Note that (C4) is stronger than (C3) which is stronger than (C2). Applying
our initial reduction to satisfiable instances of Max-3SAT, we produce instances
Max-Labeled-Path satisfying conditions (C1) with k ≤ 3|L| and (C2) and
proves Theorem 2. Then, we proceed in two steps: first we establish the APX-
hardness for instances satisfying conditions (C1) and (C3) in Theorem3 and
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then the APX-hardness for instances satisfying conditions (C1) and (C4) in
Theorem 4. In the next section we use a self-reduction of Max-Labeled-Path
to prove that Max-Labeled-Path does not belong to APX. This self-reduction
is valid only for instances satisfying conditions (C1) and (C4).

Theorem 1. (H̊astad [9]) Assuming P �= NP , no polynomial-time algorithm
can achieve a performance ratio exceeding 7

8 for Max-3SAT even when restricted
to satisfiable instances of the problem.

Theorem 2. Assuming P �= NP, no polynomial-time algorithm can achieve a
performance ratio exceeding 7

8 for Max-Labeled-Path even when restricted to
instances satisfying conditions (C1) with k ≤ 3|L| and (C2).

Before proving Theorem2, we establish the following lemma showing that (C1)
is not a strong requirement in the sense that each instance of Max-Labeled-
Path can be converted into an equivalent instance satisfying (C1). The proof of
Lemma 1 is omitted due to space limitation.

Lemma 1. Given an instance D of Max-Labeled-Path, it is possible to con-
struct an instance D′ satisfying condition (C1) and such that there exists a
mapping between the set of maximal paths in D and the set of maximal paths in
D′ preserving the number of labels collected.

Proof (of Theorem2). Given an instance F of Max-3SAT, we define an instance
DF = (V,A) of Max-Labeled-Path as follows. Let {w1, w2, ..., wq} be the
set of variables of F. For all j ∈ {1, ..., q}, we denote by |wj | the number
of occurrences of the literal wj and by |¬wj | the number of occurrences of
its negation. We create |wj | + |¬wj | vertices and call them wj

1, w
j
2, ..., w

j
|wj |

and ¬wj
1,¬wj

2, ...,¬wj
|¬wj |. We connect in a directed path P (wj) the vertices

which represent the literal wj , i.e. we create an arc (wj
i , w

j
i+1) for all i ∈

{1, . . . , |wj | − 1}. In the same way, we connect in a directed path P (¬wj) the
vertices representing ¬wj . For all j ∈ {1, ..., q−1}, we connect by an arc the last
vertices of P (wj) and P (¬wj) to the first vertices of P (wj+1) and P (¬wj+1).
Let us define the labeling function l : V → L := {1, . . . , m} where m is
the cardinality of the set of clauses {C1, C2, . . . , Cm} of F. There is a one to
one correspondence between the occurrences of the literals in the clauses and
the vertices of DF . A vertex u receives the label j if u corresponds to an occur-
rence of a literal in the clause Cj (see Fig. 1).

Applying the reduction to a satisfiable instance F of Max-3SAT, we obtain
an instance DF of Max-Labeled-Path that contains a path collecting all the
labels, i.e. that satisfies condition (C2). Moreover, since each clause contains
at most three literals, the number k of vertices in a maximal path of DF is
at most thrice the number m of labels, i.e. k ≤ 3m. In the resulting graph
DF , each maximal path P is a path from a vertex in {w1

1,¬w1
1} to a vertex

in {wq
|wq|,¬wq

|¬wq|} that contains for all j ∈ {1, . . . , q} either P (wj) or P (¬wj)
but not both. Therefore, it represents in an obvious way an assignment of the
variables (wj = true ⇔ P (wj) ⊂ P ). From the choice of the labeling of vertices
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in DF , it is easy to verify that an assignment of the variables satisfying n clauses
corresponds to a maximal path collecting n labels. This transformation produces
in polynomial time an instance DF satisfying the conditions (C2) with k ≤ 3|L|.
It remains to ensure (C1), this can be done by applying the transformation of
Lemma 1. Together with Theorem 1, this concludes the proof of Theorem2. �

Fig. 1. The digraph DF for the formula F = (a∨ b∨ c)∧ (¬a∨ b∨¬c)∧ (¬b∨ c) before
the transformation of Lemma 1 (to the left) and after (to the right).

The next step consists in showing that the problem Max-Labeled-Path
remains APX-hard even when restricted to instances such that all maximal paths
have the same number of vertices and contain a path collecting each label exactly
once.

Theorem 3. Assuming P �= NP, no polynomial time algorithm can achieve a
performance ratio exceeding 23

24 for Max-Labeled-Path even when restricted
to instances satisfying (C1) and (C3).

Proof. Consider a DAG D = (V,A) with a labeling function l that satisfies the
conditions (C1) with k ≤ 3|L| and (C2). Every maximal path in D contains the
same number k of vertices. Let m := |L| ≤ k be the number of labels of vertices
in D. We construct a DAG D′ by adding to D, for each vertex v ∈ V, a set
{v1, . . . , vr} of r := k − m copies of the vertex v. There is an arc between two
vertices in D′ if and only if there is an arc between their preimages in D (the
preimage of a vertex v ∈ V is v itself). Every maximal path in D′ corresponds
to a maximal path in D, in particular it contains exactly k vertices. The set of
labels of D′ is L′ := L ∪ {m + 1,m + 2, . . . , m + r = k}. For each vertex v of D
and each integer j ∈ {1, 2, . . . , r} the label of the vertex vj is m + j. The labels
in D′ of the vertices that belong to D remain unchanged. We call the resulting
instance D′ the extension of the instance D.

The following two lemmata (whose proofs are omitted due to space lim-
itation) establish a close relationship between the optimum of the instances
D and D′.



156 B. Couëtoux et al.

Lemma 2. If there is a path in D collecting n labels then there is a path in D′

collecting n + r labels. If there is a path in D′ collecting n labels then there is a
path in D collecting at least n − r labels.

Lemma 3. If there exists a polynomial time algorithm that achieves a perfor-
mance ratio 1−ε for Max-Labeled-Path restricted to instances satisfying con-
ditions (C1) and (C3) then there exists a polynomial time algorithm that achieves
a performance ratio 1 − 3ε for Max-Labeled-Path restricted to instances sat-
isfying conditions (C1) with k ≤ 3|L| and (C2).

To complete the proof of Theorem 3, suppose that there exists a polynomial time
algorithm ALG′ achieving a ratio exceeding 23

24 for the problem Max-Labeled-
Path restricted to instances satisfying conditions (C1) and (C3). Then, by
Lemma 3, we deduce that there exists a polynomial time algorithm ALG achiev-
ing a ratio exceeding 7

8 for the problem Max-Labeled-Path restricted to the
instances satisfying conditions (C1) with k ≤ 3|L| and (C2), this cannot occur
by Theorem 2, unless P = NP . �

The last result of this section shows that the problem remains APX-hard if
we add the condition that the number of vertices in any maximal path is a power
of two. The proof of Theorem4 is similar to the one of Theorem 3 and has been
omitted due to space limitation.

Theorem 4. Assuming P �= NP, no polynomial time algorithm can achieve a
performance ratio exceeding 47

48 for Max-Labeled-Path even when restricted
to instances satisfying conditions (C1) and (C4).

3 Maximum Labeled Path Does Not Belong to APX

In this section, using a self-reduction of the problem Max-Labeled-Path, we
will prove the following result:

Theorem 5. Assuming P �= NP, no polynomial time algorithm can achieve
a constant performance ratio for Max-Labeled-Path even when restricted to
instances satisfying conditions (C1) and (C4).

3.1 Self-reduction

In Sect. 3, we will consider only instances of Max-Labeled-Path satisfying
conditions (C1) and (C4). Namely, a DAG D = (V,A) whose vertices are labeled
by a function l : V → L = {1, . . . , k} such that there exists a path collecting each
label exactly once and the number k = |L| of vertices in any maximal path is a
power of two. We will prove that such instances of the problem Max-Labeled-
Path cannot be approximated in polynomial time within a constant factor. For
the sake of simplicity, we also assume that there is only one source s and one
sink t. Therefore, any maximal path is a path from s to t and all vertices of D
belong to a path from s to t. Recall that, for each vertex u ∈ V , λ(u) is the
number of vertices in a path from s to u (all such paths have the same length
because D satisfies (C4)). For all u ∈ V, λ(s) = 1 ≤ λ(u) ≤ k = λ(t).
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Pseudo Square and Pseudo Cubic Acyclic Digraph. The pseudo square
digraph D̄ of D is obtained from D by replacing each vertex u ∈ V by a copy Du

of the digraph D. We denote by vu the copy of the vertex v ∈ V in the digraph
Du. There is an arc vuwu in D̄ if and only if there is an arc vw in D. In addition
to the arcs of the subgraphs Du, u ∈ V , we add to D̄ an arc tusv for each arc
from uv in D. The pseudo cubic digraph D̃ of D is obtained from D̄ by replacing
each vertex vu of D̄ by a path P (vu) with k vertices. Each arc entering a vertex
vu in D̄ is replaced by an arc of D̃ entering the first vertex of P (vu). Analogously,
each arc leaving the vertex vu in D̄ is replaced by an arc of D̃ leaving the last
vertex of P (vu) (see Fig. 2). We define a new instance of Max-Labeled-Path
on the digraph D̃ with the first vertex of P (ss) as a source and the last vertex
of P (tt) as a sink and a labeling function l̃ defined as follows.

Fig. 2. An example of pseudo square digraph D̄ with k = |L| = 4. An optimal path P in
D and the corresponding optimal path P̄ in D̄ are drawn in bold. In the subgraph Da,
each vertex v of D̄ is labeled by the subset of labels received by the vertices of the path
P (v) of D̃. In D̃, the vertex fd of D̄ is replaced by the path P (fd) = (f1

d , f2
d , f3

d , f4
d ).

Labeling. Let vu be a vertex of D̃, the set of labels of the vertices of P (vu)
will depend on the labels of u and v in D and on the level of u in D. Since either
all vertices of P (vu) are visited by a path from the source to the sink or none
of them are, our labeling function assigns a set of labels to the path P (vu) and
does not precise the order in which the labels appear on P (vu). The set of labels
L̃ used to define the labeling of D̃ consists of k disjoint subsets L̃1, . . . , L̃k such
that |L̃1| = . . . = |L̃k| = k2. For each label c ∈ L and each level i ∈ {1, . . . , k},
we construct a partition Si,c := {Si,c(c′) : c′ ∈ L} of L̃c into k subsets of size k
such that any two subsets arising from different partitions intersect in exactly
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one label, i.e. if i1 �= i2 for all c′, c′′ ∈ L, |Si1,c(c′) ∩ Si2,c(c′′)| = 1. Since k2 is a
power of two (k2 = 2r), such partitions can be easily constructed as classes of
parallel lines of a finite affine plane (each class of parallel lines induces a partition
in which the subsets are the lines). The construction of finite affine planes from
finite fields is described for instance in [1]. This construction can be done in
polynomial time in the size of D by first identifying an irreducible polynomial
of degree r by brute force and then constructing the corresponding finite fields
GF (2r). The labeling function l̃ assigns to the vertices of P (vu) the labels that
belong to the subset Sλ(u),l(u)(l(v)) of the partition Sλ(u),l(u).

Claim. There is a path in D̃ that collects each label in L̃ exactly once.

Proof. Let P be the path of D collecting all the labels in L. Consider the path
P̃ passing via each subgraph Du for all u ∈ P and such that the subpath P̃u

of P̃ inside the subgraph Du consists of the vertices vu for all v ∈ P (see Fig. 2).
Since P collects each label in L once, the subpath P̃u collects every subset of
the partition Sλ(u),l(u). This implies that P̃u collects each label of L̃l(u) once.
Applying this assertion to all vertices u ∈ P and using again that P collects
each label in L, we conclude that P̃ collects all the labels of L̃ =

⋃
u∈P L̃l(u)

once. �

The previous claim and the fact that |L̃| is a power of two ensure that D̃ is
an instance of Max-Labeled-Path satisfying the conditions of (C1) and (C4).
Clearly, the instance D̃ can be constructed in polynomial time from the instance
D.

3.2 Proof of Theorem5

Let g denote the reciprocal function on the interval [0, 1] of the following con-
tinuous and strictly increasing function h:

h(x) :=
{

h1(x) := x(x2 − x + 1) if 0 < x < 1
2 ;

h2(x) := x2 − 1
4x + 1

4 if 1
2 ≤ x ≤ 1.

Lemma 4. For each 0 < β < 1, the sequence βn defined by β0 = β and βn+1 =
g(βn) has a limit of 1.

In the next section, we show the following two results:

Lemma 5. Given any path Q in D̃ that collects at least βk3 labels, a path P in
D that collects at least g(β)k labels can be computed in polynomial time.

Lemma 6. If there is a polynomial-time algorithm with a ratio β for Max-
Labeled-Path then there is a polynomial-time algorithm with a ratio g(β) for
Max-Labeled-Path.

Proof. Suppose there exists a polynomial time algorithm ALGβ with a ratio at
least β for Max-Labeled-Path. Let D be an instance of Max-Labeled-Path,
we use the following algorithm:
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Function ALG(D): a maximal path in D that collects g(β)k labels

Construct the digraph D̃ from the digraph D;
Perform ALGβ to obtain a path Q of D̃ that collects βk3 labels;
Derive from Q a path P of D that collects at least g(β)k labels;
Return P ;

This algorithm is clearly polynomial because all the steps are, thus we have
a polynomial time algorithm with a ratio g(β) for Max-Labeled-Path. �

Suppose there exists an approximation algorithm with a constant factor β
for Max-Labeled-Path. By Lemma 4, there exists an integer n such that βn >
47
48 . Applying n times Lemma 6, we derive a polynomial-time algorithm for the
problem Max-Labeled-Path with a ratio exceeding 47

48 . A similar argument
shows that any constant factor approximation algorithm for Max-Labeled-
Path can be converted into a PTAS for this problem. Such an algorithm does
not exist unless P = NP by Theorem 4. Assuming Lemma 5, this concludes the
proof of Theorem5.

3.3 Proof of Lemma 5

We explain how to construct in polynomial time a path P in D that collects a
set LP ⊆ L containing at least g(β)k labels from a path Q in D̃ that collects
a set L̃Q ⊆ L̃ containing at least βk3 labels. We denote by V Q ⊆ V the set of
vertices u such that Q passes via Du and by LQ ⊆ L the set of labels of the
vertices in V Q. For each vertex u ∈ V Q, we define WQ

u ⊆ V the set of vertices
v such that Q contains P (vu) as a subpath and by LQ

u ⊆ L the set of labels of
the vertices in WQ

u . Let αu := |LQ
u |/k. We will prove that either |LQ| ≥ g(β)k

or there exists a vertex u ∈ V Q such that |LQ
u | = αuk ≥ g(β)k. In the first

case, the vertices of V Q induce in D a path that collects g(β)k labels. In the
second case, the vertices of Q that belong to the subgraph Du induce in D a
path that collects g(β)k labels. Therefore, if one of the two assertions hold, one
can derive in polynomial time a path P of D collecting g(β)k labels and we are
done.

Suppose by way of contradiction that none of the two assertions hold. Namely,
|LQ| < g(β)k and for all u ∈ V Q, αu < g(β). Let c be a label in LQ. We denote
by V Q

c ⊆ V Q the set of vertices u ∈ V Q such that l(u) = c and we define
αc := maxu∈V Q

c
αu and uc := arg maxu∈V Q

c
αu. By assumption, αc < g(β). In

Duc
, Q collects

∑

c′∈LQ
uc

|Sc,λ(u)(c′)| =
∑

c′∈LQ
uc

k = αck
2 labels.

Let u be a vertex of V Q
c − {uc}. The number of labels collected by Q in Du

that are not collected by Q in Duc
is the sum over all labels c′ ∈ LQ

u of
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∣

∣

∣

∣

∣

∣

Sc,λ(u)(c
′) − ⋃

c′′∈LQ
uc

Sc,λ(uc)(c
′′)

∣

∣

∣

∣

∣

∣

= k −
∣

∣

∣

∣

∣

∣

⋃

c′′∈LQ
uc

(

Sc,λ(u)(c
′) ∩ Sc,λ(uc)(c

′′)
)

∣

∣

∣

∣

∣

∣

= k − ∑

c′′∈LQ
uc

∣

∣Sc,λ(u)(c
′) ∩ Sc,λ(uc)(c

′′)
∣

∣

= k − ∑

c′′∈LQ
uc

1

= k − αck

The first equation follows
∣
∣Sc,λ(u)(c′)

∣
∣ = k and trivial set properties. For the

second equation, recall that the family {Sc,λ(uc)(c
′′) : c′′ ∈ LQ

uc
} is a partition of

L̃c. The choice of the partitions used to define the labeling function of D̃ ensures
that

∣
∣Sc,λ(u)(c′) ∩ Sc,λ(uc)(c

′′)
∣
∣ = 1 and yields the third equation. For the last

equation, we use |LQ
uc

| = αck. We conclude that the number of labels collected
by Q in Du and not collected by Q in Duc

is |LQ
u |(k − αck). Since (k − αck) ≥ 0

and |LQ
u | = αuk ≤ αck, this number is at most αck(k − αck).

Using this bound for all vertices u ∈ V Q
c −{uc} and the fact that αck

2 labels
are collected by Q in Duc

, we obtain that the following bound on the number of
labels of L̃c collected by Q:

∣

∣

∣L̃Q ∩ L̃c

∣

∣

∣ ≤ αck
2 + (|V Q

c | − 1)αck(k − αck)

≤ k2(αc + αc(|V Q
c | − 1)(1 − αc))

Summing over all labels c ∈ LQ, we obtain that the total number of labels
collected by Q is upper bounded as follows:

∣

∣

∣L̃Q
∣

∣

∣ ≤ k2∑

c∈LQ

(

αc + αc(|V Q
c | − 1)(1 − αc)

)

< k2∑

c∈LQ

(

g(β) + αc(|V Q
c | − 1)(1 − αc)

)

(∗)

This last inequality is obtained using the initial assumption αc < g(β).
We distinguish two cases depending on the value of g(β). First, suppose that

g(β) ≥ 1
2 . Note that the maximum 1

4 of the function x(1 − x) on the interval
[0, 1] is realized for x = 1

2 . Therefore for all c ∈ LQ, αc (1 − αc) ≤ 1
4 and we

derive from (∗):
∣

∣

∣L̃Q
∣

∣

∣ < k2∑

c∈LQ

(

g(β) + 1
4
(|V Q

c | − 1)
)

< k2
((

g(β) − 1
4

)∑

c∈LQ 1 + 1
4

∑

c∈LQ |V Q
c |)

< k2
((

g(β) − 1
4

)

g(β)k + 1
4
k
)

< k3
(

g(β)2 − 1
4
g(β) + 1

4

)

< k3 (h(g(β)))

< k3β

In the third inequality, the upper bound on the left operand follows from
the initial assumption g(β)k > |LQ| =

∑
c∈LQ 1 and (g(β) − 1

4 ) ≥ 0. The upper
bound on the right operand follows from the fact that any path in D from s
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to t contains exactly k vertices, therefore
∑

c∈LQ |V Q
c | = k. The last equation

contradicts the choice of Q and concludes the proof for the case g(β) ≥ 1
2 .

Now, suppose that g(β) < 1
2 . Since the function x(1−x) is a strictly increasing

function on the interval [0, 1
2 ] and |V Q

c | − 1 ≥ 0 for all c ∈ LQ, we can replace
αc by g(β) in the inequality (∗):

|L̃Q| < k2∑

c∈LQ

(

g(β) + g(β)(|V Q
c | − 1) (1 − g(β))

)

< k2g(β)
(∑

c∈LQ 1 − (1 − g(β)) + |V Q
c | (1 − g(β))

)

< k2g(β)
(

g(β)
∑

c∈LQ 1 + (1 − g(β))
∑

c∈LQ |V Q
c |)

< k2g(β)
(

g(β)2k + (1 − g(β)) k
)

< k3g(β)
(

g(β)2 − g(β) + 1
)

< k3h(g(β))

< k3β

Again we use
∑

c∈LQ 1 < g(β)k and
∑

c∈LQ |V Q
c | = k to derive the fourth

inequality. In the two cases, we obtain a contradiction with the assumption that
the path Q collects at least βk3 labels. This concludes the proof of Lemma 5.

4
√
OPT -Approximation for Max-Labeled-Path

4.1 Algorithm

In this section, we describe a polynomial algorithm that computes for each
instance D of Max-Labeled-Path, a path of D collecting

√
OPT (D) labels.

Again, for the sake of simplicity, we assume that there is only one source s and
one sink t. Our algorithm can be easily adapted to handle the case with several
sources and several sinks. First, we define a function F : V → N such that F (u)
can be computed for all vertices u ∈ V in time O(|V |3). Then, we prove that, for
any vertex u ∈ V, F (u) is an upper bound on the number of labels collected by a
path from s to u. Finally, we describe an algorithm that computes for any vertex
u ∈ V a path that collects at least �

√
F (u)� labels. Applying this algorithm to

t, we obtain a path from s to t that collects at least �
√

OPT � labels.
For each pair of vertices u, v ∈ V, let Du,v be the subgraph of D consisting

of all paths from u to v. We denote by Γ (u, v) the number of labels in Du,v. Let
F : V → N be the function recursively defined as follows :

F (u) :=

{
1, if u = s ;
max
P∈Pu

min
ww′∈P

F (w) + Γ (w′, u), otherwise.

where Pu denotes the set of the paths from s to u. Let P (u) be a path in Pu

that realizes the maximum, i.e. such that F (u) = min
ww′∈P (u)

F (w) + Γ (w′, u).

The following lemma shows that, for any vertex u ∈ V, F (u) is an upper
bound on the number of labels that can be collected by a path from s to u.
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Lemma 7. If P = (s = u0, u1, ..., un = u) is a path between s and u that collects
α labels then F (u) ≥ α.

Proof. By induction on n. For n = 0, F (u0) = F (s) = 1. For n > 0, consider
a path P = (s = u0, u1, ..., un = u) that collects α labels. For any i = 1, . . . , n,
let αi be the number of labels collected by the path (u0, u1, ..., ui). The path
(ui, ..., un) collects at least α − αi−1 labels and belongs to Dui,u, therefore
Γ (ui, u) ≥ α−αi−1. Since, by induction, F (ui−1) ≥ αi−1, F (ui−1)+Γ (ui, u) ≥ α
for any i = 1, . . . , n yielding F (u) ≥ α. �

Corollary 1. If OPT is the maximum number of labels that can be collected by
a path from s to t then F (t) ≥ OPT .

Suppose that F (v) and P (v) have been already computed for all v ∈ V, this can
be done in O(|V |3) using standard data structures. Let u be a vertex in V. The
algorithm ComputePath returns a path between s and u that collects at least
�
√

F (u)� labels. By Corollary 1, applying this procedure with u = t we obtain
a path from s to t that collects at least �

√
OPT � labels.

Function ComputePath(u ∈ V ): a su-path that collects �
√

F (u)� labels

if u = s then
return (s)

else
Let ww′ be an arc of P (u) with F (w) ≤ (�

√
F (u)� − 1)2 and

F (w′) ≥ (�
√

F (u)� − 1)2 ;
P ′ ← ComputePath(w′) ;
if P ′ collects at least �

√
F (u)� labels then

return P ′.Q where Q is any path from w′ to u ;

else
Perform a BFS in Dw′,u to find a vertex v with l(v) not in P ′ ;
return P ′.Q where Q is a w′u-path passing via v ;

The following lemma is useful to prove that the algorithm ComputePath is
correct.

Lemma 8. If F (u) ≥ 4 then there is an arc ww′ in P (u) such that F (w) ≤
(�

√
F (u)� − 1)2 and F (w′) ≥ (�

√
F (u)� − 1)2. Moreover, for any such arc,

Γ (w′, u) ≥ �
√

F (u)� + 1.

Proof. The first assertion is true because F (s) = 1 ≤ (�
√

F (u)�−1)2 and F (u) ≥
(�

√
F (u)� − 1)2. To verify the second assertion, let ww′ be an arc such that

F (w) ≤ (�
√

F (u)�−1)2 and F (w′) ≥ (�
√

F (u)�−1)2. Since ww′ ∈ P (u), F (w)+
Γ (w′, u) ≥ F (u). This implies Γ (w′, u) ≥ F (u)−F (w) ≥ �

√
F (u)�2−(�

√
F (u)�−

1)2 = 2�
√

F (u)� − 1 ≥ �
√

F (u)� + 1, because �
√

F (u)� ≥ 2. �
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Theorem 6. ComputePath(u) computes a path P that collects at least �
√

F (u)�
labels.

Proof. If F (u) < 4, any path from s to u collects at least �
√

F (u)� = 1 labels.
Now suppose that F (u) ≥ 4. We proceed by induction on the number of recursive
calls. If u = s the algorithm returns the path (s) that collects F (s) = 1 labels.
Otherwise, the first assertion of Lemma 8 ensures that P (u) contains an arc ww′

such that F (w) ≤ (�
√

F (u)� − 1)2 and F (w′) ≥ (�
√

F (u)� − 1)2. By induction
hypothesis, ComputePath(w′) returns a path P ′ collecting at least �

√
F (u)� − 1

labels. If P ′ collects at least �
√

F (u)� labels, the path P ′.Q returned by the
algorithm is a correct answer. Now, suppose that the path P ′ collects exactly
�
√

F (u)� − 1 labels. By Lemma 8, Γ (w′, u) ≥ �
√

F (u)� + 1. This implies that
Dw′,u − {w′} contains at least �

√
F (u)� labels. Among them at least one is not

collected by P ′. A BFS traversal of Dw′,u will find a vertex v having this label
together with a path Q from w′ to u passing via v. Finally, the path P ′.Q that
collects at least �

√
F (u)� labels is a correct answer. �

Using standard data structures, computing F (u) and P (u) for every vertex u ∈ V
can be done in time O(|V |3).

Acknowledgment. We are grateful to Jérôme Monnot for suggesting the use of a
self-reduction to prove the hardness result of Sect. 3.
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Abstract. In the verification under uncertainty setting, an algorithm
is given, for each input item, an uncertainty area that is guaranteed to
contain the exact input value, as well as an assumed input value. An
update of an input item reveals its exact value. If the exact value is
equal to the assumed value, we say that the update verifies the assumed
value. We consider verification under uncertainty for the minimum span-
ning tree (MST) problem for undirected weighted graphs, where each
edge is associated with an uncertainty area and an assumed edge weight.
The objective of an algorithm is to compute the smallest set of updates
with the property that, if the updates of all edges in the set verify their
assumed weights, the edge set of an MST can be computed. We give
a polynomial-time optimal algorithm for the MST verification problem
by relating the choices of updates to vertex covers in a bipartite auxil-
iary graph. Furthermore, we consider an alternative uncertainty setting
where the vertices are embedded in the plane, the weight of an edge is
the Euclidean distance between the endpoints of the edge, and the uncer-
tainty is about the location of the vertices. An update of a vertex yields
the exact location of that vertex. We prove that the MST verification
problem in this vertex uncertainty setting is NP-hard. This shows a sur-
prising difference in complexity between the edge and vertex uncertainty
settings of the MST verification problem.

1 Introduction

In this paper we consider settings where a solution to a combinatorial problem
needs to be computed and where the input data of the problem might change
over time. We assume that the data cannot change arbitrarily and thus the
new data is guaranteed to be somewhat close to the old data, represented by
an uncertainty area for each input data item. The operation of checking the
current exact value of an input item, which we also refer to as an update, may
be expensive, so we want to avoid applying it to all input data items. Moreover,
it is possible that the input data is stable and has not changed. One would then
like to verify for a small set of input data that their values have not changed
so that a solution to the combinatorial problem can be calculated based on the
verified input data and the given uncertainty areas. We refer to problems of this
kind as verification under uncertainty.
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 164–175, 2014.
DOI: 10.1007/978-3-319-12340-0 14



Minimum Spanning Tree Verification Under Uncertainty 165

In practice, such settings arise naturally, e.g., when maintaining an optimal
routing structure in wireless networks with nodes that are generally static but
may occasionally move within a limited area. If the exact node positions were
known at some point in the recent past, the possible node positions at the current
time are known to lie in uncertainty areas that are limited regions around the
original positions of the nodes. One can also imagine scenarios in which nodes
automatically send a notification message if their location changes by more than
a certain threshold. In such scenarios, if none of the nodes has sent a notification
since the last determination of exact positions, the area within the threshold
distance of the previous location of a node becomes its uncertainty area. As the
size of such uncertainty areas is independent of the time that has elapsed since the
last determination of the exact position, frequent requests to compute a solution
are better addressed in the verification setting. Finally, in a network setting
where edge weights represent link congestion, we may again have scenarios where
exact weights were known at a point in the past and the current edge weights
are guaranteed to lie in certain intervals represented by uncertainty areas. These
scenarios have in common that it is possible to obtain the exact current data
(node positions or link congestion values) at some cost, and one is interested in
being able to compute a solution after verifying only for a small subset of the
input data that the data has not changed.

In this paper, we consider the minimum spanning tree (MST) verification
problem under uncertainty. The MST is one of the most fundamental graph
structures and relevant in many application areas, including routing in wireless
ad-hoc networks. We study two uncertainty settings: In the edge uncertainty
setting, each edge e has an uncertainty area Ae that is guaranteed to contain its
current weight, and an update of the edge reveals its exact current weight. In
the vertex uncertainty setting, the graph is a complete graph embedded in the
plane and the weight of an edge is the Euclidean distance between its endpoints.
The uncertainty is in the positions of the nodes, and an update of a node reveals
its exact current position. In both settings, the goal is to compute a minimum
set of updates such that, if these updates verify the expected input data, the
edge set of an MST can be calculated.

Our Results. We obtain the following results for MST verification under uncer-
tainty:

– For MST verification under edge uncertainty, provided that the uncertainty
areas are open sets or trivial (i.e., contain only one value), we obtain a
polynomial-time optimal algorithm by relating sets of updates to vertex cov-
ers in a bipartite auxiliary graph that is constructed by adapting a witness
set algorithm.

– We show that MST verification under vertex uncertainty is NP-hard even if
the uncertainty areas are trivial or open disks. The proof is by reduction from
the vertex cover problem for planar graphs with maximum degree 3.

– As an auxiliary result used in the NP-hardness proof, we show that every pla-
nar graph of maximum degree 5 can be represented by a unit disk graph (after
introducing degree-two vertices on each edge of the planar graph). Although
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embeddings of planar graphs as unit disk graphs have been used in the past
for NP-hardness proofs, our embedding of planar graphs of degree 5 may be
of independent interest.

Our work contributes to the wider research area of computing under uncertainty
that studies the problem of minimizing the cost of obtaining exact input values
in settings where some of the input data is uncertain. Traditional research in
optimization assumes that all input data is given precisely. In cases where the
input data is not known precisely (e.g., only a probability distribution for the
input data values is known), a substantial amount of research in areas such
as stochastic programming or robust optimization has focussed on computing
solutions that are good (e.g., in expectation, with high probability, or in the
worst case) no matter what the exact values of the input data are. The area
of computing under uncertainty approaches problems with uncertain input data
from a different angle by assuming that an algorithm can obtain the exact value
of an input data item at a certain cost (by performing an update), and aiming
to minimize the cost of updates while guaranteeing that an exact solution can
be computed.

Work in computing under uncertainty falls in three main categories: In the
adaptive online setting an algorithm initially knows only the uncertainty areas
and performs updates one by one (determining the next update based on the
information from previous updates) until it has obtained sufficient information to
determine a solution. Algorithms are typically evaluated by competitive analy-
sis, comparing the number of updates they make with the minimum number of
updates that, in hindsight, would have been sufficient to determine a solution
(referred to as the offline optimum). In the non-adaptive online setting an algo-
rithm is also given only the uncertainty areas initially, but it must determine a
set U of updates such that after performing all updates in U it is guaranteed
to have sufficient information to determine a solution. Finally, there is the ver-
ification setting that was already described above. It is worth noting that the
optimal update set of the verification setting is also the offline optimum of the
adaptive online setting. Therefore, algorithms solving the verification problem
are also useful for the experimental evaluation of algorithms for the adaptive
online setting.

Related Work. Kahan [7] presented a model for handling imprecise but update-
able input data. He demonstrated his model on a set of real numbers where
instead of the precise value of each number an interval was given. That interval
when updated reveals that number. The aim is to determine the maximum, the
median, or the minimal gap between any two numbers in the set, using as few
updates as possible. His work included a competitive analysis for this type of
online algorithm, where the number of updates is measured against the optimal
number (OPT ) of updates. For the problems considered, he presented online
algorithms with optimal competitive ratio. Feder et al. [4] studied the problem
of computing the value of the median of an uncertain set of numbers up to
a certain tolerance. Applications of uncertainty settings can be found in many
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different areas including databases, geometry and structured data such as graphs.
The work presented in this paper mainly concerns the latter two areas.

Bruce et al. [1] studied geometric uncertainty problems in the plane. Here, the
input consists of points in the plane and the uncertainty information is for each
point of the input an area that contains that point. They presented algorithms
with optimal competitive ratio for the maximal point problem and the convex
hull problem. Both algorithms are based on a more general technique called a
witness set algorithm that was introduced in their paper.

Examples of uncertainty applications to graphs include [3], where Feder et al.
investigated shortest paths on graphs with uncertain edge weights. They allowed
a precision factor limiting the deviation from the actual shortest path and pre-
sented results on adaptive as well as non-adaptive updates.

In [2], Erlebach et al. studied the adaptive online setting for MST under two
types of uncertainty: the edge uncertainty setting, which is the same as the one
considered by Feder et al. [3], and the vertex uncertainty setting. In the latter
setting, all vertices are points is the plane and the graph is a complete graph with
the weight of an edge being the distance between the vertices it connects. The
uncertainty is given by areas for the location of each vertex. For both settings,
Erlebach et al. presented algorithms with optimal competitive ratio for the MST
under uncertainty. The competitive ratios are 2 for edge uncertainty and 4 for
vertex uncertainty, and the uncertainty areas must satisfy certain restrictions
(which are satisfied by, e.g., open and trivial areas in the edge uncertainty case).
A variant of computing under uncertainty where updates yield more refined
estimates instead of exact values was studied by Gupta et al. [6].

A different setting of the MST under vertex uncertainty was studied by
Kamousi et al. [8]. They assume that point locations are known exactly, but each
point i is present only with a certain probability pi. They show that it is #P-
hard to compute the expected length of an MST even in 2-dimensional Euclid-
ean space, and provide a fully polynomial randomized approximation scheme for
metric spaces.

Paper Outline. In Sect. 2 we give formal definitions and preliminaries. Section 3
presents our optimal algorithm for MST verification under edge uncertainty.
In Sect. 4 we give the proof of NP-hardness for MST verification under vertex
uncertainty.

Some proofs of Sects. 3 and 4 are omitted.

2 Preliminaries

Within the wider field of problems under uncertainty we consider the minimum
spanning tree problem for graphs under uncertainty. We consider undirected
weighted graphs G = (V,E) under two different types of uncertainty. In an edge
uncertainty graph, the weight We of an edge e might not be known exactly, but
instead a set Ae of possible values of We is given. We let W be the set that
contains for each e ∈ E the exact weight We, and A the set that contains for
each e ∈ E its uncertainty area Ae. We refer to A as the areas of uncertainty.
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In this type of uncertainty, the update of an edge e reveals its exact weight We.
This effectively changes the uncertainty area Ae to the singleton set containing
just We (we call such a set trivial). An instance of the mst-edge-uncertainty
problem is given by (G,W,A).

In the second type of uncertainty, we consider vertex uncertainty graphs. Here
the graph is a complete graph embedded in the plane. The weight of each edge
is given by the distance of the vertices that it connects. For each vertex v ∈ V
the location of v might not be known exactly, but instead a set Av of possible
locations of v is given, and A is the family of all these uncertainty areas Av.
An update of a vertex v reveals the exact location Pv of v. An instance of the
mst-vertex-uncertainty problem is given by (G,P,A), where P is the set
containing the precise vertex location Pv for each v ∈ V .

In the online setting, the precise information (W for edge uncertainty and
P for vertex uncertainty graphs) is not known to the algorithm; the algorithm
has to request updates until A is precise enough to allow the calculation of an
MST of G. In the verification setting, the sets W or P respectively are given to
the algorithm. This additional information is not used to calculate an MST of
G directly, but it is used to determine which updates should be made so that an
MST of G can be calculated based on the updated areas of uncertainty. A set of
updates that reveals enough information so that an MST of G can be calculated is
called an update solution, and the set of all update solutions is denoted by S. For
a given instance of a problem, we denote the size of the smallest update solution
by OPT . In the verification setting, the goal of an algorithm is to calculate an
update solution of size OPT .

In the remainder of the paper we will use the following notion: G = (V,E) is
the weighted undirected graph for which an MST should be found; we say U is
an uncertainty graph of G if it consists of the same edges and vertices as G, but
only contains the uncertain information as specified by A. S is the set of update
solutions, and OPT is the size of the smallest element of S.

In Fig. 1, the left-hand side shows a graph G, and an uncertainty graph U of G
is given on the right. G has two minimal spanning trees, with edge sets {b, c, d, f}
and {b, d, e, f}. None of them can be calculated based on the information of U
alone, as for example the weight of the edge a could be smaller than that of b.
The set of update solutions is S = {{a, b, e}, {a, e}, {b, e}}, and both {a, e} and
{b, e} have minimum size. Thus, in this example OPT is 2.
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Fig. 1. Example of graph G (left) and edge uncertainty graph U (right)
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3 Verification Under Edge Uncertainty

In this section we give a polynomial-time algorithm for mst-edge-uncertainty.
We assume that the uncertainty areas of the edge weights are trivial or open
areas. The first phase of the algorithm is based on the algorithm U-Red that
was presented in [2] for the adaptive online version of the MST under edge uncer-
tainty problem. Adopting the principles of this online algorithm to the verifica-
tion setting is non trivial. Roughly speaking, the algorithm U-Red repeatedly
identifies an edge e that, based on the current areas of uncertainty, may or may
not be in an MST. It then identifies at most two edges such that without updat-
ing any of the two edges the edge e can neither be included nor excluded from
any MST (these two edges thus form a so-called witness set), and updates both
of the edges.

Whereas U-Red updates both of these edges, we utilize the additional infor-
mation of the precise values that are available in the verification setting. It turns
out that with this information we can always arrive at one of the following two
cases: (1) There is a single edge f such that, without updating f , the edge e can
neither be included nor excluded from any MST. In this case, we record that f
is needed to be in any update solution and simulate for U-Red the update of f .
(2) There is a choice of edge sets whose updates can determine whether e is in
an MST or not. In this case, we record the choice. We can prove that this can
only happen when e is not in any MST, so we remove that edge and continue
the simulation of U-Red.

After the simulated run of U-Red, we have established a set of updates
that are common among all update solutions and we have also recorded a set of
choices. We show that each choice is between a single edge and a single set of
edges. We also show that the set of choices has additional properties that allow
us to model it as a bipartite graph in such a way that a minimum vertex cover of
the bipartite graph yields a minimum set of updates to cover all choices. Together
with the already established set of common updates this gives a minimum update
solution for mst-edge-uncertainty.

Theorem 1. There is a polynomial-time algorithm that computes an optimal
update solution for instances of mst-edge-uncertainty where the uncertainty
areas are trivial or open areas.

In the remainder of this section we present the algorithm and prove its correct-
ness, thus establishing Theorem 1. The algorithm runs in three phases. In the
first phase, two sets A and R are constructed. The set A ⊆ E is the set of
edges that are common to all update solutions, i.e., A =

⋂
s∈S s. (Recall that S

denotes the set of all update solutions.) The set R ⊆ E × P(E) consists of pairs
(d,B) with d ∈ E and B ⊆ E. Each pair (d,B) ∈ R represents a choice with
the property that every update solution must contain d or all elements of B.
In addition, R is of the form that any combination of choosing either the single
edge or the set of edges together with the set A is an update solution. As we will
refer to these properties later on, we state them formally as follows.
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Property 1. The sets A and R = {(d1, B1), . . . , (dn, Bn)} satisfy the following
properties:

– p1: A =
⋂

s∈S s
– p2: If s is an update solution, then for all 1 ≤ i ≤ n we have di ∈ s or

Bi ⊆ s.
– p3: S′ = {A ∪ {di|i ∈ I} ∪

⋃

j∈J

Bj | I, J form a partition of {1, . . . , n}} is a

set of update solutions.

As a consequence of p1–p3, for every update solution s there exists s′ ∈ S′ such
that s′ ⊆ s.

From the outset it is not clear that a set R satisfying p1–p3 exists. We
will show that it does and how to construct it. In the second phase, redundant
choices in R will be removed without altering the properties of R. In the third
and final phase, we model the choice selection for R as a vertex cover problem in
a bipartite graph. We will show that an optimal solution to the latter problem
results in an update solution for the MST verification problem of minimum size.

Phase 1. The aim of this phase is to establish the sets A and R described
above. The algorithm used in this phase is based on (a simulation of) the
online algorithm U-Red presented in [2]. The significant changes include: (1)
The online algorithm U-Red restarts after each update, whereas our algorithm
avoids restarts and sorts the updated edges back into the running process. (2)
When the online algorithm U-Red updates the edges in a witness set, we utilize
the information of the exact weights of the edges involved and determine the
appropriate contribution to the sets A and R instead. The resulting Algorithm
Phase1 is given in Fig. 2. It uses the notation of the following definitions.

Definition 1. For an edge e in an edge-uncertainty graph, we denote the actual
weight of the edge by We and the upper limit of Ae by Ue = lim sup {a | a ∈ Ae}
and the lower limit of Ae by Le = lim inf {a | a ∈ Ae}.

Note that, as edges are updated in the algorithm, the values for Ue and Le for
an edge e may change. In particular, after updating the edge e we have that
Le = We = Ue.

Definition 2. The order by which the edges are sorted in Algorithm Phase1
is as follows: Let U be an edge-uncertainty graph and let e, f be two edges of U .
We define e < f if Le < Lf or (Le = Lf and Ue < Uf ). Edges with the same
upper and lower weight limit are ordered arbitrarily.

Definition 3. Let C be a cycle in U and e ∈ C. The edge e is said to be always
maximal in C if for all possible weights that are consistent with the uncertainty
areas given by U the weight of e is maximal among the weights of all edges in C.

Note that updating edges in U only reduces the options for the edge weights.
Hence, an always maximal edge in C remains an always maximal edge in C after
updating arbitrary elements of U .
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01 Create a list L of all edges in the order of Definition 2 from low to high
02 Let Γ be U without any edge
03 while L is not empty do
04 add the head of L to Γ
05 remove the head of L
06 if Γ has a cycle C then
07 case (a): C contains an always maximal edge e.
08 delete e from Γ
09 case (b): There exists e ∈ C whose update must be in any update solution.
10 update e, remove e from Γ , and add e to A
11 sort e back into L
12 case (c): There is a choice of updates that establish an edge as
13 an always maximal edge in the cycle C.
14 add the choice to R
15 delete the always maximal edge from Γ
16 end if
17 end while

Fig. 2. Algorithm Phase1

Before showing that there exists (in line 15) a unique always maximal edge,
and that the sets A and R are built correctly, we establish the following lemma
which gives a locality property: Updates required on the basis of just one cycle
will never be made redundant by other updates or cycles in the graph.

Lemma 1. During the run of the algorithm, when a cycle C is closed, let e be a
non-trivial edge in C. If updating a set U ⊆ E −{e} does not determine whether
e is always maximal in C, then updating U will also not verify that e is always
maximal in any other cycle.

Once a cycle in Γ is formed during the run of the algorithm, different actions are
taken. We will show that the cases listed in the algorithm cover all possibilities
and that the sets A and R are built correctly.

The first check after a cycle C in Γ is formed is whether there exists, according
to the current uncertainty information, an edge in C that is always maximal. If
such an edge exists, the algorithm executes case (a) and the edge is deleted from
Γ , no update is made, and the sets A and R stay unaltered.

If case (a) does not apply, let h be an edge in C with maximum upper limit Uh.
Note that h must be non-trivial (otherwise case (a) would apply). There are four
possible cases for how the actual weight Wh relates to the weights and limits of
other edges in the cycle C.Case 1. If Wh is not maximal among the actual weights
of all edges in C, then h needs to be updated in any update solution (the algorithm
executes case (b)). Case 2. If Wh is maximal amongst the actual weights of edges
in C and there exists an f ∈ C with Uf > Wh, then f needs to be updated in
any update solution (the algorithm executes case (b)). Case 3. If Wh is maximal
amongst the actual weights of edges in C and there exists an f ∈ C such that Wf >
Lh, then h needs to be updated in any update solution (the algorithm executes



172 T. Erlebach and M. Hoffmann

case (b)). Case 4. If Cases 1–3 do not apply, every update solution must contain
h or all edges of the set B = {c ∈ C − {h} | Uc > Lh}, so the algorithm executes
case (c).

Remark 1. In the situation of Case 4, the edge h is greater in the order of edges
used by the algorithm than any other edge in the cycle C (i.e., h > c for all
c ∈ C − {h}) and hence was the edge that closed the cycle.

From the above we can conclude that the set A only contains updates that are
in any update solution, that for all (d,B) ∈ R an update solution must include
the edge d or all edges in B, and that any set of edges containing all elements
of A and from every pair (d,B) ∈ R at least d or all edges in B is an update
solution. This shows that A and R satisfy properties p2 and p3.

Since for every pair (d,B) ∈ R the edge d is not in B (see also Lemma 2
below), there exists for every g /∈ A an update solution not containing g. This
shows that A is the intersection of all update solutions, establishing that p1 is
satisfied as well. Before tidying up R in phase 2 (in a way that maintains p1–p3),
we establish an additional property of R that will be used in phase 3 to build a
bipartite graph.

Lemma 2. Let (d,B) and (d′, B′) in R. Then d /∈ B′.

Proof. Assume there exist (d,B) and (d′, B′) in R with d ∈ B′. When a pair
(d,B) is added to R, the edge d is deleted from Γ and hence will not be part of
any pair that is added to R later. So for d being an element of B′, the pair (d′, B′)
must have been added to R before (d,B). By Remark 1, d′ ≤ d. Considering that
d ∈ B′ we also have by the same remark that d < d′, which gives a contradiction.

��
Phase 2. As the sets A and R are built up simultaneously, it is possible that
for a pair (d,B) in R some edges in B are added to A later on in the run of
the Algorithm Phase1. Since the edge d is deleted from Γ when a pair (d,B) is
added to R, the edge d can never be added to A.

In this short phase, R is tidied up by the following steps: For every (d,B) ∈ R
all elements of B that are also in A will be removed from B. Where, as a result, B
becomes empty, the entire pair (d,B) is removed from R. Formally R is replaced
by {(d,B) | ∃(d,B′) ∈ R,B = B′−A,B 	= ∅}. This does not affect the properties
p1–p3 of Property 1.

Phase 3. In this final phase, an optimal update set is calculated from the sets A
and R. As stated in p3 of Property 1, a set S′ of update solutions can be formed
from A and R. An update solution with minimum size amongst them can be
established by modelling the choices as a vertex cover problem in a bipartite
graph. We then show that there is no update solution with fewer updates. Recall
the notation of p3: R = {d1, B1), . . . , (dn, Bn)} and S′ = {A ∪ {di|i ∈ I} ∪⋃

j∈J Bj | I, J partition of {1, . . . , n}}. In phase 2, any overlap between elements
of A and elements appearing in the pairs of R was removed from R. So, to find
an element of S′ with minimum size it is enough to find an element of minimum
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size in R′ = {{di|i ∈ I} ∪
⋃

j∈J Bj | I, J partition of {1, . . . , n}}, as A and the
elements of R′ are disjoint.

We now create a bipartite graph G′ for which any element of R′ is a vertex
cover and any vertex cover must contain one element of R′ as a subset. Loosely
speaking, every edge of the uncertainty graph U occurring inside any element of
R is a node in G′. For every choice (d,B) ∈ R, the node in G′ corresponding to
d is connected to the nodes in G′ corresponding to the elements of B.

Let G′ = (V ′, E′) be an undirected graph with V ′ = {d1, . . . , dn}∪B1 ∪ · · ·∪
Bn and E = {(di, b) | b ∈ Bi, 1 ≤ i ≤ n}. By Lemma 2, the set {d1, . . . , dn}
and B1 ∪ · · · ∪ Bn are disjoint. As every edge in G′ connects an element from
{d1, . . . , dn} to an element of B1 ∪ · · · ∪ Bn, G′ is a bipartite graph.

Every element of R′ contains, for every i, the edge di or all elements of Bi.
Therefore, every element of R′ is a vertex cover for G′. Similarly if a vertex cover
of G′ does not include di for any i, then it must include all elements of Bi and
hence it must contain an element of R′ as a subset. Thus, a minimum vertex
cover r∗ of G′ is also an element of R′ with minimal size. Furthermore, A ∪ r∗

is an element of minimum size in S′. By Property 1, for every update solution s
there exists an s′ ∈ S′ such that s′ ⊆ s. So A ∪ r∗ is of minimum size amongst
all update solutions, and OPT = |A ∪ r∗|.

Noting that the minimum vertex cover problem is polynomial for bipartite
graphs, it is not difficult to show that the algorithm runs in polynomial time.
Hence, a minimal update solution (of size OPT ) for mst-edge-uncertainty
under the restriction to open and trivial areas can be computed in polynomial
time. This completes the proof of Theorem 1.

Furthermore, we note that the algorithm can be extended to a version of the
problem where each edge e has an arbitrary update cost ce > 0 and the goal
is to minimize the total cost of the update solution. The approach is the same,
except that the vertex cover problem in the bipartite auxiliary graph needs to
be solved as a minimum-weight vertex cover problem.

Theorem 2. For the mst-edge-uncertainty problem with arbitrary positive
update costs and under the restriction to open or trivial areas, an optimal update
solution can be computed in polynomial time.

4 Verification Under Vertex Uncertainty

In this section we prove that mst-vertex-uncertainty is NP-hard. The proof
uses a reduction from the vertex cover problem in planar graphs of maximum
degree 3, which was shown to be NP-complete in [5]. In the reduction we use
the following embedding result.

Theorem 3. Let G = (V,E) be a planar graph of maximum degree 5 with n
vertices. Then there exists a value s > 0 and an embedding of G such that

– vertices are mapped to integer coordinates in an n by n grid,
– edges are mapped to non-crossing paths (consisting of straight line segments

and circular arcs),
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Fig. 3. Transformation of the graph G

– the length of each path is polynomial in n,
– 1/s is polynomial in n,
– in the disk of radius s around each vertex, all edges are equally spaced straight

lines,
– everywhere else the edges are at least s apart,
– the embedding can be constructed in polynomial time.

We give an outline of the proof as the detailed proof is somewhat technical.
The starting point is an arbitrary planar graph of maximum degree 3. Finding a
minimum vertex cover for such graphs is NP-hard [5]. We transform this graph
to an instance of mst-vertex-uncertainty by the following three steps (illus-
trated in Fig. 3). The steps are given here in an order that reflects the motivation
for the steps, but for technical reasons the order will be different in the actual
reduction.

Step 1: Create an uncertainty problem. After embedding the graph in the
plane, we shorten each edge so that instead of connecting two vertices, it falls
short at both ends. At one end it leaves a gap of 1 + 5ε to the vertex, and at
the other a gap of 1 + 8ε to the other vertex. Finally, each vertex is replaced by
an uncertainty area that is a disk of radius 2ε around the original location of
the vertex. So, each edge has at one end a gap between 1 + 3ε and 1 + 7ε and
at the other end a gap between 1 + 6ε and 1 + 10ε. If one wants to know for
each edge which end has the smaller gap, one has to update at least one of the
vertices that it connected originally. If the precise location of each vertex lies at
the center of its uncertainty disk, then updating either end vertex of an edge will
determine at which end the edge has a smaller gap. Thus, finding the smallest
set of vertices that needs to be updated to determine for each edge at which end
it has the smaller gap is equivalent to finding a minimum vertex cover of the
original graph.

Step 2: Create a vertex uncertainty graph. To convert the graph of step
1 to a vertex uncertainty graph, we replace each edge fragment by a dense
sequence of new vertices. The position of these vertices is given exactly (i.e.,
their uncertainty areas are trivial). The distance of two neighboring vertices is
less than 1/2.

Step 3: Create a minimum spanning tree problem. To turn the question
that asks at which side each former edge has the smaller gap into an MST
problem, we place additional vertices such that all original vertices are connected
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via dense ‘lines’ made out of these new vertices, and the original vertices and
the new ‘lines’ form a tree. The gap of such a ’line’ to an original vertex is 1. If
all lines can be placed in such a way that all vertices on one line are far away
(at least distance 1) from any vertex on another line, solving the mst-vertex-
uncertainty problem requires updating for each original edge at least one of
its end points. The minimum set of such updates yields a minimum vertex cover
of the original graph. In the actual proof we add the auxiliary ‘lines’ of Step 3
already before embedding the graph for Step 1, and the distances mentioned
above are scaled down by an appropriate scaling factor.

Theorem 4. Calculating OPT for mst-vertex-uncertainty is NP-hard.

As the exact weight of any edge can be obtained by updating both of its vertices,
the polynomial optimal algorithm for mst-edge-uncertainty can be used to
obtain a 2-approximation of the mst-vertex-uncertainty problem.
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ter for supporting this research in granting him academic study leave.
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Abstract. The weak variant of the Hanani–Tutte theorem says that a
graph is planar, if it can be drawn in the plane so that every pair of edges
cross an even number of times. Moreover, we can turn such a drawing
into an embedding without changing the order in which edges leave the
vertices. We prove a generalization of the weak Hanani–Tutte theorem
that also easily implies the monotone variant of the weak Hanani–Tutte
theorem by Pach and Tóth. Thus, our result can be thought of as a
common generalization of these two neat results. In other words, we
prove the weak Hanani-Tutte theorem for strip clustered graphs, whose
clusters are linearly ordered vertical strips in the plane and edges join
only vertices in the same cluster or in neighboring clusters with respect
to this order.

Besides usual tools for proving Hanani-Tutte type results our proof
combines Hall’s marriage theorem, and a characterization of embedded
upward planar digraphs due to Bertolazzi et al.

Keywords: Hanani–Tutte theorem ·Hall’s theorem ·Upward planarity ·
C-planarity

1 Introduction

A drawing of G is a representation of G in the plane, where every vertex is
represented by a unique point and every edge e = uv is represented by a simple
arc joining the two points that represent u and v. If it leads to no confusion,
we do not distinguish between a vertex or an edge and its representation in the
drawing and we use the words “vertex” and “edge” in both contexts. We assume
that in a drawing no edge passes through a vertex, no two edges touch and every
pair of edges cross in finitely many points. A drawing of a graph is an embedding
if no two edges cross. A graph is planar, if it admits a planar embedding.
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1.1 Hanani–Tutte Theorem

The Hanani–Tutte theorem [13,22] is a classical result that provides an alge-
braic characterization of planarity with interesting algorithmic consequences.
The (strong) Hanani–Tutte theorem says that a graph is planar as soon as it
can be drawn in the plane so that no pair of independent edges crosses an odd
number of times. Moreover, its variant known as the weak Hanani–Tutte theo-
rem [3,14,17] states that if we have a drawing D of a graph G where every pair
of edges cross an even number of times then G has an embedding that preserves
the cyclic order of edges at vertices from D. Note that the weak variant does not
directly follow from the strong Hanani–Tutte theorem. For sub-cubic graphs, the
weak variant implies the strong variant.

Other variants of the Hanani–Tutte theorem in the plane were proved for
x-monotone drawings [10,15], partially embedded planar graphs, simultaneously
embedded planar graphs [20], and two clustered graphs [9]. As for the closed
surfaces of genus higher than zero, the weak variant is known to hold in all
closed surfaces [18], and the strong variant was proved only for the projective
plane [16]. It is an intriguing open problem to decide if the strong Hanani–Tutte
theorem holds for closed surfaces other than the sphere and projective plane.

To prove a strong variant for a closed surface it is enough to prove it for all
the minor minimal graphs (see e.g. [6] for the definition of a graph minor) not
embeddable in the surface. Moreover, it is known that the list of such graphs is
finite for every closed surface, see e.g. [6, Section 12]. Thus, proving or disproving
the strong Hanani-Tutte theorem on a closed surface boils down to a search for a
counterexample among a finite number of graphs. That sounds quite promising,
since checking a particular graph is reducible to a finitely many, and not so many,
drawings, see e.g. [21]. However, we do not have a complete list of such graphs
for any surface besides sphere and projective plane.

On the positive side, the list of possible minimal counterexamples for each
surface was recently narrowed down to vertex two-connected graphs [21]. See [19]
for a recent survey on applications of the Hanani–Tutte theorem and related
results.

1.2 Notation

In the present paper we assume that G = (V,E) is a (multi)graph. We refer
to an embedding of G as to a plane graph G. The rotation at a vertex v is
the clockwise cyclic order of the end pieces of edges incident to v. The rotation
system of a graph is the set of rotations at all its vertices. Two embeddings of
a graph are the same, if they have the same rotation system up to switching
the orientations of all the rotations simultaneously. A pair of edges in a graph
is adjacent or independent, if they do not share a vertex. An edge in a drawing
is (independently) even, if it crosses every other (non-adjacent) edge an even
number of times. A drawing of a graph is (independently) even, if all edges
are (independently) even. Note that an embedding is an even drawing. Let x(v)
(resp. y(v)) denote the x-coordinate (resp. y-coordinate) of a vertex in a drawing.



178 R. Fulek

1.3 Hanani–Tutte for Strip Clustered Graphs

Borrowing the notation from [1] a clustered graph1 is an ordered pair (G,T ),
where G is a graph, and T = {Vi|i = 1, . . . , k} is a partition of the vertex set
of G into k parts. We call the sets Vi clusters. A clustered graph (G,T ) is strip
clustered, if G =

(
V1 � . . . � Vk, E ⊆

⋃
i

(
Vi�Vi+1

2

))
, i.e., the edges in G are either

contained inside a part or join vertices in two consecutive parts. A drawing of a
strip clustered graph (G,T ) in the plane is clustered, if i < x(vi) < i + 1 for all
vi ∈ Vi, and every vertical line x = i, i ∈ Z, intersects every edge at most once.
We use the term “cluster Vi” also, when referring to a vertical strip containing
the vertices in Vi. A strip clustered graph (G,T ) is clustered planar (or briefly
c-planar) if (G,T ) has a clustered embedding in the plane.

The notion of clustered planarity appeared for the first time in the literature
in the work of Feng, Cohen and Eades [7,8] under the name of c-planarity. See,
e.g., [5,7,8] for the general definition of c-planarity. Here, we consider only a
special case of it. See, e.g., [5] for further references. We only remark that it has
been an intriguing open problem for almost two decades to decide, if c-planarity
is NP-hard, despite of considerable effort of many researchers and that already
for strip clustered graphs the problem constitutes a challenge [1].

We show the following generalization of the weak Hanani–Tutte theorem for
strip clustered graphs. See Fig. 1(a) and (b) for an illustration.

Fig. 1. (a) Even clustered drawing of a strip clustered graph; (b) Clustered embedding
of the same clustered graph.

Theorem 1. If a strip clustered graph (G,T ) admits an even clustered drawing
D then (G,T ) is c-planar. Moreover, there exists a clustered embedding of (G,T )
with the same rotation system as in D.

Due to the family of counterexamples in [9], Theorem 1 does not leave too much
room for straightforward generalizations. Let (G,T ) denote a clustered graph,
and let G′ = G′(G,T ) denote a graph obtained from (G,T ) by contracting every
cluster to a vertex and deleting all the loops and multiple edges. If (G,T ) is a
strip clustered graph, G′ is a subgraph of a path. In this sense, the most general
1 This type of clustered graphs is usually called flat clustered graph in the graph

drawing literature. We chose this simplified notation in order not to overburden the
reader with unnecessary notation.
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variant of Hanani-Tutte, the weak or strong one, we can hope for, is the one for
the class of clustered graphs (G,T ), for which G′ is an arbitrary tree.

By allowing G′ to contain a cycle, c-planarity testing seems to be much harder
than in the case, when it is acyclic. Already in the case of three clusters [4], if G
(not G′) is a cycle, the polynomial time algorithm for c-planarity is not trivial,
while if G can be any graph, its existence is still open. For a comparison, if G
is a cycle then a strip clustered graph (G,T ) is trivially c-planar. We note that
by an easy geometric argument a polynomial time algorithm for c-planarity in
the case of three clusters would imply a polynomial time algorithm in the case
of strip clustered graphs.

Our proof of Theorem 1 is slightly technical, and combines a characterization
of upward planar digraphs from [2] and Hall’s theorem [6, Sect. 2]. Using the
result from [2] in our situation is quite natural, as was already observed in [1],
where they solve an intimately related algorithmic question discussed below. The
reason is that deciding the c-planarity for embedded strip clustered graphs is,
essentially, a special case of the upward planarity testing. The technical part
of our argument augments the even drawing with subdivided edges by using
tricks from [10,17] so that we are able to apply Hall’s Theorem. Hence, the real
novelty of our work lies in proving the marriage condition, which makes the
characterization do the work for us. It took a considerable effort to make Hall’s
Theorem work here, and thus, we wonder if a more direct proof exists.

An edge e of a topological graph is x-monotone, if every vertical line intersects
e at most once. Pach and Tóth [15] (see also [10] for a different proof of the same
result) proved the following theorem.

Theorem 2. Let G denote a graph, whose vertices are totally ordered. Suppose
that there exists a drawing D of G, in which x-coordinates of vertices respect
their order, edges are x-monotone and every pair of edges cross an even number
of times. Then there exists an embedding of G, in which the vertices are drawn
as in D, the edges are x-monotone, and the rotation system is the same as in D.

We show that Theorem 1 easily implies Theorem 2. Our argument for show-
ing that suggests a slightly different variant of Theorem 1 for not necessarily
clustered drawings that directly implies Theorem 2 (see Sect. 2.1). The strong
variant of Theorem 1, which we conjecture to hold, would imply the existence
of a polynomial time algorithm for the corresponding variant of the c-planarity
testing [9]. To the best of our knowledge, a polynomial time algorithm was given
only in the case, when the underlying planar graph has a prescribed planar
embedding [1]. Our weak variant gives a polynomial time algorithm if G is sub-
cubic, and in the same case as [1]. Nevertheless, we think that the weak variant
is interesting in its own right. To support our conjecture we prove the strong
variant of Theorem 1 under the condition that the underlying abstract graph
G of a clustered graph is a subdivision of a vertex three-connected graph. In
general, we only know that it is true for two clusters [9].
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Theorem 3. Let G denote a subdivision of a vertex three-connected graph. If a
strip clustered graph (G,T ) admits an independently even clustered drawing D
then (G,T ) is c-planar.2

The proof of Theorem 3 reduces to Theorem 1 by correcting the rotations at the
vertices of G so that the theorem becomes applicable. As we noted above, the
weak Hanani-Tutte theorem fails already for three clusters. Moreover, the under-
lying graph in the counterexample is a cycle [9], and thus, the strong variant fails
as well in general clustered graphs without imposing additional restrictions.

The paper is organized as follows.
In Sect. 2 we introduce terminology and tools for proving our results, where in
Subsect. 2.2 we outline the proof of our main result Theorem 1. In Sect. 3 we
give the proof of Theorem 3. In Sect. 4 we derive Theorem 2 from Theorem 1.
Open problems are stated in Sect. 5.

2 Preliminaries

2.1 Even Drawings

We will use the following fact about closed curves in the plane. Let C denote a
closed (possibly self-crossing) curve in the plane.

Lemma 1. The regions in the complement of C can be two-colored so that two
regions sharing a non-trivial part of the boundary receive opposite colors.

Let us two-color the regions in the complement of C so that two regions sharing
a non-trivial part of the boundary receive opposite colors. A point not lying on
C is outside of C, if it is contained in the region with the same color as the
unbounded region. Otherwise, such a point is inside of C. As a simple corollary
of Lemma 1 we obtain a well-known fact that a pair of closed curves in the plane
cross an even number of times. We use this fact tacitly throughout the paper.

Let G denote a planar graph. Since in the problem we study connected com-
ponents of G can be treated separately, we can afford to assume that G is con-
nected. A face in an embedding of G is a walk that corresponds to the boundary
of the connected component of the complement of G in the plane. A vertex or
an edge is incident to a face, if it appears on the corresponding walk.

Given a drawing of a graph G, where every pair of edges crosses an even
number of times, by the weak Hanani-Tutte theorem [3,14,17], we can obtain an
embedding of G with the same rotation system, and hence, the facial structure
of an embedding of G is already present in an even drawing. This allows us to
speak about faces in an even drawing of G. Hence, a face in an even drawing of
2 The argument in the proof of Theorem 3 proves, in fact, a strong variant even in

the case, when we require the vertices participating in a cut or two-cut to have the
maximum degree three. Hence, we obtained a polynomial time algorithm even in the
case of sub-cubic cuts and two-cuts.
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G is the walk bounding the corresponding face in the embedding of G with the
same rotation system.

Let γ : V → N be a labeling of the vertices of G by integers. Given a face f
in an even drawing of G, a vertex v incident to f is the local minimum (resp.
maximum) of f , if in the corresponding facial walk W of f the value of γ(v) is not
smaller (not bigger) than the value of its successor and predecessor on W . The
minimal (resp. maximal) local minimum (resp. maximum) of f is called global
minimum (resp. maximum) of f . The face f is simple with respect to γ, if f has
exactly one local minimum and one local maximum. The face f is semi-simple
(with respect to γ), if f has exactly two local minima and these minima have
the same value, and two local maxima and these maxima have the same value.
A path P is (strictly) monotone with respect to γ, if the labels of the vertices
on P form a (strictly) monotone sequence if ordered in the correspondence with
their appearance on P .

Given a strip clustered graph (G,T ) we naturally associate with it a labeling
γ that for each vertex v returns the number of the cluster v belongs to. We refer
to the cluster, whose vertices get label k, as to the k-th cluster. Let (

−→
G,T ) denote

the directed strip clustered graph obtained from (G,T ) by orienting every edge
uv from the vertex with the smaller label to the vertex with the bigger label, and
in case of a tie orienting uv arbitrarily. A sink (resp. source) of

−→
G is a vertex

with no outgoing (resp. incoming) edges.

Fig. 2. Assignment of angles at u and v to f corresponding to an upward embedding
(on the left), and assignment of angles that is not admissible in an upward embedding
(on the right).

In our arguments we use a continuous deformation in order to transform a
given drawing into a drawing with desired properties. Observe that during such
transformation of a drawing of a graph the parity of crossings between a pair of
edges is affected only when an edge e passes over a vertex v, in which case we
change the parity of crossings of e with all the edges adjacent to v. Let us call
such an event an edge-vertex switch.

Edge contraction and vertex split. A contraction of an edge e = uv in a topo-
logical graph is an operation that turns e into a vertex by moving v along e
towards u while dragging all the other edges incident to v along e. Note that by
contracting an edge in an even drawing, we obtain again an even drawing.

We will also often use the following operation which can be thought of as
the inverse operation of the edge contraction in a topological graph. A vertex
split in a drawing of a graph G is the operation that replaces a vertex v by two
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vertices v′ and v′′ drawn in a small neighborhood of v joined by a short crossing
free edge so that the neighbors of v are partitioned into two parts according to
whether they are joined with v′ or v′′ in the resulting drawing, the rotations at
v′ and v′′, resp., is inherited from the rotation at v, and the new edges are drawn
in the small neighborhood of the edges they correspond to in G.

Bounded Edges. Theorem 1 can be extended to more general clustered graphs
(G,T ) that are not necessarily strip clustered, and drawings that are not nec-
essarily clustered. The clusters V1, . . . , Vk of (G,T ) in our drawing D are still
linearly ordered and drawn as vertical strips respecting this order. An edge
uv ∈ E(G), where u ∈ Vi, v ∈ Vj , can join any two vertices of G, but it must be
drawn so that it intersects only clusters Vl such that i ≤ l ≤ j. We say that the
edge uv is bounded, and the drawing quasi-clustered.

A similar extension of a variant of Hanani-Tutte theorem is also possible in
the case of x-monotone drawings [10]. In the x-monotone setting instead of the
x-monotonicity of edges in an (independently) even drawing it is only required
that the vertical projection of each edge is bounded by the vertical projections
of its vertices. Thus, each edge stays between its end vertices.

In the same vein as for x-monotone drawing the extension of our result to
drawings D of clustered graphs with bounded edges can be proved by a reduction
to the original claim, Theorem 1. To this end we just need to subdivide every
edge e of (G,T ) violating conditions of strip clustered drawings so that newly
created edges join the vertices in the same or neighbouring clusters, and perform
edge-vertex switches in order to restore the even parity of the number of crossings
between every pair of edges. The reduction is carried out by the following lemma
that is also used in the proof of Theorem 1.

Lemma 2. Let D denote an even quasi-clustered drawing of a clustered graph
(G,T ). Let e = uv, where u ∈ Vi, v ∈ Vj denote an edge of G. Let G′ denote a
graph obtained from G by subdiving e by |i − j| − 1 vertices. Let (G′, T ′) denote
the clustered graph, where T ′ is inherited from T so that the subdivided edge e is
turned into a strictly monotone path w.r.t. γ. Then there exists an even quasi-
clustered drawing D′ of (G′, T ′), in which each new edge crosses the boundary of
a cluster exactly once and in which no new intersections of edges with boundaries
of the clusters are introduced.

Proof. Refer to Fig. 3(a) and (b). First, we continuously deform e so that e crosses
the boundary of every cluster it visits at most twice. During the deformation we
could change the parity of the number of crossings between e and some edges of
G. This happens when e passes over a vertex w. We remind the reader that we
call this event an edge-vertex switch. Note that we can further deform e so that it
performs another edge-vertex switch with each such vertex w, while introducing
new crossings with edges “far” from w only in pairs. Thus, by performing the
appropriate edge-vertex switches of e with vertices of G we maintain the parity
of the number of crossings of e with the edges of G and we do not introduce
intersections of e with the boundaries of the clusters.
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Fig. 3. (a) Subdivision of the edge e by the vertex z resulting into odd crossing pairs;
(b) Restoration of the evenness by performing edge-vertex switches with z.

Second, if e crosses the boundary of a cluster twice, we subdivide e by a
vertex z inside the cluster thereby turning e into two edges, the edge joining u
with z and the edge joining z with v. After we subdivide e by z, the resulting
drawing is not necessarily even. However, it cannot happen that an edge crosses
an odd number of times exactly one edge incident to z, since prior to subdividing
the edge e the drawing was even. Thus, by performing edge-vertex switches of
z with edges that cross both edges incident to z an odd number of times we
restore the even parity of crossings between all pairs of edges. By repeating the
second step until we have no edge that crosses the boundary of a cluster twice
we obtain a desired drawing of G′. �

2.2 From Strip Clustered Graphs to the Marriage Condition

The main tool for proving Theorem 1 is [2, Theorem 3] of Bertolazzi et al.
that characterizes embedded directed planar graphs, whose embedding can be
straightened (the edges turned into straight line segments) so that all the edges
are directed upward, i.e., every edge is directed towards the vertex with a higher
y-coordinate. Here, it is not crucial that the edges are drawn as straight line
segments, since we can straighten them as soon as they are y-monotone [15].
The theorem says that an embedded directed planar graph

−→
G admits such an

embedding, if there exists an assignment of the sources and sinks of
−→
G to the

faces of
−→
G that is easily seen to be necessary for such a drawing to exist (see

Fig. 2 for an illustration).
Intuitively, a sink or source v is assigned to a face f , if and only if a pair of

edges vw and vz, incident to f form in f a concave angle, i.e., an angle bigger
than π in an upward embedding. Thus, a vertex can be assigned to a face only
if it is incident to it. First, note that the number of sinks incident to a face f is
the same as the number of sources incident to f . The mentioned easy necessary
condition for the existence of an upward embedding is that an internal (resp.
external) face with 2k sinks and sources have precisely k−1 (resp. k+1) of them
assigned to it, and that the rotation at each vertex can be split into two parts
consisting of incoming and outgoing, resp., edges. The embeddings satisfying the
latter are dubbed candidate embeddings by [2].

Assuming that in (G,T ) each cluster forms an independent set, we would like to
prove that (

−→
G,T ) satisfy this condition, if (G,T ) admits an even clustered drawing.
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That would give us the desired clustered drawing by an easy geometric argument.
However, we do not know how to do it directly, if faces have arbitrarily many sinks
and sources. Thus, we first augment the given even drawing by adding edges and
vertices so that the outer face in

−→
G is incident to at most one sink and one source,

i.e., it is simple in G w.r.t. γ, and each internal face, that is not simple, is incident
to exactly two sinks and two sources, i.e., it is semi-simple.3 Let (G′, T ′) denote the
resulting strip clustered graph. This reduces the proof to showing that there exists
a bijection between the set of internal semi-simple faces, and the set of sinks and
sources in

−→
G ′ without the source and sink incident to the outer face.

By [2, Lemma 5] the total number of sinks and sources is exactly the total
demand by all the faces in a candidate embedding, which is also a direct conse-
quence of the discretized version [11] of the Poincaré-Hopf index theorem [12].
Hence, by Hall’s Theorem the bijection exists, if every subset of internal semi-
simple faces of size l is incident to at least l sinks and sources.

2.3 Crossing Paths

Just to give a glimpse of the proof of our main result we present two observations,
whose combination plays an important role in the proof of the required marriage
condition that we need in order to apply [2, Theorem 3]. The first one is a simple
parity variant of the Pigeon hole principle.

Observation 1. Let C = v1v2 . . . v2a, a ≥ 2, denote an even cycle. Let V ′

denote a subset of the vertices of C of size at least a + 2. Then V ′ contains four
vertices vi, vj , vk and vl, where i < j < k < l, such that i, k is odd and j, l is
even (or vice versa).

Proof. For the sake of contradiction we assume that V ′ does not contain four
such vertices. Let V0 and V1, resp., denote the vertices of V with even and odd
index. Similarly, let V ′

0 and V ′
1 , resp., denote the vertices of V ′ with even and odd

index. Suppose that 2 ≤ |V ′
0 | ≥ |V ′

1 | and fix a direction in which we traverse C.
Between every two consecutive vertices of V ′

0 along C except for at most one pair
of consecutive vertices we have a vertex in V1 − V ′

1 . Thus, |V1 − V ′
1 | ≥ |V ′

0 | − 1.
On the other hand, |V1 − V ′

1 | = a − |V ′
1 | ≤ a − (a + 2 − |V ′

0 |) = |V ′
0 | − 2

(contradiction). �

Let G denote a graph with a rotation system. We define the crossing index of
paths P1 and P2 in G as follows. Let us orient all the edges of P1 and P2, resp.,
so that P1 and P2 has only one sink and one source. Let P denote the subgraph
of G which is the union of P1 and P2. We define cr(v) = +1 (resp. cr(v) = −1),
if v is a vertex of degree four in P such that the paths P1 and P2 alternate in
the rotation at v and at v the path P2 crosses P1 from left to right (resp. right
to left) in the direction of P1. We define cr(v) = +1/2 (resp. cr(v) = −1/2), if v
is a vertex of degree three in P such that at v the path P2 is oriented towards P1

3 We would not have to do anything that follows, if we could turn all the faces into simple
ones. However, this seems to be a difficult task.
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from left, or from P1 to right (resp. towards P1 from right, or from P1 to left) in
the direction of P1. The crossing index of P1 and P2 is then the absolute value
of the sum of cr(v) over all vertices of degree three and four in P . Let G′ ⊆ G.
Let max(G′) and min(G′), resp., denote the maximal and minimal value of γ(v),
v ∈ V (G′).

A path P in G is an i-cap and i-cup, resp., if for the end vertices u and v of
P we have min(P ) = γ(u) = γ(v) = i and max(P ) = γ(u) = γ(v) = i. Note that
we can define the crossing index for any two subgraphs of maximum degree two.
Then two cycles in an even drawing of G cannot have an odd crossing index,
since they would correspond to two curves in the plane crossing an odd number
of times. This observation can be easily extended to special pairs of an i-cap and
j-cup.

An i-cap P1 and j-cup P2 cross, if

(A) their crossing index is odd; and
(B) min(P1) < min(P2) ≤ max(P1) < max(P2).

Observation 2. The clustered graph (G,T ) admitting an even clustered drawing
does not contain a pair P1 and P2 of an i-cap and j-cup, i + 1 < j, that cross.

3 The Proof of Theorem 3

First, we prove a lemma that allows us to get rid of odd crossing pairs by doing
only local redrawings and vertex splits.

A drawing of a graph G is obtained from the given drawing of G by redrawing
edges locally at vertices if the resulting drawing of G differs from the given one
only in small pairwise disjoint neighborhoods of vertices not containing any
other vertex. The proof of the following lemma is inspired by the proof of
[17, Theorem 3.1].

Lemma 3. Let G denote a subdivision of a vertex three-connected graph drawn
in the plane so that every pair of non-adjacent edges cross an even number of
times. We can turn the drawing of G into an even drawing by a finite sequence
of local redrawings of edges at vertices and vertex splits.

Proof. We process cycles in G containing an edge crossed by one of its adjacent
edges an odd number of times one by one until no such cycle exists. Let C denote
a cycle of G. By local redrawings at the vertices of C we obtain a drawing of G,
where every edge of C crosses every other edge an even number of times. Let v
denote a vertex of C.

First, suppose that every edge incident to v and starting inside of C crosses every
edge incident to v and starting outside of C an even number of times. In this
case we perform at most two subsequent vertex splits. If there exists at least two
edges starting at v inside (resp. outside) of C, we split v into two vertices v′ and
v′′ joined by a very short crossing free edge so that v′ is incident to the neighbors
of v formerly joined with v by edges starting inside (resp. outside) of C, and v′′
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is incident to the rest of the neighbors of v. Thus, v′′ replaces v on C. Notice that
by splitting we maintain the property of the drawing to be independently even,
and the property of our graph to be three-connected. Moreover, all the edges
incident to the resulting vertex v′′ of degree three or four cross one another an
even number of times. Hence, no edge of C will ever be crossed by another edge
an odd number of times, after we apply appropriate vertex splits at every vertex
of C.

