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Kinetic Exchange Models in Economics
and Sociology
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Abstract In this chapter, we briefly review the different aspects and applications of
kinetic exchange models in economics and sociology. Our main aim is to show in
what manner the kinetic exchange models for closed economic systems were inspired
by the kinetic theory of gas molecules. The simple yet powerful framework of kinetic
theory, first proposed in 1738, led to the successful development of statistical physics
of gases towards the end of the nineteenth century. This framework was successfully
adapted to modelling of wealth distributions in the early 2000s. In later times, it
was applied to other areas like firm dynamics and opinion formation in the society,
as well. We have tried to present the flavour of the several models proposed and
their applications, intentionally leaving out the intricate mathematical and technical
details.

4.1 Introduction

The aim of statistical physics is to study the physical properties of macroscopic
systems consisting of a large number of particles. In such large systems, the number
of particles is of the order of Avogadro number. Thus, it is extremely difficult to have
a complete microscopic description of such a system, both experimentally and by
the way of solving equations of motion. In spite of the complexity of such systems,
they exhibit some macroscopic observable quantities, which represent averages over
microscopic properties [1–3].

A society can be described as a group of people sharing the same geographical or
social territory and involved with each other by means of sharing different aspects
of life.
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In sociology, a branch of social sciences, one studies the human social behaviour
in a society. Economics is another branch of the social sciences which analyses the
production, distribution, and consumption of goods and services. Since the society
is usually formed with a very large number of people, the study of an individual
is extremely difficult. However in various cases, one can observe and character-
ize some average behaviour of the people, e.g. in case of a voting a large number
of people selects a particular opinion. Similar to many physical phenomena, quite
well-understood by physicists, it has been found that a study of crime, a social phe-
nomenon, displays a first-order transition between states of high- and low-crime rates
as a function of severity of the criminal justice system. Also, a model of marriage,
another social phenomenon, shows critical behaviour such that the relation among
marriage rates, economic incentives, and social pressures show a surface similar to a
P -V -T surface of a fluid. Also, the dynamical nature of interaction of any economic
sector which is composed of a large number of cooperatively interacting agents, has
many features in common with the interacting systems of statistical physics. These
naïvely suggest that study of society as viewed by the economists and sociologists,
can also be done using the tools of statistical mechanics developed by the physicists.
The application of statistical mechanics to the fields of economics and sociology have
resulted in the interdisciplinary fields namely “econophysics” [4] and “sociophysics”
[5]. According to P. Ball [6],

At face value, there might seem to be little room left for statistical physics to make a realistic
contribution. But if there is one message that emerges clearly from this discipline, it is that
sometimes the details do not matter. That, in a nutshell, is what is meant by universality.
It does not matter that the Ising model is a ridiculously crude description of a real fluid;
they both have the same behaviour at the critical point because in that circumstance only
the broad-brush features of the system, such as the dimensionality and range of particle
interactions, determine the behaviour.

The kinetic exchange model is one of the simplest models in statistical mechanics,
which derives the average macroscopic behaviours from the microscopic properties
of particles. The kinetic exchange model is in general based on the exchange of
energy among particles due to elastic collisions occurring among them. Bernoulli, in
1738, gave a complete description of the movement and activities of gas molecules
in Hydrodynamica which is well known as “Kinetic theory of gases”. This attempt
was later developed and formalized by several other pioneers of “Statistical Ther-
modynamics”, such as Clausius, Maxwell, Boltzmann, Planck, and Gibbs. In this
chapter, we will present some existing models in several fields of, not only natural
sciences but also social sciences, such as economics and sociology [7].

4.2 Kinetic Exchange Models in Economics

An economy can be studied in various ways. For example, one can study the economy
in the light of individual’s wealth as well as production of goods or wealth by firms
in that economy. The economy consists of a large number of firms populated by



4 Kinetic Exchange Models in Economics and Sociology 71

workers. By firms we mean production units, each and every one of which is capable
of producing any kind of goods and services.

The famous Italian economist Vilfredo Pareto, in 1897, observed that the income
distribution in Europe follow a power-law tail [8]. The tail-end distribution of income
is given as,

p(m) ∼ m−(1+ν), (4.1)

where ν is called the Pareto exponent. The value of the exponent as measured by
Pareto for different kingdoms and countries varied between 1.1 to 1.7 [8]. Pareto also
observed that roughly 80% of the total wealth is limited to the hands of only 20%
people of the society; this signifies that there is a small finite number of extremely
rich people in a society.

