
Chapter 9
The Importance of the Strategy in Backward
Orbits

Carmen Pellicer-Lostao and Ricardo López-Ruiz

Abstract This work considers reversed evolution in dynamical systems. In partic-
ular, asymptotic behavior of chaotic systems, when their orbits evolve backward in
time. Reversed dynamics reveals important aspects of the trajectories, such as a new
necessary parameter. This is the strategy through which one orbit reaches an original
state in the past. As a result, it is found that backward orbits exhibit sensitivity to the
strategy. This gives additional evidence about the unpredictability of the past.

9.1 Introduction

Traditionally, the study of dynamical systems has been mostly concerned about
forward evolution, considering long term behavior of the orbits in the future. As a
consequence of these studies, chaos theory developed since the 1960s gave to an end
with the ideas about the possibility of predicting the future [8] in chaotic systems.
These ideas became the base of the well-known “butterfly effect,” which is the
property of nonlinear systems to have sensibility to initial conditions [9, 14]. Since
then, dynamical systems have been widely used to model many kind of phenomena
showing complex evolution and unpredictability in the distant future [7, 10, 13, 15].

Conversely, backward evolution of dynamical systems [2, 3, 5] can also be of
interest to model complex phenomena [4, 6, 11, 12]. Such as for example, to be able
to predict the origin of the evolution of a complex system given a known present
state. This work travels into the past states of the dynamical systems and analyzes
the asymptotic behavior of backward orbits. In particular, it will try to unravel some
amazing properties of predictability of earliest states of a system when coming from
a given state in the present.
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9.2 Backward Trajectories

An N dimensional iterative dynamical system is given by a function F : U ⊆ RN →
U that maps a state into a future state. Time is considered to be a discrete variable
and they are formulated as follows:

Xt+1 = F (Xt ) (9.1)

where t = 0, 1, . . . , n represents the temporal variable, X0,X1, . . . ,Xn are the
states of the system in different instants of time, and U is the region of the N -
dimensional space RN where the system evolves, also referred as the phase space.

The consecutive iterates of the system from an initial pointX0 is called the forward
orbit of X0 under F . It is customary to express the sequence of iterates that represent
the forward orbit as {F i(X0)}∞i=0, which is fully expanded in the following equation.

{F 0(X0) = X0,F 1(X0) = F (X0), . . . ,Fn+1(X0) = F (Fn(X0)), . . . } (9.2)

If the function F is invertible, we can also talk about the backward orbit of X0

under F , described as {F−i(X0)}∞i=0. Pairing the time variable with the space variable
gives us the full view of the evolution of the dynamical system:

{. . . , (t−n,F−n(X0)), .., (t−1,F−1(X0)), (t0,X0), (t1,F (X0)), .., (tn,Fn(X0)), . . . }
(9.3)

Considering chaotic systems, chaos requires F to be a nonlinear function. Con-
sequently, the inverse map F−1 is typically a multivalued function. This means that
there are multiple ways to map a unique future state into the past. Then, it will always
be necessary to define a strategy to map a state into a previous one.

To see that, observe for example Fig. 9.1. In this figure, a one-dimensional iterative
dynamical system, the tent map, and its inverse functions are depicted. In Fig. 9.1
(right), it can be seen that two different prior states X−1 are obtained, when iterating
backward from an initial state X0.

To produce a reversed orbit or backward orbit, it is necessary to select iteratively
one of these two values as we to follow our trip into the past. The selection of a
different path at any step means that it is necessary to choose a different strategy
of backward evolution. This is going to produce a different backward orbit and
presumably a different original state. Then, we can conclude that backward evolution
is deterministic only when the strategy is fully known. Also, a future state is not
necessarily linked to any fixed past state. This is so, in the sense that for a given
present state there are different options, that turn up to be possible prior states.

The above discussion is related in some way to iterated function system (IFS) [1]
formed by the collection of its inverse functions.

In fact, IFS provides a convenient framework to study this collection of functions.
However, we have to take into account that IFS perspective is quite different from
reverse dynamics. Actually, this is basically a geometric perspective, considering
these functions compressors of the phase space and global constructors of fractals.
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Fig. 9.1 (Left) Tent map and its inverse functions. (Right) Illustration of bivalued past sttes in the
inverse tent map

In this work, it is our interest to explore these systems from a temporal perspective.
Considering the temporal dimension, backward trajectories expose a new evidence
of nondeterminism worth to be explored. As a consequence, our objective is to
find out the relevance of the backward strategy and to seek for its significance in
reversed evolution. To study this, the mechanism of calculating the backward orbits
is expressed formally in the following section.