Second, we show that there does not exist a vertex v incident to C so that
an edge vu starting inside of C crosses an edge vw starting outside of C an odd
number of times. Since G is a subdivision of a vertex three-connected graph,
there exist two distinct vertices u′ and w′ of C different from v such that u′ and
w′, resp., is connected with u and w by a path internally disjoint from C. Let
uP1u

′ and wP2w
′, resp., denote this path. Note that u can coincide with u′ and

w can coincide with w′. Let vP3u
′ denote the path contained in C no passing

through w′. Let C ′ denote the cycle obtained by concatenation of P1, P3, and
vu. Let C ′′ denote the cycle obtained by concatenating P2 and the portion of C
between w′ and v not containing u′. Since vw and vu cross an odd number of
times and all the other pairs of edges e ∈ E(C ′) and f ∈ E(C ′′) cross an even
number of times, the edges of C ′ and C ′′ cross an odd number of times. It follows
that their corresponding curves cross an odd number of times (contradiction).

Notice that by vertex splits we decrease the value of the function
∑

v∈V (G)

deg3(v) whose value is always non-negative. Hence, after a finite number of vertex
splits we turn G into an even drawing of a new graph G′. �

We turn to the actual proof of Theorem 3.
We apply Lemma 3 to the graph G thereby obtaining a clustered graph (G′, T ′),
where each vertex obtained by a vertex split, belongs to the cluster of its parental
vertex and the membership of other vertices to clusters is unchanged. By apply-
ing Theorem 1 to (G′, T ′) we obtain a clustered embedding of (G′, T ′). Finally,
we contract the pairs of vertices obtained by vertex splits in order to obtain a
clustered embedding of (G,T ).

4 Monotone Variant of the Weak Hanani–Tutte Theorem

In the present section we derive Theorem 2 from Theorem 1.
Given a graph G with a fixed order of vertices let D denote its drawing such

that x-coordinates of the vertices of G respect their order, edges are drawn as
x-monotone curves and every pair of edges cross an even number of times. We
turn our drawing D of G into a clustered drawing D′ of a strip clustered graph
(G′, T ′) which is still even.

We divide the plane by vertical lines such that each resulting strip contains
exactly one vertex of G in its interior. Let (G,T ) denote the clustered graph, in
which every cluster consists of a single vertex, such that the clusters are ordered
according to x-coordinates of the vertices. Thus, every vertical strip corresponds
to a cluster of (G,T ). Note that all the edges in the drawing of (G,T ) are
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bounded, and hence, by Lemma 2 can be turned into paths so that the resulting
clustered graph is strip clustered, and even drawing clustered. We denote the
resulting strip clustered graph by (G′, T ′) and drawing by D′.

Applying Theorem 1 to D′, we obtain an embedding of (G′, T ′) that can be
turned into an embedding of (G,T ) by converting the subdivided edges in G′

back to the edges of G. The obtained embedding is turned into an x-monotone
embedding by replacing each edge e with a polygonal path whose bends are
intersections of e with vertical lines separating clusters in (G,T ).

5 Open Problems

We proved the weak variant of Hanani-Tutte theorem for strip clustered graphs,
and verified the corresponding strong variant for three-connected graphs. Natu-
rally, the main open problem we left open is to prove or disprove the strong vari-
ant, if the underlying abstract graph G is not a subdivision of a three-connected
graph. We find the case, when G is guaranteed to be only two-connected, already
quite challenging. A possible approach to prove the strong variant is to adapt
the technique of “untangling” pairs of edges crossing an odd number times from
[10, Sect. 3]. Another direction for further research would be the weak variant of
Conjecture 1 from [9].

Acknowledgment. We would like to express our special thanks of gratitude to the
organizers and participants of the 11th GWOP workshop, where we could discuss the
research problems treated in the present paper. In particular, we especially benefited
from the discussions with Bettina Speckmann, Edgardo Roldán-Pensado and Sebastian
Stich. Furthermore, we would like to thank Ján Kynčl for useful discussions at the initial
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Abstract. We study two problems related to the Small Set Expansion
Conjecture [14]: the Maximum weight m′-edge cover (MWEC) problem
and the Fixed cost minimum edge cover (FCEC) problem. In the MWEC
problem, we are given an undirected simple graph G = (V, E) with inte-
gral vertex weights. The goal is to select a set U ⊆ V of maximum
weight so that the number of edges with at least one endpoint in U is
at most m′. Goldschmidt and Hochbaum [8] show that the problem is
NP-hard and they give a 3-approximation algorithm for the problem.
The approximation guarantee was improved to 2+ ε, for any fixed ε > 0
[12]. We present an approximation algorithm that achieves a guarantee
of 2. Interestingly, we also show that for any constant ε > 0, a (2 − ε)-
ratio for MWEC implies that the Small Set Expansion Conjecture [14]
does not hold. Thus, assuming the Small Set Expansion Conjecture, the
bound of 2 is tight. In the FCEC problem, we are given a vertex weighted
graph, a bound k, and our goal is to find a subset of vertices U of total
weight at least k such that the number of edges with at least one edges
in U is minimized. A 2(1 + ε)-approximation for the problem follows
from the work of Carnes and Shmoys [3]. We improve the approximation
ratio by giving a 2-approximation algorithm for the problem and show a
(2− ε)-inapproximability under Small Set Expansion Conjecture conjec-
ture. Only the NP-hardness result was known for this problem [8]. We
show that a natural linear program for FCEC has an integrality gap of
2 − o(1). We also show that for any constant ρ > 1, an approximation
guarantee of ρ for the FCEC problem implies a ρ(1+o(1)) approximation
for MWEC. Finally, we define the Degrees density augmentation problem
which is the density version of the FCEC problem. In this problem we are
given an undirected graph G = (V, E) and a set U ⊆ V . The objective
is to find a set W so that (e(W ) + e(U, W ))/deg(W ) is maximum. This
problem admits an LP-based exact solution [4]. We give a combinatorial
algorithm for this problem.
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1 Introduction

Given a graph G = (V,E) and a subset S ⊆ V , let deg(S) denote sum of degrees
of all vertices in S and let e(S, S) denote the number of edges that have one
endpoint in S and the other in V \ S. Then the edge expansion, φG(S) is given
by φG(S) = e(S, S)/deg(S). Given some δ, 0 < δ ≤ 1/2 and a d-regular graph
F , let S denote all subsets of V of size δ|V |. Let

φG(δ) = min
S∈S

e(S, S)
deg(S)

The Small Set Expansion Conjecture states that for any constant η, it is NP-
hard to distinguish whether φG(δ) ≥ 1 − η or φG(δ) ≤ η. In [14], Raghavendra
and Steurer showed that proving the Small Set Expansion Conjecture implies
a proof for the Unique Games Conjecture and an algorithm that refutes the
Unique Games Conjecture refutes the Small Set Expansion Conjecture.

In this paper we relate the Small Set Expansion Conjecture to two other
edge expansion problems. We say that an edge e is touched by a set of vertices
U or that e touches the set of vertices U , if at least one of e’s endpoints is in U .
Specifically, the problems that we study are as follows. The Maximum weight m′-
edge cover (MWEC) problem that we study was first introduced by Goldschmidt
and Hochbaum [8]. In this problem, we are given an undirected simple graph
G = (V,E) with integral vertex weights. The goal is to select a subset U ⊆ V
of maximum weight so that the number of edges touching U is at most m′. This
problem is motivated by application in loading of semi-conductor components
to be assembled into products [8].

We also study the closely related Fixed cost minimum edge cover (FCEC)
problem in which given a graph G = (V,E) with vertex weights and a number
W , our goal is to find U ⊆ V of weight at least W such that the number of edges
touching U is minimized.

Finally, we study the Degrees density augmentation problem which is the density
version of the FCEC problem. In the Degrees density augmentation problem, we are
given an undirected graph G = (V,E) and a set U ⊆ V and our goal is to
find a set W with maximum augmenting density i.e., a set W that maximizes
(e(W ) + e(U,W ))/deg(W ).

1.1 Related Work

Goldschmidt and Hochbaum [8] introduced the MWEC problem. They show that
the problem is NP-complete and give algorithms that yield 2-approximate and
3-approximate algorithm for the unweighted and the weighted versions of the
problem, respectively. Their NP-hardness proof applies to FCEC as well. Liang
[12] improved the bound of 3 to 2 + ε, for any fixed ε > 0.

A class of related problems are the density problems – problems in which we
are to find a subgraph and the objective function considers the ratio of the total
number or weight of edges in the subgraph to the number of vertices in the sub-
graph. A well known problem in this class is the Dense k-subgraph problem (DkS)
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in which we want to find a subset of vertices U of size k such that the total number
of edges in the subgraph induced by U is maximized. The best ratio known for the
problem is n1/4+ε [2,5], which is an improvement over the bound of O(n1/3−ε), for
ε close to 1/60 [5]. The Dense k-subgraph problem is APX-hard under the assump-
tion that NP problems can not be solved in subexponential time [9]. Interestingly,
if there is no bound on the size of U then the problem can be solved in polynomial
time [7,11].

Consider an objective function in which we minimize deg(U). One can asso-
ciate a cost cu = deg(u) with each vertex u and a size su = w(u) for each vertex
u, and then the objective is just to minimize deg(U) subject to

∑
suxu ≥ k.

Carnes and Shmoys [3] give a (1 + ε)-approximation for the problem. Using this
result and the observation that the objective function is at most a factor of 2
away from the objective function for the FCEC problem, a 2(1+ε)-approximation
follows for the FCEC problem.

Variations of the Dense k-subgraph problem in which the size of U is at least
k (Dalk) and the size of U is at most k (Damk) have been studied [1,10]. In
[1,10], they give evidence that Damk is just as hard as DkS. They also give
2-approximate solutions to the Dalk problem. In [10], they also consider the
density versions of the problems in directed graphs. Gajewar and Sarma [6] con-
sider a generalization in which we are give a partition of vertices U1, U2, . . . , Ut,
and non-negative integers r1, r2, . . . , rt. the goal is to find a densest subgraph
such that partition Ui contributes at least ri vertices to the densest subgraph.
They give a 3-approximation for the problem, which was improved to 2 by
Chakravarthy et al. [4], who also consider other generalizations. They also show
using linear programming that the Degrees density augmentation problem can be
solved optimally.

A problem parameterized by k is Fixed Parameter Tractable [13], if it admits
an exact algorithm with running time of f(k) · nO(1). The function f can be
exponential in k or larger. Proving that a problem is W[1]-hard (with respect
to parameter k) is a strong indication that it has no FPT algorithm with para-
meter k (similar to NP-hardness implying the likelihood of no polynomial time
algorithm). The FCEC problem parameterized by k is W[1] hard but admits a
f(k, ε) · nO(1) time, (1 + ε)-approximation, for any constant ε > 0 [13]. This is in
contrast to our result that shows that it is highly unlikely that FCEC admits a
polynomial time approximation scheme (PTAS), if the running time is bounded
by a polynomial in k.

1.2 Preliminaries

The input is an undirected simple graph G = (V,E) and vertex weights are
given by w(·). Let n = |V | and m = |E|. For any subset S ⊆ V , let S = V \ S.
Let e(P,Q) be the set of edges with one endpoint in P and the other in Q. Let
deg(S) denote the sum of degrees of all vertices in S, i.e., deg(S) =

∑
v∈S deg(v).

Let degH(v) denote the number of neighbors of v among the vertices in H. Let
degH(S) denote the quantity

∑
v∈S degH(v). We use OPT to denote an optimal
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solution as well as the cost of an optimal solution. The meaning will be clear
from the context in which it is used.

For set U ⊆ V , let T (U) be the collection of all edges with at least one
endpoint in U . Namely, is the set of edges touching U . We denote t(U) = |T (U)|.
The set of edges with both endpoints in U , also called internal edges of U , is
denoted by E(U). We denote e(U) = |E(U)|. We denote by e(X,Y ) the number
of edges with one endpoint in X and one in Y . Let eU (X,Y ) be the number of
edges between X ∩U and Y ∩U in the graph G(U) induced by U . The following
lemma is known [12]; we present it here for completeness.

Lemma 1. The FCEC problem admits a simple 2-approximate solution in case
of uniform vertex weights.

Proof. Let Z be the set of k lowest degree vertices in G. The set Z is a 2-
approximate solution by the following argument. Let b be the average degree of
vertices in Z. Thus t(Z) ≤ bk. The claim follows since t(OPT ) ≥ deg(OPT )/2 ≥
bk/2.

Claim. For every set U , t(U) = deg(U) − e(U).

Proof. Consider separately the edges E(U, V \U) and E(U). Note that the edges
E(U, V \U) are counted once in the sum of degrees, but edges in E(U) are counted
twice. Thus in order to get the number of edges touching U , we need to subtract
e(U) from deg(U).

1.3 Our Results

Our contributions in this paper are as follows.

– For the MWEC problem we give an algorithm that yields an approximation
guarantee of 2. This improves the approximation guarantee of 3 given by
Goldschmidt and Hochbaum [8] and the ratio of 2 + ε, for fixed ε >, given by
Liang [12]. We also give a (2− ε)-inapproximability for the problem under the
Small Set Expansion Conjecture. Note that only a NP-hardness result was
known for this problem [8].

– We give a 2-approximate solution to the FCEC problem. This improves the
2(1 + ε)-ratio that follows from the work of Carnes and Shmoys [3]. We also
give a 2 − ε inapproximability for the problem, where ε > 0 is any constant.

– We also show that a natural LP for FCEC has an integrality gap of 2(1−o(1)),
even for the unweighted case.

– For any constant ρ > 1, we show that if FCEC admits a ρ-approximation
algorithm then MWEC admits a ρ(1 + o(1))-approximation algorithm.

– We give a combinatorial algorithm that solves the Degrees density augmentation

problem optimally.

2 Tight 2-Approximation for MWEC and FCEC

In this section we present 2-approximation algorithms for MWEC and FCEC, and
show that the results are tight under the Small Set Expansion Conjecture.
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2.1 A 2-Approximation for Maximum Weight m′-Edge Cover

We give a dynamic programming based solution for the MWEC problem. The idea
of using dynamic programming in this context was first proposed by Goldschimdt
and Hochbaum [8]. Recall that in the MWEC problem, we are given an undirected
simple graph G = (V,E) with integral vertex weights. The goal is to select a
subset U ⊆ V of maximum weight so that the number of edges touching U is at
most m′.

We will guess the following entities (by trying all possibilities) and for each
guess, we use dynamic programming to solve the problem.

1. H∗ = {vh}, where vh is the heaviest vertex in an optimal solution.
2. PH∗ = e(H∗, OPT \ H∗) – the number of neighbors of vh in the optimal

solution. There are at most n possibilities.
3. DH∗ = degH

∗(OPT \ H∗): total degree of vertices in OPT \ H∗ in the graph
induced by vertices in V \ H∗. There are at most n2 possibilities.

We will try all combinations of the above entities. Since there are at most
polynomial number of possibilities for each entity, we have at most polynomial
number of possibilities in total. We define the following subproblems as part of
our dynamic programming solution. For a guess H for H∗, let {v1, v2, . . . , v|H|}
be the vertices in H. Then, any H, we solve the following subproblems.

A[H, i, PH ,DH ] denote the maximum weighted subset Q ⊆ {v1, v2, . . . , vi}
such that e(H,Q) ≥ PH and degH(Q) ≤ DH/2.

Note that while the natural bound on degH(Q) is DH , using such a bound will
lead to an infeasible solution. For fixed parameters H, PH , and DH , we are
interested in A[H, |H |, PH ,DH ]. We use the following recurrence as the basis for
our dynamic programming solution: the value of A[H, i, PH ,DH ] = −∞ in any
of the following three cases – (i) i = 0 and PH > 0, (ii) i = 0 and DH/2 < 0,
and (iii) DH/2 > m′ − e(H,H). When i = 0, PH ≤ 0 and DH/2 ≥ 0, the value
of A[H, i, PH ,DH ] = 0. Otherwise, we have

A[H, i, PH ,DH ] = max{A[H, i − 1, PH ,DH ], w(vi) + A[H, i − 1, P ′
H ,D′

H ]}

where, P ′
H = PH − degH(vi) and D′

H = DH − 2(degH(vi)). Our solution is given
by maxH,PH ,DH

{w(H) + A[H, |H |, PH ,DH ]}.

Analysis

Lemma 2. Our algorithm yields a feasible solution.

Proof. Let H ′ ∪ Q′, where Q′ ⊆ V \ H ′, be the set of vertices returned by our
solution. The number of edges with at least one endpoint in H ′ ∪ Q′, is

= e(H ′,H
′
) + e(Q′,H

′
) ≤ e(H ′,H

′
) + degH′(Q′) ≤ e(H ′,H

′
) +

DH′

2
≤ e(H ′,H ′) + (m′ − e(H ′,H ′)) = m′
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Lemma 3. The above algorithm results in a 2-approximate solution.

Proof. Recall that H∗ consists of the highest degree vertex in the optimal solu-
tion. Let Q∗ be the remaining vertices in the optimal solution. Consider the
scenario when our algorithm makes the correct guess for H∗. Let Q ⊆ H∗ be
the solution returned by the dynamic program in this setting. We know that

degH
∗(Q) ≤ degH

∗(Q∗)
2

We now use ideas from [8] to show that w(H∗ ∪ Q) ≥ 2w(H∗ ∪ Q∗). Recall that
H ′ ∪ Q′ be the output of our algorithm. Since w(H ′ ∪ Q′) ≥ w(H∗ ∪ Q∗), it
follows that our solution is a factor of at most 2 away from OPT .

Consider any arbitrary ordering of vertices v1, v2, . . . in Q∗. Note that the
weight of each vertex in Q∗ is at most w(H∗). Let Q∗

r denote the first r ver-
tices in the above ordering of vertices of Q∗. Let p be the first index such that
degH

∗(Q∗
p) > degH

∗(Q∗)/2. This implies the following – (i) degH
∗(Q∗

p−1) ≤
degH

∗(Q∗)/2, and (ii) degH
∗(Q∗ \ Q∗

p) < degH
∗(Q∗)/2. Note that both the sets

Q∗
p−1 and Q∗ \Q∗

p (neither set contains vp) are feasible candidates for the set Q,
the solution returned by our algorithm when the heaviest vertex set was chosen
to be H∗. Since w(Q) ≥ w(Q∗

p−1), w(Q) ≥ w(Q∗ \ Q∗
p), and w(vp) ≤ w(H∗),

we have

w(OPT ) ≤ w(H∗ ∪ Q∗) ≤ w(H∗) + w(Q∗) ≤ w(H∗) + w(Q∗
p−1) + w(vp) + w(Q∗ \ Q∗

p)

≤ w(H∗) + w(Q) + w(H∗) + w(Q) = 2w(H∗ ∪ Q) ≤ 2w(H′ ∪ Q′)

2.2 A 2-Approximation for Fixed Weight Minimum Edge Cover

Recall the FCEC problem: Given a graph G = (V,E) with arbitrary vertex weights
and a positive integer W , our objective is to choose a set S ⊆ V of vertices of
total weight at least W such that the number of edges with at least one end
point in S is minimized.

We will solve the following related problem optimally and then show that an
optimal solution to the problem is a 2-approximation to FCEC: we want to find
a subset S of vertices such that deg(S) is smallest and w(S) is at least W .

We use the dynamic programming algorithm of the well-known Knapsack
problem to find a solution to the above problem. For completeness, we restate
the dynamic programming formulation below.

P [i,D]: maximum weight of set Q ⊆ {v1, v2, . . . , vi} such that deg(Q) is
at most D.

Note that P [0,D] = 0, for all values of D is the base case. For all other case, we
invoke the following recurrence.

P [i,D] = max{P [i − 1,D], w(vi) + P [i − 1,D − w(vi)]}

After filling the table P using dynamic programming, we scan all entries of the
form P [|V |,D] to find the smallest value of D for which P [|V |,D] ≥ W . Let S
be the corresponding set.
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Lemma 4. The is a 2-approximate solution to the Fixed Cost Minimum Edge
Cover Problem as follows.

t(S) ≤ deg(S) ≤ deg(OPT ) = 2(deg(OPT )/2) ≤ 2OPT

2.3 A (2 − ε)-inapproximability for FCEC Under the Small Set
Expansion Conjecture

The Small Set Expansion Conjecture is the following. The expansion of a set
S ⊆ V is defined as

φG(S) =
e(S, V − S)

deg(S)
.

Here e(S, V −S) are the number of edges with one vertex in S and one in V −S
and deg(S) is the sum of degrees of the vertices in S.

The conjecture is about the expansion of sets of small size. Given some δ ≤
1/2 and a d-regular graph F , consider all subsets S of V of size δ · |V |. Let

φG(δ) = min
S∈S

φG(S)
deg(S)

.

The Small Set Expansion Conjecture states that for any constant η, it is
NP-hard to distinguish whether φG(δ) ≥ 1 − η or φG(δ) ≤ η.

Theorem 1. If the Fixed Cost Minimum Edge Cover problem with uniform
vertex weights admits better than a 2 − 6η approximation, then the Small Set
Expansion Conjecture does not hold.

Proof. Consider first the case that φG(δ) ≥ 1− η, and let S be the set achieving
this bound. Let k be the size of S.

As the graph is d regular, we have

e(S, V − S) ≥ (1 − η)deg(S) = (1 − η)k · d.

As t(S) ≥ e(S, V − S) we get that t(S) ≥ (1 − η) · k · d.
We now consider the second case in which

e(S, V − S) ≤ η · deg(S) = η · k · d.

Thus deg(S) = d · k ≤ η · k · d + 2e(S). Therefore, e(S) ≥ dk(1 − η)/2 and
t(S) = deg(S) − e(S) ≤ k · d(1 + η)/2.

The ratio between a yes and a no instance is:

(1 − η)k · d

(1 + η)/2 · k · d
= 2 · 1 − η

1 + η
≥ 2 · (1 − 3η).

This means that if FCEC admits an approximation ratio smaller than 2(1−3η)
the Small Set Expansion Conjecture is disproved. We can pick ε = η/6 and get
the (2 − ε)-inapproximability. As we can choose any small ε, (the conjecture
allows us to chose η as small constant as we want) the inapproximability can be
made close to 2 almost matching the lower bound.
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2.4 A Hardness of 2 − ε for Maximum Weight m′-Edge Cover

Recall that in our hardness example for FCEC for hardness 2 − ε, the graph is d
regular.

For clarity in exposition, we ignore the small constant ε in this section. We will
assume 2-inapproximability for FCEC and show that better than 2-approximation
for MWEC implies a better than 2-approximation for FCEC.

In the reduction from FCEC to MWEC, we use the same d-regular graph that
is part of the FCEC instance and set m′ = kd/2. Thus for a “yes” instance of
FCEC we assume that t(OPTFCEC) = kd/2. And that for a “no” instance it is kd.

Since OPTMWEC = k, an approximation ratio better than 2 for MWEC will
give a set S of more than k/2 vertices. The number of vertices still required to
be added to transform S to a legal FCEC output is strictly less than k − k/2 =
k/2. We can complete the set S to size k by any set S′ of k/2 vertices. Thus
t(S ∪ S′) < kd/2 + kd/2 = kd and thus we can distinguish between a no and a
yes instance of FCEC, refuting the Small Set Expansion Conjecture.

This implies (2 − ε)-inapproximability for MWEC.

3 Integrality Gap for Fixed Cost Minimum Edge Cover

Consider the following natural integer linear program for the problem: min
∑

e ye,
subject to (i)

∑
v∈V xv ≥ k, (ii) ∀e = (u, v), ye ≥ xu, (iii) ∀e = (u, v), ye ≥ xv,

(iv) ∀v ∈ V, xv ∈ {0, 1}, (v) ∀e ∈ E, ye ∈ {0, 1}.
The LP relaxation can be obtained by relaxing the integrality constraints on

xv and ye to xv ≥ 0,∀v ∈ V and ye ≥ 0,∀e ∈ E.

Theorem 2. The above LP has an integrality gap of 2(1 − o(1)).

Let k = 
√n�. Construct a graph G on n vertices as follows. For each pair of
vertices, include an edge between the pair with a probability 1/
√n�. For any
vertex v, E[deg(v)] = n(1/
√n�) ≤ √n�. Using Chernoff bounds, for 0 < δ < 1,
we have √

n(1 − o(1)) ≤ deg(v) ≤
√

n(1 + o(1))

Consider any subset Q of vertices in G such that |Q| = 
√n�. Then we have

E[e(Q)] =
1


√n�

(
Q

2

)
=


√n�(
√n� − 1)
2
√n� =


√n� − 1
2

Thus, n ≥ 4, we have
√

n/4 ≤ E[e(Q)] <
√

n/2. We use the following Chernoff
bound to obtain the probability that e(Q) ≥ n1−ε, for a constant ε.

Pr [e(Q) ≥ (1 + δ)E[e(Q)]] ≤
(

exp(δ)
(1 + δ)(1+δ)

)E[e(Q)]

In our case, 2n1/2−ε ≤ 1 + δ ≤ 4n1/2−ε, thus we get

Pr [e(Q) ≥ n1−ε] ≤
(

exp(4n1/2−ε)
(2n1/2−ε)2n1/2−ε

)√
n/4
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Let f(n, ε) =
(

exp(n1/2−ε)

(2n1/2−ε)(n1/2−ε/2)

)√
n

. The number of sets of size 
√n� is given

by
(

n√
n

)
≤ (ne/
√n�)

√
n = (√n�e)

√
n. The probability that there is no subset

of size 
√n� that has at least n1−ε edges is given by the union-bound as follows

f(n, ε)
(

n√
n

)
<< 1

The number of edges with at least one end point in Q is given by

t(Q) = deg(Q) − e(Q) ≥ 

√

n� ·
√

n(1 − o(1)) − n1−ε = n(1 − o(1))

On the other hand, consider the fractional solution in which xv = 1/
√

n, for
each v and ye = 1/

√
n, for each e ∈ E. This LP solution is feasible and has a

cost of |E|/√
n. The number of edges |E| = n

√
n/2(1 + o(1)). Thus the cost of

the LP solution is at most n(1 + o(1))/2, which results in a gap of 2(1 − o(1)).

4 An Approximation for Fixed Cost Minimum Edge
Cover Implies the Same Approximation for Maximum
Weight m′-Edge Cover

We first transform the input instance for the MWEC problem to one in which the
optimum value of the objective function is at most n5 by paying a very small
penalty in the approximation ratio.

Lemma 5. For the Maximum weight m′-subgraph problem, we can convert the
input instance 〈G,w,m′〉, with an optimal solution denoted by OPT into an
instance 〈G′, w′,m′〉, with optimal solution OPT′′, such that OPT ′′ ≤ n5. Fur-
thermore, if OPT ′ is the total weight of the vertices in OPT ′′ under the weight
function w, then

OPT ′ ≥ OPT (1 − 1/n)(1 − 1/n2)

Proof. Let v1, v2, . . . , vn be the vertices in G such that w(v1) ≥ w(v2) ≥ · · · ≥
w(vn). Let vp be the last vertex in the ordering such that w(vp) ≥ w(v1)/n2.
In other words, for each j, p < j ≤ n, w(v1) > n2w(vj). Let G′ is the graph
induced on vertices v1, v2, . . . , vp. Let OPT1 be the optimal solution for the
instance 〈G′, w,m′〉. Note that OPT may choose some vertices from the set
{vp+1, vp+1, . . . , vn}. The error incurred in not considering these vertices is at
most n(w(v1)/n2) ≤ OPT/n. Thus we get OPT1 ≥ OPT (1 − 1/n). We now
scale the weights of vertices in G′ to create an instance 〈G′, w′,m′〉, where

w′(vj) =
⌊(

w(vj)
w(vp)

)
n2

⌋

Let OPT ′′ be an optimal solution to 〈G′, w′,m′〉. Clearly, OPT ′′ ≤ n5. Let OPT ′

be the cost of the solution OPT ′′ under the weight function w, i.e., OPT ′ =∑
v∈OPT ′′ w(v). Thus we have

OPT ′ ≥ OPT1

(
1 − 1

n2

)
≥ OPT

(
1 − 1

n

)(
1 − 1

n2

)
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Theorem 3. For some constant α, an α approximation guarantee for FCEC

implies an α(1 + o(1)) approximation guarantee for MWEC.

Proof. Suppose that we have an α > 1 approximation algorithm for FCEC, for
some constant α. Using Lemma 5, we transform the MWEC instance (G,m′) with
an optimal weight W ∗ to an instance in which the optimum weight W ∗ ≤ n4.
This increase the approximation ratio by a factor of only (1 + o(1)). We now
consider the modified instance (G′,m′) as an input to FCEC. We guess the value
of W ∗ by trying all possible integral values between 1 and n4. For each guess
of W ∗, we apply the α-approximation algorithm for FCEC to the new instance.
When our guess W ∗ is correct and we apply the algorithm, we obtain a set U of
vertices of cost at least W ∗ and that touch at most α · m′ edges.

Create a new set B in which every vertex from U is chosen with a probability
1/α. We say that an edge e is deleted if e �∈ E(B). Let τ be a constant.

We consider the following “bad” events: (i) w(B) ≤ W ∗/((1 + τ)α), (ii)
t(B) > m′.

We first bound the probability that w(B) ≤ W ∗/((1+τ)α). The expected cost
of B is w(U)/α = W ∗/α. Consider the expected cost of U \B. The expected cost
is W ∗ −W ∗/α. The event that w(B) ≤ W ∗/(α(1+τ))) is equivalent to the event
w(U) − w(B) ≥ W ∗ − W ∗/(α(1 + τ)) = W ∗(1 − 1/(ρ(1 + τ)). By the Markov’s
inequality, the last event has probability at most (1 − 1/α)/(1 − 1/(α(1 + τ)) =
1 − τ/(α + α · τ − 1).

We now bound the probability of the second bad event. The expected number
of edges in E(B) is at most m′(1− (1− 1

α )2). Note that the events that edges are
deleted are positively correlated because given that an edge (v, u) is deleted, one
of the possibilities that can cause this event, is that v is deleted, and in that case
all edges of v are deleted with probability 1. Clearly, we can assume that m′ ≥ c
for any constant c. Otherwise, we can solve the MWEC problem in polynomial
time by checking all subsets of edges. By the Chernoff bound, the probability
that the number of edges is more than m′ is bounded by exp(−cδ2/2), for some
δ < 1. We can choose a large enough c so that the above probability is at most
τ/(2(α+α · τ −1)). This would mean that the sum of probabilities of bad events
is strictly smaller than 1. This construction can be derandomized by the method
of conditional expectations.

5 Exact Algorithm for the Degrees Density Augmentation
Problem

The Degrees density augmentation problem is as follows: Given a graph G = (V,E)
and a subset U ⊆ V , the objective is to find a subset W ⊆ V \ U such that

ρ =
e(W ) + e(U,W )

deg(W )
is maximized

The Degrees density augmentation problem is related to the FCEC problem
in the same way as the Densest subgraph problem is related to the Dense k-
subgraph problem. A natural heuristic for the FCEC problem would be to itera-
tively find a set W with good augmentation degrees density. A polynomial time
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exact solution for the problem using linear programming is given in [4]. Here we
present a combinatorial algorithm.

We solve the Degrees density augmentation problem exactly by finding minimum
s-t cut in the flow network constructed as follows. Let U denote the set V \ U .
In addition to the source s and the sink t, the vertex set contains VE′ ∪U , where
VE′ = {ve | e ∈ E and both end points of e are in U}. There is an edge from s to
every vertex in VE′ ∪U . If a is a vertex in VE′ then the capacity of the edge (s, a)
is 1, otherwise, the capacity of the edge is degU (a). For each vertex ve ∈ VE′ ,
where e = (p, q), there are edges (ve, p) and (ve, q). Each such edge has a large
capacity of M = ∞ (any capacity of at least n5 would work). Finally, each vertex
p ∈ U is connected to t and has a capacity of ρ · deg(p).

5.1 Algorithm

For a particular value of ρ, let Ws ⊆ U be the vertices that are on the s(t) side
of a minimum s-t cut. Let V s

E′ ⊆ VE′(V t
E′ ⊆ VE′) be the vertices in VE′ that are

on the s(t) side of the minimum s-t cut. We now state the algorithm.

1. Construct the flow network as shown above.
2. For each value of ρ, compute a minimum s-t cut and find the resulting value

of e(Ws) + e(U,Ws) − ρdeg(Ws). Find the largest value of ρ for which the
expression is at least 0.

3. Return Ws corresponding to the largest value of ρ.

Due to space constraints, for the analysis of the above algorithm, the reader
may refer to the full version of the paper.
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Abstract. The Hadwiger number of a graph G is the largest integer h
such that G has the complete graph Kh as a minor. We show that the
problem of determining the Hadwiger number of a graph is NP-hard on
co-bipartite graphs, but can be solved in polynomial time on cographs
and on bipartite permutation graphs. We also consider a natural gener-
alization of this problem that asks for the largest integer h such that G
has a minor with h vertices and diameter at most s. We show that this
problem can be solved in polynomial time on AT-free graphs when s ≥ 2,
but is NP-hard on chordal graphs for every fixed s ≥ 2.

1 Introduction

The Hadwiger number of a graph G, denoted by h(G), is the largest integer h
such that the complete graph Kh is a minor of G. The Hadwiger number has
been the subject of intensive study, not in the least due to a famous conjecture by
Hugo Hadwiger from 1943 [8] stating that the Hadwiger number of any graph
is greater than or equal to its chromatic number. In a 1980 paper, Bollobás
et al. [2] called Hadwiger’s conjecture “one of the deepest unsolved problems in
graph theory.” Despite many partial results the conjecture remains wide open
more than 70 years after it first appeared in the literature.

Given the vast amount of graph-theoretic results involving the Hadwiger
number, it is natural to study the computational complexity of the Hadwiger
Number problem, which is to decide, given an n-vertex graph G and an integer
h, whether the Hadwiger number of G is greater than or equal to h (or, equiva-
lently, whether G has Kh as a minor). Rather surprisingly, it was not until 2009
that this problem was shown to be NP-complete by Eppstein [6]. Two years ear-
lier, Alon et al. [1] observed that the problem is fixed-parameter tractable when
parameterized by h due to deep results by Robertson and Seymour [10]. This
shows that the problem of determining the Hadwiger number of a graph is in
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some sense easier than the closely related problem of determining the clique num-
ber of a graph, as the decision version of the latter problem is W[1]-hard when
parameterized by the size of the clique. Alon et al. [1] showed that the same
holds from an approximation point of view: they provided a polynomial-time
approximation algorithm for the Hadwiger Number problem with approxi-
mation ratio O(

√
n), contrasting the fact that it is NP-hard to approximate the

clique number of an n-vertex graph in polynomial time to within a factor better
than n1−ε for any ε > 0 [13].

Bollobás et al. [2] referred to the Hadwiger number as the contraction clique
number. This is motivated by the observation that for any integer h, a connected
graph G has Kh as a minor if and only if G has Kh as a contraction. In this con-
text, it is worth mentioning another problem that has recently attracted some
attention from the parameterized complexity community. The Clique Con-
traction problem takes as input an n-vertex graph G and an integer k, and
asks whether G can be modified into a complete graph by a sequence of at most
k edge contractions. Since every edge contraction reduces the number of vertices
by exactly 1, it holds that (G, k) is a yes-instance of the Clique Contrac-
tion problem if and only if G has the complete graph Kn−k as a contraction
(or, equivalently, as a minor). Therefore, the Clique Contraction problem
can be seen as the parametric dual of the Hadwiger Number problem, and is
NP-complete on general graphs. When parameterized by k, the Clique Con-
traction problem was recently shown to be fixed-parameter tractable [4,9],
but the problem does not admit a polynomial kernel unless NP ⊆ coNP/poly [4].

In this paper, we study the computational complexity of the Hadwiger
Number problem on several graph classes of bounded chordality. For chordal
graphs, which form an important subclass of 4-chordal graphs, the Hadwiger
Number problem is easily seen to be equivalent to the problem of finding a
maximum clique, and can therefore be solved in linear time on this class [12]. In
Sect. 3, we present polynomial-time algorithms for solving the Hadwiger Num-
ber problem on two other well-known subclasses of 4-chordal graphs: cographs
and bipartite permutation graphs. We also prove that the problem remains NP-
complete on co-bipartite graphs, and hence on 4-chordal graphs. The latter result
implies that the problem is also NP-complete on AT-free graphs, a common
superclass of cographs and bipartite permutation graphs.

In Sect. 4, we consider a natural generalization of the Hadwiger Number
problem, and provide additional results about finding large minors of bounded
diameter. We show that the problem of determining the largest integer h such
that a graph G has a minor with h vertices and diameter at most s can be solved
in polynomial time on AT-free graphs if s ≥ 2. In contrast, we show that this
problem is NP-hard on chordal graphs for every fixed s ≥ 2, and remains NP-
hard for s = 2 even when restricted to split graphs. Observe that when s = 1,
the problem is equivalent to the Hadwiger Number problem and thus NP-
hard on AT-free graphs and linear-time solvable on chordal graphs due to our
aforementioned results.
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Due to space restrictions, proofs are either omitted or just sketched in this
extended abstract. The full version of the paper is available at [5].

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. For each of
the graph problems considered in this paper, we let n = |V (G)| and m = |E(G)|
denote the number of vertices and edges, respectively, of the input graph G.
For a graph G and a subset U ⊆ V (G) of vertices, we write G[U ] to denote the
subgraph of G induced by U . We write G−U to denote the subgraph of G induced
by V (G) \ U , and G − u if U = {u}. For a vertex v, we denote by NG(v) the set
of vertices that are adjacent to v in G. The distance distG(u, v) between vertices
u and v of G is the number of edges on a shortest path between them. The
diameter diam(G) of G is max{distG(u, v) | u, v ∈ V (G)}. The complement of
G is the graph G with vertex set V (G), where two distinct vertices are adjacent
in G if and only if they are not adjacent in G. For two disjoint vertex sets
X,Y ⊆ V (G), we say that X and Y are adjacent if there are x ∈ X and y ∈ Y
that are adjacent in G.

We say that P is a (u, v)-path if P is a path that joins u and v. The vertices
of P different from u and v are the inner vertices of P . We denote by Pn and
Cn the path and the cycle on n vertices respectively. The length of a path is
the number of edges in the path. A set of pairwise adjacent vertices is a clique.
A matching is a set M of edges such that no two edges in M share an end-vertex.
A vertex incident to an edge of a matching M is said to be saturated by M . We
write Kn to denote the complete graph on n vertices, i.e., graph whose vertex
set is a clique. For two integers a ≤ b, the (integer) interval [a, b] is defined as
[a, b] = {i ∈ Z | a ≤ i ≤ b}. If a > b, then [a, b] = ∅.

The chordality chord(G) of a graph G is the length of a longest induced
cycle in G; if G has no cycles, then chord(G) = 0. For a non-negative integer k,
a graph G is k-chordal if chord(G) ≤ k. A graph is chordal if it is 3-chordal.
A graph is chordal bipartite if it is both 4-chordal and bipartite. A graph is a
split graph if its vertex set can be partitioned in an independent set and a clique.
For a graph F , we say that a graph G is F -free if G does not contain F as an
induced subgraph. A graph is a cograph if it is P4-free. Let σ be a permutation
of {1, . . . , n}. A graph G is said to be a permutation graph for σ if G has vertex
set {1, . . . , n} and two vertices i, j are adjacent if and only if i, j are reversed
by the permutation. A graph G is a permutation graph if G is a permutation
graph for some σ. A graph is a bipartite permutation graph if it is bipartite and
permutation. An asteroidal triple (AT) is a set of three non-adjacent vertices
such that between each pair of them there is a path that does not contain a
neighbor of the third. A graph is AT-free if it contains no AT. Each of the
above-mentioned graph classes can be recognized in polynomial (in most cases
linear) time, and they are closed under taking induced subgraphs [3,7]. See the
monographs by Brandstädt et al. [3] and Golumbic [7] for more properties and
characterizations of these classes and their inclusion relationships.
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Minors, Induced Minors, and Contractions. Let G be a graph and let
e ∈ E(G). The contraction of e removes both end-vertices of e and replaces
them by a new vertex adjacent to precisely those vertices to which the two end-
vertices were adjacent. We denote by G/e the graph obtained from G be the
contraction of e. For a set of edges S, G/S is the graph obtained from G by the
contraction of all edges of S. A graph H is a contraction of G if H = G/S for
some S ⊆ E(G). We say that G is k-contractible to H if H = G/S for some
set S ⊆ E(G) with |S| ≤ k. A graph H is an induced minor of G if a H is a
contraction of an induced subgraph of G. Equivalently, H is an induced minor
of G if H can be obtained from G by a sequence of vertex deletions and edge
contractions. A graph H is a minor of a graph G if H is a contraction of a
subgraph of G. Equivalently, H is a minor of G if H can be obtained from G by
a sequence of vertex deletions, edge deletions, and edge contractions.

Let G and H be two graphs. An H-witness structure W of G is a partition
{W (x) | x ∈ V (H)} of the vertex set of a (not necessarily proper) subgraph of
G into |V (H)| sets called bags, such that the following two conditions hold:

(i) each bag W (x) induces a connected subgraph of G;
(ii) for all x, y ∈ V (H) with xy ∈ E(H), bags W (x) and W (y) are adjacent

in G.

In addition, we may require an H-witness structure to satisfy one or both of
the following additional conditions:

(iii) for all x, y ∈ V (H) with xy /∈ E(H), bags W (x) and W (y) are not adjacent
in G;

(iv) every vertex of G belongs to some bag.

By contracting each of the bags into a single vertex we observe that H is a
contraction, an induced minor, or a minor of G if and only if G has an H-witness
structure W that satisfies conditions (i)–(iv), (i)–(iii), or (i)–(ii), respectively.
We will refer to such a structure W as an H-contraction structure, an H-induced
minor structure, and an H-minor structure, respectively. Observe that, in gen-
eral, such a structure W is not uniquely defined.

Let W be an H-witness structure of G, and let W (x) be a bag of W. We say
that W (x) is a singleton if |W (x)| = 1 and W (x) is an edge-bag if |W (x)| = 2.
We say that W (x) is a big bag if |W (x)| ≥ 2.

We conclude this section by presenting three structural lemmas that will
be used in the polynomial-time algorithms presented in Sect. 3. The first lemma
readily follows from the definitions of a minor, an induced minor, and a
contraction.

Lemma 1. For every connected graph G and non-negative integer p, the follow-
ing statements are equivalent:

– G has Kp as a contraction;
– G has Kp as an induced minor;
– G has Kp as a minor.
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We say that an H-induced minor structure W = {W (x) | x ∈ V (H)} is
minimal if there is no H-induced minor structure W ′ = {W ′(x) | x ∈ V (H)}
with W ′(x) ⊆ W (x) for every x ∈ V (H) such that at least one inclusion is
proper.

Lemma 2. For any minimal Kp-induced minor structure of a graph G, each
bag induces a subgraph of diameter at most max{chord(G) − 3, 0}.

Note that Lemma 2 immediately implies the aforementioned equivalence on
chordal graphs between the Hadwiger Number problem and the problem of
finding a maximum clique. Lemma2 also implies the following result.

Corollary 1. If G is a graph of chordality at most 4, then for any minimal
Kp-induced minor structure in G, each bag is a clique.

We say that a Kp-induced minor structure is nice if each bag is either a
singleton or an edge-bag.

Lemma 3. Let G be a C6-free graph of chordality at most 4. If Kp is an induced
minor of G, then G has a nice Kp-induced minor structure.

3 Computing the Hadwiger Number

First, we show that Hadwiger Number problem can be solved in polynomial
time on bipartite permutation graphs.

Let us for a moment consider the class of chordal bipartite graphs. Recall
that these are exactly the bipartite graphs that have chordality at most 4. It is
well-known that chordal bipartite graphs form a proper superclass of the class of
bipartite permutation graphs. Since chordal bipartite graphs have chordality at
most 4 and are C6-free due to the absence of triangles, we can apply Lemma3
to this class. Let us additionally observe that the number of singletons in any
Kp-induced minor structure of a bipartite graph is at most 2.

The above observations allow us to reduce the Hadwiger Number problem
on chordal bipartite graphs to a special matching problem as follows. We say
that a matching M in a graph G is a clique-matching if for any two distinct
edges e1, e2 ∈ M , there is an edge in G between an end-vertex of e1 and an
end-vertex of e2. Now consider the following decision problem:

Clique-Matching
Instance: A graph G and a positive integer k.
Question: Is there a clique-matching of size at least k in G?

Lemma 4. If the Clique-Matching problem can be solved in f(n,m) time on
chordal bipartite graphs, then the Hadwiger Number problem can be solved in
O((n + m) · f(n,m)) time on this graph class.
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We will use the following characterization of bipartite permutation graphs
given by Spinrad et al. [11] (see also [3]). Let G be a bipartite graph and let
V1, V2 be a bipartition of V (G). An ordering of vertices of V2 has the adjacency
property if for every u ∈ V1, NG(u) consists of vertices which are consecutive
in the ordering of V2. An ordering of vertices of V2 has the enclosure property
if for every pair of vertices u, v ∈ V1 such that NG(u) ⊆ NG(v), vertices in
NG(v) \ NG(u) occur consecutively in the ordering of V2.

Lemma 5 [11]. Let G be a bipartite graph with bipartition V1, V2. The graph G
is a bipartite permutation graph if and only there is an ordering of V2 that has
the adjacency and enclosure properties. Moreover, bipartite permutation graphs
can be recognized and the corresponding ordering of V2 can be constructed in
linear time.

Theorem 1. The Clique-Matching problem can be solved in O(mn4) time
on bipartite permutation graphs.

Proof. Let G be a bipartite permutation graph and let V1, V2 be a bipartition
of the vertex set. We assume without loss of generality that G has no isolated
vertices. Let n1 = |V1| and n2 = |V2|. We present a dynamic programming algo-
rithm for the problem. For simplicity, the algorithm we describe only finds the
size of a maximum clique-matching M in G, but the algorithm can be modified
to find a corresponding clique-matching as well.

Our algorithm starts by constructing an ordering σ2 of V2 that has the adja-
cency and enclosure properties, which can be done in linear time due to Lemma 5.
From now on, we denote the vertices of V2 by their respective rank in σ2, that is
V2 = {1, . . . , n2}. Observe that for every vertex u ∈ V1, NG(u) forms an interval
of σ2. The rightmost (resp. leftmost) neighbor of u in σ2 is the vertex of NG(u)
which is the largest (resp. smallest) in σ2.

Let uv ∈ E(G) with u ∈ V1 and v ∈ V2 be an edge in G such that uv belongs
to some maximum clique-matching in G and there is no v′ ∈ V2 with v′ < v such
that v′ is saturated by a maximum clique-matching in G. Our algorithm guesses
the edge uv by trying all different edges of G. For each guess of uv, it does as
follows.

By the definition of uv, we can safely delete all vertices v′ ∈ V2 with v′ < v. To
simplify notation, we assume without loss of generality that v = 1, so uv = u1.
Denote by r the rightmost neighbor of u. Then, by the adjacency property of
σ2, we have that NG(u) = [1, r].

The algorithm now performs the following preprocessing procedure.

– Find the vertices v1, . . . , vl ∈ V1 \ {u} (decreasingly ordered with respect to
their rightmost neighbor) such that [1, r] ⊆ NG(vi). By consecutively checking
the intervals NG(v1), . . . , NG(vl) and selecting the rightmost available (i.e.,
not selected before) vertex in the considered interval, find the maximum set
S = {j1, . . . , jh} of integers such that j1 > . . . > jh > r and ji ∈ NG(vi) for
i ∈ {1, . . . , h}. Delete v1, . . . , vh from G.
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Fig. 1. Structure of the neighborhoods of u, x1, . . . , xs and y1, . . . , yt after the pre-
processing procedure.

– Find the vertices x1, . . . , xs ∈ V1 \ {u} (decreasingly ordered with respect to
their rightmost neighbor) such that [1, 2] ⊆ NG(xi).

– Find the vertices y1, . . . , yt ∈ V1 (increasingly ordered with respect to their
leftmost neighbor) such that 1 /∈ NG(yi) and r ∈ NG(yi).

– Delete the vertices r + 1, . . . , n2 from V2.

The structure of the neighborhoods of u, x1, . . . , xs and y1, . . . , yt after this
preprocessing procedure is shown in Fig 1.

We prove that the preprocessing procedure is safe in the following claim.

Claim 1. Let M be a clique-matching of maximum size in G such that u1 ∈ M .
Then there is a clique-matching M ′ of maximum size such that u1 ∈ M ′ and

(i) v1j1, . . . , vhjh ∈ M ′,
(ii) for any vj ∈ M ′ such that vj �= u1 and v /∈ {v1, . . . vh}, it holds that

v ∈ {x1, . . . , xs} ∪ {y1, . . . , yt} and j ∈ [2, r].

In the next stage of the algorithm we apply dynamic programming. For every
i ∈ {0, . . . , s}, j ∈ {0, . . . , t} and non-negative integer �, let c(i, j, �) denote the
size of a maximum clique-matching M such that

(a) u1 ∈ M ,
(b) for any vp ∈ M such that vp �= u1, it holds that v ∈ {x1, . . . , xi} ∪

{y1, . . . , yj}, and
(c) there are at most � vertices in [ai,j , bi,j ] = (

⋂i
p=1 NG(xp)) ∩ (

⋂j
q=1 NG(yq))

saturated by M .

Recall that the vertices of X and Y are ordered with respect to their right-
most and leftmost neighbors, respectively. Hence, for any 1 ≤ p < q ≤ i, we
have 1 ∈ NG(xq) ⊆ NG(xp) ⊆ [1, r], and for any 1 ≤ p < q ≤ j, we have
1 /∈ NG(yq) ⊆ NG(yp) ⊆ [2, r]. In particular, [ai,j , bi,j ] = NG(xi) ∩ NG(yj) for
i, j > 0. In other words, if [ai,j , bi,j ] �= ∅, then ai,j is the left end-point of the inter-
val NG(yj) and bi,j is the right end-point of the interval NG(xj). Observe that it
can happen that [ai,j , bi,j ] = ∅. Observe also that c(i, j, �) = c(i, j, bi,j − ai,j + 1)
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if [ai,j , bi,j ] �= ∅ and � > bi,j − ai,j + 1. Hence, it is sufficient to compute c(i, j, �)
for � ≤ bi,j − ai,j + 1 ≤ n2.

Because all the vertices in [ai,j , bi,j ] have the same neighbors in {x1, . . . , xi}∪
{y1, . . . , yj}, we can make the following observation.

Claim 2. Let M be a clique-matching of maximum size such that M satisfies (a)–
(c) and M has exactly f saturated vertices in [ai,j , bi,j ], and let W ⊆ [ai,j , bi,j ]
be a set of size f . Then there is a clique-matching M ′ of maximum size that
satisfies (a)–(c) such that W is the set of vertices of [ai,j , bi,j ] saturated by M ′.

If i = j = 0, then we set c(i, j, �) = 1 taking into account the matching with
the unique edge u1. For other values of i, j, c(i, j, �) is computed as follows. To
simplify notation, we assume that x0 = y0 = u.

Computation of c(i, j, �) for i > 0, j = 0. Because 1 ∈ NG(xq) ⊆ NG(xp) ⊆
[1, r] for every 1 ≤ p < q ≤ i, any matching with edges incident to x1, . . . , xi is
a clique-matching. This observation also implies that a maximum matching can
be obtained in greedy way. Notice that [ai,0, bi,0] = NG(xi). By consecutively
checking the intervals NG(x1), . . . , NG(xi) and selecting the rightmost available
(i.e., not selected before) vertex in the considered interval, we find the maximum
set {p1, . . . , pq} of integers such that t ≥ p1 > . . . > pq > 1, pf ∈ NG(xf ) for
f ∈ {1, . . . , q}, and |{p1, . . . , pq} ∩ [ai,0, bi,0]| ≤ � − 1. Taking into account the
edge u1, we observe that M = {u1, x1p1, . . . , xqpq} is a required matching, and
we have that c(i, j, �) = q + 1.

Computation of c(i, j, �) for i = 0, j > 0. Now we have that r ∈ NG(yq) ⊆
NG(yp) ⊆ [2, r] for every 1 ≤ p < q ≤ j. Hence, any matching with edges
incident to y1, . . . , yj is a clique-matching and a maximum matching can be
obtained in greedy way. Notice that [a0,j , b0,j ] = NG(yj). By consecutively check-
ing the intervals NG(y1), . . . , NG(yj) and selecting the leftmost available (i.e.,
not selected before) vertex in the considered interval, we find the maximum
set {p1, . . . , pq} of integers such that 1 < p1 < . . . < pq ≤ r, pf ∈ NG(yf )
for f ∈ {1, . . . , q}, and |{p1, . . . , pq} ∩ [a0,j , b0,j ]| ≤ �. It is straightforward to
see that M = {u1, y1p1, . . . , yqpq} is a required matching, and we have that
c(i, j, �) = q + 1.

Computation of c(i, j, �) for i > 0, j > 0. We compute c(i, j, �) using the
tables of already computed values c(i − 1, j′, �′) for j′ ≤ j. We find the size of a
maximum clique-matching M by considering all possible choices for the vertex
xi and then take the maximum among the obtained values. We distinguish three
cases. Recall that [ai,j , bi,j ] = NG(xi) ∩ NG(yj).

Case 1. The vertex xi is not saturated by M . We have that [ai−1,j , bi−1,j ] =
NG(xi−1) ∩ NG(yj) ⊆ [ai,j , bi,j ] and |[ai,j , bi,j ] \ [ai−1,j , bi−1,j ]| = bi−1,j − bi,j .
By Claim 2 implies that for any maximum clique-matching M that satisfies
(a)–(c) and has no edge incident to xi, it holds that a clique-matching M ′ of
maximum size that satisfies (a)–(b), has no edge incident to xi, and has at most
�′ = � + bi−1,j − bi,j saturated vertices in [ai−1,j , bi−1,j ] has the same size as M .
Hence c(i, j, �) = c(i − 1, j, �′).
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ai,j = ai−1,j
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ai,j

p

NG(y1)

NG(yj)

NG(yj′)

ai−1,j′

Fig. 2. Structure of the neighborhoods of u, x1, . . . , xi and y1, . . . , yj in Cases 2 and 3.

Now we consider the cases when xi is saturated by M . Denote by p ∈ NG(xi)
the vertex such that xip ∈ M .

Case 2. Vertex p ∈ [ai,j , bi,j ] (see Fig. 2). Observe that p is adjacent to every
vertex in {x1, . . . , xi−1} ∪ {y1, . . . , yj}. Hence, for any edge vq such that v ∈
{u} ∪ {x1, . . . , xi−1} ∪ {y1, . . . , yj} and q �= p, xip and vq have adjacent end-
vertices, i.e., this choice of p does not influence the selection of other edges of
M except that we can have at most � − 1 other saturated vertices in [ai,j , bi,j ].
We have that [ai−1,j , bi−1,j ] = NG(xi−1) ∩ NG(yj) ⊆ [ai,j , bi,j ] and |[ai,j , bi,j ] \
[ai−1,j , bi−1,j ]| = bi−1,j − bi,j . By Claim 2, we obtain that for any maximum
clique-matching M that satisfies (a)–(c) and xip ∈ M , a clique-matching M ′ of
maximum size that satisfies (a)–(b), has no edge incident to xi and has at most
�′ = � + bi−1,j − bi,j − 1 saturated vertices in [ai−1,j , bi−1,j ] has the same size as
M . Hence c(i, j, �) = c(i − 1, j, �′).

Case 3. Vertex p /∈ [ai,j , bi,j ], i.e., p < ai,j (see Fig. 2). Let j′ = max{f | p ∈
NG(yf ), 0 ≤ f ≤ j}. As p < ai,j , it holds that j′ < j.

Let f ∈ {j′ + 1, . . . , j}, g ∈ NG(yf ) and g > bi,j . Recall that bi,j is the
right end-point of NG(xi). Hence, xig /∈ E(G). Because f > j′, xfp /∈ E(G).
We conclude that such edges cannot be in M . Similarly, let f ∈ {j′ + 1, . . . , j},
g ∈ NG(yf ) and g ≤ bi,j . Then for any v ∈ {x1, . . . , xi} ∪ {y1, . . . , yj′}, it
holds that vg ∈ E(G). Also if j′ + 1 ≤ f < f ′ ≤ j, then for any g ∈ NG(xf ′),
xfg ∈ E(G). We have that it is safe to include in a clique-matching edges xfq for
f ∈ {j′+1, . . . , j}, g ∈ NG(yf ) and g ≤ bi,j . We select such edges in a greedy way.
By consecutively checking the intervals NG(yj′+1), . . . , NG(yj) and selecting the
leftmost available (i.e., not selected before) vertex in the considered interval, we
find the maximum set {g1, . . . , gq} of integers such that p < g1 < . . . < gq ≤ bi,j ,
gf ∈ NG(yf+j′) for f ∈ {1, . . . , q} and |{g1, . . . , gq} ∩ [ai,j , bi,j ]| ≤ �.

Claim 3. Let M be a clique-matching of maximum size that satisfies (a)–(c)
and xip ∈ M . Then there is a clique-matching M ′ of maximum size that satisfies
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(a)–(c) and xip ∈ M ′ such that yj′+1g1, . . . , yj′+qgq ∈ M ′ and for any vf ∈ M ′,
it holds that v ∈ {yj′+1, . . . , yj′+q} ∪ {x1, . . . , xi} ∪ {y1, . . . , yj′}.

Observe that the total number of saturated vertices in [ai−1,j′ , bi−1,j′ ] should
be at most (ai,j − ai−1,j′) + (bi−1,j′ − bi,j) + �. Using Claims 2 and 3 and taking
into account that xip ∈ M , we obtain that c(i, j, �) = c(i − 1, j′, �′) for �′ =
(ai,j − ai−1,j′) + (bi−1,j′ − bi,j) + � − (q + 1).

By our dynamic programming algorithm we eventually compute c(s, t, �) for
� = 0 if [ai,j , bi,j ] = ∅ or � = bi,j − ai,j + 1 if [ai,j , bi,j ] �= ∅. Then c(s, t, �) is the
size of a maximum clique-matching M such that

(a) u1 ∈ M ,
(b) for any yp ∈ M such that vp �= u1, it holds that v ∈ {x1, . . . , xi} ∪

{y1, . . . , yj}.

By Claim 1, the size of a maximum clique-matching M in G such that u1 ∈ M is
c(s, t, �)+ |S|, where S is the set of vertices constructed during the preprocessing
procedure. Recall that the algorithm tries all possible choices for the edge uv,
implying that our algorithm indeed computes the size of a maximum clique-
matching in G.

It remains to evaluate the running time to complete the proof. Constructing
the ordering σ2 of V2 can be done in O(n+m) time by Lemma 5. The algorithm
considers m choices for the edge uv. For each of these choices, the preprocessing
procedure can be performed in O(n) time given the orderings of V1 and V2

(notice that Lemma 5 is symmetric with respect to V1, V2, so we can obtain an
ordering of V1 with the adjacency and enclosure properties, too). Each step of
the dynamic programming can be done in O(n2) time using the orderings of
V1, V2. Observe that in this time we can compute c(i, j, �) for all values of �.
Hence, the dynamic programming algorithm runs in time O(n4). We conclude
that the total running time is O(mn4). ��

Combining Lemma 4 and Theorem 1 yields the following result.

Corollary 2. The Hadwiger Number problem can be solved in O((n + m) ·
mn4) time on bipartite permutation graphs.

We also show that the Hadwiger number of a cograph can be determined in
polynomial time.

Theorem 2. The Hadwiger Number problem can be solved in O(n3) time on
cographs.

We complement the aforementioned algorithmic results by showing that the
Hadwiger Number problem is NP-complete on co-bipartite graphs, another
well-known subclass of the class of 4-chordal graphs.

Theorem 3. The Hadwiger Number problem is NP-complete on co-bipartite
graphs.
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4 Minors of Bounded Diameter

In this section, we consider a generalization of the Hadwiger Number problem
where the aim is to obtain a minor of bounded diameter. Let s be a positive
integer. An s-club is a graph that has diameter at most s. We consider the
following problem:

Maximum s-Club Minor
Instance: A graph G and a non-negative integer h.
Question: Does G have a minor with h vertices and diameter at most s?

When s = 1, the above problem is equivalent to the Hadwiger Number
problem. Recall that, due to Lemma 1, the Hadwiger Number problem can
be seen as the parametric dual of the Clique Contraction problem. The
following straightforward lemma, which generalizes Lemma1, will allow us to
formulate the parametric dual of the Maximum s-Club Minor problem in a
similar way.

Lemma 6. For every connected graph G and non-negative integers p and s, the
following statements are equivalent:

– G has a graph with p vertices and diameter at most s as a contraction;
– G has a graph with p vertices and diameter at most s as an induced minor;
– G has a graph with p vertices and diameter at most s as a minor.

Lemma 6 implies that for any non-negative integer s, the parameteric dual
of the Maximum s-Club Minor problem can be formulated as follows:

s-Club Contraction
Instance: A graph G and a positive integer k.
Question: Does there exist a graph H with diameter at most s such that G

is k-contractible to H?

Observe that 1-Club Contraction is NP-complete on AT-free graphs as a
result of Theorem 3. This is in stark contrast with our next result.

Theorem 4. For any s ≥ 2, the s-Club Contraction problem can be solved
in O(m4n3) time on AT-free graphs, even if s is given as a part of the input.

On chordal graphs, the situation turns out to be opposite. Recall that the
Hadwiger Number problem, and hence the 1-Club Contraction problem,
can be solved in linear time on chordal graphs.

Theorem 5. For any s ≥ 2, the s-Club Contraction problem on chordal
graphs is NP-complete as well as W[2]-hard when parameterized by k. Moreover,
2-Club Contraction is NP-complete and W[2]-hard when parameterized by k
even on split graphs.
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5 Concluding Remarks

In Sect. 3, we showed that theHadwigerNumber problem can be solved in poly-
nomial time on cographs and on bipartite permutation graphs, respectively. A
natural question is how far the results in those two sections can be extended to
larger graph classes. An easy reduction from the Hadwiger Number problem
on general graphs, involving subdividing every edge of the input graph exactly
once, implies that the problem is NP-complete on bipartite graphs. Since bipartite
permutation graphs form exactly the intersection of bipartite graphs and permu-
tation graphs, and the class of permutation graphs properly contains the class of
cographs, our results naturally raise the question whether the Hadwiger
Number problem can be solved in polynomial time on permutation graphs. We
leave this as an open question. We point out that the problem is NP-complete
on co-comparability graphs, a well-known superclass permutation graphs, due to
Theorem 3 and the fact that co-bipartite graphs form a subclass of co-compara-
bility graphs.

In Sect. 4, we proved that the s-Club Contraction problem is polyno-
mial on AT-free graphs for s ≥ 2. An interesting direction for further research
is to identify other non-trivial graph classes for which the s-Club Contrac-
tion problem is polynomial-time solvable (or fixed-parameter tractable when
parameterized by k) for all values of s ≥ 2.
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Abstract. A graph G = (V,E) is a threshold tolerance graph if each
vertex v ∈ V can be assigned a weight wv and a tolerance tv such that
two vertices x, y ∈ V are adjacent if wx + wy ≥ min(tx, ty). Currently,
the most efficient recognition algorithm for threshold tolerance graphs is
the algorithm of Monma, Reed, and Trotter which has an O(n4) runtime.
We give an O(n2) algorithm for recognizing threshold tolerance and their
complements, the co-threshold tolerance (co-TT) graphs, resolving an
open question of Golumbic, Weingarten, and Limouzy.

1 Introduction

Tolerance graphs are an important subclass of perfect graphs that generalizes
both interval graphs and permutation graphs [7]. They have been written about
extensively and they model constraints in various combinatorial optimization
and decision problems [7–9]. They have a rich structure and history, and inter-
esting relationships to other graph classes. For a detailed overview of the class,
see [9].

A graph G = (V,E) is threshold tolerance if each vertex v ∈ V can be assigned
a weight wv and a tolerance tv such that two vertices x, y ∈ V are adjacent when
wx +wy ≥ min(tx, ty) [12]. When the tolerances of the vertices are all the same,
we obtain the subclass of threshold graphs [3].
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Their complements, the co-threshold tolerance graphs (co-TT graphs), have
also received attention as they have an interesting interpretation as a general-
ization of interval graphs. They are a special case of the tolerance graphs.

A graph G = (V,E) is an interval graph if and only if each vertex v ∈ V can
be assigned an interval Iv = [a(v), b(v)] on the real line such that two vertices
x, y ∈ V are adjacent exactly when their corresponding intervals intersect, in
which case I = {[a(v), b(v)] : v ∈ V } forms an interval model of G. See [2,5,15]
for surveys of the properties of this class and its relationship to other graph
classes. To illustrate the relationship of the interval graphs to the threshold
graphs, the definition can be rephrased:

Definition 1. A graph G = (V,E) is an interval graph if and only if there exist
functions a, b : V �→ R such that:

– a(x) ≤ b(x) for all x ∈ V ;
– xy ∈ E ⇔ a(x) ≤ b(y) ∧ a(y) ≤ b(x) for all x, y ∈ V .

By this definition, [a(x), b(x)] is the interval that represents x in the model.
Relaxing the requirement that a(x) ≤ b(x), gives the class of co-TT graphs:

Definition 2. [12] A graph G = (V,E) is a co-TT graph if and only if there
exist functions a, b : V �→ R such that:

– xy ∈ E ⇔ a(x) ≤ b(y) ∧ a(y) ≤ b(x) for all x, y ∈ V .

The definition also works if the inequalities are strict. It is easy to see that
this class is the complement of threshold tolerance graphs by setting a(x) = wx

and b(x) = tx − wx for all x ∈ V . Moreover, given a co-TT model, this gives a
way of finding weights and tolerances that realize the complement, by assigning
wx = a(x) and tx = b(x) + wx.

Following the notation in Golumbic, Weingarten and Limouzy [10], let the
blue-red partition of V given by a co-TT model be (B,R), where B = {x|x ∈ V
and a(x) ≤ b(x)} and R = {x|x ∈ V and b(x) < a(x)}. Given such a partition,
let B be the blue vertices and R be the red vertices. The red intervals are the
intervals [b(x), a(x)] corresponding to red vertices and the blue intervals are the
intervals [a(x), b(x)] corresponding to blue vertices.

The following is easily verified:

Lemma 1. [10] Given a co-TT model of a co-TT graph G = (V,E), let (B,R)
be its blue-red partition. Then:

– If {x, y} ⊆ B, then xy ∈ E ⇔ [a(x), b(x)] and [a(y), b(y)] intersect;
– If {x, y} ⊆ R, then xy 
∈ E;
– If x ∈ B and y ∈ R, then xy ∈ E ⇔ [b(y), a(y)] is contained in [a(x), b(x)].

A chord on a cycle C in a graph is an edge not on the cycle but whose
endpoints are on the cycle. A graph is chordal if every cycle on four or more
vertices has a chord, see, for example [5]. A chord xy in an even cycle C is odd
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when the distance in C between x and y is odd. A graph is strongly chordal if it
is chordal and every even-length cycle of size at least six has an odd chord [4].

The following illustrates an interesting relationship between chordal graphs,
strongly chordal graphs, co-TT graphs and interval graphs. A graph is chordal if
and only if there is a perfect elimination ordering, which is an ordering
(v1, v2, . . . , vn) of its vertices such that for every vertex vi, vi and its neigh-
bors in {vi+1, vi+2, . . . , vn} induce a complete subgraph. A graph is strongly
chordal if and only if it has a simple elimination ordering, which is a special case
of a perfect elimination ordering. A graph is a co-TT graph if and only if it has
a proper elimination ordering [12], which is a special case of a simple elimination
ordering. To complete this taxonomy, a graph is an interval graph if and only
if it admits a proper elimination ordering (v1, v2, . . . , vn), such that, whenever
vivj 
∈ E and i < j, then vi is to the left of all members of N [vj ]. Ordering
the vertices in left-to-right order right endpoint in an interval model gives such
an ordering. Conversely, it is easy to obtain an interval model, given such an
ordering.

Note that R is an independent set, and that the blue intervals are an interval
model of G[B]. Hence G[B] is an interval graph. A vertex v of a graph is simpli-
cial if its neighbors induce a complete subgraph. For each r ∈ R, the intervals
corresponding to neighbors of r contain r’s interval, so they have a common
intersection point. Since the neighbors of r are blue, r is simplicial.

Henceforth, we will denote a co-TT model as I(B,R), which is a set of
intervals on the line, together with an implied bijection from vertices to the
intervals, and where (B,R) is the blue-red partition. If x maps to an interval
[l, r], then if x ∈ B, a(x) is implicitly l and b(x) is implicitly r, whereas if x ∈ R,
a(x) is implicitly r and b(x) is implicitly l.

Despite the similarities between co-TT models and interval models, the best
time bound for recognition of threshold tolerance and co-TT graphs until now
has been O(n4) [12], whereas linear-time recognition of interval graphs has been
known for some time [1].

A graph is a split graph if its vertices can be partitioned into a complete sub-
graph and an independent set. Golumbic, Weingarten and Limouzy [10] showed
that split co-TT graphs, that is, those graphs that are both split graphs and co-
TT graphs, can be recognized in O(n2) time and a forbidden subgraph character-
ization for split co-TT graphs was given. We generalize this bound to recognition
of arbitrary co-TT graphs. The structural insight of Sect. 4, developed in [10] is
essential to our approach. This gives an O(n2) bound for recognition of threshold
tolerance graphs also, since it now takes O(n2) time to recognize whether the
complement of a graph is a co-TT graph.

2 Preliminaries

Two sets overlap if they intersect and neither is a subset of the other. Given a
binary (0, 1) matrix, we treat the rows and columns as bit-vector representations
of sets. A row is the set of columns where the row has a 1, and similarly for
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columns. This allows us to apply set operations to rows or to columns, such as
evaluating whether one row is a subset of another.

Given a set A of directed edges, let AT denote the transpose {(y, x)|(x, y) ∈
A}. An undirected graph G = (V,E) is a special case of a symmetric directed
graph, so we may refer to the directed edges of an undirected graph. For ∅ ⊂
V ′ ⊆ V , let G[V ′] denote the subgraph of G induced by V ′. For v ∈ V , let the
open neighborhood of v, denoted NG(v), be the set of neighbors of v in G, and let
its closed neighborhood, denoted NG[v], be NG(v) ∪ {v}. When G is understood,
we may denote these N(v) and N [v].

A clique of a graph is a complete subgraph that is not properly contained in
any other complete subgraph. Two vertices u and v are false twins if N(u) =
N(v). Note that this implies that they are nonadjacent. They are true twins if
N [u] = N [v], which implies that they are adjacent. The simplicial vertices that
have true twins can be found in O(n + m) time by radix sorting.

3 Reduction to the Case where G is a Co-TT Graph

We give an O(n2) algorithm that has the precondition that its input graph G is
a co-TT graph and the postcondition that it has returned a valid co-TT model.
The reason that this suffices for recognition is that such an algorithm must fail
to return a valid co-TT model if and only if its input graph is not a co-TT graph,
since no valid co-TT model exists. (Our algorithm sometimes returns an invalid
model, and sometimes halts when it recognizes that G lacks a property that
co-TT graphs have.) Given a graph G = (V,E) and co-TT model I(B,R) on
V , it trivially takes O(n2) time to determine whether I(B,R) is a valid co-TT
model of G, by applying Lemma1 to each pair of intervals and comparing the
result with the corresponding adjacency-matrix entry for G. We show how to
implement the algorithm so that it halts in O(n2) time, whether or not G meets
its precondition.

In the rest of this paper, we assume that the precondition to the algorithm
is met, that is, that G is a co-TT graph, except when we analyze the running
time in the case where G is not a co-TT graph.

4 Inferring a Blue-Red Partition

A key element of our approach is the following insight, which is given by Golumbic,
Weingarten and Limouzy in [10].

Lemma 2. If G is a co-TT graph, then there exists a co-TT model where the
red vertices are the simplicial vertices that have no true twins in G, and the blue
vertices are all others.

By this, the authors implied an obvious linear-time algorithm for finding
a blue-red partition in an arbitrary co-TT graph. However, since they only
addressed split co-TT graphs, they did not give it explicitly. For completeness,
we give it here:
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Lemma 3. If G is a co-TT graph, it takes O(n + m) time to find a blue-red
partition (B,R).

Proof. It takes O(n+m) time to recognize whether a graph is chordal, the sum
of cardinalities of the cliques of a chordal graph is O(n + m) and they take
O(n + m) time to find [13]. Since a co-TT graph is chordal, find its cliques, in
O(n+m) time [13]. A vertex is simplicial if and only if it is a member of exactly
one clique. It takes time proportional to the sum of cardinalities of the cliques to
test this on all vertices, by traversing the vertices in each clique, marking them,
and marking each vertex as non-simplicial if it has already been marked during
traversal of another clique. It takes O(n + m) time to identify all equivalence
classes of true twins by radix sorting. ��

This gives a reduction of the problem of recognizing co-TT graphs to that of
finding whether a graph G′ has a co-TT model with a given partition (B′, R′),
where B′ has no true twins and the vertices in R′ have no false twins. The
reduction is given in Algorithm1.

Data: A co-TT graph G
Result: A co-TT model of G

1 Find the blue-red partition (B,R) for some co-TT model of G (Lemma 3);
2 B′ ←− one representative from each equivalence class of true twins of B ;
3 Remove any vertices from R that are isolated in G;
4 R′ ←− one representative from each equivalence class of false twins of R ;
5 G′ ←− G[B′ ∪ R′];
6 Find a co-TT model I′(B′, R′) of G′ (Algorithm 2);
7 for b ∈ B \ B′ do
8 Insert a blue interval for b to I′ equal to that of the representative of b’s

true-twin class;

9 for r ∈ R \ R′ do
10 if r is an isolated vertex then
11 Insert a red interval for r that contains all blue intervals;
12 else
13 Insert a red interval for r to I′ equal to that of the representative of r’s

false-twin class;

14 Return the resulting model I(B,R);

Algorithm 1. Co-TT-Model(G)

Lemma 4. The reduction of Algorithm1 is correct, and can be implemented to
run in O(n + m) time whether or not the input graph is a co-TT graph.

Proof. If I(B,R) is a co-TT model of G, then I(B,R)∩ (B′ ∪R′) = I(B′, R′) is
a co-TT model of G′. Therefore, G′ has a co-TT model with blue-red partition
(B′, R′). Given I ′(B′, R′), correctness of the construction of a co-TT model of G
is then immediate from Lemmas 1 and 3. The time bound given in the proof of
Lemma 3 depends only on the input graph G being chordal, which takes O(n+m)
time to determine [13]. Since all co-TT graphs are chordal, G can be rejected as
a co-TT graph if it is not chordal. ��
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The motivation for the reduction to the case where there are no true blue
twins and no false red twins is given by the following lemma, which we use to
simplify the analysis:

Lemma 5. Let G′, B′, R′ be as in Algorithm1. For any pair {x, y} of distinct
vertices, N [x] 
= N [y], and for any pair {r, r′} ⊆ R′ N(r) 
= N(r′).

Proof. The red vertices of G remain simplicial in G′. If b and b′ are two members
of B′, then since each true-twin equivalence class of B′ has only one member,
N [b] 
= N [b′]. If r is a red vertex, it has no true twins in G, hence it has no
true twins in G′, and N [r] 
= N [y] for any other vertex y. Since r is the only red
member of its false-twin equivalence class in G′, N(r) 
= N(r′) for any other red
vertex r′. ��

– Henceforth in the paper, we will let G′, B′ and R′ denote these elements of
the reduction of Algorithm 2, and let V ′ = B′ ∪ R′ denote the vertices of G′.

5 Strongly Chordal Graphs and Chordal Bipartite
Graphs

An edge-vertex incidence matrix for a graph has one row for each vertex, one
column for each edge, and a 1 in row i, column j if edge j is incident to vertex i. A
binary matrix is totally balanced if and only if it does not have as a submatrix the
edge-vertex incidence matrix of a cycle of length at least three. The augmented
adjacency matrix of a graph on vertex set {v1, v2, . . . , vn} is the binary matrix
that has a 1 in row i, column j if vj ∈ N [vi]. That is, it is the result of adding 1’s
on the diagonal to the adjacency matrix. The bipartite adjacency matrix for a
bipartite graph G = ({v1, v2, . . . , vj}, {w1, w2, . . . , wk}, E) is the binary matrix
that has a 1 in row i, column j if wj is a neighbor of vi.

Theorem 1. [4] A graph is strongly chordal if and only if its augmented adja-
cency matrix is totally balanced.

A bipartite graph is chordal bipartite if every cycle of length greater than or
equal to six has a chord. (See [15] for a survey.)

Theorem 2. [6] A bipartite graph is chordal bipartite if and only if its bipartite
adjacency matrix is totally balanced.

The elimination orderings discussed in the introduction establish the
following:

Theorem 3. [12] Every co-TT graph is strongly chordal.

Lemma 6. Let {V1, V2} be a partition of vertices of a strongly chordal graph,
G = (V,E). Then the bipartite graph H = (V1, V2, {xy|x ∈ V1, y ∈ V2, and
xy ∈ E}) is chordal bipartite.
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Proof. Any cycle C in H is a cycle of G. If |C| ≥ 6, then it is a cycle that has
an odd chord in G. Since the vertices on C alternate between V1 and V2 around
C, the odd chord has one end in V1 and the other in V2, hence it is a chord of
C in H. ��

Theorem 4. [14] Given a p×q binary matrix, it takes O(pq) time to determine
whether it is totally balanced, and, if so, to determine for each ordered pair (i, j)
of rows whether row i is a subset of row j.

The main consequence of these results for this paper is summarized as follows:

Lemma 7. In G′, it takes O(n2) time to find whether N [b1] ⊂ N [b2] for each
ordered pair (b1, b2) of distinct vertices of B′ and whether N(r1) ⊂ N(r2) for
each ordered pair of distinct vertices in R′.

Proof. The bound for closed neighborhood containments follows from Theo-
rems 1, 3, 4 and Lemma 5. Since R′ is an independent set of G′, the bound for
open neighborhood containments follows from Theorems 2, 3, 4, Lemma 5, and
an application of Lemma 6 to the bipartite graph H = (R′, B′, E ∩ (R′ ×B′)). ��

6 Finding a Co-TT Model I(B′, R′) of G′

In this section, we give an algorithm to find a co-TT model I(B′, R′) of G′,
where (G′, B′, R′) are as defined in the reduction of Algorithm2.

Definition 3. A set I of n intervals on the line is in standard form if all
endpoints are distinct and elements of {1, 2, . . . , 2n}.

Definition 4. Let G = (V,E) be a graph. Let AV denote {(x, y)|x, y ∈ V and
x 
= y}. Let I be a set of intervals in standard form. For each vertex x, assign a
member Ix ∈ I to x, so that the assignment is a bijection from V to I.

