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Preface

The chapters in this volume of the Springer Proceedings in Mathematics & Statis-
tics series, entitled Nonlinear Maps and Their Applications, come from the works
presented in the Fourth International Workshop on Nonlinear Maps and Their Appli-
cations (NOMA 2013), which took place in Zaragoza, Spain, 3–4 September, 2013.
The workshop was locally organized by Ricardo López-Ruiz (RLR) and hosted by
the University of Zaragoza at its Faculty of Sciences.

This conference follows the sequence of Workshop on Nonlinear Maps and Their
Applications which started in Toulouse 2007, and continued in Urbino 2009 and in
Évora 2011.

The objective of the NOMA 2013 Conference was to provide a forum in the field
of discrete dynamical systems. It was open for theoretical studies as well as for
applications. The interaction and the knowledge exchange among mathematicians,
physicists, engineers, and other specialists, and young researchers, from nonlinear
sciences was very fruitful and gave rise to new insights in this area, in the pleasant
atmosphere provided by the town of Zaragoza. It consisted of five invited lectures
given by Yves Pomeau (École Normale Supérieure de Paris, France), Oreste Piro
(University of Balearic Islands, Spain), Víctor Mañosa (Polytechnic University of
Catalunya, Spain), Elena Blokhina (University College Dublin, Ireland), and Anir-
ban Chakraborti (École Centrale de Paris, France) as well as over 20 contributed
lectures of 15 different countries (Portugal, Japan, France, Spain, Czech Republic,
Russia, Belgium, Iran, Poland, Mexico, Venezuela, Brazil, Tunisia, Germany, and
Argentina).

This volume is a compilation of the selected works presented in the workshop and
that have been accepted for publication. The diversified nature of the conference is
reflected in the spectrum of the 17 chapters published here, where 36 researchers are
contributing.

The editors, specially the local organizer (RLR), would like to thank all conference
participants, committees, authors, who submitted papers for this volume, for their
valuable contribution, as well as reviewers for their time and expertise to review the
works presented here.

Editors: Ricardo López-Ruiz, Danièle Fournier-Prunaret,Yoshifumi Nishio, Clara
Grácio.
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Chapter 1
Study of A Model for the Distribution of Wealth

Yves Pomeau and Ricardo López-Ruiz

Abstract An equation for the evolution of the distribution of wealth in a population of
economic agents making binary transactions with a constant total amount of “money”
has recently been proposed by one of us (RLR). This equation takes the form of an
iterated nonlinear map of the distribution of wealth. The equilibrium distribution
is known and takes a rather simple form. If this distribution is such that, at some
time, the higher momenta of the distribution exist, one can find exactly their law of
evolution. A seemingly simple extension of the laws of exchange also yields explicit
iteration formulae for the higher momenta, but with a major difference with the
original iteration because high-order momenta grow indefinitely. This provides a
quantitative model where the spreading of wealth, namely the difference between
the rich and the poor, tends to increase with time.

1.1 Introduction

This communication follows the Noma-13 conference in September 2013, an enjoy-
able and fruitful meeting where one of us (YP) had a chance to hear of the model
considered below [1–3]. This model describes the evolution of the distribution of
wealth in a population of individuals doing business pairwise. After each exchange
there is a redistribution of money between the two individuals, without total loss
or gain. A feature of this model, the “Z-model” (with Z for Zaragoza) is its simple
equilibrium solution (written below). Under its law of evolution, this equilibrium
solution is stable and so attracts most, if not all, initial conditions satisfying conver-
gence conditions (finite total probability and finite total wealth) [4]. Moreover, an
H -theorem is valid for this model [5]. We show below that the evolution of higher
momenta (mean square value, mean cubic value, etc.) of the wealth can be computed
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2 Y. Pomeau and R. López-Ruiz

exactly, obviously under the condition that those momenta exist. We also consider
situations where the momenta do not converge beyond a given order. An anonymous
referee pointed out that something called “q-model” has equations similar to the
Z-model. Those q-models aim at describing the distribution of stress in random set
of solid grains in contact with neighbours in such a way that the downward push of
the weight of a grain and of the grain above it is distributed more or less randomly
between its neighbours underneath. In this theory, the equivalent of the time of the
Z-model is played by the vertical direction and the time-iteration amounts to move
down the pile to find the distribution of stress on grains. Even though the equations
of this q-model look like the ones of the Z-model, their physical meaning is quite
different. The interested reader may get a list of papers on the subject in the refer-
ence list of the lecture notes published in [6]. Moreover the q-model, in order to get
a row-to-row equation of iteration like the one of the Z-model has to assume that
the vertical force on beads on the same horizontal row are statistically independent,
which is presumably needed to get at the end something like a hyperbolic system,
although the Cauchy–Poisson equations for regular elasticity are elliptic.

Due to its simple mathematical structure, it makes sense to extend the Z-model
by keeping the possibility of an exact solution for the momenta. This can be done
with a straightforward extension maintaining the basic properties of conservation of
the total probability and the total wealth. This modified Z-model looks very much
like the original and reduces to it continuously as a parameter changes, but it has
completely different properties. In particular, it shows an increase in the fluctuations
of wealth as time goes, a rather unexpected property, absent in the original model.
This makes the matter of Sect. 1.3. In this respect, the inequality of wealth as studied
below makes only a small part of this big subject, but it is at least one that one can
try to describe quantitatively.

Motivated by this consideration of momenta, we look in Sect. 1.4 at what happens
in the Z-model when the momenta do not converge, specifically when the distribution
of wealth decays algebraically for large values so that momenta do not exist, at least
initially, beyond a certain power (This might be related to what is called Pareto law;
Pareto [7] having predicted that the natural distribution of wealth decays algebraically
for large values, a property of the mZ-model studied below). An interesting result of
this analysis is that, after a certain number of iterations (namely after a finite amount of
time), higher momenta converge although they diverged initially. Somehow, without
venturing into the area of political science, this looks like the exact opposite of what
is predicted sometimes (without relying on objective modelisation as much we can
tell): fewer individuals get richer and richer although the other ones get poorer and
poorer as time goes. This could have other explanations of course, like what is called
the redistribution of wealth by the tax system in modern economies.

We shall explain first how to solve “exactly” the moment problem, for a probability
distribution decaying fast enough at infinity and then look at what happens if, initially,
this probability distribution decays algebraically for large values.

In sect. 1.5 we give the probability distribution of the wealth of the “richest man”,
namely the largest wealth of a given finite number of agents with a given probability
distribution of the wealth with agents taken at random in the population. An explicit
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expression of this probability distribution of the maximum of wealth, with its limit
in the case of a large number of agents, is given.

The last section is “Summary and Conclusion”.

1.2 The Z-Model

In this model, one considers a positive variable with various names, x, u, etc. for
the amount of money owned by an individual. This amount changes in the course of
time because of random exchanges between the individuals taking place at discrete
time, in a synchronous way in the system. The fundamental quantity is pt (x), the
probability that an individual taken at random in the population has an amount x at
time t . At the next time step (t + 1), due to the binary exchanges, pt (x) has changed
according to the law of iteration found in reference [1]

pt+1(x) =
∫ ∫

S(x)
dudv

pt (u)pt (v)

u + v
, (1.1)

The domain of integration in Eq. (1.1) is defined by

S(x) = {(u, v), u, v > 0, u + v > x}.
This integral equation is for a function of x, positive variable. As p(.) is a probability
distribution, it has to be positive or 0. Moreover, it is normalised in such a way that∫∞

0 dupt (u) = 1, and t is a discrete index representing time. This law of evolution
of the wealth is derived as follows. Suppose two individuals, each one with the
same probability of wealth, say p(u), put their money in the same basket. Then the
probability distribution for what is in the basket (the amount w) is

q(w) =
∫ ∞

0
dvp(v)p(w − v)H (w − v),

where H (.) is Heaviside function, 0 for a negative argument and 1 otherwise. Sup-
pose, we share the amount w between two individuals, by taking randomly a value
in [0, w] and give it to the first individual and the rest to the other. The probability
distribution of what is taken by anyone of those individuals is

r(s) = χw(s)

w
,

where χw(s) is the characteristic function of the interval [0, w]. By extending this
simple formula to the probability distribution q(w) of the values of w, as derived
above, one obtains

r(s) =
∫ ∞

0

dw

w
H (w − s)

∫ ∞

0
dvp(v)p(w − v)H (w − v).

After rearranging the integrals one finds

r(s) =
∫ ∞

0
dv′
∫ ∞

s−v′>0
p(v′)p(u′)

du′

u′ + v′
,

which is a form of the right-hand side of Eq. (1.1).



4 Y. Pomeau and R. López-Ruiz

Equation (1.1) can be integrated explicitly, at least in some sense. Let us define
the moments of pt (x) as

mk(t) =
∫

duukpt (u). (1.2)

We consider first the case where all momenta converge. In Sect. 1.4 we discuss the
situation where some momenta do not exist at a given time because the integral (1.2)
diverges at k large, which is well possible because the “physical” constraints on p(u)
is to have well-defined (not diverging) values of m0 and m1 only. From Eq. (1.1)
one derives the following equation for the momenta of pt+1(.) as a function of the
momenta of pt (.)

mk(t + 1) = 1

k + 1
Σ0≤l≤kC

l
kmk−l(t)ml(t), (1.3)

where Cl
k = k!

