
Chapter 11
Piecewise Expanding Maps and Conjugacy
Equations

Cristina Serpa and Jorge Buescu

Abstract Topological invariants of interval maps are preserved by conjugacy. We
investigate some features of the conjugacy equations associated to piecewise expand-
ing maps. For special cases, it is possible to construct explicitly a conjugacy function
in terms of the a-base expansion of numbers through a solution of the corresponding
functional equations.

One possible interest of conjugacy equations is to simplify the study of a family
of maps by considering the simplest possible cases while preserving topological
properties. In our case these will be the piecewise linear and expanding interval
maps.

The conjugacy equation h ◦ g = f ◦ h (where h is the unknown function) is
the subject of much research in the field of functional equations. The main results
already obtained for this kind of equation are those for invertible functions f , g (see
[9]), where f is a scalar or a linear operator on the range of h (see the Schröder
equation in [9, 10]). Other cases of interest arise when f , g are continuous functions
with real domain and real range, strictly increasing and fixed-point free (see [11]), or
f strictly decreasing continuous and g continuous (maybe nonmonotonic; see [14]).
Usual references of one-dimensional dynamics [2, 12, 13] treat the case where f is
continuous. In our case f is piecewise continuous.

We focus our attention on particular cases of the equation h ◦ g = f ◦ h, which
correspond to a conjugacy equation involving the piecewise linear case. From the
functional point of view we refer to results of de Rham [5] and their generalization by
Girgensohn [8]. Since this last generalization provides an explicit solution in terms
of the a-base expansion of numbers it is possible to construct explicitly a solution of
our equation.

Definition 11.1 (see [3]) A map f : I → I is a horseshoe map if it has more than
one lap and each lap is mapped onto the whole of I .
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The next Lemma is a generalization of a result of Ciepliński and Zdun [4] to
noncontinuous functions (only piecewise continuity is required).

Lemma 11.1 Let a ≥ 2, be an integer, g : [α1,β1] → [α1,β1], G : [α2,β2] →
[α2,β2] be piecewise continuous functions, respectively, with laps Ii =

[
xi , xi+1

]
,

Ji =
[
yi , yi+1

]
, i ∈ {0, 1, . . ., a − 1}. Consider the conjugacy equation

h (g (x)) = G(h (x)) , x ∈ [α1,β1] , (11.1)

where h : [α1,β1] → [α2,β2] is the unknown function.
Suppose g, G are horseshoe maps, and ϕ is a monotone and surjective solution of

(11.1). If ϕ is increasing, then ϕ (xi) = yi , and ϕ [Ii] = Ji for i ∈ {0, 1, . . ., a − 1}.
If ϕ is decreasing, then ϕ (xi) = ya−i , and ϕ [Ii] = Ja−i−1 for i ∈ {0, 1, . . ., a − 1}.
Proof Since g is a horseshoe map and ϕ is a monotone and surjective solution of
Eq. (11.1), we have for each i ∈ {0, 1, . . ., a − 1},

ϕ (g (xi)) = G(ϕ (xi)) ⇒ G(ϕ (xi)) ∈ {ϕ (α1) ,ϕ (β1)}
⇒ G(ϕ (xi)) ∈ {α2,β2}
⇒ ϕ (xi) ∈ {y0, y1, . . ., ya} .

Suppose for each i ∈ {0, 1, . . ., a − 1}, ϕ (xi) = ϕ (xi+1). Since ϕ is monotone,
ϕ [Ii] is a single point, as is G [ϕ [Ii]]. Again by Eq. (11.1) and surjectivity of ϕ

we obtain G [ϕ [Ii]] = ϕ [g [Ii]] = ϕ [α1,β1] = [α2,β2]. Then ϕ (xi) = ϕ (xi+1),
i ∈ {0, 1, . . ., a − 1}.

If ϕ is increasing, then ϕ (x0) < ϕ (x1) < · · · < ϕ (xa), implying ϕ (xi) = yi ,
because ϕ (xi) ∈

{
y0, y1, . . ., yp

}
. Then ϕ [Ii] = Ji , i ∈ {0, 1, . . ., a − 1}. If ϕ is

decreasing, then ϕ (x0) > ϕ (x1) > · · · > ϕ (xa), implying ϕ (xi) = ya−i , because
ϕ (xi) ∈ {y0, y1, . . ., ya}. Then ϕ [Ii] = Ja−i−1, i ∈ {0, 1, . . ., a − 1}.