For (x, y) ∈ AV , let its intersection type be an overlap if Ix and Iy overlap,
a non-intersection if Ix and Iy are disjoint, a containment if Ix contains Iy, and
a subset relationship if Ix is a subset of Iy. These labels are intersection labels
of elements of AV . Let us say that I realizes the assignment of these labels. Let
En(I) denote the set of elements of AV that are labeled as non-intersections,
Eo(I) those that are labeled as overlaps, As(I) those that are labeled as sub-
set relationships, and Ac(I) be those that are labeled as containments. If I is
understood, we may denote them En, Eo, As and Ac, respectively.

Lemma 8. [11] Given a set V and an arbitrary assignment of intersection labels
to the elements of AV , it takes O(n2) time to find a set of intervals in standard
form that realizes the labeling, or else to determine that no such set of intervals
exists.

Lemma 8 further reduces the problem of finding a co-TT model I(B′, R′) to
that of assigning intersection labels to elements of AV that are consistent with
some co-TT model I ′(B′, R′) of G′. In the rest of this section, we show how to
assign such a labeling in O(n2) time.
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Definition 5. Let I be an interval model of G′[B′] in standard form. The red
extension of I is constructed as follows. For r ∈ R′, let its interval, Ir be the
intersection of intervals of I that are neighbors. This is the maximal interval
that r could have without misrepresenting a neighbor as a non-neighbor. The
resulting model is not in standard form, since sets of right endpoints and sets of
left endpoints coincide. Each maximal set I ′ of intervals whose right endpoints
coincide contains exactly one blue interval. Move the right endpoints of red mem-
bers of I ′ by epsilon amounts so that are ordered from left to right in ascending
order of the length of the interval they belong to, and so that the blue member’s
endpoint is last. This has no effect on the represented graph, and causes all of
these intervals to form a chain in the containment relation. Perform the sym-
metric operation on maximal sets of coinciding left endpoints. Put the model in
standard form by listing the endpoints in left-to-right order.

Lemma 9. Let I be as in Definition 5. If the preconditions of Algorithm2 are
met, a red extension of I exists.

Proof. Suppose the preconditions are met, but that a red extension fails to exist.
Then rr < lr for some r ∈ R′. Since I is an interval model of G′[B′], this implies
that r has two blue neighbors that are nonadjacent to each other, and r fails to
be simplicial, a contradiction. ��

Proposition 1. Suppose I(B′, R′) is a co-TT model of G′. Then the red exten-
sion I ′(B′, R′) of I(B′, R′)[B′] is a co-TT model of G′.

Definition 6. If G′ is a co-TT graph, then a co-TT model I(B′, R′) of G′ is
normalized if I(B′, R′) is the red extension of I(B′, R′)[B′].

By Proposition 1, any normalized co-TT model can be turned into a co-TT
model by replacing the model with the red extension of its blue intervals:

The algorithm for assigning the intersection labels to AV is given as Algo-
rithm2, and gives a summary of the roles of the lemmas that follow in this
section.

Lemma 10. There exists a co-TT model I(B′, R′) of G′ such that for each
(b1, b2) ∈ AB′ :

– (b1, b2) ∈ En if b1 and b2 are nonadjacent;
– (b1, b2) ∈ As and (b2, b1) ∈ Ac if N [b1] ⊂ N [b2];
– (b1, b2) ∈ Eo if b1 and b2 are adjacent but neither N [b1] ⊂ N [b2] nor N [b2] ⊂

N [b1].

By Lemmas 8 and 10, we may now find an assignment IB of intervals to B′

such that the intersection types are the same as those of I(B′, R′)[B′] for some
co-TT model I(B′, R′) of G′ in O(n2) time. Note that IB and I(B′, R′)[B′] are
both interval models of G′[B′]. Since there may be many interval models satisfy-
ing these intersection types, it is not necessarily the case that IB = I ′(B′, R′)[B′]
for any co-TT model I ′(B′, R′) with blue-red partition.
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Data: A co-TT graph with blue-red partition (B′, R′), B′ has no true twins,
and R′ has no isolated vertices or false twins

Result: A labeling of elements of AV with their intersection types in a co-TT
model I(B′, R′) of G′

1 for (x, y) ∈ AV ′ do
2 Find whether N [x] ⊂ N [y] (Lemma 7);
3 for (r1, r2) ∈ AR′ do
4 Find whether N(x) ⊂ N(y) (Lemma 7);
5 for (b1, b2) ∈ AB′ (Lemma 10) do
6 if b1b2 �∈ E′ then
7 Assign (b1, b2) to En ;
8 else if N [b1] ⊂ N [b2] then
9 Assign (b1, b2) to As and (b2, b1) to Ac ;

10 for (b1, b2) ∈ AB′ do
11 if (b1, b2) has not already been assigned then
12 Assign (b1, b2) to Eo ;

13 Construct an interval model IB of G[B′] realizing these labels (Lemma 8) ;
14 Let I′ be the red extension of IB ;
15 for (r1, r2) ∈ AR′ do
16 if N(r1) ⊂ N(r2) then
17 Assign (r1, r2) to Ac and (r2, r1) to As (Lemma 11);
18 else if (r1, r2) ∈ En(I′) then
19 Assign (r1, r2) to En (Lemma 12);

20 for (b, r) ∈ B′ × R′ do
21 if br ∈ E′ then
22 Assign (b, r) to Ac and (r, b) to As (Lemma 1);
23 else if (b, r) ∈ As(I′) then
24 Assign (b, r) to As and (r, b) to Ac (Lemma 12);
25 else if (b, r) ∈ En(I′) then
26 Assign (b, r), (r, b) ∈ En (Lemma 12);

27 for (x, y) ∈ AV ′ do
28 if (x, y) has not been assigned then
29 Assign (x, y) to Eo ;

30 Apply Lemma 8 to find a co-TT model I(B′, R′) of G′;
Algorithm 2. Co-TT-Model(G′, B′, R′)

– Henceforth, as in Algorithm 2, we will let IB denote this interval model of
G′[B′].

Lemma 11. If I(B′, R′) is a normalized co-TT model of G′, then for distinct
members r1, r2 ∈ R′, (r1, r2) ∈ As(I(B′, R′)) if and only if N(r2) ⊂ N(r1).

Though IB realizes the intersection types of I(B′, R′)[B′] for some co-TT
model I(B′, R′), it may not be the case that IB = I ′(B′, R′)[B′] for any co-
TT model I ′(B′, R′) of G′. There may be many interval models of G′[B′] that
realize these intersection types. Therefore, the red extension of IB might not be
a co-TT model. We can nevertheless use it to derive some of the intersection
types in I(B′, R′):
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Lemma 12. Let I(B′, R′) be a normalized co-TT model of G′ whose intersec-
tion types among the blue vertices are the same as those given by IB. Let I ′ be
the red extension of IB.

1. For r1, r2 ∈ R′, (r1, r2) ∈ En(I ′) if and only if (r1, r2) ∈ En(I(B′, R′));
2. For r ∈ R′, b ∈ B′, (b, r) ∈ En(I ′) if and only if (b, r) ∈ En(I(B′, R′)), and

(b, r) ∈ As(I ′) if and only if (b, r) ∈ As(I(B′, R′)).

Lemma 13. Algorithm2 is correct.

Proof. Since every red vertex in a co-TT model is simplicial, the preconditions
imply that every vertex in R′ is simplicial.

By Lemma 10, the labeling of intersection types conducted by the for loop
on blue pairs is consistent with those in a co-TT model I(B′, R′). Therefore,
IB gives the same intersection labels as I1(B′, R′)[B′] does. This is true also for
the red extension I2(B′, R′) = I(B′, R′)[B′], which, by Proposition 1 and Defin-
ition 6 is a normalized co-TT model of G′. By Lemmas 11 and 12, those members
(x, y) of AV ′ such that at least one of x and y is a member of R′ are assigned
to En, As or AV ′ in the next two loops if and only if they have those intersec-
tion types in I2(B′, R′). Since {En(I2(B′, R′)), As(I2(B′, R′)), Ac(I2(B′, R′)),
Eo(I2(B′, R′))} is a partition of AV ′ , any elements not yet assigned must belong
to Eo(I2(B′, R′)), and the final loop correctly assigns these.

The intersection labels assigned to AV ′ are those of I2(B′, R′). The set I3

of intervals given by Lemma8 has these intersection types. Since I2(B′, R′) is a
co-TT model, so is I3(B′, R′), and this is the model returned by the algorithm. ��

Lemma 14. Algorithm2 can be implemented to take O(n2) time even when
(G′, B′, R′) does not meet the preconditions.

Proof. The application of Lemma 7 requires that G′ be strongly chordal. This
can be checked before the lemma is applied, by Theorems 1 and 4, and G′ can
be rejected as a co-TT graph if it fails this test, by Theorem 3.

Otherwise, the lemma gives the required neighborhood containments, whether
or not G is a co-TT graph, in O(n2) time. The loop at Line 7 takes O(n2) time,
whether or not G is a co-TT graph. Lemma 8 either gives a set IB of intervals that
realizes this labeling, or determines that none exists, inO(n2) time. By Lemma 10,
such a set exists if (G′, B′, R′) meets the precondition, so (G′, B′, R′) can be
rejected as failing to meet the preconditions. By Lemma10, the intersection types
of IB are the same as they are for some co-TT model I(B′, R′) if (G′, B′, R′) meets
the preconditions.

Constructing a red extension I ′ of IB or determining that none exists takes
O(n2) time by elementary methods. By Lemma 9, there is a red extension of IB

if the preconditions are met, so if there is no red extension, (G′, B′, R′) can be
rejected as not meeting the precondition.

Otherwise, the time required for the remaining loops do not depend on any
additional assumptions about the inputs, and they take O(n2) time. The final
application of Lemma 8 takes O(n2) time whether or not it succeeds in producing
a set of intervals that realizes the labeling. ��
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Theorem 5. Recognition of threshold tolerance and co-TT graphs takes O(n2)
time.

Proof. The problems reduce to each other in O(n2) time, so we show the result
for co-TT graphs. Let G be a graph passed to Algorithm 1. Whether or not G is
a co-TT graph, the algorithm halts in O(n2) time, by Lemmas 4 and 14. If G is
a co-TT graph, it returns a co-TT model of G by Lemmas 4 and 13. If G is not a
co-TT graph, it produces an incorrect co-TT model, since no co-TT model of G
exists, or else it halts without producing one. If it halts without producing one,
G can be rejected as a co-TT graph. If the algorithm produces a co-TT model,
it takes O(n2) time to check whether it is a valid co-TT model for G, and if it
is, G can be accepted, and if it is not, it can be rejected, since this only happens
when G is not a co-TT graph. ��
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Abstract. The Induced Disjoint Paths problem is to test whether a
graph G with k distinct pairs of vertices (si, ti) contains paths P1, . . . , Pk

such that Pi connects si and ti for i = 1, . . . , k, and Pi and Pj have nei-
ther common vertices nor adjacent vertices (except perhaps their ends)
for 1 ≤ i < j ≤ k. We present a linear-time algorithm that solves
Induced Disjoint Paths and finds the corresponding paths (if they
exist) on circular-arc graphs. For interval graphs, we exhibit a linear-time
algorithm for the generalization of Induced Disjoint Paths where the
pairs (si, ti) are not necessarily distinct.

1 Introduction

A classic algorithmic problem on a graph G with k distinct pairs of vertices
(si, ti) is to find vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti
for i = 1, . . . k. Known as the Disjoint Paths problem, it is NP-complete on
general graphs [15], but can be solved in O(n3) time for any fixed integer k [24]
(i.e. it is fixed-parameter tractable). The Induced Disjoint Paths problem
also takes as input a graph G with k distinct pairs of vertices (si, ti) and also
asks whether there are paths P1, . . . , Pk such that Pi connects si and ti for
i = 1, . . . , k, but with the extra condition that P1, . . . , Pk must be mutually
induced, that is, no two paths Pi, Pj have common or adjacent vertices (except
perhaps their end-vertices). Notice that the Disjoint Paths problem can be
reduced to Induced Disjoint Paths by subdividing every edge of the graph.
The Induced Disjoint Paths problem is NP-complete even for instances with
k = 2 [2,5], and thus in particular is not fixed-parameter tractable unless P=NP.

The hardness of both Disjoint Paths and Induced Disjoint Paths on
general graphs inspired research on their complexity on structured graph classes.
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On the negative side, Disjoint Paths remains NP-complete on line graphs [19]
and split graphs [14]. Induced Disjoint Paths remains NP-complete on claw-
free graphs [6] (in fact, even on line graphs). Both problems remain NP-complete
on planar graphs [8,18]. In these cases, however, fixed-parameter algorithms
are known [9,14,16,23,24]. On the positive side, polynomial-time algorithms
for Disjoint Paths exist on graphs of bounded treewidth [22] and graphs of
cliquewidth at most 2 [12], and for Induced Disjoint Paths on AT-free
graphs [8] and chordal graphs [1].

We focus on the complexity of Induced Disjoint Paths on circular-arc
graphs. Recall that a circular-arc graph G has a representation in which each
vertex of G corresponds to an arc of a circle, and two vertices of G are adjacent
if and only if their corresponding arcs intersect. Circular-arc graphs generalize
interval graphs, which have a representation in which each vertex corresponds
to an interval of the line, and two vertices are adjacent if and only if their corre-
sponding intervals intersect. The complexity of Disjoint Paths is known: it is
NP-complete on interval graphs [21]. In contrast, for Induced Disjoint Paths,
the authors of the present work recently showed a polynomial-time algorithm on
circular-arc graphs [9] (for a weaker problem variant, such an algorithm is also
implied by a general framework [7]). This work, as well as the polynomial-time
algorithms on AT-free graphs [8] and chordal graphs [1], imply a polynomial-
time algorithm on interval graphs. These algorithms, however, do not settle the
complexity of Induced Disjoint Paths on circular-arc graphs (and interval
graphs), as the question whether a linear-time algorithm exists is left open.

In this paper, we exhibit a linear-time algorithm for Induced Disjoint
Paths on circular-arc graphs. This improves on the known algorithm for circular-
arc graphs as well as the known algorithms for interval graphs. We also introduce
a generalization of Induced Disjoint Paths called Requirement Induced
Disjoint Paths, which is to find ri paths that connect si and ti for i = 1, . . . , k,
such that all paths are mutually induced. We present a linear-time algorithm for
Requirement Induced Disjoint Paths on interval graphs. To solve these
problems, our algorithms first preprocesses the instance. Some of the preprocess-
ing rules build on our earlier work on Induced Disjoint Paths [8,9], but care
is required to adapt them for Requirement Induced Disjoint Paths and to
execute them in linear time. Most preprocessing rules, however, are novel. After
the preprocessing stage, the algorithms identify a set of candidate paths for each
pair (si, ti). For each candidate path for a pair (si, ti), we add an arc with color
i that corresponds to the path to an auxiliary graph H. Finally, we show that it
suffices to find an independent set in H that contains ri arcs of each color. We
show that the algorithms perform all stages in linear time.

2 Preliminaries

We only consider finite undirected graphs that have no loops and no multiple
edges. We refer to the textbook of Diestel [4] for any standard graph terminology
not defined here. Let G = (V,E) be a graph. For a set S ⊆ V , the graph G[S]
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denotes the subgraph of G induced by S; that is, the graph with vertex set S
and edge set {uv ∈ E | u, v ∈ S}. We write G − S = G[V \ S]. We denote
the (open) neighborhood of a vertex u by NG(u) = {v | uv ∈ E} and its
closed neighborhood by NG[u] = NG(u) ∪ {u}. We denote the neighborhood
of a set U ⊆ V by NG(U) = {v ∈ V \ U | uv ∈ E for some u ∈ U} and
NG[U ] = U ∪NG(U). We denote the degree of a vertex u by degG(u) = |NG(u)|.

We denote an unordered pair of elements x, y by {x, y} (i.e. {x, y} = {y, x}).

Problem Definition. Let P = v1 · · · vr be a path (we call such a path a v1vr-
path). The vertices v1 and vr are the ends or end-vertices of P , and the vertices
v2, . . . , vr−1 are the inner vertices of P . We say that an edge vivj , i + 1 < j, is
an inner chord of P if vi or vj is an inner vertex of P . Distinct paths P1, . . . , P�

in a graph G are mutually induced if:

(i) each Pi has no inner chords;
(ii) any distinct Pi, Pj may only share vertices that are ends of both paths;
(iii) no inner vertex u of any Pi is adjacent to a vertex v of some Pj for j �= i,

except when v is an end-vertex of both Pi and Pj .

Notice that condition (i) may be assumed without loss of generality. This defin-
ition is more general than the definition in Sect. 1, as it allows the end-vertices
of distinct paths to be the same or adjacent. We can now formally state our
decision problem (where a terminal is some specified vertex).

Requirement Induced Disjoint Paths

Instance: a graph G, k pairs of distinct terminals (s1, t1), . . . , (sk, tk) such
that {si, ti} �= {sj , tj} for 0 ≤ i < j ≤ k, and k positive integers
r1, . . . , rk.

Question: does G have � = r1 + . . . + rk mutually induced paths P1, . . . , P�

such that exactly ri of these paths join si and ti for 1 ≤ i ≤ k?

If r1 = . . . = rk = 1, then the problem is called Induced Disjoint Paths. The
paths P1, . . . , P� are said to form a solution for a given instance, and we call
every such path a solution path.

The problem definition allows a vertex v to be a terminal in two or more pairs
(si, ti) and (sj , tj). For instance, v = si = sj is possible. This corresponds to
property (ii) of our definition of “being mutually induced”. In order to avoid any
confusion, we will view si and sj as two different terminals “placed on” vertex v.
Formally, we call v a terminal vertex that represents a terminal si or ti if v = si

or v = ti, respectively. We let Tv denote the set of terminals represented by v. If
Tv = ∅, we call v a non-terminal vertex. We say that the two terminals si and ti
of a terminal pair (si, ti) are partners of each other. If si is represented by u and
ti by v, then we also call a uv-path an siti-path. By our problem definition, each
terminal pair (si, ti) consists of two distinct terminals. Hence, two partners are
never represented by the same vertex.

By Property (i), each solution path P has no inner chords and P is an induced
path if and only if its ends are non-adjacent. If two adjacent vertices u and v
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represent terminals vertices belonging to the same pair (si, ti), then the path uv
is called a terminal path for si, ti. We need the following observation.

Observation 1. Any yes-instance of Requirement Induced Disjoint Paths
has a solution that contains all possible terminal paths. In particular, a terminal
path for a pair (si, ti) is the unique siti-path in this solution if ri = 1.

Graph Classes. Recall the definition of circular-arc and interval graphs from the
introduction. Both graph types can be recognized in linear time and a corre-
sponding representation can be found in linear time:

Theorem 1 ([3], see also [13,17]). An interval graph G with n vertices and m
edges can be recognized in O(n + m) time. In the same time, a representation of
G can be constructed with interval end-points 1, . . . , 2n.

Theorem 2 [20]. A circular-arc graph G with n vertices and m edges can be
recognized in O(n + m) time. In the same time, a representation of G can be
constructed with arc end-points clockwise enumerated as 1, . . . , 2n.

By Theorems 1 and 2, we always assume that an interval or circular-arc graph
is given both by its adjacency list and its representation. Moreover, we assume
that all the end-points of the intervals/arcs in the representation are distinct
integers 1, . . . , 2n. Notice that using a representation we can check adjacency in
O(1) time. By slight abuse of notation, we often do not distinguish between the
vertices and their corresponding intervals/arcs; e.g., we may speak of terminal
intervals/arcs instead of terminal vertices.

For a vertex u of an interval graph, lu and ru denote the left and right end-
point of u, respectively. Note that the degree of u is at least (ru − lu − 1)/2.
For circular-arc graphs, we equate “left” to “counterclockwise” and “right” to
“clockwise”. Then, in the same way as for interval graphs, we let lu and ru denote
the left and right end-point of a vertex u, respectively. In this way we are able
to define similar terminology for both interval and circular-arc graphs. For two
points x, y on the line, we write x ≤ y if y lies to the right with respect to x,
and x < y if x ≤ y and x �= y, and we say that a point z lies between points
x and y, if x ≤ z ≤ y. If x, y, z are points on a circle we write x ≤ z ≤ y (or
x ≤ z and z ≤ y) to indicate that z is in the interval with the left end-point x
and the right end-point y. We say that a vertex u lies between points x and y if
x ≤ lu < ru ≤ y (recall that lu and ru are distinct integers). Finally, a vertex u
lies between two other vertices v, w if it lies between rv and lw; note that in that
case we have in fact that rv < lu < ru < lw by our assumption on the interval
representation.

An independent set in a graph G is a set of vertices that are pairwise
non-adjacent. At some stage, our algorithm for Induced Disjoint Paths on
circular-arc graphs needs to compute a largest independent set of a circular-arc
graph. This takes linear time:

Theorem 3 [11]. If the arc end-points of a circular-arc graph G are sorted, then
a largest independent set of G can be found in O(n) time.
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3 Interval Graphs

In this section we develop a linear-time algorithm that solves Requirement
Induced Disjoint Paths on interval graphs.1 A possible approach would be
the following greedy algorithm: find a terminal vertex with the leftmost right
end-point and trace path(s) for the corresponding terminal pairs by a greedy
procedure that iteratively chooses the non-terminal vertex with the leftmost
right end-point that does not conflict with vertices already chosen. However, we
do not elaborate on this approach for two reasons. First, this approach would
require a thorough case analysis (just like our algorithm, and thus not be sub-
stantially simpler). Second, and more importantly, the goal of this paper is to
design a linear-time algorithm for Induced Disjoint Paths on circular-arc
graphs, where we have no natural starting point for a similar greedy approach
and guessing such a starting point would irrevocably lead to a quadratic-time
algorithm.

We describe the main constructs of our algorithm. Consider an instance of
Requirement Induced Disjoint Paths. Let P be an siti-path that is not
a terminal path, i.e. that has at least one inner vertex. Let IP be the interval
on the line obtained by taking the union of the intervals that correspond to
the inner vertices of P . We say that P covers the interval IP . Because P is an
siti-path, we say that IP has color i.

Lemma 1. Let P1, . . . , P� form a solution. The following statements hold:

(i) For 1 ≤ i ≤ k, any interval IPa
with color i intersects the intervals that

represent si and ti and does not intersect any other terminal interval;
(ii) For 1 ≤ a < b ≤ �, IPa

∩ IPb
= ∅;

(iii) For 1 ≤ i < j ≤ k, there is no interval with color j that lies between two
intervals with color i, or vice versa.

We now outline our algorithm. Following Observation 1, we take all terminal
paths into the solution. This might reduce the requirement ri by 1 for some i.
To find the remaining paths for all i, we determine a set of “candidate paths”
that might or might not be used in the solution that we are constructing. The
set of candidate paths is constructed such that for any siti solution path P
there is a candidate path P ′ such that P ′ is also an siti-path and IP ′ ⊆ IP . We
guarantee that the set of candidate paths has size O(n). By Lemma 1, the paths
that are selected in a solution must cover distinct parts of the line. Therefore, we
create an auxiliary interval graph H that consists of all intervals covered by the
candidate paths. The intervals covered by candidate siti-paths all receive color
i, for i = 1, . . . , k. It then suffices to find an independent set with the required
number of vertices of each color in H.

In the remainder of this section, we describe all steps of the algorithm in
detail. We say that a step is safe if it runs in time O(n + m + k) and is correct
in the following sense:
1 Due the space restrictions some proofs in this section and in the next ones are

omitted or sketched. The full paper, with complete proofs, can be found in [10].
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(i) a No-answer is given for no-instances only;
(ii) if a new instance is obtained, then it has a solution if and only if the original

instance has a solution.
(iii) if a set of intervals that are all colored with color i is added to H, then this

set has size O(n) and corresponds to a candidate set of candidate paths.

The algorithm assumes that an interval representation of G is known, as given
by Theorem 1. It also maintains an auxiliary interval graph H, initially empty.
Recall that any vertex that we add to H will correspond to a candidate path for
a solution. While adding vertices to H, we maintain an interval representation
of H. Finally, the algorithm maintains a set P of paths, initially empty, which
will form a solution for the instance (should it be a yes-instance). We let T =
{s1, t1, . . . , sk, tk} be the set of all terminals. A terminal pair (si, ti) is a multi-
pair if ri ≥ 2, and a simple pair otherwise. The algorithm roughly consists of
three stages: preprocess, construct H, and find an independent set.

3.1 Stage I: Preprocess

The only operations performed on G by our algorithm are vertex deletions.
Hence, the graph that we obtain after each step is still interval. For simplicity,
we denote this graph by G as well.

Step 1. Delete all non-terminal vertices that are adjacent to at least three
terminal vertices.

Step 2. Check if there is a multi-pair that is represented by two non-adjacent
terminal vertices. If so, then return a No-answer.

Lemma 2. Steps 1 and 2 are safe.

Suppose that we have not returned a No-answer after performing Step 2. In the
next step, for each multi-pair, we identify a set of paths that together with the
terminal paths form all candidate paths.

Step 3. For each non-terminal vertex u adjacent to terminal vertices v and w
representing multi-pair terminals si and ti, add Ivuw with color i to VH , and
delete u from G.

Lemma 3. Step 3 is safe. Moreover, for any multi-pair (si, ti), if P is a solution
siti-path with at least one inner vertex, then there is a candidate siti-path P ′

with IP ′ ⊆ IP .

In the next two steps, which are inspired by our earlier work on Induced Dis-
joint Paths [8,9], we get rid of all adjacent terminal vertices that represent the
same terminal pair. This includes (but is not limited to) all multi-pairs.

Step 4. Find the set Z of all terminal vertices v such that v only represents
terminals whose partners are in NG(v). Delete the vertices of Z and all non-
terminal vertices of NG(Z) from G. Delete from T the terminals of all terminal
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pairs (si, ti) with si ∈ Tv or ti ∈ Tv for some v ∈ Z. Put all terminal paths
corresponding to deleted terminal pairs in P.

After Step 4, each terminal vertex represents at least one terminal whose
partner is at distance at least 2. There may still be terminal pairs whose terminals
are represented by adjacent vertices. We deal with such pairs in the next step.

Step 5. Delete all terminals si and ti represented by adjacent terminal vertices
from the terminal list, and delete all common non-terminal neighbors of the
terminal vertices that represent si and ti. Put all terminal paths corresponding
to deleted terminals in P.

Call a terminal pair long if its two terminals are represented by vertices of
distance at least 2. After Step 5, all terminal pairs are long. Therefore, by Step 2,
there are no multi-pairs anymore. Assume that there are k′ ≤ k terminal pairs
left; note that k′ = 0 is possible.

Step 6. Check if there exists a terminal vertex that represents three or more
terminals. If so, then return a No-answer.

After Step 6, a terminal vertex may represent at most two terminals (which
must belong to different terminal pairs). We now observe that terminals should
be ordered, and we let our algorithm find this ordering.

Step 7. Check if there exist three terminal vertices u, v, w such that u and w
represent terminals from the same pair such that lu ≤ lv < lw. If so, then return
a No-answer. Otherwise, order and rename the terminals such that rui

< lvi
and

lvi
≤ lui+1 for i = 1, . . . , k′ − 1, where ui, vi are the vertices representing si, ti,

respectively.

Step 8. For i ∈ {1, . . . , k′ −1}, if ti and si+1 are represented by distinct vertices
u and v, delete all non-terminal vertices adjacent to both u and v.

Lemma 4. Steps 4–8 are safe.

3.2 Stage II: Construct H

We now construct the auxiliary H. Note that some intervals were already added
to H as part of our preprocessing stage (see Step 3).

Step 9. For each i ∈ {1, . . . , k′}, perform steps 9a–9d (where u and v are terminal
vertices that represent si and ti, respectively).

9a. For every common neighbor w of u and v, add the interval Iuwv to H with
color i, and delete w from G.

9b. For each neighbor x of u not adjacent to v, determine whether there exists a
neighbor y of v adjacent to x. If so, then choose y such that the right end-point
of y is leftmost amongst all such neighbours of v. Add the interval Iuxyv to H
with color i.

9c. Determine the connected components C1, . . . , Cp of G− (N [u]∪N [v]) whose
vertices lie between ru and lv. For each Cj , determine the vertex l(Cj) with the
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leftmost left end-point and the vertex r(Cj) with the rightmost right end-point.
Then among the neighbors that l(Cj) and u have in common, let si(Cj) be the
one with the rightmost left end-point (if it exists). Similarly, let ti(Cj) be the
neighbor that r(Cj) and v have in common and that has the leftmost right end-
point (if it exists). Add the interval between the left end-point of si(Cj) and the
right end-point of ti(Cj) to H with color i, if it has not been added already in
Step 9b (which might be the case if si(Cj) and ti(Cj) intersect).

Lemma 5. Step 9 is safe. Moreover, for i = 1, . . . , k′, if P is a solution siti-
path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Proof. We first prove that Step 9 is correct. Let i ∈ {1, . . . , k′}. Let u and v be
the (non-adjacent) vertices of G representing si and ti, respectively. Let P be a
solution path for (si, ti).

Suppose that P has length 2. Then P has exactly one inner vertex w, which
is adjacent to both u and v. By Step 9a, H contains the interval IP .

Suppose that P has length 3. Then P has exactly two inner vertices x and
y′ that are adjacent to u and v, respectively. Let y be the neighbor of v that is
adjacent to x and has the leftmost right end-point among all such vertices. Then
P ′ = uxyv is an siti-path. Notice that IP ′ ⊆ IP by the choice of y and by the
fact that u and v have no common neighbors after Step 9a. Therefore, in any
solution that contains P , P can be replaced P ′. By Step 9b, H contains IP ′ .

Finally, suppose that P has length at least 4. Because P is an induced path,
there is a connected component Cj of G − (N [u] ∪ N [v]) whose vertices all lie
between ru and lv, such that all inner vertices of P except two neighbors of u
and v are in Cj . Let x′ and y′ be the neighbors of u and v on P , respectively.
Let x = si(Cj) and y = ti(Cj). Then from P we can construct an siti-path
P ′ by replacing x′ and y′ with x and y, respectively. Notice that IP ′ ⊆ IP by
the choice of y and by the fact that u and v have no common neighbors after
Step 9a. Therefore, in any solution that contains P , P can be replaced P ′. By
Step 9c, H contains IP ′ .

Observe that the above arguments prove that for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

We now show how to perform Step 9 in O(n+m) time. In Step 9a, we add all
the intervals that correspond to common neighbors of si and ti for i = 1, . . . , k′,
and delete these common neighbors from G. Common neighbors of si and ti
are not common neighbors of terminals of any other pair by Step 8. Therefore,
Step 9a takes O(n + m) time in total, and O(n) intervals are added to H. In
Step 9b, for i = 1, . . . , k′, we find for each neighbor x of si (recall that x is
not adjacent to ti after Step 9a), the neighbor y of ti such that x and y are
adjacent and the right end-point of y is leftmost. By using the adjacency lists
for the neighbors of u, Step 9b takes O(n + m) time in total, and O(n) intervals
are added to H. In Step 9c, we first find the connected components C1, . . . , C�.
This can be done by performing a breadth-first search. Because the connected
components that we consider (and their vertices) are unique to a terminal pair,
Step 9c takes O(n + m) time in total. Again, O(n) intervals are added to H. 
�
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3.3 Stage III: Find Independent Set

It remains to find a particular independent set in H.

Step 10. Find an independent set in H that, for i = 1, . . . , k, contains exactly
ri −1 or ri vertices colored i depending on whether (si, ti) is a multi-pair or not.
If such a set exists, add the corresponding candidate paths to P and return P.
Otherwise, return a No-answer.

Lemma 6. Step 10 is safe.

Proof. We first prove that Step 10 is correct. We do this by proving that our
instance is a yes-instance if and only if H has an independent set as described in
Step 10. First, suppose that H has such an independent set I. For each interval
u of color i, we can find an siti-path in G with inner vertices that are used to
construct u. Taking into account the terminal paths that are already included
in P, we obtain ri siti-paths for each i ∈ {1, . . . , k}. We have to show that these
paths are mutually induced. Because I is an independent set, distinct paths
have no adjacent inner vertices. It remains to show that each u ∈ I does not
intersect any terminal vertex (interval) of G except the vertices representing
si, ti. If u is added to H in Step 3, then it follows immediately from the fact that
all non-terminal vertices that are adjacent to at least three terminals are deleted
in Step 1 and from the description of Step 3. If u is added to H in Step 9, then
notice u does not intersect any terminal vertex deleted in Step 4, because we
delete them together with adjacent non-terminal vertices. Similarly, it does not
interfere with any terminal deleted in Step 5, as proved in Lemma4. Moreover,
each interval added in Step 9 intersects exactly two remaining terminal vertices
that are partners by Step 8. Hence, the instance is a yes-instance.

Now suppose that our instance is a yes-instance. Let �i = ri − 1 if (si, ti)
is a multi-pair, and let �i = ri otherwise. By Observation 1, we can assume
that the solution includes all terminal paths. Therefore, the solution contains
exactly �i siti-path with inner vertices. By Lemma 3 and Lemma 5, for each
such solution siti-path P , there is a candidate siti path P ′ such that IP ′ ⊆ IP .
Therefore, we can replace each solution path by a candidate path, and obtain
a solution that uses only candidate paths. Let I denote the set of intervals
covered by these paths. By Lemma 1, the intervals of I do not intersect each
other. Moreover, by construction, I contains �i intervals with color i. Therefore,
H has an independent set as described in Step 10.

We now show how to perform Step 10 in O(n + m) time. We do this by
performing the following procedure, which is a modification of the well-known
greedy algorithm for finding a largest independent set in an interval graph.

1. Construct 2n buckets L1, . . . , L2n and 2n buckets R1, . . . , R2n.
2. For each vertex u of H, put u in the buckets Llu and Rru

.
3. Set I = ∅ and h = 2n. For i = 1, . . . , k, set �i = ri −1 if (si, ti) is a multi-pair,
and set �i = ri otherwise.
4. Scan the buckets Lh, . . . , L1 until we find a bucket Lj that contains a vertex
u of H of some color i such that �i > 0. Then u is included in I. Find the set
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of vertices X from the buckets Rj , . . . , Rh, and delete them from H. Then set
�i = �i − 1, h = j, and repeat the procedure. We stop as soon as we cannot find
the next bucket Lj .

If I contains less than �i vertices of color i for some i ∈ {1, . . . , k}, then stop
and return a No-answer. Otherwise, return I. This procedure takes O(|V (H)|) =
O(n) time, and the corresponding paths can be found in O(n + m) time. Hence,
it remains to show that the procedure is correct. We need the following claim
(proof omitted).

Claim 1. Let Ui, Uj be the set of vertices (intervals) of H colored by distinct
colors i and j respectively. Then for any u ∈ Ui and v ∈ Uj , lu �= lv. Moreover,
if lu < lv for some u ∈ Ui and v ∈ Uj , then lx < ly for any x ∈ Ui and y ∈ Uj .

Claim 1 implies that between the left endpoints of two intervals with a color i
there can be no left endpoint of an interval with color j �= i. Then, similar as the
correctness of the well-known greedy algorithm for finding a largest independent
set in an interval graphs, we can argue that the above procedure outputs the
required independent set. 
�

As each step in our algorithm is safe, we obtain the following result.

Theorem 4. The Requirement Induced Disjoint Paths problem can be
solved in time O(n + m + k) for interval graphs on n vertices and m edges with
k terminal pairs.

4 Circular-Arc Graphs

In this section, we modify the algorithm of the previous section to work for the
Induced Disjoint Paths problem on circular-arc graphs. The general idea
of the approach remains the same, but some preprocessing steps are no longer
needed, and some steps need modification. In particular, we do not need colors
here. We will again show that each step of the algorithm is safe, where the
definition of a safe step remains the same, mutatis mutandis. The algorithm
assumes that an arc representation of G is known, as given by Theorem 2. It
maintains an auxiliary circular-arc graph H, initially empty, in a similar manner
and function as before. It also maintains a set P of paths, initially empty.

The algorithm first performs Step 1. Note that Steps 2 and 3 are not neces-
sary, as there are no multi-pairs now, and thus we do not apply them. We then
continue with Steps 4 and 5.

Lemma 7. Steps 1, 4, and 5 are safe.

After Step 5, for each remaining terminal pairs (si, ti), si and ti are represented
by vertices at distance at least two, and as before, we call such pairs long. Let
k′ be the number of remaining terminal pairs. Notice that it can happen that
k′ ≤ 1 after Step 5. It is convenient to handle this case separately.
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Step 5+. If k′ = 0, then stop and return the solution P. If k′ = 1, then consider
the terminal vertices u and v representing the terminals of the unique pair of T .
Find a shortest uv-path P if it exists. If P exists, then add P to P, and return
the solution P. Otherwise, stop and return a No-answer.

Lemma 8. Step 5+ is safe.

Now we can assume that k′ ≥ 2. Since all pairs are long and k′ ≥ 2, there is
only one direction around the circle that a solution path can go, and therefore,
intuitively, the problem starts to behave roughly as it does on interval graphs.
We perform Steps 6, 7, 8, and 9, where in Step 9 we do not color the vertices.

Lemma 9. Steps 6, 7, 8, and 9 are safe. Moreover, for i = 1, . . . , k′, if P is a
solution siti-path, then there is a candidate siti-path P ′ with IP ′ ⊆ IP .

Finally, we execute the following simplified version of Step 10.

Step 10∗. Find a largest independent set in H using Theorem 3. If such a set
exists, add the corresponding candidate paths to P and return P. Otherwise,
return a No-answer.

Lemma 10. Step 10∗ is safe.

As each step in our algorithm is safe, we obtain the following result.

Theorem 5. The Induced Disjoint Paths problem can be solved in time
O(n + m + k) for circular-arc graphs on n vertices and m edges with k terminal
pairs.

5 Conclusion

We gave a linear-time algorithm for Requirement Induced Disjoint Paths
on interval graphs, and for Induced Disjoint Paths on circular-arc graphs.
By the application of the same ideas, we can solve Requirement Induced
Disjoint Paths on n-vertex circular-arc graphs in time O(n2). The increase
in running time is because to solve the auxiliary problem of finding a multicol-
ored independent set we must “guess” a starting point for the greedy selection
of such a set. As an aside, we can prove that finding a multicolored indepen-
dent set is NP-complete when no order on the colors is given, even on interval
graphs [10].
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Abstract. We give constant-factor approximation algorithms for
branch-decomposition of planar graphs. Our main result is an algo-
rithm which for an input planar graph G of n vertices and integer k,
in O(n log4 n) time either constructs a branch-decomposition of G with
width at most (2 + δ)k, δ > 0 is a constant, or a (k + 1) × � k+1

2
� cylin-

der minor of G implying bw(G) > k, bw(G) is the branchwidth of G.
This is the first Õ(n) time constant-factor approximation for branch-
width/treewidth and largest grid/cylinder minors of planar graphs and
improves the previous min{O(n1+ε), O(nk3)} (ε > 0 is a constant) time
constant-factor approximations. For a planar graph G and k = bw(G), a
branch-decomposition of width at most (2+δ)k and a g× g

2
cylinder/grid

minor with g = k
β
, β > 2 is constant, can be computed by our algorithm

in O(n log4 n log k) time.

Keywords: Branch-/tree-decompositions · Grid minor · Planar graphs ·
Approximation algorithm

1 Introduction

The notions of branchwidth and branch-decomposition introduced by Robertson
and Seymour [27] in relation to the notions of treewidth and tree-decomposition
have important algorithmic applications. The branchwidth bw(G) and the
treewidth tw(G) of graph G are linearly related: bw(G) ≤ tw(G)+1 ≤ � 3

2bw(G)�
for every G with more than one edge, and there are simple translations between
branch-decompositions and tree-decompositions that meet the linear relations
[27]. A graph G of small branchwidth (treewidth) admits efficient algorithms for
many NP-hard problems [2,6]. These algorithms first compute a branch-/tree-
decomposition of G and then apply a dynamic programming algorithm based on
the decomposition to solve the problem. The dynamic programming step usually
runs in polynomial time in the size of G and exponential time in the width of
the branch-/tree-decomposition computed.

Deciding the branchwidth/treewidth and computing a branch-/tree-decomp-
osition of minimum width have been extensively studied. For an arbitrary graph
G of n vertices, the following results have been known: Given an integer k, it
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-12340-0 20
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is NP-complete to decide whether bw(G) ≤ k [30] (tw(G) ≤ k [1]). If bw(G)
(tw(G)) is upper-bounded by a constant then both the decision problem and the
optimal decomposition problem can be solved in O(n) time [7,9]. However, the
linear time algorithms are mainly of theoretical importance because the constant
behind the Big-Oh is huge. The best known polynomial time approximation fac-
tor is O(

√
bw(G)) for branchwidth and O(

√
log tw(G)) for treewidth [15]. The

best known exponential time approximation factors are as follows: an algorithm
giving a branch-decomposition of width at most 3bw(G) in 2O(bw(G))n2 time
[28]; an algorithm giving a tree-decomposition of width at most 3tw(G) + 4 in
2O(bw(G))n log n time [5]; and an algorithm giving a tree-decomposition of width
at most 5tw(G) + 4 in 2O(tw(G))n time [5]. By the linear relation between the
branchwidth and treewidth, the algorithms for tree-decompositions are also algo-
rithms of same approximation factors for branch-decompositions, while from a
branchwidth approximation α, a treewidth approximation 1.5α can be obtained.

Better results have been known for planar graphs G. Seymour and Thomas
show that whether bw(G) ≤ k can be decided in O(n2) time and an optimal
branch-decomposition of G can be computed in O(n4) time [30]. Gu and Tamaki
improve the O(n4) time for optimal branch-decomposition to O(n3) [17]. By the
linear relation between the branchwidth and treewidth, the above results imply
polynomial time 1.5-approximation algorithms for the treewidth and optimal
tree-decomposition of planar graphs. It is open whether deciding tw(G) ≤ k is
NP-complete or polynomial time solvable for planar graphs G.

Fast algorithms for computing small width branch-/tree-decompositions of
planar graphs have received much attention as well. Tamaki gives an O(n) time
heuristic algorithm for branch-decomposition [32]. Gu and Tamaki give an algo-
rithm which for an input planar graph G of n vertices and integer k, either
constructs a branch-decomposition of G with width at most (c + 1 + δ)k or out-
puts bw(G) > k in O(n1+ 1

c ) time, where c is any fixed positive integer and δ > 0
is a constant [18]. By this algorithm and a binary search, a branch-decomposition
of width at most (c+1+δ)k can be computed in O(n1+ 1

c log k) time, k = bw(G).
Recently, Kammer and Tholey give an algorithm which for input G and k, either
constructs a tree-decomposition of G with width at most (9 + δ)k, δ > 0 is a
constant, or outputs tw(G) > k in O(nk3) time [24,25]. This implies that a
tree-decomposition of width at most (9 + δ)k can be computed in O(nk3 log k)
time, k = tw(G). Computational studies on branch-decomposition can be found
in [3,4,21,22,31,32].

Grid and cylinder minors of graphs are notions closely related to branch-/tree-
decompositions [12,13,19,29]. A k × h cylinder is a Cartesian product of a cycle
on k vertices and a path on h vertices. For a graph G, let cm(G) be the largest
integer k such that G has a k × �k

2 � cylinder as a minor. It is shown in [19] that
cm(G) ≤ bw(G) ≤ 2cm(G) for planar graphs. The O(n1+ 1

c ) time algorithm in
[18] actually constructs a branch-decomposition of G with width at most (c+1+
δ)k or a (k + 1) × �k+1

2 � cylinder minor. Other work on the lower bound for the
branchwidth/treewidth of planar graphs can be found in [8,16].
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We propose an Õ(n) time (the Õ notation disregards poly-logarithmic terms)
constant-factor approximation algorithm for branch-/tree-decompositions of pla-
nar graphs. This result is stated as follows.

Theorem 1. There is an algorithm which given a planar graph G of n vertices
and an integer k, in O(n log4 n) time either constructs a branch-decomposition
of G with width at most (2 + δ)k, δ > 0 is a constant, or a (k + 1) × �k+1

2 �
cylinder minor of G.

Since a (k + 1) × �k+1
2 � cylinder has branchwidth at least k + 1 [19], a cylinder

minor given in Theorem1 implies bw(G) > k.
By the linear relation between the branchwidth and treewidth, Theorem1

implies an algorithm which for an input planar graph G and integer k, in
O(n log4 n) time constructs a tree-decomposition of G with width at most (3+δ)k
or outputs tw(G) > k. For a planar graph G and k = bw(G), by Theorem 1
and a binary search, a branch-decomposition of width at most (2 + δ)k can
be computed in O(n log4 n log k) time. This improves the previous result of a
branch-decomposition of width at most (c + 1 + δ)k in O(n1+ 1

c log k) time [18].
Similarly, for a planar graph G and k = tw(G), a tree-decomposition of width at
most (3+ δ)k can be computed in O(n log4 n log k) time, improving the previous
result of a tree-decomposition of width at most (9 + δ)k in O(nk3 log k) time
[24,25] when k > c′(log n)

4
3 for some constant c′ > 0. Our algorithm can also

be used to compute a g × � g
2� cylinder (grid) minor with g = bw(G)

β , β > 2 is a

constant, and a g × g cylinder (grid) minor with g = bw(G)
β , β > 3 is a constant,

of G in O(n log4 n log k) time. This improves the previous results of g ×� g
2� with

g ≥ bw(G)
β , β > (c+1), and g × g with g ≥ bw(G)

β , β > (2c+1), in O(n1+ 1
c log k)

time. As an application, our algorithm removes a bottleneck in work of [26] for
computing a shortest path oracle and reduces its preprocessing time complexity
in Theorem 6.1 from O(n1+ 1

c log k log n+S log2 n) to O(n log5 n log k+S log2 n).
Our algorithm for Theorem1 uses the approach in the previous work of [18]

described below. Given a planar graph G and integer k, let Z be the set of
biconnected components of G with a normal distance (a definition is given in
the next section) h = ak, a > 0 is a constant, from a selected edge e0 of G. For
each Z ∈ Z, a minimum vertex-cut set ∂(AZ) which partitions E(G) into edge
subsets AZ and AZ = E(G) \ AZ is computed such that Z ⊆ AZ and e0 ∈ AZ

(∂(AZ) separates Z and e0). If |∂(AZ)| > k for some Z ∈ Z then bw(G) > k
is concluded. Otherwise, a branch-decomposition of graph H obtained from G
by removing all AZ is constructed. For each subgraph G[AZ ] induced by AZ , a
branch-decomposition is constructed or bw(G[AZ ]) > k is concluded recursively.
Finally, a branch-decomposition of G with width O(k) is constructed from the
branch-decomposition of H and those of G[AZ ] or bw(G) > k is concluded.

Our algorithm uses a recent result in computing minimum face separating
cycles in planar graphs to find ∂(AZ) for every Z ∈ Z. Borradaile et al. give an
algorithm which in O(n log4 n) time computes an oracle for the all pairs minimum
face separating cycle problem in a planar graph G [10,11]. For any pair of faces f
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and g in G, the oracle in O(|C|) time returns a minimum (f, g)-separating cycle
C (C cuts the sphere on which G is embedded into two regions, one contains f
and the other contains g). By this result, we show that a minimum vertex-cut
set ∂(AZ) for every Z ∈ Z in all recursive steps can be computed in O(n log4 n)
time and get an algorithm for Theorem1.

When |Z| is small, we show that ∂(AZ) for every Z ∈ Z can be computed
more efficiently. Let nz be the total number of components to be separated in
all recursive steps, we have the following results.

Theorem 2. There is an algorithm which given a planar graph G of n ver-
tices and integer k, in O((n + nz

√
n) log3 n) time either constructs a branch-

decomposition of G with width at most (2 + δ)k or a (k + 1) × �k+1
2 � cylinder

minor of G, where δ > 0 is a constant.

Theorem 3. There is an algorithm which given a planar graph G of n vertices
and integer k, in O(nk +nzk

3) time, either construct a branch-decomposition of
G with width at most (2 + δ)k or a (k + 1) × �k+1

2 � cylinder minor of G, where
δ > 0 is a constant.

The next section gives the preliminaries of the paper. We prove Theorem1 in
Sect. 3, and briefly introduce the algorithms used to prove Theorems 2 and 3 in
Sect. 4. Full proofs of these Theorems can be found in [20]. The final section
concludes the paper.

2 Preliminaries

It is convenient to view a vertex-cut set ∂(AZ) in a graph as an edge in a
hypergraph in some cases. A hypergraph G consists of a set V (G) of vertices and
a set E(G) of edges, each edge is a subset of V (G) with at least two elements.
A hypergraph G is a graph if for every e ∈ E(G), e has two elements. For a
subset A ⊆ E(G), we denote ∪e∈Ae by V (A) and denote E(G) \ A by A. For
A ⊆ E(G), the pair (A,A) is a separation of G and we denote by ∂(A) the
vertex set V (A) ∩ V (A). The order of separation (A,A) is |∂(A)|. A hypergraph
H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For A ⊆ E(G) and
W ⊆ V (G), we denote by G[A] and G[W ] the subgraphs of G induced by A and
W , respectively.

The notions of branchwidth and branch-decomposition are introduced by
Robertson and Seymour [27]. A branch-decomposition of hypergraph G is a pair
(φ, T ) where T is a ternary tree and φ is a bijection from the set of leaves of
T to E(G). We refer the edges of T as links and the vertices of T as nodes.
Consider a link e of T and let L1 and L2 denote the sets of leaves of T in the
two respective subtrees of T obtained by removing e. We say that the separation
(φ(L1), φ(L2)) is induced by this link e of T . We define the width of the branch-
decomposition (φ, T ) to be the largest order of the separations induced by links
of T . The branchwidth of G, denoted by bw(G), is the minimum width of all



242 Q.-P. Gu and G. Xu

branch-decompositions of G. In the rest of this paper, we identify a branch-
decomposition (φ, T ) with the tree T , leaving the bijection implicit and regarding
each leaf of T as an edge of G.

A walk in graph G is a sequence of edges e1, e2, ..., ek, where ei = {vi−1, vi}.
We call v0 and vk the end vertices and other vertices the internal vertices of the
walk. A walk is a path if all vertices in the walk are distinct. A walk is a cycle
if it has at least three vertices, v0 = vk and v1, ..., vk are distinct.

Let Σ be a sphere. For an open segment s homeomorphic to {x|0 < x < 1}
in Σ, we denote by cl(s) the closure of s. A planar embedding of a graph G is a
mapping ρ : V (G) ∪ E(G) → Σ ∪ 2Σ such that

– for u ∈ V (G), ρ(u) is a point of Σ, and for distinct u, v ∈ V (G), ρ(u) �= ρ(v);
– for each edge e = {u, v} ∈ E(G), ρ(e) is an open segment in Σ with ρ(u) and

ρ(v) the two end points in cl(ρ(e)) \ ρ(e); and
– for distinct e1, e2 ∈ E(G), cl(ρ(e1)) ∩ cl(ρ(e2)) = {ρ(u)|u ∈ e1 ∩ e2}.

A graph G is planar if it has a planar embedding ρ, and (G, ρ) is called a
plane graph. We may simply use G to denote the plane graph (G, ρ), leaving
the embedding ρ implicit. For a plane graph G, each connected component of
Σ \ (∪e∈E(G)cl(ρ(e))) is a face of G. We denote by V (f) and E(f) the set of
vertices and the set of edges incident to face f , respectively. We say face f is
bounded by the edges of E(f).

A plane graph G is biconnected if for any distinct vertices u, v, w ∈ V (G),
there is a path of G between u and v that does not contain w. It suffices to
prove Theorems 1, 2 and 3 for a biconnected G because if G is not biconnected,
the problems of finding branch-decompositions and cylinder minors of G can be
solved individually for each biconnected component.

For a plane graph G, a curve μ on Σ is normal if μ does not intersect any edge
of G. The length of a normal curve μ is the number of connected components
of μ \

⋃
v∈V (G){ρ(v)}. For vertices u, v ∈ V (G), the normal distance ndG(u, v)

is defined as the length of the shortest normal curve between ρ(u) and ρ(v).
The normal distance between two vertex-subsets U,W ⊆ V (G) is defined as
ndG(U,W ) = minu∈U,v∈W ndG(u, v). We also use ndG(U, v) for ndG(U, {v}) and
ndG(u,W ) for ndG({u},W ).

A noose of G is a closed normal curve on Σ that does not intersect with
itself. A noose ν of G separates Σ into two open regions R1 and R2 and induces
a separation (A,A) of G with A = {e ∈ E(G) | ρ(e) ⊆ R1} and A = {e ∈ E(G) |
ρ(e) ⊆ R2}. We also say ν induces edge subset A (A). A separation (resp. an
edge subset) of G is called noose-induced if there is a noose which induces the
separation (resp. edge subset). A noose ν separates two edge subsets A1 and A2

if ν induces a separation (A,A) with A1 ⊆ A and A2 ⊆ A. We also say that the
noose induced subset A separates A1 and A2.

For plane graph G and a noose ν induced A ⊆ E(G), we denote by G|A
the plane hypergraph obtained by replacing all edges of A with edge ∂(A) (i.e.,
V (G|A) = (V (G) \ V (A)) ∪ ∂(A) and E(G|A) = (E(G) \ A) ∪ {∂(A)}). An
embedding of G|A can be obtained from G with ρ(∂(A)) an open disk (home-
omorphic to {(x, y)|x2 + y2 < 1}) which is the open region separated by ν and
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contains A. For a collection A = {A1, .., Ar} of mutually disjoint edge-subsets
of G, (..(G|A1)|..)|Ar is denoted by G|A.

3 O(n log4 n) Time Algorithm

We give an algorithm to prove Theorem1. Our algorithm follows the approach
of the work in [18]. Given a plane graph G of n vertices, an edge e0 of G and
integers k, h > 0, let Z be the set of biconnected components of G such that
for each Z ∈ Z, ndG(e0, V (Z)) = h (notice that the subgraph of G induced by
the vertices with normal distance at least h from e0 may not be biconnected,
and we handle every biconnected component of the subgraph). For each Z ∈ Z,
our algorithm computes a minimum noose induced subset AZ separating Z and
e0. If for some Z ∈ Z, |∂(AZ)| > k then the algorithm constructs a (k + 1) × h
cylinder minor of G in O(n) time by Lemma 1 proved in [18]. Otherwise, a set A
of noose induced subsets with the following properties is computed: (1) for every
AZ ∈ A, |∂(AZ)| ≤ k, (2) for every Z ∈ Z, there is an AZ ∈ A which separates
Z and e0 and (3) for distinct AZ , AZ′ ∈ A, AZ ∩ A′

Z = ∅. Such an A is called a
good-separator for Z and e0.

Lemma 1. [18] Given a plane graph G and integers k, h > 0, let A1 and
A2 be edge subsets of G satisfying the following conditions: (1) each of sepa-
rations (A1, A1) and (A2, A2) is noose-induced; (2) G[A2] is biconnected; (3)
ndG(V (A1), V (A2)) ≥ h; and (4) every noose of G that separates A1 and A2 has
length > k. Then G has a (k +1)×h cylinder minor and given (G|A1)|A2, such
a minor can be constructed in O(|V (A1 ∩ A2)|) time.

Given a good-separator A for Z and e0, our algorithm constructs a branch-
decomposition of plane hypergraph G|A with width at most k +2h by Lemma 2
shown in [19,32]. For each AZ ∈ A, the algorithm computes a cylinder minor or
a branch-decomposition for the plane hypergraph G|AZ recursively. If a branch-
decomposition of G|AZ is found for every AZ ∈ A, the algorithm constructs
a branch-decomposition of G with width at most k + 2h from the branch-
decomposition of G|A and those of G|AZ by Lemma 3 which is straightforward
from the definitions of branch-decompositions.

Lemma 2. [19,32] Let k > 0 and h > 0 be integers. Let G be a plane hypergraph
with each edge of G incident to at most k vertices. If there is an edge e0 such
that for any vertex v of G, ndG(e0, v) ≤ h then given e0, a branch-decomposition
of G with width at most k + 2h can be constructed in O(|V (G)| + |E(G)|) time.

The upper bound k + 2h is shown in Theorem 3.1 in [19]. The normal distance
in [19] between a pair of vertices is twice of the normal distance in this paper
between the same pair of vertices. Tamaki gives a linear time algorithm to con-
struct a branch-decomposition of width at most k + 2h [32].

Lemma 3. Given a plane hypergraph G and a noose-induced separation (A,A)
of G, let TA and TA be branch-decompositions of G|A and G|A respectively.
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Let TA + TA to be the tree obtained from TA and TA by joining the link incident
to the leaf ∂(A) in TA and the link incident to the leaf ∂(A) in TA into one link
and removing the leaves ∂(A). Then TA + TA is a branch-decomposition of G
with width max{|∂(A)|, kA, kA} where kA is the width of TA and kA is the width
of TA.

To make a concrete progress in each recursive step, the following technique in
[18] is used to compute A. For a plane hypergraph G, a vertex subset e0 of G
and an integer d ≥ 0, let

reachG(e0, d) =
⋃

{v ∈ V (G)|ndG(e0, v) ≤ d}

denote the set of vertices of G with normal distance at most d from set e0.
Let α > 0 be an arbitrary constant. For integer k ≥ 2, let d1 = �αk

2 � and
d2 = d1 + �k+1

2 �. The layer tree LT(G, e0) is defined as follows:

1. the root of the tree is G;
2. each biconnected component X of G[V (G) \ reachG(e0, d1 − 1)] is a node in

level 1 of the tree and is a child of the root; and
3. each biconnected component Z of G[V (G) \ reachG(e0, d2 − 1)] is a node in

level 2 of the tree and is a child of the biconnected component X in level 1
that contains Z.

For h = d2, Z is the set of leaf nodes of LT(G, e0) in level 2. For a node X
of LT(G, e0) in level 1, let ZX be the set of child nodes of X. It is shown in [18]
that for any Z ∈ ZX , if a minimum noose in the plane hypergraph (G|X)|ZX

separating Z and X has length > k then G has a (k+1)×�k+1
2 � cylinder minor.

From this, a good-separator AX for ZX and X can be computed in hypergraph
(G|X)|ZX , and the union of AX for every X gives a good-separator A for Z
and e0.

To compute AX , we convert (G|X)|ZX to a weighted plane graph and com-
pute a minimum noose induced subset AZ separating Z ∈ ZX and X by finding
a minimum face separating cycle in the weighted plane graph. We use the algo-
rithm by Borradaile et al. [10,11] to compute the face separating cycles.

For an open disk D in Σ, let cl(D) be the closure of D and bd(D) = cl(D)\D
be the boundary of D. For edge ∂(X) in (G|X)|ZX , the embedding ρ(∂(X)) is
an open disk and EX = bd(ρ(∂(X)))\{ρ(u)|u ∈ ∂(X)} is a set of open segments.
Similarly, for each edge ∂(Z) in (G|X)|ZX , EZ = bd(ρ(∂(Z)))\{ρ(u)|u ∈ ∂(Z)}
is a set of open segments. We convert hypergraph (G|X)|ZX to a plane graph
GX as follows: edge ∂(X) is replaced by the set of edges which are segments in
EX and for each Z ∈ ZX , edge ∂(Z) is replaced by the set of edges which are
segments in EZ .

We denote the face in GX bounded by edges of EX by fX . For each Z ∈ ZX ,
we denote the face in GX bounded by edges of EZ by fZ . A face in GX which is
not fX or any of fZ is called a natural face in GX . We convert GX to a weighted
plane graph HX as follows: For each natural face f in GX with |V (f)| > 3, we
add a new vertex uf and new edges {uf , v} in f for every vertex v in V (f).
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Each new edge {uf , v} is assigned the weight 1/2. Each edge of GX is assigned
the weight 1. The length of a cycle (resp. path) in HX is the sum of the weights
assigned to the edges in the cycle (resp. path). For Z ∈ ZX , a minimum (fZ , fX)-
separating cycle is a cycle separating fZ and fX with the minimum length. A
noose in GX is called a natural noose if it intersects only natural faces in GX . It is
shown in [18] that for each Z ∈ ZX , a minimum natural noose in GX separating
EZ and EX in GX is a minimum noose separating Z and X in (G|X)|ZX .
By Lemma 4, such a natural noose ν can be computed by finding a minimum
(fZ , fX)-separating cycle C in HX . The subset AZ induced by ν in (G|X)|ZX

is also called cycle C induced subset.

Lemma 4. [20] Let HX be the weighted plane graph obtained from GX . For any
(fZ , fX)-separating cycle C in HX , there is a natural noose ν which separates
EZ and EX in GX with the same length as that of C. For any minimum natural
noose ν in GX separating EZ and EX , there is a (fZ , fX)-separating cycle C in
HX with the same length as that of ν.

We assume that for every pair of vertices u, v in HX , there is a unique shortest
path between u and v. This can be realized by perturbating the edge weight
w(e) of each edge e in HX as follows. Assume that the edges in HX are e1, ...em.
For each edge ei, let w′(ei) = w(ei) + 1

2i+1 . Then it is easy to check that for any
pair of vertices u and v in HX , there is a unique shortest path between u and v
w.r.t. to w′; and the shortest path between u and v w.r.t. w′ is a shortest path
between u and v w.r.t. w.

For a plane graph G, a minimum cycle base tree (MCB tree) introduced in
[10,11] is an edge-weighted tree T̃ such that

– There is a bijection from the faces of G to the nodes of T̃ ;
– removing each edge e from T̃ partitions T̃ into two subtrees T̃1 and T̃2; this

edge e corresponds to a cycle which separates every pair of faces f and g with
f in T̃1 and g in T̃2; and

– for any distinct faces f and g, the minimum-weight edge on the unique path
between f and g in T̃ has weight equal to the length of a minimum (f, g)-
separating cycle.

The next lemma gives the running time for computing a MCB tree of a plane
graph and that for obtaining a cycle from the MCB tree.

Lemma 5. [10,11] Given a plane graph G of n vertices with positive edge weights,
aMCB tree ofG can be computed inO(n log4 n) time. Further, for any distinct faces
f and g in G, given a minimum weight edge in the path between f and g in the MCB
tree, a minimum (f, g)-separating cycle C can be obtained in O(|C|) time, |C| is
the number of edges in C.

Using Lemma 5 for computing a MCB tree T̃ of HX and AX , our algorithm is
summarized in Procedure Branch-Minor below. In the procedure, U is a noose
induced edge subset and initially U = {e0}.



246 Q.-P. Gu and G. Xu

Procedure: Branch-Minor(G|U)
Input: A biconnected plane hypergraph G|U with ∂(U) specified, |∂(U)| ≤ k
and every other edge has two vertices.
Output: Either a branch-decomposition of G|U of width at most k+2h, h = d2,
or a (k + 1) × �k+1

2 � cylinder minor of G.

1. If ndG|U (∂(U), v) ≤ h for every v ∈ V (G|U) then apply Lemma 2 to find a
branch-decomposition of G|U . Otherwise, proceed to the next step.

2. Compute the layer tree LT(G|U, ∂(U)).
For every node X of LT(G|U, ∂(U)) in level 1, compute AX as follows:
(a) Compute HX from (G|X)|ZX .
(b) Compute a MCB tree T̃ of HX by Lemma 5.
(c) Find a face fZ , Z ∈ ZX , in T̃ by a breadth first search such that the

path between fZ and fX in T̃ does not contain fZ′ for any Z ′ ∈ ZX with
Z ′ �= Z. Find the minimum weight edge eZ in the path between fZ and
fX , and the cycle C from edge eZ .

If C has length > k then compute a (k + 1) × �k+1
2 � cylinder minor

by Lemma 1 and terminate.
Otherwise, compute the cycle C induced subset AZ and include AZ

to AX . For each node f of T̃ , if edge eZ is in the path between f and
fX in T̃ then delete f from T̃ .

Repeat the above until T̃ does not contain any fZ for Z ∈ ZX .
Let A = ∪

X:level 1 nodeAX and proceed to the next step.
3. For each A ∈ A, call Branch-Minor(G|A) to construct a branch-decomposition

TA or a cylinder minor of G|A.
If a branch-decomposition TA is found for every A ∈ A, Lemma 2 is applied

to (G|U)|A to construct a branch-decomposition T0 of (G|U)|A and Lemma 3
is used to combine these branch-decompositions TA, A ∈ A, and T0 into a
branch-decomposition T of G|U and return T .

Proof of Theorem 1: The input hypergraph G|A of our algorithm in each
recursive step for A ∈ A is biconnected. For the AX computed in Step 2, obvi-
ously (1) for every AZ ∈ AX , |∂(AZ)| ≤ k; (2) due to the way we find the cycles
from the MCB tree, for every Z ∈ ZX , there is exactly one subset AZ ∈ AX

separating Z and X; and (3) from the unique shortest path in HX , for distinct
AZ , AZ′ ∈ AX , AZ ∩ AZ′ = ∅. Therefore, AX is a good-separator for ZX and
X. From this, A is a good separator for Z and U and our algorithm computes
a branch-decomposition or a (k + 1) × �k+1

2 � cylinder minor of G. The width of
the branch-decomposition computed is at most

k + 2h = k + 2(d1 + �k + 1
2

�) ≤ k + 2(�αk

2
�) + (k + 1) ≤ (2 + δ)k,

where δ is the smallest constant with δk ≥ αk + 3.
Let M,mx,m be the numbers of edges in G[reachG|U (∂(U), d2)], (G|X)|ZX ,

HX , respectively. Then m = O(mx). In Step 2, the layer tree LT(G|U, ∂(U))
can be computed in O(M) time. For each level 1 node X, it takes O(m) time
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to compute HX and by Lemma 5, it takes O(m log4 m) time to compute a MCB
tree T̃ of HX . In Step 2(c), it takes O(m) time to compute a cylinder minor by
Lemma 1. From Property (3) of a good-separator, each edge of HX appears in
at most two cycles which induce the subsets in AX . So Step 2(c) takes O(m)
time to compute AX . Therefore, the total time for Steps 2(a)-(c) is O(m log4 m).
For distinct level 1 nodes X and X ′, the edge sets of subgraphs (G|X)|ZX and
(G|X ′)|ZX′ are disjoint. From this,

∑
X:level 1 node mx = O(M). Therefore,

Step 2 takes
∑

X:level 1 node O(mx log4 mx) = O(M log4 M) time.
The time for other steps in Procedure Branch-Minor(G|U) is O(M). The

number of recursive calls in which each vertex of G|U is involved in the compu-
tation of Step 2 is O( 1

α ) = O(1). Therefore, the running time of the algorithm
is O(n log4 n). �

4 Algorithms for Theorems 2 and 3

A connected subgraph of a plane graph G is called a piece of G. For a piece P of
G, the vertex-cut set ∂P partitioning E(G) into E(P ) and E(G)\E(P ) is called
the boundary of P . To prove Theorem 2, we decompose HX into pieces which
form a recursive r-division of HX [23], compute intDDG(P ) and extDDG(P )
(see [10,11] for definitions) for every piece in the recursive r-division, and then
compute minimum face separating cycles using the techniques in [10,11]. More
precisely, we replace Steps 2(b)(c) in Procedure Branch-Minor with the following
steps to get the algorithm.

– Compute a recursive r-division RH of HX , where r = (r1, r2, .., rl) with r1 =
n/2, ri = ri−1

2 for 1 < i ≤ l and rl = θ(
√

m).
– For every piece P in RH , compute intDDG(P ) and extDDG(P ).
– For every Z ∈ ZX , compute a minimum (fZ , fX)-separating cycle C using

RH and intDDG(P )/extDDG(P ).
If the length of C is greater than k then compute a (k + 1) × �k+1

2 � cylinder
minor by Lemma 1 and terminate. Otherwise, keep this cycle.

– Compute AX from the minimum face separating cycles.

To prove Theorem 3, we decompose HX into pieces by crest separators intro-
duced in [24,25], compute the good mountain structure tree [24] GMST(HX ,SX ,
WX) and upDDG(S) and lowDDG(S) (see [20] for definitions) for every crest
separator S ∈ S, and find the minimum face separating cycles using the GMST
and upDDG(S)/lowDDG(S). More specifically, we replace Steps 2(b)(c) in Pro-
cedure Branch-Minor with the following steps to get an algorithm for Theorem3.

– Decompose HX by crest separators into a good mountain structure tree GMST
(HX ,SX ,WX).

– Compute upDDG(S) and lowDDG(S) for every crest separator S ∈ S.
– Mark every crest in WX as non-separated, repeat the following until all

crests are marked as separated. If there exist a non-separated crest Z ∈
WX , compute a minimum (fZ , fX)-separating cycle C using the GMST and
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upDDG(S)/lowDDG(S). We call C the cycle computed for crest Z. If the
length of C is greater than k then compute a (k + 1) × �k+1

2 � cylinder minor
by Lemma 1 and terminate. Otherwise, keep this cycle and mark every crest
in ins(C) as separated.

– Compute AX from the minimum face separating cycles.

5 Concluding Remarks

If we modify the definition for d2 in Sect. 3 from d2 = d1 + �k+1
2 � to d2 =

d1 + (k + 1), we get an algorithm which given a planar graph G and integer
k > 0, in O(n log4 n) time either computes a branch-decomposition of G with
width at most (3+ δ)k, where δ > 0 is a constant, or a (k +1)× (k +1) cylinder
minor (or grid minor). It is interesting to develop an O(n) time constant factor
approximation algorithm for the branchwidth and largest grid (cylinder) minors.
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Abstract. In the Directed k-Chinese Postman Problem (k-DCPP), we
are given a connected weighted digraph G and asked to find k non-empty
closed directed walks covering all arcs of G such that the total weight of
the walks is minimum. Gutin, Muciaccia and Yeo (Theor. Comput. Sci.
513, 124–128 (2013)) asked for the parameterized complexity of k-DCPP
when k is the parameter. We prove that the k-DCPP is fixed-parameter
tractable.

We also consider a related problem of finding k arc-disjoint directed
cycles in an Euler digraph, parameterized by k. Slivkins (ESA 2003)
showed that this problem is W[1]-hard for general digraphs. General-
izing another result by Slivkins, we prove that the problem is fixed-
parameter tractable for Euler digraphs. The corresponding problem on
vertex-disjoint cycles in Euler digraphs remains W[1]-hard even for Euler
digraphs.

1 Introduction

A digraph H is connected if the underlying undirected graph of H is connected.
Let G = (V,A) be a connected digraph, where each arc a ∈ A is assigned a non-
negative integer weight ω(a) (G is a weighted digraph). The Directed Chinese
Postman Problem is a well-studied polynomial-time solvable problem in com-
binatorial optimization [1,6,9].

In this paper, we will investigate the following generalisation of DCPP.
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Note that the k-DCPP can be extended to directed multigraphs (that may
include parallel arcs but no loops), but the extended version could be reduced
to the one on digraphs by subdividing parallel arcs and adjusting weights appro-
priately. Since it is more convenient, we consider the k-DCPP for digraphs only.

In the literature, the undirected version of k-DCPP, abbreviated k-UCPP,
has also been studied. If a vertex v of G is part of the input and we require that
each of the k walks contains v then the k-DCPP and k-UCPP are polynomial-
time solvable [11,20]. However, in general the k-DCCP is NP-complete [8], as is
the k-UCPP [8,18].

Lately research in parameterized algorithms and complexity1 for the CPP
and its generalizations was summarized in [2] and reported in [15]. Several
recent results described there are of Niedermeier’s group who identified a number
of practically useful parameters for the CPP and its generalizations, obtained
several interesting results and posed some open problems, see, e.g. [5,16,17].
van Bevern et al. [2] and Sorge [15] suggested to study the k-UCPP as a para-
meterized problem with parameter k and asked whether the k-UCPP is fixed-
parameter tractable, i.e. can be solved by an algorithm of running time
O(f(k)nO(1)), where f is a function of k only and n = |V | (we say such an
algorithm is fixed parameter).

Gutin, Muciaccia and Yeo [8] proved that the k-UCPP is fixed-parameter
tractable. Observing that their approach for the k-UCPP is not applicable to
the k-DCPP, the authors of [8] asked for the parameterized complexity of k-
DCPP parameterized by k. In this paper, we show that the k-DCPP is also
fixed-parameter tractable.

Theorem 1. The k-DCPP is fixed-parameter tractable.

Our proof is very different from that in [8] for the k-UCPP. While the latter
was based on a simple reduction to a polynomial-size kernel, we give a fixed-
parameter algorithm directly using significantly more powerful tools. In particu-
lar, we use an approximation algorithm of Grohe and Grüber [7] for the problem
of finding the maximum number ν0(D) of vertex-disjoint directed cycles in a
digraph D (this algorithm is based on the celebrated paper by Reed et al. [12]
on bounding ν0(D) by a function of τ0(D), the minimum size of a feedback ver-
tex set of D). We also use the well-known fixed-parameter algorithm of Chen
et al. [3] for the feedback vertex set problem on digraphs.

We also consider the following well-known problem related to the k-DCPP.

Crucially, we are interested in the k-ADCP because given a set of k arc-
disjoint cycles, we can solve the k-DCPP in polynomial time (see Lemma 5).
However, this problem is important in its own right.
1 For terminology and results on parameterized algorithms and complexity we refer

the reader to, e.g., the monograph [4].
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The problem is NP-hard in general but polynomial-time solvable for planar
digraphs [10]. In fact, for planar digraphs the maximum number of arc-disjoint
directed cycles equals the minimum size of a feedback arc set, see, e.g., [1]. It is
natural to consider k as the parameter for the k-ADCP. It follows easily from
the results of Slivkins [14] that the k-ADCP is W[1]-hard. It remains W[1]-hard
for quite restricted classes of directed multigraphs, e.g., for directed multigraphs
which become acyclic after deleting two sets of parallel arcs [14]. Here we show
that the k-ADCP-Euler, the k-ADCP on Euler digraphs, is fixed-parameter
tractable, generalizing a result in [14] (Theorem 3.1). k-ADCP-Euler was shown
to be NP-hard by Vygen [19].

Theorem 2. The k-ADCP-Euler is fixed-parameter tractable.

Interestingly, the problem of deciding whether a digraph has k vertex-disjoint
directed cycles, which is W[1]-hard (also easily follows from the results of Slivkins
[14]), remains W[1]-hard on Euler digraphs. Indeed, consider a non-Euler digraph
D and let ν0(D) denote the maximum number of vertex-disjoint directed cycles in
D. Construct a new digraph H from D by adding two new vertices x and y, arcs
xy and yx and the following extra arcs between x and the vertices of D: for each
v ∈ V (D) add max{d−(v)−d+(v), 0} parallel arcs vx and max{d+(v)−d−(v), 0}
parallel arcs xv, where d−(v) and d+(v) are the in-degree and out-degree of v,
respectively. To eliminate parallel arcs, it remains to subdivide all arcs between x
and V (D). Now it is sufficient to observe that H is Euler and ν0(H) = ν0(D)+1.

To prove Theorems 1 and 2 we study the following problem that generalizes
the k-DCPP (in the case when an optimal solution exists in which the number
of times each arc is visited by every closed walk is restricted) and k-ADCP. Let
b ≤ c be non-negative integers.

Let D be a digraph. For a vertex ordering θ = (v1, v2, . . . , vn) of V (D),
the cutwidth of θ is the maximum number of arcs between {v1, . . . , vi} and
{vi+1, . . . vn} over all i ∈ [n]. The cutwidth of D is the minimum cutwidth of
all vertex orderings of V (D).

In Sect. 3 we will prove the following theorem.

Theorem 3. Let (G, k) be an instance of k[b, c]-DWCP and suppose we are
given a vertex ordering θ = (v1, v2, . . . , vn) of G with cutwidth at most p. Then,
in time O∗((c2k)p2k), we can solve (G, k) and find an optimal feasible solution
if one exists.

Note that when c and p are upper-bounded by functions of k, the algorithm of
this theorem is fixed-parameter.
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The paper is organised as follows. In Sect. 2, we prove six lemmas providing
structural results for the k-DCPP and k-ADCP-Euler, which will later be
used to reduce these problems to k[b, c]-DWCP. In Sect. 3, we prove Theorem
3. In Sect. 4, we put the results of the previous two sections together to prove
Theorems 1 and 2. We conclude the paper with brief discussions of open
problems in Sect. 5.

The key results of Sect. 2 are as follows. Lemma 3 shows that, given an Euler
directed graph, we can either find k arc-disjoint cycles or a vertex ordering with
cutwidth bounded by a function of k. This allows us to either solve the k-ADCP-
Euler directly or reduce it to the k[0, 1]-DWCP on a graph of bounded cutwidth,
allowing us to apply Theorem 3. Lemmas 5 and 6 concern the Eulerian graph
GT derived from a solution T to the DCPP on G. Lemma 5 shows that given
k arc-disjoint cycles in GT , we can solve the k-DCPP on G in polynomial time.
Lemma 6 shows that if no arc appears in GT more than k times (in particular
if there are fewer than k arc-disjoint cycles in GT ), there is an optimal solution
for the k-DCPP such that no arc is visited more than k times in total by the k
walks of the solution. This allows us to reduce the k-DCPP to the k[1, k]-DWCP,
and Lemma 3 allows us to bound the cutwidth of the graph. Thus, in this case
we can again apply Theorem 3.

In what follows, all walks and cycles in directed multigraphs are directed.
For a positive integer p, [p] will denote the set {1, 2, . . . , p}. For integers a ≤ b,
[a, b] will denote the set {a, a + 1, . . . , b}. Given a directed graph D, a feedback
vertex set for D is a set S of vertices such that D − S contains no directed
cycles. A feedback arc set for D is a set F of arcs such that D − F contains no
directed cycles. A vertex v of a digraph is balanced if the in-degree of v equals its
out-degree. A digraph D is balanced if every vertex of D is balanced. A directed
graph is Euler if and only if it is connected and balanced [1].

2 Structural Results and Fixed-Parameter Algorithms

The next lemma is a simple sufficient condition for an Euler digraph to contain
k arc-disjoint cycles.

Lemma 1. Every balanced digraph D having a vertex of out-degree at least
k ≥ 1, contains k arc-disjoint cycles that can be found in polynomial time.

Proof. For k = 1, it is true as D has a cycle that can be found in polynomial
time. Let k ≥ 2 and let C be a cycle in D. Observe that after deleting the arcs
of C, D has a vertex of out-degree at least k − 1 and we are done by induction
hypothesis. ��

It follows from Reed et al. [12] and Propositions 13.3.1 and 15.3.1 in [1] that
there is a function f : N → N such that for every k, if a digraph D does
not have k arc-disjoint cycles, then it has a feedback arc set with at most f(k)
arcs. This result can be easily extended to directed multigraphs by subdividing
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parallel arcs. Using this result, Grohe and Grüber [7] showed that there is a non-
decreasing and unbounded function h : N → N and a fixed-parameter algorithm
that for a digraph D returns at least h(k) arc-disjoint cycles if D has at least k
arc-disjoint cycles (k is the parameter).

