
Chapter 1
Study of A Model for the Distribution of Wealth

Yves Pomeau and Ricardo López-Ruiz

Abstract An equation for the evolution of the distribution of wealth in a population of
economic agents making binary transactions with a constant total amount of “money”
has recently been proposed by one of us (RLR). This equation takes the form of an
iterated nonlinear map of the distribution of wealth. The equilibrium distribution
is known and takes a rather simple form. If this distribution is such that, at some
time, the higher momenta of the distribution exist, one can find exactly their law of
evolution. A seemingly simple extension of the laws of exchange also yields explicit
iteration formulae for the higher momenta, but with a major difference with the
original iteration because high-order momenta grow indefinitely. This provides a
quantitative model where the spreading of wealth, namely the difference between
the rich and the poor, tends to increase with time.

1.1 Introduction

This communication follows the Noma-13 conference in September 2013, an enjoy-
able and fruitful meeting where one of us (YP) had a chance to hear of the model
considered below [1–3]. This model describes the evolution of the distribution of
wealth in a population of individuals doing business pairwise. After each exchange
there is a redistribution of money between the two individuals, without total loss
or gain. A feature of this model, the “Z-model” (with Z for Zaragoza) is its simple
equilibrium solution (written below). Under its law of evolution, this equilibrium
solution is stable and so attracts most, if not all, initial conditions satisfying conver-
gence conditions (finite total probability and finite total wealth) [4]. Moreover, an
H -theorem is valid for this model [5]. We show below that the evolution of higher
momenta (mean square value, mean cubic value, etc.) of the wealth can be computed
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exactly, obviously under the condition that those momenta exist. We also consider
situations where the momenta do not converge beyond a given order. An anonymous
referee pointed out that something called “q-model” has equations similar to the
Z-model. Those q-models aim at describing the distribution of stress in random set
of solid grains in contact with neighbours in such a way that the downward push of
the weight of a grain and of the grain above it is distributed more or less randomly
between its neighbours underneath. In this theory, the equivalent of the time of the
Z-model is played by the vertical direction and the time-iteration amounts to move
down the pile to find the distribution of stress on grains. Even though the equations
of this q-model look like the ones of the Z-model, their physical meaning is quite
different. The interested reader may get a list of papers on the subject in the refer-
ence list of the lecture notes published in [6]. Moreover the q-model, in order to get
a row-to-row equation of iteration like the one of the Z-model has to assume that
the vertical force on beads on the same horizontal row are statistically independent,
which is presumably needed to get at the end something like a hyperbolic system,
although the Cauchy–Poisson equations for regular elasticity are elliptic.

Due to its simple mathematical structure, it makes sense to extend the Z-model
by keeping the possibility of an exact solution for the momenta. This can be done
with a straightforward extension maintaining the basic properties of conservation of
the total probability and the total wealth. This modified Z-model looks very much
like the original and reduces to it continuously as a parameter changes, but it has
completely different properties. In particular, it shows an increase in the fluctuations
of wealth as time goes, a rather unexpected property, absent in the original model.
This makes the matter of Sect. 1.3. In this respect, the inequality of wealth as studied
below makes only a small part of this big subject, but it is at least one that one can
try to describe quantitatively.

Motivated by this consideration of momenta, we look in Sect. 1.4 at what happens
in the Z-model when the momenta do not converge, specifically when the distribution
of wealth decays algebraically for large values so that momenta do not exist, at least
initially, beyond a certain power (This might be related to what is called Pareto law;
Pareto [7] having predicted that the natural distribution of wealth decays algebraically
for large values, a property of the mZ-model studied below). An interesting result of
this analysis is that, after a certain number of iterations (namely after a finite amount of
time), higher momenta converge although they diverged initially. Somehow, without
venturing into the area of political science, this looks like the exact opposite of what
is predicted sometimes (without relying on objective modelisation as much we can
tell): fewer individuals get richer and richer although the other ones get poorer and
poorer as time goes. This could have other explanations of course, like what is called
the redistribution of wealth by the tax system in modern economies.

We shall explain first how to solve “exactly” the moment problem, for a probability
distribution decaying fast enough at infinity and then look at what happens if, initially,
this probability distribution decays algebraically for large values.

In sect. 1.5 we give the probability distribution of the wealth of the “richest man”,
namely the largest wealth of a given finite number of agents with a given probability
distribution of the wealth with agents taken at random in the population. An explicit
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expression of this probability distribution of the maximum of wealth, with its limit
in the case of a large number of agents, is given.

The last section is “Summary and Conclusion”.