Several surveys were done to verify Pareto law. Japanese, Australian, and Italian
personal income distribution have been shown to have a log-normal distribution for
the lower income range and a power-law tail at higher income portion [9–11]. In
India, studies revealed that the income of rich people follow power-law distribution
[12]. Similar thing is observed for the income and wealth distribution in the modern
USA and UK [13, 14], and other countries. All these studies show the evidence of
the power law tail but the Pareto exponent is found to vary between 1 and 3 [4, 9–22].

In any society or country, one finds that the total wealth remains fairly constant on
a longer time scale than its movement from individual to individual. This is because
the dynamics of the latter occurs at shorter time scales (e.g., daily or weekly). This
in turn results in very robust type of wealth distributions. Empirical data for society
show a small variation in the value of the power-law exponent at the “tail” of the
distribution, while it equals to unity for firms.

The interesting question is then, why is such “universal” behaviour as the
widespread Pareto law, observed in the case of wealth distribution in the society.
To this aim, a number of models have been proposed to reproduce these observed
features, specifically to obtain a power-law tail as was observed in empirical data.
Many of these models have been inspired by the kinetic theory of gas-like exchanges.
Notably, in 1960, the mathematician and economist Mandelbrot, wrote:

There is a great temptation to consider the exchanges of money which occur in economic
interaction as analogous to the exchanges of energy which occur in physical shocks between
molecules. In the loosest possible terms, both kinds of interactions should lead to similar
states of equilibrium. That is, one should be able to explain the law of income distribution
by a model similar to that used in statistical thermodynamics: many authors have done so
explicitly, and all the others of whom we know have done so implicitly.

4.2.1 Ideal Gas-Like Kinetic Wealth Exchange Models (KWEM)

A trading process may be realized in a manner similar to the gas molecules exchang-
ing energy in the kinetic theory of gases, where now a pair of traders exchange
wealth, respecting local conservation in any trading [23–30]. These models have a
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Fig. 4.1 A typical example of
two agents i and j taking part
in a trading process. Agent i
and j have wealth mi (t) and
mj (t) at time t . After a trading
their wealth become mi (t + 1)
and mj (t + 1) respectively

  m  (t)m  (t)
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microcanonical description and nobody ends up with negative wealth (i.e. debt is
not allowed). Thus, for two agents i and j with wealth mi(t) and mj (t) at time t , the
general trading is given by:

mi(t + 1) = mi(t) +Δm; mj (t + 1) = mj (t) −Δm; (4.2)

time t changes by one unit after each trading. A typical wealth exchange process is
shown in Fig. 4.1.

4.2.1.1 Model with No Saving

In a simple conservative model proposed by Drăgulescu andYakovenko (DY model)
[25], N agents exchange wealth randomly keeping the total wealth M constant. The
simplest model considers a random fraction of total wealth to be shared:

Δm = εij (mi(t) +mj (t)) −mi(t), (4.3)

where εij is a random fraction (0 ≤ εij ≤ 1). The steady-state (t → ∞) wealth
follows a Boltzmann–Gibbs distribution: P (m) = (1/T ) exp (−m/T ); T = M/N ,
a result which is robust and independent of the topology of the (undirected) exchange
space [27, 28].

The Boltzmann–Gibbs distribution, a fundamental law of equilibrium statistical
mechanics, states that the probability P (ε) of finding a physical system or subsystem
in a state with the energy ε is given by the exponential function

P (ε) = ceε/T .

Here, the conserved quantity is the total energy.
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If m1 > m2 and the agents share some random fraction of wealth 2m2 and not of
the total (m1 +m2), which indicates trading at the level of lower economic class in
the trade, then all the wealth in the market drifts to one agent drastically [31, 32]. In
[33], different approaches to obtain the exponential Boltzmann–Gibbs distribution
have been addressed and a new operator in the framework of functional iteration
theory has been proposed. It shows the exponential distribution to be ubiquitous
in the framework of many multi-agent systems, not only economic ones but more
diverse ones which have some economic inspiration included.

4.2.1.2 Model with Uniform Saving

An additional concept of saving propensity was considered first by Chakraborti and
Chakrabarti [26] (CC model hereafter). Here, the agents save a fixed fraction λ of
their wealth when interacting with another agent. Thus, two agents with initial wealth
mi(t) and mj (t) at time t interact such that they end up with wealth mi(t + 1) and
mj (t + 1) given by

mi(t + 1) = λmi(t) + εij
[
(1 − λ)(mi(t) +mj (t))

]
,

mj (t + 1) = λmj (t) + (1 − εij )
[
(1 − λ)(mi(t) +mj (t))

]
; (4.4)