Let h−1 : N → N be defined by h−1(q) = min{p : h(p) ≥ q}. Since h is a
non-decreasing and unbounded function, h−1 is a non-decreasing and unbounded
function. Combining the above results, we find that for every digraph D, either
the algorithm of Grohe and Grüber returns at least k arc-disjoint cycles, or D
has a feedback arc set of size at most f(h−1(k)).

Chen et al. [3] designed a fixed-parameter algorithm that decides whether a
digraph D contains a feedback vertex set of size k (k is the parameter). As this
is an iterative compression algorithm, it can be easily modified to an algorithm
for finding a minimum feedback vertex set in D (the running time of the latter
algorithm is q(τ0(D))nO(1), where τ0(D) is the minimum size of a feedback vertex
set in D, n = |V (D)| and q(k) = 4kk!). The modified algorithm can be used for
finding a minimum feedback arc set in D as D can be transformed, in polynomial
time, into another digraph H such that D has a feedback arc set of size k if and
only if H has a feedback vertex set of size k, see, e.g., [1] (Proposition 15.3.1).

Lemma 2. There is a function g : N → N and a fixed-parameter algorithm
such that for a directed multigraph D, the algorithm returns either k arc-disjoint
cycles or a feedback arc set of size at most g(k) (here k is the parameter).

Proof. By subdividing arcs, we may assume that D is a digraph, i.e. D has no
parallel arcs. Let κ := k − 1 and perform the following loop: for κ := κ + 1 run
both Grohe-Grüber algorithm and Chen et al. algorithm on D with parameter
κ until we get either at least k arc-disjoint cycles or a feedback arc set of size at
most κ. Note that by [12], the loop will be completed for κ ≤ f(h−1(k)). Thus,
our procedure is a fixed-parameter algorithm with respect to parameter k and
we may set g(k) = f(h−1(k)). ��

Lemma 3. Let g : N → N be the function in Lemma 2. Let D be an Euler
directed multigraph. We can obtain either k arc-disjoint cycles of D or a vertex
ordering of cutwidth at most 2g(k).

Proof. Let us run the procedure of Lemma 2 for D and k. If we get k arc-
disjoint cycles, we are done. Otherwise, we get a feedback arc set F of D such
that |F | ≤ g(k). Then D′ = D − F is an acyclic directed multigraph. We let
θ = (v1, . . . , vn) be an acyclic ordering of D′, i.e., D′ has no arc of the form
vivj , i>j, (it is well-known that such an ordering exists [1]). Now θ is a vertex
ordering for D with at most |F | arcs from {vi+1, . . . , vn} to {v1, . . . , vi} for each
i ∈ [n − 1], and because D is Euler there are the same number of arcs from
{v1, . . . , vi} to {vi+1, . . . , vn} [1, Corollary 1.7.3]. So θ is a vertex ordering with
cutwidth at most 2g(k). ��

In the rest of this section, G = (V,A) is a connected weighted directed graph.
For a solution T = {T1, . . . , Tk} to the k-DCPP on G (k ≥ 1), let GT = (V,AT ),
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where AT is a multiset containing all arcs of A, each as many times as it is
traversed in total by T1 ∪ · · · ∪ Tk.

Lemmas 4 and 5 are similar to two simple results obtained for the k-UCPP
in [8]. Note that given k closed walks which cover all the arcs of a digraph, their
union is a closed walk covering all the arcs and, therefore, it is a solution for the
DCPP. Hence, the following proposition holds.

Lemma 4. The weight of an optimal solution for the k-DCPP on G is not
smaller than the weight of an optimal solution for the DCPP on G.

Lemma 5. Let T be an optimal solution for the DCPP on G. If GT contains
at least k arc-disjoint cycles, then the weight of an optimal solution for the k-
DCPP on G is equal to the weight of an optimal solution of the DCPP on G.
Furthermore if k arc-disjoint cycles in GT are given, then an optimal solution
for the k-DCPP can be found in polynomial time.

Proof. Note that GT is an Euler directed multigraph and so every vertex of GT

is balanced. Let C be any collection of k arc-disjoint cycles in GT . Delete all arcs
of C from GT and observe that every vertex in the remaining directed multigraph
G′ is balanced. Find an optimal DCPP solution for every connected component
of G′ and append each such solution F to a cycle in C which has a common
vertex with F . As a result, in polynomial time, we obtain a collection Q of k
closed walks for the k-DCPP on G of the same weight as T . So Q is optimal by
Lemma 4. ��

For a directed multigraph D, let μD(xy) denote the multiplicity of an arc
xy of D. The multiplicity μ(D) of D is the maximum of the multiplicities of its
arcs. Thus, Lemmas 1 and 5 imply that if μ(GT ) ≥ k for any optimal solution
T of the DCPP on G, then there is an optimal solution of the k-DCPP on G
with weight equal to the weight of GT . The next lemma helps us in the case that
μ(GT ) ≤ k − 1.

Lemma 6. Let T be an optimal solution of the DCPP on G such that μ(GT ) ≤
k − 1. Then there is an optimal solution W for the k-DCPP on G such that
μ(GW ) ≤ k.

Proof. Let T be an optimal solution of DCPP on G and let μ(GT ) ≤ k − 1.
Suppose that there is an optimal solution W of the k-DCPP on G such that
μ(GW ) > k.

Let δ(xy) = μGW
(xy) − μGT

(xy) for each arc xy of G. Consider a directed
multigraph H ′ with the same vertex set as G and in which xy is an arc of
multiplicity |δ(xy)| if it is an arc in G and δ(xy) 	= 0. We say that an arc xy of
H ′ is positive (negative) if δ(xy) > 0 (δ(xy) < 0).

For a digraph D and its vertex x, let N+
D (x) and N−

D (x) denote the sets of
out-neighbors and in-neighbors of x, respectively. As GW and GT are both Euler
graphs, we have that
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∑

y∈N+
H′ (x)

δ(xy) −
∑

y∈N−
H′ (x)

δ(yx)

=
∑

y∈N+
G (x)

(μGW
(xy) − μGT

(xy)) −
∑

y∈N−
G (x)

(μGW
(yx) − μGT

(yx)) = 0

for each vertex x in G. Now create the directed multigraph H by reversing every
negative arc of H ′ (i.e., replace every negative arc uv by the negative arc vu,
keeping the weight of the arcs the same), and observe that H is balanced.

Thus, the arcs of H can be decomposed into a collection C = {C1, . . . , Ct} of
cycles. We define the weight ω(Ci) of a cycle Ci of C as the sum of the weights
of its positive arcs minus the sum of the weights of its negative arcs, and assume
that ω(C1) ≤ · · · ≤ ω(Ct).

Set F0 = GT and for i ∈ [t], construct Fi from Fi−1 as follows: for each
arc xy of Ci, if xy is a positive arc in H add a copy of xy to Fi−1 and if xy
is a negative arc in H remove a copy of yx from Fi−1. Thus F0, F1, . . . , Ft is
a sequence of graphs with F0 = GT , Ft = GW , and Fi is an Euler graph for
each i ∈ [t]. Furthermore, the multiplicity of each arc xy changes by at most 1
between Fi−1 and Fi for each i ∈ [t], and no arc will have its multiplicity both
increase and decrease over the course of F0, F1, . . . , Ft. Therefore, every arc uv
has multiplicity between μGT

(uv) and μGW
(uv) in each Fi, and so each Fi is a

feasible solution for DCPP on G.
Since T is optimal, ω(F0) ≤ ω(F1) = ω(F0) + ω(C1) and so ω(C1) ≥ 0. Due

to the ordering of cycles of C according to their weights, ω(Ci) ≥ 0 for i ∈ [t]
and so ω(Fi) ≥ ω(Fi−1) for i ∈ [t].

Since μ(F0) ≤ k−1 and μ(Ft) > k, and as the multiplicity of each arc changes
by at most 1 each time, there is an index j such that μ(Fj) = k. Then the out-
degree of some vertex of Fj is at least k and so by Lemma 1, Fj has k arc-disjoint
cycles. Similarly to Lemma 5, it is not hard to show that there is a solution U of
k-DCPP on G of weight ω(Fj). Since W is optimal and ω(Fj) ≤ ω(Ft) = ω(GW ),
U is also optimal and we are done. ��

3 Proof of Theorem 3

Theorem 3 is proved by providing a dynamic programming (DP) algorithm of
required complexity. We first make an observation to simplify the DP algorithm.

Lemma 7. Let G = (V,A) define an instance of k[b, c]-DWCP. The instance
has a solution of weight at most ρ if and only if there exist (not necessarily con-
nected) non-empty directed multigraphs G1, . . . , Gk with the following properties:

– All multigraphs G1, . . . , Gk use only arcs of G (each, possibly, multiple times);
– G1 is a balanced multigraph;



Parameterized k-DCPP and k-ADCP on Euler Digraphs 257

– For 2 ≤ i ≤ k, Gi is a balanced digraph (with no parallel arcs);
– Each arc a ∈ A occurs between b and c times in the multigraph2 G1 ∪· · ·∪Gk,

and the total weight of this multigraph is at most ρ.

Proof. On the one hand, let W1, . . . , Wk be a solution to the k[b, c]-DWCP
instance of weight at most ρ, where each Wi is a closed directed walk. For
each i ∈ [k], let Qi be the directed multigraph whose vertices are the vertices
visited by Wi and which contains an arc uv of multiplicity μ if uv is traversed
exactly μ times by Wi. For each i ≥ 2, if Qi has parallel arcs, let Gi be a cycle
in Qi and let Q′

i = Qi \ A(Gi) and, otherwise (i.e., Qi has no parallel arcs), let
Gi = Qi and let Q′

i be empty. Now let G1 = Q1 ∪ Q′
2 ∪ · · · ∪ Q′

k. Observe that
all properties of the lemma are satisfied.

On the other hand, consider directed multigraphs G1, . . . , Gk satisfying the
properties of the lemma. If all multigraphs Gi are connected, then they are all
Euler. Therefore we can find an Euler tour Wi for each graph Gi, which forms the
solution to the k[b, c]-DWCP instance. If b = 0, then we may replace each graph
Gi with a cycle Ci contained in Gi, and produce a solution to k[b, c]-DWCP that
consists of k (not necessarily pairwise arc-disjoint) cycles.

Finally, if not all multigraphs are connected and b > 0, we proceed as follows.
First, select for each multigraph Gi, i > 1 an arbitrary connected component
Hi, and move all other components of Gi to G1, increasing arc multiplicity as
appropriate. Next, as long as G1 remains unconnected, let H be an arbitrary
connected component of G1. As b > 0 and G is connected, some component Hi,
i > 1 must intersect a vertex of H; we may move H to the multigraph Gi and
maintain that Gi is connected. Repeat this until G1 (and hence each multigraph
Gi) is connected. Note that this does not change the arc multiplicity or the
weight of the solution. Now each multigraph Gi is Euler, and again we can find
a solution. ��

Our DP algorithm will calculate a function Φ : A(G)× [k] → [0, c] corresponding
to an optimal solution to the k[b, c]-DWCP on G. More precisely, Φ(a, j) will
be the number of copies of arc a in walk number j, for each a ∈ A(G), j ∈ [k].
The following definitions and the next lemma allow us to express the result of
Lemma 7 in terms of this function.

Given a set of arcs M and a function φ : M × [k] → [0, c], we say that φ is
valid if for each arc a ∈ M , we have that

∑
j∈[k] φ(a, j) ∈ [b, c], and φ(a, j) ≤ 1

for 2 ≤ j ≤ k.
Given a vertex v, we say φ is balanced for v if for each j ∈ [k],

∑

uv∈M

φ(uv, j) =
∑

vu∈M

φ(vu, j)

that is, v is a balanced vertex in the directed mulitgraph containing φ(a, j) copies
of each arc a.
2 Here, as in the proof, the union of multigraphs means that the multiplicity of an arc

in the union equals the sum of multiplicities of this arc in the multigraphs of the
union.
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Lemma 8. Let G = (V,A) define an instance of k[b, c]-DWCP. The instance
has a solution of weight at most ρ if and only if there exists a function Φ :
A × [k] → [0, c] such that

1. Φ is valid;
2. Φ is balanced for each vertex in V ;
3.

∑
a∈A Φ(a, j) > 0 for each j ∈ [k]; and

4.
∑

j∈[k]

∑
a∈A Φ(a, j) · ω(a) ≤ ρ.

Proof. Suppose first there is a solution of weight at most ρ, and let G1, . . . , Gk

be the directed multigraphs given by Lemma 7. Let φ : A × [k] → [0, c] be the
function such that φ(a, j) is the number of copies of an arc a in the graph Gj . As
each arc appears between b and c times in G1 ∪ · · · ∪ Gk and Gj has no parallel
arcs for j ≥ 2, we have that φ is valid. As each multigraph Gj is balanced, we
have that φ is balanced for each vertex. As each multigraph is non-empty, we
have that

∑
a∈A φ(a, j) > 0 for each j ∈ [k]. Finally,

∑
j∈[k]

∑
a∈A φ(a, j) · ω(a)

is exactly the total weight of G1 ∪ · · · ∪ Gk, which is at most ρ. Therefore, φ
satisfies the conditions of the lemma.

Conversely, let φ : A × [k] → [0, c] be a function satisfying the conditions of
the lemma, and for each j ∈ [k], let Gj be the directed multigraph containing
φ(a, j) copies of each arc a. As

∑
a∈A φ(a, j) > 0, each multigraph Gj is non-

empty. By construction, each multigraph Gj uses only arcs of G. As φ is balanced
for each vertex, we have that each multigraph Gj is balanced. As φ is valid, we
have that Gj has no parallel arcs for j ≥ 2, and each arc a ∈ A occurs between
b and c times in G1 ∪ · · · ∪ Gk. Finally, the total weight of G1 ∪ · · · ∪ Gk is∑

j∈[k]

∑
a∈A φ(a, j) · ω(a) ≤ ρ. So by Lemma 7 there is a solution to the k[b, c]-

DWCP instance of weight at most ρ. ��

Let θ = (v1, v2, . . . , vn) be a vertex ordering of a digraph G of cutwidth at most
p. For each i ∈ [n − 1], let Ei be the set of arcs of the form vjvh or vhvj , where
j ≤ i and h > i. In addition let E0 = ∅ and En = ∅. As θ has cutwidth at most
p, |Ei| ≤ p for each i. We refer to E0, E1, . . . , En as the arc bags of θ. For each
i ∈ {0, 1, . . . , n}, let E≤i =

⋃
0≤j≤i Ej .

We now give an intuitive description of the DP algorithm before giving tech-
nical details. Our DP algorithm will process each arc bag of θ in turn, from E0

to En. For each arc bag Ei, we store the weights of a range of partial solutions.
A function φ is used to represent how many times each arc in the bag Ei is used
by each walk in the solution. Finally, a set S provides a guarantee that certain
walks are non-empty. This is to ensure we don’t produce a solution which uses
less than k non-empty walks.

Given i ∈ [n], a valid function φ : Ei × [k] → [0, c] and a subset S of [k], we
define χ(Ei, φ, S) to be the minimum integer ρ for which there exists a function
Φ : E≤i × [k] → [0, c] satisfying the following conditions:

1. Φ is valid;
2. Φ extends φ, i.e. Φ(a, j) = φ(a, j) for each a ∈ Ei, j ∈ [k];
3. For each h ≤ i, Φ is balanced for vh;
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4.
∑

a∈E≤i
Φ(a, j) > 0 for each j ∈ S; and

5.
∑

j∈[k]

∑
a∈E≤i

Φ(a, j) · ω(a) ≤ ρ.

If no such integer ρ exists, then we let χ(Ei, φ, S) = ∞.
Observe that if Φ is a function satisfying the above conditions, then

χ(Ei, φ, S) ≤ ρ. In such a case we will call Φ a witness for χ(Ei, φ, S) ≤ ρ. Thus,
χ(Ei, φ, S) is the minimum ρ such that there exists a witness for χ(Ei, φ, S) ≤ ρ.

Note that if Φ is a witness for χ(Ei, φ, S) ≤ ρ, it may be the case that∑
a∈E≤i

Φ(a, j) > 0 for some j /∈ S. In particular, any witness for χ(Ei, φ, S) ≤ ρ

is also a witness for χ(Ei, φ, S′) ≤ ρ, for any S′ ⊆ S. This allows us to simplify
the recursion step in Lemma 10.

The next lemma follows from Lemma 8 and the fact that En = ∅ and E≤n =
A(G).

Lemma 9. Let φ : En × [k] → [b, c] be the empty function. Then there is a solu-
tion for the k[b, c]-DCPP on G of weight at most ρ if and only if χ(En, φ, [k]) ≤ ρ.

We prove the following lemma in the full version of the paper.

Lemma 10. Consider an arc bag Ei, for i ≥ 1. Let E∗
i = Ei \ Ei−1. For any

valid φ : Ei × [k] → [0, c] and S ⊆ [k], let Y =
∑

j∈S

∑
a∈E∗

i
φ(a, j) · ω(a), and

let S′ = {j ∈ S :
∑

a∈E∗
i

φ(a, j) = 0}.
Then the following recursion holds:

χ(Ei, φ, S) = Y + min
φ′

χ(Ei−1, φ
′, S′)

where the minimum is taken over all valid φ′ : Ei−1 × [k] → [0, c] satisfying the
following conditions:

– For all a ∈ Ei ∩ Ei−1 and all j ∈ [k], φ′(a, j) = φ(a, j); and
– The function φ ∪ φ′ is balanced for vi.

If there is no φ′ satisfying these conditions, then χ(Ei, φ, S) = ∞.
Furthermore, if there exists φ′ satisfying the above conditions and we are

given a witness Φ′ for χ(Ei−1, φ
′, S′) ≤ ρ′, then we can construct a witness for

χ(Ei, φ, S) ≤ Y + ρ′ in polynomial time.

Note that in the above lemma, we do not need to guess the set S′, as any
witness Φ for χ(Ei, φ, S) ≤ ρ must have

∑
a∈E≤i−1

Φ(a, j) > 0 for each j in S′

as defined in the lemma, and if a function is a witness for χ(Ei−1, φ
′, S′′) = ρ′

for any S′′ ⊇ S′ then it is also a witness for χ(Ei−1, φ
′, S′) = ρ′.

We are now ready to prove Theorem 3.

Theorem 3. Let (G, k) be an instance of k[b, c]-DWCP and suppose we are given
a vertex ordering θ = (v1, v2, . . . , vn) of G with cutwidth at most p. Then, in
time O∗((c2k)p2k), we can solve (G, k) and find an optimal feasible solution if
one exists.
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Proof. Our DP algorithm calculates all values χ(Ei, φ, S) with φ(·, j) ≤ 1 for
j > 1 in a bottom-up manner, that is, we only calculate values χ(Ei, ·, ·) after
all values χ(Ej , ·, ·) have been calculated for 0 ≤ j < i (we use the recursion of
Lemma 10).

Each arc bag Ei of θ contains at most p arcs. For each arc a, there are c + 1
options for φ(a, 1) and 2 options for φ(a, j) for each j > 1, i.e., (c+1)2k−1 ≤ c2k

options per arc. Thus there are at most (c2k)p valid choices for φ : Ei × [k] →
[0, c]. As there are 2k choices for a set S ⊆ [k], the total size of each DP table is
O((c2k)p2k).

Since E0 = ∅, the only function φ : E0 × [k] → [0, c] is the empty function.
It is easy to see that χ(E0, φ, S) = 0 if S = ∅, and ∞ otherwise. To speed up the
application of Lemma 10 for Ei, 1 ≤ i ≤ n, we form an intermediate data struc-
ture (e.g. a hash table) T from the data for bag Ei−1. Call two entries χ(Ei, φ, S)
and χ(Ei−1, φ

′, S′) compatible when the conditions in Lemma 10 are met (i.e.,
χ(Ei−1, φ

′, S′) is one of the entries included in the minimisation for χ(Ei, φ, S)).
Let the signature of entry χ(Ei−1, φ

′, S′) be (φ′′, d1, . . . , dk, S′), where φ′′ is
φ′ restricted to arcs Ei−1 ∩ Ei, and where dj =

∑
a∈A+(vi)∩Ei−1

φ′(a, j) −∑
a∈A−(vi)∩Ei−1

φ′(a, j) (i.e. dj is the imbalance at vi in walk number j). Observe
that whether an entry χ(Ei−1, φ

′, S′) is compatible with the entry χ(Ei, φ, S) can
be determined from the signature alone, and that for each χ(Ei, φ, S) there is at
most one compatible signature. Thus, for every occurring signature (φ′′, d1, . . . ,
dk, S′) we let T (φ′′, d1, . . . , dk, S′) contain the minimum value over all entries
χ(Ei−1, ·, ·) with matching signature; this can be computed in a single loop over
the entries χ(Ei−1, ·, ·). Then, for every entry χ(Ei, φ, S) of the new table, we
look in T for the value associated with the compatible signature (and add Y to
it, by Lemma 10). Note that the size of the intermediate table T is immater-
ial; the time taken consists of first one loop through χ(Ei−1, ·, ·), then a single
query to T for each entry in χ(Ei, ·, ·). Thus, the entries χ(Ei, ·, ·) can all be
computed in total time O∗((c2k)p2k). As En = ∅ there is only one function
φ : En × [k] → [b, c]. By Lemma 9, χ(En, φ, [k]) is the minimum total weight of
a solution for k[b, c]-DCPP, and ∞ if there is no such solution. Thus to solve
k[b, c]-DCPP it suffices to check the value of χ(En, φ, [k]).

Thus the algorithm finds the value ρ in time O∗((c2k)p2k).
Using the method of Lemma 10, we can easily find an optimal solution to

k[b, c]-DCPP For each arc bag Ei, φ : Ei × [k] → [0, c], S ⊆ [k], in addition to
calculating the value χ(Ei, φ, S) = ρ, we also calculate a witness for χ(Ei, φ, S) ≤
ρ, in the cases where ρ 	= ∞. Just as we can calculate the values of all χ(Ei, ·, ·)
given the values of all χ(Ei−1, ·, ·), we may construct witnesses for all χ(Ei, ·, ·)
given witnesses for all χ(Ei−1, ·, ·), using an intermediate table T as before. (Note
that when φ : E0 × [k] → [0, c] is the empty function, φ is itself a witness for
χ(E0, φ, ∅) ≤ 0. This gives us the base case in our construction of witnesses.)
Given a witness Φ for χ(En, φ, [k]) ≤ ρ, Φ satisfies the conditions of Lemma 8.
Lemma 8 shows how to construct a solution to k[b, c]-DCPP on G of weight at
most ρ from this witness. ��
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4 Proofs of Theorems 1 and 2

Theorem 2. The k-ADCP-Euler is fixed-parameter tractable.

Proof. Let D be an Euler digraph. We may assume that D has no vertex of
out-degree at least k as otherwise we are done by Lemma 1. By Lemma 3, for D
we can either obtain k arc-disjoint cycles or a vertex ordering θ of cutwidth at
most 2g(k) for some function g : N → N. Note that D is a positive instance of
the k-ADCP-Euler if and only if (D, k) has a finite solution for k[0, 1]-DWCP
(as every closed walk contains a cycle). It remains to observe that the algorithm
of Theorem 3 for the k[0, 1]-DWCP is fixed-parameter when the out-degree of
every vertex of D is upper-bounded by k and the cutwidth of θ is bounded by a
function of k. ��

Theorem 1. The k-DCPP admits a fixed-parameter algorithm.

Proof. Let G = (V,A) be a digraph and let T be an optimal solution of DCPP
on G. Using Lemma 3, we can obtain either k arc-disjoint cycles of D or a vertex
ordering of cutwidth bounded by a function of k. If we get a collection C of k
arc-disjoint cycles in GT , then using C, by Lemma 5, we can solve the k-DCPP
on G in (additional) polynomial time. So now assume we have a vertex ordering
of GT of bounded cutwidth. We may assume that every vertex of GT is of out-
degree at most k−1 (otherwise by Lemma 1, GT has a collection of k arc-disjoint
cycles). Since every vertex of GT is of out-degree at most k − 1, the multiplicity
of GT is at most k − 1. Now Lemma 6 implies that there is an optimal solution
W for the k-DCPP on G such that the multiplicity of GW is at most k. Thus, we
may treat the k-DCPP on G as an instance (G, k) of k[1, k]-DWCP. It remains
to observe that the algorithm of Theorem 3 to solve the k[1, k]-DWCP on G will
be fixed-parameter. ��

5 Discussions

Our algorithms for solving both k-DCPP and k-ADCP on Euler digraphs have
very large running time bounds, mainly because the bound f(h−1(k)) on the
size of feedback arc set is very large. The function f(k) obtained in [12] is a
multiply iterated exponential, where the number of iterations is also a multiply
iterated exponential and, as a result, h−1(k) grows very quickly. So obtaining a
significantly smaller upper bound for f(k) on Euler digraphs would significantly
reduce h−1(k) as well and is of certain interest in itself. In particular, is it true
that f(k) = O(kO(1)) for Euler digraphs? Note that for planar digraphs, f(k) = k
[1, Corollary 15.3.10] and Seymour [13] proved the same result for a wide family
of Euler digraphs. It would also be interesting to check whether the k-DCPP or
k-ADCP admits a polynomial-size kernel.
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Abstract. We introduce the colored decompositions framework, in
which vertices of the graph can be equipped with colors, and in which the
goal is to find decompositions of this graph that do not separate the color
classes. In this paper, we give two linear time algorithms for the colored
modular and split decompositions of graphs, and we apply them to give
linear time algorithms for the modular and split decompositions of tri-
graphs, which improves a result of Thomassé, Trotignon and Vuskovic
(2013). As a byproduct, we introduce the non-separating families that
allow us to prove that those two decompositions have the same properties
on graphs and on trigraphs.

1 Introduction

Modular decomposition has been introduced in [15]. Modules (also known as
homogeneous sets) can help in proving structural results on many classes of
graphs like comparability graphs, perfect graphs, cographs, P4-sparse graphs,
permutation graphs, interval graphs, . . . Modular decomposition is also useful
for solving optimization problems. Homogeneous sets (or at least some par-
ticular homogeneous sets) also appear in some decomposition theorems of tri-
graph classes, for example bull-free trigraphs [7] and claw-free trigraphs [8]. The
split decomposition, also known as 1-join decomposition, has been introduced
in [11]. It is another decomposition that has a large range of applications, from
NP-hard optimization to the recognition of certain classes of graphs such as
distance hereditary graphs, circle graphs and parity graphs. 1-join, or at least
some particular cases of 1-joins also appears in several decomposition theorems,
like for example unichord free graphs [21], claw-free trigraphs [8], or bull-free
trigraphs [7].

In this paper, we introduce a generalization of these decompositions: the col-
ored modular and split decompositions. Here, each vertex of the graph receives
a color, and we want to find decompositions of this graph that do not sepa-
rate the color classes. Both modular and split decomposition trees of graphs can
be computed in linear time [3,10,12,13,18,19]. In the following, we will use these
algorithms as black-boxes in order to derive linear time algorithms to compute
the colored modular and colored split decomposition trees of graphs.

c© Springer International Publishing Switzerland 2014
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Trigraphs have been introduced in [5,6]. They have proven to be a useful tool
to handle recursive graph decompositions. Even though trigraphs have received
more and more attention in the past few years, their algorithmic aspects have not
been completely investigated [9,20]. We will give algorithms for the modular and
split decomposition of trigraphs, using the colored decompositions framework.
We solve here a problem asked in [22], about the complexity of modular decom-
position of trigraphs. These algorithms improve a result of [20] that finds one
minimal homogeneous set of a trigraph in O(n2), while no algorithm explicitly
exists to compute 1-joins of trigraphs. To our knowledge, the complexity of tri-
graphs decomposition problems has only been established in the case of H-joins
in [17], where it is shown that the algorithms of [16] can be applied to trigraphs,
yelding an O(mnh−1) algorithm for any H-join problem, with h = |V (H)|.

In the following, some proofs have been omitted. It is possible to find them
in [17].

2 Definitions and Preliminaries

2.1 Set Families

It has been shown in [1,4,14] that it is very helpful to first study the set families
generated by a given graph decomposition since their structure characterizes
these decompositions. Let us first recall some usual definitions:

Given a ground set V , two sets X,Y � V are said to overlap if X ∩ Y �= ∅,
X\Y �= ∅, and Y \X �= ∅.

Given a ground set V , P ⊆ 2V is said to be a partitive family if ∅, V, {v} ∈ P
for every v ∈ V , and for every X,Y ∈ P such that X overlaps Y , X ∩Y , X ∪Y ,
XΔY , X\Y and Y \X ∈ P.

{P 0, P 1} is a bipartition of a set V if P 0 ∩ P 1 = ∅ and P 0 ∪ P 1 = V . A
bipartition is said to be elementary if it is of the form {{v}, V \v}.

Two bipartitions P1 and P2 are said to be crossing if for every i ∈ {0, 1}, for
every j ∈ {0, 1} P i

1 overlaps P j
2 .

Let B be a family of bipartitions of a ground set V . A bipartition B ∈ B is
said to be strong if no other bipartition B′ ∈ B crosses it.

A family B = {P1 . . . Pm} of bipartitions of a ground set V , with Pi =
{P 0

i , P 1
i }, i = 1, . . . , m is bipartitive if:

1. every elementary bipartition belongs to B
2. for every crossing bipartitions Pi, Pj {P 0

i ∩ P 0
j , P 1

i ∪ P 1
j } ∈ B, {P 0

i ∩ P 1
j , P 1

i ∪
P 0
j } ∈ B, {P 1

i ∩ P 0
j , P 0

i ∪ P 1
j } ∈ B, {P 1

i ∩ P 1
j , P 0

i ∪ P 0
j } ∈ B, and {P 0

i ΔP 0
j , P 0

i

ΔP 1
j } ∈ B

Theorem 1 [11]. The strong members of a bipartitive family B ⊂ 2V can be
represented by a tree T such that the leaves of T are in bijection with V , and
that the nodes of T are labeled prime or complete in such a way that every
member of B is either strong or corresponds to a bipartition of the leaves of the
subtrees rooted at the neighborhood of a complete node.
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Now, let us introduce non-separating families.
Let V be a ground set. Let P ⊆ 2V and C ⊂ 2V be any two families. We define
NS(P, C), the non-separating family of P with respect to C to be {P ∈ P such
that |P | = 1 ∨ (∀C ∈ C, P ∩ C = ∅ ∨ C ⊆ P )}.

We will call the members of NS(P, C) the non-separating members of P with
respect to C.

Let us now study the analogous concept for families of bipartitions:
Let V be a ground set. Let P = {P1 . . . Pm} be any family of bipartitions

of V , and let C =⊂ 2V be any family. We define NS(P, C), the non-separating
family of P with respect to C to be {P = {X1,X2} ∈ P such that |X1| =
1 ∨ |X2| = 1 ∨ (∀C ∈ C, C ⊆ X1 ∨ C ⊆ X2)}.

We will call the members of NS(P, C) the non-separating members of P with
respect to C.

Note that, for non-separating families, and for non-separating families of
bipartitions, it is enough to have C to be partition of V . Indeed, X ∈ NS(P, C)
if and only if X ∈ NS(P, (C\{Ci, Cj}) ∪ {Ci ∪ Cj}) for any two Ci, Cj ∈ C such
that Ci ∩ Cj �= ∅, and X ∈ NS(P, C) if and only if X ∈ NS(P, C ∪ {{x}}), for
every x ∈ V .

Lemma 1. Let V be a ground set. If P ⊆ 2V is a partitive family, then, for
every other family C = {C1 . . . Ck} ⊂ 2V , NS(P, C) is also a partitive family.

Proof. Let X and Y be two overlapping members of NS(P, C). We want to show
that X ∩ Y , X ∪ Y , XΔY , X\Y and Y \X belong to NS(P, C). By definition,
X and Y are also members of P, and since P is a partitive family, X ∩ Y ,
X ∪ Y , XΔY , X\Y and Y \X belong to P. Clearly, if X and Y are members
of NS(P, C), X ∪ Y ∈ NS(P, C). Now, we only need to show that X ∩ Y and
X\Y belong to NS(P, C). Assume, by contradiction, that X ∩Y /∈ NS(P, C) or
X\Y /∈ NS(P, C). By definition, there exists Ci ∈ C such that Ci ∩ (X ∩Y ) �= ∅

and Ci ∩ (X\Y ) �= ∅, but in this case, Ci overlaps or strictly contains Y , a
contradiction.

Similarly, for families of bipartitions, we have:

Lemma 2. Let V be a ground set. Let P = {P1 . . . Pm} be any family of biparti-
tions of V . If P is a bipartitive family, then, for every family C = {C1 . . . Ck} ⊂
2V , NS(P, C) is also a bipartitive family.

Proof. Let Pi = {P 0
i , P 1

i } and Pj = {P 0
j , P 1

j } be two crossing members of
NS(P, C). By definition, Pi and Pj are also members of P, and since P is a
bipartitive family, we have {P 0

i ∩ P 0
j , P 1

i ∪ P 1
j } ∈ P, {P 0

i ∩ P 1
j , P 1

i ∪ P 0
j } ∈ P,

{P 1
i ∩ P 0

j , P 0
i ∪ P 1

j } ∈ P, {P 1
i ∩ P 1

j , P 0
i ∪ P 0

j } ∈ P {P 0
i ΔP 0

j , P 0
i ΔP 1

j } ∈ P. Now,
if no member of C overlaps or strictly contains P k

i ∩ P l
j for all k, l ∈ {0, 1}, all

the above bipartitions belong to NS(P, C).
Assume, by contradiction, and without loss of generality, that Ch overlaps or

contains strictly P 0
i ∩P 0

j . In both cases, there exists c ∈ Ch such that c /∈ P 0
i ∩P 0

j

and d ∈ Ch such that d ∈ P 0
i ∩P 0

j . Now, either c ∈ P 1
i , which contradicts the fact

that Pi ∈ NS(P, C), or c ∈ P 1
j , which contradicts the fact that Pj ∈ NS(P, C).
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Let us now explain how to compute the colored modular and split decompo-
sitions trees.

2.2 Modular Decomposition

Let us now recall some basic definitions of modular decomposition of graphs.
Let G = (V,E) be a graph. A set M ⊆ V is a module of G if and only if for

every vertex x ∈ V \M , for every two vertices u, v ∈ M , xu ∈ E if and only if
xv ∈ E.

A module M of a graph G = (V,E) is said to be non-trivial or proper if
|M | ≥ 2 and |V \M | ≥ 1. A graph is said to be prime for modular decomposition
if it contains only trivial modules.

A module M of a graph G = (V,E) is said to be strong if no other module
of G overlaps it. A module (resp. strong module) is said to be maximal if the
only module (resp. strong module) in which it is strictly contained is V .

Theorem 2 [15]. Let G = (V,E) be a graph, exactly one of the following holds:

1. G has only one vertex.
2. G is disconnected, the maximal strong modules of G are its connected compo-

nents.
3. G is disconnected, the maximal strong modules of G are the connected com-

ponents of G.
4. both G and G are connected, the maximal strong modules of G are the maximal

modules of G.

2.3 Split Decomposition

A well-known generalization of the modular decomposition is the split decom-
position defined in [11]. Let us recall the main definitions.

A split (1-join) of a connected graph G = (V,E) is a partition of V into 4
sets V1, V2, V3, V4 such that G contains all possible edges between V2 and V3 and
no other edges between X1 = V1 ∪ V2 and X2 = V3 ∪ V4. We say that {X1,X2}
induces a split of G.

A split S = {X1,X2} is said to be proper if S is not elementary.

Theorem 3 [14]. The family S of all splits of a graph is a bipartitive family.

Theorem 4 [14]. The family of strong splits of a graph G can be represented
by a tree T such that the leaves of T are in bijection with V , and that the nodes
of T are labeled prime, clique or star such that every split of G is either strong or
corresponds to a bipartition of the leaves of the subtrees rooted at the neighborhood
of a clique or a star node.
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3 Colored Modular Decomposition

In the following, G = (V,E) will denote a graph with |V | = n vertices, |E| = m
edges.

Definition 1. Let G = (V,E) be a graph, and C = {C1 . . . Ck} ⊂ 2V be a
partition of V . Let M be the family of all modules of G. A module M of G is
said to be a colored module of (G, C) if M ∈ NS(M, C).

The problem we want to solve is the following:

Colored modular decomposition:
Input: A graph G = (V,E), and a partition C = {C1 . . . Ck} of V .
Result: All colored modules of (G, C), represented by a modular decom
position tree.

To do so, we will use the following gadget described in Fig. 1:
Given X = {x1 . . . xl} ⊂ V , we build the modular-unsplittable gadget asso-

ciated to X by turning G[X] into a stable set, then, for every xj , start by adding
x′
j , x

p
j , and xp

j
′, 3 non-adjacent twins of xj . Then for every such 4 vertices, add

the 3 edges xp
jxj , xjx

′
j , x

′
jx

p
j
′. Finally, add an edge between x′

j and xj+1 for every
j ≤ l − 1.

Let us call {x′
i, x

p
i , x

p
i
′} for all xi the auxiliary vertices, and let AX(xi) =

{x′
i, x

p
i , x

p
i
′} if such vertices exists, or ∅ otherwise.

We define the graph Gmod associated to the graph G and the partition C to
be the graph G in which every Ci ∈ C such that |Ci| ≥ 2 has been replaced by
its modular-unsplittable gadget.

For every Ci = {x1 . . . xl} of C, V mod(Ci) = Ci ∪ AX(x1) · · · ∪ AX(xl).

Fig. 1. Gmod[V mod(Ci)], with |Ci| = k

In order to prove that the above transformation preserves the colored modules
of G, we will need the following lemma:

Lemma 3. Let (G = (V,E), C = {C1 . . . Ck}) be an instance of the colored
modular decomposition problem. Let Ci be any member of C. For every non-
trivial module M of Gmod, either V mod(Ci) ⊆ M or V mod(Ci) ∩ M = ∅.

Proof. This lemma holds for any Ci such that |Ci| = 1. Let us now consider that
|Ci| ≥ 2.
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First, we show that no proper module of Gmod can contain exactly one vertex
of V mod(Ci). Assume, by contradiction, that there exists a non-trivial module M
of Gmod such that M ∩ V mod(Ci) = x. By construction, there exists x′ and xp′,
two vertices of V mod(Ci) such that xx′ ∈ E, xxp′ /∈ E, and N(x)\V mod(Ci) =
N(x′)\V mod(Ci) = N(xp′)\V mod(Ci). Since M is non-trivial, there exists at
least one other vertex y ∈ M . Since M is a module of Gmod, and since xx′ ∈ E,
x′y ∈ E. But now, since N(x′)\V mod(Ci) = N(xp′)\V mod(Ci), yxp′ ∈ E, and
since xxp′ /∈ E, M is not a module of Gmod, a contradiction.

Now, assume by contradiction that M is a non-trivial module of Gmod such
that M ∩V mod(Ci) �= ∅ and V mod(Ci) �⊂ M . Since M contains at least 2 vertices
of V mod(Ci), every pendant vertex of Gmod[V mod(Ci)] either belongs to M , or is
adjacent to no vertex of M . Since every non-pendant vertex of Gmod[V mod(Ci)] is
adjacent to a pendant vertex of Gmod[V mod(Ci)], M contains at least one such
pendant vertex p. Let x be the only neighbor of p in Gmod[V mod(Ci)]. Since
Gmod[V mod(Ci)] is connected, any cut of Gmod[V mod(Ci)] contains at least one
edge. As a consequence, there is at least one vertex of V mod(Ci)\M that is
adjacent to every vertex of M , and since p ∈ M , this vertex is x. Since M
contains at least 2 vertices of V mod(Ci), and since x is adjacent to every vertex
of M , M contains at least one other neighbor x′ of x. Let p′ be the pendant
vertex of Gmod[V mod(Ci)] that is adjacent to x′. Since p′x′ ∈ E and p′p /∈ E,
p′ must belong to M , but now x is no longer adjacent to every vertex of M , a
contradiction.

We are now ready to prove the main lemma of this section:

Lemma 4. Let (G = (V,E), C = {C1 . . . Ck}) be an instance of the colored
modular decomposition problem. Let X be any subset of V , and let CX

1 . . . CX
l

be the members of C that are contained in X. X is a non-trivial, colored module
of G, C if and only if X+ = (X\(∪l

i=1C
X
i )) ∪ (∪l

i=1V
mod(Ci)) is a non-trivial

module of Gmod.

Proof. Assume that X ⊂ V is a non-trivial, colored module of G, and let
CX

1 . . . CX
l be the members of C that are contained in X. (By definition, no

Ci ∈ C overlaps or strictly contains X). Consider the set X+ defined as above.
Since X is a module of G, by definition of Gmod, for every v ∈ V (G)\X, for
every x, y ∈ X, xv ∈ E(Gmod) if and only if yv ∈ E(Gmod). Moreover, by
construction, we have that for every Ci ∈ C, for every x ∈ Ci, for every
y ∈ AX(x), NGmod(x)\V mod(Ci) = NGmod(y)\V mod(Ci), and so we have that
for every v ∈ V (Gmod)\X+, for every x, y ∈ X+, xv ∈ E(Gmod) if and only if
yv ∈ E(Gmod), i.e. X+ is a module of Gmod.

Conversely, assume that some set X+ ⊂ V (Gmod) is a non-trivial module of
Gmod. Consider the set X = (X+\(∪l

i=1V
mod(Ci))∪(∪l

i=1C
X
i )). By Lemma 3, we

know that no V mod(Ci) overlaps or strictly contains X+. Moreover, we have that
X+ ∩ V (G) is a module of Gmod[V (G)]. But by construction, X = X+ ∩ V (G),
so X is a module of Gmod[V (G)]. And since by construction, the only difference
between G and the graph Gmod[V (G)] are edges and non-edges that are either
contained inside of X, or contained in V (G)\X, X is a module of G. Since no
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singleton of C has been replaced by its modular-unsplittable gadget in Gmod, X
is indeed non-trivial.

Theorem 5. Given (G = (V,E), C = {C1 . . . Ck}), an instance of the colored
modular decomposition problem, there exists a O(n + m) time algorithm that
computes the colored modular decomposition tree of G.

Proof. The graph Gmod can be computed in linear time. Indeed, it is possible
to remove all the edges that are contained in any Ci in linear time. Adding a
twin to a vertex x can be done in O(d(x)) time, and there are a constant number
of twins to add to each vertex. It is possible to add an edge in constant time,
and there are at most O(n) edges to add in order to build the inner structure of
the graphs induced by all V mod(Ci).

Gmod contains at most 4n vertices, and at most 4m+n edges, so the modular
decomposition tree of Gmod can be computed in O(n + m), using for example,
algorithms from [10,18,19].

Given the modular decomposition tree of Gmod, it is possible to compute the
colored modular decomposition tree of G in linear time, by removing the leaves
corresponding to the auxiliary vertices.

Correctness of this procedure follows from Lemma 4.

4 Colored Split Decomposition

We will apply the same ideas to the split decomposition. We leave some of the
proofs in appendix, as this section is quite similar to the previous one.

Definition 2. Let G = (V,E) be a graph, and C = {C1 . . . Ck} ⊂ 2V be a
partition of V . Let S be the family of all split of G. A split S of G is said to be
a colored split of (G, C) if S ∈ NS(S, C).

The problem we want to solve is the following:

Colored split decomposition:
Input: A graph G = (V,E), and a partition C = {C1 . . . Ck} of V .
Result: All colored splits of (G, C), represented by a split decomposition tree.

To do so, we will use the following gadget as described in Fig. 2:
Given C = {x1 . . . xl} ⊂ V , we build the split-unsplittable gadget associated

to X by turning G[X] into a stable set, then, for every xj , start by adding
x1
j , . . . x

5
j , 5 non-adjacent twins of xj . Then for every such 6 vertices, add 6 edges

such that xi, x
1
i , . . . x

5
i induce a C6. Finally, add an edge between xi and x3

i+1

for every i ≤ k − 1, and one more between xk and x3
1.

Let us call {x1
i , . . . x

5
i } for all xi the auxiliary vertices, and let AX(xi) =

{x1
i , . . . x

5
i } if such vertices exists, or ∅ otherwise.

We define the graph Gs associated to the graph G and the partition C to be
the graph G in which every Ci ∈ C such that |Ci| ≥ 2 has been replaced by its
split-unsplittable gadget.

For every Ci = {x1 . . . xl} of C, V s(Ci) = Ci ∪ AX(x1) · · · ∪ AX(xl).
We invite the reader to consult the proofs of the 3 following claims in the
appendix.
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Fig. 2. Gs[V s(Ci)], with |Ci| = k

Lemma 5. Let G = (V,E) be a graph, and C = {C1 . . . Ck} ⊂ 2V be a partition
of V . For every proper split S = {X1,X2} of Gs, either V s(Ci) ⊆ X1, or
V s(Ci) ⊆ X2.

Lemma 6. Let G = (V,E) be a graph, and C = {C1 . . . Ck} ⊂ 2V be a partition
of V . Let {X1,X2} be any bipartition of V , let C1

1 . . . C1
l be the members of C that

are contained in X1, and let C2
1 . . . C2

m be the members of C that are contained in
X2. The bipartition {X1,X2} induces a proper colored split of G, C if and only if
{X+

1 ,X+
2 } = {(X1\(∪l

i=1C
1
i )) ∪ (∪l

i=1V
s(C1

i )), (X2\(∪m
i=1C

2
i )) ∪ (∪m

i=1V
s(C2

i ))}
induces a proper split of Gs.

Theorem 6. Given a graph G, there exists a O(n + m) time algorithm that
computes its colored split decomposition tree.

5 Trigraphs

In this section, we will apply the colored decomposition framework to produce
algorithms for the modular and split decomposition of trigraphs. These objects
are slightly more general than graphs since, informally, they are graphs in which
some edges are left undecided. Those edges are often called switchable pairs.

Definition 3. A trigraph G is an ordered pair (V,Θ), where V is a finite set,
called the vertex-set of G, and Θ : V × V → {−1, 0, 1} is a map, called the
adjacency function of G, such that for all u, v ∈ V, θ(u, v) = θ(v, u).

We will consider loopless trigraphs, i.e. for all u ∈ V, θ(u, u) = −1.

Definition 4. Let G = (V,Θ) be a trigraph. A graph Gd = (V,E) is said to be
a realization of G if for every two vertices u, v ∈ V , Θ(u, v) = 1 → uv ∈ E, and
Θ(u, v) = −1 → uv /∈ E.

We generalize to trigraphs a few concepts of graph theory:

Definition 5. The complement of a trigraph G = (V,Θ) is the trigraph G =
(V,Θ) where Θ(x, y) = −Θ(x, y).
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Definition 6. Let G = (V,Θ) be a trigraph. We say that two vertices x and y are
semiadjacent (resp. stronglyadjacent, 0adjacent) if Θ(x, y) �= −1 (Θ(x, y) = 1,
Θ(x, y) = 0). As usual, the semiconnected components ( stronglyconnected com-
ponents, 0connected components) of G are the equivalence classes of the tran-
sitive closure of the semiadjacency (strongadjacency, 0adjacency) relation in G,
and we say that G is semiconnected ( stronglyconnected, 0connected) if all its
vertices belong to the same semiconnected (stronglyconnected, 0connected) com-
ponent.

Definition 7. Let G = (V,Θ) be a trigraph. We say that xy is a strong-edge
(resp.strong-non-edge, weak edge or switchable pair), if Θ(x, y) = 1 (Θ(x, y) =
−1, Θ(x, y) = 0).

In the following, G = (V,Θ) will denote a trigraph with |V | = n vertices, m1 =
|{uv|Θ(u, v) = 1}|, and m0 = |{uv|Θ(u, v) = 0}|. We will assume all trigraphs
are given by two adjacency lists, one containing the edges between the pairs u, v
such that Θ(u, v) = 1, and one containing the edges between the pairs u, v such
that Θ(u, v) = 0.

5.1 Modular Decomposition of Trigraphs

First, let us give the related definitions.

Definition 8. Let G = (V,Θ) be a trigraph. A set M ⊆ V is a module of G if
and only if M is a module of every realization of G.

It should be noticed that if we change the definition to : “there exists at least
one realization for which M is a module”, then we are back to the homogeneous
Set sandwich problem, as studied in [2].

Note that the definitions of proper, maximal, and strong modules, as well as
the definition of a prime graph can be applied to trigraphs without modifications.

We can now express this definition in terms of non-separating families:

Lemma 7. Let G = (V,Θ) be a trigraph. A set M ⊆ V is a module of G if and
only if M is a colored module of (Gd, C0), where Gd is any realization of G, and
C0 is the set of all 0connected components of G.

Proof. First, we show that for every non-trivial module M of G, for every Ci ∈
C0, either Ci ⊆ M or Ci∩M = ∅. Assume, by contradiction that M is a module
of every realization of G, and that there exists x ∈ V \M and y ∈ M such that
Θ(x, y) = 0. Let z be any other vertex of M . Without loss of generality, consider
Gd = (V,E), a realization of G in which xy ∈ E. Since M is a module of Gd, we
have xz ∈ E. Now, consider G′

d = (V,E′ = E\{xy}) G′
d is still a realization of

G, but M is no longer a module of G′
d since xy /∈ E′ and xz ∈ E′.

Conversely, assume that M is a non-trivial and colored module of (Gd, C0),
where Gd is any realization of G, and C0 is the set of all 0connected components
of G. Let G′

d = (V,E′) be any other realization of G. By assumption, for every
x ∈ V \M , for every y ∈ M , Θ(x, y) �= 0, but now, by definition of a realization,
we have that for every x ∈ V \M , for every y ∈ M , xy ∈ E if and only if xy ∈ E′,
and since M was a module of Gd (by assumption) M is also a module of G′

d.
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Corollary 1. The modular decomposition tree of a trigraph G = (V,Θ) can be
computed in O(n + m1 + m0)-time.

Proof. The 0connected components of G can be computed in O(n + m0). We
can build a realization of G in O(n + m1), and then, using Theorem 5, we can
compute the modular decomposition tree of G in O(n + m0 + m1).

Now, let us prove that this decomposition has the same properties on graphs
and on trigraphs. From Lemmas 1 and 7, we have:

Corollary 2. The set of all modules of a trigraph forms a partitive family.

Theorem 7. Let G = (V,Θ) be a trigraph. Exactly one of the following is true:

1. G has only one vertex.
2. G is not semiconnected, the maximal strong modules of G are its semicon-

nected components.
3. G is not semiconnected, the maximal strong modules of G are the semicon-

nected components of G.
4. G contains more than one vertex, and both G and G are semiconnected, the

maximal strong modules of G are the maximal modules of G.

The proof of this theorem relies heavily on Corollary 2 and is left in appendix.

5.2 Split Decomposition of Trigraphs

Definition 9. A bipartition of the vertices of a stronglyconnected trigraph G =
(V,Θ) into X1 and X2 induces a split of G if and only if {X1,X2} induces a
split of every realization of G.

Here again, we can reformulate this statement in term of non-separating families.
We leave the proof of the equivalence in appendix.

Lemma 8. Let G = (V,Θ) be a strongly connected trigraph. A bipartition S =
{X1,X2} of V induces a split of G if and only if S is a colored split of (Gd, C0),
where Gd is any realization of G, and C0 is the set of all 0connected components
of G.

Corollary 3. Given a trigraph G, there exists a O(n+m0+m1) time algorithm
that computes its split decomposition tree.

Proof. The 0connected components of G can be computed in O(n + m0). We
can build a realization of G in O(n + m1), and then, using Theorem 6, we can
compute the split decomposition tree of G in O(n + m0 + m1).

Correctness of this procedure follows from Lemma 6.

And finally, we show that the split decomposition has the same behavior on
graphs and trigraphs. From Lemmas 2 and 8, we have:

Corollary 4. The family of all splits of a trigraph is a bipartitive family.
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From Theorem 1, we have:

Corollary 5. [11] The family of strong splits of a trigraph G can be represented
by a tree with nodes labeled prime, clique or star such that every split of G is
either strong or corresponds to a bipartition of the neighborhood of a clique or a
star node.

Proof. We only need to show that the trigraphs G such that any bipartition
of V (G) induces a split are stars and cliques. Indeed, any trigraph with this
property cannot contain a 0edge, and so by Theorem 4, these are exactly the
stars and the cliques.

6 Conclusion and Perspectives

We gave two algorithms for usual decompositions of trigraphs, with the same
running time than their graph counterparts. As a byproduct, we now have a
better understanding of the modular and split decomposition of trigraphs, as we
were able to prove that those decompositions have the same properties on both
objects.

There is still much to be done concerning the algorithmic of trigraphs. Some
interesting problems could be the skew cutset or the clique cutset problem.
It would also be nice to know whether or not there exists a problem that is
polynomial on graphs and NP-complete on trigraphs. Given the results of this
paper and of [17], let us conjecture that the complexity of an algorithm that
solves a problem on a graph and on a trigraph is the same.
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Abstract. The Traveling Salesman Problem is one of the best studied
NP-hard problems in combinatorial optimization. Powerful methods have
been developed over the last 60 years to find optimum solutions to large
TSP instances. The largest TSP instance so far that has been solved opti-
mally has 85,900 vertices. Its solution required more than 136 years of
total CPU time using the branch-and-cut based Concorde TSP code [1].
In this paper we present graph theoretic results that allow to prove that
some edges of a TSP instance cannot occur in any optimum TSP tour.
Based on these results we propose a combinatorial algorithm to identify
such edges. The runtime of the main part of our algorithm is O(n2 logn)
for an n-vertex TSP instance. By combining our approach with the Con-
corde TSP solver we are able to solve a large TSPLIB instance more
than 11 times faster than Concorde alone.

Keywords: Traveling salesman problem · Exact algorithm

1 Introduction

An instance of the Traveling Salesman Problem (TSP for short) consists of a
complete graph on a vertex set V together with a symmetric length function
l : V ×V → R+. A tour T is a cycle that contains each vertex of the graph exactly
once. The length of a tour T with edge set E(T ) is defined as

∑
e∈E(T ) l(e).

A tour T for a TSP instance is called optimum if no other tour for this instance
has smaller length. Finding such an optimum TSP tour is a well known NP-hard
problem [5].

The Traveling Salesman Problem is one of the best studied problems in
combinatorial optimization. Many exact and approximate algorithms have been
developed over the last 60 years. In this paper we present several theoretical
results that allow us to eliminate edges from a TSP instance that provably can-
not be contained in any optimum TSP tour. Based on these results we present a
combinatorial algorithm that identifies such edges. As the runtime of our main
algorithm is only O(n2 log n) for an n-vertex instance, it can be used as a pre-
processing step to other TSP algorithms. On large instances our algorithm can
speed up the runtime of existing exact TSP algorithms significantly. It also can
improve the performance of heuristic algorithms for the TSP. We present exam-
ples for both applications in Sect. 7. For a good description of the state of the
art in algorithms for the Traveling Salesman Problem see [1].
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 275–286, 2014.
DOI: 10.1007/978-3-319-12340-0 23
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In this paper we present our results for the 2-dimensional Euclidean TSP
instances, i.e., instances where the vertices are points in the Euclidean plane
and the length of an edge is the (rounded) Euclidean distance between the two
corresponding points. However, most of our results hold for arbitrary symmetric
TSP instances that even do not need to be metric.

The idea of eliminating edges that cannot occur in any optimum TSP tour
already appears in the seminal paper of Dantzig, Fulkerson, and Johnson [4].
Some additional results on eliminating such edges are proved in [10]. However,
these results are useful only in combination with branch-and-bound based TSP
algorithms. On the complete graph of a TSP instance almost no edge can be
eliminated using these results.

Our Contribution. We present several results that allow to prove that certain
edges in a TSP instance cannot belong to any optimum TSP tour. The Main Edge
Elimination Theorem that we prove in Sect. 3, allows to reduce the n(n − 1)/2
edges of an n-vertex TSP instance to about 30n edges or less for the TSPLIB [11]
instances. In Sect. 5 we show how a weaker form of the Theorem can be applied
in constant time per edge. This reduces the running time of this step to a few
hours for instances containing around 100,000 vertices. Some additional methods
for eliminating edges are presented in Sect. 4. We combine these with a backtrack
search which we present in Sect. 6. This will allow us to reduce the number of
edges in the TSPLIB instances to about 5n edges. The total runtime on 100,000
point instances is less than three days on a single processor. Our algorithm can
be highly parallelized. For every edge an independent job can be run.

Section 7 contains the results of our algorithm on TSPLIB [11] instances as
well as on a 100,000 vertex instance. Here we also show how our approach can
speed up finding optimum solutions to large TSP instances significantly. The
TSP solver Concorde [1] is the fastest available algorithm to solve large TSP
instances optimally. Concorde needs more than 199 CPU days for the TSPLIB
instance d2103. After running our edge elimination algorithm for 2 CPU days
the runtime of Concorde decreases to slightly more than 16 CPU days. The total
speed up we obtain is more than a factor of 11.

We also report two other successful applications of the edge elimination app-
roach in Sect. 7.

2 Notation and Preliminaries

Most of our results do not depend on the type of TSP instance used. Some results
can be improved in the Euclidean case. For convenience in this paper we restrict
ourselves to Euclidean TSP instances. More precisely we use the discretized
Euclidean distance function EUC 2D from the well known TSPLIB [11]. The
vertices of the instance, also called points, lie in the 2-dimensional Euclidean
plane. The length l(p, q) of an edge between two points p and q, simply denoted
by pq, results from their Euclidean distance rounded to the nearest integer. Note
that the EUC 2D distance function is not metric and that an optimum TSP tour
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for such an instance may contain two crossing edges, which is not possible for
purely Euclidean instances. To avoid some degenerate cases we assume in this
paper that a TSP instance contains at least four vertices. Edges that do not
belong to any optimum TSP tour will be called useless. An instance (V,E)
consists of a set of points V and edges E, where E contains all edges of the
complete graph on V except some useless edges. This implies that all optimum
TSP tours on the complete graph on V are contained in the graph (V,E). Our
edge elimination algorithm will start with some TSP instance (V,E) and return
an instance (V,E′) such that E′ is a subset of E and contains all optimum TSP
tours.

Currently, the most successful heuristic TSP algorithms [7] are based on the
concept of k-opt moves. Given a TSP tour a k-opt move makes local changes to
the tour by replacing k edges of the tour by k other edges. For a k-opt move we
require, that after the replacement of the k edges the new subgraph is 2-regular.
If the new subgraph is connected and thus is a tour we call the k-opt move valid.
If a tour T allows a valid k-opt move resulting in a shorter tour, then T cannot
be an optimum tour. This simple observation is the core of our algorithm for
proving the existence of useless edges.

Let pq and xy be two edges in a TSP instance. We call pq and xy compatible,
denoted by pq ∼ xy, if

max (l(px) + l(qy), l(py) + l(qx)) ≥ l(pq) + l(xy). (1)

Otherwise pq and xy are called incompatible. Note that two edges that have at
least one vertex in common are always compatible.

Lemma 1. Any two edges in an optimum TSP tour are compatible.

Proof. Assume pq and xy are two incompatible edges in an optimum TSP tour
T . By (1) we have l(px)+ l(qy) < l(pq)+ l(xy) and l(py)+ l(qx) < l(pq)+ l(xy).
Thus T can be improved by a 2-opt move, that replaces edges pq and xy by
either px and qy or by py and qx. One of these two 2-opt moves must be valid.
This contradicts the assumption that T is an optimum TSP tour. ��

For k > 2 we call a set of k edges k-incompatible, if they cannot belong to
the same optimum TSP tour.

3 The Main Edge Elimination Theorem

To be able to formulate our Main Edge Elimination Theorem, we need to intro-
duce the concept of potential points first. Given a TSP instance (V,E), an edge
pq, a point r and disjoint sets R1, R2 ⊂ V . We call r potential with respect to
pq and R1 and R2, if for every optimum tour containing pq, one neighbor of r
lies in R1 and the other neighbor lies in R2. We say that the sets R1 and R2

certify the potentiality of r. For r we define the set of compatible neighbors with
respect to pq as

Rr
pq := {x ∈ V | rx ∈ E ∧ pq ∼ rx}. (2)

A naive approach to certify potentiality is the following lemma.
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Lemma 2. Let (V,E) be a TSP instance, pq ∈ E and r ∈ V \ {p, q}. Let
R1, R2 ⊆ V with R1 ∩ R2 = ∅ and Rr

pq ⊆ R1 ∪ R2. If for i ∈ {1, 2}:

l(pq) + l(rx) + l(ry) > l(pr) + l(rq) + l(xy) for all x, y ∈ Ri, (3)

then R1 and R2 certify the potentiality of r.

Proof. Assume that pq is contained in an optimum tour T . Let rx, ry ∈ T . Then
x, y ∈ Rr

pq and hence x, y ∈ R1 ∪ R2. Assume that x, y ∈ Ri for i ∈ {1, 2}. Then
replacing the edges pq, rx and ry by the edges pr, rq and xy is a valid 3-opt
move. By inequality (3) this 3-opt move yields a shorter tour, contradicting the
optimality of T . ��

In Sect. 5 we will develop a method that certifies the potentiality of a point
in constant time.

Theorem 3 (Main Edge Elimination). Let (V,E) be a TSP instance and
pq ∈ E. Let r and s be two different potential points with respect to pq with
covering R1 and R2 respectively S1 and S2. Let r �∈ S1 ∪ S2 and s �∈ R1 ∪ R2. If

l(pq) − l(rs) + min
z∈S1

{l(sz) − l(pz)} + min
y∈R2

{l(ry) − l(qy)} > 0 (4)

and

l(pq) − l(rs) + min
x∈R1

{l(rx) − l(px)} + min
w∈S2

{l(sw) − l(qw)} > 0, (5)

then the edge pq is useless.

Proof. Assume that the edge pq is contained in an optimum TSP tour T . Let
rx, ry, sz, sw ∈ T be the incident edges of r and s. We may assume that the
vertices x, y, z, and w are labeled in such a way that x ∈ R1, y ∈ R2, z ∈ S1,
and w ∈ S2. As r and s are potential, we have r, s �∈ {p, q}. By assumption we
have rs �∈ T , making the four edges rx, ry, sz and sw distinct.

Now there exist two possible 3-opt moves as shown in Fig. 1. The first is to
replace pq, rx, and sw with px, rs, and qw. The second is to replace pq, ry, and
sz with pz, rs, and qy. It is easy to verify that for every tour containing the
edges pq, rx, ry, sz and sw, one of these two 3-opt moves must be valid.

The two 3-opt moves are decreasing the length of the tour T by

l(pq) − l(rs) + l(rx) − l(px) + l(sw) − l(qw), (6)
l(pq) − l(rs) + l(ry) − l(pz) + l(sz) − l(qy) respectively. (7)

By inequalities (4) and (5), both terms are strictly positive. Since one of these 3-
opt moves is valid, this yields a tour shorter than T , contradicting the optimality
of T . ��
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Fig. 1. Two possible 3-opt moves that imply that the edge pq is useless.

4 The Close Point Elimination Theorems

The Main Edge Elimination Theorem will be our primary tool to prove that an
edge in a TSP instance is useless. As soon as many edges of a TSP instance are
known to be useless other methods can be applied. In this section we present
our so called Close Point Elimination. When applied to the complete graph of a
TSP instance it will eliminate almost no edge. However, in combination with the
Main Edge Elimination Theorem it will allow to identify additional useless edges.
Starting with an edge pq and a vertex r, the idea is to show that no outgoing
edge pair of r can be in the same optimum tour together with the edge pq.

Theorem 4 (Close Point Elimination). Let (V,E) be a TSP instance and
pq ∈ E. Let r ∈ V \ {p, q}. If for all x, y ∈ Rr

pq with {x, y} �= {p, q} the edges pq,
rx and ry are 3-incompatible, then the edge pq is useless.

Proof. Assume that an optimum tour T contains the edge pq. Let rx and ry
be the two edges in T that are incident with r. Since T is a tour, we have
{p, q} �= {x, y}. By Lemma 1 we have pq ∼ rx and pq ∼ ry. Hence x, y ∈
Rr

pq. The condition of the theorem gives that pq, rx and ry are 3-incompatible,
contradicting the optimality of the tour. ��

A straight forward way to show that three edges for which two have a common
vertex are 3-incompatible, is to use a simple 3-opt move.

Lemma 5 Let pq, rx and ry be three edges of a TSP instance. If

l(xy) + l(pr) + l(qr) < l(pq) + l(rx) + l(ry) (8)

the three edges are 3-incompatible.

The proof is obvious. For the degenerate case with x = p we obtain a stronger
result by using the notion of metric excess. The metric excess mpq(z) of a vertex
z with respect to an edge pq corresponds to the minimum length difference of a
3-opt move which shortcuts the eulerian walk which is obtained when the edge
pq is inserted in a tour by adding the two edges zp and zq. It is defined as

mpq(z) = min
x,y∈N(z)\{p,q}

max {l(xz) + l(zp) − l(xp), l(yz) + l(zp) − l(yp),

l(xz) + l(zq) − l(xq), l(yz) + l(zq) − l(yq) }.
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Lemma 6 (Metric Excess). Let pq, pr and rx be three edges of a TSP instance
(V,E). Let z ∈ V \ {p, q, r, x}. If

l(xq) + l(rz) + l(zp) − mpr(z) < l(pq) + l(rx), (9)

then the edges pq, pr and rx are 3-incompatible.

Proof. Assume that an optimum tour T contains the edges pq, pr and rx. We
show that there exists a 3-opt move yielding a tour shorter than T . Delete the
edges pq and rx and insert the edges qx, pz and rz. Note that this edge set is
eulerian but not a TSP tour as vertex z has degree four. But as l(xq) + l(rz) +
l(zp) − mpr(z) < l(pq) + l(rx) a short cut is possible that yields a tour shorter
than T . This contradicts the optimality of the tour T . ��

5 Certifying Potential Points

The aim of this section is to show that one can prove in constant time that a
point r is potential with respect to an edge pq. This helps to adopt the Main
Edge Elimination Theorem such that most edges can be excluded efficiently.
Remember that l(p, q) denotes the rounded Euclidean distance between p and
q. By |pq| we denote the truly Euclidean distance of p and q. Note that

l(pq) − 1
2

≤ |pq| ≤ l(pq) +
1
2
. (10)

We now want to find a covering for a point r and an edge pq, i.e. two sets
R1, R2 containing the set R := {x ∈ V | rx ∈ E ∧ pq ∼ rx} which was already
defined in Sect. 3. Observe that in the truly Euclidean case the compatibility of
the edges pq and rs implies that for every point t on the line segment between
r and s, the edges pq and rt are also compatible. Since we use EUC 2D lengths,
this only holds after adding some constants. For each vertex r choose δr s.t. no
vertex apart from r lies in the interior of the circle around r with radius δr. One
can for example use

δr :=
1
2

+ max{d ∈ Z+ | ∀s ∈ V \ {r} l(rs) > d}. (11)

For an edge pq and a point r ∈ V \ {p, q} define the two lengths

lp := δr + l(pq) − l(qr) − 1 and lq := δr + l(pq) − l(pr) − 1. (12)

For each vertex s ∈ V \ {r} define a point sr in the Euclidean plane lying on the
line segment between r and s which satisfies |rsr| = δr.

Lemma 7. Let (V,E) be a TSP instance, pq ∈ E, r ∈ V \{p, q} and s ∈ V \{r}.
If |psr| < lp and |qsr| < lq then the edges pq and rs are incompatible.
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p
q

Rp

Rq

r

Fig. 2. The small dots indicate the set Rr
pq. By Lemma 7 all these vertices must be

contained in the gray cones Rp and Rq.

Proof. We show that both 2-opt moves involving the edges pq and rs have shorter
length. Using (10), (12), and the triangle inequality we get:

l(ps) + l(qr) ≤ |psr| + |ssr| +
1
2

+ l(qr) < lp + |ssr| +
1
2

+ l(qr)

= δr + l(pq) − l(qr) − 1
2

+ |ssr| + l(qr) ≤ l(pq) + l(rs)

l(qs) + l(pr) < l(pq) + l(rs) is proven analogously. Hence pq and rs are incom-
patible. ��

Figure 2 illustrates Lemma 7. It shows two cones Rp and Rq for which Rr
pq ⊆

Rp∪Rq. The cones are defined as Rp := {t | |qtr| ≥ lq} and Rq := {t | |ptr| ≥ lp}.
We do not need that the cones Rp and Rq are disjoint, although this condition is
not yet sufficient to show that r is potential. However we need that they actually
exist, i.e. the circles around p and q have to intersect the circle around r.

Lemma 8. Let (V,E) be a TSP instance, pq ∈ E and r ∈ V \ {p, q}. If

lp + lq ≥ l(pq) − 1
2
, (13)

then the circle with center r and radius δr intersects both circles with centers p
and q and radii lp respectively lq.

Proof. It suffices to show |ir| − δr ≤ li ≤ |ir| + δr for i ∈ {p, q}.

|pr| − δr ≤ l(pr) +
1
2

− δr
(12)
= l(pq) − 1

2
− lq

(13)

≤ lp

(12)

≤ (|pr| + |qr| +
1
2
) − (|qr| − 1

2
) + δr − 1 = |pr| + δr

Analogously for i = q. ��
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Lemma 2 yields a method to check in O(n2) time that a vertex r is potential.
We now show how to do this in constant time. We assume that the edge pq is
part of an optimum tour T . Furthermore we consider the covering Rp and Rq as
described above. The angles of the cones Rp and Rq are denoted by αp and αq

respectively. They can be calculated in constant time (for details see Lemma 9
in [8]). The certification follows from a simple argument.

Lemma 9. Assume that pq is contained in an optimum TSP tour T , r ∈ V \
{p, q} and the angle γ between the two edges incident with r in T satisfies

γ > max{αp, αq}. (14)

Then the neighbors of r in T cannot both lie in Rp respectively Rq.

Proof. W.l.o.g. assume both neighbors of r in T lie in Rp. This immediately
implies γ ≤ αp, contradicting (14). ��

It now suffices to show that inequality (14) holds for every optimum tour
containing pq. This can be checked using the following statement.

Lemma 10. Let (V,E) be a TSP instance and T an optimum tour. Let pq ∈ T
and r ∈ V \ {p, q}. Assume that inequality (13) holds. Define the angle γr as

γr := arccos

(

1 −
(
lp + lq − l(pq) + 1

2

)2

2δ2r

)

. (15)

Then the angle γ between the two edges of T incident with vertex r satisfies

γ ≥ γr. (16)

Observe that by the definitions of lp and lq the argument of the arccos term
in (15) is not less than −1.

Proof. Let rx, ry ∈ T be the two incident edges of r. Let μ := |xryr|. The cosine
formula yields the following equation:

μ2 = 2δ2r − 2δ2r cos γ (17)

As T is an optimum tour, there is no valid 3-opt move which yields a shorter
tour. Hence we get:

l(pq) + l(rx) + l(ry) ≤ l(pr) + l(qr) + l(xy)
⇒ lp + lq + |xrx| + |yry| − l(pq) + 1 ≤ l(xy)

⇒ lp + lq − l(pq) +
1
2

≤ μ

(13)⇒
(

lp + lq − l(pq) +
1
2

)2

≤ μ2 = 2δ2r − 2δ2r cos γ

⇒ cos γ ≤ 1 −
(
lp + lq − l(pq) + 1

2

)2

2δ2r
⇒ γ ≥ γr. ��

From Lemmas 9 and 10 we immediately get the following result.
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Lemma 11. Let pq be an edge contained in some optimum TSP tour T and
r ∈ V \ {p, q}. Assume that inequality (13) holds. If

γr > max{αp, αq}, (18)

then the sets Rp and Rq certify the potentiality of r.

The results so far provide a way to prove in constant time that a given vertex is
potential. Although not all potential points can be detected using this approach,
sufficiently many are found as shown in Sect. 7. For simplifying notation we
introduce the following concept: Let pq be an edge and r ∈ V \ {p, q}. The
vertex r is called strongly potential (with respect to pq), if the conditions (13)
and (18) hold.

Thus, checking whether a point r is strongly potential can be done in con-
stant time (assuming that the value δr is known, which can be computed in a
preprocessing step for all vertices). Verifying the inequalities in the Main Edge
Elimination Theorem still needs O(n) time.

The aim now is to show that this can bedone in constant time by computing
appropriate lower bounds for (4) and (5).

Lemma 12. Let (V,E) be a TSP instance and r strongly potential with respect
to pq. Let Rp and Rq be the covering certifying r. Then

min
x∈Rp

{l(rx) − l(px)} ≥ δr − 1 − max{|pxr| : x ∈ Rp} and (19)

min
y∈Rq

{l(ry) − l(qy)} ≥ δr − 1 − max{|qyr| : y ∈ Rq}. (20)

Proof. Let x ∈ Rp. Then

l(rx) − l(px) ≥ |rx| − |px| − 1 ≥ δr + |xrx| − (|pxr| + |xrx|) − 1
≥ δr − 1 − max{|pxr| : x ∈ Rp}

Similarly one can prove this for the set Rq. ��
Let Cr be the circle around r with radius δr. Define the two arcs

Bp := {x ∈ Cr | |qx| ≥ lq} and Bq := {y ∈ Cr | |py| ≥ lp}.

Further let p̃ and q̃ be the points on Cr with greatest distance to p respectively
q. Since Bp and Bq are connected, the maxima in the inequalities (19) and (20)
can only be attained at p̃ respectively q̃, or at the endpoints of Bp and Bq

respectively. Hence the equations

max{|pxr| : x ∈ Rp} ≤ max{|pt| : t ∈ Bp} and (21)
max{|qyr| : y ∈ Rq} ≤ max{|qt| : t ∈ Bq} (22)

hold if and only if

|pq̃| ≤ lp and |qp̃| ≤ lq. (23)

The right hand sides of Eqs. (21) and (22) can easily be calculated in constant
time. For details see Sect. 8.2 in [8].
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6 The Algorithm

Our algorithm that eliminates useless edges consists of three independent steps.
Step 1 uses the results of Sects. 3 and 5 and eliminates the majority of all edges.
Step 2 applies the Main Edge Elimination in combination with the Close Point
Elimination to eliminate additional edges. Finally in Step 3 we use a backtrack
search of bounded depth to eliminate even more edges.

Step 1: Fast Elimination. To prove that an edge pq is useless we need to
find two potential points r and s satisfying the conditions of the Main Edge
Elimination Theorem. For a point r we use the method described in Sect. 5, to
prove that it is potential. In fact we will only use r if it is strongly potential.
This can be checked in constant time. The next step is to calculate the minima
appearing in the Main Edge Elimination Theorem using Lemma12. This can be
done separately for each potential point in constant time.

Once two potential points r and s with their corresponding minima are cal-
culated, one can check in constant time whether the inequalities of the Main
Edge Elimination Theorem are satisfied. Since only two potential points which
satisfy the conditions of the theorem are needed, a smart ordering and stopping
criterion for checking the potentiality of points can speed up the algorithm dras-
tically. We select the points ordered by their distance from the midpoint of the
edge pq and stop after at most 10 points that have been considered.

Using a 2-d tree we compute in a preprocessing step the values δr for all
vertices of the instance. In most cases it turns out that at most three strongly
potential points have to be considered to prove that an edge is useless.

Step 2: Direct Elimination. For an edge pq we consider two vertices r and s
with all their incident edge pairs. The methods of Lemmas 5 and 6 are used to
eliminate as many edge pairs leaving r and s. In case no edge pairs are left for
one of the vertices, the edge pq can be eliminated. Otherwise a direct application
of the Main Edge Elimination Theorem can be used. For all combinations of edge
pairs one has to verify the 3-opt moves from Eqs. (6) and (7) to eliminate the
edge pq.

Step 3: Backtrack Search. In this step starting with an edge pq we extend
a set of disjoint paths recursively. We allow two operations for the extension.
Either we select one of the existing paths and add an edge incident to one of its
endpoints, or we add a vertex not yet contained in any of the disjoint paths and
two edges incident with this vertex. After each extension we check, similar as in
step 2, whether the Main Edge Elimination or the Close Point Elimination allows
to eliminate one of the path edges. In this case we backtrack. Moreover we check
that the collection of paths is minimal in the sense that no collection of paths
exists that has shorter length and that connects the same pairs of endpoints
and uses the same set of interior points. We use an extension of the Held-Karp
algorithm [6] for this. We always select the extension of the set of paths that
has the smallest number of possibilities. If all extensions have been examined
without reaching a predefined extension depth, then we have proven that edge
pq is useless.
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7 Experimental Results

We applied our algorithm to all TSPLIB [11] instances which use the EUC 2D
metric as well as to some larger EUC 2D instances from [2]. Table 1 contains the
results on some of these instances.

The TSP solver Concorde [1] is the fastest available algorithm to solve large
TSP instances optimally. It can be downloaded at [2]. We applied Concorde
to the TSPLIB instance d2103. The total runtime needed by Concorde was
17, 219, 190 s1. This agrees with the runtime reported for this instance on page
503 of [1]. Then we ran the three steps of our algorithm as described in Sect. 6.
For Step 3 we used an extension depth of 12. After 168, 153 s all but 16, 566 edges
were eliminated. We changed the length of all eliminated edges to some large

Table 1. Results for some TSPLIB instances with at least 1,000 vertices as well as a
100,000 vertex instance from [2]. The first three columns contain the instance name,
the number of vertices and the number of edges. Then for each of the three steps as
described in Sect. 6 we list the number of edges that remain after this step as well as the
runtime. For Step 3 we used an extension depth of 10 which gave a reasonable trade off
between the runtime and the number of eliminated edges. The last two columns contain
the total runtime of our algorithm and the ratio of the number of edges remaining after
Step 3 divided by the number of vertices. All runtimes are given in the format hh:mm:ss
and are measured on a single core of a 2.9 GHz Intel Xeon.