(k−l)!l! are the binomial coefficients. This shows that the momenta of
order k at time (t + 1) can be found if the momenta of smaller power at time t are
known. The formula is also consistent with the fact that m0 = 1 at any time and that
m1 is a conserved positive constant (called later m1). Let us look at the equation for
m2. It reads

m2(t + 1) = 2

3
(m2(t) +m2

1), (1.4)

As this equation is linear with respect to m2, it can be integrated at once with the
result (supposing m2(0) given)

m2(t) =
(

2

3

)t

m2(0) + 2m2
1

[
1 −

(
2

3

)t]
=
(

2

3

)t

(m2(0) − 2m2
1) + 2m2

1, (1.5)

The higher momenta can also be computed explicitly as the functions of the initial
data for the lower order momenta, the result become more cumbersome as the order
increases. At third order one has

m3(t + 1) = 1

2
(m3(t) + 3m2(t)m1), (1.6)

let

S3(t) = 3

2
m2(t)m1.

Therefore

m3(t) =
(

1

2

)t [
m3(0) +Σ0≤θ≤t2

θS3(θ − 1)
]

,

is a solution for m3(t) as a function of m1, m2(0) and m3(0). The sums can be done
explicitly because they involve geometric series. The method of integration just
explained does not work if one takes momenta with non-integer exponents because
there is no finite equivalent of the binomial formula for such non-integer power.
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1.3 Definition and Solution of a Generalised Z-Model

The Z-model can be generalised in the following way. In the original formulation,
each of the two partners in a transaction have a random amount u and v. During the
transaction they put first the whole amount (u + v) in a basket and then share its
content randomly. The Z-model describing this satisfies the constraint that the total
probability is one and that the total money is also conserved. This model has also the
property that the equilibrium solution (namely the distribution of wealth such that
pt (u) = pt+1(u)) is known explicitly and is

peq(u) = 1

m1
e
− u

m1 .

Further, we suggest a modified recursion relation analogous to the one given in
Eq. (1.1), but such that no simple expression of the equilibrium distribution can be
found, even though the mass and first momentum m1 is conserved (we keep the
same notation, mk(t) for the kth moment in the mZ-model, defined below, as in the
Z-model). This model reads

Pt+1(x) =
∫ ∫

Sa (x)
dudv

Pt (u)Pt (v)

au + (2 − a)v
, (1.7)

In this equation, a is a real parameter, between 0 and 2, and Sa(x) is defined by the
condition x < au + (2 − a)v. In this model, at the time of the transaction between
the two individuals, one of the individual puts (au) in the basket (instead of u in the
Z-model) and the other puts (2− a)v in the basket, instead of v. Although this model
is apparently not conservative, this is not the case. If we consider the symmetrical
interaction for the pair of agents (v, u), in this case the first agent will put (av) in the
basket and the second one (2−a)u. For both trades, those of the pairs (u, v) and (v, u),
the total money to share in the basket is 2(u + v), then the total wealth is conserved.
It can be interpreted that the excess of money in one of the trades is injected to cover
the lack of money in the other trade. This is just one of the functions done by the
bank system. Perhaps this is not such an unrealistic model because, nowadays (and
very likely before), banks and even states rent money they do not really have and do
that within constraints based on multiplicative factors of their actual wealth.

Like the Z-model, the modified Z-model (or mZ-model) defined by the iteration
(1.7) satisfies the constraints of conservation of m0 and m1 if m0 = 1. From simple
algebra, one finds

m0(t + 1) = m0(t)2,

and
m1(t + 1) = m0(t)m1(t).

Therefore, the first two momenta are constant if m0 = 1 and if m1 converge, as
we assume it. Contrary to the case of the Z-model, there is no simple equilibrium
solution. However, it is possible to derive many properties of this equilibrium from
the equations for the moments. This is because the denominator in the iteration
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formula is a linear function of u and v like in the Z-model. The recursion relation for
the second moment is

m2(t + 1) = 1

3

[
(4 − 4a + 2a2)m2(t) + 2(2 − a)am2

1

]
. (1.8)

As can be easily checked, this reduces to the formula valid for the Z-model, Eq. (1.4),
in the case a = 1. However, a very interesting difference appears in this iteration law
(again, an iteration derived from the iteration for the probability distribution with no
other assumption than the existence of the second moment). Actually this iteration
may lead to an exponentially growing second moment. This happens if the coefficient
of m2(t) in Eq. (1.8) is larger than one. This happens if a is outside of the interval
[1 − 1√

2
, 1 + 1√

2
], which is compatible with the condition 0 < a < 2. Therefore,

there can be an instability of the second moment leading to an indefinite increase of
the width of the distribution of wealth. Without overstating this, one can say that this
makes a model of ever increasing inequality as predicted by some socioeconomical
theories.

Moreover, for any a different from 1, the iteration of higher momenta become
unstable. To show this, let us define b = 1−a. The iteration of the kth moment reads

mk(t + 1) = 1

k + 1

[(
(1 − b)k + (1 + b)k

)
mk(t) + l.o.t(t)

]
. (1.9)

In this equation, l.o.t(t) is for the lowest order terms, depending on momenta of
order less than k. Let us consider the smallest k such that, for a given a, there is an
exponential growth of this moment. Therefore, l.o.t(t) remains bounded as a function
of time and so, if there is an instability, it is dominated after a sufficient number of
iterations by the exponentially growing

(
(1 − b)k + (1 + b)k

)
mk(t). A little algebra

shows that the coefficient of mk(t) on the right-hand side of Eq. (1.9) is larger than
1 and the moment grows exponentially if

ln (1 + |b|) > ln (k + 1)

k
.

If |b| is small, this is equivalent to the condition

k >
ln (1/|b| + 1)

|b| .

It shows that, however |b| is small but not 0, the large order momenta are unstable
under the iteration. Recall that |b| small is equivalent to have a mZ-model formally
close to the original Z-model. This also shows that, however small (but non 0) |b|
is, the steady distribution, if it exists, given by the iteration law should decay with
a power law at large values of its argument to make diverge momenta with a large
power. It is planned to return to this mathematically interesting question in a future
publication.
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1.4 Diverging Moments at Time Zero

In this section, we return to the Z-model in its original form and consider the follow-
ing question: What happens to the iterations if the initial momenta diverge beyond
a certain power? Indeed, because the initial condition is in principle rather free,
provided m0 = 1 and m1 converges, one can always imagine an initial condition
with a distribution of wealth decreasing algebraically for large powers. In this case,
momenta do not exist beyond a certain power. We consider below what happens in
this case. In particular, we show that after a finite number of iterations, one recovers
a converging moment with a power less than a value increasing as the iterations go.

We shall limit ourselves to situations wherep0(u), the initial distribution of wealth,
behaves at large u as a power law, like

p0(u) ≈ lα0 u−α0 , (1.10)

where lα0 is a positive constant and α0 a positive exponent. To have finite probability
and first momentum (finite total wealth) one must have α0 > 2. By putting this power
law in the right-hand side of the functional iteration (1.1), one obtains that at time
t = 1, the distribution of wealth p1(u) decays with the power law

p1(u) ≈ lα1 u−α1 , (1.11)

where α1 = 2α0 − 1 and where

lα1 = l2α0
B(α0),

where

B(α) =
∫ ∫

S(1)
du′dv′

(u′v′)−α

u′ + v′

is a numerical function of the argument α. As the iteration formula shows, α in-
creases as the iteration goes and so as soon as it becomes big enough, momenta of
a given power begin to exist, and follow later the explicit recursion formulae given
in Eq. (1.3). This is correct because momenta of higher order begin to converge the
later as their power increases. Therefore, the right-hand side of the recursion equa-
tion becomes all well-defined when the highest moment becomes well-defined, all
momenta of a smaller power being already finite at this time.

1.5 Probability Distribution of the Wealth of the Richest Man

Looking at the economic magazines, one is struck by their insistence on various lists
of rich, if not very rich people, lists ordered according to their supposed wealth.
Therefore, it is of some interest to consider the question of the distribution of biggest
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wealth that can be reached within the models outlined in this work. We begin with
a basic question of probability: given a probability distribution p(x), and a number
ν of independent trials. What is the largest value reached among those trials? This
interesting question can be answered quite simply as demonstrated below. Then we
apply this result to the case of the Z- and mZ-model.

Consider first the following problem: given x0 positive, let us draw a number x

with probability distribution p(x). What is the distribution of the maximum of x0 and
x, a maximum denoted as X? If x is less than x0 the maximum is x0, in the opposite
case it is x. Define N(x) as

N (x) =
∫ x

0
dx ′p(x ′).