εij being a random fraction between 0 and 1, modelling the stochastic nature of the
trading. It is easy to see that theλ = 0 case is equivalent to the DY model—the market
is noninteracting in this case, and the most probable wealth per agent is 0 here. The
market is again noninteracting for λ = 1 when the most probable wealth per agent
is M/N . We have a so-called “interacting” market when λ has any nonvanishing
value between 0 and 1. The steady state distribution P (m) is exponentially decaying
on both sides. It is interesting to note that, the most probable value for such λ’s is
something in between 0 and M/N so that the fraction of deprived people decrease
with saving fraction λ and most people end up with some finite fraction of the average
wealth in the market. This is a “self-organizing” feature of the market. This results
in completely different types of wealth distribution curves, very well approximated
by Gamma distributions [34–36] given by,

P (m) = Cmα exp (−m/T ), (4.5)

where T = 1
α+1 and C = (α+1)α+1

Γ (α+1) . The exponent α is related to the saving propensity
λ by the relation :

α = 3λ

1 − λ
. (4.6)

The λ = 0 limit can be verified from the above results. This fits well to empirical data
for low and middle wealth regime [9–14, 19–22]. The model features are somewhat
similar toAngle’s work [37, 38]. Obviously, the CC model did not lead to the expected
behaviour according to Pareto law.
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In [39–41], the equivalence between kinetic wealth-exchange models and me-
chanical models of particles was shown and the universality of the underlying
dynamics was studied both through a variational approach based on the minimiza-
tion of the Boltzmann entropy and a microscopic analysis of the collision dynamics
of molecules in a gas. In case of systems with a homogeneous quadratic Hamilto-
nian and N (effective) degrees of freedom, the canonical equilibrium distribution
is a gamma distribution of order N/2. For the CC model, the effective dimension
N = 2(1+ α) = 2 1+2λ

1−λ
and therefore, the corresponding distribution has the special

property that it becomes a Dirac-δ or fair distribution when λ → 1 or N (λ) →∞.

4.2.1.3 Model with Distributed Savings

In a later model proposed by Chatterjee et al. [42, 43] (CCM model hereafter) it was
assumed that the saving propensity has a distribution and this immediately led to a
wealth distribution curve with a Pareto-like tail having ν = 1. Here,

mi(t + 1) = λimi(t) + εij
[
(1 − λi)mi(t) + (1 − λj )mj (t)

]
,

mj (t + 1) = λjmj (t) + (1 − εij )
[
(1 − λi)mi(t) + (1 − λj )mj (t)

]
; (4.7)

which are different from the CC model equations as λ’s are now agent dependent.
The steady state wealth distribution gave rise to a power law tail with exponent 2.
Various studies on the CCM model have been made soon after [44–55].

Manna et al. [56] used a preferential selection rule using a pair of continuously
tunable parameters upon traders with distributed saving propensities and was able
to mimic the trend of enhanced rates of trading of the rich. The wealth distribution
was found to follow Pareto law. It might be mentioned that in a similar context of
preferential selection rules in wealth exchange processes, Iglesias et al. [57, 58] had
considered much earlier a model for the economy, where the poorest in the society at
any stage takes the initiative to go for a trade (random wealth exchange) with anyone
else. Interestingly, in the steady state, one obtained a self-organized poverty line,
below which none could be found and above which, a standard exponential decay of
the distribution (Gibbs) was obtained.

4.2.1.4 Extended CCM Model

In the extended CCM model [59, 60], a trade takes place between two agents in such
a way that the investments of both agents are the same. For two agents i and j having
wealth mi and mj respectively, the “effective” saving propensities are λi = mi

mi+mj

and λj = mj

mi+mj
respectively, which are functions of time. It is observed that in

steady state, the wealth condenses to a single agent, a feature very similar to the
results obtained by Chakraborti [31]. By introducing taxation in the system not only
condensation can be avoided but at the same time the model tends towards reality.
The tax is applied for the agents who have wealth greater than the average wealth
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and this tax is collected periodically after a constant time interval. The total collected
tax is then redistributed over all the agents. It is found that the distribution of wealth
again has a power law tail with exponent 1.5.