Instance n m Step 1 Step 2 Step 3 Total Ratio

Edges Time Edges Time Edges Time Runtime

pr1002 1002 501501 42636 1 5810 2:13 4521 2:28:07 2:30:21 4.2

u1060 1060 561270 43887 1 6063 2:24 4619 3:30:48 3:33:13 4.4

vm1084 1084 586986 40958 1 6035 3:28 4610 1:17:35 1:21:05 4.3

pcb1173 1173 687378 32533 1 7662 33 6084 3:10:17 3:10:51 5.2

d1291 1291 832695 122897 4 12552 52:21 11317 13:33:14 14:25:40 8.8

rl1304 1304 849556 124561 3 21689 11:54 14527 12:53:14 13:05:11 11.1

rl1323 1323 874503 106860 2 16743 5:33 12691 9:41:18 9:46:53 9.6

nrw1379 1379 950131 28468 1 7199 1:58 5752 2:12:44 2:14:44 4.2

u1432 1432 1024596 21970 1 7817 2:51 6495 2:13:02 2:15:55 4.5

d1655 1655 1368685 230855 9 14345 37:30 12103 10:05:46 10:43:26 7.3

vm1748 1748 1526878 144681 6 12303 23:10 7691 2:48:14 3:11:30 4.4

u1817 1817 1649836 109056 5 13201 10:58 11736 6:19:22 6:30:25 6.5

rl1889 1889 1783216 206768 9 23410 3:15:40 18673 25:18:52 28:34:41 9.9

d2103 2103 2210253 166866 8 19631 55:01 18105 18:19:34 19:14:44 8.6

u2152 2152 2314476 117030 5 15101 11:17 13170 7:07:45 7:19:08 6.1

u2319 2319 2687721 21698 3 9919 44 9473 1:41:41 1:42:22 4.1

pr2392 2392 2859636 121514 7 15598 13:03 12088 7:41:45 7:44:55 5.1

pcb3038 3038 4613203 95576 8 17940 11:05 14869 5:44:08 5:55:22 4.9

fnl4461 4461 9948030 128527 15 23963 9:30 19082 7:14:21 7:24:07 4.3

brd14051 14051 98708275 2661869 4:39 93497 18:50:15 64486 28:39:22 47:34:16 4.6

d15112 15112 114178716 1703765 5:51 130110 10:25:44 66010 38:37:42 49:09:17 4.4

d18512 18512 171337816 1449877 5:30 112681 1:49:35 84203 32:38:07 34:33:13 4.5

mona-lisa100k 100000 4999950000 2071297 3:45:21 476001 22:51 322716 55:42:51 59:51:04 3.2

1 Runtime on a 2.9 GHz Intel Xeon [2]. We took the average runtime of two indepen-
dent runs. Log-files are at http://www.or.uni-bonn.de/∼hougardy/EdgeElimination.

http://www.or.uni-bonn.de/~hougardy/EdgeElimination
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value and gave this new instance again to Concorde. On this instance Concorde
needed 1, 392, 582 s. Thus the total runtime was improved by our edge elimination
algorithm by more than a factor of 11.

Two other successful applications of our edge elimination approach were
reported to us by Cook [3]. First, the edge elimination approach in combina-
tion with the LKH algorithm [7] improved the so far best known TSP tour for
the DIMACS instance E100k.0 [9]. The shortest tour known so far had length
225, 786, 982. It was found using the LKH algorithm. Cook’s implementation
of our edge elimination approach eliminated all but 274, 741 edges in the TSP
instance E100k.0. By applying the LKH algorithm to this edge set a tour of
length 225, 784, 127 was found [9]. Secondly, Cook applied the edge elimination
approach to a truly Euclidean instance (i.e., a Euclidean instance where the
point distances are not rounded). Finding optimum TSP tours in such instances
is much harder than in instances with rounded Euclidean norm. The largest truly
Euclidean instance that Cook was able to solve so far had 500 points. With the
help of the edge elimination approach he solved an instance with 1000 points.

Acknowledgement. We are very grateful to Bill Cook for supplying us with some
data and several helpful comments. We also thank our reviewers for their careful reading
and useful comments.
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Abstract. The NP-hard Rainbow Subgraph problem, motivated from
bioinformatics, is to find in an edge-colored graph a subgraph that con-
tains each edge color exactly once and has at most k vertices. We examine
the parameterized complexity of Rainbow Subgraph for paths, trees,
and general graphs. We show, for example, APX-hardness even if the
input graph is a properly edge-colored path in which every color occurs
at most twice. Moreover, we show that Rainbow Subgraph is W[1]-
hard with respect to the parameter k and also with respect to the dual
parameter � := n−k where n is the number of vertices. Hence, we exam-
ine parameter combinations and show, for example, a polynomial-size
problem kernel for the combined parameter � and “maximum number of
colors incident with any vertex”.

1 Introduction

The Rainbow Subgraph problem is defined as follows.

Rainbow Subgraph
Instance: An undirected graph G = (V,E), an edge coloring col : E →
{1, . . . , p} for some p ≥ 1, and an integer k ≥ 0.
Question: Is there a subgraph G′ of G that contains each edge color exactly
once and has at most k vertices?

We call a subgraph G′ with these properties a solution of order at most k. In the
problem name, the term rainbow refers to the fact that all edges of G′ have a
different color. For convenience, we define a rainbow cover as a subgraph where
every color occurs at least once. Note that every rainbow cover G′ of order at
most k has a subgraph that is a solution: Simply remove any edge whose color
appears more than once in G′. Repeating this operation as long as possible yields
a solution of the same order as G′.
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Table 1. Complexity overview for Rainbow Subgraph. The O∗()-notation suppresses
factors polynomial in the input size.

Par. Paths Trees General graphs

p O∗(3p) (Theorem4) O∗(3p) (Theorem4) W[1]-hard (Theorem2)

p, Δ —”— —”— O∗((4Δ − 4)p) (Theorem3)

k O∗(3k) (Theorem4+(2)) O∗(3k) (Theorem4+(3)) W[1]-hard (Theorem2+(1))

k, Δ —”— —”— O∗(2kΔ/2) (Theorem3)

� O∗(5�) (Theorem8) W[1]-hard (Theorem5) W[1]-hard (Theorem5)

�, ΔC —”— O∗((2ΔC + 1)�) (Theorem8) O∗((2ΔC + 1)�) (Theorem8)

O(Δ3
C�4)-vertex kernel (Theorem7)

�, q —”— W[1]-hard (Theorem5) W[1]-hard (Theorem5)

Δ, q APX-hard (Theorem1) APX-hard (Theorem1) APX-hard ([8])

Rainbow Subgraph arises in bioinformatics: The (Population) Parsi-
mony Haplotyping problem can be reduced to Rainbow Subgraph [11];
note, however, that depending on the input, this reduction might not produce
a polynomial-size instance. Another bioinformatics application appears in the
context of PCR primer set design for spotted microarray experiments [5].

Previous work. The optimization version of Rainbow Subgraph has been
mostly studied in terms of polynomial-time approximability. Here the optimiza-
tion goal is to minimize the number of vertices in the solution; we refer to this
problem as Minimum Rainbow Subgraph. Minimum Rainbow Subgraph
is APX-hard even on graphs with maximum vertex degree Δ ≥ 2 in which every
color occurs at most twice [8]. Moreover, Minimum Rainbow Subgraph can-
not be approximated within a factor of c ln Δ for some constant c unless NP has
slightly superpolynomial time algorithms [12].

The more general Minimum-Weight Multicolored Subgraph problem
has a randomized

√
q log p-approximation algorithm, where q is the maximum

number of times any color occurs in the input graph [7]. Minimum Rainbow
Subgraph can be approximated within a ratio of (δ+ln�δ�+1)/2, where δ is the
average vertex degree in the solution [9], and within a factor of max(

√
2n,

√
Δ(1+√

ln Δ/2)) [12]. Katrenič and Schiermeyer [8] present an exact algorithm for
Rainbow Subgraph that has a running time of nO(1) · 2p ·Δ2p, where Δ is the
maximum vertex degree of the input.

Our contributions. Since Rainbow Subgraph is NP-hard even on collections
of paths and cycles [8], we perform a broad parameterized complexity analysis.
Table 1 gives an overview on the complexity of Minimum Rainbow Subgraph
on paths, trees, and general graphs, when parameterized by

– p: number of colors;
– k: number of vertices in the solution;
– � := n − k: number of vertex deletions to obtain a solution;
– Δ: maximum vertex degree;
– ΔC := maxv∈V |{c | ∃{u, v} ∈ E : col({u, v}) = c}|: maximum color degree;
– q: maximum number of times any color occurs in the input graph.
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For each parameter and some parameter combinations, we give either a fixed-
parameter algorithm, show W[1]-hardness, or show NP-hardness for constant
parameter values.

Our main results are as follows: Rainbow Subgraph is APX-hard even if
the input graph is a properly edge-colored path with q = 2. Rainbow Subgraph
is W[1]-hard on general graphs for each of the considered parameters. For the
number of colors p, solution order k, and number � of vertex deletions, the com-
plexity seems to depend on the density of the graph as the problem is W[1]-hard
for each of these parameters but it becomes tractable if any of these parameters
is combined with the maximum degree Δ. For the parameter �, W[1]-hardness
holds even if the input graph is a tree.

Preliminaries. APX is the class of optimization problems that allow constant-
factor approximations. If a problem is APX-hard, then it cannot be approxi-
mated in polynomial time to arbitrary constant factors, unless P = NP.
A problem is called fixed-parameter tractable (FPT) with respect to some
problem-specific parameter x if it can be solved in f(x) · |I|O(1) time, where |I|
is the instance size and f is an arbitrary computable function. A kernel for a
parameterized problem is, roughly, a polynomial-time self-reduction that results
in an instance whose size is bounded only in the parameter. Analogously to NP,
the class W[1] captures parameterized hardness. It is widely assumed that if a
problem is W[1]-hard, then it is not fixed-parameter tractable.

We will use the following simple observation several times.

Observation 1. Let G′ = (V ′, E′) be a solution for a Rainbow Subgraph
instance with G = (V,E). If there are two vertices u, v in V ′ such that {u, v} ∈ E
but {u, v} /∈ E′, then there is a solution G′′ that does contain the edge {u, v}
and has the same number of vertices.

Observation 1 is true since replacing the edge in G′ that has the same color
as {u, v} by {u, v} is a solution. Next, we list some easy to see observations
regarding parameter bounds:

p ≤ k(k − 1)/2, (1)
p ≤ kΔ/2, (2)
p ≤ k − 1 if G is acyclic. (3)

Due to lack of space, some proofs are deferred to a long version of this article.

2 Parameterization by Color Occurrences

We now consider the complexity of Rainbow Subgraph parameterized by the
maximum number of color occurrences q. Indeed, the value q is bounded in some
applications: For example in the graph formulation of Parsimony Haplotyp-
ing, q depends on the maximum number of ambiguous positions in a genotype
which can be assumed to be small. Unfortunately, Rainbow Subgraph remains
hard under q-parameterization, even for heavily restricted graph classes.
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Katrenič and Schiermeyer [8] showed that Minimum Rainbow Subgraph
is APX-hard for Δ = 2. The instances produced by their reduction contain
precisely two edges of each color, so APX-hardness even holds for q = 2. How-
ever, the resulting graph contains cycles and is not properly edge-colored, so the
complexity on acyclic graphs and on properly edge-colored graphs (like those
resulting from Parsimony Haplotyping instances) remains to be explored.
We show that neither restriction is helpful as Rainbow Subgraph is APX-hard
for properly edge-colored paths with q = 2. This strengthens the hardness result
of Katrenič and Schiermeyer [8]. For this purpose, we develop an L-reduction
from the following special case of Minimum Vertex Cover:

Minimum Vertex Cover in Cubic Graphs
Instance: An undirected graph H = (W,F ) in which every vertex has degree
three.
Task: Find a minimum-cardinality vertex cover of G.

Minimum Vertex Cover in Cubic Graphs is APX-complete [1].

Theorem 1. Minimum Rainbow Subgraph is APX-hard even when the input
is a properly edge-colored path in which every color occurs at most twice.

Proof. Given an instance H = (W = {w1, . . . , wn}, F ) of Minimum Vertex
Cover in Cubic Graphs, construct an edge-colored path G = (V,E) as follows.
The vertex set is V := {v1, . . . , v16n+2}. The edge set is E := {{vi, vi+1} | 1 ≤
i ≤ 16n + 1}, that is, vertices with successive indices are adjacent. It remains to
specify the edge colors. Herein, we use u∗ to denote unique colors, that is, if an
edge is u∗-colored, then it receives an edge color that does not appear anywhere
else in G. In addition to these unique colors, introduce five colors for each vertex
of H, that is, for each wi ∈ W create edge colors ci, c′

i, c′′
i , xi, and yi. The

colors ci, c′
i, and c′′

i are “filling” colors which are needed because G is connected.
Furthermore, for each edge fi ∈ F introduce an edge color φi.

Now, color the first 6n + 1 edges of G by the sequence

u∗ c1 u∗ c′
1 u∗ c′′

1 u∗ c2 u∗ c′
2 u∗ c′′

2 u∗ · · · c2 u∗ c′
2 u∗ c′′

2 u∗.

That is, the edge between v0 and v1 is u∗-colored, the edge between v1 and v2
receives color c1, and so on. The u∗-colors are unique and thus occur only once
in G. Thus, both endpoints of these colors are contained in every solution.

Now for each vertex wi in H color 10 edges in G according to the edges that are
incident with wi. More precisely, for each wi color the edges from v6n+2+10(i−1)

to v6n+2+10i. We call the subpath of G with these vertices the wi-part of G. Let
{fr, fs, fr} denote the set of edges incident with wi. Then color the edges between
v6n+2+10(i−1) and v6n+2+10i by the sequence

ci φr xi φs c′
i yi φt c′′

i xi yi.

That is, the edge between v6n+2+10(i−1) and v6n+2+10(i−1)+1 receives color ci, the
edge between v6n+2+10(i−1)+1 and v6n+2+10(i−1)+2 receives color φr, and so on.



The Parameterized Complexity of the Rainbow Subgraph Problem 291

The resulting graph is a path with exactly 16 ·n+1 edges and p = 8 ·n+ |F |+1
colors.

The idea of the construction is that we may use the vertices of the wi-part
to “cover” the colors corresponding to the edges incident with wi. If we do so,
then the solution has two connected components in the wi-part. Otherwise, it
is sufficient to include one connected component from the wi-part. Since the
solution graph is acyclic and the number of edges in a minimal solution is fixed,
the number of connected components in the solution and its order are equal up
to an additive constant.

We now show formally that the reduction fulfills the two properties of L-
reductions [14]. Let S∗ be an optimal vertex cover for the Minimum Vertex
Cover in Cubic Graphs instance and let G∗ be an optimal solution to the
constructed Minimum Rainbow Subgraph instance.

The first property we need to show is that |V (G∗)| = O(|S∗|). As observed
above, the number of colors p in G is O(n + |F |) and thus |V (G∗)| ≤ 2p =
O(n + |F |). Clearly, S∗ contains at least |F |/3 vertices, since every vertex in H
covers at most three edges. Moreover, since H is cubic we have n < 2|F | and
thus |S∗| = Θ(n + |F |). Consequently, |V (G∗)| = O(|S∗|).

The second property we need to show is the following: given a solution G′

to G, we can compute in polynomial time a solution S′ to G such that

|S′| − |S∗| = O(|V (G′)| − |V (G∗)|).

Let G′ be a solution to G. The proof outline is as follows. We show that G′

has order at least p + n + 1 + x, x ≥ 0, and that, given G′, we can compute in
polynomial time a size-x vertex cover S′ of H. Then we show that, conversely,
there is a solution of order at most p+n+1+ |S∗|. Thus, the differences between
the solution sizes in the Minimum Vertex Cover in Cubic Graphs instance
and in the Minimum Rainbow Subgraph instance are essentially the same.
We omit the details. 
�

3 Parameterization by Number of Colors

We now consider the parameter number of colors p. We show that Rainbow
Subgraph is generally W[1]-hard with respect to p but becomes fixed-parameter
tractable if the input graph is sparse. By Eq. (1), and the fact that we can always
construct a solution by arbitrarily selecting one edge of each color, implying
k ≤ 2p, the parameter p is polynomially upper- and lower-bounded by the solu-
tion order k. In consequence, while our main focus is on parameter p, every
parameterized complexity result for p also implies the corresponding parameter-
ized complexity result for k.

A graph G is called d-degenerate if every subgraph of G has a vertex of degree
at most d. We can show that even on 2-degenerate bipartite graphs, the decision
problem Rainbow Subgraph is W[1]-hard for parameter p (and thus also for
parameter k) by a parameterized reduction from the Multicolored Clique
problem.
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Theorem 2. Minimum Rainbow Subgraph is W[1]-hard with respect to the
number of colors p, even if the input graph is 2-degenerate and bipartite.

Replacing degeneracy by the larger parameter maximum degree Δ of G yields
fixed-parameter tractability: Katrenič and Schiermeyer [8] proposed an algo-
rithm that solves Minimum Rainbow Subgraph in (2Δ2)p · nO(1) time. We
show an improved bound:

Theorem 3. Let (G, col) be an instance of Minimum Rainbow Subgraph
with p colors and maximum vertex degree Δ. An optimal solution can be computed
in O((4Δ− 4)p ·Δn2) time or in O((4Δ− 4)k ·n2 +2kΔ/2 · (kΔ)3 log(kΔ)) time,
where k is the order of the solution.

To prove Theorem 3, we follow a two-step approach: First, we enumerate con-
nected candidate subgraphs exploiting the sparseness constraint. Second, we
select from these candidate subgraphs a minimum-order set with all colors,
exploiting techniques by Björklund et al. [2].

The algorithm by Katrenič and Schiermeyer [8] has a somewhat different
structure, but can also be understood in terms of a subgraph enumeration process
and a combinatorial part: It employs a method for enumerating all connected
rainbow subgraphs in O(Δ2p · np) time and finds a solution via dynamic pro-
gramming. In contrast, we consider only connected induced subgraphs in the
first step, which improves efficiency.

In the second step, we select from the computed set of connected subgraphs
a minimum order subset with all colors. Clearly, those subgraphs correspond to
the connected components of some optimal solution, which can be retrieved by
stripping edges with redundant colors. The second step reduces to Minimum-
Weight Set Cover when we consider the induced subgraphs as sets (of colors)
which are weighted (by the order of the subgraph). We first describe an algorithm
for Minimum-Weight Exact Cover using fast subset convolution and then
use it to solve Minimum-Weight Set Cover. To improve efficiency, we apply
techniques by Björklund et al. [2].

Step one: enumerating induced subgraphs. We make use of the following lemma:

Lemma 1 ([10, Lemma 2]). Let G be a graph with maximum degree Δ and let
v be a vertex in G. There are at most 4k ·(Δ−1)k connected (induced) subgraphs
of G that contain v and have order at most k. Furthermore, these subgraphs can
be enumerated in O(4k · (Δ − 1)k · n) time.

Clearly, we can enumerate all connected induced subgraphs of G of order at
most k by applying Lemma1 for each vertex v ∈ V (G).

Step two: Minimum-Weight Set Cover. We consider Minimum-Weight Set
Cover instances with input sets C = {C1, . . . , Cm} and weight function w, where
n denotes the cardinality of the ground set U :=

⋃
Ci∈C Ci, and w(C′) for C′ ⊆ C

denotes the sum of weights of the sets in C′.
Minimum-Weight Set Cover can be solved in O(2m) time using polyno-

mial space by exhaustive search and in O(2nm) time using exponential space by
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dynamic programming. Cygan et al. [4] presented a polynomial-space algorithm
with running time O∗(min{4nmlog n, 9n}). For our application of Minimum-
Weight Set Cover these algorithms are somewhat ill-suited since m may
be potentially as large as 2n, resulting in 4n · nO(1) running times. Better algo-
rithms are known for the unweighted Minimum Set Cover problem which can
be solved in O(20.299(n+m)) time [6] and 2nnO(1) time [3], where the second run-
ning time avoids the m factor. In the following, we use fast subset convolution [2]
to obtain an 2n(nW )O(1)-time algorithm for Minimum-Weight Set Cover,
where W is the maximum weight.

We use the following lemma due to Björklund et al. [2]:

Lemma 2 ([2]). Consider a set U with |U | = n and a mapping Q : 2U →
{0, . . . , W}. The mapping Q1 with Q1[U ′] = minU ′′⊆U ′(Q[U ′′] + Q[U ′ \ U ′′]) for
every U ′ ⊆ U is called the convolution of Q and can be computed in O(2nn3W
log2(nW )) time.

Björklund et al. [2] did not give precise running time estimates, but Lemma2
can be derived using their Theorem 1, assuming O(n log2 n) time for addition
and multiplication of n-bit integers.

As Björklund et al. [2] noted, partitioning problems over the set U can be
solved by computing multiple convolutions. We describe in the following the
algorithm for Minimum-Weight Exact Cover (the variant of weighted Set
Cover where each element needs to be covered by exactly one set) and then
how to use the result to solve Minimum-Weight Set Cover.

Minimum-Weight Exact Cover
Instance: A family C of sets with weight function w : C → {0, . . . , W}.
Task: Find a minimum-weight subfamily S ⊆ C such that each element of⋃

Ci∈C
Ci occurs in exactly one set in S.

Lemma 3. Minimum-Weight Exact Cover with weight function w : C →
{0, . . . , W} can be solved in O(2n · n3W log(n) log2(nW )) time.

Proof. We define an x-cover of a subset U ′ ⊆ U to be a minimum-weight sub-
family C′ ⊆ C containing at most x sets such that each element of U ′ occurs
in exactly one set of C′ and

⋃
Ci∈C′ Ci = U ′. In these terms Minimum-Weight

Exact Cover is to find an n-cover for U .
Consider a mapping Q : 2U → {0, . . . , W} and let initially Q[Ci] = w(Ci)

for Ci ∈ C and Q[U ′] = ∞ for the remaining U ′ ⊆ U . Now let Qx denote the
mapping resulting from x consecutive convolutions of Q, that is, Q0 = Q and
Qx+1 is the convolution of Qx. We prove by induction that (for all U ′ ⊆ U
and all x ≥ 0) Qx[U ′] is the weight of a 2x-cover for U ′ if such a cover exists and
Qx[U ′] = ∞ otherwise. This implies in particular that Q�log2 n�[U ] is the weight
of an optimal solution to C, if a solution exists.

Clearly the mapping Q0 = Q meets the claim. Assume that Qx[U ′] is the
weight of a 2x-cover for U ′ ⊆ U if such a cover exists, and Qx[U ′] = ∞ other-
wise. Now let C′ be a 2x+1-cover for some U ′ ⊆ U . Let Cα, Cβ ⊆ C′ be disjoint
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subfamilies, Cα ∪ Cβ = C′, such that |Cα| ≤ 2x and |Cβ | ≤ 2x. (If |C′| = 1,
then Cα = C′ and Cβ = ∅). Let Uα =

⋃
Ci∈Cα

Ci, Uβ =
⋃

Ci∈Cβ
Ci. Now Cα is a

2x-cover for Uα: it covers each element of Uα exactly once, and if there was an
exact cover with lower weight, we could combine it with Cβ to get an exact cover
for

⋃
Ci∈C′ Ci with lower weight than C′, contradicting that C′ is a 2x+1-cover.

The same holds for Cβ . Hence, Qx[Uα] = w(Cα) and Qx[Uβ ] = w(Cβ), therefore
w(C′) = Q[Uα] + Q[Uβ ], and due to the minimality of w(C′) we obtain (by con-
volution) Qx+1[U ′] = minU ′′⊆U ′(Q[U ′′] + Q[U ′ \ U ′′]) = w(C′). So Qx+1[U ′] is
the weight of a 2x+1-cover for U ′. If no 2x+1-cover for U ′ exists, then there is no
U ′′ ⊆ U ′ such that Qx[U ′′] �= ∞ and Qx[U ′ \ U ′′] �= ∞, hence Qx+1[U ′] = ∞.

To retrieve the actual solution family, we search for some U ′ ⊆ U such that
Q�log2 n�[U ′] + Q�log2 n�[U \ U ′] = Q�log2 n�[U ]. We repeat this step for U ′ and
U \ U ′ recursively, until we obtain subsets of U that have a 1-cover. The union
of those 1-covers are the sets of the solution family.

The initial mapping Q can be constructed within O(nm) = O(2nn) time.
Next, we compute �log2 n� convolutions of Q, each of which takes O(2nn3W log2

(nW )) time, by Lemma 2. Retrieving the solution family takes O(2nn) time, so
we obtain an overall running time of O(2nn3W log(n) log2(nW )). 
�

To convert a table of minimum exact cover weights to a table of minimum (not
necessarily exact) cover weights, we iterate over each set U ′ ⊆ U in increasing
order of size, and for each u ∈ U ′ replace Q[U ′] by min(Q[U ′], Q[U ′ \ {u}]).
Together with Lemma 1, this concludes the proof of Theorem3.

For acyclic inputs, we can use dynamic programming to speed up the enu-
meration of connected rainbow subgraphs of G, avoiding the dependency on Δ.

Theorem 4. For an acyclic instance (G, col) of Minimum Rainbow Sub-
graph an optimal solution can be computed within O(3ppn + 2pp3n log2(pn))
time.

4 Parameterization by Number of Vertex Deletions

In this section, we consider the dual parameter � := n−k (where k is the solution
order and n is the order of the input graph), that is, the number of vertices that
are not part of a solution and thus are “deleted” from the input graph. In
Sect. 3, we showed that Rainbow Subgraph is W[1]-hard for the parameter k,
but that it becomes fixed-parameter tractable for the parameter (Δ, k). We show
that both results also hold when replacing k by �. Hence, parameter � is useful
when we ask for the existence of relatively large solutions in sparse graphs.

In contrast to the parameter k, for which Rainbow Subgraph becomes
fixed-parameter tractable on trees, we observe W[1]-hardness for parameter �
even on very restricted input trees.

Theorem 5. Rainbow Subgraph is W[1]-hard with respect to the dual para-
meter � even when the input is a tree of height three and every color occurs at
most twice.
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By Theorem 5, parameterization by � alone does not yield fixed-parameter
tractability. Hence, we consider combinations of � with two parameters. One is
the maximum degree Δ, and the other one is the maximum color degree ΔC :=
maxv∈V |{c | ∃{u, v} ∈ E : col({u, v}) = c}|, which is the maximum number
of colors incident with any vertex in G. This parameter was also considered
by Schiermeyer [13] for obtaining bounds on the size of minimum rainbow sub-
graphs. Note that the maximum color degree is upper-bounded by both the
maximum degree and by the number of colors in G and that it may be much
smaller than either parameter.

First, we show that for the combined parameter (Δ, �) the problem has a
polynomial-size problem kernel. To our knowledge, this is the first non-trivial
kernelization result for Rainbow Subgraph. As it is common for kernelizations,
it is based on a set of data reduction rules. The main idea of the kernelization is
as follows. We first remove edges whose colors appear very often compared to Δ
and �. Afterwards, deleting any vertex v “influences” only a bounded number of
other vertices: at most Δ edges are incident with v and for each of these edges
the number of other edges that have the same color depends only on Δ and �.
We then consider some vertices that are in every rainbow cover. To this end,
we call a vertex v obligatory if there is some edge color such that all edges with
this color are incident with v. In the data reduction rules, we reduce those oblig-
atory vertices that have only obligatory neighbors. Together with the previous
reduction rules, we then obtain the kernel by the following argument: If there
are many non-obligatory vertices, then we can find a greedy solution since any
vertex deletion has bounded “influence”. Otherwise, the overall instance size is
bounded as every other vertex is a neighbor of some non-obligatory vertex and
each non-obligatory vertex has at most Δ neighbors.

As mentioned above, the first rule removes edges whose color appears very
often compared to Δ and �.

Rule 1. If there is an edge color c such that there are more than Δ� edges with
color c, then remove all edges with color c from G.

We now deal with obligatory vertices. The first simple rule identifies edge colors
that are already covered by obligatory vertices.

Rule 2. If G contains an edge {u, v} of color c such that u and v are obligatory,
then remove all other edges with color c from G.

We now work on instances that are reduced with respect to Rule 2. Observe that
in such instances every edge between two obligatory vertices has a unique color.
This observation is crucial for showing the correctness of the following rules.
Their aim is to remove obligatory vertices that have only obligatory neighbors.
When removing a vertex in these rules, we decrease k and n by one, thus the
value of � remains the same. The correctness of the first rule is obvious.

Rule 3. Let (G, col) be an instance that is reduced with respect to Rule 2. Then,
remove all connected components of G that consist of obligatory vertices only.

The next two rules remove edges between obligatory vertices.
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Rule 4. Let (G, col) be an instance of Rainbow Subgraph that is reduced
with respect to Rule 2. If G contains three obligatory vertices u, v, and w such
that {u, v}, {v, w} ∈ E and u has only obligatory neighbors, then remove {u, v}
from G. If u has degree zero now, then remove u from G.

Rule 5. Let (G, col) be an instance of Rainbow Subgraph that is reduced
with respect to Rule 2. If G contains four obligatory vertices u, v, w and x such
that {u, v} ∈ G and {w, x} in G and u and x have only obligatory neighbors,
then do the following.

Remove {w, x} from G. If v and w are not adjacent, then insert {v, w} and
assign it a unique color. If x has now degree zero, then remove x from G.

Note that application of Rule 4 does not increase the maximum degree of the
instance and decreases the degree of v and w. Furthermore, note that application
of Rule 5 may increase the degree of v by one but directly triggers an application
of Rule 4 which reduces the degree of v and u again by one. Hence, both rules
can be exhaustively applied without increasing the overall maximum degree.

We now show that the instance either has a rainbow cover or that it has
bounded size.

Lemma 4. Let (G, col) be an instance that is reduced with respect to Rule 1–5.
Then, (G, col) is a yes-instance or it contains at most 2Δ · (Δ + 1) · ΔC · �2

vertices.

Proof. We consider a special type of vertex sets that can be safely deleted. To
this end, call a vertex set S a colorful packing if

1. no vertex in S is obligatory, and
2. for all u and v in S the set of colors incident with u is disjoint from the set

of colors incident with v.

Assume that (G, col) has a colorful packing of size �. Then, G − S is a rainbow
cover of order k: For each color incident with some vertex v in S, there are two
other vertices in V that are connected by an edge with this color (as v is not
obligatory). By the second condition, these two vertices are not in S. Hence,
this edge color is contained in G−S. Summarizing, if (G, col) contains a colorful
packing of size at least �, then (G, col) is a yes-instance.

Now, assume that a maximum-cardinality colorful packing S in G has size
less than �. Each vertex in S is incident with at most ΔC colors. For each of these
colors, the graph induced by the edges of this color has at most Δ� edges and
thus at most 2Δ� vertices, since the instance is reduced with respect to Rule 1.

Let T denote the set of vertices in V \ S that are incident with at least one
edge that has the same color as an edge incident with some vertex in S. By the
above discussion,

|T | ≤ 2Δ · ΔC · � · (� − 1).

Note that T includes all neighbors of vertices in S. By the maximality of S, all
vertices in V \ (S ∪ T ) are obligatory. Now partition V \ (S ∪ T ) into the set X
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that has neighbors in T and the set Y that has only neighbors in (X ∪ Y ). The
set X has size at most (2ΔC · Δ · � · (� − 1)) · Δ since the maximum degree in G
is Δ. The set Y has size at most 1 since otherwise one of the Rule 3–5 applies
(we omit the details).

Hence, since S has size at most � − 1, G contains at most vertices.

� − 1 + 2Δ · ΔC · � · (� − 1) + 2Δ2 · ΔC · � · (� − 1) + 1 < 2Δ · (Δ + 1) · ΔC · �2

Thus, if any instance contains more vertices, then a colorful packing of size at
least � exists and the instance is a yes-instance. 
�

Using Lemma 4, we obtain the following theorem.

Theorem 6. Rainbow Subgraph admits a problem kernel with at most 2Δ ·
(Δ + 1) · ΔC · �2 vertices that can be computed in O(m2 + mn) time.

We now consider parameterization by (ΔC , �) (recall that the color degree ΔC

can be much smaller than Δ). First, by performing the following additional rule,
we can use the kernelization result for (Δ, �) to obtain a polynomial problem
kernel for (ΔC , �).

Rule 6. If G contains a vertex v such that at least � + 2 edges incident with v
have the same color c, then delete an arbitrary one of these edges.

Rule 6 can be exhaustively performed in linear time. Afterwards, the maximum
degree Δ of G is at most ΔC · (� + 1). In combination with Theorem6, this
immediately implies the following.

Theorem 7. Rainbow Subgraph has a problem kernel with at most 2(ΔC +
1)3�2(� + 1)2 vertices that can be computed in O(m2 + mn) time.

Finally, we describe a simple branching for the parameter (ΔC , �). Herein, delet-
ing a vertex means to remove it from G and to decrease � by one; thus, a deleted
vertex is not part of a rainbow cover of order k of the original instance.

Branching Rule 1. If G contains a non-obligatory vertex u, then branch into
the following cases. First, recursively solve the instance obtained from deleting u
from G. Then, for each color c that is incident with u pick an edge {v, w} with
color c. If v (w) is non-obligatory, then recursively solve the instance obtained
from deleting v (w).

Note that the parameter � decreases by one in each branch. Exhaustively apply-
ing Branching Rule 1 until either every vertex is obligatory or � ≤ 0 yields an
algorithm with the following running time.

Theorem 8. Rainbow Subgraph can be solved in O((2ΔC + 1)� · (n + m))
time.
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5 Outlook

Considering its biological motivation, it would be interesting to gain further,
potentially data-driven parameterizations of Minimum Rainbow Subgraph
that may help identifying further practically relevant and tractable special cases.
From a more graph-theoretic point of view, we left open a deeper study of
parameters measuring the degree of acyclicity of the underlying graph, such as
treewidth or feedback set numbers. A further question is whether for our fixed-
parameter tractability result in Theorem3 we can avoid exponential memory
consumption.

Acknowledgments. We thank the reviewers of WG’ 14 for their thorough and valu-
able feedback.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
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Abstract. A well-studied problem in phylogenetics is to determine the
minimum number of hybridization events necessary to explain conflicts
among several evolutionary trees, e.g. from different genes. An evolution-
ary history with hybridization events (or, more generally, reticulations)
can be described by a rooted leaf-labelled directed acyclic graph, which
is called a phylogenetic network. The reticulation number of such a phy-
logenetic network can be defined as the sum of all indegrees minus the
number of vertices plus one. The considered problem can now formally
be stated as follows. Given a finite set X, a collection T of rooted phy-
logenetic trees on X and k ∈ N

+, the Hybridization Number problem
asks if there exists a rooted phylogenetic network on X that displays
all trees from T and has reticulation number at most k. We show that
Hybridization Number admits a kernel of size 4k(5k)t if T contains t
(not necessarily binary) rooted phylogenetic trees. In addition, we show
a slightly different kernel of size 20k2(Δ+ − 1) with Δ+ the maximum
outdegree of the input trees.

1 Introduction

In phylogenetics, the central challenge is to construct a plausible evolutionary
history for a set of contemporary species X given incomplete data. This usually
concerns biological evolution, but the paradigm is equally applicable to more
abstract form s of evolution, e.g. natural languages [16]. Classically an evolution-
ary history is modelled by a rooted phylogenetic tree, essentially a rooted tree in
which the leaves are bijectively labelled by X [18]. In recent years, however, there
has been growing interest in generalizing this model to directed acyclic graphs,
i.e., to rooted phylogenetic networks [1,9,15]. In the latter model, reticulations
are of central importance, which are vertices of indegree 2 (or higher); these are
used to represent non-treelike evolutionary phenomena such as hybridization
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and lateral gene transfer. This has naturally given rise to the Hybridization
Number problem: given a set of phylogenetic trees T on the same set of taxa X,
construct a phylogenetic network on X with as few indegree-2 vertices as possi-
ble, such that an image of every tree in T is embedded in the network [2]. We
defer formal definitions to the preliminaries.

Hybridization Number has attracted considerable interest in a short space
of time. Even in the case when T consists of two binary (i.e., bifurcating) trees the
problem is NP-hard, APX-hard [5] and in terms of approximability is a surpris-
ingly close relative of the problem Directed Feedback Vertex Set [13,19].
On the positive side, this variant of the problem is fixed-parameter tractable
(FPT) in parameter k, the minimum number of indegree-2 vertices required.
Initially this was established via kernelization [4], but more recently efficient
bounded-search algorithms have emerged with O(3.18k · poly(n)) being the cur-
rent state of the art, where n = |X| [21].

In this article we focus on the general case when |T | ≥ 2 and the trees in T are
allowed to be nonbinary (i.e., not necessarily binary). This causes complications
for two reasons. First, when |T | > 2 the popular “maximum acyclic agreement
forest” abstraction breaks down, a central pillar of algorithms for the |T | = 2
case. Second, in the nonbinary case the images of the trees in the network are
allowed to be more “resolved” than the original trees. (More formally, an input
tree T is seen as being embedded in a network N if T can be obtained from
a subgraph of N by contracting edges.) The reason for this is that vertices
with outdegree greater than two are used by biologists to model uncertainty in
the order that species diverged. Both factors complicate matters considerably.
Consequently, progress has been more gradual.

For the case of multiple binary trees, there exists a polynomial kernel [20],
various heuristics [6,7,22] and an exact approach without running-time
bound [23].

For the case of two nonbinary trees, there is also a polynomial kernel [14],
based on a highly technical kernelization argument, and a simpler FPT algorithm
based on bounded search [17].

This leaves the case of an unbounded number of nonbinary trees as the main
variant for which it is unclear whether the problem is FPT. There has, however,
been some partial progress: for fixed k the problem is polynomial-time solvable
and the problem is FPT if the number of trees is bounded or the maximum
outdegree of the trees is bounded [11]. The main problem with the result from [11]
is its theoretical character: it is indirect (based on [12]) and yields a bounded-
search algorithm with astronomical running time.

Here we mirror the bounded-search result from [11] by showing that
Hybridization Number admits a kernel of size 4k(5k)t if T contains t nonbi-
nary rooted phylogenetic trees. In addition, we show a slightly different kernel
of size 20k2(Δ+ − 1) with Δ+ the maximum outdegree. We believe this result is
important for several reasons.
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Fig. 1. A (rooted phylogenetic) network N and a (rooted phylogenetic) tree T . Net-
work N is binary, has two reticulations (unfilled) and reticulation number 2. Tree T is
displayed by N because it can be obtained from N by deleting the dotted edges and
contracting the dashed edges.

First, it is the first polynomial kernel for any fixed number of nonbinary
trees, and the first polynomial kernel for an unbounded number of trees with
outdegrees bounded by any constant.

Second, it represents a significant step forward in our understanding of the
complexities associated with nonbinary trees. In particular, the result of [14] is so
technical due to the difficulties of dealing with so-called common chains, which
in the case of binary trees are much easier to deal with [4,20]. The sister result of
[11] avoids this technical analysis by exhaustive guessing which is mathematically
unsatisfying and is one of the reasons for its purely theoretical running time.
Here, for the first time, we present a simple and unified kernelization strategy for
dealing with common chains which avoids technical case analysis (and exhaustive
guessing) and can cope with the chains as they unfold across many trees.

Third, the 4k(5k)t kernel introduces an interesting way to deal with multiple
parameters simultaneously. It is based on searching, for decreasing q, for certain
substructures called “q-star chains”, which are chains that are common to all t
input trees and form stars in q of the input trees. When we encounter such
substructures we truncate them to a size that is a function of q and k. Since
we loop through all possible values of q (0 ≤ q ≤ t), we eventually truncate all
common substructures. The correctness of each step heavily relies on the fact
that substructures for larger values of q have already been truncated. However,
when q decreases, the size to which substructures can be reduced increases (as
will become clear later). This has the effect that the size of kernelized instances
is a function of k and t and not of k only. For the 20k2(Δ+ − 1) kernel, we use
a similar but simpler technique.

2 Preliminaries

Let X be a finite set. A rooted phylogenetic X-tree is a rooted tree with no
vertices with indegree 1 and outdegree 1, a root with indegree 0 and outdegree



302 L. van Iersel and S. Kelk

at least 2, and leaves bijectively labelled by the elements of X. We identify each
leaf with its label. We henceforth call a rooted phylogenetic X-tree a tree for
short. A tree T is a refinement of a tree T ′ if T ′ can be obtained from T by
contracting edges.

Throughout the paper, we refer to directed edges simply as edges. If e = (u, v)
is an edge, then we say that v is a child of u, that u is a parent of v and that v
is the head of e.

A rooted phylogenetic network is a directed acyclic graph with no vertices
with indegree 1 and outdegree 1 and leaves bijectively labelled by the elements
of X. Rooted phylogenetic networks will henceforth be called networks for short
in this paper. A tree T is displayed by a network N if T can be obtained from
a subgraph of N by contracting edges. Note that, without loss of generality, we
may assume that edges incident to leaves are not contracted. See Fig. 1 for an
example. Using d−(v) to denote the indegree of a vertex v, a reticulation is a
vertex v with d−(v) ≥ 2. The reticulation number of a network N with vertex
set V is given by

r(N) =
∑

v∈V :d−(v)≥2

(d−(v) − 1).

Given a set of trees T on X, we use r(T ) to denote the minimum value
of r(N) over all phylogenetic networks N on X that display T . We are now
ready to formally define the problem we consider.

Problem: Hybridization Number.

Instance: A finite set X, a collection T of rooted phylogenetic trees on X
and k ∈ N

+.

Question: Is r(T ) ≤ k, i.e., does there exist a phylogenetic network N on X
that displays T and has r(N) ≤ k?

A network is called binary if each vertex has indegree and outdegree at most 2
and if each vertex with indegree 2 has outdegree 1. By the following lemma we
may restrict to binary networks.

Observation 1 [11]. If there exists a network N on X that displays T then
there exists a binary network N ′ on X that displays T such that r(N) = r(N ′).

The observation follows directly from noting that, for each network N , there
exists a binary network N ′ with r(N ′) = r(N) such that N can be obtained
from N ′ by contracting edges. Hence, any tree displayed by N is also displayed
by N ′.

A subtree T ′ of a network N (or of a tree T ) is said to be pendant if no
vertex of T ′ other than possibly its root has a child that is not in T ′. A pendant
subtree is called trivial if it has only one leaf.

The notion of “generators” is used to describe the underlying structure of
a network without nontrivial pendant subtrees [12]. Let k ∈ N

+. A binary k-
reticulation generator is defined as an acyclic directed multigraph with a single
root with indegree 0 and outdegree 1, exactly k vertices with indegree 2 and
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Fig. 2. A network N and the 4-reticulation generator G underlying N . Generator G
has two vertex sides s8 and s15 and 13 edge sides. For example, leaves d, e and f are
on edge side s6 and leaf g is on vertex side s8.

outdegree at most 1, and all other vertices have indegree 1 and outdegree 2. See
Fig. 2 for an example. Let N be a binary network with no nontrivial pendant
subtrees and with r(N) = k. Then, a binary k-reticulation generator is said to
be the generator underlying N if it can be obtained from N by adding a new
root with an edge to the old root, deleting all leaves and suppressing all resulting
indegree-1 outdegree-1 vertices. In the other direction, N can be reconstructed
from its underlying generator by subdividing edges, adjoining a leaf to each
vertex that subdivides an edge, or has indegree 2 and outdegree 0, via a new
edge, and deleting the outdegree-1 root. The sides of a generator are its edges
(the edge sides) and its vertices with indegree 2 and outdegree 0 (the vertex
sides). Thus, each leaf of N is on a certain side of its underlying generator.
To formalize this, consider a leaf x of a binary network N without nontrivial
pendant subtrees and with underlying generator G. If the parent p of x has
indegree 2, then p is a vertex side of G and we say that x is on side p. If, on
the other hand, the parent p of x has indegree 1 and outdegree 2, then p is used
to subdivide an edge side e of G and we say that x is on side e. We say that
two leaves x and y (with x �= y) are on the same side of N if the underlying
generator of N has an edge side e such that x and y are both on side e. The
following lemma from [20] will be useful.

Lemma 1 [20]. If N is a binary phylogenetic network with no nontrivial pen-
dant subtrees and r(N) = k > 0 and if G is its underlying generator, then G
has at most 4k − 1 edge sides, at most k vertex sides and at most 5k − 1 sides
in total.

A kernelization of a parameterized problem is a polynomial-time algorithm that
maps an instance x with parameter k to an instance x′ with parameter k′ such
that (1) (x′, k′) is a yes-instance if and only if (x, k) is a yes-instance, (2) the size
of x′ is bounded by a function f of k, and (3) the size of k′ is bounded by a func-
tion of k [8]. A kernelization is usually referred to as a kernel and the function f
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Fig. 3. Example instance of Hybridization Number consisting of four trees that
have a common pendant subtree on {f, g, h} and a common 1-star chain (d, c, b, a).
Chain (d, c, b, a) is pendant in T1 and T2 but not in T3 and T4. It is a 1-star chain
because all its leaves have a common parent in only T2.

as the size of the kernel. Thus, a parameterized problem admits a polynomial
kernel if there exists a kernelization with f being a polynomial. A parameter-
ized problem is fixed-parameter tractable (FPT) if there exists an algorithm that
solves the problem in time O(g(k)|x|O(1)), with g being some function of k and |x|
the size of x. It is well known that a parameterized problem is fixed-parameter
tractable if and only if it admits a kernelization and is decidable. However, there
exist fixed-parameter tractable problems that do not admit a kernel of polyno-
mial size unless the polynomial hierarchy collapses [3]. Kernels are of practical
interest because they can be used as polynomial-time preprocessing which can
be combined with any algorithm (usually an exponential-time exact algorithm)
solving the problem.

3 A Polynomial Kernel for a Bounded Number of Trees

We first introduce the following key definitions. Let T be a set of trees. A tree T ′

is said to be a common pendant subtree of T if it is a refinement of a pendant
subtree of each T ∈ T and T ′ is said to be nontrivial if it has at least two leaves.

Definition 1. If T is a tree on X, p ≥ 2 and x1, . . . , xp ∈ X, then (x1, . . . , xp)
is a chain of T if:

1. there exists a directed path (v1, ..., vt) in T, for some t ≥ 1;
2. each xi is a child of some vj;
3. if xi is a child of vj and i < p, then xi+1 is either a child of vj or of vj+1;
4. for i ∈ {2, . . . , t − 1}, the children of vi are all in {vi+1, x1, x2, . . . , xp}.

If, in addition, t = 1 or the children of vt are all in {x1, . . . , xp}, then (x1, . . . , xp)
is said to be a pendant chain of T . The length of the chain is p.
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Algorithm 1. Kernelization algorithm for t := |T | trees
Subtree Reduction: if there is a nontrivial maximal common pendant1

subtree T ′ of T then
Let x /∈ X. In each T ∈ T , if T ′′ is the pendant subtree of T that T ′ is a2

refinement of, replace T ′′ by a single leaf labelled x. Remove the labels
labelling leaves of T ′ from X and add x to X.
go to Line 13

Chain Reduction: for q = t − 1, t − 2, . . . , 0 do4

if there exists a maximal common q-star chain (x1, . . . , xp) of T5

with p > (5k)t−q then
Delete leaves x(5k)t−q+1, . . . , xp from X and from each tree in T and6

repeatedly suppress outdegree-1 vertices and delete unlabelled
outdegree-0 vertices until no such vertices remain.
go to Line 17

A chain is said to be a common chain of T if it is a chain of each tree in T .
The following observations follow easily from the definition of a chain.

Observation 2. If (x1, . . . , xp) is a common chain of T and 1 ≤ i < j ≤ p,
then (xi, . . . , xj) is a common chain of T .

Observation 3. If (x1, . . . , xp) is a chain of a tree T , 1 ≤ i < j ≤ p and xi

and xj have a common parent in T , then xi, . . . , xj have a common parent in T .

Definition 2. If T is a set of trees on X and x1, . . . , xp ∈ X, then (x1, . . . , xp)
is a common q-star chain of T if:

(a) (x1, . . . , xp) is a common chain of T and
(b) in precisely q trees of T , all of x1, . . . , xp have a common parent.

We say that a common q-star chain (x1, . . . , xp) of T is maximal if there is no
common q-star chain (y1, . . . , yp′) of T with {x1, . . . , xp} � {y1, . . . , yp′}. Notice
that a common 0-star chain is a common chain that does not form a star in any
tree. An illustration of the above definitions is in Fig. 3.

We are now ready to describe the kernelization, which is in Algorithm 1.
It is not too difficult to see that the subtree reduction preserves the reticu-

lation number and can be applied in polynomial time.
To prove correctness of the chain reduction, we use two lemmas which have

been omitted due to space constraints and can be found in the full version of
this paper. The idea of these lemmas is illustrated in Fig. 4. The two trees T1

and T2 in this figure have a common chain (a, b, c, d, e). Both trees are displayed
by network N . However, the leaves of the chain are spread out over different sides
of the underlying generator G of N . To prove correctness of the chain reduction,
we want to argue that there exists a modified network N ′ in which the leaves
of the chain (a, b, c, d, e) all lie on the same side. Moreover, network N ′ should
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Fig. 4. Two trees T1 and T2 with a common chain (a, b, c, d, e) highlighted in blue
(grey), a network N that displays these trees, the network N ′ as constructed in Lem-
mas 4 and 5, and the underlying generator G of both networks. Dashed and dotted
edges are used to indicate that T2 can be obtained from either of N and N ′ by deleting
the dotted edges and contracting the dashed edges (Color figure online).

display all input trees and its reticulation number should not be higher than the
reticulation number of N .

In T1, all leaves of the chain have a common parent. For this case, Lemma 4
(omitted) argues that all leaves of the chain can be moved to any side that
contains at least one of its leaves, and the resulting network still displays T1.

In T2, there are two leaves xi = d and xj = e that are on the same side
of G (the blue side sb) and that do not have a common parent in T2. For this
case, Lemma 5 (omitted) argues that all the leaves of the chain can be moved
to side sb, and the resulting network will still display T2. (Note that we cannot
move all the leaves of the chain to the red side sr, even though it contains two
leaves b, c of the chain, because b and c have a common parent in T2).

Hence, the network N ′ obtained by moving all leaves of the chain to the blue
side sb displays both T1 and T2. Furthermore, r(N ′) = r(N) = 2.

The next lemma shows correctness of the chain reduction, and thereby of
Algorithm 1. It is based on the idea that, if a chain is long enough, one of
Lemmas 4 and 5 applies for each tree.

Lemma 2. Let q ∈ {0, . . . , t−1} (with t = |T |) and let (X, T , k) be an instance
of Hybridization Number without nontrivial common pendant subtrees or
maximal common q′-star chains of more than (5k)t−q′

leaves, for q < q′ ≤ t− 1.
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Let (X ′, T ′, k) be the instance obtained after applying the chain reduction to
a maximal common q-star chain C = (x1, . . . , xp) of T with p > (5k)t−q.
Then r(T ) ≤ k if and only if r(T ′) ≤ k.

Proof. It is clear that if r(T ) ≤ k then r(T ′) ≤ k because the chain reduction
only deletes leaves (and suppresses and deletes vertices).

It remains to prove the other direction. Assume that r(T ′) ≤ k, i.e., there
exists a network N ′ that displays T ′ and has r(N ′) ≤ k. Define m := (5k)t−q−1.
Hence, there are no common chains of T of more than m leaves that have a
common parent in more than q of the trees.

Let C ′ = (x1, . . . , x5km). First observe that C ′ is a common chain of T ′ and,
moreover, that C ′ is a common q′-star chain of T ′ with q′ ≥ q. Moreover, we
claim the following.

Claim (1). Any two leaves in {x1, . . . , x5km−1} have a common parent in a
tree T ∈ T if and only if they have a common parent in the corresponding
tree T ′ ∈ T ′.

This claim follows directly from the observation that, in the chain reduction,
the parents of x1, . . . , x5km−1 cannot become outdegree-1 and are therefore not
being suppressed. Correctness of the next claim can be verified in a similar way.

Claim (2). If C is not pendant in T ∈ T , then any two leaves in {x1, . . . , x5km}
have a common parent in T if and only if they have a common parent in the
corresponding tree T ′ ∈ T ′.

Now define
C∗ := (x1, x1+m, x1+2m, . . . , x1+(5k−1)m),

i.e., C∗ contains 5k leaves and the indices of any two subsequent leaves are m
apart.

Let G′ be the generator underlying N ′. Each leaf of C∗ is on a certain side
of G′. Since G′ has at most 5k − 1 sides (by Lemma 1) and C∗ contains 5k
leaves, there exist two leaves xi, xj of C∗ that are on the same side of G′ by the
pigeonhole principle. Assume without loss of generality that j > i. Then, by the
construction of C∗, j ≥ i + m.

We modify network N ′ to a network N ′′ by moving the whole chain C ′

to the side of the network containing xi and xj . To describe this modification
more precisely, let v5km be the parent of xi in N ′. Then, N ′′ is the network
obtained from N ′ by deleting the leaves x1, . . . , x5km, subdividing the edge enter-
ing v5km by a directed path v1, . . . , v5km−1, adding the leaves x1, . . . , x5km by
edges (v1, x1), . . . , (v5km, x5km) and cleaning up the resulting directed graph.

For each tree T ′ ∈ T ′ in which all of x1, . . . , x5km have a common parent,
Lemma 4 shows that N ′′ displays T ′. There are at least q such trees. In fact, it
follows from the following claim that there are precisely q such trees. Moreover,
the claim shows that in all other trees xi and xj do not have a common parent.
Therefore, it follows from Lemma 5 that these trees are also displayed by N ′′.
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Claim (3). The number of trees of T ′ in which xi and xj have a common parent
is at most q.

To prove the claim, consider C∗∗ := (xi, . . . , xj). Since C∗∗ is a subchain
of C ′, it is a chain of each tree in T ′ by Observation 2.

First consider the case q = t − 1 and assume that xi and xj have a common
parent in more than q trees in T ′ and hence in all trees in T ′. Then, xi, . . . , xj

all have a common parent in all trees in T ′, by Observation 3. Since C is a q-star
chain of T , there are q = t−1 trees in T in which all leaves of C have a common
parent. Let T ∗ be the only tree in T in which the leaves of C do not all have a
common parent. Then C is not pendant in T ∗ or its leaves would form a non-
trivial common pendant subtree of T . Hence, xi and xj have a common parent
in T ∗ by Claim (2). However, this is a contradiction because then xi and xj form
a nontrivial common pendant subtree of T .

To finish the proof of Claim (3), consider the case q < t − 1. In that case,
m > 1 and hence C∗∗ contains only leaves in {x1, . . . , x5km−1}. Because C∗∗

contains more than m leaves, the number of trees of T in which all the leaves
of C∗∗ have a common parent is at most q here we use the fact that there are
no common q′-star chains for q′ > q that have more than m leaves). Hence, it
follows from Claim (1) that the number of trees of T ′ in which the leaves of C∗∗

have a common parent is at most q. Claim (3) then follows by Observation 3.
Hence, we have shown that N ′′ displays T ′. We now construct a network N

from N ′′ by replacing the reduced chain by the unreduced chain. More precisely,
let e5km be the edge of N ′′ that leaves v5km but is not the edge (v5km, x5km). Sub-
divide e5km by a directed path (v5km+1, . . . , vp) and add leaves x5km+1, . . . , xp

by edges (v5km+1, x5km+1), . . . , (vp, xp). This gives N . Then, by a similar argu-
ment as in the proof of Lemma 5, N displays T . Moreover, since none of the
applied operations increase the reticulation number, we have r(N) ≤ r(N ′). ��

The next lemma, whose proof has been omitted, shows that the chain reduc-
tion can be performed in polynomial time.

Lemma 3. There exists a polynomial-time algorithm that, given a set T of trees
on X and q ∈ N, decides if there exists a common q-star chain of T and con-
structs such a chain of maximum size if one exists.

To see that Algorithm 1 runs in polynomial time, it remains to observe that at
least one leaf is removed in each iteration and hence that the number of iterations
is bounded by |X|.

Let (X ′, T ′, k) be a kernelized instance of Hybridization Number. If there
exists a network N ′ displaying T ′ with r(N ′) ≤ k then N ′ has at most one leaf
per vertex side of the underlying generator (since common pendant subtrees have
been reduced) and at most (5k)|T | leaves per edge side (since common chains
have been reduced). Hence,

|X ′| ≤ k + (4k − 1)(5k)|T | ≤ 4k(5k)|T |.

Correctness of the following theorem now follows from Lemmas 2–5.
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Theorem 1. The problem Hybridization Number on |T | = t trees admits a
kernel with at most 4k(5k)t leaves.

4 A Polynomial Kernel for Bounded Outdegrees

Algorithm 2 describes a polynomial kernel for Hybridization Number if not
the number of input trees but their maximum outdegree is bounded. Let Δ+ be
the maximum outdegree over all vertices of all trees in T .

Algorithm 2. Kernelization algorithm for bounded outdegree
Subtree Reduction: if there is a maximal common pendant subtree T ′ of T1

then
Let x /∈ X. In each T ∈ T , if T ′′ is the pendant subtree of T that T ′ is a2

refinement of, replace T ′′ by a single leaf labelled x. Remove the labels
labelling leaves of T ′ from X and add x to X.
go to Line 13

Chain Reduction: if there is a maximal common chain (x1, . . . , xp) of T4

with p > 5k(Δ+ − 1) then
Delete leaves x5k(Δ+−1)+1, . . . , xp from X and from each tree in T and5

repeatedly suppress outdegree-1 vertices and delete unlabelled outdegree-0
vertices until no such vertices remain.
go to Line 16

The proof of the following theorem follows the same ideas as the proofs of
Lemmas 2–5 and has been omitted.

Theorem 2. The problem Hybridization Number on trees with maximum
outdegree Δ+ admits a kernel with at most 20k2(Δ+ − 1) leaves.

5 Discussion and Open Problems

The main open question remains whether Hybridization Number has a poly-
nomial kernel for an unbounded number of nonbinary trees with unbounded out-
degrees. A related question is whether this problem is fixed-parameter tractable.

Note that when the input trees are not required to have the same label set X,
Hybridization Number is not fixed-parameter tractable unless P = NP. The
reason for this is that it is NP-hard to decide if r(T ) = 1 for sets T consisting
of rooted phylogenetic trees with three leaves each [10, Theorem 7].

Another question is whether the kernel size can be reduced for certain fixed |T |.
For |T | = 2, our results give a cubic kernel, while Linz and Semple [14] showed a
linear kernel of a modified, weighted problem, by analyzing carefully how common
chains can look in two trees. Can something like this be done for more than two
trees? In particular, does there exist a quadratic kernel for three trees?
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Finally, there is the problem of solving the kernelized instances. For this, a
fast exponential-time exact algorithm is needed (or a good heuristic). However,
it is not known if there exists an O(cn)-algorithm for Hybridization Number
for any constant c and n = |X|, even for three binary trees. A related, but
possibly more ambitious goal would be an O(cknO(1))-algorithm for the same
problem. Note that such algorithms do exist for the case |T | = 2 [21].
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Abstract. We present an approach for the traveling salesman problem
with graph metric based on Steiner cycles. A Steiner cycle is a cycle that
is required to contain some specified subset of vertices. For a graph G,
if we can find a spanning tree T and a simple cycle that contains the
vertices with odd-degree in T , then we show how to combine the classic
“double spanning tree” algorithm with Christofides’ algorithm to obtain
a TSP tour of length at most 4n

3
. We use this approach to show that a

graph containing a Hamiltonian path has a TSP tour of length at most
4n/3.

Since a Hamiltonian path is a spanning tree with two leaves, this moti-
vates the question of whether or not a graph containing a spanning tree
with few leaves has a short TSP tour. The recent techniques of Mömke
and Svensson imply that a graph containing a depth-first-search tree
with k leaves has a TSP tour of length 4n/3 + O(k). Using our app-
roach, we can show that a 2(k−1)-vertex connected graph that contains
a spanning tree with at most k leaves has a TSP tour of length 4n/3.
We also explore other conditions under which our approach results in a
short tour.

1 Introduction

We consider the well studied Traveling Salesman problem with graph metric,
also known as graph-TSP. Throughout this paper, the input graph G = (V,E)
is assumed to be an undirected, unweighted, 2-(vertex) connected graph, and all
edge lengths in the complete graph can be obtained via the shortest path metric
on the given graph. Our goal is to find a tour of minimum length that visits each
vertex at least once. In this paper, we focus on a connection between graph-TSP
and that of finding Steiner cycles.

1.1 Background

Graph-TSP has received much attention recently. Oveis Gharan, Saberi and
Singh were the first to improve on the approximation ratio of 3/2 by an infini-
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Fig. 1. In this (non-simple) cycle C, the number of unique vertices |C| = 8, but the
length of the cycle �(C) = 10.

tesimal, but constant, factor [12]. This was quickly followed by the breakthrough
work of Mömke and Svensson, who introduced a new approach leading to a sub-
stantial improvement in the approximation ratio [19]. Subsequently, Mucha gave
a refined analysis of their approach, proving an approximation ratio of 13/9 for
graph-TSP [20]. More recently, Sebő and Vygen presented an approximation
algorithm with ratio 7/5 for the problem [23].

It is widely believed that an approximation ratio of at most 4/3 should be
efficiently computable. The approach of Mömke and Svensson is based on setting
up a circulation network and showing that a low-cost circulation leads to a low
cost TSP tour. They obtained a 4/3-approximation for subcubic graphs, but
high-degree graphs appear to be more challenging for their framework. Vishnoi
recently gave a randomized algorithm that finds a TSP tour very close to n
with high probability for a k-regular graph when k is sufficiently large [26]. Our
goal is to consider other techniques that are applicable for graphs that are not
low-degree or regular.

2 Steiner Cycles

The Steiner cycle problem has been previously, but not extensively, studied under
varying definitions [8,13,25]. For our purposes, a Steiner cycle is defined to be
a simple cycle that contains a specified subset S ⊆ V of vertices. It may also
contain any subset of vertices from the set V \S. We use the following definition:

Definition 1. Given a graph G = (V,E) and a subset of vertices, S ⊆ V , a
Steiner cycle, C ⊂ E, is a simple cycle whose vertices contains the set S.

It is important to observe that in our definition of a Steiner cycle, there are no
repeated vertices, since a Steiner cycle is a simple cycle. We define an approxi-
mate Steiner cycle as one in which we are allowed to repeat vertices. For a cycle
C, we will use |C| to denote the number of unique vertices it contains. We define
the cycle length, �(C), to be total length of a traversal of the cycle. If C is a
simple cycle, then |C| = �(C). For example, in Fig. 1, the non-simple cycle has
eight unique vertices and has length ten. Our definition of cycle length is the
same as the standard definition for the length of a TSP tour in the graph metric.
Now we can define an approximate Steiner cycle.

Definition 2. Given a graph G = (V,E) and a subset of vertices, S ⊆ V , an
approximate Steiner cycle, C ⊂ E, with relative length β ≥ 1 is a cycle whose
vertices contains the set S and for which �(C)/|C| ≤ β.
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In an approximate Steiner cycle, since we are allowed to repeatedly visit vertices
as we traverse the cycle, it may be the case that the number of unique vertices
will be smaller than the length, |C| < �(C). Throughout this paper, whenever
we refer simply to a “cycle”, we mean a simple cycle.

Other natural definitions of the Steiner cycle problem are concerned with
such aspects as minimizing the number of non-required (Steiner) vertices in
the cycle. In our definition of the approximate Steiner cycle problem, the only
objective that we wish to minimize is the ratio of the length of a cycle, �(C), to
the number of unique vertices, |C|, it contains. Thus, the measure of an optimal
solution is independent of the size of the set of required vertices. The work that
appears to be most related to the Steiner cycle problem as we have defined it
concerns the concept of cyclability: A set of vertices X ⊆ V is called cyclable
if it is contained in some cycle. The quantity cyc(G) is the maximum number
such that all subsets containing at most cyc(G) vertices are cyclable. Note that
cyc(G) = n if and only G is Hamiltonian. It seems that most of the work on
cyclability has been done with the intention of eventually using it to prove that
certain graphs are Hamiltonian or because it can be viewed as a relaxation of
Hamiltonicity. An interesting list of theorems on cyclability can be found in [21].
Here, we explore cyclability as a tool to obtain approximate TSP tours.

2.1 Our Approach

Graph-TSP can clearly be cast as a special case of the Steiner cycle problem in
which all of the vertices in V are required to belong to the Steiner cycle. In this
paper, we show that even if the required set of vertices is possibly much smaller
than the entire vertex set V , an (approximation) algorithm for the Steiner cycle
problem can still be used to approximate graph-TSP.

Suppose we can find a spanning tree T for the graph G and a simple cycle CT

that contains all of the vertices that have an odd-degree in the tree T . When |CT |
is large, we show that we can use the folklore “double spanning tree” algorithm to
find a short tour. When |CT | is small, then there is a small matching on the odd-
degree vertices in T and we can therefore show that Christofides algorithm [5]
yields a short tour. Thus, our algorithm, described in Sect. 3, can be viewed as
a combination of these two standard algorithms for graph-TSP.

We are not aware of any previous work studying how to combine these
two classic algorithms for graph-TSP. However, a similar algorithm that com-
bines these two algorithms was given by Guttman-Beck, Hassin, Khuller and
Raghavachari for the s, t-path TSP [15]. In their algorithm, they first find an
MST for the input graph. If the path from s to t in this MST is long, they
double edges in the MST that do not belong to this path. If the path from s
to t is short, they modify the input graph by adding an edge from s to t with
length equal to the shortest s, t-path in G and run Christofides on this modified
graph as in the algorithm by Hoogeveen [17]. Taking the better of these two
algorithms results in a 5/3-approximation for the s, t-path problem, which does
not improve on the worst-case approximation ratio of Hoogeveen’s algorithm.
Nevertheless, this approach was used to design algorithms for special variants of
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Fig. 2. A graph G with a spanning tree T (second figure, blue edges) and a simple
cycle CT (third figure, purple edges) containing all of the odd-degree nodes of T (Color
figure online).

the path TSP problem [15], and the ideas were also eventually used to obtain
improved approximation guarantees for the s, t-path TSP itself [22]. In our algo-
rithm, rather than basing the subcases on the path length from s to t in an
MST, we are basing the two subcases on the length of a cycle containing the
nodes with odd degree in a particular MST.

2.2 Overview of Our Results

In Sect. 3, we give a complete description of our algorithm. In Sect. 4, we use
this algorithm to show that if the input graph contains a Hamiltonian path,
then it has a TSP tour of length at most 4n/3. Moreover, if we are given the
Hamiltonian path, then we can efficiently find such a tour. This theorem was
first proved by Gupta using a different approach [14].

One can view a Hamiltonian path as a spanning tree with two leaves.
A natural question is how well we can approximate a TSP tour in a graph that
contains a spanning tree with few leaves. In Sect. 5, we show how our approach
can be used to address this question in some special cases. In Sect. 6, we discuss
how approximate Steiner cycles can also be used to obtain an approximation
guarantee for graph-TSP. Finally, in Sect. 7, we consider some examples (Fig. 2).

3 TSP Tours from Steiner Cycles

Given an undirected, unweighted graph, G = (V,E), with graph metric, our goal
is to find a TSP tour of minimum length. A TSP tour must visit each vertex
at least once. As stated previously in the introduction, we assume that G is a
2-connected graph and we define n = |V |.

Let T be a spanning tree of G and let ST ⊂ V be the vertices that have odd
degree in T . Suppose there is a simple cycle CT that contains all the vertices in
ST . Note that the simple cycle CT can be of arbitrary length, i.e. can contain
arbitrarily many vertices in V \ ST .

Theorem 1. For a given graph G, suppose we have a minimum spanning tree
T and a simple cycle CT that contains all vertices with odd degree in T . Then
we can construct a TSP tour of G with length at most 4n/3.

Proof: Consider the following cases. Recall that |CT | denotes the number of
unique vertices contained in the cycle CT . Since CT is a simple cycle, |CT | also
denotes its length.
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(i) |CT | > 2n/3. In this case, we can contract the cycle CT to a single vertex.
The resulting graph has at most n/3 vertices. We can then find a minimum
spanning tree on this graph and double each edge. When we uncontract the
vertex corresponding to the cycle CT , we obtain an Eulerian tour whose total
length is at most 4n/3.

(ii) |CT | ≤ 2n/3. In this case, since all of the vertices of ST are contained in CT ,
there is a matching of the vertices in ST with length at most n/3. Using this
matching plus T , we obtain an Eulerian tour of G of length at most 4n/3.

��
We can therefore see that if G has a tree T and a simple cycle CT that

contains all of the vertices with odd degree in T , then G has a TSP tour of
length at most 4n/3. We now show how to apply this theorem to some special
classes of graphs.

4 Graphs Containing a Hamiltonian Path

Recall that a Hamiltonian path in G is a path that visits each vertex in V
exactly once. Note that the first and last vertices on the path might not be
adjacent vertices in G. More generally, G might not be Hamiltonian. In this
section, we show that for an unweighted graph G = (V,E) with graph metric, if
G contains a Hamiltonian path, then G has a TSP tour of length at most 4n/3.

Theorem 2. Suppose G contains a Hamiltonian path. Then G has a TSP tour
of length at most 4n/3.

Proof: Suppose that the first and last vertices of the Hamiltonian path are adja-
cent in the graph. Then G is Hamiltonian and, moreover, given the Hamiltonian
path, we can find this tour.

If the first and last vertices of the Hamiltonian path are not adjacent in G,
then since G is 2-vertex connected, we can use Menger’s theorem [10,18], which
states that there are two vertex disjoint paths between any two non-adjacent
vertices in a 2-vertex connected graph. Thus, we have a simple cycle including
the odd-degree nodes on the tree (the first and last nodes in the Hamiltonian
path) and the proof of the theorem follows directly from applying Theorem1. ��
Since there are constructive proofs of Menger’s Theorem, Theorem 2 results in
an efficient algorithm, assuming the Hamiltonian path is given.

5 Graphs Containing a Spanning Tree with k Leaves

A Hamiltonian path can be viewed as a spanning tree with two leaves. A natural
extension is to ask what happens when a graph does not contain a Hamiltonian
path but rather a spanning tree with few leaves. Does it still have a short TSP
tour? Suppose G has a spanning tree with k leaves. If G is well-connected, we
can use a well-known theorem of Dirac to obtain an upper bound on the length
of a TSP tour of G.
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Theorem 3. Suppose G is 2(k−1)-connected and contains a spanning tree with
k leaves. Then G has a TSP tour of length at most 4n/3.

Proof: A spanning tree with k leaves contains at most 2(k − 1) vertices with
odd degree. A theorem of Dirac states that if a graph is c-vertex connected,
then any subset X ⊆ V of vertices with |X| ≤ c is contained in some simple
cycle [3,9]. Thus, if c = 2(k − 1), then G is c-connected by the assumption of
the theorem. Moreover, G has at most c odd-degree vertices if it has k leaves.
We can therefore let X be the set of odd-degree vertices and the theorem follows
directly from applying Theorem1. ��
Finding a simple cycle containing c vertices in a c-connected graph can be done
efficiently (see Chap. 9 in [3]). Thus, Theorem 3 results in an efficient algorithm
assuming the spanning with k leaves is given.

More generally, Steiner cycles have been studied by the Graph Theory com-
munity and if a set of vertices X ⊆ V is contained in a cycle, then the set
X is called cyclable. This terminology is attributed to Chvatal [6]. Moreover,
cyclability of a graph G, i.e. cyc(G), is the maximum number such that every
subset of at most cyc(G) vertices is cyclable. If a graph G has a cyclable number
c = cyc(G) and it also contains a spanning tree with at most c/2+1 leaves, then
this spanning tree contains at most c odd-degree vertices. Thus, it will contain
a TSP tour of length 4n/3 via Theorem 1. Considerable effort has been invested
in computing the cyclablity of certain graph classes. For example, we cite the
following two theorems:

Theorem 4 [16]. For every 3-connected cubic graph G, cyc(G) ≥ 9. This bound
is sharp (the Petersen graph).

Theorem 5 [2]. For every 3-connected cubic planar graph G, cyc(G) ≥ 23. This
bound is sharp.

Theorem 4 implies that if a 3-connected, cubic graph G contains a spanning tree
with at most five leaves, then G has a TSP tour of length at most 4n/3. The-
orem 5 shows that if a 3-connected, planar, cubic graph G contains a spanning
tree with at most 12 leaves, then G has a TSP tour of length at most 4n/3. We
remark that showing that a 3-connected cubic graph has a spanning trees with
at most five leaves as a means to bounding the length of a TSP tour would only
be an alternative approach, as it is already known that a cubic graph has a TSP
tour of length at most 4n/3 [1,4,14,19].

A well-known theorem of Dirac states that every graph with minimum degree
at least n/2 is Hamiltonian. A analogous theorem can be shown for cyclability.
Let X ⊆ V be a subset of vertices and define σ2(X) := min{

∑
y∈Y d(y) : Y ⊆

X, |Y | = 2, Y is an independent set}. In other words, if we choose each pair of
non-adjacent vertices in X and add up their degrees, σ2(X) is the minimum of
this quantity. This is used in the following theorem due to Shi:

Theorem 6 [24]. Let G = (V,E) be a 2-connected graph and X ⊂ V .
If σ2(X) ≥ n, then X is cyclable in G.
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If we find a spanning tree T such that all non-adjacent pairs of vertices with
odd-degree in T have total degree at least n (in G), then G has a TSP tour
of length at most 4n/3. The vertices that have an even degree in the tree are
allowed to have low degree in G. Another nice theorem on cyclability is due to
Fournier:

Theorem 7 [11]. Let G be a 2-connected graph and X ⊆ V . If α(X) ≤ κ(G),
then X is cyclable in G.

Here, α(X) means the largest independent set in X, and κ(G) is the connectivity
of G. It is known that if α(G) ≤ κ(G), then G is Hamiltonian [7]. Theorem 7
implies that if the set of odd-degree vertices in a spanning tree has a maximum
independent set that is smaller than the connectivity of G, then G has a TSP
tour of length at most 4n/3.

In relation to Theorem 3, it is reasonable to ask if, for sufficiently large k,
a 2(k − 1)-connected graph has a spanning tree with k leaves. This is not the
case as demonstrated by the following example. Consider the complete bipartite
graph G = Kc,n where n >> c. Then G is c-connected, but the minimum length
TSP tour is roughly 2n. So G cannot contain a spanning tree with at most c/2+1
leaves.

5.1 Graphs Containing a k-Leaf DFS Spanning Tree

If G has a depth-first-search (DFS) spanning tree with k leaves, then we note
that the techniques of Mömke and Svensson [19] can be used to obtain a TSP
tour of length at most 4n/3 + 2k/3. Specifically, in this case, it is not difficult
to see that there is a circulation (as defined by Mömke and Svensson) of cost
at most k. This implies that one can also use the techniques from Mömke and
Svensson to prove Theorem 2. We emphasize that a DFS spanning tree must be
used to directly apply the techniques of Mömke and Svensson. In comparison, in
Theorem 3, we can use any spanning tree with k leaves. The proof of Lemma 1
is straightforward, but we include it for the sake of completeness.

Lemma 1. If G has a DFS spanning tree with at most k leaves, then it has a
circulation, as defined by Mömke and Svensson [19], of cost at most k.

Proof: We will demonstrate a 2-connected subgraph of G such that the cost of
a circulation on this subgraph is at most k.

Consider a path from the root of the DFS tree to a leaf. Let us call this path
p1. Suppose that the vertices on p1 are labeled sequentially from the root to the
leaf in increasing order, 1, 2, ...�(p1), where �(p1) denotes the number of vertices
in the path p1. We find a back-edge from the leaf or the vertex labeled �(p1)
to a vertex with the smallest label. Suppose that this edge goes from �(p1) to
h. Then at the next step, we find the back-edge (i, j) where �(p1) > i > h and
j < i and j is as small as possible. Since G is 2-connected, we will always be
able to find such an edge. Otherwise G would contain a cut vertex, which would
contradict the 2-connectivity of G.
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Now consider a path on the DFS tree from some vertex on p1 to another
leaf. Call the path from the root to this leaf p2. Perform the same procedure as
above: starting at the leaf, find some back-edges, so that the resulting subgraph
containing paths p1 and p2 and these back-edges is 2-connected. At some point,
we will add a back edge that intersects with the path p1. If this is a branching
node, i.e. the last node that belongs to both p1 and p2, we will add one more
back edge so that the resulting subgraph is 2-connected.

Note that each vertex in p2 that is below this branching node, i.e. has a
higher label, has only one back-dge coming into it. The only vertices that may
have more than one back-edge coming into them are the branch node and another
node with a lower label. However, since in Lemma 4.1 of [19], each subtree of
a branch node is accounted separately in the circulation network, if the branch
node now has, say, two back-edges, it also has two subtrees, so its contribution
to the circulation is still zero. A node above the branch node with B back-edges
coming into it will contribute at most B − 1 to the cost of the circulation.

As we add each root-leaf path in the DFS tree, and we add the new path and
a set of back-edges to make the subgraph 2-connected, we will add at most one
back-edge to a vertex that already has incoming back-edges. Thus, the circulation
is upper bounded by k if the DFS tree has k leaves. ��

Theorem 8. If G has a DFS spanning tree with at most k leaves, then it has a
TSP tour of at most 4n/3 + 2k/3.

Proof: This follows from Lemma 1 and Lemma 4.1 of Mömke and Svensson
[19]. ��

6 Cycle Length and Approximation Ratio Tradeoff

We have shown that a simple cycle that contains the odd-degree nodes in some
spanning tree yields a TSP tour of length at most 4n/3. Suppose we can only
obtain an approximate Steiner cycle. Then what is the guarantee on the length
of the TSP tour? We now show that we can obtain the following tradeoff. For
a cycle C in G that is not necessarily simple, recall that |C| is the number of
unique vertices in the cycle C and �(C) denotes its length.

Theorem 9. Given G, a minimum spanning tree T and an approximate Steiner
cycle CT that contains all the odd-degree vertices in T such that �(CT ) ≤ (1 +
γ)|CT |, we can construct a TSP tour of G of length at most 4n

3−γ .

Proof: We consider two cases based on the number of unique vertices in the
cycle CT :

(i) |CT | > 2n
3−γ . Then we contract the cycle CT to a single vertex, find a min-

imum spanning tree on the resulting graph and double each edge in this
spanning tree. Since the length of cycle �(CT ) ≤ (1+γ)|CT |, the total length
of the resulting Eulerian tour is at most:
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Fig. 3. Any spanning tree of this graph has too many leaves to be spanned by a simple
cycle. However, note that the solution to the Held-Karp LP relaxation will be |E| = 2n
for this graph, certifying that the lower bound is much greater than 4n/3 in this case.