The probability that x is less than x0 is N (x0). Therefore, the probability distribution
of X is

�(X, x0) = N (X)δ(X − x0) + p(X)H (X − x0). (1.12)

The probability distribution �(X, x0) is normalised in such a way that
∫ ∞

0
dXΠ (X, x0) = 1,

a consequence of the property N (∞) = 1.
Suppose now that x0 instead of being taken as a fixed number is drawn at random

with a probability distribution q(x0). Therefore, the probability distribution of the
maximum of x and x0 has to be averaged over the choices of x0. This yields

P (X) =
∫ ∞

0
dx0q(x0)Π (X, x0) = N (X)q(X) + p(X)

∫ X

0
dx ′q(x ′). (1.13)

One can check by performing the integrals in the quadrant x, x ′ > 0 that
∫ ∞

0
dXP (X) =

∫ ∞

0
dxp(x)

∫ ∞

0
dx ′q(x ′) = 1.

From Eq. (1.13) one can derive the probability distribution of the largest value drawn
after ν (integer) independent trials , each one with the probability distribution p(x).
Let Pν(x) be the probability distribution of the maximum of ν trials. After one trial
P1(X) = p(X). From Eq. (1.13) one derives the recursion formula between Pν(X)
and Pν+1(X)

Pν+1(X) = N (X)Pν(X) + p(X)
∫ X

0
dx ′Pν(x ′). (1.14)

Now define Qν(X) = ∫ X

0 dx ′Pν(x ′). This allows to write Eq. (1.14) like

dQν+1(X)

dX
= N (X)

dQν(X)

dX
+ dN (X)

dX
Qν(X). (1.15)
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This can be obviously integrated as

Qν+1(X) = N (X)Qν(X) + Sν ,

where Sν is a constant of integration, independent on X. As Qν(0) = 0 for all Sν ,
Sν = 0 also for all ν. Therefore,

Qν(X) =
(∫ X

0
dx ′p(x ′)

)ν

, (1.16)

and

Pν(X) = νp(X)

(∫ X

0
dx ′p(x ′)

)ν−1

. (1.17)

Suppose p(x) is a smooth function decaying continuously to 0 as x tends to infinity.
In this case, it is possible to get the asymptotic form of Pν(X) at ν very large. Let us
write Pν(X) as an exponential

Pν(X) = eT (ν,X),

with

T (ν,X) = ln (ν) + ln (p(X)) + (ν − 1) ln

(∫ X

0
dx ′p(x ′)

)
.

In the limit ν large, one expects that the distribution Pν(X) has more weight at larger
values of X, which is also what is found by looking numerically at the shape of
Pν(X) in this limit for various possible p(X). See Figs. 1.1 and 1.2. Therefore, in
this limit, Pν(X) should become more concentrated around the value of X such that
the derivative ∂T (ν,X)

∂X
= 0. This derivative vanishes when X is the root Xν of

ν = 1 − p′ ·N
p2

,

where p′ = dp

dX
. When Xν is large, then N (Xν) = ∫ Xν

0 dx ′p(x ′) ≈ 1. At ν large, this

root Xν is unique and large. This can be seen by noticing that − p′
p2 = d(1/p)

dX
, and

by assuming that 1/p is a smooth function increasing monotonically to infinity as x

tends to infinity. To make its first momentum m1 convergent p(X) must decay faster
than x−2 at infinity, so that the derivative d(1/p)

dX
must grow faster than X at X large.

Therefore, the function Xν grows slower than ν as ν tends to infinity but it grows
to infinity for any function p(x) tending smoothly to 0 as x tends to infinity. This
growth will depend on the behaviour of p(x) as x tends to infinity.

The function Xν gives the order of magnitude of the maximum wealth after ν

iterations. By continuing the expansion of T (ν, x) near Xν to the quadratic order
with respect to the difference δX = X −Xν , one finds that

T (ν,X) ≈ T (ν,Xν) + δX2

2

∂2T (ν,X)

∂X2
+ ....

where the second derivative is computed at X = Xν .
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Fig. 1.1 Pν (X) for different ν when p(x) = e−x . Observe the monotonic increasing of Xν with
ν. For this case, when ν � 10, observe that Pν (Xν ) is constant and Pν (X) presents a soliton-like
waveform

After some algebra and by taking into account that ν is large and that, in the limit
Xν large, N (Xν) ≈ 1, one finds

∂2T (ν,X)

∂X2
≈ −p(Xν)

d2(1/p)

dX2
.

To prove that the width of the maximum of the distribution is much less than Xν , one
can do the following approximate scaling argument. We have p′

p2 ≈ −ν. Assuming

that p′ ≈ p(Xν )
Xν

, which is certainly correct for a probability distribution p(.) decaying

like a power law at large arguments, one finds ν ∼ 1
Xνp(Xν ) . Using the same kind of

scaling argument one finds that

∂2T (ν,X)

∂X2
∼ −νp(Xν)

Xν

∼ − 1

X2
ν

.
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Fig. 1.2 Pν (X) for different ν when p(x) = xe−x . Observe the monotonic increasing of Xν with
ν. For this case, when ν � 10, observe that Pν (Xν ) is not constant and Pν (X) presents an increase
of the maximal wave amplitude

This shows that, at least for distributions p(x) decaying like power laws, the width of
the probability distribution Pν(X) is of order Xν for ν very large, although its center
is at Xν . In this case, the width of the probability distribution and its center are large
and of the same order of magnitude. Therefore, one may guess that it behaves like

Pν(X) ≈ 1

Xν

P̂

(
X

Xν

)
.

where P̂ is a positive numerical function of order one when its argument is of order
one. It is normalised in such a way that

∫∞
0 P̂ (z)dz = 1. From the derivation, this

function depends on the way p(x) behaves as x tends to infinity.



12 Y. Pomeau and R. López-Ruiz

1.6 Conclusions and Perspectives

Owing to its mathematical structure, the Z-model can be solved and somehow ex-
tended to bring interesting results with, perhaps, a connection to the complicated
phenomenology of real economics. Despite its strongly nonlinear character, it can
be solved without assuming too many things. A remarkable feature of this model is
its convergence to an exponential distribution of wealth. Of course any difference
between reality and this model may have many explanations. Among others, it has
been suggested, such as one of us (YP) also suggested it during the Noma-13 confer-
ence that this model lacks an important element present in economies of developed
countries, the tax system, with a more or less explicit claim of redistributing the
wealth. Such a tax system could be perhaps represented by adding a third partner in
each binary transaction, taking its pound of flesh at the transaction and redistributing
it randomly at the next step, more or less the way the VAT (added value tax) works.
This chapter also introduces a modified Z-model, where at each transaction money
is exchanged, which is not actually possessed by the economic agents, something
occurring all the time in modern economies. Amazingly, this induces an instability
in the distribution of wealth and makes grow indefinitely the higher momenta of its
distribution, even though the total amount remains the same. Although this happens
in a very idealised model, it could be closer to reality than the original Z-model with
its rather narrow distribution of wealth.
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Chapter 2
Periodic Orbits of Planar Integrable
Birational Maps

Imma Gálvez-Carrillo and Víctor Mañosa

Abstract A birational planar map F possessing a rational first integral preserves a
foliation of the plane given by algebraic curves which, if F is not globally periodic,
is given by a foliation of curves that have generically genus 0 or 1. In the genus 1
case, the group structure of the foliation characterizes the dynamics of any birational
map preserving it. We will see how to take advantage of this structure to find periodic
orbits of such maps.

2.1 Introduction

A planar rational map F : U → U , where U ⊆ K
2 is an open set and K ∈ {R, C},

is called birational if it has a rational inverse F−1. In this chapter, we will say that a
map F is integrable if there exists a nonconstant function V : U → K such that

V (F (x, y)) = V (x, y),

which is called a first integral or invariant of F . If a map F possesses a first integral
V then each orbit lies in some level set of V or, in other words, the level sets of V
are invariant under F .

Planar birational maps are a classical object of study in algebraic geometry and
have been the focus of intense research activity in recent years (see [24] and references
therein). The integrable cases appear in many contexts, from algebraic geometry
and number theory to mathematical physics. This is the case of the celebrated QRT
family of maps introduced in [44, 45] (see also [26]), which contains the well-known
McMillan family of maps, and some of the integrable cases studied by Gumovski and
Mira [30, 40]. Many maps in this family arise as special solutions, termed discrete
solitons, of differential-difference equations arising in statistical mechanics. The
QRT maps all have a rational first integral.
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In this chapter, we will consider only those integrable maps that have rational
first integrals. In fact, all the examples of integrable birational maps that we know
have rational first integrals, but as far as we know there is no reason for an integrable
birational map to be rationally integrable. In this sense, it is interesting to recall the
case given by the composition maps associated to the five-periodic Lyness recur-
rences. These maps are birational, and the numerical results show phase portraits
compatible with the existence of first integrals, however, it has been recently proved
that, generically, these maps are not rationally integrable, see [19, Theorem 19] and
[14, Theorem 1 and Proposition 3].

Observe that if the first integral is a rational function,

V (x, y) = P (x, y)

Q(x, y)
, (2.1)

then the map preserves the foliation1 of U is given by the algebraic curves

F = {P (x, y) − hQ(x, y) = 0,h ∈ Im(V )}. (2.2)

We will assume that P and Q are coprime and, although it is not essential in this
chapter, that V has minimal degree. Recall that the degree of a rational first integral
is the greater of the degrees of P and Q. We say that the degree n of V is minimal
if any other rational first integral of F has degree at least n. Given a rational first
integral, one always can find a minimal rational first integral.