We will restrict attention to the family M of piecewise monotone and expanding
interval maps f : [0, 1] → [0, 1] where there exists a partition 0 = a0 < a1 < · · · <
ar = 1, with r ≥ 2, of [0, 1] such that f|[ai−1,ai], for i = 1, 2, . . ., r , is a monotone

piecewise continuous function for which there exists λ > 1 such that
∣∣f ′ (x)

∣∣ ≥ λ,
for almost every x ∈ [0, 1].

Note that the expansivity condition does not necessarily require that the function
be differentiable. The definition of M may be weakened to the following expansivity
condition.

Definition 11.2 A continuous map f : X → X on a metric space (X, d) is
expanding if there exist constants ε > 0 and λ > 1 such that, for all x, y ∈ X,

d (x, y) < ε ⇒ d (f (x) , f (y)) ≥ λd (x, y) ,

λ is called the expansion factor of f .
Let f ∈ M with partition 0 = α0 < α1 < · · · < αa = 1 of [0, 1] such that

f|[αi−1,αi], for i = 1, 2, . . ., a, is an increasing, continuous and expanding func-
tion satisfying f (αi−1,αi) = (0, 1), for every i = 1, 2, . . ., a. We will see, in the
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piecewise linear case, that f is topologically conjugate to the map,

ga(x) =
⎧⎨
⎩
ax (mod 1) , if x ∈ [0, 1)

1, if x = 1,

i.e, there exists a homeomorphism h such that

h ◦ ga = f ◦ h. (11.2)

Let a ≥ 2. Define μ0,μ1, . . .,μa−1 ∈ (0, 1) by μi = αi+1 − αi for i ∈
{0, 1, . . ., a − 1}. Clearly

a−1∑
j=0

μj = 1.

In the linear case, is given by

f (x) =
⎧⎨
⎩

1
μi
x − αi

μi
, if x ∈ [αi−1,αi) , i ∈ {0, 1, . . ., a − 1}

1 , if x = 1,

it is possible to construct an explicit solution using the following results.

Theorem 11.1 Any monotone increasing and surjective solution of the conjugation
equation h◦ga = f ◦ h satisfies the functional equation

h (x) = μih (ax − i)+ αi , for each i ∈ {0, 1, . . ., a − 1} , x ∈
[
i

a
,
i + 1

a

]
.

(11.3)

Proof Let M be an increasing and surjective solution of Eq. (11.3). Then

M (ax − i) = 1

μi

M (x)− αi

μi

, i ∈ {0, 1, . . ., a − 1} , x ∈
[
i

a
,
i + 1

a

]
.

By direct computation,

M ◦ ga (x) =
⎧⎨
⎩
M (ax − i) , if x ∈ [ i

a
, i+1

a

)
, i ∈ {0, 1, . . ., a − 1}

1 , if x = 1.

=
⎧⎨
⎩

1
μi
M (x)− αi

μi
, if x ∈ [ i

a
, i+1

a

)
, i ∈ {0, 1, . . ., a − 1}

1 , if x = 1,

and

f ◦M (x) =
⎧⎨
⎩

1
μi
M (x)− αi

μi
, if M (x) ∈ [αi−1,αi) , i ∈ {0, 1, . . ., a − 1}

1 , if M (x) = 1.
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By Lemma 11.1, if M is monotone increasing and surjective, then for each i ∈
{0, 1, . . ., a − 1}M (x) ∈ [αi−1,αi) is equivalent to x ∈ [i/a, (i + 1) /a). �

Remark 11.1 An analogous result holds for decreasing and surjective solutions as
a consequence of Lemma 11.1.

Example For a = 3, Eq. (11.3) is

h (x) =

⎧⎪⎪⎨
⎪⎪⎩

μ0h (3x) , if x ∈ [0, 1
3

]
μ1h (3x − 1)+ α1 , if x ∈ [ 1

3 , 2
3

]
μ2h (3x − 2)+ α2 , if x ∈ [ 2

3 , 1
]
.