1.2 The Z-Model

In this model, one considers a positive variable with various names, x, u, etc. for
the amount of money owned by an individual. This amount changes in the course of
time because of random exchanges between the individuals taking place at discrete
time, in a synchronous way in the system. The fundamental quantity is pt (x), the
probability that an individual taken at random in the population has an amount x at
time t . At the next time step (t + 1), due to the binary exchanges, pt (x) has changed
according to the law of iteration found in reference [1]

pt+1(x) =
∫ ∫

S(x)
dudv

pt (u)pt (v)

u + v
, (1.1)

The domain of integration in Eq. (1.1) is defined by

S(x) = {(u, v), u, v > 0, u + v > x}.
This integral equation is for a function of x, positive variable. As p(.) is a probability
distribution, it has to be positive or 0. Moreover, it is normalised in such a way that∫∞

0 dupt (u) = 1, and t is a discrete index representing time. This law of evolution
of the wealth is derived as follows. Suppose two individuals, each one with the
same probability of wealth, say p(u), put their money in the same basket. Then the
probability distribution for what is in the basket (the amount w) is

q(w) =
∫ ∞

0
dvp(v)p(w − v)H (w − v),

where H (.) is Heaviside function, 0 for a negative argument and 1 otherwise. Sup-
pose, we share the amount w between two individuals, by taking randomly a value
in [0, w] and give it to the first individual and the rest to the other. The probability
distribution of what is taken by anyone of those individuals is

r(s) = χw(s)

w
,

where χw(s) is the characteristic function of the interval [0, w]. By extending this
simple formula to the probability distribution q(w) of the values of w, as derived
above, one obtains

r(s) =
∫ ∞

0

dw

w
H (w − s)

∫ ∞

0
dvp(v)p(w − v)H (w − v).

After rearranging the integrals one finds

r(s) =
∫ ∞

0
dv′
∫ ∞

s−v′>0
p(v′)p(u′)

du′

u′ + v′
,

which is a form of the right-hand side of Eq. (1.1).
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Equation (1.1) can be integrated explicitly, at least in some sense. Let us define
the moments of pt (x) as

mk(t) =
∫

duukpt (u). (1.2)

We consider first the case where all momenta converge. In Sect. 1.4 we discuss the
situation where some momenta do not exist at a given time because the integral (1.2)
diverges at k large, which is well possible because the “physical” constraints on p(u)
is to have well-defined (not diverging) values of m0 and m1 only. From Eq. (1.1)
one derives the following equation for the momenta of pt+1(.) as a function of the
momenta of pt (.)

mk(t + 1) = 1

k + 1
Σ0≤l≤kC

l
kmk−l(t)ml(t), (1.3)

where Cl
k = k!

(k−l)!l! are the binomial coefficients. This shows that the momenta of
order k at time (t + 1) can be found if the momenta of smaller power at time t are
known. The formula is also consistent with the fact that m0 = 1 at any time and that
m1 is a conserved positive constant (called later m1). Let us look at the equation for
m2. It reads

m2(t + 1) = 2

3
(m2(t) +m2

1), (1.4)

As this equation is linear with respect to m2, it can be integrated at once with the
result (supposing m2(0) given)

m2(t) =
(

2

3

)t

m2(0) + 2m2
1

[
1 −

(
2

3

)t]
=
(

2

3

)t

(m2(0) − 2m2
1) + 2m2

1, (1.5)

The higher momenta can also be computed explicitly as the functions of the initial
data for the lower order momenta, the result become more cumbersome as the order
increases. At third order one has

m3(t + 1) = 1

2
(m3(t) + 3m2(t)m1), (1.6)

let

S3(t) = 3

2
m2(t)m1.

Therefore

m3(t) =
(

1

2

)t [
m3(0) +Σ0≤θ≤t2

θS3(θ − 1)
]

,

is a solution for m3(t) as a function of m1, m2(0) and m3(0). The sums can be done
explicitly because they involve geometric series. The method of integration just
explained does not work if one takes momenta with non-integer exponents because
there is no finite equivalent of the binomial formula for such non-integer power.
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1.3 Definition and Solution of a Generalised Z-Model

The Z-model can be generalised in the following way. In the original formulation,
each of the two partners in a transaction have a random amount u and v. During the
transaction they put first the whole amount (u + v) in a basket and then share its
content randomly. The Z-model describing this satisfies the constraint that the total
probability is one and that the total money is also conserved. This model has also the
property that the equilibrium solution (namely the distribution of wealth such that
pt (u) = pt+1(u)) is known explicitly and is

peq(u) = 1

m1
e
− u

m1 .