In this note, our objective is to show how to take advantage of the algebraic–
geometric properties of the invariant foliation F to study the periodic orbits of the
birational maps preserving it. Although the techniques explained in this chapter have
been used to study several birational maps [4–7, 9, 26, 53, 54], to illustrate them we
will refer only to a particular, but paradigmatic, example: the well-known Lyness
family of maps.

Example 2.1 Lyness’s maps are a 1-parametric family of birational maps given by

Fa(x, y) =
(
y,

a + y

x

)
, (2.3)

These maps give the dynamical system associated to recurrence xn+2 = (a +
xn+1)/xn. There is a large recent literature concerning this family. In the appendix
of this chapter the reader can also find a short account of references and the history
of the Lyness recurrences and maps.

Each map Fa has the first integral

V (x, y) = (x + 1)(y + 1)(x + y + a)

xy
, (2.4)

1 In this chapter, we say that a map F preserves a foliation of curves {Ch} if each curve Ch is
invariant under the iterates of F .
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so it preserves the foliation given by

F = {Ch = {(x + 1)(y + 1)(x + y + a) − hxy = 0}, h ∈ Im(V )} . (2.5)

The chapter is structured as follows: in Sect. 2.2, we will recall the notion of
genus of an algebraic curve, and we will see that if we are interested in those maps
not being globally periodic, then we can consider that the curves in the foliation
(2.2) have genus 0 or 1, see Corollary 2.3. In Sect. 2.3, we restrict our attention to
maps having invariant curves with genus 1 (also named elliptic curves). We recall the
group structure of these curves and also a result of Jogia et al. (Theorem 2.4) which
relates the dynamics of a particular birational map on an invariant elliptic curve and
its group operation. We will take advantage of this result to obtain a description of the
periodic orbits in terms of the torsion of the curve (Eq. 2.8). In Sect. 2.4, we discuss
the global dynamics of birational maps preserving a foliation given by elliptic curves
Ch. First, we start by introducing and discussing the nature of the rotation number
function θ (h) associated to each curveCh. Then, we see that a typical situation occurs
when there is a dense set of curves in phase space filled by p-periodic orbits of all
the periods p ≥ p0 ∈ N, for some integer p0 which is sometimes computable (see
Proposition 2.9 and Sect. 2.4.3).

In Sect. 2.5, as a straightforward application, we show how to address the problem
of finding the curves containing periodic orbits with a prescribed period, by using the
characterization of periodic orbits given by the group law of the curve (see Eq. (2.8)).
We show the main technique by applying it to the Lyness case, as already done in [4].

In Sect. 2.6, we will see how the group structure of rational elliptic curves is
strongly related to the existence of rational periodic orbits. We will recall Mazur’s
theorem and its dynamical implications. We also give some insight on the known
results of rational periodic orbits in the Lyness case [4, 29, 54]. This section ends
with a digression about why the numerical simulations of the phase portrait of bi-
rational maps preserving an elliptic foliation do not show the plethora of periodic
orbits that they possess, on the contrary of what happens when general integrable
diffeomorphisms are considered.

We end these notes with a comment on the genus 0 case, and with an appendix
giving more information about the Lyness maps and curves.

The aim of the chapter is expository, and it is inspired in the papers of Bastien and
Rogalski [4] and of Jogia et al. [33]. The reader is invited to read them, as well as
their references. Another essential reference is the book of Duistermaat [26] about
some algebraic–geometric aspects of QRT maps.

2.2 A First Dynamical Result: Restriction to the Genus
0 and 1 Cases

When studying the dynamics of an integrable map, a first step is to know the topology
of the invariant level sets. When the level sets are algebraic curves, the natural way
to study them is to consider their extension, and also the extension of the birational
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maps, to the complex projective space

CP2 = {[x : y : z] = [0 : 0 : 0], x, y, z ∈ C}/ ∼,

where [x1 : y1 : z1] ∼ [x2 : y2 : z2] if and only if [x1 : y1 : z1] = λ[x2 : y2 : z2] for
λ = 0.

In this chapter, [x : y : 1] denotes an affine point, corresponding with the point
(x, y) ∈ K

2 (where K can be either R or C), and [x : y : 0] denotes an infinite point.
The infinite points are added to real affine algebraic curves in order to capture the
asymptotic directions of possible unbounded components. See Fig. 2.2 for instance.

Any real affine algebraic curve can be extended to CP2 by the formal process of
homogenization. For instance, any Lyness curve

Ch = {(x + 1)(y + 1)(x + y + a) − hxy = 0} ⊂ R
2

where x, y ∈ R extends to CP2 as

C̃h := {(x + z)(y + z)(x + y + az) − hxyz = 0, x, y, z ∈ C}.
Notice also that any birational map in R

2 extends formally to a polynomial map
in CP2. For instance, the Lyness map Fa(x, y) = (y, (a + x)/y) extends formally to

F̃a([x : y : z]) = [xy : az2 + yz : xz],

except for the points [x : 0 : 0], [0 : y : 0], and [0 : −a : 1] (see also the alternative
description given by Eq. (2.7) in Sect. 2.3), where x, y, z ∈ C.

Any algebraic curve C̃ in CP2 is a Riemann surface characterized by its genus,
[34]. On any irreducible component of a curve in CP2, the genus g is related to the
degree d by the degree-genus formula:

g = (d − 1)(d − 2)

2
−

∑
p∈Sing(C)

mp(mp − 1)

2
,

where mp stands for the multiplicity of any possible singular ordinary point. Recall
that a singular point is called ordinary when all the tangents at the point are distinct and
that, given an irreducible curve, it is always possible to find a birationaly equivalent
curve with only ordinary multiple points, so that the above formula gives the genus.

In this chapter, we will say that an invariant foliation has generic genus g if the
genus has constant value g on the irreducible components of {P−hQ}, except maybe
for a finite set of values of h ∈ Im(V ) for which the genus is lower. This is a common
situation. The reader is addressed, for instance, to Pettigrew and Roberts [43] for a
characterization of the singular curves corresponding to a biquadratic foliation that
generalizes the classical elliptic QRT foliations. We will assume that in our foliations
(2.2) the genus is generic.

Next, we will see that if one expects to obtain a rich dynamics of a birational map
preserving a foliation {Ch}, where Ch are irreducible curves, then one has to restrict
attention to those maps that preserve foliations of generic genus 0 or 1, because any
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birational map F preserving a foliation of generic genus greater or equal than 2 is a
globally periodic map, that is, there exists p ∈ N such that Fp(x, y) = (x, y) for all
(x, y) where F is defined. This fact is a consequence of the following two classical
results.

Theorem 2.1 (Montgomery, [42]) Any pointwise periodic homeomorphism in a
connected metric space, locally homeomorphic to R

n, is globally periodic.
The next one is an adaptation to our context of the Hurwitz automorphisms the-

orem which states that any compact Riemann surface with genus g > 1 admits at
most 84(g − 1) conformal automorphisms, that is, homeomorphisms of the surface
onto itself which preserve the local structure; see [21, 22]. In our context, Hurwitz’s
theorem can be stated as follows, [33]:

Theorem 2.2 (Hurwitz, 1893) The group of birational maps on a nonsingular
algebraic curve of genus g > 1 is finite, and of order less or equal than 84(g − 1).

The above result states that any birational map preserving a particular nonsingular
curve of genus g ≥ 2 must be periodic (on the curve) with a period bounded by
84(g − 1).

Corollary 2.3 ([20]) A birational map in U ⊆ K
2 (where K can be either R or

C) preserving a foliation of nonsingular curves {Ch} ⊆ U that have generic genus
g > 1, must be globally periodic.

Proof If the foliation {Ch} has generic genus g > 1, then there exists an open
set V ⊆ U foliated by curves of genus g. By Hurwitz’s theorem on each of these
curves the map must be periodic, so F is pointwise periodic on V . Therefore, by
Montgomery’s theorem, F must be globally periodic on the whole V . Since F is
rational, and so the global periodicity is characterized by some formal polynomial
identities, then it must be periodic on the whole K

2 except at the points where its
iterates are not well-defined. �

In summary, from a dynamic viewpoint it makes sense to restrict our attention to
birational maps preserving foliations of algebraic curves with genus 0 or 1.

2.3 The Elliptic Case: Dynamics on Invariant Curves Through
Its Group Structure

In this chapter, we will concentrate our attention on those birational maps that pre-
serve a foliation of algebraic curves {Ch} of generic genus 1. Recall that a projective
algebraic curve of genus 1 is called an elliptic curve. Any elliptic curve has an asso-
ciated group structure [34, 50, 51]. In this section, we will see that in the case that
{Ch} is generically given by elliptic curves, then the group structure of the elliptic
foliation characterizes the dynamics of any birational map preserving it.