9.3 A New Parameter in Backward Dynamics

Let’s say, F is an noninvertible chaotic map, whose inverse map is a multivalued
function F−1. Let us suppose that the values of the inverse map at a point X−t are a
total of b possible X−(t+1) points, denoted as:

{F−1(X−t )}{b} (9.4)

To take a step backward in the evolution of the system, it is necessary to choose
one of these b values. Let us say that this decision may be called a backward selection
and let us represent it as s. In a backward iteration of n steps, it is necessary to make
n of such selections. Then, a series of selections can be called as a strategy of length
n and it will be denoted as Sn . Consequently, the strategy can be expressed as a
vector that stores the decisions taken at every step:

Sn = {si}i=n
i=1 = {s1, s2, .., sn} (9.5)

Here si describes the backward selection at instant −i.
Now, let us discuss how to code the values of a backward selection, si . Following

Eq. 9.4, the set of possible pasts of X−t at instant −i can expressed as:

{F−i(X−t )}{b} = {X−t−i}{b} (9.6)

To make a backward selection at instant −i is nothing but to pick one state out of
this set. Let us say that state k is chosen, being k = 0, 1, .., b − 1, and this state is
denoted as X

(k)
−t−i . Then the backward selection at instant −i is coded as si = k.
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Observe that with b possible values and n back steps, there will be a total of
bn possible back strategies Sn. Then let us express any of these possible backward
strategies as Sn

r , where the value of r is coded as follows:

r = s1 ∗ bn−1 + ...+ sn =
i=n∑
i=1

si ∗ bn−i (9.7)

From the discussion above, let us conclude that the calculus of a backward tra-
jectory of length n from a present point X0 = P according to the strategy Sn

r can be
obtained by applying the following iterative procedure:

X
(k)
−i = {F−i(X0)}(k), when k = si (9.8)

Here, k = 0, 1, ..., b − 1 and the iteration step is denoted by i = 0, 1, ..., n. This
means that to calculate a backward trajectory from P , given a specific strategy Sn

r ,
we need to set the initial point in the present X0 = P , then calculate n-times the
composite inverse map F−n choosing at each iteration −i one state out of all the
possible b past states. The selection X

(k)
−i is given by the value of si = k, the strategy

of backward evolution at step −i.
The strategy for traveling into the past appears here as a new parameter in the

evolution of the dynamic system. This parameter rules the strategy through which
one orbit reaches an original state in the past. Now, the point of interest is to consider
the predictability of the past states in terms of this strategy. To do that, a practical
example is considered in the following section. This illustrates the relevance of the
backward strategy in the dynamics of the system.

9.4 The Tent Map Moving Backward

A particular chaotic map is considered in order to illustrate the previous discussions
and measuring them in full detail. Simple examples make relevant concepts more
obvious. Then, for simplicity we take the skew tent map, whose F and F−1 are given
by the following equations:

xn+1 =
⎧⎨
⎩
xn/α, 0 ≤ xn ≤ α,

(xn − 1)/(α − 1), α ≤ xn ≤ 1,
(9.9)

xn−1 =
⎧⎨
⎩
αxn, 0 ≤ xn ≤ 1,

(α − 1)xn + 1, 0 ≤ xn ≤ 1,
(9.10)

This map has a parameter of evolution α, where α ∈ [0, 1].
The tent map and its inverse functions for the case of α = 0.3 are depicted in

Fig. 9.1, right and left, respectively. The figures illustrate how a forward iteration
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calculates the value of X0 = 0.2 from a previous state X−1 = 0.86. Continuing this
route of evolution the map advances into the future. Conversely, backward iteration
in the right panel of Fig. 9.1 shows how a future stateX0 = 0.2 produces two possible
previous states X−1 = 0.86 and X−1 = 0.06.

In Eqs. (9.9 and 9.10), it can be seen that two functions F−1[0, 1] → [0, 1] are
defined for the tent map in the range Xt ∈ [0, 1]. Then, the inverse map F−1(Xt ) is
a bivalued function and there are b = 2, two possible values of Xt−1 upon which we
can make a single backward selection s−1. These values are labeled X

(0)
t−1 and X

(1)
t−1.