Lemma 11.2 Let a ≥ 2 be an integer. Consider the system of functional equations

h

(
k + t

a

)
= Fkh (t) , (11.4)

where k ∈ {0, 1, 2, . . ., a − 1}, Fk are contractions mappings and h : [0, 1] → [0, 1]
is the unknown function.

Then the system of functional equations (11.4) is equivalent to the functional
equation

h (t) = Fkh (at − k) , t ∈
[
k

a
,
k + 1

a

]
, k ∈ {0, 1, 2, . . ., a − 1} .

Theorem 11.2 (Girgensohn [9]) Let a ≥ 2 be an integer. Let sk : [0, 1] → R be
continuous, |rk| < 1 for 0 ≤ k ≤ a − 1 and assume

rk−1

1 − ra−1
sa−1 (1)+ sk−1 (1) = rk

1 − r0
s0 (0)+ sk (0) , 1 ≤ k ≤ a − 1. (11.5)

Then there exists exactly one bounded function f : [0, 1] → R which satisfies the
system

f

(
x + k

a

)
= rkf (x)+ sk (x) , x ∈ [0, 1] , 0 ≤ k ≤ a − 1. (11.6)

The function f is continuous and given in terms of the a-base expansion of x by

f

( ∞∑
n=1

ξn

an

)
=

∞∑
n=1

(
n−1∏
k=1

rξk

)
sξn

( ∞∑
k=1

ξk+n

ak

)
. (11.7)

We now return to the study of the general Eq. (11.2).
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Lemma 11.3 Any monotone increasing and surjective solution of the conjugation
equation h ◦ ga = f ◦ h satisfies the functional equation

h (x) = μih (ax − i)+ αi , i ∈ {0, 1, . . ., a − 1} , x ∈
[
i

a
,
i + 1

a

]
,

i.e.,

h

(
x + i

a

)
= μih (x)+ αi , i ∈ {0, 1, . . ., a − 1} , x ∈

[
i

a
,
i + 1

a

]
.

The condition

rk−1

1 − ra−1
sa−1 (1)+ sk−1 (1) = rk

1 − r0
s0 (0)+ sk (0) , 1 ≤ k ≤ a − 1

in this case assumes the form

μi−1

1 − μa−1
αa−1 + αi−1 = μi

1 − μ0
0 + αi , 1 ≤ i ≤ a − 1,

which is equivalent to

μi−1 = αi − αi−1, 1 ≤ i ≤ a − 1,

coinciding with the original hypothesis.
Applying Theorem 11.2, we obtain the following explicit solution in terms of the

a-base expansion of numbers.

Theorem 11.3 Let a ≥ 2, 0 = α0 < α1 < · · · < αa = 1, and μ0,μ1, . . .,μa−1 ∈
(0, 1), such that μi = αi+1 − αi , for i ∈ {0, 1, . . ., a − 1}.

Givenf andga defined above, there exists exactly one increasing homeomorphism
h : [0, 1] → [0, 1] such that h ◦ ga = f ◦ h, defined by

h

( ∞∑
n=1

ξn

an

)
=

∞∑
n=1

(
n−1∏
i=1

μξi

)
αξn . (11.8)

Proof By Lemma 11.3 and Theorem 11.2, there exists exactly one-bounded mono-
tone increasing and surjective h : [0, 1] → [0, 1], such that h ◦ ga = f ◦ h which
is defined by formula (11.8). Lemma 1 in [18] by Zdun shows that function h is a
homeomorphism. �

Remark 11.2 An analogous result may be proved for the case of a decreasing
homeomorphism.
We next provide two examples of application of the explicit formula (11.8) to
problems of Number Theory and Probability Theory.
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11.1 Applications: Variable Base Expansions and Bold Play

11.1.1 Q-Representation of Real Numbers

The usual a-base representation of a number is given by

x =
∞∑
n=1

ξn

an
. (11.9)

Turbin and Prats’ovytyi [15, 16] introduced a more general representation, where
the length of the intervals defining the expansion is not uniform.