First, we recall the group structure associated with an elliptic curve C ∈ CP2, the
so called chord-tangent group law. Given two points P and Q in C, we define the
addition P +Q in the following way:
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Fig. 2.1 Group law with an
affine neutral element O

1. Select a point O ∈ C to be the neutral element of the inner addition.
2. Take the chord passing through P and Q (the tangent line if P = Q). It will

always intersect C at a unique third point denoted by P ∗Q. This is because the
curves of genus 1 are birationally homeomorphic to smooth cubic curves, [50,
Proposition 3.1].

3. The point P +Q is then defined as O ∗ (P ∗Q), see Fig. 2.1.

The curve endowed with this inner addition (C,+, O) is an abelian group [51].
A brief comment on notation: typically algebraic curves are defined on K

2, or on
KP 2, where K is the field of coefficients. In this chapter, this field will be mainly R

or C (or Q in Sect. 2.6). The notation C(K) or C/K denotes an elliptic curve C which
has at least one point O with coordinates in K. In this chapter, unless we explicitly
state the contrary, we will assume that C stands for a real curve.

The relationship between the dynamics of a birational map preserving an elliptic
curve and its group structure is given by the following adaptation of a result of Jogia
et al. [33, Theorem 3], that will be referred as the JRV theorem from now on. In [33],
the result is stated for birational maps leaving invariant an elliptic curve expressed in
a certain Weierstrass normal form (see [34, 50] but especially [51, Sect. I.3]). This
adaptation is immediately obtained by using the isomorphism with this normal form.

Theorem 2.4 (Jogia et al. [33]) Let F be a birational map over a field K, not of
characteristic 2 or 3, that preserves an elliptic curve C(K). Then, there exists a point
Q ∈ C(K) such that the map can be expressed in terms of the group law + on C(K)
as either

(i) F|C(K) : P �→ P +Q, or
(ii) F|C(K) : P �→ i(P )+Q, where i is an automorphism of possible order (period)

2, 4, 3 or 6, and the map F has the same order (period) as i.

We will give an easier dynamical interpretation of the above result, but first we will
illustrate it.

Example 2.2 The Lyness curves C̃h := {(x+ z)(y+ z)(x+ y+ az)−hxyz = 0} ⊂
CP2, are elliptic except for h ∈ {0, a − 1,h±c }, where

h±c := 2 a2 + 10 a − 1 ± (4 a + 1)
√

4 a + 1

2 a
. (2.6)
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Fig. 2.2 A typical real Lyness
curve Ch = {(x + 1)(y +
1)(x + y + a) − hxy = 0},
for h > h+c . Adding the
infinite points [1 : 0 : 0],
[0 : 1 : 0], [1 : −1 : 0], the
displayed curve is isomorphic
to S

1 × Z/(2)

An interesting fact is that for all values ofh the curves C̃h contain the infinity points
[1 : 0 : 0], [0 : 1 : 0], [1 : −1 : 0], see Fig. 2.2. An straightforward computation (or
a geometrical interpretation) shows that, setting O := [1 : −1 : 0], for any elliptic
level h the map F̃a([x : y : z]) = [xy : az2 + yz : xz] can be written as:

F̃a|C̃h
([x : y : z]) = [x : y : z] + [1 : 0 : 0]. (2.7)

The nonelliptic levels correspond to curves of genus 0, and on those levels the
map F̃a|C̃h

is conjugate to a Möbius transformation, see [29, Sect. 3.1].
The JRV theorem (Theorem 2.4) has the following dynamical interpretations given

in Corollaries 2.5 and 2.7 below.

Corollary 2.5 Let F be a birational map preserving a real foliation of algebraic
curves {Ch} ⊂ U ∈ R

2 of generic genus 1. Then, on each invariant elliptic curve
Ch, either F or F 2 are conjugate to a rotation.

The above corollary is a direct consequence of Theorem 2.4 and the following
result (a direct consequence of Corollary 2.3.1 in Chapter V.2 of [49]), based on the
fact that every real elliptic curve (adding, if necessary, some infinite points in the
real projective space) can be seen as either one or two closed simple curves, and that
the inner sum can be easily represented as the usual Lie group operation of S

1 or
S

1 × Z/(2).

Proposition 2.6 There is a continuous isomorphism between any nonsingular el-
liptic curve (C(R),+, O) and either the Lie group S

1 × Z/(2) = {eit : t ∈
[0, 2π )} × {1,−1} if Δ(C) > 0, or S

1 = {eit : t ∈ [0, 2π )} if Δ(C) < 0, with
the operation in S

1 being given by u · z = uz, where Δ(C) is the discriminant of the
Weierstrass equation associated to C(R).

Observe that if F is a birational map preserving an elliptic curve (C,+, O) whose
dynamics corresponds to case (ii) of Theorem 2.4, then all the points in C give rise
to periodic orbits. If the dynamics corresponds to case (i), then Fn

|C(P ) = P + nQ,
and we observe that P gives rise to a p-periodic orbit if and only if

pQ = O. (2.8)
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In other words, in case (i) of Theorem 2.4 the curve is filled by periodic orbits of F if
and only if Q is a finite order point of the group (C,+, O), also called a torsion point
(the torsion of a group G, denoted by Tor(G) is the set of its finite order elements).
The following result characterizes the dynamics of birational maps on particular
elliptic curves.

Corollary 2.7 Let F be a birational map preserving a real elliptic curve
(C(R),+, O), named C from now on, such that its dynamics is given by F|C(P ) =
P +Q, where Q ∈ C. Then

(i) If Q ∈ Tor(C), then all the orbits in C are periodic.
(ii) If Q ∈ Tor(C), then the orbits of F fill densely the connected components of C.

2.4 Global Dynamics on Elliptic Foliations.

The JRV theorem ensures that the action of a birational map on a particular elliptic
curve is linear. However, the behavior in the whole phase plane is a little bit more
complex. The typical situation occurs when there is a dense set of curves filled by
p-periodic orbits of all the periods p ≥ p0 ∈ N, for some integer p0. This integer
p0 is sometimes computable if the rotation set {θ (h), h ∈ Im(V )} is known. In this
section, we describe the reason for this behavior and we give an example of how to
compute the set of periods of a particular map. We also will see that if a particular
subinterval I in the rotation set is known, then it is possible to construct a number
P such that the map F contains at least all the periods p > P .

2.4.1 The Rotation Number Function and Its Nature

2.4.1.1 Piecewise Continuity

From this point, we will assume that the invariant foliation of irreducible curves {Ch}
obtained from (2.2) is given by real curves which are generically elliptic. Also we
will assume that F preserves each connected component of the invariant real elliptic
curves (on the contrary, we can study F 2). Finally, we will also assume that the
action of our birational maps F falls within case (i) of Theorem 2.4. Under these
assumptions, Corollary 2.5 ensures that on each curve Ch the map F is conjugate to
a rotation. So, we can consider a rotation number θ (h) associated to each level set
h, or equivalently to each curve Ch.

Of course this rotation number function θ (h) can be constant. In this case, we say
that the map F is rigid. For instance, if a = 1 then the Lyness map F1 is globally
five-periodic, thus θ (h) = 1/5 for all h ∈ Im(V ), where V is given in (2.4).

If θ (h) is not constant then it is possible to prove that this rotation number function
is piecewise continuous. This is because when the irreducible components of (2.2)
are generically elliptic, any birational map F (or F 2) can be thought as a family of



2 Periodic Orbits of Planar Integrable Birational Maps 21

homeomorphisms in the circle, which is piecewise continuous in the parameter h.
By using the fact that the rotation number function of a continuous family of maps
of S

1 (in the C0 topology) is continuous, and taking into account that, in principle,
there could be levels h ∈ Im(V ) corresponding to curves in the forbidden set of F ,
the piecewise continuity of θ (h) is achieved.

2.4.1.2 Piecewise Analyticity and Existence of Lie Symmetries

In fact, θ (h) is a piecewise analytic function in the domainh ∈ Im(V ). This is because
if the irreducible curves Ch in (2.2) are generically elliptic, then it is possible to
construct an isomorphism (piecewise analytic in h) between them and a new foliation
of Weierstrass curves, so that the corresponding associated map FW defined on this
foliation has the same rotation number function as F . These Weierstrass curves can
be parameterized using the Weierstrass ℘ function (see [34, 50], and also [26, 53]).
Using this parametrization, and the fact that℘ satisfies a certain differential equation,
it is always possible to give an integral expression of the rotation number function,
from which the piecewise analyticity of it can be deduced. This approach has been
introduced in [28] (and later developed in [4]) to study the rotation number function
associated to a Lyness map, and has been successfully applied to study the periods
of other birational maps in the successive papers of Bastien and Rogalski, and others
[5–9].

An alternative proof of the piecewise analyticity of θ (h) comes from the fact that if
the invariant curves Ch in (2.2) are generically elliptic, then it is possible to construct
a vector field X such that the map F can be seen as the flow of this vector field at
certain time τ (h). Such a vector field is called a Lie Symmetry of F . A Lie Symmetry
of a map F in R

n is a vector field X such that F maps any orbit of the differential
system

ẋ = X(x), x ∈ R
n (2.9)

into another orbit of the system.
The existence of Lie Symmetries is an important issue in the theory of discrete

integrability, see for instance [31]. From a dynamical viewpoint, this importance is
clear in the case of integrable diffeomorphisms. In this case, the dynamics of the
maps are in practice one-dimensional, and the existence of a Lie Symmetry whose
orbits are preserved by F implies that this one-dimensional dynamics is linear on
each orbit. The next results illustrate this fact.