4.2.2 Model with Phase Transition

In [61], the authors introduced the concept of “poverty line”, i.e. a threshold θ , in
the CCM model. A trade between two agents occurs as it is in the CCM model but
with the restriction that at least one of the two agents should possess wealth less than
θ . However, if all agents accumulate wealth greater than θ , then in such a situation
the dynamics stops. To continue the dynamics a perturbation is applied such that a
particle having energy above θ is selected randomly and its energy fully transferred
to any other particle. The maximum limit of the threshold value θ below which the
dynamics is stopped within some finite time, is the critical value of the threshold θc.
The order parameter O is defined as the average total number of agents having wealth
less than θ , i.e. O = ∫ θ

0 P (m)dm, where P (m) is the wealth distribution. After a
certain “relaxation time” τ , the system attains a steady state and several quantities
are measured. If the order parameter O is plotted against θ , it is observed that after
the point θ = θc = 0.6075 the order parameter increases. The model thus has a
“phase transition” near θc below which the number of particles in the steady state
goes to zero. Near the critical point, the order parameter obeys a scaling form as
O ∼ (θ − θc)β , where β = 0.97 is the order parameter exponent. Time variation of
the order parameter has the scaling form O(t) ∼ t δ with exponent δ = 0.93. Also a
clear time scale divergence behaviour is observed with scaling form τ ∼ |θ − θc|−z.

4.2.3 Nature of Transactions in Gas-Like Models
with Distributed Savings

The agent dynamics for models with saving propensity can be studied with emphasis
on the nature of transactions, i.e. whether it is a gain or a loss [62]. In order to
study the dynamics of the transactions (i.e. gain or loss), a walk was conceived for
the agents in an abstract one dimensional gain-loss space (GLS) where the agents
conventionally take a step towards right if a gain is made and left otherwise. Here the
amount of gain or loss was not considered, i.e. whatever be the amount of gain or loss,
the step length is only 1. If it is a gain, the corresponding walker moves one step to
the right and if it is a loss, walker moves one step to the left. For better understanding
this is shown in Fig. 4.2. It can be observed that in the CCM model, the amount of
wealth gained or lost by a tagged agent in a single interaction follows a distribution
which is not symmetric in general, well after equilibrium has been reached. The
distribution depends strongly on the saving propensity of the agent. For example, an
agent with larger λ suffers more losses of less denomination compared to an agent
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Fig. 4.2 Above : Plot of wealth M of an agent in different steps. Below : Plot of the distance
travelled x in the gain–loss space by the corresponding walker. Note that, whatever be the amount
of gain or loss, the step length of the walker is only 1

with smaller λ, although, in this case, the total wealth of the two agents has reached
equilibrium, i.e. each agent’s wealth fluctuates around a λ dependent value.

For such a walk, it can be found that 〈x〉, the distance travelled, scales linearly
with time t suggesting a ballistic nature of the walk for the CCM walk. Moreover,
the slope of the 〈x〉 versus t curves is dependent on λ; it is positive for small λ and
continuously goes to negative values for larger values of λ. The slope becomes zero
at a value of λ∗ � 0.469. In general for the CCM walk 〈x2〉 scales with t2 . For the
CC model on the other hand, 〈x2〉 scaled with t as in a random walk while 〈x〉 ≈ 0.
The above results naïvely suggests that the walk in the GLS is like a biased random
walk (BRW; except perhaps at λ∗) for the CCM model while it is like a random walk
(RW) for the CC model.
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4.2.4 Antipersistence Effect in CC/CCM Walk

In [63], the exact nature of the walk associated with CC and CCM model was explored
and it was shown through the effective bias p associated with the walks, distribution
of walk lengths at a stretch, etc. that CCM is not a simple BRW and CC is not a
simple RW.

For BRW, the probability of direction reversal is simply 2p(1 − p) which has a
maximum value of 1/2 for p = 1/2. But for CCM, the direction reversal probability
f is greater than 1/2 for all λ < 1 and f → 1/2 for λ → 1. Through further analysis
of time correlation and other relevant quantities it was shown that direction reversal
is preferred in these cases [63]. In the equivalent picture of the walk in the abstract
space for gains and losses, it is similar to the fact that here individuals has a tendency
to make a gain immediately after a loss and vice versa. This so called antipersistence
effect is in fact compatible with human psychology where one can afford to incur a
loss after a gain and will try to have a gain after suffering a loss.

It was also shown in [63] that the “antipersistence effect” is maximum for no
saving and decreases with saving. This is perhaps in tune with the human feeling of
security associated with the saving factor. In the CCM model, the saving propensity
is randomly distributed and the antipersistence effect occurs with a simultaneous bias
that too depends on λ.

4.2.5 Firm Dynamics

Size of a firm is measured by the strength of its workers. A firm grows when worker
leaves another firm and joins it. The rate at which a firm gains or loses workers
is called the “turnover rate” in economics literature. Thus, there is a redistribution
of workers and the corresponding dynamics can be studied. In the models of firm
dynamics, one assumes the following facts :

1. Any formal unemployment is avoided in the model. Thus, one does not have to
keep track of the mass of workers who are moving in and out of the employed
workers’ pool.