Further, we suggest a modified recursion relation analogous to the one given in
Eq. (1.1), but such that no simple expression of the equilibrium distribution can be
found, even though the mass and first momentum m1 is conserved (we keep the
same notation, mk(t) for the kth moment in the mZ-model, defined below, as in the
Z-model). This model reads

Pt+1(x) =
∫ ∫

Sa (x)
dudv

Pt (u)Pt (v)

au + (2 − a)v
, (1.7)

In this equation, a is a real parameter, between 0 and 2, and Sa(x) is defined by the
condition x < au + (2 − a)v. In this model, at the time of the transaction between
the two individuals, one of the individual puts (au) in the basket (instead of u in the
Z-model) and the other puts (2− a)v in the basket, instead of v. Although this model
is apparently not conservative, this is not the case. If we consider the symmetrical
interaction for the pair of agents (v, u), in this case the first agent will put (av) in the
basket and the second one (2−a)u. For both trades, those of the pairs (u, v) and (v, u),
the total money to share in the basket is 2(u + v), then the total wealth is conserved.
It can be interpreted that the excess of money in one of the trades is injected to cover
the lack of money in the other trade. This is just one of the functions done by the
bank system. Perhaps this is not such an unrealistic model because, nowadays (and
very likely before), banks and even states rent money they do not really have and do
that within constraints based on multiplicative factors of their actual wealth.

Like the Z-model, the modified Z-model (or mZ-model) defined by the iteration
(1.7) satisfies the constraints of conservation of m0 and m1 if m0 = 1. From simple
algebra, one finds

m0(t + 1) = m0(t)2,

and
m1(t + 1) = m0(t)m1(t).

Therefore, the first two momenta are constant if m0 = 1 and if m1 converge, as
we assume it. Contrary to the case of the Z-model, there is no simple equilibrium
solution. However, it is possible to derive many properties of this equilibrium from
the equations for the moments. This is because the denominator in the iteration
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formula is a linear function of u and v like in the Z-model. The recursion relation for
the second moment is

m2(t + 1) = 1

3

[
(4 − 4a + 2a2)m2(t) + 2(2 − a)am2

1

]
. (1.8)

As can be easily checked, this reduces to the formula valid for the Z-model, Eq. (1.4),
in the case a = 1. However, a very interesting difference appears in this iteration law
(again, an iteration derived from the iteration for the probability distribution with no
other assumption than the existence of the second moment). Actually this iteration
may lead to an exponentially growing second moment. This happens if the coefficient
of m2(t) in Eq. (1.8) is larger than one. This happens if a is outside of the interval
[1 − 1√

2
, 1 + 1√

2
], which is compatible with the condition 0 < a < 2. Therefore,

there can be an instability of the second moment leading to an indefinite increase of
the width of the distribution of wealth. Without overstating this, one can say that this
makes a model of ever increasing inequality as predicted by some socioeconomical
theories.

Moreover, for any a different from 1, the iteration of higher momenta become
unstable. To show this, let us define b = 1−a. The iteration of the kth moment reads

mk(t + 1) = 1

k + 1

[(
(1 − b)k + (1 + b)k

)
mk(t) + l.o.t(t)

]
. (1.9)

In this equation, l.o.t(t) is for the lowest order terms, depending on momenta of
order less than k. Let us consider the smallest k such that, for a given a, there is an
exponential growth of this moment. Therefore, l.o.t(t) remains bounded as a function
of time and so, if there is an instability, it is dominated after a sufficient number of
iterations by the exponentially growing

(
(1 − b)k + (1 + b)k

)
mk(t). A little algebra

shows that the coefficient of mk(t) on the right-hand side of Eq. (1.9) is larger than
1 and the moment grows exponentially if

ln (1 + |b|) > ln (k + 1)

k
.

If |b| is small, this is equivalent to the condition

k >
ln (1/|b| + 1)

|b| .

It shows that, however |b| is small but not 0, the large order momenta are unstable
under the iteration. Recall that |b| small is equivalent to have a mZ-model formally
close to the original Z-model. This also shows that, however small (but non 0) |b|
is, the steady distribution, if it exists, given by the iteration law should decay with
a power law at large values of its argument to make diverge momenta with a large
power. It is planned to return to this mathematically interesting question in a future
publication.
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1.4 Diverging Moments at Time Zero

In this section, we return to the Z-model in its original form and consider the follow-
ing question: What happens to the iterations if the initial momenta diverge beyond
a certain power? Indeed, because the initial condition is in principle rather free,
provided m0 = 1 and m1 converges, one can always imagine an initial condition
with a distribution of wealth decreasing algebraically for large powers. In this case,
momenta do not exist beyond a certain power. We consider below what happens in
this case. In particular, we show that after a finite number of iterations, one recovers
a converging moment with a power less than a value increasing as the iterations go.