Theorem 2.8 ([16]) Let F : U ⊆ R
n → U be a diffeomorphism having a Lie

symmetry X, and let γ be an orbit of X, preserved by F (i.e., F : γ → γ ). Then
the dynamics of F restricted to γ is either: (1) conjugate to a rotation with rotation
number given by τ/T , where T is the period of γ and τ is defined by the equation
F (p) = ϕ(τ ,p), where ϕ denotes the flow of X; or (2) conjugate to a translation of
the line; or (3) it is constant; according to whether γ is homeomorphic to S

1, R, or
a point, respectively.
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If F is an integrable map and it possesses a Lie Symmetry X, this vector field
is also integrable and shares the same first integral with F . However, in our case
the curves in (2.2) would also be integral curves of any possible symmetry X. Since
each connected component Ch of any curve in (2.2) is diffeomorphic to S

1 (adding,
possibly some infinite points), it is a periodic orbit of X (or a compactification of X)
with period T (h), see also [13]. Hence, Theorem 2.8 guarantees that

θ (h) = τ (h)

T (h)
. (2.10)

The regularity of the rotation number function is, then, a consequence of the regularity
of the flow of X.

Again, the existence of the Lie Symmetry of a birational map preserving an elliptic
foliation can be proved using the associated Weierstrass foliation associated to curve
Ch, see [26, Sect. 2.6.3]. The Lie Symmetry approach was used to study the rotation
number function of the Lyness map and to prove a conjecture about its monotonicity
established by Zeeman [54]. This was done by Beukers and Cushman in the relevant
paper [10]. This approach has been also applied to study the rotation number function
and the set of periods of the extension of the Lyness map in R

3 [15], and also to study
a birational integrable map arising in the study of 2-periodic Gumovski-Mira type
maps [18].

2.4.2 An Infinite Number of Periods

Taking into account the above considerations, we can prove the following result:

Proposition 2.9 A birational map F preserving a generically real elliptic foliation
{Ch} is either rigid, or there are an infinite number of possible periods and a dense
set of curves in the phase space filled with periodic orbits.

Proof Let E = {h such that the curves Ch are elliptic}. From the JRV theorem on
each the curve Ch with h ∈ E the map F (or F 2) is conjugate to a rotation. From
the considerations in Sect. 2.4.1 (see also [26, Lemma 8.1.5]) the rotation number
function θ (h) is piecewise continuous for h ∈ E .

Since {Ch} is generically elliptic, if F is not rigid, then there exists a nonempty
open interval I such that I ⊆ {Image(θ (h)), h ∈ E}. Then, for any irreducible
fraction q/p ∈ I , there exists a value of h ∈ E such that θ (h) = q/p, hence
an invariant real elliptic curve Ch which is full of periodic orbits of of minimal
period p. �

2.4.3 Toward a Constructive Characterization of the Set of Periods

It is interesting to notice that if a rotation interval I containing some of the values of
θ (h) is known, then it is always possible to compute a value P such that q/p ∈ I for
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all p > P , hence characterizing at least an infinite number of periods in the set of
periods of F . One tool to construct a (nonoptimal) number P is the following result.

Lemma 2.1 ([15]) Consider an open interval (c, d) with 0 ≤ c < d; denote by
p1 = 2,p2 = 3,p3, . . . ,pn, . . . the set of all the prime numbers, ordered following
the usual order. Also consider the following natural numbers:

• Let pm+1 be the smallest prime number satisfying that pm+1 > max(3/(d− c), 2)
• Given any prime number pn, 1 ≤ n ≤ m, let sn be the smallest natural number

such that psn
n > 4/(d − c)

• Set P := p
s1−1
1 p

s2−1
2 · · ·psm−1

m .

Then, for any r > P there exists an irreducible fraction q/r such that q/r ∈ (c, d).
In the Example 2.3, we will illustrate how to apply the above result and the known

facts on the rotation number function to compute effectively some set of minimal
periods appearing in a particular Lyness map Fa . Prior to stating this example we
recall some basic facts. When a > 0 the first integral of Fa , given in (2.4), has
a global minimum in Q+ := {(x, y), x, y > 0}, located at the fixed point of Fa ,
given by (xc, xc) where xc = (1 + √

1 + 4a)/2. This minimum corresponds to the
nonelliptic level hc = (xc + 1)3/xc. With respect to the rotation number function, it
is known that for a > 0

θc = lim
h→h+c

θ (h) = 1

2π
arccos

(
1

1 +√
1 + 4a

)
,

see [4, 54]. Also it was conjectured in [54], and proved in [10], that when 0 < a < 1,
then θ (h) is a strictly increasing continuous function in (hc,∞) and strictly decreasing
when 1 < a < ∞. Moreover, in [4] it was proved (strongly using the elliptic nature
of the Lyness curves) that

lim
hc→∞ θ (h) = 1

5
.

The case a = 1 corresponds to the globally five-periodic case with θ (h) ≡ 1/5.
In summary, the interval

I+ := (min(θc, 1/5), max(θc, 1/5))

gives the optimal rotation interval for the orbits in Q+ when a > 0 and a = 1.

Example 2.3 When a = 10, the optimal rotation interval for the orbits in Q+ is

I+ :=
(

1

5
,

1

2π
arccos

(
1

1 +√
41

))
.

Using the notation introduced in Lemma 2.1 we have m = 27, and p1 = 2, s1 = 7;
p2 = 3, s2 = 4; p3 = 5, s3 = 2; p4 = 7, s4 = 2; p5 = 11, s5 = 2; p6 = 13, s6 = 1;
p7 = 17, s7 = 1; ... ; p27 = 103, s27 = 1. Hence
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P :=
27∏
n=1

psn
n = 79783116986616878993690973578945928329152944000,

and therefore there are r-periodic orbits of F10 for any r > P . Of course, using a
finite algorithm one could check for any r ≤ P if there exist an irreducible fraction
q/r ∈ I+, obtaining in principle the forbidden denominators in I+, but in practice
the high value of P makes this observation useless.

Notice, however, that a computation (that takes 1.03 s using Maple 17 code on an
Intel Core i5-3210M CPU at 2.50 GHz) gives that the numbers S = {2, 3, 4, 5, 6, 7,
8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 25, 26, 27, 28, 30, 35, 36, 38, 42, 45, 46, 48,
56, 66, 70, 72, 96, 98, 120, 126} are some forbidden periods. It can be proved, using
an alternative method that this is the exact set of forbidden periods, see Remark 2.2.

Another approach is the one introduced in [4] based on the following result (see
also Remark 2.1 below)

Lemma 2.2 (Bastien and Rogalski) Consider an open interval (c, d) with 0 ≤ c <

d. Set

f (x) = dx − 1

ln (dx − 1)
− cx

ln (cx)

(
1 + 3

2ln (cx)

)
− 1.38402

ln (x)

ln ( ln (x))
− 1.

Then, for any p ∈ N, p ≥ 17 such that f (p) > 0 there exists q ∈ N coprime with p

such that c < q/p < d .

Proof Let π (x) be the prime-counting function, which gives the number of prime
numbers which are less or equal than x. Using Theorem 1 and Corollary 1 of [47]
we have that if x ≥ 17

x

ln (x)
≤ π (x) ≤ x

ln (x)

(
1 + 3

2ln (x)

)
. (2.11)

So, given a number p ∈ N, p ≥ 17, we can estimate that the number of integer
numbers q such that cp < q < dp is at least the number of prime numbers in this
interval which is, using the inequalities (2.11), at least

dp − 1

ln (dp − 1)
− cp

ln (cp)

(
1 + 3

2ln (cp)

)
. (2.12)

Since we are interested in those values of q which are coprime with p, we should
subtract from (2.12) the number of divisors of p, denoted by ω(p), which is bounded
by

ω(p) ≤ 1.38402
ln (p)

ln ( ln (p))
, forp ≥ 3,
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(see [46, Theorem 11]). So the number of integer numbers q coprime with p in (c, d)
is at least

dp − 1

ln (dp − 1)
− cp

ln (cp)

(
1 + 3

2ln (cp)

)
− 1.38402

ln (p)

ln ( ln (p))
.

Clearly if the above number is greater than one (i.e., f (p) > 0), then p is a possible
denominator in (c, d). �

The methodology summarized in Lemma 2.2 was introduced in [4] (see also [28,
Sect. 6]), to study the set of periods for the whole family of Lyness’ maps with a ≥ 0
in Q+ [4, Theorem 4] (see also [54, Theorem 9]). The familiar set of periods is 5, 6,
9, 11, 13, 14, 16, 17, 19 and all integers ≥ 21 except 42. Other periods appear when
negative initial conditions are considered [29].

Remark 2.1 (Added in proof) Lemma 2.2 has been recently improved by Bastien
and Rogalski. See [8, Proposition 23], which states that if 0 < c < d < 1/2 then
for every p > max

(
e2.55| ln (c)|/(d−c), 1

c
e3.82/(d−c)

)
, there exists a prime number q with

(p, q) = 1 such that q/p ∈ (c, d).