�(TSP ) ≤ (1 + γ)|CT | + 2(n − |CT |) (1)
= 2n + (1 + γ − 2)|CT | (2)
= 2n − (1 − γ)|CT | (3)

< 2n − 2n

(3 − γ)
(1 − γ) (4)

=
4n

3 − γ
. (5)

(ii) |CT | ≤ 2n
3−γ . In this case, we find a matching of the odd-degree vertices in T

with length at most (1+γ)|CT |/2. The total length of the resulting Eulerian
tour S is at most:

�(TSP ) ≤ n + (1 + γ)
|CT |

2
(6)

≤ n +
(1 + γ)

2
2n

(3 − γ)
(7)

=
4n

3 − γ
. (8)

��

6.1 Approximation Guarantees from LP Bounds

In general, it could be the case that there does not exist a spanning tree whose
odd-degree vertices can be contained in a simple cycle. An example of such a
graph can be found in Fig. 3. However, suppose we can compute, via an LP
relaxation or some other means, a lower bound on the length of a TSP tour,
e.g. OPT ≥ (1 + α)n for 0 ≤ α ≤ 1. Then the following Corollary of Theorem9
states a sufficient condition for a 4

3 -approximation to the optimal TSP tour.

Corollary 1. If an optimal tour is lowerbounded by OPT ≥ (1 + α)n and G
contains a spanning tree T and a cycle CT containing the odd-degree nodes of
T such that �(CT ) ≤ (1 + 4α)|CT |/(1 + α), then G has a TSP tour of length at
most 4

3 · OPT .
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Note that Theorem 9 says that if we can find a tree T and a cycle CT such that
�(CT )/|CT | < 4/3, then we can find a TSP tour less than 3n/2. To find a tour
shorter than 7n/5 (which is currently the best known bound when the solution
to the standard LP relaxation equals n [23]), we require that �(CT )/|CT | < 8/7.

7 Discussion

We have reduced the problem of finding a short TSP tour to the problem of
finding an (approximate) Steiner cycle where the required vertices are the odd-
degree nodes in some spanning tree, and we have flexibility as to whether or not
we include the non-required vertices in the cycle. But is this problem any easier
than graph-TSP itself? For example, in Fig. 4, we give an example of a graph
and a spanning tree such that the odd-degree vertices of the spanning tree is the
entire vertex set! Thus, finding a Steiner cycle for these vertices is no easier than
finding a TSP tour. However, in this example, we can see that there are many
other possible spanning trees. Figure 5 shows two other possible spanning trees
and corresponding Steiner cycles. We note that given a spanning tree, the Steiner
cycle including the odd-degree nodes may not be unique. Another example of a
graph G and a spanning tree in which every vertex can have odd degree is shown
in Fig. 6. But, again, there are many other spanning trees in which only a subset
of the vertices have odd degree (Fig. 7).

Each of the examples we have considered so far actually contains a Hamil-
tonian path. Thus, by applying Theorem2, we can see that they have a TSP tour
of length at most 4n/3. There are actually interesting examples of cubic, 3-edge
connected graphs that do not contain a Hamiltonian path. The graph shown
in Fig. 8 is such a graph due to Zamfirescu [27]. We see that we can construct
a spanning tree and Steiner cycle containing all of the vertices that have odd
degree in the spanning tree.In conclusion, let us consider the following question:

Fig. 4. A graph G and a spanning tree.

Fig. 5. Alternative spanning trees for G and corresponding Steiner cycles.

Fig. 6. The wheel graph has a spanning tree in which all vertices have odd degree.
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Fig. 7. Alternative spanning trees with fewer odd-degree vertices for the wheel graph.

Fig. 8. A cubic, 3-edge connected graph with no Hamiltonian paths. We show a span-
ning tree and a corresponding Steiner cycle containing all the nodes with odd degree
in the spanning tree.

Suppose the standard linear programming relaxation for Graph TSP has value
n on a fixed graph. Then is there a spanning tree T and a simple cycle CT that
contains all of the vertices that are odd-degree in T? If a graph is Hamiltonian,
then this is (trivially) true for any spanning tree.
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22. Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M., Correa,
J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer, Heidelberg (2013)
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Abstract. We give a complete characterization of mixed unit inter-
val graphs, the intersection graphs of closed, open, and half-open unit
intervals of the real line. This is a proper superclass of the well known
unit interval graphs. Our result solves a problem posed by Dourado, Le,
Protti, Rautenbach and Szwarcfiter (Mixed unit interval graphs. Dis-
crete Math. 312, 3357–3363 (2012)). Our characterization also leads to
a polynomial-time recognition algorithm for mixed unit interval graphs.

Keywords: Unit interval graph · Proper interval graph · Intersection
graph

1 Introduction

A graph G is an interval graph, if there is a function I from the vertex set of G to
the set of intervals of the real line such that two vertices are adjacent if and only
if their assigned intervals intersect. The function I is an interval representation
of G. Interval graphs are well known and investigated – algorithmically as well as
structurally [4,6,9]. There are several efficient algorithms that decide, if a given
graph is an interval graph. See for example [2].

An important subclass of interval graphs are unit interval graphs. An inter-
val graph G is a unit interval graph, if there is an interval representation I of
G such that I assigns to every vertex a closed interval of unit length. This sub-
class is well understood and also easy to characterize structurally [11] as well as
algorithmically [1].

Frankl and Maehara [5] showed that it does not matter, if we assign the
vertices of G only to closed intervals or only to open intervals of unit length.
Rautenbach and Szwarcfiter [10] characterized, by a finite list of forbidden induced
subgraphs, all interval graphs G such that there is an interval representation of G
that uses only open and closed unit intervals.

Dourado et al. [3] gave a characterization of all diamond-free interval graphs
that have an interval representation such that all vertices are assigned to unit
intervals, where all kinds of unit intervals are allowed and a diamond is a com-
plete graph on four vertices minus an edge. Furthermore, they made a conjecture
concerning the general case.
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 324–335, 2014.
DOI: 10.1007/978-3-319-12340-0 27
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We prove that their conjecture is not completely correct and give a complete
characterization of this class. Since the conjecture is rather technical and not
given by a list of forbidden subgraphs, we refer the reader to [3] for a detailed
formulation of the conjecture, but roughly speaking, they missed the class of
forbidden subgraphs shown in Fig. 6. Moreover, we provide a polynomial-time
recognition algorithm for this graph class.

In Sect. 2 we introduce all definitions and relate our results to other work. In
Sect. 3 we state and prove our results.

2 Preliminary Remarks

We only consider finite, undirected, and simple graphs. Let G be a graph. We
denote by V (G) and E(G) the vertex and edge set of G, respectively. If C is a
set of vertices, then we denote by G[C] the subgraph of G induced by C. Let
M be a set of graphs. We say G is M-free, if for every H ∈ M, the graph
H is not an induced subgraph of G. For a vertex v ∈ V (G), let the neighbor-
hood NG(v) of v be the set of all vertices that are adjacent to v and let the
closed neighborhood NG[v] be defined by NG(v) ∪ {v}. Two distinct vertices u
and v are twins (in G) if NG[u] = NG[v]. If G contains no twins, then G is
twin-free.

Let N be a family of sets. We say a graph G has an N -intersection repre-
sentation, if there is a function f : V (G) → N such that for any two distinct
vertices u and v, there is an edge joining u and v if and only if f(u) ∩ f(v) �= ∅.
If there is an N -intersection representation for G, then G is an N -graph. Let
x, y ∈ R. We denote by

[x, y] = {z ∈ R : x ≤ z ≤ y}

the closed interval, by

(x, y) = {z ∈ R : x < z < y}

the open interval, by
(x, y] = {z ∈ R : x < z ≤ y}

the open-closed interval, and by

[x, y) = {z ∈ R : x ≤ z < y}

the closed-open interval of x and y. For an interval A, let �(A) = inf{x ∈
R : x ∈ A} and r(A) = sup{x ∈ R : x ∈ A}. If I is an interval representa-
tion of G and v ∈ V (G), then we write �(v) and r(v) instead of �(I(v)) and
r(I(v)), respectively, if there are no ambiguities. Let I++ be the set of all closed
intervals, I−− be the set of all open intervals, I−+ be the set of all open-
closed intervals, I+− be the set of all closed-open intervals, and I be the set of
all intervals. In addition, let U++ be the set of all closed unit intervals, U−− be
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the set of all open unit intervals, U−+ be the set of all open-closed unit inter-
vals, U+− be the set of all closed-open unit intervals, and U be the set of all unit
intervals. We call a U-graph a mixed unit interval graph.

By a result of [3,10], every interval graph is an I++-graph. With our notation
unit interval graphs equals U++-graphs. An interval graph G is a proper interval
graph if there is an interval representation of G such that I(u) �⊆ I(v) for every
distinct u, v ∈ V (G).

The next result due to Roberts characterizes unit interval graphs.

Theorem 1 (Roberts [11]). The classes of unit interval graphs, proper interval
graphs, and K1,3-free interval graphs are the same.

The second result shows that several natural subclasses of mixed unit interval
graphs actually coincide with the class of unit interval graphs.

Theorem 2 (Dourado et al., Frankl and Maehara [3,5]). The classes of
U++-graphs, U−−-graphs, U+−-graphs, U−+-graphs, and U+− ∪U−+-graphs are
the same.

A graph G is a mixed proper interval graph (respectively an almost proper interval
graph) if G has an interval representation I : V (G) → I (respectively I : V (G) →
I++ ∪ I−−) such that

– there are no two distinct vertices u and v of G with I(u), I(v) ∈ I++, I(u) ⊆
I(v), and I(u) �= I(v), and

– for every vertex u of G with I(u) /∈ I++, there is a vertex v of G with
I(v) ∈ I++, �(u) = �(v), and r(u) = r(v).

A natural class extending the class of unit interval graphs are U++∪U−−-graphs.
These were characterized by Rautenbach and Szwarcfiter.

Theorem 3 (Rautenbach and Szwarcfiter [10]). For a twin-free interval
graph G, the following statements are equivalent.

• G is a {K1,4,K
∗
1,4,K

∗
2,3,K

∗
2,4}-free graph. (See Fig. 1 for an illustration.)

• G is an almost proper interval graph.
• G is a U++ ∪ U−−-graph.

Note that an interval representation can assign the same interval to twins
and hence the restriction to twin-free graphs does not weaken the statement but
simplifies the description.

K1,4 K∗
1,4 K∗

2,3 K∗
2,4

Fig. 1. Forbidden induced subgraphs for twin-free U++ ∪ U−−-graphs.
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Fig. 2. A graph, which is a U-graph, but not a U++ ∪ U−−-graph.

The next step is to allow all different types of unit intervals. The class of
U-graphs is a proper superclass of the U++ ∪ U−−-graphs, because the graph
illustrated in Fig. 2 is a U-graph, but not a U++ ∪ U−−-graph (it contains a
K∗

1,4). Dourado et al. already made some progress in characterizing this class.

Theorem 4 (Dourado et al. [3]). For a graph G, the following two statements
are equivalent.

• G is a mixed proper interval graph.
• G is a mixed unit interval graph.

They also characterized diamond-free mixed unit interval graphs. There is
another approach by Le and Rautenbach [8] to understand the class of U-graphs
by restricting the ends of the unit intervals to integers. They found a infinite
list of forbidden induced subgraphs, which characterize these so-called integral
U-graphs.

3 Results

In this section we state and prove our main results. We start by introducing
a list of forbidden induced subgraphs. See Figs. 3, 4, 5, and 6 for illustration.
Let R =

⋃∞
i=0{Ri}, S =

⋃∞
i=1{Si}, S ′ =

⋃∞
i=1{S′

i}, and T =
⋃

i≥j≥0{Ti,j}. For
k ∈ N let the graph Qk arise from the graph Rk by deleting two vertices of degree
one, which have a common neighbor. We call the common neighbor of the two
deleted vertices and its neighbor of degree two special vertices of Qk. Note that
if a graph G is twin-free, then the interval representation of G is injective.

R0 R1 R2

i triangles Ri

Fig. 3. The class R.
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S1 S2 i triangles Si

Fig. 4. The class S.

S′
2S′

1 i triangles S′
i

Fig. 5. The class S ′.

Lemma 5. (Dourado et al. [3]). Let k ∈ N.

(a) Every U-representation of the claw K1,3 arises by translation of the following
U-representation I : V (K1,3) → U of K1,3, where I(V (K1,3)) consists of the
following intervals

• either [0, 1] or (0, 1],
• [1, 2] and (1, 2), and
• either [2, 3] or [2, 3).

(b) Every injective U-representation of Qk arises by translation and inversion
of one of the two injective U-representations I : V (Qk) → U of Qk, where
I(V (Qk)) consists of the following intervals

• either [0, 1] or (0, 1],
• [1, 2] and (1, 2), and
• [i, i + 1] and [i, i + 1) for 2 ≤ i ≤ k + 1.

(c) The graphs in {T0,0} ∪ R are minimal forbidden subgraphs for the class of
U-graphs with respect to induced subgraphs.

(d) If G is a U-graph, then every induced subgraph H in G that is isomorphic to
Qk and every vertex u∗ ∈ V (G) \ V (H) such that u∗ is adjacent to exactly
one of the two special vertices of H, the vertex u∗ has exactly one neighbor
in V (H).

Lemma 6. If a graph G is a twin-free mixed unit interval graph, then G is
{K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free.

For the sake of space restrictions, we omit the proof of Lemma 6 and proceed to
our main result.

Theorem 7. A twin-free graph G is a mixed unit interval graph if and only if
G is a {K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph.

Proof of Theorem 7: By Lemma 6, we know if G is a twin-free mixed unit interval
graph, then G is a {K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph. Let now G be
a twin-free {K∗

2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph. We show that G is a
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T0,0 T1,0 T2,1

i triangles j triangles
Ti,j

Fig. 6. The class T .

mixed proper interval graph. By Theorem 4, this proves Theorem 7. Since G is
an interval graph, G has an I++-representation I. As in [10] we call a pair (u, v)
of distinct vertices a bad pair if I(u) ⊆ I(v). Let I be such that the number
of bad pairs is as small as possible. If I has no bad pair, then we are done by
Theorem 1. Hence we assume that there is at least one bad pair. The strategy
of the proof is as follows. Claims 1 to 6 collect properties of G and I, before
we modify our interval representation of G to show that G is a mixed proper
interval graph. In Claims 7 to 10 we prove that our modification of the interval
representation preserves all intersections and non-intersections. Claims 1 to 3 are
similar to Claims 1 to 3 in [10], respectively. For the sake of space restrictions
we omit the proofs.

Claim 1. If (u, v) is a bad pair, then there are vertices x and y such that �(v) ≤
r(x) < �(u) and r(u) < �(y) ≤ r(v).

Let a1 and a2 be two distinct vertices. Claim 1 implies that �(a1) �= �(a2) and
r(a1) �= r(a2). Suppose �(a1) < �(a2). Let ε be the smallest distance between
two distinct endpoints of intervals of I. If r(a1) = �(a2), then I ′ : V (G) → I++

be such that I ′(a1) = [�(a1), r(a1) + ε/2], and I ′(z) = I(z) for z ∈ V (G) \ {a1}.
By the choice of ε, we conclude that I ′ is an interval representation of G with
as many bad pairs as I. Therefore, we assume without loss of generality that
we chose I such that all endpoints of the intervals of I are distinct. Hence the
inequalities in Claim 1 are strict inequalities.

Claim 2. If (u,w) and (v, w) are bad pairs, then u = v, that is, no interval
contains two distinct intervals.

Claim 3. If (u, v) and (u,w) are bad pairs, then v = w, that is, no interval is
contained in two distinct intervals.

A vertex x is to the left (respectively right) of a vertex y (in I), if r(x) < �(y)
(respectively r(y) < �(x)). Two adjacent vertices x and y are distinguishable by
vertices to the left (respectively right) of them, if there is a vertex z, which is
adjacent to exactly one of them and to the left (respectively right) of one of
them. The vertex z distinguishes x and y. Next, we show that for a bad pair
(u, v) there is the structure as shown in Fig. 7 in G. We introduce a positive
integer �max

u,v that, roughly speaking, indicates how large this structure is.
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�max
u,v − 1 triangles rmax

u,v − 1 triangles

v

u

x1
u,v

x1
u,v

′

x
�max
u,v −1

u,v

x
�max
u,v −1

u,v

′

x
�max
u,v

u,v y1
u,v

y1
u,v

′

y
rmax
u,v −1

u,v

y
rmax
u,v −1

u,v

′

y
rmax
u,v

u,v

X0
u,v

X1
u,vX

�max
u,v −1

u,v

X
�max
u,v

u,v

Y 1
u,v Y

rmax
u,v −1

u,v

Y
rmax
u,v

u,v

v

u

X1
u,v

X2
u,v

X3
u,v Y 1

u,v

Fig. 7. The structure in G forced by a bad pair (u, v).

For a bad pair (u, v) let v = X0
u,v and let X1

u,v be the set of vertices that
are adjacent to v and to the left of u. Let yu,v be a vertex to the right of u
and adjacent to v. Claim 1 guarantees |X1

u,v| ≥ 1 and the existence of yu,v.
If |X1

u,v| = 1, then let �max
u,v = 1 and we stop here. Suppose |X1

u,v| ≥ 2. Since
G is R0-free, X1

u,v is a clique and since G is S′
1-free, we conclude |X1

u,v| = 2.
Let {x, x′} = X1

u,v such that r(x) < r(x′). For contradiction, we assume that
there is a vertex z to the right of x that distinguishes x and x′. We conclude
�(v) < �(z). By Claim 2, r(v) < r(z). This implies that (u, z) is a bad pair, which
contradicts Claim 3. Thus z does not exist. In addition (x, x′) is not a bad pair,
otherwise Claim 1 guarantees a vertex z such that r(x) < �(z) < r(x′), which is
a contradiction. Thus �(x) < �(x′) < r(x) < r(x′). Let x1

u,v = x and x1
u,v

′ = x′.
Note that NG(x1

u,v
′) ⊂ NG(x1

u,v).
Let X2

u,v = NG(x1
u,v) \ NG(x1

u,v
′). Note that all vertices in X2

u,v are to the
left of x1

u,v
′. Since G is twin-free, |X2

u,v| ≥ 1. If |X2
u,v| = 1, then let �max

u,v = 2
and we stop here. Suppose |X2

u,v| ≥ 2. Since G is R1-free, X2
u,v is a clique

and since G is S′
2-free, we conclude |X2

u,v| = 2. Let {x, x′} = X2
u,v such that

r(x) < r(x′). For contradiction, we assume that there is a vertex z to the right
of x that distinguishes x and x′. Since z /∈ X2

u,v, we conclude �(x1
u,v

′) < r(z).
If r(z) < �(v), then G[{z, x, x′, x1

u,v, x
1
u,v

′
, v, u, yu,v}] is isomorphic to S2, which

is a contradiction. Thus �(v) < r(z). If r(z) < �(u), then |X1
u,v| = 3, which

is a contradiction. Thus �(u) < r(z). If r(u) < r(z), then (u, v) and (u, z) are
bad pairs, which is a contradiction to Claim 3. Thus �(u) < r(z) < r(u). Now
G[{z, x′, x1

u,v
′
, v, u, yu,v}] is isomorphic to T0,0, which is the final contradiction.
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Note that (x, x′) is not a bad pair, otherwise Claim 1 guarantees a vertex
z such that r(x) < �(z) < r(x′), which is a contradiction. Thus �(x) < �(x′) <

r(x) < r(x′). Let x2
u,v = x and x2

u,v
′ = x′. Note that NG(x2

u,v
′) ⊂ NG(x2

u,v). Let
X3

u,v = NG(x2
u,v) \ NG(x2

u,v
′). Note that all vertices in X3

u,v are to the left of
x2
u,v

′.
We assume that for k ≥ 3, i ∈ [k − 1] and j ∈ [k]

• we defined Xj
u,v,

• |Xi
u,v| = 2 holds,

• we defined xi
u,v and xi

u,v
′,

• �(xi
u,v) < �(xi

u,v
′) < r(xi

u,v) < r(xi
u,v

′) holds,
• the vertices in Xi+1

u,v are to the left of xi
u,v

′, and
• the vertices in Xi

u,v are not distinguishable to the right.

If |Xk
u,v| = 1, then let �max

u,v = k and we stop here. Suppose |Xk
u,v| ≥ 2. Since

G is Rk−1-free, Xk
u,v is a clique and since G is S′

k-free, we obtain |Xk
u,v| = 2.

Let {x, x′} = Xk
u,v such that r(x) < r(x′). For contradiction, we assume that

there is a vertex z to the right of x that distinguishes x and x′. Since z /∈ Xk
u,v,

we conclude �(xk−1
u,v

′) < r(z). If r(z) < �(xk−2
u,v ), then G[{z, x, x′, v, u, yu,v} ∪

⋃k−1
i=1 Xi

u,v] is isomorphic to Sk, which is a contradiction. Thus �(xk−2
u,v ) < r(z). If

r(z) < �(xk−2
u,v

′), then |Xk−1
u,v | = 3, which is a contradiction. Thus �(xk−2

u,v
′) < r(z).

If r(z) < �(xk−3
u,v ), then G[{z, x′, xk−1

u,v
′
, v, u, yu,v} ∪

⋃k−2
i=1 Xi

u,v] is isomorphic to
Tk−3,0, which is a contradiction. Thus �(xk−3

u,v ) < r(z). If r(z) < r(xk−2
u,v ), then

|Xk−2
u,v | = 3, which is a contradiction. Thus r(xk−2

u,v ) < r(z) and hence (xk−1
u,v

′
, z)

and (xk−2
u,v , z) are bad pairs, which is a contradiction to Claim 2. Thus x, x′

are not distinguishable to the right. We obtain that (x, x′) is not a bad pair,
otherwise Claim 1 guarantees a vertex z such that r(x) < �(z) < r(x′), which is
a contradiction. Thus �(x) < �(x′) < r(x) < r(x′). Let xk

u,v = x and xk
u,v

′ = x′.
Note that NG(xk

u,v
′) ⊂ NG(xk

u,v). Let Xk+1
u,v = NG(xk

u,v) \ NG(xk
u,v

′). Note that
all vertices in Xk+1

u,v are to the left of xk
u,v

′. By induction, this leads to the
following properties.

Claim 4. If (u, v) is a bad pair, k ∈ [�max
u,v − 1], then the following holds:

(a) |Xk
u,v| = 2.

(b) The vertices in Xk
u,v are not distinguishable by vertices to the right of them.

(c) We have �(xi
u,v) < �(xi

u,v
′) < r(xi

u,v) < r(xi
u,v

′), that is (xk
u,v, x

k
u,v

′) and
(xk

u,v
′
, xk

u,v) are not bad pairs.

Note that �max
u,v is the smallest integer k such that |Xk−1

u,v | ≥ 2 and |Xk
u,v| = 1.

Due to space restrictions, we omit the proofs of Claims 5 and 6.
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Claim 5. If (u, v) is a bad pair and k ∈ [�max
u,v − 1], then the following holds.

(a) xk
u,v

′ is not contained in a bad pair.
(b) There is no vertex z ∈ V (G) such that (xk

u,v, z) is a bad pair.

For a bad pair (u, v) define Y k
u,v as Xk

u,v by interchanging in the definition
right by left. Let rmax

u,v be the smallest integer k such that |Y k−1
u,v | = 2 and

|Y k
u,v| = 1. By symmetry, one can prove a “y”-version of Claims 4, 5 and 6(a)

and (b). Let {yk
u,v, y

k
u,v

′} = Y k
u,v such that NG(yk

u,v
′) ⊂ NG(yk

u,v) for k ≤ rmax
u,v −1.

Claim 6. Let (u, v) and (w, z) be bad pairs and k ∈ [�max
u,v ].

(a) If Xk
u,v ∩ X k̃

w,z �= ∅, then xk−1
u,v = xk̃−1

w,z for k̃ ∈ [�max
w,z ].

(b) If Xk
u,v ∩ X k̃

w,z �= ∅, then Xk
u,v = X k̃

w,z for k̃ ∈ [�max
w,z ].

(c) If Xk
u,v ∩ Y k̃

w,z �= ∅, then Xk
u,v ∩ Y k̃

w,z = xk
u,v = yk̃

w,z for k̃ ∈ [rmax
w,z ]

Next, we define step by step new interval representations of G as follows. First
we shorten the intervals of Xk

u,v for every bad pair (u, v) and k ∈ [�max
u,v ]. Let

I ′ : V (G) → I++ be such that I ′(x) = [�(x), �(xk−1
u,v )] if x ∈ Xk

u,v for some bad
pair (u, v) and I ′(x) = I(x) otherwise. By Claim 6(a), I ′ is well-defined; that is,
if x ∈ Xk

u,v ∩ X k̃
w,z, then �(xk−1

u,v ) = �(xk̃−1
w,z ). Let �′(x) and r′(x) be the left and

right endpoint of the interval I ′(x) for x ∈ V (G), respectively.

Claim 7. I ′ is an interval representation of G.

Proof of Claim 7: Trivially, if two intervals do not intersect in I, then they do
not intersect in I ′. For contradiction, we assume that there are two vertices
a, b ∈ V (G) such that I(a) ∩ I(b) �= ∅ and I ′(a) ∩ I ′(b) = ∅. At least one interval
is shorten by changing the interval representation. Say a ∈ Xk

u,v for some bad
pair (u, v) and k ∈ [�max

u,v ]. Hence b �= xk−1
u,v and �(xk−1

u,v ) < �(b) and by Claim 4(b),
�(b) < r(xk

u,v). We conclude that (b, xk−1
u,v ) is not a bad pair, otherwise Claim 1

implies the existence of a vertex z ∈ Xk
u,v to the left of b, but z /∈ {xk

u,v, x
k
u,v

′},
which is a contradiction to Claim 4(a). Thus r(xk−1

u,v ) < r(b). If k = 1, then
(u, b) is also a bad pair, which is a contradiction to Claim 3. Thus k ≥ 2. Since
�(b) < r(xk

u,v), we obtain �(b) < �(xk−1
u,v

′). Since (xk−1
u,v

′
, b) is not a bad pair

by Claim 5(a), r(b) < r(xk−1
u,v

′). Thus b ∈ Xk−1
u,v , which is a contradiction to

|Xk−1
u,v | = 2. �

Claim 8. The change of the interval representation of G from I to I ′ creates
no new bad pair (a, b) such that {a, b} �= Xk

u,v for some k ∈ [�max
u,v ] and some bad

pair (u, v).

Proof of Claim 8: For contradiction, we assume that (a, b) is a new bad pair
and {a, b} �= Xk

u,v. Since (a, b) is a new bad pair, I ′(a) is a proper subset of
I(a). Thus let a ∈ Xk

u,v and b /∈ Xk
u,v. If a ∈ Xk

u,v and |Xk
u,v| = 2, then �(b) <

�(xk
u,v

′) and r′(a) = �(xk−1
u,v ) < r(b) < r(xk

u,v
′), because of Claim 5(a). Thus
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b ∈ Xk
u,v, which is a contradiction. If a ∈ Xk

u,v and |Xk
u,v| = 1, then �(b) <

�(xk
u,v) and r′(a) = �(xk−1

u,v ) < r(b) < r(xk
u,v). Thus b ∈ Xk

u,v, which is the final
contradiction. �
In a second step, we shorten the intervals of Y i

u,v for every bad pair (u, v) and
i ∈ [rmax

u,v ]. Let I ′′ : V (G) → I++ be such that I ′′(y) = [r′(yk−1
u,v ), r′(y)] if y ∈ Y k

u,v

for some bad pair (u, v) and I ′′(y) = I ′(y) else. Note that bad pairs are only
referred to the interval representation I. Let �′′(x) and r′′(x) be the left and
right endpoints of the interval I ′′(x) for x ∈ V (G), respectively.

Claim 9. I ′′ is an interval representation of G.

Due to space restrictions, we omit the proof of Claim 9.

Claim 10. The change of the interval representation of G from I to I ′′ creates
no new bad pair (a, b) such that {a, b} �= Xk

u,v for some k ∈ [�max
u,v ] or {a, b} �= Y i

u,v

for some i ∈ [rmax
u,v ] and some bad pair (u, v).

Proof of Claim 10: For contradiction, we assume that (a, b) is a new bad pair
and Y i

u,v �= {a, b} �= Xk
u,v. Thus a ∈ Xk

u,v or a ∈ Y i
u,v and b /∈ Xk

u,v or b /∈ Y i
u,v,

respectively. If a ∈ Xk
u,v and |Xk

u,v| = 2, then �(b) < �(xk
u,v

′) and �(xk−1
u,v ) <

r(b) < r(xk
u,v

′). Thus b ∈ Xk
u,v, which is a contradiction. If a ∈ Xk

u,v and |Xk
u,v| =

1, then �(b) < �(xk
u,v) and �(xk−1

u,v ) < r(b) < r(xk
u,v). Thus b ∈ Xk

u,v, which is a
contradiction. If a ∈ Y i

u,v the proof is almost exactly the same. �
Now we are in a position to blow up some intervals to open or half-open intervals
to get a mixed proper interval graph. Let I∗ : V (G) → I be such that

I∗(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(�(v), r(v)), if (x, v) is a bad pair,
(�′′(xk

u,v), r
′′(xk

u,v)], if x = xk
u,v

′ for some bad pair (u, v) and
k ∈ [�max

u,v − 1],[
�′′(yi

u,v), r
′′(yi

u,v)
)
, if x = yi

u,v
′ for some bad pair (u, v) and

i ∈ [rmax
u,v − 1],

[�′′(x), r′′(x)] , else.

Note that I∗ is well-defined by Claims 5 and 6; that is, the four cases in the
definition of I∗ induces a partition of the vertex set of G. Moreover, the interval
representation I∗ defines a mixed proper interval graph. As a final step, we prove
that I ′′ and I∗ define the same graph. Since we make every interval bigger, we
show that for every two vertices a, b such that I ′′(a) ∩ I ′′(b) = ∅, we still have
I∗(a) ∩ I∗(b) = ∅. For contradiction, we assume the opposite. Let a, b be two
vertices such that I ′′(a) ∩ I ′′(b) = ∅ and I∗(a) ∩ I∗(b) �= ∅. It follows by our
approach and definition of our interval representation I ′′, that both a and b are
blown up intervals.

First we suppose a and b are intervals that are blown up to open intervals,
that is, there are distinct vertices ã and b̃ such that (a, ã) and (b, b̃) are bad pairs.
Furthermore, the intervals of ã and b̃ intersect not only in one point. By Claims 2
and 3, we assume without loss of generality, that �′′(ã) < �′′(b̃) < r′′(ã) < r′′(b̃).
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Therefore, by the construction of I ′′, we obtain a is adjacent to b̃ and ã is
adjacent to b, and in addition they intersect in one point, respectively. Now,
G[{x1

a,ã, a, ã, b, b̃, y1
b,b̃

}] is isomorphic to T0,0, which is a contradiction.
Now we suppose a is blown up to an open interval and b is blown up to an

open-closed interval (the case closed-open is exactly symmetric). Let ã be the
vertex such that (a, ã) is a bad pair. Let b̃, u, v ∈ V (G) and k ∈ N such that
{b, b̃} = Xk

u,v. We suppose ã �= b̃. We conclude �′′(ã) < �′′(b̃) < r′′(ã) < r′′(b̃). As
above, we conclude a is adjacent to b̃ and ã is adjacent to b, and in addition they
intersect in one point, respectively. Thus G[{x1

a,ã, a, ã, v, u, y1
u,v} ∪

⋃k
i=1 Xi

u,v]
induces a Tk,0, which is a contradiction. Now we suppose ã = b̃. We conclude that
G[{x1

a,ã, a, v, u, y1
u,v} ∪

⋃k
i=1 Xi

u,v] is isomorphic to Rk, which is a contradiction.
It is easy to see that a and b cannot be both blown up to closed-open or both

open-closed intervals, because G is Rk-free for k ≥ 0 and the definition of I ′′.
Therefore, we consider finally the case that a is blown up to a closed-open

and b to an open-closed interval. Let ã, b̃, u, v, w, z ∈ V (G) and k, k̃ ∈ N such
that {a, ã} = Y k

u,v and {b, b̃} = X k̃
w,z. First we suppose ã �= b̃. Again, we obtain

�′′(ã) < �′′(b̃) < r′′(ã) < r′′(b̃) and a is adjacent to b̃ and ã is adjacent to b, and fur-
thermore they intersect in one point, respectively. Thus G[{x1

u,v, u, v, w, z, y1
w,z}∪

⋃k
i=1 Y i

u,v ∪
⋃k̃

i=1 Xi
w,z] is isomorphic to Tk,k̃. Next we suppose ã = b̃ and hence

G[{x1
u,v, u, v, w, z, y1

w,z} ∪
⋃k

i=1 Y i
u,v ∪

⋃k̃
i=1 Xi

w,z] is isomorphic to Rk+k̃. This is
the final contradiction and completes the proof of Theorem 7. �
In Theorem 7 we only consider twin-free U-graphs to reduce the number of
case distinctions in the proof. In Corollary 8 we resolve this technical condition.
See Figs. 8 and 9 for illustration. Let S ′′ =

⋃∞
i=2{S′′

i }. For the sake of space
restrictions, we omit the proof.

Corollary 8. A graph G is a mixed unit interval graph if and only if G is a
{G1} ∪ R ∪ S ∪ S ′′ ∪ T -free interval graph.

S′′
2 S′′

3 S′′
ii triangles

Fig. 8. The class S ′′
i .

G1

Fig. 9. The graph G1.
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It is possible to extract a polynomial-time algorithm from the proof of The-
orem 7. Given a graph G, then first start with a polynomial-time algorithm [2]
which decides whether G is an interval graph and if yes computes an interval
representation I of G. Second, go along the claims of Theorem 7. By suitable
modifications of I either I becomes a mixed proper interval representation or the
algorithm finds a forbidden induced subgraph. Note that by Theorem 4, the class
of mixed proper interval graphs coincides with the class of mixed unit interval
graphs.

Theorem 9. There is a polynomial-time algorithm which decides whether a
graph has an interval representation using unit intervals only.

Remark 1: I was informed by Alan Shuchat, Randy Shull, Ann Trenk and Lee
West that they independently found a proof for a characterization of mixed unit
interval graphs by forbidden induced subgraphs.
Remark 2: A full version of this paper appeared in [7].
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Abstract. A set of vertices in a graph is connected if the set induces a
connected subgraph. Using Shearer’s entropy lemma, we show that the
number of connected sets in an n-vertex graph with maximum vertex
degree d is O(1.9351n) for d = 3, O(1.9812n) for d = 4, and O(1.9940n)
for d = 5. Dually, we construct infinite families of generalized lad-
der graphs whose number of connected sets is bounded from below by
Ω(1.5537n) for d = 3, Ω(1.6180n) for d = 4, and Ω(1.7320n) for d = 5.

1 Introduction

A connected set in an undirected graph G is a subset of vertices that induces
a connected subgraph. Besides being fundamental combinatorial objects, con-
nected sets play a key role in various exponential-time graph algorithms. For
instance, for an n-vertex graph one can solve the traveling salesman problem [5],
solve the maximum internal spanning tree problem [2], and evaluate the Tutte
polynomial [3] in time that is within an nO(1) factor of the number of connected
sets of the graph. Within the same time bound an algorithm also finds an optimal
Bayesian network having the input graph as its super-structure [17].

Surprisingly little is known about extremal combinatorics of connected sets
in different graph classes. What is immediate, however, is that an n-vertex graph
can have at most 2n connected sets and that this bound is achieved by complete
graphs. It is also easy to see that sparsity alone does not imply a much smaller
number of connected sets: an n-star has an average degree less than 2, but the
number of connected sets is 2n−1+n. In this light, graphs of bounded degree form
a natural graph class to study; we define the degree of a graph as the maximum
degree of a vertex. Parameterizing by the size of the connected set, Bollobás [6,
pp. 129–130] provides two ways to prove that any graph of degree d ≥ 3 has at
most (e(d−1))k connected sets with k+1 vertices, one of which is a given vertex.
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For large k, this bound is, however, loose and of no use for bounding the total
number of connected sets of an n-vertex graph. The first nontrivial upper bound,
namely βn

d + n, where βd = (2d+1 − 1)1/(d+1), was given by Björklund et al. [5].
In particular, we have βd = 1.9680, 1.9874, 1.9948 for d = 3, 4, 5, respectively.
We are not aware of better bounds, prior to this work.

There is no reason to believe that the Björklund et al. bound is tight. First,
its proof applies Shearer’s entropy lemma, in essence, by taking the product of
the number of possible projections of connected sets to the closed neighborhood
of each vertex. Specifically, the proof provides no means to construct a graph
that would attain the upper bound. Also, connectivity is an inherently global
property that cannot be captured by looking at individual local neighborhoods.
Second, while it is easy to construct arbitrarily large graphs that have an expo-
nential number of connected sets, getting near the upper bounds appears to be
challenging.

In this paper, we seek improved upper bounds for the number of connected
sets by applying Shearer’s entropy lemma in an expanded context. Namely, we
are interested in projecting the connected sets not only to the immediate closed
neighborhood of each vertex but rather to the ball of radius r ≥ 2 (the r-
neighborhood) around each vertex. By carrying out a computer search over the
possible projections of connected sets to r-neighborhoods, we obtain improved
upper bounds for d ≤ 5.

Theorem 1. Every n-vertex graph with maximum degree d ≤ 5 has at most
bn
d + n

(
2d2+1 − 1

)
connected sets, where b3 = 1.9351, b4 = 1.9812, and b5 =

1.9940.

Dually, we show the following lower bounds for d ≤ 5.

Theorem 2. For each d ≤ 5 there exists an infinite family of graphs with max-
imum degree d such that each graph of n vertices has at least an

d connected sets,
where a3 = 1.5537, a4 = 1.6180, and a5 = 1.7320.

Related work. The maximum number of subsets of vertices satisfying a given
property has been studied for many different types of properties. In the case
of maximal independent sets (or dually, maximal cliques), the classical Moon–
Moser [16] upper bound is known to be tight. However, in the case of mini-
mal dominating sets [9], minimal feedback vertex sets (in general graphs [8] or
in tournaments [14]), maximal bicliques [13], potential maximal cliques [10], and
minimal separators [11], the gap between the known lower and upper bounds
remains relatively large. In each of these cases the upper bounds are obtained
by a careful analysis of an appropriate branching algorithm.

Entropy methods, applied in the present work, have previously yielded tight
bounds for certain properties in bounded degree graphs. For independent sets in
d-regular graphs with n vertices the bound (2d+1 − 1)n/2d was conjectured to be
tight by Alon [1]. Kahn [15] showed that the conjecture holds for bipartite graphs.
Recently, Zhao [18] confirmed that the conjecture holds in general by presenting
a surprisingly simple reduction to the bipartite case; Galvin [12] reviews earlier
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developments. Björklund et al. [4] used Shearer’s entropy lemma to show that
the bound (2d+1−1)n/(d+1) is tight for the number of dominating sets in n-vertex
graphs of degree at most d.

In the case of connected sets, Björklund et al. [5] give further upper bounds
for the number of connected sets when the connected sets are also required to
be dominating or “transient”, or when the graph is assumed to be triangle-free.
In particular, the traveling salesman problem can also be solved within an nO(1)

factor of the number of transient connected sets, improving upon the bound
based on connected sets alone. Motivated by an application to structure learning
in Bayesian networks, Perrier, Imoto, and Miyano [17] present an empirical study
on the number of connected sets in random bounded-degree graphs.

2 Upper Bounds on the Number of Connected Sets

Our upper bounds are derived by extending the Shearer’s entropy lemma -based
projection approach of Björklund et al. [5] to consider neighborhoods whose
radius r is greater than one. Here the essential difficulty and our contribution is
to develop computer-assisted analytical tools to study projections of connected
sets to neighborhoods of vertices.

We begin by reviewing a basic template suitable for any maximum degree
d and any radius r for vertex neighborhoods. We then proceed to characterize
in more detail the worst-case graphs induced by the neighborhoods. Making use
of the characterization, we give an algorithm that suffices to carry out a com-
plete analysis of the cases d ≤ 5 and r ≤ 2, leading to Theorem 1. While a
computer search would be feasible beyond these parameters, we conclude this
section by showing that our method of studying the “boundary-connected” pro-
jections appears to be restricted to the case d ≤ 5 and r ≤ 2. That is, beyond
these parameters, an analysis based on boundary-connectivity appears not to
yield improved upper bounds over those obtained by simply taking r = 1.

2.1 The Projection Method

Our main tool for deriving upper bounds for the number of connected sets is
Shearer’s entropy lemma, which is most conveniently deployed in our context in
the following combinatorial form:

Lemma 1 (Chung et al. [7]). Let V be an n-element set and let A1, A2, . . . , Ak

be subsets of V such that every v ∈ V occurs in at least δ of these subsets.
Let F be a set of subsets of V . For each 1 ≤ i ≤ k, define the projections
Fi := {F ∩ Ai : F ∈ F}. Then,

|F|δ ≤
k∏

i=1

|Fi| .
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Lemma 1 enables us to obtain control over the number of connected sets in
a graph by taking the sets Ai to be (augmented) neighborhoods of vertices.

In more precise terms, let G be an undirected graph with vertex set V and
let S ⊆ V be a subset of vertices. Let r = 0, 1, . . . be a radius parameter. Let us
write Nr

G[S] for the set of all vertices u ∈ V such that there exists a vertex v ∈ S
for which the shortest-path distance between u and v is at most r. In particular,
when S = {v} is a singleton set consisting of the vertex v ∈ V only, we write
Nr

G[v] for Nr
G[S] and say that Nr

G[v] is the (closed) neighborhood of the vertex
v of radius r. When r = 1 we may omit the parameter r from the notation. We
observe that N0

G[S] = S and that Nr
G[S] = NG[Nr−1

G [S]] for r ≥ 1.
The following immediate lemma recalls the Moore bound δr for the size of

Nr
G[v].

Lemma 2. Suppose that the graph G has maximum vertex degree d. Then for
all r = 0, 1, . . . and all vertices v ∈ V it holds that |Nr

G[v]| ≤ δr, where

δr := 1 + d

r−1∑

i=0

(d − 1)i =
d(d − 1)r − 2

d − 2
.

Now let F be a set of subsets of V . For r = 0, 1, . . . and v ∈ V , let us write
Fv,r = {F ∩ Nr

G[v] : F ∈ F} for the projection of F into the neighborhood of
v of radius r. We are now ready to prove our main template for upper bounds.
In essence, this lemma replaces the application of Jensen’s inequality in the
Björklund et al. [5] analysis with a uniform bound (the parameter ρ) that is
easier to deploy over larger neighborhoods.

Lemma 3. Let 0 ≤ ρ ≤ 1 be a number such that |Fv,r| ≤ 2|Nr
G[v]|ρ holds for all

v ∈ V . Then, |F| ≤ (2ρ1/δr )n.

Proof. Our intent is to apply Lemma 1. Towards this end, start by setting Av :=
Nr

G[v] for each v ∈ V . Next, for each u ∈ V , if u is contained in k ≤ δr −1 subsets
Av, then add u to δr − k subsets not already containing u (it does not matter
which). As a result, each u is contained in exactly δr subsets Av.

Now define for each v ∈ V the set Fv := {F ∩ Av : F ∈ F}. Because
Nr

G[v] ⊆ Av, we have

|Fv| ≤ |Fv,r| · 2|Av|−|Nr
G[v]| ≤ 2|Nr

G[v]|ρ · 2|Av|−|Nr
G[v]| ≤ 2|Av|ρ .

Taking the product over all v ∈ V and observing that
∑

v∈V |Av| = δrn, the
claim follows by Lemma 1. ��

To illustrate the use of Lemma 3 in a simple setting, let us reprove the Björklund
et al. [5] upper bound for the number of connected sets of G:

Corollary 1. Let G be an n-vertex graph with maximum vertex degree at most d.
Then G has at most (2d+1 − 1)n/(d+1) + n connected sets.
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Proof. Let F be the family of connected sets of G, with the n singleton sets
consisting of each individual vertex removed from F. Take r = 1 and observe
that then δr = d+1. Furthermore, since the singleton sets {v} have been removed
from F, we must have F ∩ Nr

G[v] 	= {v} for each v ∈ V and F ∈ F. It follows
that we can take ρ = 1 − 1/2d+1 and the claim follows. ��

2.2 Neighborhoods with Radius r ≥ 2

Let us now proceed to consider the case r ≥ 2 and in particular the feasible pro-
jections of connected sets to a vertex neighborhood Nr

G[v]. Accordingly, assume
that r ≥ 2 is fixed.

Since our focus is on exponential growth rates as a function of the number
of vertices, n, we can simplify the analysis by omitting all nonempty connected
sets that are completely contained in at least one of the neighborhoods Nr

G[v].
Let us call such sets local connected sets. The following lemma is immediate.

Lemma 4. There are at most (2δr − 1)n local connected sets.

Our interest in what follows is thus to carry out a worst-case analysis of the
number of connected sets that are not local. Let F be the family of non-local
connected sets of G. Our intent is now to apply the projection method and
Lemma 3 to F.

Intuitively, a connected set that is not local must “exit” any neighborhood
that it intersects because otherwise the set would be localized in that neighbor-
hood. In particular, such “exit” requires us to have vertices at the “boundary”
of the neighborhood.

Let us say that a subset S ⊆ Nr
G[v] is boundary-connected relative to v if each

connected component of G[S] contains at least one vertex u ∈ Nr
G[v] \ Nr−1

G [v]
such that u is adjacent to less than d vertices in Nr

G[v]. (In particular, degree less
than d is necessary so that we can potentially “exit” from u to outside Nr

G[v].
Note, however, that the definition does not require that such an exit actually
exists in G. In particular we want this to be the case since we want to be able to
check for boundary-connectivity without looking beyond the subgraph induced
by Nr

G[v]). Figure 1 shows examples of sets that are and are not boundary-
connected for d = 3 and r = 2.

Lemma 5. Let C be a non-local connected set of G. Then it holds for each
vertex v ∈ V that the projection C ∩ Nr

G[v] is boundary-connected relative to v.

Proof. When C is empty the claim is trivial, so suppose that C is nonempty.
Because C is non-local, we must have C 	⊆ Nr

G[v]. It suffices to show that S :=
C ∩ Nr

G[v] is boundary-connected relative to v. Let t ∈ C \ Nr
G[v]. Let G[S′] be

a connected component of G[S] and s ∈ S′. Because C is a connected set, there
is a path (v0, v1, . . . , vk) in G such that v0 = s, vk = t and, for some i ≤ k,
s′ := vi−1 ∈ S′ and t′ := vi ∈ C \ S′. Now, because t′ cannot belong to Nr

G[v]
(indeed, otherwise we would get a contradiction to the assumption that G[S′] is
a connected component of G[S]), it holds that s′ ∈ Nr

G[v]\Nr−1
G [v]. It remains to
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Vertex subsets that can (a–c) or cannot (d–f) belong to projections of non-local
connected sets, with d = 3 and r = 2

observe that s′ is adjacent to at most d−1 vertices in Nr
G[v], since s′ is adjacent

to t′ and G is of degree at most d. ��

Now observe that Lemmas 3 and 5 together imply that the number of non-
local connected sets of G is bounded from above by (2ρ1/δr

d,r )n, where ρd,r is a
constant such that every neighborhood Nr

G[v] has at most 2|Nr
G[v]|ρd,r boundary-

connected sets S.
Our strategy for completing the proof of Theorem 1 is now to optimize the

values ρd,r for r = 2 and d ≤ 5 with computer search. Because boundary-
connectivity is intrinsic to each neighborhood Nr

G[v], we can carry out the opti-
mization without paying attention how this neighborhood is connected to the rest
of the graph.

2.3 Extremal Neighborhood Graphs for r = 2

Let us say that a graph H with maximum degree d is a neighborhood graph with
radius r and root v if the vertex set of H is Nr

H [v]. Clearly, a neighborhood graph
has at most δr vertices. Thus, for any fixed d and r we can optimize the constant
ρd,r by finding the maximum number of boundary-connected sets (relative to v)
admitted by any neighborhood graph (with root v) for the parameters d and r.
This is what we proceed to do, using computer search.

The following small observation is useful to reduce the number of neighbor-
hood graphs that need to be considered in the search.

Lemma 6. Let H be a neighborhood graph with radius r and root v. Let H ′ be
the neighborhood graph with radius r and root v obtained from H by removing
each edge of H that joins two vertices in Nr

H [v] \ Nr−1
H [v]. Then H ′ has at least

as many boundary-connected sets relative to v as H.
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Proof. Because all deleted edges join two vertices at maximum distance (r) from
v in H, it is immediate that the H ′ is a neighborhood graph with radius r and
root v. Let S be boundary-connected in H relative to v. Because the removal of
an edge leaves two vertices of degree less than d, any new connected component
contains a vertex u ∈ Nr

H′ [v] \ Nr−1
H′ [v] that is adjacent to less than d vertices of

H ′. Thus, S is boundary-connected in H ′ relative to v. ��

This lemma allows us to restrict our attention to neighborhood graphs in which
the boundary vertices, that is, the set Nr

G[v]\Nr−1
G [v], form an independent set.

We call these graphs essential neighborhood graphs.
Our focus on small parameters r = 2 and d ≤ 5 implies that the reduction

to essential neighborhood graphs, combined with lightweight isomorph rejection
suffices to carry out an optimization of ρd,r with exhaustive search.

Let us now turn to the details of the algorithm that we use to enumerate
the essential neighborhood graphs. Recall that we have fixed r = 2 and the
maximum degree to be at most d ≤ 5. Suppose the graph H has n vertices.
Since r = 2 we can partition the set of vertices V of H into three sets V0, V1, V2

based on distance from the root vertex v ∈ V . Let us write |V0| = n0, |V1| = n1,
and |V2| = n2. It is immediate that V0 = {v} and hence n0 = 1. Furthermore,
n = n0+n1+n2. Since the maximum degree is at most d, we have 1 ≤ n1 ≤ d and
1 ≤ n2 ≤ (d − 1)n1. Thus in particular we observe that 3 ≤ n ≤ 1 + d2. Finally,
we observe that we can characterize the edges of H as follows. First, each vertex
in V1 is adjacent to v. Second, the vertices in V1 may or may not be adjacent to
each other, we have to search through all possibilities within the degree bound.
Third, each vertex in V2 must be adjacent to at least one vertex in V1 and must
not be adjacent to v; again we have to search through all possibilities. Finally,
because H is an essential neighborhood graph, there are no edges joining the
vertices in V2.

To reduce the number of isomorphic (and hence redundant) graphs encoun-
tered in the search, we implement the following lightweight isomorph rejection.
Suppose that there is a total order on V1 and on V2. In the second stage of the
algorithm, when we are searching through all possible ways of joining vertices
in V1 with edges, we require that the degrees of the vertices in V1 form a non-
increasing sequence if listed in the total order of V1. Furthermore, in the third
stage of the algorithm, when we are joining vertices in V2 by edges to vertices
in V1, we require that with respect to the lexicographic order of subsets of V1 it
holds that NH [u] ≤ NH [u′] whenever u < u′ holds for u, u′ ∈ V2. It is immediate
that even with this isomorph rejection in place, the algorithm traverses at least
one representative from every isomorphism class of neighborhood graphs (with
the root individualized).

For each essential neighborhood graph H that survives our isomorph rejec-
tion, we test whether the graph is not maximal, that is, whether it would be
possible to add an edge with both ends in V1 or an edge joining a vertex in V1

with a vertex V2 so that the affected vertices have degree at most d in V1 and at
most d−1 in V2 after the addition. If H is not maximal, we reject it from further
consideration. (Indeed, for a fixed value of d, a maximal graph maximizes the
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)c()b()a(

Fig. 2. Worst-case neighborhood graphs of radius 2, for degree 3, 4, and 5

number of boundary-connected sets, and at least one such maximal graph from
each isomorphism class of maximal graphs will be encountered in the search.)

Each H that survives the maximality test is passed to a final enumeration
of the boundary-connected sets, which proceeds as follows. First we add a new
vertex z to H and join it by an edge to every vertex u ∈ V2, provided that u has
degree less than d. Then we count the connected sets that contain z using the
folklore algorithm; see, for example, the description given by Björklund et al. [3].

The total time required to carry out the search1 was a few hours on a standard
desktop computer with an Intel Core i7–4770K CPU. Figure 2 shows the worst-
case neighborhood graphs found for d = 3, 4, 5. The corresponding numbers
of boundary-connected sets are 184, 1744, and 15136, respectively, yielding the
optimal ratios

ρ3,2 = 184/28, ρ4,2 = 1744/211, ρ5,2 = 15136/214 .

To complete the proof of Theorem 1 it remains to apply Lemma 3 and calculate

2ρ
1/10
3,2 = 1.9350 . . . , 2ρ

1/17
4,2 = 1.9811 . . . , 2ρ

1/26
5,2 = 1.9939 . . . .

2.4 Limitations of the Method

A fundamental limitation of neighborhood graphs and boundary-connectivity is
that we have little control over what happens at the boundary vertices since these
vertices may be connected beyond the boundary. With increasing d or r this lim-
itation becomes more severe because the size of the boundary increases implying
that we can exclude comparatively less and less projections when applying the
projection method.

In fact, we can witness this limitation already for r = 2 and d ≥ 6 as we now
proceed to demonstrate. Indeed, we observe that the worst-case neighborhood
graphs shown in Fig. 2 follow a pattern which we can generalize as follows:

Definition 1. An undirected graph G is a d-mitten if its vertices can be par-
titioned into singletons {v} and {u} and sets A, B, C, each of size d − 1 with
exactly the following adjacencies: v is adjacent to u and every vertex in A.
1 Our implementation is available at http://www.cs.helsinki.fi/u/jwkangas/consets/.

http://www.cs.helsinki.fi/u/jwkangas/consets/
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Every vertex in A is adjacent to every vertex in B. Every vertex in C is adjacent
to u. The unique vertex v is called the center of the d-mitten. The vertices v and
u are shown in Fig. 2.

We aim to show that any d-mitten has a large number of boundary-connected
sets, and that particularly with d ≥ 6 the number is large enough to only yield
weak bounds for the number of connected sets. For any fixed d, this could be
verified by direct calculation, possibly again aided by a computer. However, the
simple structure of d-mittens allows us to find a closed-form expression that, not
only enables the analysis for an arbitrary d, but also gives a way to check the
correctness of the numbers computed for d = 3, 4, 5 by the general algorithm.

Lemma 7. Let G be a d-mitten with center v. Then the number of boundary-
connected sets of G relative to v is given by 23d−1 − 5 · 22d−2 + 2d.

Proof. Let {u}, A, B, and C be the vertex subsets of G guaranteed in the
definition of d-mitten. We will count the number of vertex subsets S of G that
are not boundary-connected relative to v, or n.b.c. for short.

Assume first that v ∈ S. Observe that now S is n.b.c. if and only if there is
no path in G[S] from v to a vertex in B or C. We consider separately the cases
u ∈ S and u /∈ S. Suppose u ∈ S. Then S cannot intersect C, since otherwise
there would be a path in G[S] from v to a vertex in C. Likewise, S can intersect
only A or B but not both. Now, if S does not intersect A, then S may contain
any of the 2d−1 subsets of B, and vice versa, yielding 2d − 1 (i) possibilities for
S in total, where the −1 is due to double counting the case where S is disjoint
from both A and B. Suppose then that u /∈ S. Again, we have 2d − 1 possible
intersections with A∪B, but now, in addition, any subset of C can be contained
in S, yielding (2d − 1)2d−1 (ii) possibilities for S in total.

Assume then that v /∈ S. Now S is n.b.c. if and only if X := S ∩ ({u} ∪ C)
is n.b.c. or Y := S ∩ (A ∪ B) is n.b.c. We count first the cases where X is n.b.c.
This holds exactly when u ∈ S and S does not intersect C. From A and B any
subset can be contained in S, yielding 22(d−1) (iii) possibilities. Finally, we count
the cases where Y is n.b.c. but X is not. The set Y is n.b.c. exactly when S
intersects A but not B, yielding 2d−1 −1 possibilities. The set X has 2d possible
configurations of which exactly one is n.b.c. Thus, we have (2d−1 − 1)(2d − 1)
(iv) possibilities in total.

Summing up (i)–(iv) yields 5 ·22d−2−2d. It remains to note that G has 3d−1
vertices and thus 23d−1 vertex subsets in total. ��

The following lemma shows that d-mittens, indeed, result in weak bounds com-
pared to the simple bound:

Lemma 8. Let d ≥ 6. Then

2
(23d−1 − 5 · 22d−2 + 2d

23d−1

)1/(d2+1)

≥ (2d+1 − 1)1/(d+1) .
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(a) (b) (c) (d)

Fig. 3. Neighborhood graphs with a large number of boundary-connected sets

Proof. For d = 6, the inequality is verified by direct calculation (details omitted).
Suppose d ≥ 7. We observe that the inequality holds if and only if

(
1 − 2−d−1

)(d2+1)/(d+1) ≤ 1 − 5 · 2−d−1 + 2−2d+1 .

Denote p := 2−d−1 and k := �(d2+1)/(d+1)�. Observe that
(
k
2

)
≤

(
d+1
2

)
≤ 2d+1

and k ≥ �(72 + 1)/(7 + 1)� = 6. Thus, by a Bonferroni inequality, we have
(1− p)k ≤ 1− kp+

(
k
2

)
p2 ≤ 1− (k − 1)p ≤ 1− 5 · 2−d−1, completing the proof. ��

Finally, we turn to the case where the radius r is larger than 2. Here we only
investigate the cases where r equals 3 or 4 and the maximum degree d equals 3
and 4. For these cases, the graphs shown in Fig. 3 imply

ρ3,3 ≥ 31/26 , ρ4,3 ≥ 321/29 , ρ3,4 ≥ 1480/212 , ρ4,4 ≥ 459/210 .

Consequently,

2ρ
1/22
3,3 ≥ 1.9351 , 2ρ

1/53
4,3 ≥ 1.9824 , 2ρ

1/46
3,4 ≥ 1.9562 , 2ρ

1/161
4,4 ≥ 1.9900 ,

exceeding the respective values b3 = 1.9351 and b4 = 1.9812 given in Theorem 1.

3 Lower Bounds on the Number of Connected Sets

We prove Theorem 2 by analyzing generalized ladder graphs. An undirected
graph with 2k vertices is a ladder graph of degree d ≥ 3 if its vertices can be
labeled as u1, u2, . . . , uk and v1, v2, . . . , vk so that the graph has exactly the
following adjacencies between the vertices. First, ui is adjacent to ui+1 and vi is
adjacent to vi+1 for i = 1, 2, . . . , k − 1. Second, ui is adjacent to vj if and only
if 0 ≤ i − j ≤ �(d − 3)/2� or 0 ≤ j − i ≤ (d − 3)/2�. Figure 4 shows examples of
ladder graphs of small degree d.

Theorem 3. Every ladder graph with 2k ≥ d vertices and degree d ≤ 5 has at
least αk

d connected sets, where α3 = 1 +
√

2, α4 = (3 +
√

5)/2, and α5 = 3.
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)c()b()a(

Fig. 4. Ladder graphs with 8 vertices for degrees d = 3, 4, 5

Proof. Let us first study the case d = 3 and fix a ladder graph G with 2k vertices.
For p = 1, 2, . . . , k, let Up be the set consisting of all the connected sets C in G
such that the set C ∩ {ui, vi} has (i) size at least 1 for each 1 ≤ i ≤ p and (ii)
size 0 for each p + 1 ≤ i ≤ k. Partition Up into Sp and Tp such that C is in Sp

if and only if C ∩ {up, vp} has size 1; otherwise C is in Tp. Let us write sp for
the size of Sp and tp for the size of Tp. We have s1 = 2 and t1 = 1. For p ≥ 2
we have

sp = sp−1 + 2tp−1 , tp = sp−1 + tp−1 .

In particular, sp = 2sp−1 + sp−2, and thus

sp =
1√
2
(1 +

√
2)p − 1√

2
(1 −

√
2)p .

For p ≥ 2 we observe that tp ≥ 2sp/3 and (1 −
√

2)p/
√

2 < 1/2. Thus,

|Uk| = sk + tk ≥ 5
3

( 1√
2
(1 +

√
2)k − 1

2

)
> (1 +

√
2)k − 1 .

Next let us consider the case d = 4. We proceed as in the previous case, but
let xp, yp, and zp be the number of members of Up that contain, respectively, up

but not vp, or vp but not up, or both up and vp. We have x1 = 1, y1 = 1, and
z1 = 1. For p ≥ 2 we have

xp = xp−1 + zp−1 , yp = xp−1 + yp−1 + zp−1 , zp = xp−1 + yp−1 + zp−1 ,

which implies zp = 3zp−1 − zp−2, and thus

zp =
1√
5

(3 +
√

5
2

)p

− 1√
5

(3 −
√

5
2

)p

.

For p ≥ 2 we observe that xp ≥ zp/2 and ((3 −
√

5)/2)p/
√

5 < 1/4. Thus,

|Uk| = xk + yk + zk ≥ 5
2

( 1√
5

(3 +
√

5
2

)k

− 1
4

)
>

(3 +
√

5
2

)k

− 1 .

Finally, let us consider the case d = 5. Define Up as above and observe that
C ∈ Up if and only if for every i = 1, 2, . . . , p it holds that at least one of ui and
vi is in C. Thus, |Up| = 3p and this holds in particular when p = k. ��

Theorem 2 now follows as an immediate corollary of Theorem 3.
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4 Concluding Remarks

This paper has explored the possibility of extending the projection method to
neighborhoods with radius r ≥ 2 to obtain improved upper bounds for the
number of connected sets in bounded-degree graphs. Our improved bounds for
d ≤ 5 present a rather modest improvement, and the upper and lower bounds
in Theorems 1 and 2 remain far apart. To strengthen the projection method it
would appear that one needs control on how the projections change as one moves
from one neighborhood to the neighborhood of an adjacent vertex.
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Abstract. We study the parameterized complexity of the classical Edge
Hamiltonian Path problem and give several fixed-parameter tractabil-
ity results. First, we settle an open question of Demaine et al. by showing
that Edge Hamiltonian Path is FPT parameterized by vertex cover,
and that it also admits a cubic kernel. We then show fixed-parameter
tractability even for a generalization of the problem to arbitrary hyper-
graphs, parameterized by the size of a (supplied) hitting set. We also
consider the problem parameterized by treewidth or clique-width. Sur-
prisingly, we show that the problem is FPT for both of these standard
parameters, in contrast to its vertex version, which is W[1]-hard for
clique-width. Our technique, which may be of independent interest, relies
on a structural characterization of clique-width in terms of treewidth and
complete bipartite subgraphs due to Gurski and Wanke.

1 Introduction

The focus of this paper is the Edge Hamiltonian Path problem, which can
be defined as follows: given an undirected graph G(V,E), does there exist a
permutation of E such that every two consecutive edges in the permutation
share an endpoint? This is a very well-known graph-theoretic problem, which
corresponds to the restriction of (vertex) Hamiltonian Path to line graphs.
Despite some superficial similarity to the problem of finding an Eulerian path,
this problem has long been known to be NP-complete, even for graphs which are
bipartite or have maximum degree 3 [1,25,29].

The Edge Hamiltonian Path problem is a very natural graph-theoretic
problem with a long history (see e.g. [4–8,24]). In this paper, we investigate the
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complexity of this problem from the parameterized complexity perspective. More
specifically, we consider the case where some structural parameter of the input
graph G, such as its treewidth, has a moderate value. Despite the problem’s
prominence, to the best of our knowledge, Edge Hamiltonian Path has never
before been studied in this setting. Such an investigation is of inherent interest
from the point of view of graph theory and parameterized complexity. Beyond
this, we are partially motivated by a specific question recently asked explicitly
by Demaine et al. [14]. In their investigation of the card game UNO, the authors
of [14] present an XP (i.e. running in nf(k)) dynamic programming algorithm
for Edge Hamiltonian Path on bipartite graphs, where k is the size of the
smaller part. They then, quite naturally, ask if this can be improved to an FPT
algorithm. In this paper, we present a number of results that positively settle
not only this, but several other more general such questions (the question from
[14] was also independently settled by Dey et al. [15]).

Overview of results. We give fixed-parameter tractability results for Edge
Hamiltonian Path and its variant Edge Hamiltonian Cycle, which we
show to be essentially equivalent. Our first task is to consider the problem para-
meterized by the size of the vertex cover of the input graph. We establish that,
not only is the problem FPT, but it also admits a cubic kernel through an algo-
rithm that locates and deletes irrelevant edges. This result settles the question
from [14] as for a bipartite graph, one part being small implies a small vertex
cover. We then go on to give a much more general direct FPT algorithm for the
problem, which can still be applied even if we consider the problem on arbitrary
hypergraphs with the parameter being the size of a hitting set which is supplied
with the input. As a corollary, we note that this result implies that (vertex)
Hamiltonian Path is FPT when parameterized by the chromatic number of
the complement of the input graph.

Our next direction is to consider the problem on graphs parameterized
by treewidth and clique-width. The complexity of Edge Hamiltonian Path
for these parameters was previously unknown, since this is also a more general
question than the one posed in [14]. Our first observation is that fixed-parameter
tractability for Edge Hamiltonian Cycle parameterized by treewidth can be
obtained from standard meta-theorems, if one relies on an alternative character-
ization of the problem first given by Harary and Nash-Williams almost 50 years
ago [22]. This alternative characterization allows one to recast the ordering prob-
lem as the problem of finding a connected Eulerian subgraph whose vertices form
a vertex cover of the original graph. The alternative problem with a little work,
can be expressed in a variant of Monadic Second Order logic. For the sake of
completeness, we also sketch a direct treewidth-based dynamic programming
algorithm using this formulation.

Having settled the problem for treewidth, the natural next step is to consider
Edge Hamiltonian Cycle parameterized by clique-width, a prominent struc-
tural graph parameter that generalizes treewidth. It is important to note here
that the (more common) vertex version of the problem exhibits a sharp com-
plexity jump between these two parameters: Hamiltonian Cycle is FPT for
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treewidth but for clique-width the problem is W[1]-hard and therefore does not
admit an FPT algorithm under standard complexity assumptions [19]. In what
is perhaps the most surprising result of this paper, we show that Edge Hamil-
tonian Cycle remains FPT even for clique-width, despite this parameter’s
additional generality. On a high level, our strategy is to rely on a characteri-
zation of bounded clique-width graphs given by Gurski and Wanke [20] which
states roughly that if a graph has small clique-width and no large complete bipar-
tite subgraphs, then it has small treewidth. We devise an algorithm that locates
and “reduces” large complete bipartite subgraphs in the input graph, without
affecting the answer or increasing the clique-width. By repeatedly applying this
step, we end up with a graph of small treewidth for which the problem is FPT.
This idea, which was also used in [28], is a rare algorithmic application of the
characterization of [20], and may be of independent interest.

2 Preliminaries

We assume that the reader is familiar with the basics of parameterized complex-
ity. In particular, we use the definitions of the classes FPT, XP as well as the
notion of a kernelization algorithm and of polynomial kernels (see [16,18,26]).

We will use the definition of treewidth, and in particular the notion of “nice”
tree decompositions (see the survey [3]). We also use the notion of clique-width
(see [13,17,23]). Let us briefly review the definition. The class of graphs of clique-
width k contains all single-vertex graphs where the only vertex has a label from
{1, . . . , k}. Furthermore, the class is closed under the following operations: dis-
joint union of two graphs; renaming of all vertices with some label i to some
label j; and joining by new edges of all vertices with some label i to all vertices
with some label j. All graph classes with bounded treewidth also have bounded
clique-width, but the reverse is not true [10].

We will also rely on the following theorem of Gurski and Wanke which intu-
itively states that large complete bipartite graphs are what separates treewidth
from clique-width:

Theorem 1 [20]. Let G be a graph of clique-width k. If G does not contain the
complete bipartite graph Kt,t as a subgraph, then tw(G) ≤ 3kt.

We will consider the Edge Hamiltonian Path and Edge Hamiltonian
Cycle problems. As mentioned, in these problems we are looking for a permu-
tation of the edges of the input graph so that any two consecutive edges share
an endpoint (in the latter problem, also the first and last edge must share an
endpoint). We call such a permutation an edge-Hamiltonian path (respectively
an edge-Hamiltonian cycle). We will mostly view these as graph problems, but
this problem definition applies equally well to hypergraphs, if we require that
two consecutive hyperedges share a common vertex. Hypergraphs are the subject
of Sect. 4. Recall that for a graph or hypergraph G(V,E), its line graph is the
graph G′(E,H) where (e1, e2) ∈ H if and only if e1, e2 share a vertex in G. The
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Edge Hamiltonian Path problem on G is equivalent to the Hamiltonian
Path problem on G′.

For the graph case, it will be useful to recast these ordering problems as
subgraph problems. First, recall that a graph is Eulerian if it is connected and
all its vertices have even degree. A Dominating Eulerian Subgraph of a
graph G(V,E) is a subgraph G′(V ′, E′) of G such that all edges of E have an
endpoint in V ′, that is, V ′ is a vertex cover of G, and G′ is Eulerian. We will
use the following classical observation of Harary and Nash-Williams:

Theorem 2 [22]. A graph has an edge-Hamiltonian cycle if and only if it
contains a dominating Eulerian subgraph.

Finally, let us mention that we will deal with Edge Hamiltonian Path
and Edge Hamiltonian Cycle interchangeably, depending on which problem
makes the description of our algorithms easier. The reader can easily verify that
all our arguments apply to both problems with very minor modifications. It is
also not hard to show the following:

Lemma 1. For the following parameters and for sufficiently large graphs, Edge
Hamiltonian Path is FPT if and only if Edge Hamiltonian Cycle is FPT:
vertex cover, treewidth, clique-width and hypergraph hitting set.

Proof of Lemma 1 as well as all other missing proofs appears in the full
version of the paper.

3 Vertex Cover

In this section we consider the Edge Hamiltonian Path problem parameter-
ized by the size of the vertex cover k. We show that the problem has a cubic in
k kernel. As in the following sections, we assume that together with the input
graph G(V,E) we are given a vertex cover S of G with |S| = k. Note though,
that this assumption is not important, since a 2-approximate vertex cover can
be found in polynomial time [9].

Below follow some definitions which will make the presentation of the results
smoother. We assume that the vertices of G are labeled in some lexicographically
ordered fashion, and in particular that S = {u1, . . . , uk}.

Definition 1. An edge e ∈ E is defined to be of type i if it is incident to ui ∈ S
but not incident to any other uj ∈ S for j < i.

Definition 2. Let P be an edge-Hamiltonian path of G. For i ∈ {1, . . . , k}, a
group of type i is a maximal set of edges of type i which are consecutive in P .
We say that an edge is special if it is the first or the last edge of a group.

The special edges essentially form the backbone of the edge-Hamiltonian
path P . A piece of intuition that will become useful later is that, if one fixes
these edges in a proper edge-path, the remaining edges will be easy to deal with,
because they are allowed to move freely in and out of groups.
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Our next goal then is to show that if a graph has an edge-Hamiltonian path
P , then it has one where few edges are special. This is summarized in Lemma 2
and Corollary 1. Intuitively, the core idea is a flipping argument: if the same
group types appear too many times in a solution, we can reverse a sub-path to
obtain a solution with fewer groups.

Lemma 2. Let G be an edge-Hamiltonian graph. Then, there exists an edge-
Hamiltonian path P of G with the following property: for any i, j ∈ {1, . . . , k},
an edge of type j appears directly after an edge of type i at most once.

Proof. (sketch)
Suppose that P ′ is an edge-Hamiltonian path of G in which some group of

type i immediately precedes some group of type i. Then, we can create a valid
path P by reversing the middle part of this path and merging the two groups of
type i and those of type j.

The new path has strictly fewer groups. Repeating this process at most a
linear (in |E|) number of times results in an edge-Hamiltonian path P with the
stated property. ��

Corollary 1. Let G be an edge-Hamiltonian graph. Then, there exists an edge-
Hamiltonian path P of G such that for all i ∈ {1, . . . , k}, P contains at most k
groups of type i. Therefore, P contains at most k2 groups in total, and for each
i ∈ {1, . . . , k} there exist at most 2k special edges of type i.

We have now proved that if a solution exists, it must have a certain nice
form. Let us make one more easy observation.

Lemma 3. Let G(V,E) be an edge-Hamiltonian graph. Then, there exists an
edge-Hamiltonian path P such that, for all i ∈ {1, . . . , k} for which there exist
at least k + 1 edges of type i, P has a group of type i with size at least 2.

Let us note that Lemma 2, Corollary 1 and Lemma 3 still hold even if G is a
hypergraph. We will make use of this in the next section.

We are now ready to state the main reduction rule and sketch its correctness.

Lemma 4. Let G(V,E) be a graph, and S = {u1, . . . , uk} a vertex cover of G
of size k. Suppose that there exists an edge (ui, w) satisfying the following:

1. w /∈ S
2. There are at least k + 2 edges of type i in G
3. For all uj ∈ S such that (uj , w) ∈ E we have |(N(ui) ∩ N(uj)) \ S| > 4k

Then G(V,E) has an edge-Hamiltonian path if and only if G′(V,E\{(ui, w)})
does.

Proof. (sketch)
For the one direction, suppose that G has an edge-Hamiltonian path P . We

construct a path P ′ where (ui, w) is removed. Let e1, e2 be the edges appearing
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immediately before and after (ui, w) in P . Suppose they do not share an endpoint
(if they do, we can construct P ′ by deleting (ui, w) from P ). Since they both
share an endpoint with (ui, w) we assume without loss of generality that e1 is
incident on ui and e2 = (uj , w). (Observe that here we have used the fact that
G is a graph, so the rest of our argument does not generalize to hypergraphs).

We know now by the last condition that N(uj) ∩ N(ui) contains at least
4k + 1 vertices of V \S. By Corollary 1 and pigeonhole principle, there exists
a vertex of (N(ui) ∩ N(uj))\S, call it z, such that (ui, z) and (uj , z) are not
special.

Because (ui, z) is not special, the two edges appearing immediately before
and after it are both incident on ui. Therefore, deleting (ui, z) still leaves us
with a valid edge-path. Similar reasoning can be used for (uj , z). We construct
a path P ′ as follows: delete (ui, w), (ui, z) and (uj , z) from P and then insert
(ui, z), (uj , z) between e1 and e2. This is a valid solution for G′. ��

The proof of the other direction is easy and appears in the full version.

Lemma 4 now leads to the following theorem.

Theorem 3. Edge Hamiltonian Path has a kernel with O(k3) edges, where
k is the size of the input graph’s vertex cover.

4 Hypergraphs

In this section we present an FPT algorithm for Edge Hamiltonian Path on
hypergraphs parameterized by the size of a (supplied) hitting set. As an interest-
ing consequence, our algorithm also establishes fixed-parameter tractability for
a novel parameterization of Hamiltonian Path, namely when the parameter
is the chromatic number of the input graph’s complement.

In this section, G(V,E) will be a hypergraph (that is, E is a collection of
arbitrary subsets of V ). We assume that the input also contains a hitting set
S ⊂ V of size k, that is, a set of vertices that intersects all hyperedges. Unlike
the previous section, this is not an inconsequential assumption, since finding
even an approximate hitting set is generally a hard problem. However, observe
that for hypergraphs of bounded rank (i.e. hyperedge size), a hitting set can be
computed in FPT time and hence this requirement is nullified on such instances.

We will rely on the fact that much of the material of the previous section car-
ries through unchanged. In particular, Definitions 1, 2, also apply to hypergraphs.
Then, Lemma 2, Corollary 1, and Lemma 3 hold for the case of hypergraphs as
well. Unfortunately, Lemma 4 does not seem to generalize naturally in this case.

Let us thus describe a different algorithm for this problem. As mentioned,
one way to proceed is to try to identify the special hyperedges which form the
backbone of a path. Once these have been found, the problem becomes much
easier. We will use a color-coding scheme to assist us in selecting these special
hyperedges. The high-level idea is the following: for every i ∈ {1, . . . , k} such that
there are at least 2k hyperedges of type i, color these hyperedges with 2k colors
uniformly at random. Then, merge (that is, take the union) of all hyperedges of
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type i that took the same color to a single hyperedge. This process results in a
hypergraph G′ with O(k2) hyperedges. We want to show that if this hypergraph
has an edge-Hamiltonian path then G does as well, while if G has an edge-
Hamiltonian path then G′ has one with non-negligible probability. The “good
colorings” that give us this non-negligible probability are those that assign a
different color to each special edge.

We are now ready to state the main result of this section.

Theorem 4. Given a hypergraph G(V,E) and a hitting set S = {u1, . . . , uk}
of G, there is an FPT algorithm that decides if G has an Edge Hamiltonian
Path in time 2O(k2)nO(1).

An interesting consequence of Theorem 4 is that it implies fixed-parameter
tractability for a non-standard parameterization of Hamiltonian Path. The
parameterization we are considering is by the complement chromatic number,
that is, the chromatic number of the input graph’s complement. We are naturally
led to this observation, because the line graph of a hypergraph with a hitting
set of size k has a vertex set that can be partitioned into at most k cliques. To
the best of our knowledge, this parameterization of Hamiltonian Path has not
been considered before.

Corollary 2. Given a graph G(V,E) and a proper k-coloring of its complement
graph, there exists an FPT algorithm that decides if G has a Hamiltonian Path
in time 2O(k2)nO(1).

5 Treewidth and Clique-Width

In this section we consider the Edge Hamiltonian Cycle problem parame-
terized by treewidth or clique-width. As is customary for these parameters, we
will assume that a decomposition of width k (or a clique-width expression with
k labels) is given to us with the input. This assumption is not necessary though,
as both parameters can be approximated in FPT time (see [2,27]).

Let us first consider treewidth. One obvious approach we could try to follow
is to use the fact that if G has treewidth k, its line graph has clique-width O(k)
[21]. Since deciding Edge Hamiltonian Cycle on G is equivalent to deciding
Hamiltonian Cycle on its line graph, this would give an XP algorithm using
known results for the latter problem (this is similar to the approach of [14]).
Unfortunately, since Hamiltonian Cycle is W[1]-hard for clique-width, this
approach could not lead to an FPT algorithm for Edge Hamiltonian Cycle
on treewidth. We thus have to recast the problem.

We will rely on Theorem 2, which states that the existence of an edge-
Hamiltonian cycle is equivalent to the existence of a dominating Eulerian sub-
graph. Thus, we can view Edge Hamiltonian Cycle as a subgraph problem
rather than an ordering problem. This formulation allows us to express the prob-
lem in a variant of MSO logic, without reference to orderings. We can then invoke
standard meta-theorems to obtain fixed-parameter tractability for treewidth.
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Let us sketch the basic idea. Recall that MSO2 logic allows one to express
properties involving sets of vertices or edges (see [12]). Dominating Eulerian
Subgraph is the problem of looking for a set of vertices V ′ and a set of edges
E′ such that: all edges of E have an endpoint in V ′; the graph G′(V ′, E′) is
connected; all vertices of G′(V ′, E′) have even degree. The first two properties
are well-known to be expressible in MSO logic. Interestingly, the third property
is expressible in Counting MSO2 (CMSO2) logic, an extension of MSO2 which is
still FPT for treewidth [11,23]. Thus, Edge Hamiltonian Cycle is expressible
in CMSO2 and is therefore FPT for treewidth.