We shall limit ourselves to situations wherep0(u), the initial distribution of wealth,
behaves at large u as a power law, like

p0(u) ≈ lα0 u−α0 , (1.10)

where lα0 is a positive constant and α0 a positive exponent. To have finite probability
and first momentum (finite total wealth) one must have α0 > 2. By putting this power
law in the right-hand side of the functional iteration (1.1), one obtains that at time
t = 1, the distribution of wealth p1(u) decays with the power law

p1(u) ≈ lα1 u−α1 , (1.11)

where α1 = 2α0 − 1 and where

lα1 = l2α0
B(α0),

where

B(α) =
∫ ∫

S(1)
du′dv′

(u′v′)−α

u′ + v′

is a numerical function of the argument α. As the iteration formula shows, α in-
creases as the iteration goes and so as soon as it becomes big enough, momenta of
a given power begin to exist, and follow later the explicit recursion formulae given
in Eq. (1.3). This is correct because momenta of higher order begin to converge the
later as their power increases. Therefore, the right-hand side of the recursion equa-
tion becomes all well-defined when the highest moment becomes well-defined, all
momenta of a smaller power being already finite at this time.

1.5 Probability Distribution of the Wealth of the Richest Man

Looking at the economic magazines, one is struck by their insistence on various lists
of rich, if not very rich people, lists ordered according to their supposed wealth.
Therefore, it is of some interest to consider the question of the distribution of biggest
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wealth that can be reached within the models outlined in this work. We begin with
a basic question of probability: given a probability distribution p(x), and a number
ν of independent trials. What is the largest value reached among those trials? This
interesting question can be answered quite simply as demonstrated below. Then we
apply this result to the case of the Z- and mZ-model.

Consider first the following problem: given x0 positive, let us draw a number x

with probability distribution p(x). What is the distribution of the maximum of x0 and
x, a maximum denoted as X? If x is less than x0 the maximum is x0, in the opposite
case it is x. Define N(x) as

N (x) =
∫ x

0
dx ′p(x ′).

The probability that x is less than x0 is N (x0). Therefore, the probability distribution
of X is

�(X, x0) = N (X)δ(X − x0) + p(X)H (X − x0). (1.12)

The probability distribution �(X, x0) is normalised in such a way that
∫ ∞

0
dXΠ (X, x0) = 1,

a consequence of the property N (∞) = 1.
Suppose now that x0 instead of being taken as a fixed number is drawn at random

with a probability distribution q(x0). Therefore, the probability distribution of the
maximum of x and x0 has to be averaged over the choices of x0. This yields

P (X) =
∫ ∞

0
dx0q(x0)Π (X, x0) = N (X)q(X) + p(X)

∫ X

0
dx ′q(x ′). (1.13)

One can check by performing the integrals in the quadrant x, x ′ > 0 that
∫ ∞

0
dXP (X) =

∫ ∞

0
dxp(x)

∫ ∞

0
dx ′q(x ′) = 1.

From Eq. (1.13) one can derive the probability distribution of the largest value drawn
after ν (integer) independent trials , each one with the probability distribution p(x).
Let Pν(x) be the probability distribution of the maximum of ν trials. After one trial
P1(X) = p(X). From Eq. (1.13) one derives the recursion formula between Pν(X)
and Pν+1(X)

Pν+1(X) = N (X)Pν(X) + p(X)
∫ X

0
dx ′Pν(x ′). (1.14)

Now define Qν(X) = ∫ X

0 dx ′Pν(x ′). This allows to write Eq. (1.14) like

dQν+1(X)

dX
= N (X)

dQν(X)

dX
+ dN (X)

dX
Qν(X). (1.15)
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This can be obviously integrated as

Qν+1(X) = N (X)Qν(X) + Sν ,

where Sν is a constant of integration, independent on X. As Qν(0) = 0 for all Sν ,
Sν = 0 also for all ν. Therefore,

Qν(X) =
(∫ X

0
dx ′p(x ′)

)ν

, (1.16)

and

Pν(X) = νp(X)

(∫ X

0
dx ′p(x ′)

)ν−1

. (1.17)

Suppose p(x) is a smooth function decaying continuously to 0 as x tends to infinity.
In this case, it is possible to get the asymptotic form of Pν(X) at ν very large. Let us
write Pν(X) as an exponential

Pν(X) = eT (ν,X),

with

T (ν,X) = ln (ν) + ln (p(X)) + (ν − 1) ln

(∫ X

0
dx ′p(x ′)

)
.