Remark 2.2 With respect to the particular case studied in Example 2.3, setting
c = 1/5 and d = arccos (1/(1+√

41))/(2π ), and by proving that for all x > 6 · 105

the function f (x) in Lemma 2.2 is positive, one would get that the set of periods of
F10 in Q+ contains all periods greater than 6 · 105. An straightforward computation
(that takes 1444.23 s with the same software and CPU as in Example 2.3) gives that
every integer number r < 6 · 105 such that r ∈ S is a possible denominator in I+.
Thus, N \ S would be the complete set of periods of F10 in Q+.

2.5 An Application: The Locus of Periodic Orbits

In this section, as a straightforward application of the characterization of the periodic
orbits given by Eq. (2.8), we will use it to address the problem of finding the location
of the curves having periodic orbits with a prescribed period. Following the aim
of the notes, again we will take the Lyness maps as a paradigmatic example. This
approach was used in [4] for studying Lyness’ maps and, of course, can be used to
study other birational maps on elliptic foliations [9].

As mentioned above, the real Lyness curves Ch = {(x + 1)(y + 1)(x + y + a) −
hxy = 0} ⊂ R

2 are elliptic curves except for h ∈ {0, a− 1,h±c }, where h±c are given
in (2.6), and together with the infinity points [1 : 0 : 0], [0 : 1 : 0], [1 : −1 : 0]
are isomorphic to either S

1 or S
1 × Z/(2). Setting O := [1 : −1 : 0], for all elliptic

levels h, the dynamics on each real connected component of the Lyness’ map (2.3)
is

Fa|Ch
([x : y : 1]) = [x : y : 1] + [1 : 0 : 0].

Hence, the characterization of the p-periodic orbits given by Eq. (2.8), implies a
curve Ch will be full of periodic orbits if and only if

p · [1 : 0 : 0] = [1 : −1 : 0]. (2.13)
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Equation (2.13) gives a naive way for finding the locus of the periodic orbits of
a prescribed period in the elliptic levels, obtaining the following result which is, in
fact, the summary of well-known ones (see [3, 4] and [54] among other references).

Proposition 2.10 Consider the real elliptic Lyness curves Chp
= {(x + 1)(y +

1)(x + y + a) − hp xy = 0}, then the following statements hold:

(i) The maps F0 and F1 are globally periodic with periods 6 and 5, respectively.
(ii) If a(a− 1) = 0 then there are no elliptic curves Chp

with periodic orbits of the
Lyness maps Fa with period p = 1, 2, 3, 4, 5, and 6.

(iii) If a(a − 1) = 0 the elliptic curves Chp
filled with periodic orbits of the Lyness

maps Fa with periods p = 7, 8, 9, 10, 11, and 12 are given by:

h7 = (a − 1)/a,

h8 = − (a − 1)2/a,

h9 = (a − 1)(a2 − a + 1)/a,

h10 = (a − 1)/(a(a + 1)),

h11 = (a − 1)
(

2 a − 1 ±√
4a3 − 4a2 + 1

)
/(2a2), for a > a∗,

h12 = (a − 1)
(
−a + 3 ±√−3a2 + 2a + 1

)
/(2a) for a ∈ [− 1/3, 1],

where a∗ � −0.41964 is the only real root of 4a3 − 4a2 + 1.

Proof (i) Setting Q = [1 : 0 : 0], using the inner addition rules of (Ch(R),+, [1 :
−1 : 0]), and using that the infinite points [1 : 0 : 0], [0 : 1 : 0] and [1 : −1 : 0] are
tangent to the asymptotes of Ch given by y = −1, x = −1 and x + y + a − h = 0
respectively, some straightforward computations2 show that if a = 0 then

Q ∗Q = [0 : −1 : 1] ⇒ 2Q := [0 : −1 : 1] ∗O = [− 1 : 0 : 1];

2Q ∗Q = [0 : 0 : 1] ⇒ 3Q := [0 : 0 : 1] ∗O = [0 : 0 : 1];

3Q ∗Q = [− 1 : 0 : 1] = 2Q ⇒ 4Q := 2Q ∗O = [0 : −1 : 1];

4Q ∗Q = Q ⇒ 5Q := Q ∗O = [0 : 1 : 0] and finally,

5Q ∗Q = O ⇒ 6Q := O ∗O = O.

Therefore, we reobtain the well-known fact that the Lyness map F0 is globally
six-periodic.

If a = 1, then

Q ∗Q = [0 : −1 : 1] ⇒ 2Q := [0 : −1 : 1] ∗O = [− 1 : 0 : 1];

2 Notice that the above computations can be done by using that Q ∗Q is obtained by substituting
y = −1 into the expression of Ch, and in general [x0 : y0 : 1]∗Q is obtained by substituting y = y0

at the expression of Ch, and using also that [x : y : z] ∗ O = [y : x : z] because of the symmetry
of Ch with respect to y = x.
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2Q ∗Q = 2Q ⇒ 3Q := 2Q ∗O = [0 : −1 : 1];

3Q ∗Q = Q ⇒ 4Q := Q ∗O = [0 : 1 : 0] and finally,

4Q ∗Q = O ⇒ 5Q := O ∗O = O,

so the map F1 is globally five-periodic.
(i) and (iii) Now we assume that a(a−1) = 0 and we apply formally the addition

rules obtaining that: 2Q = [−1 : 0 : 1]; 3Q = [0 : −a : 1];

4Q =
[
−a :

ah− a + 1

a − 1
: 1

]
; 5Q =

[
ah− a + 1

a − 1
:
−a2 − ah+ 2a − 1

a(a − 1)
: 1

]
;

6Q =
[−a2 − ah+ 2a − 1

a(a − 1)
:
a3 − 2a2 − ah+ 2a − 1

a(ah− a + 1)
: 1

]
,

7Q =
[
a3 − 2a2 − ah+ 2a − 1

a(ah− a + 1)
: − (a − 1)2

(
a2h+ ah− a + 1

)
(
a2 + ah− 2a + 1

)
(ah− a + 1)

: 1

]
,

(notice that there is a misprint in the expression of the first component of 7Q given
in [29]). Hence, from Eq. (2.13), it is easy to see that there are no periodic orbits on
the elliptic levels for p = 1, 2, 3, 4 and, assuming a(a − 1) = 0, for p = 5 and 6.

Observe that 7Q can only be an infinite point if either a2 + ah− 2a + 1 = 0 or
ah − a + 1 = 0. The first case trivially gives that 7Q = O, and the second case
directly gives that 7Q = [a(a − 1)3 : −a(a − 1)3 : 0] = O, thus

h7 := a − 1

a
.

To obtain the other periods a simple way is to impose the relations 4Q = −4Q
(period 8); 4Q = −5Q (period 9); 5Q = −5Q (period 10); 6Q = −5Q (period
11); and 7Q = −5Q (period 12). The points −nQ are easily obtained from the
points nQ because given a point P in a Lyness curve, it is straightforward to see
that −P is just the symmetric point with respect to y = x. So −Q = [0 : 1 : 0] ;
−2Q = [0 : −1 : 1] ; −3Q = [−a : 0 : 1] ;

−4Q =
[
ah− a + 1

a − 1
: −a : 1

]
; and

−5Q =
[−a2 − ah+ 2a − 1

a(a − 1)
:
ah− a + 1

a − 1
: 1

]
.

To obtain the elliptic curves containing nine-periodic orbits, we impose that 4Q =
−5Q, obtaining that −a = (− a2 − ah+ 2a − 1)/(a(a − 1)). This equality yields

h9 := (a − 1)(a2 − a + 1)

a
,
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To get the elliptic levels with period 12 orbits, we impose that 7Q = −5Q, obtaining
⎧⎪⎪⎨
⎪⎪⎩

a3 − 2a2 − ah+ 2a − 1

(ah− a + 1) a
= −a2 + ah− 2a + 1

a (a − 1)
,

− (a − 1)2
(
a2h+ ah− a + 1

)
(
a2 + ah− 2a + 1

)
(ah− a + 1)

= ah− a + 1

a − 1
.

From these equations we obtain that h12 must be given by the roots of the polynomial
P (a,h) = a2h2 + a (a − 1) (a − 3) h + (a2 − 2a + 2

)
(a − 1)2, which gives the

result. The other cases follow similarly. �

Finally, we remark that there are values of a for which the nonelliptic levels
(which correspond to genus 0 curves) are filled by periodic orbits with periods 1, 2,
and 3, [29, Lemma 5]. Finally, there are no Lyness maps with four-periodic orbits,
although some authors consider that this period arises for the case a = +∞, [54].

2.6 Rational Periodic Orbits

In this section, we will assume that F is a birational map with rational coefficients
and with an invariant foliation (2.2) such that the polynomials P (x, y) − hQ(x, y)
are in Q[x, y], and h ∈ Q. In this case, it makes sense to study the rational orbits of
F . That is, orbits such that all the iterates have rational coordinates.