Here the code of this selection means the following: when k = 0 the point in the
upper line of F−1 is chosen, and when k = 1 the lower line. Note that in this map
when Xt = 1, it occurs that X(0)

t−1 = X
(1)
t−1 = α. Then, for a given subset V ⊂ U

and Xt ∈ V , it is possible that a different number of inverse options [12] are found
and so, different values of b will exist for different V depending on the number of
precedents.

In a general form, it is possible to go n steps backward following a given Sn

strategy. In this case Sn is going to be a binary array of length n. The values si of
the strategy array Sn, are going to be either 0 or 1, depending on the selection of the
X

(0)
−i or X(1)

−i , respectively.
Additionally, chaotic maps are dependent on the parameters of evolution. Then,

backward dynamics is dependent on these parameters. As we can see in Eq. (9.10),
the inverse functions obtained for the tent map are dependent on α parameter . In the
following sections this dependence along with the strategy is illustrated.

9.4.1 Measuring Parameters of Backward Evolution

In this section, we will consider how we represent a given strategy and the details of
how this strategy rules the path to a given initial state in the past. To do that, consider
the case of moving from X0 = 0.2, n = 5 steps into the past. Then, one will find
bn = 25 = 32 different possible backward strategies, and so 32 different X−5 past
values giving rise to X0 = 0.2 in the future.

Let’s choose a strategy to travel into the past, such as for example S5
11 =

{0, 1, 0, 1, 1}, where r = 11 is calculated according to Eq. (9.7). This particular
S5

11 means that we move backward, choosing in the first step the upper branch of
F−1 in Fig. 9.1 (right), lower branch in the second step, upper in the third, and so
on. Table 9.1 and Fig. 9.2 show the details of this particular example.

Table 9.1 shows the details of the particular backward selections taken at every
step with strategy S5

11. The resulting backward orbit is called Ob and its values are
Ob = {0.2, 0.86, 0.258, 0.8194, 0.24582, 0.073746}. As we can see in this table, this
strategy lead the tent map to an initial state X−5 = 0.073746. This table reveals
the detail of every backward selection. At every step −i, two new possible values
{F−i(X0)}{2} = {X(0)

−i ,X
(1)
−i } are calculated.

The past state remains uncertain unless the strategy of backward selection is
defined. Then, it is the value of si , the one that fixes the next step into the past, X(si )

−i .
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Table 9.1 List of values for calculating backward trajectory Ob

i 0 1 2 3 4 5

X
(0)
−i 0.2 0.86 0.398 0.8194 0.42624 0.827926

X
(1)
−i – 0.06 0.258 0.0774 0.2458 0.073746

si – 0 1 0 1 1
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Fig. 9.2 (Left) Forward orbit Of and (right) backward orbit Ob to arrive Xn = 0.2 in five steps
from Xn−5 = 0.073746

The value of X(si )
−i is printed in italics in the table, to remark the selection taken at each

step. Then, this value X
(si )
−i produces two new possible past values {F−1(X(si )

−i )}{2} in
the next step and then, backward iteration continues selecting one value of {X−i}{2}
according to si until i = n is reached.

Figure 9.2 shows the graphics considered in this example, the forward orbit Of

and the backward orbit Ob. The points of this orbits are Of = {0.073746, 0.24582,
0.8194, 0.258, 0.86, 0.2} andOb = {0.2, 0.86, 0.258, 0.8194, 0.24582, 0.073746}. In
Fig. 9.2 (left), the forward orbitOf is obtained from its reversed associateOb Fig. 9.2
(right). Moving into the future from an initial state X−5 = 0.073746 is a complete
deterministic process. The tent map evolves inevitably from X−5 = 0.073746 to the
future state X0 = 0.2, following the determined orbit Of .

In contrast, it is interesting to remark that moving in reverse is a nondeterministic
process unless the strategy is fixed. Here Fig. 9.2 (right) shows in detail the points of
Ob. Ob is one of the 25 = 32 possible backward orbits considered in this example.
This particular trajectory Ob is obtained moving from X0 = 0.2 to X−5 = 0.073746
according to a specific selected strategy, S11 = {0, 1, 0, 1, 1}.