Let a ≥ 2 be a fixed positive integer, and q0, q1, . . ., qp−1 ∈ (0, 1), such
that

∑p−1
j=0 qj = 1. Let r0 = 0, rj = ∑j

k=0 qk−1, for j ∈ {1, 2, . . ., a}, A =
{0, 1, 2, . . ., a − 1}, and Q = {q0, q1, . . ., qp−1

}
.

Theorem 11.4 (Turbin and Prats’ovytyi) For any number x ∈ [0, 1], there exists a
sequence of numbers ν = (νn) ∈ A such that

x =
∞∑
n=1

(
n−1∏
k=1

qνk

)
rνn . (11.10)

Remark 11.3 Obviously, for any real number x there exists an expansion

x = [x] +
∞∑
n=1

(
n−1∏
k=1

qνk(x)

)
rνn(x). (11.11)

Definition 11.3 Given x ∈ R, the representation by series (11.10) or (11.11) is
called a-symbol Q-representation or a-symbol Q-expansion of x. For x ∈ [0, 1] we
use the notation given by

&Q
ν = &Q

ν1ν2···νn··· :=
∞∑
n=1

(
n−1∏
k=1

qνk

)
rνn . (11.12)

Remark 11.4 An algorithm to find an a-symbol Q-representation of a number x ∈
[0, 1] is:

0. Let n = 1 and x1 = x.
1. Find νn ∈ {0, 1, . . .,p − 1}, such that rνn ≤ xn < rνn+1. If x = rνn , do νN = 0,
for N > n, and the process is finished. Else do step 2.
2. Find the difference xn − rνn and divide by qνn :

xn+1 = xn − rνn

qνn
.

3. Do step 1 for n+ 1.
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The sequence ν = (νn) ∈ A determines the a-symbol Q-representation of x.
We now show that representations (11.9) and (11.12) are related by a homeomorphism
which is a solution of an equation of the form (11.2).

Theorem 11.5 There is a homeomorphism ϕ such that the image of each x ∈ [0, 1]
by ϕ is the a-symbol Q-expansion of x, where the sequence of numbers (νn) ∈ A

of the image obtained is the same as the a-base representation of x, i.e., νn = ξn,
∀n ∈ N. Moreover, ϕ is the unique bounded solution of the system of equations

ϕ

(
x + k

a

)
= qkϕ (x)+ rk , x ∈ [0, 1] , 0 ≤ k ≤ a − 1. (11.13)

Proof By definition of qk and rk , condition (11.5) is satisfied. Applying Theorem
11.2 there exists a unique bounded solution of (11.13) given, in terms of the a-base
representation, by

ϕ

( ∞∑
n=1

ξn

an

)
=

∞∑
n=1

(
n−1∏
k=1

qξk

)
rξn . (11.14)

�

This result may be viewed as a special case of Lemma 1 in [18] by Zdun which
shows that the function ϕ is a homeomorphism. Girgensohn’s result (Theorem 11.2)
is more general, since in its statement the rk are allowed to be continuous functions
of x, rk : [0, 1] → R, instead of constants.

Remark 11.5 The function ϕ in (11.14) may be given in the equivalent forms

ϕ

( ∞∑
n=1

ξn

an

)
= &Q

ξ , (11.15)

ϕ−1
(
&Q

ξ

)
=

∞∑
n=1

ξn

an
. (11.16)

In a similar fashion, the function that transforms a-symbol Q-expansions in other
a-symbol Q-expansions was given by Prats’ovytyi and Kalashnikov [17]. If we
denote by &Q[q,r]

ν = &Q[q,r]
ν1ν2···νn··· the a-symbol Q-expansion in terms of qj , rj , and ν,

defined above, the system of functional equations

ψ
(
&Q[q,r]

kν1ν2···νn···
)
= tkψ

(&Q[q,r]
ν1ν2···νn···

)+ sk , k ∈ {0, 1, . . ., a − 1}

has a unique bounded solution ψ defined by

ψ
(&Q[q,r]

ν

) = &Q[t ,s]
ν . (11.17)
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We note that our results imply immediately construction (11.17). In fact, let
a ≥ 2 be an integer, and let (a,Q [q, r]) and (a,Q [t , s]) be bases of a-symbol
Q-representations. Remark 11.5 implies that the diagram

∞∑
n=1

ξn
an

→
id[0,1]

∞∑
n=1

ξn
an

ϕq,r ↓ ↓ ϕt ,s

&Q[q,r]
ξ

→
ψ

&Q[t ,s]
ξ

is commutative, where the indices of ϕ correspond to the parameters of the system
(11.13) for which ϕ is solution.