2. The workers are treated as a continuous variable.
3. The definition that size of a firm is just the mass of workers working in the firm,

is adopted.

In firm dynamics models, we may make an analogy with the previous subsections
that firms are agents and the number of workers in the firm is its wealth. Assuming
no migration, birth and death of workers, the economy thus remains conserved. As
the “turnover rate” dictates both the inflow and outflow of workers, we need another
parameter to describe only the outflow. That parameter may be termed as “retention
rate”, which describes the fraction of workers who decide to stay back in their firm.
This is identical to saving propensity in wealth exchange models, discussed earlier.
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4.2.5.1 Model with Constant Retention Rate

In this model [64, 65], the economy was considered to have N firms and any firm
could absorb any number of workers. Initially, all firms have one unit of workers.
The retention rate is denoted by λ. For this model, the retention rate of all firms are
taken to be identical, as was in [26], which in reality is not true. The size of the ith
firm was wi (i ≤ N ). At each time, it was considered that (1 − λ) fraction of the
workforce of n firms (not N !), wanted to leave voluntarily or the firms wanted them
to leave. The dynamics for the ith firm can be given as follows :

wi(t + 1) = λwi(t) + εi(t+1)(1 − λ)
n∑
j

wj (t), (4.8)

where εi(t+1) are random variables which describes the fraction of workers actually
moved to the ith firm at time t + 1 among those who wanted to move. Note that,
we use t within the first bracket when referring to the endogenous variables1 like
the size of the firm wi(t) and the same in subscript when referring to the exogenous
random variables2 εi(t).

Restrictions on ε

1.
∑n

j εj (t) = 1 for all t as the economy should be conserved.
2. Expectation E(εi) = 1/n for all i indicating that distributions of all εi’s are

identical.
3. If n = 2, εi ∼ [0, 1] so that at the lower limit of n, CC/CCM can be got back.

An exact solution was given in [64, 65] where it was assumed that all firms interact
at every step. The steady-state distribution of the firms was shown to be

f (w) = lim
k̄→∞

k̄∑
i=1

φi exp ( − φiw)
k̄∏

i=1,j 
=i

(
φj

φj − φi

), (4.9)

where φi = 1
λi (1−λ) .

4.2.5.2 Model with Distributed Retention Rate

Here instead of a fixed retention rate, we consider distributed λ, i.e. Eq. 4.8 can now
be written as

wi(t + 1) = λiwi(t) + εi(t+1)

n∑
j

(1 − λj )wj (t). (4.10)

1 A classification of a variable generated by a statistical model that is explained by the relationships
between functions within the model.
2 A variable whose value is determined outside the model in which it is used.



4 Kinetic Exchange Models in Economics and Sociology 79

The distribution of firm sizes can be shown to be a powerlaw, by calculations similar
to the one followed in [45].

4.2.5.3 Model with Time-Varying Retention Rate

In this model, the retention rate λ was taken to be a function of the evolving variable,
the work-force w [64, 65]. Thus Eq. 4.8 can be modified in the following way,

wi(t + 1) = λ(wi(t))wi(t) + εi(t+1)(1 − λ(wi(t)))
n∑
j

wj (t). (4.11)

Following [64, 65] the functional form of λ can be assumed as,

λ(w) = c1(1 − exp ( − c2w)); c1, c2 are constants, (4.12)

which signifies a more realistic scenario that retention rate increases as current work-
force increases. This model leads to prominent bimodality in the size distribution of
firms [64, 65]. This has been empirically found in the developing economies.

4.3 Kinetic Exchange Models in Sociology

Social systems offer some of the richest complex dynamical systems, which can be
studied using the standard tools of statistical physics. The study of Sociophysics
became popular in the last part of twentieth century [41, 66–68].

Auguste Comte used the term “social physics” in his 1842 work. He defined social
physics as the study of the laws of society or the science of civilization. In particular,
Comte (1856) stated that,

Now that the human mind has grasped celestial and terrestrial physics, mechanical and
chemical, organic physics, both vegetable and animal, there remains one science, to fill up the
series of sciences or observation—social physics. This is what men have now most need of...