9.4.2 Deterministic Backward Evolution with a Strategy

It is observed that every strategy carries us to a particular different past state, while
traveling through different branches of the inverse tent map. From this, it is logical
to think that if other branches are visited in the travel to the past, the initial state
to which the system returns is going to be different than X−5 = 0.073746. To see
this, let us move from X0 = 0.2, n = 5 steps into the past and compute all different
backward origins X−5 given by the bn = 25 = 32 different possible backward
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Fig. 9.3 Points of all possible 32 backward orbits that start from X0 = 0.2, move n = 5 steps into
the past. A total of 215 = 32 different initial past states are found for X−5

strategies Sn
r . Figure 9.3 shows the backward computation of all possible values of

X−1,X−2,X−3, and X−4 obtained at every step, up to reaching an earliest state X−5.
The x-axis presents the backward steps and the y-axis the different values of X in
the interval [0, 1] obtained at every step. The dotted lines link the states obtained for
every different possible strategy.

In Fig. 9.3, it can be observed that moving n = 5 steps backward from an initial
state X0 = 0.2 is a nondeterministic process. In fact, there are as may as bn = 25 =
32 strategies that lead the system to 32 different initial past states. It can be seen that
every strategy takes the system to a completely different X−5 point in the past. The
interested reader can easily recognize in this figure the particular backward orbit Ob

illustrated in Table 9.1 and Fig. 9.2 (right).
As a result, it can be said that reversed dynamics is sensitive to the backward

strategy. That situation is similar to the sensitivity to initial conditions observed in
forward dynamics. Note that a small change in the trajectory, modifying just one
si will lead the system to a completely different original state. Also note that as we
travel deeper into the past, many more possible origins may appear and the origin of
the system will be more difficult to predict, if the strategy is not recalled precisely.
This can be explicitly seen in Fig. 9.4 (left) where we take the evolution of n = 10
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Fig. 9.4 (Left) Points of all possible 210 backward orbits, that start from X0 = 0.2 with α = 0.3,
move n = 10 steps into the past, and arrive to 1024 different initial past states, X−10. (Right) Points
of all possible 25 backward orbits, that start from X0 = 0.2 with α = 0.9, move n = 10 steps into
the past, and arrive to 32 different initial past states, X−5

steps into the past instead of n = 5 as in Fig. 9.3. In Fig. 9.4 (left) there are 210

possible backward orbits and the same number of possible past points X−10. A small
change in the strategy takes us to a very different past state.

Therefore, similarly to the “Butterfly effect” observed in forward dynamics, the
sensitivity to the strategy tells us something important about the uncertainty of the
past. It is impossible to predict the origin of a system unless the strategy is precisely
known. It also can be said that, accurate data of a strategy may be unfeasible when
the origin is remote and exceeds the physical capabilities of knowledge. This gives
some evidence for the unpredictability of the past.

To illustrate dependence of backward dynamics to the other parameters of evo-
lution, Fig. 9.4 (right) displays the 25 possible backward orbits that can be obtained
moving n = 5 steps backward from an initial state X0 = 0.2 when α = 0.9. This
figure can be compared with Fig. 9.3 where α = 0.3 and compare the difference
obtained in the orbits when the parameter α = 0.9.

9.4.3 Sensitivity of Backward Evolution with the Strategy

Finally, let us measure the sensitivity of past trajectories to the backward strategy.
To do that, let us take the same case as before, traveling backward n steps into the
past form X0 = 0.2 with F−1 of Eqs. (9.9 and 9.10) and α = 0.3. The initial state
X−n is calculated for any of the 2n possible strategies, that takes the inverse tent map
from X0 = 0.2 to X−n. As it was shown before, for every different strategy Sn

r a
different origin point X−n is produced. It can also be seen that as n grows and the
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Fig. 9.5 Representations of 210 = 1024 possible past points obtained for a trip of n = 10 steps
into the past from X0 = 0.2 with α = 0.3

system travels deeper into the past, the values of X−n spread in a fractal way over
the interval of the phase space U = [0, 1].