Thus the required homeomorphism ψ in (11.17) is given by

ψ = ϕt ,s ◦ ϕ−1
q,r . (11.18)

Thus Theorem 11.2 allows us to construct an alternative, equivalent representation
of the homeomorphism ψ .

11.1.2 Bold Play Gambling

Our second example, bold play gambling, originates in casino games (see [1] for
a detailed description). Consider a gambler playing roulette, staking the amount
of money s at each turn of the wheel. The probability of winning s is p and the
probability of losing s is q = 1 − p.

Suppose the initial capital is C and the gambler’s goal is G. The gambler will
play until his fortune has reached G or has dwindled to nothing. The game strategy
called bold play is the following: in each turn of the wheel the gambler either stakes
his entire fortune, if this fortune does not exceed half the goal, or bets the difference
between the goal and his current fortune. For a normalized problem, consider G = 1,
and the domain will be the interval [0, 1].

Formalizing the problem, denote the gambler’s current fortune by x, so that
0 ≤ x ≤ 1. If 0 ≤ x ≤ 1/2, he bets x (all the money); a win gives him a new fortune
of 2x, and a loss ruins him (lose everything). If 1/2 ≤ x ≤ 1, he bets 1 − x, just
enough to carry him to his goal of 1; a win gives him a new fortune of 1 (a success),
and a loss leaves him with 2x − 1.

Proposition 11.1 Let p + q = 1, p > 0, q > 0. The probability of success under
bold playf (x) for an initial fortune x is the unique solution of the system of equations⎧⎨

⎩
f (x) = pf (2x) , if 0 ≤ x ≤ 1

2

f (x) = p + qf (2x − 1) , if 1
2 ≤ x ≤ 1,

(11.19)

constrained to f (0) = 0, f (1) = 1.
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Remark 11.6 If p = q = 1/2, it is immediate that the identity is a solution of
(11.19). From Proposition 11.1 this solution is unique.

Proof (see [1]) For the case p = q = 1/2, a classical result in probability applies
(see e.g. [7]). For x = 0, f (x) = 0, and equation f (x) = pf (2x) is satisfied.
For x = 1, f (x) = 1, and equation f (x) = p + qf (2x − 1) is verified. For
0 < x ≤ 1/2, under bold play the gambler stakes the amount x. In case of success
in the first turn, with probability p, his new fortune is 2x. Since each turn has
independent outcomes, the probability of success in the second turnf (2x)multiplied
by p equals the initial probability of success f (x), proving the first equation of
(11.19).

For 1/2 ≤ x < 1, the first stake is 1 − x. In case of success in the first turn,
with probability p, his new fortune is 1. In case of loss, with probability q, his new
fortune is 2x − 1. The probability of success after a loss is f (2x − 1). Since each
turn has independent outcomes, the probability of success given by p+ qf (2x − 1)
equals the initial probability of success f (x), proving the second equation of (11.19).
Uniqueness of the solution now follows from Theorem 11.3 given initial conditions.

The probability of success of a strategy of bold play gamble satisfies a system of
equations of type (11.3). Applying Theorem 11.3 we have the following explicitly
defined function of probability of success, in terms of binary representation of real
numbers.

Corollary 11.1 The probability of success under bold play for an initial fortune

x =
∞∑
n=1

ξn

2n

is

f

( ∞∑
n=1

ξn

2n

)
=

∞∑
n=1

(
n−1∏
i=1

μξi

)
αξn ,

where α0 = 0, α1 = p, μ0 = p, and μ1 = q.
Dubins and Savage [6] showed that in case where the game is unfair for the player

(p < q), the bold play strategy is optimal, although it is not the only optimal strategy.
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