We can use standard techniques to obtain the following:

Theorem 5. Given a graph G and a tree decomposition of width k, there exists
an algorithm deciding if G has an edge-Hamiltonian cycle in time kO(k)nO(1).

Let us now move to the main result of this section, which is the tractability
of Edge Hamiltonian Cycle parameterized by clique-width. Our high-level
strategy will be to eliminate complete bipartite subgraphs from the input graph,
without increasing the graph’s clique-width and without affecting the answer of
the problem. If we can repeat this process, we will in the end have a graph with
small clique-width and no large complete bipartite subgraphs. By Theorem 1,
the graph will have small treewidth and we can use Theorem 5.

Our main tool will be a reduction lemma (Lemma 6). Roughly speaking, the
lemma states that if we find a sufficiently large complete bipartite graph in G
with bipartition A,B, we can reduce it as follows: first we remove all its edges
and then we add three new vertices which are connected to all vertices of both
A and B. This transformation should not affect the answer.

To prove Lemma 6, it will be useful to first prove the following statement.
Roughly speaking, it says that if a graph contains a K3,3 (or larger) complete
bipartite subgraph, then any Dominating Eulerian Subgraph can be edited
to produce a solution using all its vertices.

Lemma 5. Let G(V,E) be a graph and A,B ⊆ V , with A,B disjoint sets,
|A|, |B| ≥ 3 and A × B ⊆ E. If G has a dominating Eulerian subgraph then
it also has a dominating Eulerian subgraph G0(V0, E0) such that (A ∪ B) ⊆ V0

and E0 ∩ (A × B) �= ∅.
Proof. Suppose that G has a dominating Eulerian subgraph G0(V0, E0). We will
edit this solution by adding vertices and adding or removing edges until the
stated properties are achieved. In the remainder, when we say that we flip an
edge e we mean that, if e ∈ E0 then we remove it from E0, otherwise we add it
to E0 and add its endpoints to V0.

Let us first establish that |(A ∪ B)\V0| ≤ 1 as follows: if V0 does not fully
contain one of the two sets A,B, it must fully contain the other (because V0 is
a vertex cover). Suppose without loss of generality that B ⊆ V0. If there exist
v1, v2 ∈ A\V0, then pick two vertices u1, u2 ∈ B. We can flip all the edges of
{u1, u2} × {v1, v2} and produce a valid solution with more vertices.

Now, if there is a single vertex v1 ∈ A\V0 then we have two cases: if there
exist u1 ∈ B, v2 ∈ A such that (u1, v2) /∈ E0, we pick an arbitrary u2 ∈ B and
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flip the edges {u1, u2} × {v1, v2}. This produces a valid dominating Eulerian
subgraph that contains v1. In the final case, all edges of A × B not incident on
v1 are used in E0. Then, picking two arbitrary u1, u2 ∈ B and a vertex v2 ∈ A
and flipping the edges {u1, u2}×{v1, v2} produces a valid solution that includes
v1. We can conclude that A ⊆ V0.

For the second property, observe that if E0 does not use any edges of A×B
then we can add an arbitrary cycle to E0 using edges of A×B producing a valid
solution. ��

Lemma 6. Let G(V,E) be a graph and A,B ⊆ V with A,B disjoint sets,
|A|, |B| ≥ 5 and A × B ⊆ E. Let C = {c1, c2, c3} be a set of three new ver-
tices. Consider the graph G′(V ′, E′) where V ′ = V ∪ C and E′ = (E\A × B) ∪
(A×C)∪(B×C). Then G′ has an edge-Hamiltonian cycle if and only if G does.

Proof. For the first direction, suppose thatG has a dominating Eulerian subgraph
G0(V0, E0). We will now describe a dominating Eulerian subgraph G′

0(V
′
0 , E

′
0) of

G′. We set V ′
0 = V0 ∪C, which is clearly a vertex cover of G′. To construct E′

0, we
begin with the set of edges E0\(A × B). Now, we need to consider the bipartite
subgraph GA∪B

0 of G0 induced by A ∪ B. In this subgraph, there will be an even
number of vertices of odd degree. For each such vertex u, we add an edge inG′

0 from
u to each of the vertices ofC. This ensures that uwill still have an odd degree in the
subgraphG′A∪B∪C

0 ofG′
0 induced byA∪B∪C. Furthermore, all vertices ofC inG′

0

should currently have even degree. LetD be the set of remaining vertices ofGA∪B
0 ,

with even degree. If |D| is a multiple of 3, we connect a third of these vertices with
c1 and c2, a third with c1 and c3 and a third with c2 and c3. If |D| = 2 mod 3, then
we connect two vertices of D with c1, c2 and for the rest we act as in the previous
case. IfD = 1 mod 3, and |D| ≥ 4, we connect four vertices ofD with c1, c2 and act
as before for the rest. Last, for the case that there is only one vertex of even degree,
we connect it to c1 and c2 while at the same time we remove the edges (v, c1) and
(v, c2) for some other vertex v of odd degree. Observe that this process ensures that
in the end all vertices of A,B have degree in G′A∪B∪C

0 with the same parity as in
GA∪B

0 and all vertices of C have even degree in G′
0. Furthermore, the constructed

graph is always connected because the bipartite subgraph is sufficiently large.
For the converse direction, suppose we have a dominating Eulerian subgraph

G′
0(V

′
0 , E

′
0) of G′. By Lemma 5, because C, (A∪B) form two parts of a sufficiently

large complete bipartite subgraph we can assume that (A ∪ B ∪ C) ⊆ V ′
0 .

We build a dominating Eulerian subgraph G0(V0, E0) of G as follows. First,
V0 = V ′

0\C, which is a vertex cover of G. Let EC be the set of edges of E′
0

incident on C. It must be the case that |EC | is even, since all vertices of C
have even degree in G′

0 and C is an independent set. We start building E0 by
including all the edges of E′

0\EC . We will now go through two phases of “fixing”
E0 by adding to it edges of A × B.

Initially, we concentrate on making all degree parities even. We will say that
we flip an edge e to mean that, if e ∈ E0 then we remove it from E0, otherwise
we add it to E0. Observe that, for our current selection of E0, the number of
vertices of A ∪ B with odd degree in G0 is even. This is a consequence of the
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fact that |EC | is even and that all vertices have even degree in G′
0. As long as

there exist two vertices u, v of A ∪ B with odd degree in G0, select a shortest
path connecting u and v in G and flip its edges. This will only change the parity
of the degree of u and v in G0. Repeating this process will eventually produce a
set E0 that makes the degree of all vertices even.

We now need to augment E0 to make sure that G0 is connected. It is not
hard to see that if G0 is not connected, there must be two vertices of A ∪ B in
different components (otherwise, we could find a disconnected component in G′

0).
Our intermediate goal is to create a solution where each part (excluding possibly
at most one vertex) belongs as a whole in one connected component. Starting
from part A, let’s assume that it doesn’t belong as a whole in one component,
in other words assume that there exist two vertices v1, v2 such that v1, v2 are in
different components.

One of v1, v2 should have at least two neighbors in B, otherwise we can
find two common non-neighbors u1, u2 and add the edges of {u1, u2} × {v1, v2}
to E0 to obtain a valid solution with fewer components. So assume that v2 has
at least two neighbors in B, u′, u′′.

Now, for each additional vertex v3 of A, if v3 is not at the same connected
component as v2, we can add all edges between {u′, u′′} and {v1, v3} and obtain
a solution with fewer connected components. Therefore, every vertex of A except
for v1 belongs to the same connected component as v2.

With similar reasoning, we can conclude that every vertex of B but (possibly)
one vertex (call this u1 if it exists) also belongs in one connected component.
Additionally, we can easily conclude that, in the case the big components from
each part are disconnected, we can connect them by joining two pairs of vertices
from each of them.

We are now almost done. We describe the process to attach v1 to the big
connected component (u1, if it exists, can be handled in a similar way). If there
exists at least one vertex of the big component in A with two non-neighbors in
B, then we completely join these three vertices together with v1 in a K2,2. In
the other case, all vertices of A from the big component have at most one non-
neighbor in B. This means that the big component is very well-connected, so we
can take an arbitrary vertex of A together with two arbitrary vertices of B and
flip all edges between them while adding all edges from v1 to these two vertices
of B. After performing this step, the connectivity of the graph is increased. ��

We are now almost ready to proceed with our algorithm. To simplify pre-
sentation, we will only apply Lemma 6 to subgraphs which are at least as large
as K7,7. Observe that in such a case, G′ has strictly fewer edges than G. It is
then clear that the reduction is making progress and after a bounded number of
applications we get a graph with no large complete bipartite subgraphs.

There is, however, one problem that remains. We must also show that we
can apply Lemma 6 repeatedly without increasing the graph’s clique-width. If
we cannot guarantee this, then, even though we will have eliminated large Kt,t

subgraphs, we will not be able to invoke Theorem 1 in the end. We therefore
have to take care to only apply the reduction rule in some specific situations.
For this, we will have to work with the given clique-width expression of G.
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Our first step is to handle an obvious part of the given clique-width expression
where large bipartite subgraphs are constructed, namely, the join operation.

Lemma 7. Given a graph G and a clique-width expression with k labels, it is
possible to produce in polynomial time a graph G′ and a clique-width expression
with k + 2 labels such that:

1. G has an edge-Hamiltonian cycle if and only if G′ does
2. For every join operation in the expression of G′, one of the two involved sets

of vertices contains at most 6 vertices.

Unfortunately, Lemma 7 is not enough to guarantee the elimination of large
complete bipartite subgraphs, since these may also be constructed gradually.
However, eliminating big joins gives our clique-width expression a certain struc-
ture which we can leverage to deal with the remaining bi-cliques efficiently.

Lemma 8. Given a graph G(V,E) and a clique-width expression with k labels
and the property that for all join operations one involved set has size at most 6,
we can in polynomial time produce a graph G′ with clique-width k + 2 such that
G′ does not contain K21k,21k as a subgraph.

We can now describe our algorithm. Given a graph G and a clique-width
expression with k labels, we first invoke the algorithms of Lemmata 7,8. We
are thus left with a graph with clique-width at most k + 4 and no complete
bipartite subgraph larger than Kt,t for t = O(k). By Theorem 1, this graph has
treewidth O(k2). We can now apply an FPT algorithm to obtain a reasonable
tree decomposition (see e.g. [2]) and then invoke Theorem 5.

Theorem 6. Given a graph G and a clique-width expression with k labels, there
exists an algorithm that decides if G has an edge-Hamiltonian cycle in time
kO(k2)nO(1).
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23. Hliněnỳ, P., Oum, S.-I., Seese, D., Gottlob, G.: Width parameters beyond tree-
width and their applications. Comput. J. 51(3), 326–362 (2008)

24. Lai, H.-J.: Eulerian subgraphs containing given vertices and hamiltonian line
graphs. Discrete Math. 178(1), 93–107 (1998)

25. Lai, T.-H., Wei, S.-S.: The edge Hamiltonian path problem is NP-complete for
bipartite graphs. Inf. Process. Lett. 46(1), 21–26 (1993)

26. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms: Oxford Lecture Series
in Mathematics and Its Applications. OUP, Oxford (2006)

27. Oum, S.-I., Seymour, P.: Approximating clique-width and branch-width. J. Comb.
Theory Ser. B 96(4), 514–528 (2006)

28. Razgon, I., Petke, J.: Cliquewidth and knowledge compilation. In: Järvisalo, M.,
Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 335–350. Springer, Heidel-
berg (2013)
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Abstract. The square of a graph G, denoted G2, is obtained from G
by putting an edge between two distinct vertices whenever their distance
is two. Then G is called a square root of G2. Deciding whether a given
graph has a square root is known to be NP-complete, even if the root is
required to be a chordal graph or even a split graph.

We present a polynomial time algorithm that decides whether a given
graph has a ptolemaic square root. If such a root exists, our algorithm
computes one with a minimum number of edges.

In the second part of our paper, we give a characterization of the
graphs that admit a 3-sun-free split square root. This characterization
yields a polynomial time algorithm to decide whether a given graph has
such a root, and if so, to compute one.

Keywords: Square of graph · Square of ptolemaic graph · Square of
split graph · Recognition algorithm

1 Introduction

The square of a graph G is the graph G2 obtained from G by putting an edge
between any two distinct vertices of distance 2. Then G is called the square root
of G2. While every graph has a square, not every graph admits a square root. In
fact, it is NP-complete to decide whether a given graph has a square root, as was
shown by Motwani and Sudan [21]. Since then, squares of graphs and square roots
have been intensively studied, in both graph theoretic and algorithmic aspects.
See, for example, [1,2,7,10,11,14,16,20] for recent results on this topic.

One successful approach to deal with this hardness is to ask for square roots
that belong to a particular graph class. This might be useful if one is interested in
structural properties of the root graph, such as chordality, bipartiteness or girth
conditions. The negative results in this direction tell us that it is NP-complete
to determine whether a graph has a square root that is either chordal [15],
split [15], or of girth four [11], and, recently announced in [10], of girth five. On
the upside, there are polynomial time algorithms for computing a square root
that is either a tree (see for example [6,14,17]), a bipartite graph [14], a proper
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 360–371, 2014.
DOI: 10.1007/978-3-319-12340-0 30
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interval graph [15], a block graph [17], a strongly chordal split graph [18], or a
graph of girth at least six [11].

Ptolemaic square roots. Note the contrast between the linear time algorithm
for finding a block square root and the NP-hardness of finding a chordal square
root. It seems enticing to investigate what happens in between these two classes.
Indeed, two reasonable intermediate graph classes are ptolemaic graphs and
strongly chordal graphs. In this paper, we solve the square root problem for
ptolemaic graphs by proving the following main result.

Theorem 1. It can be decided in O(n4) time whether a given n-vertex graph
has a ptolemaic square root. If such a root exists, a ptolemaic square root with
a minimum number of edges can be constructed in the same time.

A long-standing problem in the research on graph powers is characterizing and
recognizing powers of distance-hereditary graphs. This problem stems from a
paper by Bandelt, Henkmann and Nicolai [3], who where the first to study
powers of distance-hereditary graphs. They where, however, not able to give
a full characterization of squares of distance-hereditary graphs and this problem
remains unsolved until today.

We see our result as an important step towards the solution of the above
mentioned problem. The class of ptolemaic graphs by far the largest subclass of
distance-hereditary graphs for which the square root problem is solved. More-
over, previous results on subclasses of distance-hereditary graphs, namely the
polynomial time algorithms for the recognition of squares of trees and squares of
block graphs [17] can also be subsumed under our result in the following sense.
An implicit feature of our algorithm is that if the input graph admits a square
root that is a block graph or a tree, such a root is indeed computed. (However,
the best known algorithm to compute square roots in these two graph classes
runs in linear time and is considerably simpler [17].)

The optimization aspect of our result is motivated by recent work of Cochefert,
Couturier, Golovach, Kratsch and Paulusma [7]. They introduce the problem of
minimizing or maximizing the number of edges in a square root. Among other
results, they give a polynomial time algorithm to compute a square root with a
minimum number of edges in the class of graphs of maximum degree 6.

3-sun-free split square roots. As mentioned above, it is NP-complete to
decide whether a given graph is the square of some split graph [15].

A polynomially solvable case in computing split square roots reads as follows.
A strongly chordal graph is a chordal graph that does not contain any �-sun as an
induced subgraph; here an �-sun, � ≥ 3, consists of a stable set {u1, u2, . . . , u�}
and a clique {v1, v2, . . . , v�} such that for i ∈ {1, . . . , �}, ui is adjacent to exactly
vi and vi+1 (index arithmetic modulo �). There is a structural characterization
of squares of strongly chordal split graphs, which leads to a quadratic time
recognition algorithm [16,18].

Our second result, Theorem2 below, extends the polynomially solvable case
of strongly chordal split square roots to 3-sun-free split square roots. This leaves
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a larger degree of freedom for the square root, pushing our knowledge on poly-
nomially solvable cases further towards the NP-complete case of general split
square roots.

Theorem 2. It can be decided in O(n2m) time whether a given n-vertex
m-edge graph has a 3-sun-free split square root, and if so, such a square root
can be constructed in the same time.

Our paper is structured as follows. In Sect. 2 we collect relevant notations, defin-
itions, and basic facts. We also give some more background on ptolemaic graphs.

We prove our main result, Theorem 1, in Sect. 3. The first of the two ingredi-
ents of our algorithm is discussed in Sect. 3.1. We show how the structure of the
maximal cliques of the input graph already determines an essential part of any
ptolemaic square root. The second ingredient we present in Sect. 3.2. We show
that for every maximal clique in the square graph, there is some vertex in any
ptolemaic square root whose neighborhood spans this clique. The results of the
last section enable us to determine these vertices. The whole algorithm is put
together in Sect. 3.3, where we also prove its correctness.

In Sect. 4 we first give a structural characterization of squares of 3-sun-free
split graphs in terms of four forbidden induced subgraphs and of the maximal
clique structure. Then, Theorem 2 will be derived from this characterization.

We close the paper with a short discussion of our results and propose some
questions for further research in Sect. 5.

2 Basic Facts and Definitions

All considered graphs are finite and simple. Let G be a graph and v ∈ V (G). By
NG(v) we denote the set of neighbors of v in G. The closed neighborhood of v in
G, that is NG(v)∪{v}, we denote by NG[v]. A clique, respectively, an independent
set, in G is a set of pairwise adjacent, respectively, non-adjacent vertices, in G.
For a subset X ⊆ V (G), we denote by G[X] the subgraph induced by X. If two
graphs G and H are isomorphic, we may simply write G ∼= H.

Let u, v ∈ V (G). The distance of u and v in G we denote by distG(u, v). For
any k ≥ 1, Gk denotes the k-th power of G. That is the graph on V (G) where
any two distinct vertices are adjacent if and only if their distance in G is at most
k. G2 is called the square of G and G is called the square root of G2.

Let u, v be two non-adjacent vertices of G. A subset S ⊆ V (G) is a (u, v)-
separator if u and v belong to different connected components of G−S. A sepa-
rator is a (u, v)-separator for some non-adjacent vertices u, v ∈ V (G). We speak
of a minimal separator if it is not properly contained in another (u, v)-separator.
A minimal clique separator is a minimal separator that is a clique.

A graph G is called distance-hereditary if for all vertices u, v ∈ V (G) any
induced path between u and v is a shortest path. Distance-hereditary graphs
were introduced by Bandelt and Mulder [4]. It is well-known that this class can
be recognized in linear time [12].
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Powers of distance-hereditary graphs have been studied byBandelt,Henkmann
and Nicolai [3]. An important subclass of distance-hereditary graphs are the so-
called ptolemaic graphs. A connected graph G is called ptolemaic if for every four
vertices u, v, w, x the ptolemaic inequality holds:

distG(u, v)distG(w, x) ≤ distG(u,w)distG(v, x) + distG(u, x)distG(v, w).

We need the following characterization of ptolemaic graphs. For any graph H
we say that G is H-free if G does not contain an induced subgraph that is
isomorphic to H. For a positive integer �, let P� denote the path on � vertices
and � − 1 edges, and C� the cycle on � vertices and � edges. A gem is the graph
displayed in Fig. 1. A graph is chordal if it is C�-free for all � ≥ 4.

Theorem 3 (Howorka [13]). For every graph G, the following statements are
equivalent.

(i) G is ptolemaic;
(ii) G is gem-free chordal;
(iii) G is C4-free distance-hereditary;
(iv) for all vertices u, v ∈ V (G) of distance two, NG(u) ∩ NG(v) is a minimal

clique (u, v)-separator.

It follows that a ptolemaic graph is always gem-free chordal. In our proofs we
make extensive use of this particular fact without explicitely refering to the
above theorem.

Fig. 1. The gem

A split graph is a graph whose vertex set can be partitioned into a clique and
an independent set. It is well known that split graphs are exactly the chordal
graphs without induced 2K2 (the complement of the 4-cycle C4). For more infor-
mation on graph classes, their definitions and properties we refer to the book by
Brandstädt, Le and Spinrad [5].

3 Ptolemaic Square Roots

We make use of the following property of squares of ptolemaic graphs later.

Theorem 4 ([3,8,19,23]). Squares of ptolemaic graphs are chordal.

It is known that ptolemaic graphs are strongly chordal, and squares of strongly
chordal graphs are strongly chordal as well (see [8,19,23]).
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3.1 Forced Edges in a Ptolemaic Square Root

In this section we show how the structure of the maximal cliques of the square
of a ptolemaic graph determines an essential part of any ptolemaic square root.
For this, we need the following concept.

Let us say that a pseudo-P5 in a graph H is an ordered 5-tuple of distinct
vertices (v1, v2, v3, v4, v5) such that

(i) v2v3, v3v4 ∈ E(H),
(ii) distH(v1, v2),distH(v4, v5) ≤ 2,
(iii) distH(v1, v3) = distH(v2, v4) = distH(v3, v5) = 2,
(iv) and distH(v1, v4),distH(v1, v5),distH(v2, v5) ≥ 3.

In particular, an induced P5 is a pseudo-P5. Figure 2 shows another possible
way of how a pseudo-P5 may appear.

v1 v2 v3 v4 v5

Fig. 2. (v1, v2, v3, v4, v5) form a pseudo-P5.

Note that the set {v1, v2, v3, v4, v5} induces a gem in H2. In this gem, the
sequence (v1, v2, v4, v5) is an induced P4. As the next lemma shows, the converse
of this statement holds if H is ptolemaic.

Lemma 1. Let H be a ptolemaic graph and let G = H2. If a vertex subset
{v1, v2, v3, v4, v5} induces a gem in G where (v1, v2, v4, v5) is the induced P4 of
this gem, then (v1, v2, v3, v4, v5) is a pseudo-P5 in H.

A more general version of Lemma 1 reads as follows. Let us say that a gem-triple
is an ordered triple (A,B,C) of distinct maximal cliques such that

(a) A ∩ C 	= ∅,
(b) A ∩ C ⊆ B,
(c) A ∩ B 	⊆ C, and
(d) B ∩ C 	⊆ A.

See Fig. 3 for an illustration.

Lemma 2. Let H be a ptolemaic graph, let G = H2, and let (A,B,C) be a
gem-triple in G. Then for all u ∈ A ∩ C and v ∈ (A ∪ C) ∩ B with u 	= v,
uv ∈ E(H).
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A

B

C

(A ∩ B) \ C A ∩ C (B ∩ C) \ A

Fig. 3. A gem-triple (A,B,C).

Proof. Let v2 ∈ (A∩B)\C, v3 ∈ A∩C, v4 ∈ (B∩C)\A. Due to the maximality
of A and C, there are vertices v1 ∈ A \ (B ∪ C) and v5 ∈ C \ (A ∪ B) with
v1v4, v2v5 /∈ E(G). Otherwise, A ∪ {v4} resp. C ∪ {v2} would be a clique, a
contradiction.

By Theorem 4, G is chordal. Thus, v1 and v5 must be non-adjacent in G, as
otherwise G[{v1, v2, v4, v5}] ∼= C4. Hence, G[{v1, v2, v3, v4, v5}] ∼= gem. Lemma 1
implies that (v1, v2, v3, v4, v5) is a pseudo-P5 in H. As v2, v3, v4 were arbitrary,
every edge between (A ∩ B) \ C, resp. (B ∩ C) \ A, and A ∩ C is present in H.

Moreover, if for some v′
3 	= v3 it holds that both (v2, v3, v4) and (v2, v′

3, v4)
are induced P3 in H, the chordality of H implies v3v

′
3 ∈ E(H). This means that

A ∩ C is a clique in H, completing the proof. ��

3.2 Centers of Maximal Cliques

The last section shows that several edges of any ptolemaic square root of a graph
are forced. However, a non-trivial degree of freedom remains for the choice of the
other edges of the square root. This issue is dealt with in the present section.

Let H be any ptolemaic graph and let G = H2. Let C be a maximal clique
of G and x ∈ V (H) with NH [x] = C. We call x a center of C (with respect to
H). As Lemma 3 below shows, a center exists for every maximal clique G. Note
that for every vertex v ∈ V (G) being in a maximal clique C of G is equivalent
to being identical or adjacent to a center of C in H. In the remainder of this
paper, we make use of this fact without explicitly repeating it.

Next we prove a sequence of lemmas in order to prepare our algorithm.

Lemma 3. Let H be a ptolemaic graph and let G = H2. Every maximal clique
of G has a center in H.

Proof. Let Q be a maximal clique in G, and let v ∈ Q such that NH [v] ∩ Q is
inclusion-maximal. We are going to show that NH [v] = Q. Note that NH [v] is
a clique in G. So, by the maximality of the clique Q, it suffices to show that
Q ⊆ NH [v].
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Assume, by way of contradiction, there is a vertex x ∈ Q − NH [v]. Then
distH(v, x) = 2, and, by Theorem3,

S = NH(v) ∩ NH(x) is a minimal clique (v, x)-separator in H.

Let A be the component of G − S containing v.

Claim 1. For every vertex y ∈ Q ∩ A, NH(y) ∩ S = S.
If y ∈ Q ∩ A, then distH(x, y) = 2. Hence by Theorem 3, S′ = NH(x) ∩

NH(y) ⊆ S is an (x, y)-separator in H. Therefore, S′ = S, otherwise there
would be a path in H connecting x and y using v and a vertex in S −S′. Claim 1
follows.

Claim 2. For every vertex s ∈ S and every vertex q ∈ Q, distH(s, q) ≤ 2.
If q ∈ S, the claim follows from the fact that S is a clique in H. If q ∈ A,

the claim follows from Claim 1. Let q ∈ B, where B is another component of
G−S. Since distH(q, v) = 2, q must have some neighbor in S. Since S is a clique,
distH(s, q) ≤ 2. Claim 2 follows.

Consider now a vertex s ∈ S. The maximality of the clique Q in G and Claim
2 imply that s must belong to Q. On the other hand, by Claim 1, NH [v] ∩ Q ⊆
NH [s]∩Q, and this inclusion is proper because sx ∈ E(H) but vx 	∈ E(H). This
contradicts the choice of v. Hence NH [v] = Q as claimed. ��

Our next lemma enables a key step of our algorithm. It allows to determine the
centers of the maximal cliques of G, up to being adjacent twins in G. Here, two
vertices are twins if they have the same neighbors.

Lemma 4. Let H be a ptolemaic graph and let G = H2. Let A,C be two maxi-
mal cliques of G with A ∩ C 	= ∅, and let v be a center of A. Then v ∈ A \ C if
and only if there is a maximal clique B such that (A,B,C) is a gem-triple.

3.3 The Algorithm

We now state our algorithm and then discuss its logic. Let G be the input graph.

1. Check whether G is chordal. If not, return that G does not have a ptolemaic
square root.

2. Compute the maximal cliques of G. Let the set of maximal cliques be denoted
C.

3. Initialize the empty graph H on the vertex set V (G).
4. Determine the gem-triples among C.
5. For every gem-triple (A,B,C) in G, add the edge uv to E(H), for all u ∈ A∩C

and v ∈ (A ∪ C) ∩ B with u 	= v.
6. Peform the following steps for every A ∈ C.

(i) Compute the set CA of maximal cliques C ∈ C with A ∩ C 	= ∅.
(ii) Compute the set C′

A of maximal cliques C ∈ C for which there is a B ∈ C
such that (A,B,C) is a gem-triple.
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(iii) Compute the set C′′
A = CA \ C′

A.
(iv) Compute the vertex set XA =

⋂
C′′

A \
⋃

C′
A.

7. Assign a vertex xC ∈ XC to every C ∈ C in an injective way. If this is not
possible, return that G does not have a ptolemaic square root.

8. For every C ∈ C and v ∈ C: if v 	= xC and vxC /∈ E(H), add the edge vxC to
E(H).

9. Check whether the graph H is a ptolemaic square root of G. If yes, return
H. If not, return that G does not have a ptolemaic square root.

The full discussion of the complexity and the correctness of the above algorithm
we omit due to space limitations. In Step 5 the forced egdes are included into
the potential square root H according to Lemma 2. Potential centers for H are
determined in Steps 6 and 7 according to Lemma4. Step 8 implements the
neighborhoods of these centers.

Lemma 5. The algorithm can be implemented such that it terminates in O(n4)
time when applied to an n-vertex graph.

Thus, the above algorithm terminates in polynomial time.

Lemma 6. If the input graph G has a ptolemaic square root, the algorithm puts
out a ptolemaic square root of G that has a minimum number of edges.

Finally, Theorem1 is a direct consequence of the Lemmas 5 and 6.

4 Squares of 3-sun-free Split Graphs

In this section we prove Theorem 2. Recall that deciding if a graph is the square
of a strongly chordal split graph can be done in polynomial time [16,18]. This
result is based on the following characterization of squares of strongly chordal
split graphs; the set of all maximal cliques in a graph G is denoted by C(G).

Theorem 5 ([16,18]). G is square of a strongly chordal split graph if and only
if G is strongly chordal and

∣
∣ ⋂

Q∈C(G) Q
∣
∣ ≥ |C(G)|.

We now are going to extend Theorem 5 to 3-sun-free split square roots. Our
approach is based on the following fact about maximal cliques in squares of 3-
sun-free split graphs. A vertex with inclusion-maximal closed neighborhood is
called a maximal vertex. For split graphs H = (V (H), E(H)) we write H =
(C ∪ I, E(H)), meaning V (H) = C ∪ I is a partition of the vertex set of H into
a clique C and an independent set I.

Lemma 7 ([16,18]). Let H = (C ∪ I, E(H)) be a connected split graph without
induced 3-sun. Then Q is a maximal clique in H2 if and only if Q = NH [v] for
some maximal vertex v ∈ C of H.

Squares of 3-sun-free split graphs can be characterized as follows (see Fig. 4 for
the graphs G1–G4).
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Fig. 4. G1, G2, G3, and G4.

Theorem 6. G is the square of a connected 3-sun-free split graph if and only if
G is (G1, G2, G3, G4)-free and satisfies

∣
∣ ⋂

Q∈C(G) Q
∣
∣ ≥ |C(G)|.

Proof. A universal vertex of G is one that is adjacent to every other vertex of
G. Note that, for any connected split-graph H = (C ∪ I, E(H)), any vertex in
C is a universal vertex in H2.

Assume that G = H2 for some connected 3-sun-free split graph H = (C ∪
I, E(H)). First, by Lemma 7,

|C(G)| ≤ |C|.

Furthermore, as C is contained in all maximal cliques in G,

|C| ≤
∣
∣

⋂

Q∈C(G)

Q
∣
∣.

Therefore,
|C(G)| ≤

∣
∣

⋂

Q∈C(G)

Q
∣
∣.

Next, let by way of contradiction, a, b, c, a′, b′, c′ be six vertices such that

ab, ac, bc, a′b, a′c, b′a, b′c, c′a, c′b ∈ E(G), aa′, bb′, cc′ 	∈ E(G),

that is, G[a, b, c, a′, b′, c′] is a Gi for some i = 1, 2, 3, 4.
Let Q1, Q2, Q3 be the maximal cliques of G containing {a, b, c′}, {b, c, a′},

{a, c, b′}, respectively. By Lemma 7, Qi = NH [vi] for some (maximal) vertex
vi ∈ C, i = 1, 2, 3. In particular,

a, b ∈ NH [v1], b, c ∈ NH [v2], a, c ∈ NH [v3], a 	∈ NH [v2], b 	∈ NH [v3], c 	∈ NH [v1].

By noting that a, b, c, a′, b′, c′ ∈ I (as none of these vertices is universal in G),
we conclude that a, b, c, v1, v2, v3 induce a 3-sun in H, a contradiction.

Now, let G be (G1, G2, G3, G4)-free and satisfy
∣
∣ ⋂

Q∈C(G) Q
∣
∣ ≥ |C(G)|.

Write C =
⋂

Q∈C(G) Q and let C(G) = {Q1, . . . , Qq}. As |C| ≥ q, we are able
to choose q distinct vertices c1, . . . , cq in C. Let H be the split graph with clique
C, independent set I = V (G) \ C, and edges vci for all v ∈ I and 1 ≤ i ≤ q with
v ∈ Qi.
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We claim that G = H2. Indeed, let xy ∈ E(G). Then there xy ∈ Qi for
some i. If x ∈ C or y ∈ C, then clearly xy ∈ E(H2). If x, y ∈ Qi \ C, then
xci, yci ∈ E(H), hence xy ∈ E(H2).

Let xy ∈ E(H2). If x ∈ C or y ∈ C, then xy ∈ E(G) because C is contained
in all maximal cliques of G. So, let x, y ∈ I. Hence there is a vertex ci ∈ C with
xci, yci ∈ E(H). By construction of H, x, y ∈ Qi, showing xy ∈ E(G).

We have shown that G = H2, as claimed. It remains to prove that H is
3-sun-free. Assume the contrary, and let v1 = ci, v2 = cj , v3 = ck, u1, u2, u3

induce a 3-sun in H. Then, by construction of H,

u1 ∈ (Qi ∩ Qj) \ Qk, u2 ∈ (Qj ∩ Qk) \ Qi, u3 ∈ (Qi ∩ Qk) \ Qj .

Now, by the maximality of the cliques, u1 is non-adjacent to some x ∈ Qk \(Qi ∪
Qj), u2 is non-adjacent to some y ∈ Qi \ (Qj ∪ Qk), and u3 is non-adjacent to
some z ∈ Qj\(Qi∪Qk). But then G[u1, u2, u3, x, y, z] is one of the G1, G2, G3, G4,
a contradiction. This completes the proof. ��

We now are going to give an interesting reformulation of Theorem6. A graph G is
said to be clique-Helly if C(G) has the Helly property. G is hereditary clique-Helly
if every induced subgraph of G is clique-Helly. (See [9] for more information on
clique-Helly graphs.) Prisner [22] characterized hereditary clique-Helly graphs as
follows.

Theorem 7 (Prisner [22]). G is hereditary clique-Helly if and only if G is
(G1, G2, G3, G4)-free.

It follows that a split graph is hereditary clique-Helly if and only if it is 3-sun-free.
With Theorem 7, Theorem 6 can be reformulated as follows.

Theorem 8. A graph G is the square of a connected hereditary clique-Helly split
graph if and only if G is a hereditary clique-Helly graph satisfying

∣
∣ ⋂

Q∈C(G) Q
∣
∣ ≥

|C(G)|.

We can now give the proof of Theorem2.

Fig. 5. A distance-hereditary graph (left) and its square (right).



370 V.B. Le et al.

Proof (of Theorem 2). By Lemma 7, G has at most n maximal cliques. By [24],
all maximal cliques in G then can be listed in time O(n · m · n) = O(n2m),
and the condition

∣
∣ ⋂

Q∈C(G) Q
∣
∣ ≥ |C(G)| can be verified within the same time.

Also, testing if G is hereditary clique-Helly can be done in time O(n2m) (see,
for instance, [9]). Thus, by Theorem 8, we can decide in time O(n2m) if G is the
square of some 3-sun-free split graph, and if so, the proof of Theorem 6 gives a
construction for such a square root H within the same time. ��

5 Discussion

In this paper we have presented a polynomial time algorithm to decide whether
a given graph has a ptolemaic square root. If such a root exists, our algorithm
computes a ptolemaic square root with a minimum number of edges. Let us
mention, without a proof, another feature of our algorithm: if the input graph
admits a square root that is a block graph or an acyclic graph, such a root is
computed. However, the best known algorithm to compute square roots in these
two graph classes runs in linear time and is considerably simpler [17].

Several questions arise now that we can compute ptolemaic square roots. It
is immediate to ask whether ptolemaic k-th roots can be efficiently computed.
We did not tackle this question yet, since a more basic question is apparently
unanswered: whether one can compute k-th roots that are block graphs [17].

A question that seems more urgent to us is whether distance-hereditary
square roots can be computed efficiently. Distance-hereditary roots have been
considered before in the literature [3], yet not from an algorithmic perspective.

Although distance-hereditary graphs share a number of properties with ptole-
maic graphs, the two classes behave differently when it comes to graph powers.
To give an example, Fig. 5 displays the square of a distance-hereditary graph
that does not admit a ptolemaic square root. Indeed, both of our main tools,
Lemmas 1 and 3, fail to hold for distance-hereditary graphs (see again Fig. 5).

We also have characterized squares of 3-sun-free split graphs. Our character-
ization yields a polynomial time recognition algorithm for such squares. Given
the hardness of computing split square roots [15] and our polynomial time result
(Theorem 2), it is interesting to ask the following question: let F be a fixed split
graph, what is the computational complexity of computing F -free split square
roots? Our result on 3-sun-free split square roots may pave the way towards such
a dichotomy theorem.
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Abstract. In 2-neighbourhood bootstrap percolation on a graph G, an
infection spreads according to the following deterministic rule: infected
vertices of G remain infected forever and in consecutive rounds healthy
vertices with at least 2 already infected neighbours become infected.
Percolation occurs if eventually every vertex is infected. The maximum
time t(G) is the maximum number of rounds needed to eventually infect
the entire vertex set. In 2013, it was proved [7] that deciding if t(G) ≥ k
is polynomial time solvable for k = 2, but is NP-Complete for k = 4
and is NP-Complete if the graph is bipartite and k = 7. In this paper,
we solve the open questions. Let n = |V (G)| and m = |E(G)|. We
obtain an Θ(mn5)-time algorithm to decide if t(G) ≥ 3 in general graphs.
In bipartite graphs, we obtain an Θ(mn3)-time algorithm to decide if
t(G) ≥ 3 and an O(mn13)-time algorithm to decide if t(G) ≥ 4. We also
prove that deciding if t(G) ≥ 5 is NP-Complete in bipartite graphs.

Keywords: 2-Neighbour bootstrap percolation · P3-convexity · Maxi-
mum time · Infection on graphs

1 Introduction

We consider a problem in which an infection spreads over the vertices of a con-
nected simple graph G following a deterministic spreading rule in such a way
that an infected vertex will remain infected forever. Given a set S ⊆ V (G) of
initially infected vertices, we build a sequence S0, S1, S2, . . . in which S0 = S and
Si+1 is obtained from Si using such spreading rule.

Under r-neighbour bootstrap percolation on a graph G, the spreading rule is
a threshold rule in which Si+1 is obtained from Si by adding to it the vertices
of G which have at least r neighbours in Si. We say that a set S0 percolates G
(or that S0 is a percolating set of G) if eventually every vertex of G becomes
infected, that is, there exists a t such that St = V (G). In that case, we define
tr(S) as the minimum t such that St = V (G). And define, the percolation time
of G as tr(G) = max{tr(S) : S percolates G}. In this paper, we shall focus on
the case where r = 2 and in such case we omit the subscript of the functions
tr(S) and tr(G).

c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 372–383, 2014.
DOI: 10.1007/978-3-319-12340-0 31
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Bootstrap percolation was introduced by Chalupa, Leath and Reich [13] as a
model for certain interacting particle systems in physics. Since then it has found
applications in clustering phenomena, sandpiles [19], and many other areas of
statistical physics, as well as in neural networks [1] and computer science [15].

There are two broad classes of questions one can ask about bootstrap per-
colation. The first, and the most extensively studied, is what happens when the
initial configuration S0 is chosen randomly under some probability distribution?
For example, vertices are included in S0 independently with some fixed proba-
bility p. One would like to know how likely percolation is to occur, and if it does
occur, how long it takes.

The answer to the first of these questions is now well understood for var-
ious graphs. An interesting case is the one of the lattice graph [n]d, in which
d is fixed and n tends to infinity, since the probability of percolation under
the r-neighbour model displays a sharp threshold between no percolation with
high probability and percolation with high probability. The existence of thresh-
olds in the strong sense just described first appeared in papers by Holroyd,
Balogh, Bollobás, Duminil-Copin and Morris [3,5,20]. Sharp thresholds have also
been proved for the hypercube (Balogh and Bollobás [2], and Balogh, Bollobás
and Morris [6]). There are also very recent results due to Bollobás, Holmgren,
Smith and Uzzell [10], about the time percolation take on the discrete torus
T
d
n = (Z/nZ)d for a randomly chosen set S0.

The second broad class of questions is the one of extremal questions. For
example, what is the smallest or largest size of a percolating set with a given
property? The size of the smallest percolating set in the d-dimensional grid, [n]d,
was studied by Pete and a summary can be found in [4]. Morris [22] and Riedl
[24], studied the maximum size of minimal percolating sets on the square grid
and the hypercube {0, 1}d, respectively, answering a question posed by Bollobás.
However, it was proved in [12,14] that finding the smallest percolating set is NP-
complete for general graphs. Another type of question is: what is the minimum
or maximum time that percolation can take, given that S0 satisfies certain prop-
erties? Recently, Przykucki [23] determined the precise value of the maximum
percolation time on the hypercube 2[n] as a function of n, and Benevides and
Przykucki [8,9] have similar results for the square grid, [n]2, also answering a
question posed by Bollobás. In particular, they have a polynomial time algorithm
to compute the maximal percolation time on square grids.

Here, we consider the decision version of the maximum time percolation
problem, as stated below.

percolation time
Input: A graph G and an integer k.
Question: Is t(G) ≥ k?

In 2013, Benevides et al. [7] proved that deciding if t(G) ≥ k is polynomial
time solvable for k = 2, but is NP-Complete for k = 4 and is NP-Complete if
the graph is bipartite and k = 7. In this paper, we solve the open questions.
Let n = |V (G)| and m = |E(G)|. We obtain a Θ(mn5)-time algorithm to decide
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if t(G) ≥ 3 in general graphs. In bipartite graphs, we obtain O(mn13)-time
algorithm to decide if t(G) ≥ 4 and prove that deciding if t(G) ≥ 5 is NP-
Complete.

1.1 Related Works and Some Notation

It is interesting to notice that infection problems appear in the literature under
many different names and were studied by researches of various fields. The par-
ticular case in which r = 2 in r-neighbourhood bootstrap percolation is also a
particular case of a infection problem related to convexities in graph.

A finite convexity space [21,25] is a pair (V, C) consisting of a finite ground
set V and a set C of subsets of V satisfying ∅, V ∈ C and if C1, C2 ∈ C, then
C1 ∩ C2 ∈ C. The members of C are called C-convex sets and the convex hull of
a set S is the minimum convex set H(S) ∈ C containing S.

A convexity space (V, C) is an interval convexity [11] if there is a so-called
interval function I :

(
V
2

)
→ 2V such that a subset C of V belongs to C if

and only if I({x, y}) ⊆ C for every two distinct elements x and y of C. With
no risk of confusion, for any S ⊆ V , we also denote by I(S) the union of S
with

⋃
x,y∈S I({x, y}). In interval convexities, the convex hull of a set S can

be computed by exhaustively applying the corresponding interval function until
obtaining a convex set.

The most studied graph convexities defined by interval functions are those
in which I({x, y}) is the union of paths between x and y with some particular
property. Some common examples are the P3-convexity [17], geodetic convex-
ity [18] and monophonic convexity [16]. We observe that the spreading rule in
2-neighbours bootstrap percolation is equivalent to Si+1 = I(Si) where I is the
interval function which defines the P3-convexity: I(S) contains S and every ver-
tex belonging to some path of 3 vertices whose extreme vertices are in S. For
these reasons, sometimes we call a percolating set by hull set.

2 t(G) ≥ 5 Is NP-Complete in Bipartite Graphs

In [7], it was proved that deciding if t(G) ≥ 7 is NP-Complete in bipartite graphs.
The following theorem improves this result.

Theorem 1. Deciding if t(G) ≥ k is NP-Complete in bipartite graphs for any
k ≥ 5.

Proof (Sketch of the proof). Given m clauses C = {C1, . . . , Cm} on variables
X = {x1, . . . , xn} as an instance of 3-SAT, we denote the three literals of Ci

by �i,1, �i,2 and �i,3. We construct a graph G as follows. For each clause Ci of
C, add to G a gadget as the one of Fig. 1. Then, for each pair of literals �i,a, �j,b
such that one is the negation of the other, add a vertex y(i,a),(j,b) adjacent to
wi,a and wj,b. Let Y be the set of all vertices created this way. Finally, add a
vertex z adjacent to all vertices in Y and a pendant vertex z′ adjacent to only z.
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Fig. 1. Bipartite gadget for each clause Ci.

Denote the sets {uA
i,1, u

A
i,2, u

A
i,3, u

B
i,1, u

B
i,2, u

B
i,3} and {wi,1, wi,2, wi,3} by Ui and Wi,

respectively. Let U = ∪1≤i≤mUi, W = ∪1≤i≤mWi and L be the set of vertices
of degree one in G.

We first consider the case k = 5. We show that C is satisfiable if and only if
G contains a hull set with percolation time at least 5.

Suppose that C has a truth assignment. For each clause Ci, let ki denote
an integer in {1, 2, 3} such that �i,ki

is true. Let S′ = {uA
i,ki

: 1 ≤ i ≤ m} and
S = S′∪L. It is easy to see (from Fig. 1) that all vertices in the clause gadgets are
infected in time at most 4. It is also easy to see that {wi,ki

: 1 ≤ i ≤ m} ⊂ I1(S)
(that is, S infects wi,ki

in time 1 for every 1 ≤ i ≤ m). Moreover, {wi,k′
i

: k′
i �=

ki, 1 ≤ i ≤ m} ⊂ I3(S), but {wi,k′
i

: k′
i �= ki, 1 ≤ i ≤ m} ∩ (I1(S) ∪ I2(S)) = ∅

(that is, S infects all the other wi,k′
i

in time exactly 3). Since we used a truth
assignment, we have that all vertices of Y are infected in time exactly 4 and
consequently the vertex z is infected in time 5. Therefore, G has percolation
time at least 5.

Now, suppose that t(G) ≥ 5 and let S be any hull set of G with t(S) ≥ 5. Note
that L ⊆ S; also for any clause Ci, we have Ui∩S �= ∅ because |N(uA

i,j)−Ui| ≤ 1
and |N(uB

i,j) − Ui| ≤ 1, for all i, j. This implies that W ⊆ I3(S), U ∪ Y ⊆ I4(S)
and z ∈ I5(S). Furthermore, if Y ∩ I3(S) �= ∅ then z ∈ I4 and t(S) ≤ 4,
a contradiction. Then Y ∩ I3(S) = ∅, which means that no pair {uC

i,a, u
D
j,b},

C,D ∈ {A,B}, where �i,a is the negation of �j,b, is in S. This means that
assigning true to each �i,j for which uC

i,j ∈ S, C ∈ {A,B}, gives us an assignment
that satisfies C.
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For values k > 5, it suffices to subdivide the edge zz′ into a path P of length
k − 5, appending a new leaf vertex to each vertex in P . �

3 t(G) ≥ 3 Is Θ(mn3)-Time Decidable in Bipartite
Graphs

The following theorem is the main result of this section.

Theorem 2. Deciding if t(G) ≥ 3 is Θ(mn3)-time solvable in bipartite graphs.

To prove this, we obtain an important structural result. Given a vertex u of a
graph G, let Nd(u) be the set of all vertices at distance d from u. Let N(u) =
N1(u), N [u] = N(u) ∪ {u} and N≥d′(u) = ∪d≥d′Nd(u). Let T0 be the set of
vertices with degree 1.

Lemma 1. Let G be a bipartite graph. Then t(G) ≥ 3 if and only if there are
three vertices u, v and s such that v ∈ N(u), s ∈ N2(u) and T0 ∪N≥3(u)∪{v, s}
percolates u at time 3.

Because of space restrictions, we give only the main ideas of the proof (the proofs
are in the appendix).

Proof (Sketch of the proof). Firstly, suppose that t(G) ≥ 3. Then there exists a
hull set S′ and a vertex u such that S′ percolates u at time 3. It is not difficult
to see that T0 ⊆ S′ and that S = S′ ∪ N≥3(u) is also a hull set which percolates
u at time 3. If S contains a vertex in N(u), let v be such a vertex. Otherwise, let
v be a neighbour of u with smaller percolating time with respect to the hull set
S. Since the graph is bipartite, the distance from v to any other vertex of N(u)
is at least two. Then it is not difficult to see that all vertices in N(u) percolated
at time ≥ 2 by S are also percolated at time ≥ 2 by S ∪ {v}. By analysing
two possibilities about the vertices in N(u) − {v}, we can conclude (using the
fact that the graph is bipartite) that there exists a vertex s ∈ N2(u) \ N(v)
such that S ∪ {v, s} also percolates u at time 3. Moreover we can prove that
(S \ (N(u) ∪ N2(u))) ∪ {v, s} percolates u at time 3 and we are done.

Secondly, suppose that there are three vertices u, v and s such that v ∈ N(u),
s ∈ N2(u) and S0 = T0 ∪ N≥3(u) ∪ {v, s} percolates u at time 3. We then show
how to construct a hull set S such that t(S) ≥ 3. We begin with S = S0. Each
step adds one vertex to S and, at the end of each step, it is guaranteed that Si

percolates u at time ≥ 2 and percolates at least one vertex in {u}∪N(u) at time
≥ 3. Let Si be the constructed set at the end of step i. If Si is not a hull set, we
can prove that there are two adjacent vertices q ∈ N2(u) and w ∈ N(u) which
are not percolated by Si. Let Si+1 = Si ∪ {q}. It is not difficult to see that Si+1

also percolates u at time ≥ 2. We then prove that Si+1 percolates w at time
≥ 3. If Si+1 is a hull set, we are done. Otherwise, repeat the construction until
obtaining a hull set. �
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The idea of the algorithm is as follows. Considering that the graph is con-
nected, the algorithm selects in each step a vertex u and obtains the sets N(u),
N2(u), N≥3(u) and T0 in time O(m). After, the algorithm selects a vertex v in
N(u) and a vertex s in N2(u) and, then, computes the percolation process of
T0 ∪ N≥3(u) ∪ {v, s} in time O(m) for, at most, three steps. If, for some triple
(u, v, s), u is percolated in time 3, return that t(G) ≥ 3. Otherwise, return that
t(G) < 3.

4 t(G) ≥ 3 Is Θ(mn5)-Time Decidable in General Graphs

The following theorem is the main result of this section.

Theorem 3. Deciding if t(G) ≥ 3 is Θ(mn5)-time solvable in general graphs.

To prove this, we obtain an important structural result. Let u and v be vertices
of G. Let k be such that v ∈ Nk(u). The following definitions are technical,
but represent a simple fact: if v is a separator (that is, its removal disconnects
the graph) and some connected component of G − v contains only vertices of
Nk+1(u), then any hull set must contain at least one vertex of this component.

Let T u
0 be the family of subsets of V (G) such that T0 ∈ T u

0 if and only if,
for every separator v and every connected component Hv,i of G − v such that
u �∈ V (Hv,i) and V (Hv,i ⊆ N(v), T0 contains exactly one vertex of Hv,i, and
every vertex of T0 satisfies this property.

Lemma 2. Let G be a simple graph. Then t(G) ≥ 3 if and only if there is a
vertex u, a subset T0 ∈ T u

0 and a subset F with |F | ≤ 4 such that T0∪N≥3(u)∪F
percolates u at time 3.

Moreover, we prove that any set of the family T u
0 can be chosen. That is, if

T0 ∪ N≥3(u) ∪ F percolates u at time 3 for some T0 ∈ T u
0 , then T ′

0 ∪ N≥3(u) ∪ F
also percolates u at time 3 for any T ′

0 ∈ T u
0 .

Because of space restrictions, we give only the main ideas of the proof (the
proofs are in the appendix).

Proof (Sketch of the proof). Firstly, suppose that t(G) ≥ 3. Then there exists a
hull set S′ and a vertex u such that S′ percolates u at time 3. Since S′ is a hull
set, we can prove that there is a subset T0 ⊆ S′ such that T0 ∈ T u

0 . It is not
difficult to see that S = S′ ∪N≥3(u) is also a hull set which percolates u at time
3. Let F ′ = S \ (T0 ∪ N≥3(u)) = (S ∩ N≤2(u)) \ T0. If |F ′| ≤ 4, then let F = F ′

and we are done. Otherwise, we can prove with some effort that there exists a
subset F ⊆ N≤2(u) with |F | ≤ 4 such that (S \ F ′) ∪ F percolates u at time 3,
and we are done.

Now suppose that there is a vertex u, a subset T0 ∈ T u
0 and a subset F with

|F | ≤ 4 such that S0 = T0 ∪ N≥3(u) ∪ F percolates u at time 3. We then show
how to construct a hull set S such that t(S) ≥ 3. We begin with S = S0. Each
step adds one vertex to S and, at the end of each step, it is guaranteed that Si

percolates some vertex ui at time ≥ 3 (u0 = u) and percolates u at time ≥ 2.
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Let Si be the constructed set at the end of step i. If Si is a hull set, we are done.
So, assume that Si is not a hull set. Let Yi be the set of vertices not percolated
by Si.

At first, assume that there exists a vertex yi ∈ Yi ∩N2(ui) with no neighbour
percolated by Si at time ≥ 2. Let S′

i+1 = Si ∪ {yi}. Clearly, ui has at most one
neighbour percolated by Si at time ≤ 1 and, by the choice of yi, ui is not adjacent
to yi. It is not difficult to prove that every neighbour of ui percolated by Si at
time ≥ 2 is also percolated by S′

i+1 at time ≥ 2. Finally, if some neighbour z of
ui is not percolated by Si, but is percolated by S′

i+1, it is not difficult to prove
that its percolating time is ≥ 2, since, otherwise, z should have a neighbour in
Si, a contradiction because z would have two neighbours percolated by Si. Then
S′
i+1 also percolates ui at time ≥ 3 (and we let ui+1 = ui) and it is not difficult

to see that S′
i+1 also percolates u at time ≥ 2. Let Si+1 = S′

i+1 ∪ N≥3(ui+1).
Since the set S′

i+1 percolates ui+1 at time ≥ 3, it is easy to see that the set Si+1

also percolates ui+1 at time ≥ 3.
Secondly, assume that every vertex yi ∈ Yi∩N2(ui) has exactly one neighbour

percolated by Si and its percolating time is ≥ 2. Let yi ∈ Yi ∩ N2(ui), let Ci be
the connected component of G[Yi] which contains yi and let zi be the neighbour
of yi with percolating time ≥ 2. If every vertex of Ci is adjacent to zi, then Ci

has only vertices in N(u) or only vertices in N2(u) (otherwise, there would be
one vertex in N2(u) adjacent to u, a contradiction), and every vertex of Ci has
no neighbour in N3(u) (and consequently zi is a separator). Therefore, T0 has a
vertex � in Ci, a contradiction since there are no vertices percolated by Si in Ci.

We then conclude that there exist a vertex y′
i in Ci whose neighbour z′

i

with percolating time ≥ 2 is distinct from zi (that is, z′
i �= zi). Let Si+1 =

Si ∪{yi}∪N≥3(y′
i). It is not difficult to see that all vertices in Ci are percolated

by Si+1. We can prove that Si+1 percolates y′
i at time ≥ 3 and, letting ui = y′

i,
we are done.

After some time steps, say t time steps, St percolates all vertices of N2(ui),
since we are only including vertices from N2(ui). It is not difficult to see that
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Fig. 2. Vertices of the component Ci before and after the addition of yi to S.
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this fact implies that St is a hull set and, since St percolates ut at time ≥ 3, we
have that t(G) ≥ 3. �

The idea of the algorithm is as follows. Considering that the graph is con-
nected, the algorithm selects in each step a vertex u and obtains a set T0 ∈ T u

0

in time O(m) (applying breadth-first search, for example). After, the algorithm
selects a subset F with at most 4 vertices and computes the percolation process
of T0 ∪ N≥3(u) ∪ F in time O(m) for, at most, three steps. If, for some pair
(u, F ), u is percolated in time 3, return that t(G) ≥ 3. Otherwise, return that
t(G) < 3 (Fig. 2).

5 t(G) ≥ 4 Is Θ(mn13)-Time Decidable in Bipartite
Graphs

The following theorem is the main result of this section.

Theorem 4. Deciding if t(G) ≥ 4 is Θ(mn13)-time solvable in bipartite graphs.

To prove this, we obtain an important structural result. Let T0 be the family of
subsets of V (G) such that T0 ∈ T0 if and only if T0 contains all vertices with
degree one and, for every pair of adjacent vertices u and v, both with degree
two, T0 has either u or v. It is easy to see that every hull set must contain
a set T0 ∈ T0, since each edge uv with that property induces a co-convex set
(that is, V (G) − {u, v} is convex). Clearly, the size of T0 can be exponential in
the number of vertices. However, we can prove that we need to check only a
polynomial number of subsets T0 ∈ T0.

Let V u be the subset of vertices v ∈ N [u] such that there is an induced P3

vxy, where x and y have degree two. Given a vertex u and a vertex v ∈ V u, we
also define the sets Cu

v and Du
v : for every induced P3 vxy, where x and y have

degree two, x ∈ Cu
v and y ∈ Du

v . It is worth noting that, for every x ∈ Cu
v and

y in Du
v ∩ N(x), T0 must contain either x or y.

Let T u
0 be a family such that T0 ∈ T u

0 if and only if N≥4(u) ⊆ T0, T0 contains
all vertices that have degree 0, and exactly one of the cases below occurs:

– there is a vertex v ∈ V u such that T0 has at least one vertex in Du
v , at most

one vertex in Cu
v and, for every v′ ∈ V u, v′ �= v, and every x ∈ Cu

v′ and
y ∈ Du

v′ ∩ N(x) where x, y �∈ Cu
v ∪ Du

v , T0 contains {x, y} ∩ Nk(u), where
k = 2, if v ∈ N(u), and k = 3, if v = u.

– for each vertex v ∈ V u, T0 contains all vertices in Cu
v , except at most one

vertex v′ ∈ V u, in which case T0 contains at most one vertex in Cu
v′ .

It is worth noting that the set T u
0 , for any vertex u, is a subset of the set

{T0 ∪ N≥4(u) : ∀T0 ∈ T0}. It is also important to observe that the set T u
0 can

be obtained in O(n2) time.

Lemma 3. Let G be a bipartite graph. Then t(G) ≥ 4 if and only if there is
a vertex u, a subset T0 ∈ T u

0 and a subset F with |F | ≤ 10 such that T0 ∪ F
percolates some vertex at time 4.
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Proof (Sketch of the proof). Firstly, suppose that t(G) ≥ 4. Then there is a hull
set S′′ and a vertex u such that S′′ percolates u at time 4. It is easy to see that
the set S = S′′ ∪ N≥4(u) is a also a hull set that percolates u at time 4. With
this, there is a set T ∈ T0 such that T0 = T ∪ N≥4(u) ⊆ S.

Assume that there is a vertex v ∈ V u percolated at time ≥ 3 by S and a
vertex x ∈ Cu

v \ S. It is not difficult to see that x is percolated at time ≥ 4 by
S. Let k = 2, if v ∈ N(u), or k = 3, if v = u. Let S′ be the union of S with all
sets {y1, y2} ∩ Nk(u) such that y1 ∈ Cu

v′ and y2 ∈ Du
v′ ∩ N(y1) for some v′ ∈ V u,

v′ �= v, and y1, y2 �∈ Cu
v ∪ Du

v . Since the graph is bipartite, each vertex added to
S is either at distance 4 from x or, if it is at distance 2 from x, they share only
one common neighbor, which is the only vertex z in the set {N(x) ∩ Du

V } (in
this case, we have that z ∈ S). Then S′ percolates x at time ≥ 4. Therefore, we
have that there is a set T ′

0 ∈ T u
0 such that T0 ⊆ S′. Since S′ percolates x at time

≥ 4, it percolates some vertex at time 4. Thus, it is possible to prove that there
is a set F , with |F | ≤ 10, such that, F ∪ T ′

0 percolates some vertex at time 4.
Now assume that all vertices in V u percolated at time ≥ 3 by S are such that

all vertices in Cu
v are in S. Since u is percolated at time 4 by S, then either (a)

there is a vertex v ∈ V u percolated at time ≥ 3 by S and some vertex x ∈ Cu
v

such that S′ = (S−{x})∪(N(x)∩Du
v ) percolates v at time ≥ 3, or, since there is

at most one vertex in V u that is percolated at time ≤ 2, (b) there is at most one
vertex v ∈ V u such that there is a vertex x ∈ Cu

v \S. If (a), then x is percolated
at time ≥ 4, and we are in the same case of the previous paragraph. If (b), then,
if v is percolated at time ≤ 1 by S, then it is easy to see that S′ = S ∪ Cu

v

percolates u at time 4 and, if v is percolated at time 2 by S, then S′ = S has at
most one vertex in Cu

v . If we have that v is percolated at time ≤ 1 or 2 by S,
then there is a set T ′

0 ∈ T u
0 such that T ′

0 ⊆ S′. Since S′ percolates some vertex
x′ at time 4, it is possible to prove that there is a set F , with |F | ≤ 10, such
that, F ∪ T ′

0 percolates x′ at time 4.
Now, suppose that there is a vertex u, a set F , with |F | ≤ 10, and a set

T0 ∈ T u
0 such that the set F ∪ T0 percolates some vertex x at time 4. Then, we

have that the set S0 = F ∪ T0 ∪ N≥4(x) percolates x at time 4.
We then show how to construct a hull set S such that t(S) ≥ 4. We begin

with S = S0, and, at each step, we add one vertex to S and, at the end of each
step, it is guaranteed that Si percolates some vertex at time 4. Let Si be the
constructed set at the end of step i. If Si is a hull set, we are done. So, assume
that Si is not a hull set. Let Yi be the set of vertices not percolated by Si.

Suppose that there exists a vertex yi ∈ Yi ∩ N2(x) with no neighbour per-
colated by Si at time ≥ 2. Let Si+1 = Si ∪ {yi}. Clearly, x has at most one
neighbour percolated by Si at time ≤ 1 and, by the choice of yi, ui is not adja-
cent to yi. It is possible to prove, basing ourselves heavily on the fact that the
graph is bipartite, that every neighbour of x that either is percolated by Si at
time ≥ 3 or it is not percolated by Si, if it is percolated by Si+1, it is percolated
by Si+1 at time ≥ 3.

When all vertices in the set Yi ∩ N2(x) have a neighbour percolated by Si at
time ≥ 2, suppose that there exists a vertex yi ∈ Yi ∩ N3(x) with no neighbour
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percolated by Si at time ≥ 2. Let Si+1 = Si∪{yi}. Since all vertices in Yi∩N2(x)
have a neighbour percolated by Si at time ≥ 2, it is not difficult to prove that,
if a vertex in N2(x) ∩ Yi is percolated by Si+1, it is percolated by Si+1 at time
≥ 2. Thus, all vertices in N(x) that either are percolated at time ≥ 3 by Si or
are not percolated by Si+1 are percolated by Si+1 at time ≥ 3. Therefore, x is
percolated by Si+1 at time 4. It is worth noting the fact that yi is at distance at
least two of every vertex that is percolated at time ≥ 2 by Si and is adjacent to
some vertex in N2(x)∩Yi, which implies that it is not possible to go back to the
previous state, i.e., it is not possible that there is a vertex in Yi ∩ N2(x) with no
neighbour percolated by Si+1 at time ≥ 2.

When all vertices in the set Yi ∩ N2(x) and in the set Yi ∩ N3(x) have a
neighbour percolated by Si at time ≥ 2, let Ci be any connected component of
G[Yi]. We have that every vertex of Ci has exactly one neighbour outside Ci,
which is percolated at time ≥ 2 by Si. We have that Ci has at least 3 vertices
because, otherwise, one vertex of Ci would also be in T0 and, consequently, in
Xi. Thus, since the graph is bipartite, there are two vertices yi and y′

i that
are at distance 2 of each other. It is possible to prove that the set Si ∪ {yi}
percolates y′

i at time ≥ 4 because it percolates all vertices adjacent to yi at
time ≥ 3. Also, in every connected component of G[Yi], there is at least one
vertex in N2(x) and one vertex in either N(x) or N3(x). If y′

i is in N2(x) (resp.
N(x) or N3(x)), let Si+1 = Si ∪ {yi} ∪ ((Yi − V (Ci)) ∩ N2(x)) (resp. Si+1 =
Si ∪ {yi} ∪ ((Yi − V (Ci)) ∩ (N(x) ∪ N3(x)))). It is possible to prove that Si+1

percolates all the remaining connected component of G[Yi] and, thus, it is be
a hull set. Also, it is possible to prove that Si+1 percolates y′

i at time ≥ 4.
Therefore, Si+1 is a hull set that percolates y′

i at time ≥ 4. �

The idea of the algorithm is as follows. Considering that the graph is bipartite
and connected, the algorithm selects in each step a vertex u, a set T0 ∈ T u

0 and
a subset F with at most 10 vertices, and computes the percolation process of
T0∪F for at most 4 steps (recall that T0 ⊇ N≥4(u)). If, for some triple (u, T0, F ),
some vertex x is percolated in time 4, return that t(G) ≥ 4. Otherwise, return
that t(G) < 4. Since there are O(n2) sets in T u

0 that can also be computed in
O(n2)-time, then the algorithm decides if t(G) ≥ 4 in O(mn13) time (Fig. 3).
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Fig. 3. Vertices of the component Ci before and after the addition of yi to S.
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6 Conclusion

In this paper, we showed the NP-Completeness of the maximum time perco-
lation problem for a fixed k = 5 for bipartite graphs, and showed polynomial
computable characterizations of general and bipartite graphs for a fixed k = 3
and of bipartite graphs for a fixed k = 4. Using these results, since the NP-
Completeness was proved in [7] for a fixed k ≥ 4 for general graphs, we were
able to solve the remaining open questions regarding the maximum time per-
colation problem for a fixed k and showed the threshold for polynomiality in
general graphs (k = 3) and in bipartite graphs (k = 4).

We conclude with some interesting directions for future investigation. Can
the maximum time percolation problem in induced subgraphs and subgraphs
of d-dimensional grids be solved in polynomial time? Can the complexity of
the algorithms, which is directly related to the size of the sets that initially
percolate some vertex at time k, be improved? Is there a relation between the
P3-Caratheódory number [26] and the size of the sets that initially percolate
some vertex at time k?

References

1. Amini, H.: Bootstrap percolation in living neural networks. J. Stat. Phys. 141(3),
459–475 (2010)

2. Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. Probab. Theor.
Relat. Fields 134(4), 624–648 (2006)

3. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for
bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 364(5), 2667–
2701 (2012)

4. Balogh, J., Pete, G.: Random disease on the square grid. Random Struct. Algo-
rithms 13, 409–422 (1998)

5. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions.
Ann. Probab. 37(4), 1329–1380 (2009)

6. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions.
Combin. Probab. Comput. 19(5–6), 643–692 (2010)

7. Benevides, F., Campos, V., Dourado, M.C., Sampaio, R.M., Silva, A.: The maxi-
mum time of 2-neighbour bootstrap percolation: algorithmic aspects. The Seventh
European Conference on Combinatorics, Graph Theory and Applications. CRM
Series, vol. 16, pp. 135–139. Scuola Normale Superiore, Pisa (2013)

8. Benevides, F., Przykucki, M.: Maximal percolation time in two-dimensional boot-
strap percolation (Submitted)

9. Benevides, F., Przykucki, M.: On slowly percolating sets of minimal size in boot-
strap percolation. Electron. J. Comb. 20(2), P46 (2013)

10. Bollobás, B., Holmgren, C., Smith, P.J., Uzzell, A.J.: The time of bootstrap per-
colation with dense initial sets (Submitted)

11. Calder, J.: Some elementary properties of interval convexities. J. London Math.
Soc. 3, 422–428 (1971)

12. Centeno, C., Dourado, M.C., Penso, L., Rautenbach, D., Szwarcfiter, J.L.: Irre-
versible conversion of graphs. Theor. Comput. Sci. 412, 3693–3700 (2011)



The Maximum Time of 2-Neighbour Bootstrap Percolation 383

13. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J.
Phys. C 12(1), 31–35 (1979)

14. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete
Math. 23(3), 1400–1415 (2009)

15. Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Appl. Math.
157(7), 1615–1627 (2009)

16. Duchet, P.: Convex sets in graphs, II. minimal path convexity. J. Comb. Theor. B
44, 307–316 (1988)
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Abstract. We study a broad class of graph partitioning problems, where
each problem is specified by a graph G = (V, E), and parameters k
and p. We seek a subset U ⊆ V of size k, such that α1m1 + α2m2 is
at most (or at least) p, where α1, α2 ∈ R are constants defining the
problem, and m1, m2 are the cardinalities of the edge sets having both
endpoints, and exactly one endpoint, in U , respectively. This class of
fixed-cardinality graph partitioning problems (FGPPs) encompasses Max
(k, n − k)-Cut, Min k-Vertex Cover, k-Densest Subgraph, and k-
Sparsest Subgraph.

Our main result is an O∗(4k+o(k)Δk) algorithm for any problem in
this class, where Δ ≥ 1 is the maximum degree in the input graph. This
resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain
faster algorithms for certain subclasses of FGPPs, parameterized by p,
or by (k + p). In particular, we give an O∗(4p+o(p)) time algorithm for
Max (k, n−k)-Cut, thus improving significantly the best known O∗(pp)
time algorithm.

1 Introduction

Graph partitioning problems arise in many areas including VLSI design, data min-
ing, parallel computing, and sparse matrix factorization (see, e.g., [1,7,12]). We
study the broad class of fixed-cardinality graph partitioning problems (FGPPs),
where each problem is specified by a graph G = (V,E), and parameters k and p. We
seek a subset U ⊆ V of size k, such that α1m1 + α2m2 is at most (or at least) p,
where α1, α2 ∈ R are constants defining the problem, and m1,m2 are the cardi-
nalities of the edge sets having both endpoints, and exactly one endpoint, in U ,
respectively. This class encompasses such fundamental problems asMax andMin
(k, n − k)-Cut, Max and Min k-Vertex Cover, k-Densest Subgraph, and
k-Sparsest Subgraph. For example, Max (k, n − k)-Cut is a max-FGPP (i.e.,
maximization FGPP) satisfying α1 = 0 and α2 = 1, Min k-Vertex Cover is a
min-FGPP (i.e., minimization FGPP) satisfying α1 = α2 = 1, k-Densest Sub-
graph is a max-FGPP satisfying α1 = 1 and α2 = 0, and k-Sparsest Subgraph
is a min-FGPP satisfying α1 = 1 and α2 = 0.

A parameterized algorithm with parameter k has running time O∗(f(k)) for
some function f , where O∗ hides factors polynomial in the input size. In this

c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 384–395, 2014.
DOI: 10.1007/978-3-319-12340-0 32
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paper, we develop a parameterized algorithm with parameter (k + Δ) for the
class of all FGPPs, where Δ ≥ 1 is the maximum degree in the graph G. For
certain subclasses of FGPPs, we develop algorithms parameterized by p, or by
(k + p).

Related Work: Parameterized by k, Max and Min (k, n − k)-Cut, and Max
and Min k-Vertex Cover are W[1]-hard [4,8,11]. Moreover, k-Clique and
k-Independent Set, two well-known W[1]-hard problems [9], are special cases
of k-Densest Subgraph (where p = k(k − 1)/2), and k-Sparsest Subgraph
(where p = 0), respectively. Therefore, parameterized by (k + p), k-Densest
Subgraph and k-Sparsest Subgraph are W[1]-hard. Cai et al. [5] and
Bonnet et al. [2] studied the parameterized complexity of FGPPs with respect
to (k + Δ). The paper [5] gives O∗(2(k+1)Δ) time algorithms for k-Densest
Subgraph and k-Sparsest Subgraph. This result was recently improved in
[2] to O∗(Δk) for degrading FGPPs. This subclass contains max-FGPPs in which
α1/2 ≤ α2, and min-FGPPs in which α1/2 ≥ α2.1 The authors of [2] also pro-
posed an O∗(k2kΔ2k) time algorithm for all FGPPs, and posed as an open ques-
tion the existence of constants a and b such that any FGPP can be solved in time
O∗(akΔbk). In this paper we answer this question affirmatively, by developing
an O∗(4k+o(k)Δk) time algorithm for any FGPP.

Parameterized by p, Max k-Vertex Cover can be solved in time O∗(1.396p),
and in randomized time O∗(1.2993p) [14]. Kneis et al. [14] also show (implicitly)
that Min k-Vertex Cover can be solved in time O∗(4p), and in randomized
time O∗(3p). Moreover, by solving any degrading FGPP in time O∗(Δk), Bonnet
et al. [2] prove that Max (k, n−k)-Cut can be solved in time O∗(pp). Recently,
Cygan et al. [6] showed that Min (k, n−k)-Cut is also fixed-parameter tractable
with respect to p. Parameterized by (k + p), Min (k, n − k)-Cut can be solved
in time O∗(k2k(k + p)2k) [2].

We note that the parameterized complexity of FGPPs has also been studied
with respect to other parameters, such as the treewidth and the vertex cover
number of G (see, e.g., [2,3,13]).

Contribution: Our main result is an O∗(4k+o(k)Δk) time algorithm for the
class of all FGPPs, answering affirmatively the question posed by Bonnet et al.
[2] (see Sect. 2). In Sect. 3, we develop an O∗(4p+o(p)) time algorithm for Max
(k, n − k)-Cut, which significantly improves the O∗(pp) running time obtained
in [2]. We also present (in Sect. 4) an O∗(2k+ p

α2
+o(k+p)) time algorithm for the

subclass of positive min-FGPPs, in which α1 ≥ 0 and α2 > 0. Finally, we develop
(in Sect. 4) a faster algorithm for non-degrading positive min-FGPPs (i.e., min-
FGPPs satisfying α2 ≥ α1/2 > 0). This yields an O∗(2p+o(p)) time algorithm
for Min k-Vertex Cover, improving the previous randomized O∗(3p) time
algorithm. Note that all of our algorithms are deterministic.

Due to space constraints, proofs of the results given in Sect. 4 are omitted.
We give the full details in [17].

1 A max-FGPP (min-FGPP) is non-degrading if α1/2 ≥ α2 (α1/2 ≤ α2).
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Techniques: We obtain our main result by establishing an interesting reduc-
tion from non-degrading FGPPs to the Weighted k-Exact Cover (k-WEC)
problem (see Sect. 2). Building on this reduction, combined with an algorithm for
degrading FGPPs of [2], and an algorithm given in [19] for k-WEC, we develop
an algorithm for any FGPP. To improve the running time of our algorithm, we
use a fast construction of representative families [10,18].

In designing algorithms for FGPPs, parameterized by p or (k + p), we use as
a key tool randomized separation [5]. Roughly speaking, randomized separation
finds a ‘good’ partition of the nodes in the input graph G via randomized col-
oring of the nodes in red or blue. If a solution exists, then, with some positive
probability, there is a red colored node-set X that is a solution, such that all of
the neighbors of nodes in X that are outside X are colored blue. Our algorithm
for Max (k, n − k)-Cut makes non-standard use of randomized separation, in
requiring that only some of the neighbors outside X of nodes in X are blue. This
yields the desired improvement in the running time of the algorithm.

Our algorithm for non-degrading positive FGPPs is based on a somewhat
different application of randomized separation, in which we randomly color edges
rather than nodes. If a solution exists, then with some positive probability, there
is a node-set X that is a solution, such that some edges between nodes in X are
red, and all of the edges connecting nodes in X and nodes outside X are blue.
In particular, we require that the subgraph induced by X, and the subgraph
induced by X from which we delete all blue edges, contain the same connected
components. We derandomize our algorithms using universal sets [16].

Notation: Given a graph G = (V,E) and a subset X ⊆ V , we denote by E(X)
the set of edges in E having both endpoints in X, and by E(X,V \ X) the
set of edges having exactly one endpoint in X. Also, let val(X) = α1|E(X)| +
α2|E(X,V \ X)|.

2 Solving FGPPs in Time O∗(4k+o(k)Δk)

In this section we develop an O∗(4k+o(k)Δk) time algorithm for the class of all
FGPPs. We proceed in the following steps. In Sect. 2.1 we show that any non-
degrading FGPP can be reduced to the Weighted k-Exact Cover (k-WEC)
problem. Applying this reduction, we then show (in Sect. 2.2) how to decrease
the size of instances of k-WEC, by using representative families. Finally, we
show (in Sect. 2.3) how to solve any FGPP by using the results in Sects. 2.1 and
2.2, an algorithm given in [19] for k-WEC, and an algorithm of [2] for degrading
FGPPs.

2.1 From Non-degrading FGPPs to k-WEC

We show below that any non-degrading max-FGPP can be reduced to the max-
imization version of k-WEC. Given a universe U , a family S of nonempty sub-
sets of U , a function w : S → R, and parameters k ∈ N and p ∈ R, we seek
a subfamily S ′ of disjoint sets from S satisfying |

⋃
S ′| = k whose value, given
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Fig. 1. An illustration of the reduction f , given in Sect. 2.1.

by
∑

S∈S′ w(S), is at least p. Any non-degrading min-FGPP can be similarly
reduced to the minimization version of k-WEC.

Let Π be a max-FGPP satisfying α1/2 ≥ α2. Given an instance I = (G =
(V,E), k, p) of Π, we define an instance f(I) = (U,S, w, k, p) of the maximization
version of k-WEC as follows.

– U = V
– S =

⋃k
i=1 Si, where Si contains the node-set of any connected subgraph of G

on exactly i nodes
– ∀S ∈ S : w(S) = val(S)

Note that k and p have the same values in both instances. We illustrate the
reduction f in Fig. 1. First, we prove that our reduction is valid.

Lemma 1. I is a yes-instance iff f(I) is a yes-instance.

Proof. Assume first that there is a subset X ⊆ V of size k satisfying val(X) ≥ p.
Let G1 = (V1, E1), . . . , Gt = (Vt, Et), for some 1 ≤ t ≤ k, be the maximal
connected components in the subgraph of G induced by X. Then, for all 1 ≤

� ≤ t, V� ∈ S. Moreover,
t∑

�=1

|V�| = |X| = k, and
t∑

�=1

w(V�) = val(X) ≥ p.

Now, assume there is a subfamily of disjoint sets {S1, . . . , St} ⊆ S, for some

1 ≤ t ≤ k, such that
t∑

�=1

|S�| = k and
t∑

�=1

w(S�) ≥ p. Thus, there are connected

subgraphs G1 = (V1, E1), . . . , Gt = (Vt, Et) of G, such that V� = S�, for all
1 ≤ � ≤ t. Let X� =

⋃t
j=� Vj , for all 1 ≤ � ≤ t. Clearly, |X1| = k. Since

α1/2 ≥ α2, we get that
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val(X1) = val(V1) + val(X2) + α1|E(V1,X2)| − 2α2|E(V1,X2)|
≥ val(V1) + val(X2)
= val(V1) + val(V2) + val(X3) + α1|E(V2,X3)| − 2α2|E(V2,X3)|
≥ val(V1) + val(V2) + val(X3)
...