In the limit ν large, one expects that the distribution Pν(X) has more weight at larger
values of X, which is also what is found by looking numerically at the shape of
Pν(X) in this limit for various possible p(X). See Figs. 1.1 and 1.2. Therefore, in
this limit, Pν(X) should become more concentrated around the value of X such that
the derivative ∂T (ν,X)

∂X
= 0. This derivative vanishes when X is the root Xν of

ν = 1 − p′ ·N
p2

,

where p′ = dp

dX
. When Xν is large, then N (Xν) = ∫ Xν

0 dx ′p(x ′) ≈ 1. At ν large, this

root Xν is unique and large. This can be seen by noticing that − p′
p2 = d(1/p)

dX
, and

by assuming that 1/p is a smooth function increasing monotonically to infinity as x

tends to infinity. To make its first momentum m1 convergent p(X) must decay faster
than x−2 at infinity, so that the derivative d(1/p)

dX
must grow faster than X at X large.

Therefore, the function Xν grows slower than ν as ν tends to infinity but it grows
to infinity for any function p(x) tending smoothly to 0 as x tends to infinity. This
growth will depend on the behaviour of p(x) as x tends to infinity.

The function Xν gives the order of magnitude of the maximum wealth after ν

iterations. By continuing the expansion of T (ν, x) near Xν to the quadratic order
with respect to the difference δX = X −Xν , one finds that

T (ν,X) ≈ T (ν,Xν) + δX2

2

∂2T (ν,X)

∂X2
+ ....

where the second derivative is computed at X = Xν .
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Fig. 1.1 Pν (X) for different ν when p(x) = e−x . Observe the monotonic increasing of Xν with
ν. For this case, when ν � 10, observe that Pν (Xν ) is constant and Pν (X) presents a soliton-like
waveform

After some algebra and by taking into account that ν is large and that, in the limit
Xν large, N (Xν) ≈ 1, one finds

∂2T (ν,X)

∂X2
≈ −p(Xν)

d2(1/p)

dX2
.

To prove that the width of the maximum of the distribution is much less than Xν , one
can do the following approximate scaling argument. We have p′

p2 ≈ −ν. Assuming

that p′ ≈ p(Xν )
Xν

, which is certainly correct for a probability distribution p(.) decaying

like a power law at large arguments, one finds ν ∼ 1
Xνp(Xν ) . Using the same kind of

scaling argument one finds that

∂2T (ν,X)

∂X2
∼ −νp(Xν)

Xν

∼ − 1

X2
ν

.
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Fig. 1.2 Pν (X) for different ν when p(x) = xe−x . Observe the monotonic increasing of Xν with
ν. For this case, when ν � 10, observe that Pν (Xν ) is not constant and Pν (X) presents an increase
of the maximal wave amplitude

This shows that, at least for distributions p(x) decaying like power laws, the width of
the probability distribution Pν(X) is of order Xν for ν very large, although its center
is at Xν . In this case, the width of the probability distribution and its center are large
and of the same order of magnitude. Therefore, one may guess that it behaves like

Pν(X) ≈ 1

Xν

P̂

(
X

Xν

)
.

where P̂ is a positive numerical function of order one when its argument is of order
one. It is normalised in such a way that

∫∞
0 P̂ (z)dz = 1. From the derivation, this

function depends on the way p(x) behaves as x tends to infinity.
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1.6 Conclusions and Perspectives

Owing to its mathematical structure, the Z-model can be solved and somehow ex-
tended to bring interesting results with, perhaps, a connection to the complicated
phenomenology of real economics. Despite its strongly nonlinear character, it can
be solved without assuming too many things. A remarkable feature of this model is
its convergence to an exponential distribution of wealth. Of course any difference
between reality and this model may have many explanations. Among others, it has
been suggested, such as one of us (YP) also suggested it during the Noma-13 confer-
ence that this model lacks an important element present in economies of developed
countries, the tax system, with a more or less explicit claim of redistributing the
wealth. Such a tax system could be perhaps represented by adding a third partner in
each binary transaction, taking its pound of flesh at the transaction and redistributing
it randomly at the next step, more or less the way the VAT (added value tax) works.
This chapter also introduces a modified Z-model, where at each transaction money
is exchanged, which is not actually possessed by the economic agents, something
occurring all the time in modern economies. Amazingly, this induces an instability
in the distribution of wealth and makes grow indefinitely the higher momenta of its
distribution, even though the total amount remains the same. Although this happens
in a very idealised model, it could be closer to reality than the original Z-model with
its rather narrow distribution of wealth.
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