Emergence of consensus is an important issue in sociophysics problems. Here, peo-
ple interact to select an option among different options of a subject which may be
vote, language, culture, opinion, etc. This then leads to a state of consensus. In opin-
ion formation, consensus is an “ordered Phase”, where most of the people have a
particular opinion. Several models can be proposed to mimic the dynamics of opin-
ion spreading. In the models of opinion dynamics, opinions are usually modelled
as discrete or continuous variables and are subject to either spontaneous changes or
changes due to binary interactions, global feedback, and external factors (see [66]
for a general review).
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However, in this chapter, only kinetic exchange models of opinion dynamics,
analogous to the ones in economics is discussed. These models are named after
Lallouache, Chakrabarti, Chakraborti, and Chakrabarti and are called LCCC model
hereafter. The opinions of individuals are assumed to be continuous variables in
[−1, 1] and change due to binary interactions. The tuning parameter in these models
is “conviction” λ, which is similar to the “saving propensity” as in KWEM. It deter-
mines the extent to which one remains biased to its own opinion, while interacting
with the other. Unlike KWEM, there is no stepwise opinion conservation.

4.3.1 LCCC Model

In this model [69, 70], opinion can be shared only in the two-body interaction mode.
At any time t a person i is assigned with an opinion value oi(t) ∈ [ − 1, 1]. For two
persons i and j , the interaction can be described in the following way :

oi(t + 1) = λ[oi(t) + εoj (t)],

oj (t + 1) = λ[oj (t) + ε′oi(t)], (4.13)

where ε and ε′ are uncorrelated random numbers between 0 and 1.
This type of interactions lead to a polarity or consensus formation depending

upon the value of λ. The steady state average opinion after a long time t would be
given by O =∑i |oi |/N . This represents the “ordering” in the system. The system
starts from a random disordered state (O ∼ 0) and after a certain relaxation time
t = τ moves to the “para” or “absorbing” state where all individual agents have zero
opinion for λ ≤ 2/3 or continuously changes to a “symmetry broken” or “active”
state where all individuals have opinion of same sign for λ ≥ 2/3. The variance of
O shows a cusp near λ = 2/3. The growth behaviour of the fraction of agents p

having extreme opinions oi = ±1 was found to be similar to O [71]. The relaxation
time behaviour of the system shows a critical divergence of τ , τ ∼ |λ − λc|−z for
both O and p at λ = λc = 2/3. Values of z for O and p are 1.0± 0.1 and 0.7± 0.1,
respectively.

Notably, this model with interactions has a behaviour very similar to the simple
iterative map,

y(t + 1) = λ(1 + εt )y(t), (4.14)

with y ≤ 1, where it was assumed that if y(t) ≥ 1, y(t) will be set equal to 1.
εt ∈ [0, 1] is a stochastic variable. In a mean-field approach Eq. 4.14 reduces to

y(t + 1) = λ(1 + 〈εt 〉)y(t), (4.15)

where 〈εt 〉 = 1/2. For λ ≤ 2/3 y(t) converges to 0. An analytical derivation for
the critical point was also given where it was found that λc = exp{−(2 ln 2 − 1)} ≈
0.6796.
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4.3.1.1 Generalized LCCC Model

In the generalized LCCC model [72], another parameter μ is introduced which is
called the “influence” parameter. It is a measure of the influencing power or the
ability of an individual to impose its opinion on some other individual. Thus the
interactions are described as follows,

oi(t + 1) = λioi(t) + εμjoj (t),

oj (t + 1) = λjoj (t) + ε′μioi(t). (4.16)

Note that here conviction and influence parameters of individual agents are different
which lead to inhomogeneity in the society. In a simpler version, we may consider
a homogeneous society so that all λ’s of different people are same. Also μ’s for
different people are same.

In this generalized version, the average opinion shows spontaneous symmetry
breaking in the λ−μ plane. In the steady state the condition for nonzero solution of
O is

(1 − λ)2 = 〈εε′〉μ2, (4.17)

which gives that “active” and “absorbing” phases, separated by a phase boundary
given by λ = 1 − μ/2.

4.3.1.2 Other Variants of the LCCC Model

Biswas et al. [71] studied some variants of the models discussed above. In one
version, it was considered that when an individual i meets another individual j , she
retains her own opinion proportional to her conviction parameter and picks up a
random fraction of j ’s opinion. Thus the interaction in equation form would now be,

oi(t + 1) = λoi(t) + εoj (t),

oj (t + 1) = λoj (t) + ε′oi(t). (4.18)

For λ < λc, for all agents oi = 0 giving O = 0. For λ > λc, O > 0 and O → 1
as λ → 1. Numerical value of λc = 1/2. Mean field estimate gives for the stable
value of O

O(1 − λ− 〈ε〉) = 0. (4.19)

Thus λc = 1/2.
Another variant of the LCCC model was studied [71] with a slight modification to

the original model that here a person in addition to being influenced by the interacting
person’s opinion, was influenced by the average opinion of the community. Thus,
the interaction equations read,

oi(t + 1) = λ[oi(t) + εoj (t)] + ε′O(t),
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oj (t + 1) = λ[oj (t) + ηoi(t)] + η′O(t). (4.20)

The symmetric phase occurs for λ ≤ 1/3 and symmetry-broken phase is obtained
for λ > 1/3.