To illustrate these facts, the pairs (X−n, r/2n) are plotted in Fig. 9.5. Here r is
the number of the strategy Sn

r that leads to the state X−n in the past. This number
is normalized to one, taking r/2n, in order to get a representation independent of n,
the number of steps into the past. In Fig. 9.5, a total of n = 10 is considered and
so, a total of 210 = 1024 different strategies are depicted. The y-axis represent the
normalized value r/2n of the number of the strategy and the x-axis the past state X−n

reached with strategy number r . This figure can be a more useful representation than
Fig. 9.3 in order to show all the possible X−n states in a travel to a remoter past state.

As it is observed in this figure, the unpredictability of the original state can be
appreciated graphically. This is due to the sensitivity to the backward strategy. In
particular, three important facts are observed. The first one is that the values of X−n

spread in a fractal way over the phase space, the interval U = [0, 1], in accordance
with IFS framework [1]. The second is that when n grows and the system travels
deeper into the past, many more possible values of X−n arise. And the third one is
that strategies differing just a single bit give very different initial states, that again
spread in a fractal way over the phase space.

This means that traveling into an initial state in the past requires recalling every
decision in the strategy. If a single bit of the strategy is forgotten the system arrives
to a different past origin. This can be explicitly seen in Fig. 9.6 (left) where we take
the evolution of n = 18 steps into the past instead of n = 10 as in Fig. 9.5. In Fig. 9.6
(left) there are 218 possible backward orbits and the same number of possible past
points X−18. A small change in the number of the strategy take us to a very different
past state.
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Fig. 9.6 (Left) Representations of 218 = 262144 possible past points obtained for a trip of n = 18
steps into the past from X0 = 0.2 with α = 0.3. (Right) Representations of 210 = 1024 possible
past points obtained for a trip of n = 10 steps into the past from X0 = 0.2 with α = 0.5

These results give a new perspective for modeling the origins of complex sys-
tems. They offer a complementary point of view to the “butterfly effect” observed
in forward dynamics. The study of reversed dynamics reveals that it is impossible to
discover the remote origin of complex phenomena. This is so, because this calculus
exceeds the capabilities of knowledge, when the origin is in the distant past. Put it in
another words, for chaotic systems not only the far future, but also the remote past
is unpredictable.

At this point let us remark that the unpredictability of future phenomena has
had great significance for applied sciences. The theory of complex systems has
given new perspectives to sciences where chaotic behaviors have been observed like
meteorology [9], economy [7], or others. In those sciences the discovery of the future
has been granted as limited. One striking example can be the present economic and
financial crisis, not predicted by anyone. Hence, the future is taken as uncertain and
it is gradually enlightened at every forward step. Conversely, the acknowledgment
of the unpredictability of the past exposes a new perspective to applied sciences, that
model the origin of complex phenomena. These sciences must consider the irony of
this uncertainty and be aware that the discovery of past must be granted as limited.
The past must be taken as uncertain, and it will only be gradually enlightened at
every backward step we make.

To illustrate dependence of backward dynamics to the other parameters of evolu-
tion, Fig. 9.6 (right) displays the 210 possible backward orbits that can be obtained
moving n = 10 steps backward from an initial state X0 = 0.2 when α = 0.5. This
figure can be compared with Fig. 9.5 where α = 0.3 and compare the difference of
the fractal depicted in x-axis when the parameter α = 0.5.

9.5 Conclusions

Reversed dynamics shows amazing mathematical aspects of the structure of the
trajectories. Precisely, it can be said that it is possible to construct backward orbits
and travel with reversed dynamics to the initial state of a nonlinear system. This is
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done through a new parameter of dynamical evolution, the so called the backward
strategy. Backward dynamics demonstrates high sensitivity to this strategy. Hence,
to calculate the earliest state of the system requires to recall precisely every step in the
past history of the system. If a single bit of the strategy is forgotten or misunderstood,
the system arrives to a completely different original state. In this sense and from an
asymptotic perspective, it can be concluded that the past is, in fact, unpredictable.

This can sound as a tautology but it could have some consequence in the studies of
complex phenomena. In noninvertible dynamical systems, not only the far future can
be chaotic and unpredictable, but the remote past is also uncertain. Applied sciences
that model the origin of the evolution of complex systems must be aware of that, just
that the discovery of the past must be taken as limited.

In summary, this work portrays the relevance of the strategy in backward orbits.
Backward dynamics turns out to be sensitive to the strategy and that makes it eligible
as a new parameter of the evolution of dynamical systems. Considering that so, the
strategy takes us to the evidence of the unpredictability of the past.
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