≥
t∑

�=1

val(V�).

Thus, val(X1) ≥
t∑

�=1

w(V�) ≥ p. �	

We now bound the number of connected subgraphs in G.

Lemma 2 ([15]). There are at most 4i(Δ− 1)i|V | connected subgraphs of G on
at most i nodes, which can be enumerated in time O(4i(Δ − 1)i(|V | + |E|)|V |).

Hence, we have the next result.

Lemma 3. The instance f(I) can be constructed in time O(4k(Δ − 1)k(|V | +
|E|)|V |). Moreover, for any 1 ≤ i ≤ k, |Si| ≤ 4i(Δ − 1)i|V |.

2.2 Decreasing the Size of Inputs for k-WEC

In this section we develop a procedure, called Decrease, which compacts the size
of an instance (U,S, w, k, p) of k-WEC. Note that we do not need this procedure
to resolve the question posed by Bonnet et al. [2]. Indeed, we use it to improve the
running time of our algorithm, from O∗(11.404kΔk) to the desired O∗(4k+o(k)Δk)
steps. To this end, we find a subfamily Ŝ ⊆S that contains “enough” sets from
S, and thus enables to replace S by Ŝ without turning a yes-instance into a
no-instance. The following definition captures such a subfamily Ŝ.

Definition 1. Given a universe E, nonnegative integers k and r, a family S of
subsets of size r of E, and a function w : S → R, we say that a subfamily Ŝ ⊆ S
max (min) represents S if for any pair of sets X ∈ S, and Y ⊆ E \ X such
that |Y | ≤ k − r, there is a set X̂ ∈ Ŝ disjoint from Y such that w(X̂) ≥ w(X)
(w(X̂) ≤ w(X)).

The next result implies that small representative families can be computed effi-
ciently.2

Theorem 1 ([18]). Given a constant c ≥ 1, a universe E, nonnegative integers
k and r, a family S of subsets of size r of E, and a function w : S → R, a subfam-

ily Ŝ ⊆ S of size at most
(ck)k

rr(ck − r)k−r
2o(k) log |E| that max (min) represents

S can be computed in time O(|S|(ck/(ck − r))k−r2o(k) log |E| + |S| log |S|).
2 This result builds on a powerful construction technique for representative families

presented in [10].
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Now, consider the maximization version of k-WEC and max representative fam-
ilies. (The minimization version of k-WEC can be similarly handled by using
min representative families.) Let RepAlg(E, k, r,S, w) denote the algorithm in
Theorem 1 with c = 2, and let Si = {S ∈ S : |S| = i}, for all 1 ≤ i ≤ k.

We present below procedure Decrease, which replaces each family Si by a
family Ŝi ⊆ Si that represents Si.

Procedure. Decrease(U,S, w, k, p)

1: for i = 1, 2, . . . , k do ̂Si ⇐ RepAlg(U, k, i, Si, w). end for

2: ̂S ⇐ ⋃k
i=1
̂Si.

3: return (U, ̂S, w, k, p).

In the following, we prove that procedure Decrease is correct.

Lemma 4. (U,S, w, k, p) is a yes-instance iff (U, Ŝ, w, k, p) is a yes-instance.

Proof. First, assume that (U,S, w, k, p) is a yes-instance. Let S ′ be a subfamily
of disjoint sets from S, such that |

⋃
S ′| = k,

∑
S∈S′ w(S) ≥ p, and there is no

subfamily S ′′ satisfying these conditions, and |S ′ ∩ Ŝ| < |S ′′ ∩ Ŝ|. Suppose, by
way of contradiction, that there is a set S ∈ (Si ∩ S ′) \ Ŝ, for some 1 ≤ i ≤ k.
By Theorem 1, there is a set Ŝ ∈ Ŝi such that w(Ŝ) ≥ w(S), and Ŝ ∩ S′ = ∅,
for all S′ ∈ S ′ \ {S}. Thus, S ′′ = (S ′ \ {S}) ∪ {Ŝ} is a solution to (U,S, w, k, p).
Since |S ′ ∩ Ŝ| < |S ′′ ∩ Ŝ|, this is a contradiction.

Now, assume that (U, Ŝ, w, k, p) is a yes-instance. Since Ŝ ⊆ S, we immedi-
ately get that (U,S, w, k, p) is also a yes-instance. �	

Next, we show that Theorem 1 implies the following.

Lemma 5. Procedure Decrease runs in time O(
k∑

i=1

(|Si|(
2k

2k − i
)k−i2o(k) log |U |

+|Si| log |Si|)). Moreover, |Ŝ| ≤
k∑

i=1

(2k)k

ii(2k − i)k−i
2o(k) log |U | ≤ 2.4k+o(k) log |U |.

Proof. For any 1 ≤ i ≤ k, Theorem 1 implies that Step 1 of procedure Decrease

can be executed in time O(|Si|(
2k

2k − i
)k−i2o(k) log |U | + |Si| log |Si|).

Moreover, by Theorem1, |Ŝi| ≤ (2k)k

ii(2k − i)k−i
2o(k) log |U |. Denoting i = αk, we

have that |Ŝi| ≤ (
2

αα(2 − α)1−α
)k2o(k) log |U |. The maximum is obtained at

α ≈ 0.6465, and therefore |Ŝi| ≤ 2.4k+o(k) log |U |.
Thus, we get the desired upper bounds for |Ŝ| and the running time of pro-

cedure Decrease. �	
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2.3 An Algorithm for any FGPP

We now present FGPPAlg, an algorithm that solves any FGPP in O∗(4k+o(k) ·
Δk) steps. Let DegAlg(G, k, p) denote the algorithm that solves any degrading
FGPP in time O((Δ + 1)k+1|V |), given in [2]. Assuming that all the sets in
S have the same size r, the algorithm in Sect. 5 of [19] solves k-WEC in time
O(2.851k(r−1)/r · |S| · |U | log2 |U |). This algorithm can be easily modified to solve
k-WEC in time O(2.851k ·|S|·|U | log2 |U |), which is good enough for our purpose.

Let Π be an FGPP with parameters α1 and α2. Assume w.l.o.g that Δ ≥
2, otherwise Π is clearly solvable in polynomial time, using a simple dynamic
programming-based procedure. We now describe algorithm FGPPAlg (see the
pseudocode below). First, if Π is a degrading FGPP, then FGPPAlg solves Π
by calling DegAlg. Otherwise, by using the reduction f , FGPPAlg transforms
the input into an instance of k-WEC. Then, FGPPAlg compacts the size of the
resulting instance by calling the procedure Decrease. Finally, FGPPAlg solves Π
by calling WECAlg.

Algorithm 1. FGPPAlg(G = (V,E), k, p)
1: if (Π is a max-FGPP and α1

2
≤ α2) or (Π is a min-FGPP and α1

2
≥ α2) then

2: accept iff DegAlg(G, k, p) accepts.
3: end if
4: (U, S, w, k, p) ⇐ f(G, k, p).

5: (U, ̂S, w, k, p) ⇐ Decrease(U, S, w, k, p).

6: accept iff WECAlg(U, ̂S, w, k, p) accepts.

Theorem 2. Algorithm FGPPAlg solves Π in time O(4k+o(k)Δk(|V |+|E|)|V |).

Proof. The correctness of the algorithm follows immediately from Lemmas 1 and
4, and the correctness of DegAlg and WECAlg.

Note that 2.851k2.4k+o(k) = 6.8424k+o(k) ≤ 4k+o(k)Δk. Thus, by Lemmas 3
and 5, and the running times of DegAlg and WECAlg, algorithm FGPPAlg runs
in time

O(4k(Δ − 1)k(|V | + |E|)|V | +
k∑

i=1

(4i(Δ − 1)i|V |( 2k

2k − i
)k−i2o(k) log |V |)

+ 2.851k2.4k+o(k)|V | log3 |V |)
= O(4k+o(k)Δk(|V | + |E|)|V | + 2o(k)|V | log |V |[ max

0≤α≤1
{4αΔα(

2
2 − α

)1−α}]k)

= O(4k+o(k)Δk(|V | + |E|)|V | + 4k+o(k)Δk|V | log |V |)
= O(4k+o(k)Δk(|V | + |E|)|V |).

�	
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3 Solving Max (k, n − k)-Cut in Time O∗(4p+o(p))

We give below an O∗(4p+o(p)) time algorithm for Max (k, n−k)-Cut. In Sect. 3.1
we show that it suffices to consider an easier variant of Max (k, n − k)-Cut,
that we call NC-Max (k, n− k)-Cut. We solve this variant in Sect. 3.2. Finally,
our algorithm for Max (k, n − k)-Cut is given in Sect. 3.3.

3.1 Simplifying Max (k, n − k)-Cut

We first define an easier variant of Max (k, n − k)-Cut. Given a graph G =
(V,E), where each node is either red or blue, and positive integers k and p, NC-
Max (k, n − k)-Cut asks if there is a subset X ⊆ V of exactly k red nodes and
no blue nodes, such that at least p edges in E(X,V \X) have a blue endpoint.

Given an instance (G, k, p) of Max (k, n − k)-Cut, we perform several iter-
ations of coloring the nodes in G; thus, if (G, k, p) is a yes-instance, we generate
at least one yes-instance of NC-Max (k, n−k)-Cut. To determine how to color
the nodes in G, we need the following definition of universal sets.

Definition 2. Let F be a set of functions f : {1, 2, . . . , n} → {0, 1}. We say
that F is an (n, t)-universal set if, for every subset I ⊆ {1, 2, . . . , n} of size t
and a function f ′ : I → {0, 1}, there is a function f ∈ F such that, for all i ∈ I,
f(i) = f ′(i).

The following result asserts that small universal sets can be computed efficiently.

Lemma 6 ([16]). There is an algorithm, UniSetAlg, that given a pair of integers
(n, t), computes an (n, t)-universal set F of size 2t+o(t) log n in time O(2t+o(t)n
log n).

We now present ColorNodes (see the pseudocode below), a procedure that given
an input (G, k, p, q), where (G, k, p) is an instance of Max (k, n − k)-Cut and
q = k + p, returns a set of instances of NC-Max (k, n − k)-Cut. Procedure
ColorNodes first constructs a (|V |, k + p)-universal set F . For each f ∈ F ,
ColorNodes generates a colored copy V f of V . Then, ColorNodes returns a set I,
including the resulting instances of NC-Max (k, n − k)-Cut.

The next lemma implies the correctness of procedure ColorNodes.

Lemma 7. An instance (G, k, p) of Max (k, n − k)-Cut is a yes-instance
iff ColorNodes(G, k, p, k + p) returns a set I containing at least one yes-instance
of NC-Max (k, n − k)-Cut.

Proof. If (G, k, p) is a no-instance of Max (k, n − k)-Cut, then clearly, for any
coloring of the nodes in V , we get a no-instance of NC-Max (k, n − k)-Cut.

Next suppose that (G, k, p) is a yes-instance, and let X be a set of k nodes
in V such that |E(X,V \ X)| ≥ p. Note that there is a set Y of at most p nodes
in V \ X such that |E(X,Y )| ≥ p. Let X ′ and Y ′ denote the indices of the
nodes in X and Y , respectively. Since F is a (|V |, k + p)-universal set, there is



392 H. Shachnai and M. Zehavi

Procedure. ColorNodes(G = (V,E), k, p, q)
1: let V = {v1, v2, . . . , v|V |}.
2: F ⇐ UniSetAlg(|V |, q).
3: for all f ∈ F do
4: let V f = {vf

1 , vf
2 , . . . , vf

|V |}, where vf
i is a copy of vi.

5: for i = 1, 2, . . . , |V | do
6: if f(i) = 0 then color vf

i red. else color vf
i blue. end if

7: end for
8: end for
9: return I = {(Gf = (Vf , E), k, p) : f ∈ F}.

a function f ∈ F such that: (1) for all i ∈ X ′, f(i) = 0, and (2) for all i ∈ Y ′,
f(i) = 1. Thus, in Gf , the copies of the nodes in X are red, and the copies of
the nodes in Y are blue. We get that (Gf , k, p) is a yes-instance of NC-Max
(k, n − k)-Cut. �	

Furthermore, Lemma 6 immediately implies the following result.

Lemma 8. Procedure ColorNodes runs in time O(2q+o(q)|V | log |V |), and returns
a set I of size O(2q+o(q) log |V |).

3.2 A Procedure for NC-Max (k, n − k)-Cut

We now present SolveNCMaxCut, a procedure for solving NC-Max (k, n − k)-
Cut (see below). Procedure SolveNCMaxCut orders the red nodes in V by the
number of their blue neighbors in a non-increasing manner. If there are at least
k red nodes, and the number of edges between the first k red nodes and blue
nodes is at least p, procedure SolveNCMaxCut accepts, and otherwise rejects.

Procedure. SolveNCMaxCut(G = (V,E), k, p)
1: for all red v ∈ V do
2: compute the number nb(v) of blue neighbors of v in G.
3: end for
4: let v1, v2, . . . , vr, for some 0 ≤ r ≤ |V |, denote the red nodes in V , such that

nb(vi) ≥ nb(vi+1) for all 1 ≤ i ≤ r − 1.

5: accept iff (r ≥ k and
k
∑

i=1

nb(vi) ≥ p).

Clearly, the following result holds.

Lemma 9. Procedure SolveNCMaxCut solves NC-Max (k, n − k)-Cut in time
O(|V | log |V | + |E|).
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3.3 An Algorithm for Max (k, n − k)-Cut

Assume w.l.o.g that G has no isolated nodes. Our algorithm, MaxCutAlg, for
Max (k, n−k)-Cut, proceeds as follows (see below). First, if p < min{k, |V |−k},
then MaxCutAlg accepts, and if |V |−k < k, then MaxCutAlg performs a recursive
call with k replaced by |V | − k. Then, MaxCutAlg calls ColorNodes to compute
a set of instances of NC-Max (k, n − k)-Cut, and accepts iff SolveNCMaxCut
accepts at least one of them.

Algorithm 2. MaxCutAlg(G = (V,E), k, p)
1: if p < min{k, |V | − k} then accept. end if
2: if |V | − k < k then accept iff MaxCutAlg(G, |V | − k, p) accepts. end if
3: I ⇐ ColorNodes(G, k, p, k + p).
4: for all (G′, k′, p′) ∈ I do
5: if SolveNCMaxCut(G′, k′, p′) accepts then accept. end if
6: end for
7: reject.

The next lemma implies the correctness of Step 1 in MaxCutAlg.

Lemma 10 ([2]). In a graph G = (V,E) having no isolated nodes, there is a
subset X ⊆ V of size k such that |E(X,V \ X)| ≥ min{k, |V | − k}.

Our main result is the following.

Theorem 3. MaxCutAlg solves Max (k, n − k)-Cut in time O(4p+o(p)(|V | +
|E|) log2 |V |).

Proof. Clearly, (G, k, p) is a yes-instance iff (G, |V |−k, p) is a yes-instance. Thus,
Lemmas 7, 9 and 10 immediately imply the correctness of MaxCutAlg.

Denote m = min{k, |V | − k}. If p < m, then MaxCutAlg runs in time O(1).
Next suppose that p ≥ m. Then, by Lemmas 8 and 9, MaxCutAlg runs in time
O(2m+p+o(m+p)(|V | + |E|) log2 |V |) = O(4p+o(p)(|V | + |E|) log2 |V |). �	

4 Algorithms for Positive Min-FGPPs

In this section we summarize our results for positive min-FGPPs.
First, we use a standard application of randomized separation to prove the

following.

Theorem 4. Any positive min-FGPP can be solved in time O(2k+ p
α2

+o(k+p) ·
(|V | + |E|) log |V |).
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Now, let Π be a non-degrading positive min-FGPP. To solve Π, we use a some-
what different application of randomized separation, in which we randomly color
edges rather than nodes. To this end, we define an easier variant of the problem
Π, called EC-Π.

In EC-Π, we are given a graph G = (V,E) where each edge is either red or
blue, and parameters k ∈ N and p ∈ R. For any subset X ⊆ V , let C(X) denote
the family containing the node-sets of the maximal connected components in the
graph Gr = (X,Er), where Er is the set of red edges in E having both endpoints
in X. Also, let val∗(X) =

∑
C∈C(X) val(C). The problem EC-Π asks if there is

a subset X ⊆ V of exactly k nodes, such that all of the edges in E(X,V \ X)
are blue, and val∗(X) ≤ p.

To solve Π, we first construct a set I of instances of EC-Π. Then, using a
dynamic programming-based procedure, we solve each of the instances in I. We
accept iff at least one of the instances in I is a yes-instance.

This approach leads to the following result, where x = max{ p
α2

,min{ p
α1

, p
α2

+
(1 − α1

α2
)k}}.

Theorem 5. Any non-degrading positive min-FGPP can be solved in time
O(2x+o(x)(|V |k + |E|) log |E|).

In case α1 = α2 = 1, we have that x = p. Thus, since Min k-Vertex Cover
is a non-degrading positive min-FGPP which satisfies α1 = α2 = 1, we have the
following.

Corollary 1. Min k-Vertex Cover can be solved in time O(2p+o(p)(|V |k +
|E|) log |E|).

Acknowledgment. We thank the anonymous referees for valuable comments and
suggestions.

References

1. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas,
C., Teboulle, M. (eds.) Grouping Multidimensional Data: Recent Advances in Clus-
tering, pp. 25–71. Springer, Heidelberg (2006)
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Abstract. Many hard graph problems can be solved efficiently when
restricted to graphs of bounded treewidth, and more generally to graphs
of bounded clique-width. But there is a price to be paid for this gen-
erality, exemplified by the four problems MaxCut, Graph Coloring,
Hamiltonian Cycle and Edge Dominating Set that are all FPT
parameterized by treewidth but none of which can be FPT parameter-
ized by clique-width unless the Exponential Time Hypothesis fails, as
shown by Fomin et al. [7]. We therefore seek a structural graph para-
meter that shares some of the generality of clique-width without paying
this price.

Based on splits, branch decompositions and the work of Vatshelle
[16] on Maximum Matching-width, we consider the graph parameter sm-
width which lies between treewidth and clique-width. Some graph classes
of unbounded tree-width, like distance-hereditary graphs, have bounded
sm-width. We show that MaxCut, Graph Coloring, Hamiltonian
Cycle and Edge Dominating Set are all FPT parameterized by sm-
width.

1 Introduction

Many hard problems can be solved efficiently when restricted to graphs of
bounded treewidth or even graphs of bounded clique-width. A celebrated algo-
rithmic metatheorem of Courcelle [5] states that any problem expressible in
monadic second-order logic (MSO2) is fixed parameter tractable (FPT) when
parameterized by the treewidth of the input graph. This includes many prob-
lems like Dominating Set, Graph Coloring, and Hamiltonian Cycle.
Likewise, Courcelle et al. [4] show that the subset of MSO2 problems expressible
in MSO1-logic, which does not allow quantification over edge sets, is FPT para-
meterized by clique-width. Originally this required a clique-width expression as
part of the input, but this restriction was removed when Oum and Seymour [12]
gave an algorithm that, in time FPT parameterized by the clique-width k of the
input graph, finds a 2O(k)-approximation of an optimal clique-width expression.

Clique-width is stronger than treewidth, in the sense that bounded treewidth
implies bounded clique-width [3] but not vice-versa, as exemplified by the cliques.
Can we hope to find a graph width parameter lying between treewidth and
clique-width for which all MSO2 problems are FPT? Alas no, under the minimal
requirement that cliques should have bounded width, Courcelle et al. [4] showed
c© Springer International Publishing Switzerland 2014
D. Kratsch and I. Todinca (Eds.): WG 2014, LNCS 8747, pp. 396–407, 2014.
DOI: 10.1007/978-3-319-12340-0 33
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that this would imply P=NP for unary languages. There are some basic problems
belonging to MSO2 but not MSO1, like MaxCut, Graph Coloring, Hamil-
tonian Cycle and Edge Dominating Set. Fomin et al. [7] showed that none
of these four problems can be FPT parameterized by clique-width, unless the
Exponential Time Hypothesis collapses. Can we find a graph width parameter
lying between treewidth and clique-width for which at least these four problems
are FPT? Note that one can define trivial parameters having these properties
(e.g. value equal to clique-width if this is at most 3, and otherwise equal to
treewidth) but can we find one yielding new FPT algorithms for certain natural
graph classes? This is the question motivating the present paper, and the answer
is yes. We give a parameter which is low when the graph has low treewidth in
local parts, and where each of these parts are connected together in a dense
manner.

Before explaining our results, let us mention some related work. A class of
graphs can have bounded treewidth only if it is sparse. Indeed, the introduction
of clique-width was motivated by the desire to extend algorithmic results for
bounded treewidth also to some dense graph classes. Let us say that a parameter
x is weaker than parameter y, and y stronger than x, if for any graph class,
a bound on x implies a bound on y. Alternatively, x and y are of the same
strength, or incomparable. Thus, clique-width is stronger than treewidth. As we
discussed above there are limitations inherent in clique-width and there have
been several suggestions for width parameters weaker than clique-width but
still bounded on some dense graph classes. In particular, let us mention four
parameters: neighborhood diversity introduced by Lampis in 2010 [11], twin-
cover introduced by Ganian in 2011 [9], shrub-depth introduced by Ganian et al.
in 2012 [10], and modular-width proposed by Gajarský et al. in 2013 [8]. All these
parameters are bounded on some dense classes of graphs, all of them are weaker
than clique-width, but none of them are stronger than treewidth. Modular-width
is stronger than both neighborhood diversity and twin-cover, but incomparable
to shrub-depth [8]. Graph Coloring and Hamiltonian Cycle are W-hard
parameterized by shrub-depth but FPT parameterized by modular-width, as
recently shown by Gajarský et al. [8] which also leaves as an open problem
the complexity of MaxCut and Edge Dominating Set parameterized by
modular-width.

In our quest for a parameter stronger than treewidth and weaker than clique-
width, for which the four basic problems MaxCut, Graph Coloring, Hamil-
tonian Cycle and Edge Dominating Set become FPT, we are faced with
two tasks when given a graph G with parameter-value k: we need an FPT algo-
rithm returning a decomposition of width f(k), and we need a dynamic pro-
gramming algorithm solving each of the four basic problems in FPT time when
parameterized by the width of this decomposition. The requirement that the
parameter be stronger than treewidth is a guarantee that it shares this property
with clique-width and will capture large tree-like classes of graphs, also when
some building blocks are dense. Arguably the most natural way to hierarchically
decompose a graph are the so-called branch decompositions, originating in work
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of Robertson and Seymour [14] and used in the definition of both rank-width
[12] and boolean-width [1], two parameters of the same strength as clique-width.
Branch decompositions can be viewed as a recursive partition of the vertices into
two parts, giving a rooted binary tree where each edge of the tree defines the
cut given by the vertices in the subtree below the edge. Using any symmetric
cut function defined on subsets of vertices we can define a graph width parame-
ter as the minimum, over all branch decompositions, of the maximum cut-value
over all edges of the branch decomposition tree. Recently, Vatshelle [16] gave a
cut-function based on the size of a maximum matching, whose associated graph
width parameter, called MM-width, has the same strength as treewidth.

In Sect. 2, based on the work of Vatshelle, we define the parameter split-
matching-width, denoted sm-width, by a cut function based on maximum match-
ing unless the cut is a split, i.e. a complete bipartite graph plus some isolated
vertices. The sm-width parameter is stronger than treewidth and weaker than
clique-width. It is also stronger than twin-cover but incomparable with neigh-
borhood diversity, shrub-depth and modular-width. We finish Sect. 2 by showing
that maximum matching is a submodular cut function. In Sect. 3 this is used
together with an algorithm for split decompositions by Cunningham [6] and
an algorithm for branch decompositions based on submodular cut functions by
Oum and Seymour [12] to design an algorithm that given a graph G with sm-
width k computes a branch decomposition of sm-width O(k2), in time O∗(8k).
To our knowledge the use of split decompositions to compute a width parameter
is novel.

In Sect. 4, using a slightly non-standard framework for dynamic program-
ming, we are then able to solve the four basic problems MaxCut, Graph
Coloring, Hamiltonian Cycle and Edge Dominating Set, by runtimes
O∗(8k),O∗(k5k),O∗(224k

2
), and O∗(35k) respectively, when given a branch

decomposition of sm-width k. In Sect. 5 we show that some well-known graph
classes of bounded clique-width also have bounded sm-width, e.g. distance-
hereditary graphs have clique-width at most three and sm-width one. We also
show that a graph whose twin-cover value is k will have sm-width at most k,
and discuss classes of graphs where our results imply new FPT algorithms.

2 Preliminaries

We deal with finite, simple, undirected graphs G = (V,E) and denote also the
vertex set by V (G) and the edge set by E(G). For the subgraph of G induced
by S ⊆ V (G) we write G[S], and for disjoint sets A,B ⊆ V (G) we denote the
induced bipartite subgraph having vertex set A∪B and edge set {uv : u ∈ A, v ∈
B} as G[A,B]. For v ∈ V (G) we write N(v) or NG(v) for the neighbors of v and
for S ⊆ V (G) we denote the neighborhood of S by N(S) =

⋃
a∈S N(a) \ S or

NG(S); note that N(S)∩S = ∅. A matching is a set of edges having no endpoints
in common.

A split of a connected graph G is a partition of V (G) into two sets V1, V2

such that |V1| ≥ 2, |V2| ≥ 2 and every vertex in V1 with a neighbor in V2 has the
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same neighborhood in V2 (this also means every vertex in V2 with a neighbour
in V1 has the same neighbourhood in V1). A graph G with a split (V1, V2) can be
decomposed into a graph G1 and a graph G2 so that G1 and G2 is the induced
subgraph of G on V1 and V2, respectively, except that an extra vertex v, called
a marker, is added, and also some extra edges are added to G1 and G2, so that
NG1(v) = NG(V2) and NG2(v) = NG(V1). If a graph G can be decomposed
to the two graphs G1 and G2, then G1 and G2 compose G. We denote this
by G = G1 ∗ G2. A graph that cannot be decomposed (i.e., a graph without
a split) is called a prime. As all graphs of at most three vertices trivially is a
prime, when a prime graph has more than three vertices, it is called a non-trivial
prime graph. A split decomposition of a graph G is a recursive decomposition
of G so that all of the obtained graphs are prime. For a split decomposition of
G into G1, G2, . . . , Gk, a split decomposition tree is a tree T where each vertex
corresponds to a prime graph and we have an edge between two vertices if and
only if the prime graphs they correspond to share a marker. That is, the edge set
of the tree is E(T ) = {vivj : vi, vj ∈ V (T ) and V (Gi) ∩ V (Gj) 	= ∅}. To see that
this is in fact a tree, we notice that T is connected and that we have an edge
for each marker introduced. As there are exactly one less marker than there are
prime graphs, T must be a tree. See Fig. 1 for an example.

Given a split decomposition of graph G with prime graphs G1, G2, . . . , Gk,
we define tot(v : Gi) recursively to be {v} if v ∈ V (G), and otherwise to be⋃

u∈V (Gj)\{v} tot(u : Gj) for the graph Gj 	= Gi containing the marker v in the
split decomposition. Another way of saying this latter part by the use of the split
decomposition tree T is: if v is not in V (G), then tot(v : Gi) is defined to be
the vertices of V (G) residing in the prime graphs of the connected component
in T [V (T ) − Gi] where v is also located. From this last definition, we observe
that for a prime graph Gi in a split decomposition of G, the function tot on
the vertices of Gi partitions the vertices of V (G). For a set V ′ ⊆ V (Gi), we
define tot(V ′ : Gi) to be the union of tot(v : Gi) for all v ∈ V ′. For a set

Fig. 1. Split decomposition tree of a graph G. The markers of each prime graph are
circled in red. An example of a split decomposition resulting in this tree is: ((G1 ∗G2)∗
G3) ∗ (G4 ∗ G5). Note that tot({v1, v3} : G2) = {d, e, f, g, h}, act(v1 : G4) = {b, d, e}
and tot−1(a, f, g : G2) = {v1, v2}(Colorfigure online).
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S ⊆ V (G), the inverse function tot−1(S : Gi), is defined as the minimal set of
vertices V ′ ⊆ V (Gi) so that S ⊆ tot(V ′ : Gi). We define the active set of a
vertex v ∈ Gi, denoted act(v : Gi) to be the vertices of tot(v : Gi) that are
contributing to the neighborhood of v in Gi. That is, act(v : Gi) is defined as
N(V (G) \ tot(v : Gi)). See Fig. 1 for an example of tot() and act(). Note that if
G has a split decomposition into prime graphs G1, . . . , Gk, then for any marker
v there are exactly two prime graphs Gi and Gj containing v, and we have
tot(v : Gi) ∪ tot(v : Gj) = V (G).

A branch decomposition (T, δ) of a graph G consists of a subcubic tree T (a
tree of maximum degree 3) and a bijective function δ from the leaves of T to the
vertices of G. For a graph G a cut (A,A) for A ⊆ V (G) is a bipartition of verices
of G. For a cut (A,B) of G, we say the edges in G with one enpoint in A and the
other in B cross the cut (A,B). In a branch decomposition (T = (VT , ET ), δ) of
a graph G, each edge e ∈ ET partitions V (G) into two parts: the vertices mapped
by δ from the leaves of one component of T − e, and the vertices mapped by δ
from the leaves of the other component. Thus each edge of T induces a cut in G,
namely the cut corresponding to that edge’s bipartition of V (G). For a graph G,
a cut function f : 2V (G) → N is a symmetric (f(A) = f(A)) function on subsets
of V (G). For a branch decomposition (T, δ) of G its f -width, for a cut function
f , is the maximum of f(A) over all cuts (A,A) of G induced by the edges of T .
For a graph G, its f -width, for a cut function f , is the minimum f -width over
all branch decompositions of G.

Vatshelle [16] defined the Maximum-Matching-width (MM-width) mmw(G)
of a graph G based on the cut function mm defined for any graph G and
A ⊆ V (G) by letting mm(A) be the cardinality of a maximum matching of the
bipartite graph G[A, A]. In his work, Vatshelle shows that there is a linear depen-
dency between the treewidth of a graph and the Maximum-Matching-width of
the graph.

Theorem 1 [16]. Let G be a graph, then 1
3 (tw(G)+1) ≤ mmw(G) ≤ tw(G)+1

In this paper we define the split-matching-width smw(G) of a graph G based on
the cut function sm defined for any graph G and A ⊆ V (G) by:

sm(A) =

{
1 if

(
A,A

)
is a split of G

mm(A) = max{|M | : M is a matching of G[A,A]} otherwise

A cut function f : 2V (G) → N is said to be submodular if for any A,B ⊆ V (G)
we have f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). The following very general result
of Oum and Seymour is central to the field of branch decompositions.

Theorem 2 [12]. For symmetric submodular cut-function f and graph G of
optimal f-width k, a branch decomposition of f-width at most 3k + 1 can be
found in O∗(23k+1) time.

There is no abundance of submodular cut functions, but this result, which is
proved in the full version of the paper, will be useful to us.

Theorem 3. The cut function mm is submodular.
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3 Computing an Approximate sm-Width Decomposition

In this section we design an algorithm that given a graph G finds a branch
decomposition of G having sm-width O(smw(G)2), in time FPT parameterized
by smw(G). The algorithm has four main steps:

1. Find a split decomposition of G into prime graphs G1, G2, ..., Gq.
2. For each Gi find a branch decomposition (Ti, δi) of sm-width O(smw(Gi)).
3. For each Gi restructure (Ti, δi) into (T ′

i , δ
′
i) having the property that any cut

of Gi, induced by an edge of (T ′
i , δ

′
i) and having split-matching value k, is

lifted, by the split decomposition of G, to a cut of G having split-matching
value O(k2).

4. Combine all the decompositions (T ′
i , δ

′
i) into a branch decomposition of G of

sm-width O(smw(G)2).

For step 1 there exists a well-known polynomial-time algorithm by Cunning-
ham [6] and even linear-time ones, see e.g. [2] and see also [13] for the use of
split decompositions in general. For step 2 we are dealing with a prime graph
Gi, which by definition has no non-trivial splits and hence sm(Vi) = mm(Vi) for
all Vi ⊆ V (Gi) meaning that mmw(Gi) = smw(Gi). Furthermore, by Theorem 3
the cut function defining mmw is submodular so we can apply the algorithm of
Oum and Seymour from Theorem 2 to accomplish the task of step 2. Step 3 will
require more work. Let us first give a sketch of step 4. Suppose for each prime
graph Gi of a split decomposition of G we have calculated a branch decompo-
sition (T ′

i , δ
′
i) for Gi. If for every cut (X,V (Gi) \ X) of Gi induced by an edge

of (T ′
i , δ

′
i) we have sm(tot(X : Gi)) ≤ t for some value t, then we can generate

a branch decomposition of G of sm-width at most t by for each pair of prime
graphs Gi, Gj sharing a marker, identifying the two leaves of respectively (T ′

i , δ
′
i)

and (T ′
j , δ

′
j) mapped to this marker.

What remains is step 3, covered by Theorem 8. We need to relate sm(A)
of a cut (A, V (Gi) \ A) in prime graph Gi, induced by an edge of (T ′

i , δ
′
i), to

sm(tot(A : Gi)) of the associated cut
(
tot(A : Gi), tot(A : Gi)

)
in G. This we

do by Lemma 4 and in particular Lemma 6, see below, which use the notion of a
heavy pair of vertices: In a graph G with smw(G) < k and split decomposition
into prime graphs G1, G2, ..., Gq we say that adjacent vertices a, b ∈ V (Gi) are
heavy if |act(a : Gi)| ≥ 3k and |act(b : Gi)| ≥ 3k. The edge connecting a heavy
pair is called a heavy edge.

Lemma 4. Let smw(G) < k and let P be a non-trivial prime graph in a split
decomposition of G. If for a ∈ V (P ) we have |act(a : P )| ≥ 3k and |act(N(a) : P )|
≥ 9k, then ∃ab ∈ E(P ) so that ab is heavy.Moreover, for any heavy edge ab ∈ E(P )
we have |act(N({a, b}) : P )| < k.

The proof follows from a series of lemmas found in the full version of this
paper [15]. The second part of Lemma 4 implies that in a prime graph P , when-
ever ab ∈ E(P ) is heavy then since |act(N({a, b}) : P )| < k neither a nor b can
be incident to any other heavy edge, leading to the following corollary.
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Corollary 5. For a non-trivial prime graph, its heavy edges form a matching.

Lemma 6. Let smw(G) < k and let P be a prime graph in a split decomposition
of G and let A ⊆ V (P ) with 2 ≤ |A| ≤ |V (P )| − 2. If no heavy edges cross the
cut (A, V (P ) \ A) in P and sm(A) < t with respect to P , then sm(tot(A : P ))
with respect to G is less than 9tk.

The idea of how to prove Lemma 6 is that for any vertex cover C in P [A,A]
and vertex v ∈ C, there is a set of less than 9k vertices in V (G) covering all
edges incident with v crossing the cut of P . Since all edges crossing the cut of
P are incident with a vertex of C, this means there must be a set of less than
9k|C| = 9tk vertices of V (G) covering all edges crossing the cut in G. The entire
proof can be found in the full version of this paper.

When deleting a vertex any cut that was a split remains a split or results in
a cut with a single vertex on one side, and no new matchings are introduced.

Observation 7. The sm-width of a graph G is at least as big as the sm-width
of any induced subgraph of G.

Theorem 8. Let smw(G) < k and let P be a prime graph in a split decompo-
sition of G We can in O∗(8k)-time construct a branch decomposition (T ′

P , δ′
P )

of P so that for each cut (X,Y ) of P induced by an edge of (T ′
P , δ′

P ), the cut
(tot(X : P ), tot(Y : P )) of G has sm-value less than 54k2.

Proof. If P is a trivial prime graph, i.e. |V (P ) ≤ 3|, every cut (X,Y ) of P is a
split. This implies by the definition of a split decomposition that
(tot(X : P ), tot(Y : P )) in G also is a split of G. Hence, sm(tot(X : P )) of
G equals one.

We now consider the case when P is non-trivial. Since P is isomorphic to an
induced subgraph of G (this follows directly from definition of split decompo-
sitions) and smw(G) < k, by Observation 7, the sm-width of P is less than k.
Also, since P by definition has no splits, we have mmw(P ) = smw(P ) < k. By
Theorem 3 and Lemma 2, we can compute a branch decomposition (TP , δP ) of P
with MM-width less than 3k in O∗(8k)-time. By a non-leaf edge of TP we mean
an edge with both endpoints an inner node of TP . The cut in P induced by a non-
leaf edge of (TP , δP ) will have at least two vertices on each side. We call such cuts
non-leaf cuts of P induced by (TP , δP ). Note that cuts having one side containing
a singleton X = {v} are easy to deal with, either the singleton is a vertex of V (G)
and then tot(X : P ) = {v}, or v is a marker and the cut (tot(X : P ), tot(Y : P ))
of G is a split, and thus in both cases sm(tot(X : P )) = 1. For the remainder we
consider only non-leaf cuts.

Denote by h(A) the number of heavy edges crossing the non-leaf cut (A, V (P )\
A). If none of the non-leaf cuts of P induced by (TP , δP ) have heavy edges crossing
them, i.e. h(A) = 0 for all non-leaf cuts, we apply Lemma 6 with t = 3k and are
done, getting for any cut (X,Y ) of P induced by an edge of (TP , δP ) a bound
of sm(tot(X : P )) ≤ 3k9k = 27k2. On the other hand, if some non-leaf cuts
of P induced by (TP , δP ) do have heavy edges crossing them, we restructure the
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decomposition (TP , δP ) to a decomposition (T ′
P , δ′

P ) as follows: for each heavy pair
a, b in V (P ) crossing such a non-leaf cut we remove the leaf in TP mapping to b and
make a new leaf mapping to b as sibling of the leaf mapping to a. By Corollary 5
the heavy edges in P form a matching, so this is easily done for all heavy edges
of P crossing non-leaf cuts, without conflicts. Since all such heavy pairs are now
mapped to leaves that are siblings of T ′

P none of the non-leaf cuts of P induced by
(T ′

P , δ′
P ) will have a heavy edge crossing them.

Let us look at how the restructuring altered the sm-value of non-leaf cuts.
Note that for each non-leaf cut (A′, V (P ) \A′) in (T ′

P , δ′
P ) there is an associated

non-leaf cut (A, V (P ) \ A) in (TP , δP ) with h(A) heavy edges crossing this cut,
such that we move between the two cuts by moving h(A) vertices across the
cut. We have mm(A′) ≤ mm(A) + h(A), as the maximum matching of a cut
can increase by at most one for each vertex moved over the cut. Moreover, by
Corollary 5 the heavy edges in P form a matching, which means that h(A) ≤
mm(A), implying mm(A′) ≤ 2mm(A) ≤ 2×3k. We can therefore apply Lemma 6
with t = 6k and this means we have sm(tot(A : P )) ≤ 6k9k = 54k2. �

Theorem 9. Given a graph G with smw(G) < k, we can compute a branch
decomposition (T, δ) of G of sm-width less than 54k2 in O∗(8k)-time.

We have already given a sketch of this proof. The full proof is found in [15].

4 Dynamic Programming Parameterized by sm-width

In this section we solve MaxCut, Graph Coloring, Hamiltonian Cycle
and Edge Dominating Set on a graph G by a bottom-up traversal of a
rooted branch decomposition (T, δ) of G, in time FPT parameterized by the
sm-width of (T, δ). In the bottom-up traversal we encounter two disjoint sub-
sets of vertices A,B ⊆ V (G), as leaves of two already processed subtrees, and
need to process the subtree on leaves A ∪ B. There are three cuts of G involved:(
A,A

)
,
(
B,B

)
,
(
A ∪ B,A ∪ B

)
, and each of them can be of type split, or of type

non-split (also called type mm for maximum-matching). This gives six cases that
need to be considered, at least if we use the standard framework of table-based
dynamic programming. We instead use an algorithmic framework for decision
problems where we join sets of certificates while ensuring that the result pre-
serves witnesses for a ‘yes’ instance. Under this framework, the algorithm for
MaxCut becomes particularly simple, and only two cases need to be handled
in the join, depending on whether the ‘parent cut’

(
A ∪ B,A ∪ B

)
is a split or

not. For the other three problems we must distinguish between the two types of
‘children cuts’ in order to achieve FPT runtime, and the algorithms are more
complicated.

Let us describe the algorithmic framework. As usual, e.g. for problems in NP,
a verifier is an algorithm that given a problem instance G and a certificate c,
will verify if the instance is a ‘yes’-instance, and if so we call c a witness. For
our algorithms we will use a commutative and associative function ⊕(x, y), that
takes two certificates x, y and creates a set of certificates. This is extended to
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sets of certificates XA,XB by ⊕(XA,XB) which creates the set of certificates⋃
xA∈XA,xB∈XB

⊕(xA, xB). For a graph decision problem, an input graph G, and
any X ⊆ V (G) we define cert(X) to be a set of certificates on only a restricted
part of G, which must be subject to the following constraints:

– If G is a ‘yes’-instance, then cert(V (G)) contains a witness.
– For disjoint X,Y ⊆ V (G) we have ⊕(cert(X), cert(Y )) = cert(X ∪ Y ).

For FPT runtime we need to restrict the size of a set of certificates, and the
following will be useful. For X ⊆ V (G) and certificates x, y ∈ cert(X), we say
that x preserves y if for all z ∈ cert(X) so that ⊕(y, z) contains a witness, the
set ⊕(x, z) also contains a witness. We denote this as x �X y. A set S preserves
S′ ⊆ cert(X), denoted S �X S′, if for every x′ ∈ S′ there exists a x ∈ S so
that x �X x′. A certificate x ∈ cert(X) so that there exists a y ∈ cert(X) where
⊕(x, y) contains a witness, is called an important certificate.

For a rooted branch decomposition (T, δ) of a graph G and vertex v ∈ V (T ),
we denote by Vv the set of vertices of V (G) mapped by δ from the leaves of the
subtree in T rooted at v. With these definitions we give a generic recursive (or
bottom-up) algorithm called Recursive that takes (T, δ) and a vertex w of T
as input and returns a set S �Vw

cert(Vw), as follows:

– at a leaf w of T initialize and return the set cert({δ(w)})
– at an inner node w first call Recursive on each of the children nodes a

and b and then run procedure Join on the returned input sets S1, S2 of
certificates, with S1 �VA

cert(Va) and S2 �Vb
cert(Vb), and return a set

S �Va∪Vb
⊕(S1, S2)

– at the root we will have a set of certificates S �V (G) cert(V (G))

Calling Recursive on the root r of T and running a verifier on the output solves
any graph decision problem in NP. Correctness of this procedure follows from
the definitions. The extra time spent by the verifier is going to be O∗(|S|), and
for an FPT algorithm we will require that all |S| be O∗(f(k)), i.e. FPT in the
sm-width k of (T, δ).

In the rest of this section, we show how to solve the four problems in FPT
time. We give the actual algorithm for MaxCut, and sketch how to do the same
for the other three problems. The full algorithms and proofs can be found in [15].

The problem t-MaxCut asks, for a graph G, whether there exists a set
W ⊆ V (G) so that the number of edges in

(
W,W

)
is at least t. For a set X, we

denote by δG(X) the number of edges in the cut (V (G)∩X,V (G)\X) (note that
X does not need to be a subset of V (G)). For t-MaxCut, we define cert(X)
for X ⊆ V (G) to be all the subsets of X, and we define ⊕(x, y) to be the union
function; ⊕(x, y) = {x ∪ y}. We solve t-MaxCut by use of Recursive and the
below procedure Joinmaxcut with input specification as described above.

Procedure Joinmaxcut

Input: S1 �Va
cert(Va) and S2 �Vb

cert(Vb) with A = Va ∪ Vb

Output: S �A ⊕(cert(Va), cert(Vb)) = cert(A)



Between Treewidth and Clique-Width 405

S′ ← {s1 ∪ s2 : s1 ∈ S1, s2 ∈ S2} /* note S′ = ⊕(S1, S2) */
S ← ∅
C ← a minimum vertex cover of G[A,A]
if

(
A,A

)
is a split then for z = 0, . . . , n do

c′← argmaxc∈S′{δG[A](c) :
∣
∣N(A) ∩ c

∣
∣ = z}

S← S ∪ {c′}
else for all subsets SC ⊆ C do

c′← argmaxc∈S′
{
δG[A](c) : SC ∩ A = c ∩ A

}

S← S ∪ {c′}
return S

Proof of correctness of MaxCut is at the end of this section.
For Hamiltonian Cycle, certificates are disjoint paths or cycles, and a wit-

ness is a Hamiltonian cycle. The important information is what neighbourhood
the endpoints of each path has over the cut. For each certificate we keep track of
the number of path classes, which are sets of paths with the same neighborhood
over the cut, and the size of each such path class. The total number of path
classes over all certificates is also important. For a split cut, the size of a class
might be anything from 1 to n, but there will be only one class in total. For
a non-split cut of sm-value k, the total number of path classes is bounded by
22k and since each path is vertex disjoint the number of paths in any important
certificate is bounded by k. Based on this the Join operation will be able to find
a FPT-sized set of certificates preserving a full set.

For t-Coloring, we note that a graph of sm-width k, unlike graphs of
treewidth k, may need more than k + 1 colors. We let all partitions into t parts
where the parts induce independent sets be our certificates. What matters for
a certificate is what kind of certificates it can be combined with to yield a new
certificate, i.e. inducing an independent set also across the cut. For non-split
cuts, this means the number of important certificates is bounded by the number
of ways to t-partition the vertices in the k-vertex cover of the cut, which is a
function of k. For a split cut, what is important is the number of parts of a par-
tition/certificate that have neighbors across the cut. The certificate minimizing
this number will preserve all other certificates. Based on this the Join operation
will be able to find a preserving set of certificates of FPT-size.

For t-Edge Dominating Set the certificates are subgraphs of G and a
witness is a graph G′ = (V ′, E′) so that each vertex in V ′ is incident with an
edge in E′, and E′ is an edge dominating set of G of size at most t. The idea
of how to make an FPT Join-procedure is that for a vertex cover C of a cut,
the number of ways a certificate can project to C is limited by a function of the
size of C. Based on this we find a preserving set of FPT cardinality when |C| is
at most k. When |C| is not bounded by k, we have a split. For splits we limit
the max number of certificates needed for a preserving set by a polynomial of
n. This is because almost all edges on one side of the cut affect the rest of the
edges uniformly, and the other way around.
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Theorem 10. Given a graph G and branch decomposition (T, δ) of sm-width k,
we can solve MaxCut in time O∗(8k), Hamiltonian Cycle in time O∗(224k

2
),

t-coloring in time O∗(k5k), and t-Edge Dominating Set in time O∗(35k).

Proof. We consider MaxCut. In the full version of this paper we show
Joinmaxcut is correct and produce a preserving set S of size at most O∗(2k)
in time O∗(|S1||S2|2k). So, using Recursive with Joinmaxcut, we know the
size of both of the inputs of Joinmaxcut is at most the size of its output, i.e.,
|S1|, |S2| ≤ O∗(2k). So, each call to Recursive has runtime at most O∗(8k).
As there are linearly many calls to Recursive and there is a polynomial time
verifier for the certificates Recursive produces, by the definition of �, the total
runtime is also bounded by O∗(8k). By similar arguments as for MaxCut, we
get the stated runtime bounds for Hamiltonian Cycle, t-coloring, and t-
Edge Dominating Set from the runtime and correctness of their respective
Join-algorithms presented in the full version of this paper.

5 Graphs of Bounded sm-Width

We have shown that four basic problems, that cannot be FPT parameterized by
clique-width unless ETH fails, are FPT when parameterized by sm-width. The
sm-width parameter nevertheless shares important properties with clique-width,
for example the following, which we prove in the full version of this paper ([15]):

Proposition 11. If treewidth is bounded then sm-width is bounded (smw(G) ≤
tw(G) + 1) which in turn means that clique-width is bounded. If twin-cover is
bounded then clique-width and sm-width is bounded (smw(G) ≤ tc(G)). Cographs,
the graphs of clique-width at most two, have sm-width one, while distance-here-
ditary graphs have clique-width at most three and sm-width one.

From our procedure for computing branch decompositions of bounded sm-
width, it might seem that we could instead simply have defined our parameter to
be the maximum treewidth of the prime graphs of split decomposition. However,
a bound on the treewidth of each prime graph does not imply a bound on the sm-
width. The complexity of the four given problems for this alternative parameter
is not known as far as we know.

There are several classes of graphs of bounded sm-width where no previous
results implied FPT algorithms for the considered problems. We now show a
class of such graphs, constructed by combining a graph of clique-width at most
3, with a graph of treewidth k and thus clique-width at most 2k/2, as follows.
Let G1 be a distance-hereditary graph and let G2 be a graph of treewidth k. Let
X ⊆ V (G1) with |X| ≤ k + 1 and (X, X) a split of G1, and let Y ⊆ V (G2) be a
bag of a tree decomposition of G2 of treewidth k. Add an arbitrary set of edges
on the vertex set X ∪ Y . The resulting graph will have sm-width at most k + 1,
a result that basically follows by taking branch decompositions of G1 and G2

where X and Y each are mapped as the set of leaves of a subtree, subdividing
each of the two edges above these subtrees and adding an edge on the subdivided
vertices to make a single branch decomposition of the combined graph.
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As an intuition of how graphs of low sm-width look, we make the following
observation: For any branch decomposition of sm-width less than k, we can
divide the edges of the graph into two parts; one part X consisting of the edges
crossing some cut of the branch decomposition of mm-width at least k (and thus
a split), and one part for the remaining edges. The edges in X will disconnect
the graph into components forming induced subgraphs of mm-width less than
k. As the edges of X originates from splits in the decomposition, these edges
connect the induced subgraphs in a way closely related to a distance hereditary
graph.
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Abstract. The maximum stable set problem is NP-hard, even when
restricted to triangle-free graphs. In particular, one cannot expect a poly-
nomial time algorithm deciding if a bull-free graph has a stable set of
size k, when k is part of the instance. Our main result in this paper is to
show the existence of an FPT algorithm when we parameterize the prob-
lem by the solution size k. A polynomial kernel is unlikely to exist for
this problem. We show however that our problem has a polynomial size
Turing-kernel. More precisely, the hard cases are instances of size O(k5).
All our results rely on a decomposition theorem of bull-free graphs due
to Chudnovsky which is modified here, allowing us to provide extreme
decompositions, adapted to our computational purpose.

1 Introduction

In this paper all graphs are simple and finite. We say that a graph G contains
a graph F , if F is isomorphic to an induced subgraph of G. We say that G is
F -free if G does not contain F . For a class of graphs F , the graph G is F-free if
G is F -free for every F ∈ F . The bull is a graph with vertex set {x1, x2, x3, y, z}
and edge set {x1x2, x1x3, x2x3, x1y, x2z}.

Chudnovsky in a series of papers [4–7] gives a complete structural character-
isation of bull-free graphs (more precisely, bull-free trigraphs, where a trigraph
is a graph with some adjacencies left undecided). Roughly speaking, this the-
orem asserts that every bull-free trigraph is either in a well-understood basic
class, or admits a decomposition allowing to break the trigraph into smaller
blocks. In Sect. 2, we extract what we need for the present work, from the
very complex theorem of Chudnovsky. In Sect. 3, we prove that bull-free tri-
graphs admit extreme decompositions, that are decompositions such that one of
the blocks is basic. In Sect. 4, we give polynomial time algorithms to actually
compute the extreme decompositions whose existence is proved in the previous
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section. In Sect. 5, we introduce the notion of weigthed trigraphs. In Sect. 6, we
give an FPT-algorithm for the maximum stable set problem restricted to bull-
free graphs. Let us explain this. The notion of fixed-parameter tractability (FPT)
is a relaxation of classical polynomial time solvability. A parameterized problem
is said to be fixed-parameter tractable if it can be solved in time f(k)P (n) on
instances of input size n, where f is a computable function (so f(k) depends
only on the value of parameter k), and P is a polynomial function independent
of k. We give an FPT-algorithm for the maximum stable set problem restricted
to bull-free graphs. This generalizes the result of Dabrowski, Lozin, Müller and
Rautenbach [8] who give an FPT-algorithm for the same parameterized problem
for {bull, P5}-free graphs, where P5 is a path on 5 vertices and P5 is its comple-
ment. Recently, Lokshtanov, Vatshelle and Villanger [17] proved that maximum
independent set in P5-free graphs can be computed in polynomial time. Also,
forbidding a bull and odd holes leads to polynomial algorithm for Maximum
Weight Independent Sets, see Brandstäd and Mosca? [3]. In a weighted graph
the weight of a set is the sum of the weights of its elements, and with αw(G) we
denote the weight of a maximum weighted independent set of a graph G with
weight function w. We state below the problem that we solve more formally.

parameterized weighted independent set

Instance: A weighted graph G with weight function w : V (G) −→ N and a
positive integer k.

Parameter: k
Problem: Decide whether G has an independent set of weight at least k. If no
such set exists, find an independent set of weight αw(G).

Observe that the problem above is W [1]-hard for general graphs [9] and the
non parameterized version is NP-complete even for triangle-free graphs [19] (and
therefore for bull-free graphs).

In Sect. 7, we show that while a polynomial kernel is unlikely to exist since
the problem is OR-compositional, we can prove nonetheless that the hardness
of the problem can be reduced to polynomial size instances. Precisely we show
that for bull-free graphs of size n one can decide if a stable set of size k exists in
time P (n) for some polynomial P provided that we have unlimited access to an
oracle which can decide if a stable set of size k exists for bull-free graphs of size
O(k5). The fact that hard cases can be reduced to size polynomial in k is not
captured by the existence of a polynomial kernel, but by what is called a Turing-
kernel (see Sect. 7 or Lokshtanov [16] for a definition of Turing-kernels). Even the
existence of a Poly(n) set of kernels of size Poly(k) seems unclear for this problem.
To our knowledge, stability in bull-free graphs is the first example of a problem
admitting a polynomial Turing-kernel which is not known to have an independent
set of polynomial kernels. An interesting question is to investigate which classical
problems without polynomial kernels do have a polynomial Turing-kernel. This
question is investigated by Hermelin et al. [15].
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2 Decomposition of Bull-Free Graphs

In the series of papers [4–7] Chudnovsky gives a complete structural character-
isation of bull-free graphs which we first describe informally. Her construction
of all bull-free graphs starts from three explicitly constructed classes of basic
bull-free graphs: T0, T1 and T2. Class T0 consists of graphs whose size is bounded
by some constant, the graphs in T1 are built from a triangle-free graph F and a
collection of disjoint cliques with prescribed attachments in F (so triangle-free
graphs are in this class), and T2 generalizes graphs G that have a pair uv of
vertices, so that uv is dominating both in G and Ḡ.Furthermore, each graph G
in T1 ∪ T2 comes with a list LG of “expandable edges”. Chudnovsky shows that
every bull-free graph that is not obtained by substitution from smaller ones, can
be constructed from a basic bull-free graph by expanding the edges in LG (where
edge expansion is an operation corresponding to reversing the homogeneous pair
decomposition). To prove and use this result, it is convenient to work on tri-
graphs (a generalization of graphs where some edges are left “undecided”), and
the first step is to obtain a decomposition theorem for bull-free trigraphs using
homogeneous sets and homogeneous pairs. In this paper we need a simplified
statement of this decomposition theorem, which we now describe formally.

Trigraphs

For a set X, we denote by
(
X
2

)
the set of all subsets of X of size 2. For brevity

of notation an element {u, v} of
(
X
2

)
is also denoted by uv or vu. A trigraph T

consists of a finite set V (T ), called the vertex set of T , and a map θ :
(
V (T )

2

)
−→

{−1, 0, 1}, called the adjacency function.
Two distinct vertices of T are said to be strongly adjacent if θ(uv) = 1,

strongly antiadjacent if θ(uv) = −1, and semiadjacent if θ(uv) = 0. We say that
u and v are adjacent if they are either strongly adjacent, or semiadjacent; and
antiadjacent if they are either strongly antiadjacent, or semiadjacent. An edge
(antiedge) is a pair of adjacent (antiadjacent) vertices. If u and v are adjacent
(antiadjacent), we also say that u is adjacent (antiadjacent) to v, or that u is a
neighbor (antineighbor) of v. Similarly, if u and v are strongly adjacent (strongly
antiadjacent), then u is a strong neighbor (strong antineighbor) of v.

Let η(T ) be the set of all strongly adjacent pairs of T , ν(T ) the set of all
strongly antiadjacent pairs of T , and σ(T ) the set of all semiadjacent pairs of
T . Thus, a trigraph T is a graph if σ(T ) is empty. A pair {u, v} ⊆ V (T ) of
distinct vertices is a switchable pair if θ(uv) = 0, a strong edge if θ(uv) =
1 and a strong antiedge if θ(uv) = −1. An edge uv (antiedge, strong edge,
strong antiedge, switchable pair) is between two sets A ⊆ V (T ) and B ⊆ V (T )
if u ∈ A and v ∈ B, or if u ∈ B and v ∈ A.

The complement T of T is a trigraph with the same vertex set as T , and
adjacency function θ = −θ.

For v ∈ V (T ), N(v) denotes the set of all vertices in V (T )\{v} that are
adjacent to v; η(v) denotes the set of all vertices in V (T )\{v} that are strongly
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adjacent to v; ν(v) denotes the set of all vertices in V (T )\{v} that are strongly
antiadjacent to v; and σ(v) denotes the set of all vertices in V (T )\{v} that are
semiadjacent to v.

Let A ⊂ V (T ) and b ∈ V (T )\A. We say that b is strongly complete to A if b
is strongly adjacent to every vertex of A; b is strongly anticomplete to A if b is
strongly antiadjacent to every vertex of A; b is complete to A if b is adjacent to
every vertex of A; and b is anticomplete to A if b is antiadjacent to every vertex
of A. For two disjoint subsets A,B of V (T ), B is strongly complete (strongly
anticomplete, complete, anticomplete) to A if every vertex of B is strongly com-
plete (strongly anticomplete, complete, anticomplete) to A. A set of vertices
X ⊆ V (T ) dominates (strongly dominates) T if for all v ∈ V (T )\X, there exists
u ∈ X such that v is adjacent (strongly adjacent) to u.

A clique in T is a set of vertices all pairwise adjacent, and a strong clique is
a set of vertices all pairwise strongly adjacent. A stable set is a set of vertices
all pairwise antiadjacent, and a strongly stable set is a set of vertices all pairwise
strongly antiadjacent. For X ⊂ V (T ) the trigraph induced by T on X (denoted
by T [X]) has vertex set X, and adjacency function that is the restriction of θ to(
X
2

)
. Isomorphism between trigraphs is defined in the natural way, and for two

trigraphs T and H we say that H is an induced subtrigraph of T (or T contains H
as an induced subtrigraph) if H is isomorphic to T [X] for some X ⊆ V (T ). Since
in this paper we are only concerned with the induced subtrigraph containment
relation, we say that T contains H if T contains H as an induced subtrigraph.
We denote by T\X the trigraph T [V (T )\X].

Let T be a trigraph. A path P of T is a sequence of distinct vertices p1, . . . , pk

such that k ≥ 1 and for i, j ∈ {1, . . . , k}, pi is adjacent to pj if |i − j| = 1 and
pi is antiadjacent to pj if |i − j| > 1. Under these circumstances, V (P ) =
{p1, . . . , pk} and we say that P is a path from p1 to pk, its interior is the set
P ∗ = V (P )\{p1, pk}, and the length of P is k−1. We also say that P is a (k−1)-
edge-path. Sometimes, we denote P by p1- · · · -pk. Observe that, since a graph is
also a trigraph, it follows that a path in a graph, the way we have defined it, is
what is sometimes in literature called a chordless path.

A semirealization of a trigraph T is any trigraph T ′ with vertex set V (T )
that satisfies the following: for all uv ∈

(
V (T )

2

)
, if uv ∈ η(T ) then uv ∈ η(T ′),

and if uv ∈ ν(T ) then uv ∈ ν(T ′). Sometimes we will describe a semirealization
of T as an assignment of values to switchable pairs of T , with three possible
values: “strong edge”, “strong antiedge” and “switchable pair”. A realization of
T is any graph that is semirealization of T (so, any semirealization where all
switchable pairs are assigned the value “strong edge” or “strong antiedge”). For
S ⊆ σ(T ), we denote by GT

S the realization of T with edge set η(T ) ∪ S, so in
GT

S the switchable pairs in S are assigned the value “edge”, and those in σ(T )\S
the value “antiedge”. The realization GT

σ(T ) is called the full realization of T .
A bull is a trigraph with vertex set {x1, x2, x3, y, z} such that x1, x2, x3 are

pairwise adjacent, y is adjacent to x1 and antiadjacent to x2, x3, z, and z is
adjacent to x2 and antiadjacent to x1, x3. For a trigraph T , a subset X of V (T ) is
said to be a bull if T [X] is a bull. A trigraph is bull-free if no induced subtrigraph
of it is a bull, or equivalently, no subset of its vertex set is a bull.
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X

Y Z

Fig. 1. A homogeneous set.

Observe that we have two notions of bulls: bulls as graphs (defined in the
introduction), and bulls as trigraphs. A bull as a graph can be seen as a bull as
a trigraph. Also, a trigraph is a bull if and only if at least one of its realization
is a bull (as a graph). Hence, a trigraph is bull-free if and only if all its realizations
are bull-free graphs. The complement of a bull is a bull (with both notions), and
therefore, if T is bull-free trigraph (or graph), then so is T .

2.1 Decomposition Theorem

A trigraph is called monogamous if every vertex of it belongs to at most one
switchable pair (so the switchable pairs form a matching). We now state the
decomposition theorem for bull-free monogamous trigraphs. We begin with the
description of the cutsets.

Let T be a trigraph. A set X ⊆ V (T ) is a homogeneous set in T if 1 < |X| <
|V (T )|, and every vertex of V (T )\X is either strongly complete or strongly
anticomplete to X. See Fig. 1 (a line means all possible strong edges between
two sets, nothing means all possible strong antiedges, and a dashed line means
no restriction).

A homogeneous pair (see Fig. 2) is a pair of disjoint nonempty subsets (A,B)
of V (T ), such that there are disjoint (possibly empty) subsets C,D,E, F of V (T )
whose union is V (T )\(A ∪ B), and the following hold:

– A is strongly complete to C ∪ E and strongly anticomplete to D ∪ F ;
– B is strongly complete to D ∪ E and strongly anticomplete to C ∪ F ;
– A is not strongly complete and not strongly anticomplete to B;
– |A ∪ B| ≥ 3; and
– |C ∪ D ∪ E ∪ F | ≥ 3.

In these circumstances, we say that (A,B,C,D,E, F ) is a split for the homo-
geneous pair (A,B). A homogeneous pair (A,B) is small if |A∪B| ≤ 6. A homo-
geneous pair (A,B) with split (A,B,C,D,E, F ) is proper if C 	= ∅ and D 	= ∅.
Note that “A is not strongly complete and not strongly anticomplete to B” does
not imply that |A ∪ B| ≥ 3, because it could be that the unique vertex in A is
linked to the unique vertex in B by a switchable pair.

We now describe the basic classes. A trigraph is a triangle if it has exactly
three vertices, and these vertices are pairwise adjacent. Let T0 be the class of
all monogamous trigraphs on at most 8 vertices. Let T1 be the class of monoga-
mous trigraphs T whose vertex set can be partitioned into (possibly empty) sets
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A B

C DE

F

Fig. 2. A homogeneous pair.

X,K1, . . . , Kt so that T [X] is triangle-free, and K1, . . . , Kt are strong cliques
that are pairwise strongly anticomplete. Furthermore, for every v ∈ ∪t

i=1Ki, the
set of neighbors of v in X partitions into strong stable sets A and B such that
A is strongly complete to B. Let T1 = {T : T ∈ T1}. A trigraph is basic if it
belongs to T′ ∪ T1 ∪ T1. The following result is a direct consequence of the main
result of Chudnovsky. Note that this is a simplification of a much more detailed
characterization.

Theorem 1. (Chudnovsky [4–7]). If T is a bull-free monogamous trigraph,
then one of the following holds:

– T is basic;
– T has a homogeneous set;
– T has a small homogeneous pair; or
– T has a proper homogeneous pair.

We do not know whether the theorem above is algorithmic. Deciding whether
a graph is bull-free can clearly be done in polynomial time. Also, detecting the
decompositions is easy (see Sect. 4). The problem is with the basic classes. It
follows directly from a theorem of Farrugia [10] that deciding whether a graph
can be partitioned into a triangle-free part and a part that is disjoint union of
cliques is NP-complete. This does not mean that recognizing T1 is NP-complete,
because one could take advantage of several features, such as being bull-free or of
the full definition of T1 in [5]. We leave the recognition of T1 as an open question.

3 Extreme Decompositions

The way we use decompositions for computing stable sets requires building
blocks of decomposition and asking at least two questions for at least one block.
When this process is recursively applied it potentially leads to an exponential
blow-up even when the decomposition tree is linear in the size of the input
trigraph. This problem is bypassed here by using what we call extreme decom-
positions, that are decompositions whose one block of decomposition is basic
and therefore handled directly, without any recursive calls to the algorithm.
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In this section, we prove that non-basic trigraphs in our class actually have
extreme decompositions. We start by describing the blocks of decomposition for
the cutsets used in Theorem 1.

We say that (X,Y ) is a decomposition of a trigraph T if (X,Y ) is a partition
of V (T ) and either X is a homogeneous set of T , or X = A ∪ B where (A,B)
is a small homogeneous pair or a proper homogeneous pair of T . The block of
decomposition w.r.t. (X,Y ) that corresponds to X, denoted by TX , is defined as
follows. If X is a homogeneous set or a small homogeneous pair, then TX = T [X].
Otherwise, X = A ∪ B where (A,B) is a proper homogeneous pair, and TX

consists of T [X] together with marker vertices c and d such that c is strongly
complete to A, d is strongly complete to B, cd is a switchable pair, and there
are no other edges between {c, d} and A ∪ B. The block of decomposition w.r.t.
(X,Y ) that corresponds to Y , denoted by TY , is defined as follows. If X is a
homogeneous set, then let x be any vertex of X and let TY = T [Y ∪{x}]. In this
case x is called the marker vertex of TY . Otherwise, X = A∪B where (A,B) is a
homogeneous pair with split (A,B,C,D,E, F ). In this case TY consists of T [Y ]
together with two new marker vertices a and b such that a is strongly complete
to C ∪ E, b is strongly complete to D ∪ E, ab is a switchable pair, and there are
no other edges between {a, b} and C ∪ D ∪ E ∪ F .

Lemma 1. If (X,Y ) is a decomposition of a bull-free monogamous trigraph T ,
then the corresponding blocks TX and TY are bull-free monogamous trigraphs.

Let (X,Y ) be a decomposition of a trigraph T . We say that (X,Y ) is a homo-
geneous cut if X is a homogeneous set or X = A ∪ B where (A,B) is a proper
homogeneous pair. A homogeneous cut (X,Y ) is minimally-sided if there is no
homogeneous cut (X ′, Y ′) with X ′

� X.

Lemma 2. If (X,Y ) is a minimally-sided homogeneous cut of a trigraph T ,
then the block of decomposition TX , has no homogeneous cut.

Theorem 2. Let T be a bull-free monogamous trigraph that has a decompo-
sition. If T has a small homogeneous pair (A,B), then let X = A ∪ B and
Y = V (T )\X. Otherwise let (X,Y ) be minimally-sided homogeneous cut of T .
Then the block of decomposition TX is basic.

4 Algorithms for Finding Decompositions

The fastest known algorithm for finding a homogeneous set in a graph is linear
time (see Habib and Paul [14]) and the fastest one for the homogeneous pair runs
in time O(n2m) (see Habib, Mamcarz, and de Montgolfier [13]). But we cannot
use these algorithms safely here because we need minimally-sided decomposi-
tions with several technical requirements (“small”, “proper”) and we need our
algorithms to work for trigraphs. However, it turns out that all classical ideas
work well in our context.

A 4-tuple of vertices (a, b, c, d) of a trigraph is proper if ac and bd are strong
edges and bc and ad are strong antiedges. A proper 4-tuple (a, b, c, d) is compatible
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with a homogeneous pair (A,B) if a ∈ A, b ∈ B and c, d /∈ A ∪ B (note that
c, d must be respectively in the sets C,D from the definition of a split of a
homogeneous pair).

Lemma 3. Let T be a trigraph and Z = (a, b, c, d) a proper 4-tuple of T . There
is an O(n2) time algorithm that given a set R0 ⊆ V (T ) of size at least 3 such
that Z ∩ R0 = {a, b}, either outputs two sets A and B such that (A,B) is a
proper homogeneous pair of T compatible with Z and such that R0 ⊆ A ∪ B, or
outputs the true statement “There exists no proper homogeneous pair (A,B) in
T compatible with Z and such that R0 ⊆ A ∪ B”.

Moreover, when (A,B) is output, A ∪ B is minimal with respect to these
properties, meaning that A ∪ B ⊆ A′ ∪ B′ for every homogeneous pair (A′, B′)
satisfying the properties.

Lemma 4. Let T be a trigraph and (a, b) a pair of vertices from T . There is
an O(n2) time algorithm that given a set R0 ⊆ V (T ) such that a, b ∈ R0, either
outputs a homogeneous set X such that R0 ⊆ X, or outputs the true statement
“There exists no homogeneous set X in T such that R0 ⊆ X”.

Moreover, when X is output, X is minimal with respect to these properties,
meaning that X ⊆ X ′ for every homogeneous set X ′ satisfying the properties.

Theorem 3. There exists an O(n8) time algorithm whose input is a trigraph
T . The output is a small homogeneous pair of T if some exists. Otherwise, if
G has a homogeneous cut, then the output is a minimally-sided homogeneous
cut. Otherwise, the output is: “T has no small homogeneous pair, no proper
homogeneous pair and no homogeneous set”.

5 Weighted Trigraphs

For the sake of induction, we need to work with weighted trigraphs. Here, a
weight is a non-negative integer. By a weighted trigraph with weight function w,
we mean a trigraph T such that:

– every vertex a has a weight w(a);
– every switchable pair ab of T has a weight w(ab);
– for every switchable pair ab, max{w(a), w(b)} ≤ w(ab) ≤ w(a) + w(b).

Let S be a stable set of T . Recall that ν(T ) denotes the set of all strongly
antiadjacent pairs of T , and σ(T ) the set of all semiadjacent pairs of T . We set
c(S) = {v ∈ S : ∀u ∈ S\{v}, uv ∈ ν(T )}. We set σ(S) = {uv ∈ σ(T ) : u, v ∈ S}.
Observe that if T is monogamous, then for every vertex v of S, one and only one
of the following outcomes is true: v ∈ c(S) or for some unique w ∈ S, vw ∈ σ(S).
The weight of a stable set S is the sum of the weights of the vertices in c(S) and
of the weights of the (switchable) pairs in σ(S).

From here on, T is a weighted monogamous trigraph and α(T ) denotes the
maximum weight of a stable set of T . Our main concern now is to show that
deciding if α(T ) is at least k is FPT with parameter k.
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When (X,Y ) is a decomposition of T , we already defined the block TY . We
now explain how to give weights to the marker vertices and switchable pairs
in TY . Every vertex and switchable pair in T [Y ] keeps its weight. If X is a
homogeneous set, then the marker vertex x receives weight α(T [X]). If X = A∪B
where (A,B) is a homogeneous pair, then we give weight αA = α(T [A]) to
marker vertex a, αB = α(T [B]) to marker vertex b and αAB = α(T [A ∪ B]) to
the switchable pair ab. It is easy to check that the inequalities in the definition
of a weighted trigraph are satisfied.

Lemma 5. α(T ) = α(TY ).

6 Computing α in Bull-Free Graphs

In this section, we use positive weights (no vertex nor switchable pair in a tri-
graph has weight 0). Also, switchable pairs have weight at least 2.

Lemma 6. If T is a trigraph from T1, then T contains at most |V (T )|3 maximal
stable sets.

We need the next classical algorithm that we use as a subroutine. For faster
implementations (that we do not need here), see Makino and Uno [18].

Theorem 4. (Tsukiyama, Ide, Ariyoshi, and Shirakawa [22]). There
exists an algorithm for generating all maximal stable sets in a given graph G
that runs with O(nm) time delay (i.e. the computation time between any consec-
utive output is bounded by O(nm); and the first (resp. last) output occurs also
in O(nm) time after start (resp. before halt) of the algorithm).

Lemma 7. There exists an O(n4m) time algorithm whose input is any trigraph
T and whose output is a maximum weighted stable set of T , or a certificate that
T is not in T1.

Let R(x, y) be the smallest integer n such that every graph on at least n vertices
contains a clique of size x or a stable set of size y. By a classical theorem of
Ramsey, R(3, x) ≤

(
x+1
2

)
. We now define two functions g and f by g(x) =

(
x+1
2

)
−1 and f(x) = g(x)+ (x−1)(

(
g(x)
2

)
+2g(x)+1). Note that f(x) = O(x5).

The next lemma handles basic trigraphs.

Lemma 8. There exists an O(n4m)-time algorithm with the following specifi-
cations.

Input: A weighted monogamous basic trigraph T on n vertices, in which all
vertices have weight at least 1 and all switchable pairs have weight at least
2, with no homogeneous set, and a positive integer W .

Output: One of the following true statements.
1. n ≤ f(W );
2. the number of maximal stable sets in T is at most n3;
3. α(T ) ≥ W .
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Theorem 5. There is an algorithm with the following specification.

Input: A weighted monogamous bull-free trigraph T and a positive integer W .
Output:“YES” if α(T ) ≥ W and otherwise an independent set of maximum

weight.
Running time: 2O(W 5)n9

7 A Polynomial Turing-Kernel

Once an FPT-algorithm is found, the natural question is to ask for a polynomial
kernel for the problem. Precisely, is there a polynomial-time algorithm which
takes as input a bull-free graph G and a parameter k and outputs a bull-free
graph H with at most O(kc) vertices and some integer k′ such that G has a
stable set of size k if and only if H has a stable set of size k′. Unfortunately, the
problem is OR-compositional and thus we have the following:

Theorem 6. Unless NP ⊆ coNP/poly, there is no polynomial kernel for the
problem α(G) ≥ k, where G is a bull-free graph and k is the parameter.

Somewhat surprisingly, the non existence of a polynomial kernel is not related
to the hard core of the algorithm (computing the leaves) but is related to the
decomposition tree itself (since even complete sums cannot be handled). Indeed,
our algorithm is a kind of kernelisation: the answer is obtained in polynomial
time provided that we compute a stable set in a linear number of basic trigraphs
of size at most k5 (the leaves of our implicit decomposition tree). A similar
behaviour was discovered by Fernau et al. [12] in the case of finding a directed
tree with at least k leaves in a digraph (Maximum Leaf Outbranching problem):
a polynomial kernel does not exist, but n polynomial kernels can be found. In
our case, the leaves of the decomposition tree are pairwise dependent, hence our
method does not provide O(nc) independent kernels of size O(k5). It seems that
the notion of kernel is not robust enough to capture this kind of behaviour in
which the computationally hard cases of the problem admit polynomial kernels,
but the (computationally easy) decomposition structure does not.

Let f be a computable function. A parameterized problem has an f-Turing-
kernel (see Lokshtanov [16]) if there exists a constant c such that computing the
solution of any instance (X, k) can be done in O(nc) provided that we have unlim-
ited access to an oracle which can decide any instance (X ′, k′) where (X ′, k′) has
size at most f(k). Thus our algorithm can be restated as:

Theorem 7. Stability in bull-free weighted monogamous trigraphs has an O(k5)-
Turing-kernel.

To turn this result into the world of graphs, we need some operations casting
trigraphs into graphs. Let T be a weighted monogamous trigraph with weight
function w and a switchable pair ab. We now define four ways to get rid of the
switchable pair ab while keeping α the same. There are four ways because a
(resp. b) can be transformed into a strong edge or a strong antiedge.
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The weighted monogamous trigraph Ta→S (resp. Tb→S) is constructed as
follows: replace switchable pair ab with a strong edge ab; add a new vertex a′

(resp. b′) and make it strongly complete to NT (a)\{b} (resp. NT (b)\{a}) and
strongly anticomplete to the remaining vertices; keep the weights of vertices and
switchable pairs of T\{a} (resp. T\{b}) the same; assign the weight w(a) +
w(b)− w(ab) to a (resp. w(a) +w(b)− w(ab) to b) and the weight w(ab)− w(b)
to a′ (resp. w(ab) − w(a) to b′).

The weighted monogamous trigraph Ta→K (resp. Tb→K) is constructed as fol-
lows: replace switchable pair ab with a strong edge ab; add a new vertex a′ (resp.
b′) and make it strongly complete to {a} ∪ NT (a)\{b} (resp. {b} ∪ NT (b)\{a})
and strongly anticomplete to the remaining vertices; keep the weights of vertices
and switchable pairs of T\{a} (resp. T\{b}) the same; assign the weight w(a) to
a (resp. w(b) to b) and the weight w(ab)− w(b) to a′ (resp. w(ab)− w(a) to b′).

Note that by the inequalities in the definition of a weighted trigraph, all
weights of vertices in Ta→S , Tb→S , Ta→K and Tb→K are nonnegative.

Lemma 9. If T is a weighted monogamous trigraph and ab is a switchable pair
of T , then α(Ta→S) = α(Tb→S) = α(Ta→K) = α(Tb→K) = α(T ).

It is not the case that every (integer) weighted bull-free trigraph can be inter-
preted as an unweighted bull-free graph with the same α. However, if we start
with a bull-free graph and compute leaves of the decomposition tree, every
switchable pair in them is obtained at some point by shrinking a homogeneous
pair (A,B) of a trigraph T into a switchable pair ab of a trigraph T ′. Because
of the requirement that A is not strongly complete and not strongly anticom-
plete to B, we see that at least one of T ′

a→S , T ′
b→S , T ′

a→K or T ′
b→K is in fact an

induced subtrigraph of some semirealization of T (and recall that a trigraph is
bull-free if and only if all its semirealizations are bull-free). By Lemma 9, this
allows us to represent the weighted bull-free trigraphs generated by our Turing-
kernel as bull-free graphs with the same α. Finally, unweighting vertices being
simply done by substituting stable sets, we have:

Theorem 8. Stability in bull-free graphs has an O(k5)-Turing-kernel.
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