By a mean-field approach as O reached a steady state value,

O = λ(1 + 〈ε〉)O + 〈ε′〉O, (4.21)

we have λc = 1/3. In all these models, the critical exponents associated with the
physics of phase transitions were all estimated.

4.3.1.3 Discrete LCCC Model

In the discrete version of LCCC model one considers that opinions can take only
discrete values, i.e. oi can take only three values [oi ∈ {−1, 0,+1}]. This particular
version of the LCCC model was exactly solved [73], which also showed an “active-
absorbing phase transition” as was seen in the continuous version [69, 70]. Apart
from the two-agent or binary interaction, the three-agent interaction were also taken
into account. While the phase diagram of the two-agent interaction led to a continuous
transition line, the three-agent interaction showed a discontinuous transition [73].

4.3.1.4 Disorder Induced Phase Transition in Kinetic Exchange Models
of Opinion Formation

In this model of continuous opinion dynamics, both positive and negative mutual
interactions were studied [74]. The interaction equations are as follows :

oi(t + 1) = oi(t) + μijoj (t),

oj (t + 1) = oj (t) + μijoi(t), (4.22)

where μij are randomly chosen to be either +1 or −1. Negative interactions are
included here with probabilityp, the role of which is like a disordering field, similar to
temperature in thermally driven phase transitions. Beyond a particular value p = pc

a phase transition from an ordered phase to a disordered phase occurs. Results from
exact calculation of a discrete version also shows the phase transition at pc.

4.3.1.5 LCCC Model with Bounded Confidence

In this restricted LCCC model [75], two agents interact according to Eq. 4.13 only
when |oi − oj | ≤ 2δ, where the parameter δ ∈ [0, 1] represents the “confidence”
level. There are two extreme limits corresponding to this model:

1. δ = 1 which brings it back to the original model (LCCC model).



4 Kinetic Exchange Models in Economics and Sociology 83

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

λ

δ

Neutral

Ordered

Disordered

Fig. 4.3 Phase diagram on the δ − λ plane. Plot shows the existence of the neutral region for
λ ≤ λc1 � 2/3, the ordered region and the disordered region. The ordered and disordered regions
are separated by a first order boundary for δ ≥ 0.3. For δ < 0.3, the phase boundary has been
obtained approximately only from the behaviour of the order parameter. Taken from [75]

2. δ = 0 which is the case when two agents interact only when their opinions are
exactly same.

Three different states were defined to identify the status of the system.

• Neutral State : When oi = 0 for all i, the state is called neutral state.
• Disordered State : oi = 0 for all i, but O ∼ 0, the state is called disordered state.
• Ordered State : when O = 0 corresponding state is called an ordered state.

The three states are located in the δ−λ plane. The ordered and disordered regions in
the plane are separated by a first order boundary (continuous line in red) for δ ≥ 0.3
(obtained using a finite size scaling analysis). For δ < 0.3, the phase boundary
(broken line in blue) has been obtained approximately only from the behaviour of
the order parameter (Fig. 4.3).

4.3.1.6 Percolation in LCCC Model

The opinion spreading among people in a society may be compared to the percolation
problem in physics. The agents are assumed to be placed on the sites of a square
lattice and follow the LCCC dynamics [76]. A geometrical cluster consisting of the
adjacent sites having opinion value more than or equal to a predefined threshold value
Ω . At steady state, the percolation order parameter is measured. At a particular value
of λ = λ

p
c , the system undergoes a percolation transition. As Ω decreases, λp

c also
and approaches λc as Ω → 0. The critical exponents are independent of Ω as well
as λ and μ. The critical exponents are significantly different from those obtained for
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static and dynamic Ising system and standard percolation. The exponents suggest that
this LCCC model has a separate universality class from the viewpoint of percolation
transition.

4.3.1.7 Damage Spreading in Model of Opinion Dynamics

The damage spreading phenomena was studied in the opinion dynamics model
proposed in [74] in two ways,

• Traditional method (TM) : In this method, two systems of N individuals are
simulated using the same initial random opinions either discrete or continuous,
except for one randomly chosen individual. The two systems are then allowed to
evolve using same random numbers.

• Nature versus nurture method (NVN) : In this (NVN) method, the initial systems
are identical but different random numbers are used for the time evolution.

In both cases, a damage spreading transition occurs at pd where pd ≈ 0.18 for
TM and pd = 0 for NVN [77]. Here it is found that pd < pc, the order–disorder
transition point. The result signifies that for TM, for pd < p < pc , even when
consensus is reached, if we make very small changes even in a single agent, there
is always a finite probability that the system leads to a different consensus state. In
NVN, pd = 0 signifies that if the same agent goes through a different sequence of
interactions, the result will be different for any p with finite probability. However,
the dynamics of the damage shows a nonmonotonicity making it difficult to comment
on the exact nature of damage or to estimate the exponents related to it.

4.4 Summary and Discussions

We briefly described here, the kinetic exchange models for economics and sociology
and some applications derived from these models. Taking inspiration from kinetic
theory of gas molecules, a purely statistical system, these kind of models give an
idea of how completely different systems might lead to similar or emergent collective
behaviour, as they have some similar connections in the microscopic units. How-
ever, due to such “micro-oriented” framework one overlooks the system-wide effects
which can be very important for a real economy and society. However, one should
bear in mind that whatever we discussed here in this chapter, is to a large extent
idealistic. A real economy is much more complex than any or all of these models. In
case of a real economy, minute changes in the characteristics of the agents or firms,
or simply the addition or deletion of a link of the socioeconomic network, can alter
the emergent behaviour to a great extent. Models originating from simple multiagent
models such as the ones described here, should be extended to incorporate such fea-
tures and emergent behaviours, which might help one to understand many real-life
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economic phenomena or even the financial crisis, such as the one observed during
2007 − 2008.

It should also be borne in mind that besides being models of idealized economy
or society, these simple models have a very nice mathematical or statistical appeal.
Mathematicians, physicists, and economists, have tried to play around with these
models (or their variants) and studied the associated nonlinear dynamics, steady-
state behaviours, and related questions. Apenko [78] used a different approach and
proved the monotonic entropy growth for a nonlinear discrete-time model of a random
market, based on binary collisions, which may be also viewed as a particular case
of the Ulam’s redistribution of energy problem. In that study, a single step of the
nonlinear evolution was treated as a combination of two steps, first one is related to
an auxiliary linear two-particle process and second one is a kind of a coarse-graining.
It was shown that on both steps the entropy increases. Therefore he concluded that
the entropy is indeed monotonically increasing for the original nonlinear problem.
A similar entropy approach was followed in [79], where they considered different
versions of a continuous economic model, which takes into account some idealistic
characteristics of the markets and agents randomly exchange in pairs, and their
functional mappings. They showed that the system had a fixed point which can be
reached asymptotically following a trajectory of monotonically increasing entropy
which takes its maximum value on the equilibrium. In this manner, the existence of
an H-theorem could be computationally checked.
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References

1. Mandl, F.: Statistical Physics, 2nd edn. Wiley, New York (2002)
2. ter Haar, D.: Elements of Statistical Mechanics. Butterworth-Heinemann, Oxford (1995)
3. Sethna, J.P.: Statistical Mechanics. Oxford University Press, Oxford (2006)
4. Sinha, S., Chatterjee, A., Chakraborti, A., Chakrabarti, B.K.: Econophysics: An Introduction.

Wiley-VCH, Berlin (2010)
5. Sen, P., Chakrabarti, B.K.: Sociophysics : An Introduction. Oxford University Press, Oxford

(2013)
6. Ball, P.: Physica. A 314, 1 (2002)
7. Chakrabarti, B.K., Chakraborti,A., Chakravarty, S.R., Chatterjee,A.: Econophysics of Income

and Wealth Distributions. Cambridge University Press, Cambridge (2013)
8. Pareto, V.: Cours d’economie Politique. F. Rouge, Lausanne (1897)
9. Souma, W.: Growth and fluctuations of personal income. Fractals. 9, 463 (2001)

10. Di Matteo, T., Aste, T., Hyde, S.T.: In: Mallamace, F., Stanley, H.E. (eds.) The Physics of
Complex Systems (New Advances and Perspectives), p. 435. IOS Press, Amsterdam (2004)

11. Clementi, F., Gallegati, M.: Power law tails in the Italian personal income distribution. Physica.
A 350, 427 (2005)

12. Sinha, S.: Evidence for power-law tail of the wealth distribution in India. Physica. A 359, 555
(2006)

13. Silva, A.C.,Yakovenko, V.M.: Temporal evolution of the “thermal” and “superthermal” income
classes in the USA during 1983–2001. Europhys. Letts. 69, 304 (2005)



86 S. Goswami and A. Chakraborti
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