In the previous sections, we have seen the relationship between the dynamics of
a birational map preserving an elliptic curve Ch(R) and its group structure (Theo-
rem 2.4 and Corollary 2.7). Under our new assumptions (F has rational coefficients)
and assuming also that O has rational components, the rational orbits lie in the ra-
tional elliptic curves Ch(Q) which is a subgroup of Ch(R). In this case, the structure
of each curve Ch(Q) is characterized by the theorems of Mordell and Mazur, sum-
marized below, and it will impose strong restrictions on the set of periods of rational
orbits. Indeed, Mordell proved in 1922 that a rational elliptic curve is a finitely-
generated abelian group, and in 1978 Mazur gave a description of its torsion term.
The following result characterizes, therefore, the group structure of Ch(Q).

Theorem 2.11 (Mazur, 1978) If E is a nonsingular cubic, then (E(Q),+) is a
finitely-generated abelian group

E(Q) ∼= Z ⊕ · · · ⊕ Z ⊕ Tor(E),

where Tor(E) is either the empty set; or Z/p where p is either 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, or 12; or Z/2 ⊕ Z/p where p is 2, 4, 6, or 8.

Recalling that by Corollary 2.7 on certain invariant elliptic curveCh(Q), there will
be periodic orbits of a birational map F , if and only if the point Q of Theorem 2.4 is
in Tor(Ch(Q)), we easily get that the only a priori allowed periods for rational orbits
are the orders p described by the Mazur’s theorem. Hence:

Corollary 2.12 Any birational map preserving Ch(Q) only can have, a priori,
rational periodic orbits of periods 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 12.
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2.6.1 Rational Periodic Orbits of the Lyness Maps

The study of the rational periodic orbits in the case of the Lyness maps and its
relationship with the structure of rational points of elliptic curves can be traced back
to the first papers that studied these maps from an algebraic geometric point of view
[3, 4, 28, 54]. After these works it was known that for a > 0 and considering positive
initial conditions only the rational periods 5 and 9 where possible. It was known
that five-periodic orbits appear only when a = 1. However, the existence of rational
nine-periodic orbits was not known, and it was left as an open problem in [4]. Their
nonexistence was conjectured in [54]. Now, from [29] we know that all the Mazur
periods, except 4, appear for rational orbits and a ∈ Q

+ ∪ {0} (but the periods
different from 5 and 9 are not located in Q

+ × Q
+).

Theorem 2.13 ([29]) For any p ∈ {1, 2, 3, 5, 6, 7, 8, 9, 10, 12}, there exist values of
a ∈ Q

+ ∪ {0} and rational initial conditions (x0, x1) giving rise to p-periodic orbits
of the Lyness maps Fa . Moreover, these values of p are the only possible minimal
periods for rational initial conditions and a ∈ Q.

With respect to period 9, indeed there are nine-periodic rational orbits of the
Lyness maps Fa with a ∈ Q

+ and initial conditions in Q
+ × Q

+. For instance, take
a = 7 and the initial condition (3/2, 5/7). Furthermore, the next result shows that
there are infinitely many positive rational values of the parameter a giving rise to
nine-periodic positive rational orbits. We sketch the proof because it is constructive
and because again the basic arithmetic on an elliptic curve (different from the Lyness
ones) plays an essential role in the construction of the periodic orbits. See [29] for
more details.

Theorem 2.14 ([29]) There are infinitely many values a ∈ Q
+ and initial conditions

x0(a), x1(a) ∈ Q
+ giving rise to nine-periodic orbits of the Lyness map Fa .

Proof Using the characterization of the curve of nine-periodic orbits given in Propo-
sition 2.10, it is easy to see that the proof of the result will follow if we find infinitely
many points (x, y, a) ∈ (Q+ × Q

+ × Q
+) ∩ Sa , where

Sa := {(a; x, y) : a(x + 1)(y + 1)(x + y + a)

−(a − 1)(a2 − a + 1)xy = 0, x > 0, y > 0, a > a∗},
and a∗ � 5.41147624 is the infimum number a such that Ch9 has an oval in Q+.

It can be proved that the points in Sa satisfying x + y = 23/4 are in an elliptic
curve isomorphic to

E :=
{
Y 2 = X3 − 1288423179

71639296
X + 8775405707427

303177500672

}
.

This fact is not obvious. To obtain the expression of the curve E , some changes
of variables are needed, and the extra condition x + y = 23/4 is imposed on the
points of Sa . This condition is motivated by the fact that if (x, y) ∈ Sa is such
that (x + y, xy) ∈ Q

+ × Q
+ and Δ := (x + y)2 − 4xy is a perfect square, then
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(x, y) ∈ Q
+×Q

+.The condition is found when trying to obtain a suitable expression
of Δ that facilitates to find values of a for which Δ is a perfect square. The reader is
referred to [29, Proof of Theorem 2] to obtain all the details.

By taking into account Proposition 2.6, it is easy to see that if we are able to find a
rational point R ∈ E , such that R is not in the torsion of E , then k R gives an infinite
number of rational points in E .

Observe that if the point (x(R), y(R), a(R)) corresponding toR is in the connected
component of Ch9 in Q+, then by recovering the values (x(kR), y(kR), a(kR)) ∈ Sa

corresponding to the points k R ∈ E , we would get the result.
By using the software MAGMA [12], one can obtain the valid point R =(

18243
8464 , 81

184

) ∈ E . �

2.6.2 A Digression on Numerics

A curious fact is that the numerical plots of the phase portrait of birational maps
preserving an elliptic foliation typically contain very few periodic orbits (although
sometimes it is possible to find traces of them). Bastien and Rogalski noticed this
even when working with symbolic algebra software, [5]:

If we wish to study possible periods with a computer, it is easier to work with rational
numbers. So, we suppose that a is rational, and that the point (u1, u0) is rational. With the
use of a computer and a program of calculation with fractions, is it possible to see periodic
points? Only in few cases!

This is especially significant if one takes into account that Corollary 2.9 states that
if a birational map preserving an elliptic foliation is not rigid, then the phase space
is densely filled by invariant curves full of periodic orbits of an infinite number of
periods. It is commonly thought that Mazur’s theorem (in fact Corollary 2.12) is the
real reason for the lack of periodic orbits in the numerical simulations, but there is
not a rigorous proof of this fact.

A priori one could think, however, that the lack of periodic orbits in the numerical
simulations should be a consequence of other factors, like the fact that the rotation
number is a piecewise analytic function. But this is not the case as Example 2.4
shows.

Indeed, the piecewise analyticity of the rotation function indicates how far we
are from the general situation in the context of diffeomorphisms. For orientable
diffeomorphisms of the circle, the persistence of the rotation number is known to
hold, [2, Theorem A] and [41] (see also [1]). However, there are diffeomorphisms
with analytic rotation number for which it is easy to encounter periodic orbits when
doing numerical simulations. This is the case, for instance, of proper Poncelet maps
[17], such as the one shown in the next example.

Example 2.4 We consider the planar Poncelet map F associated to the ellipse γ =
{x2 + xy + y2 − 1/5 = 0}, and the family of circles Γ (h) = {x2 + y2 − h =
0}, for h > 2/5 (observe that each curve Γ (h) surrounds γ ). The map F is the
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diffeomorphism defined in U = {(x, y) ∈ R
2, x2 + y2 > 2/5} in the following way:

given any p ∈ Γ (h) there are exactly two points q1, q2 in γ such that the lines p q1,
p q2 are tangent to γ. On each curve Γ (h) we define F : Γ (h) → Γ (h), associated
to the pair as

F (p) = pq1 ∩ Γ (h),

where p ∈ Γ (h), pq1 ∩ Γ (h) is the first point in the set {pq1 ∩ Γ (h),pq2 ∩ Γ (h)}
that we find when, starting from p, we follow Γ (h) counterclockwise (see Fig. 2.3c).

It can be shown that the map has an expression of the form

F (x, y) =
(
−N1N2 − 4N3

√
Δ

M
,
−N1N3 + 4N2

√
Δ

M

)
,

where Ni ,M , and Δ are large polynomials whose expression can be found in [17].
Observe that F is not a birational map. Additionally, the map F has the first integral
V (x, y) = x2 + y2 defined in U , and on each curve Γ (h) = {V = h} the map is
conjugate to a rotation with certain rotation number θ (h). This rotation function is
analytic in the interval (2/5,∞) because F has the Lie Symmetry given by

X(x, y) =
√

(x2 + y2)(x2 + xy + y2 − 1/5)

(
−y

∂

∂x
+ x

∂

∂y

)
,

so by Theorem 2.8 the rotation number can be obtained using Eq. (2.10). See [17]
for proofs of all the above facts.

Now we show how some evidence of periodic orbits appears when considering a
numerical experiment. This particular one is obtained after 5000 iterates by F from
each initial condition in the set I = {(xj , 0) = (0.7+ (j − 1)/10, 0), j = 1, . . ., 10}.
As can be seen in Fig. 2.3a, there is a numerical evidence that the initial condition
(x5, 0) is near to a 57-periodic orbit. After some approximations we locate the circle
full of 57-periodic orbits close to the curve x2 + y2 � 1.2100099 (for instance, by
choosing p0 := (1.1000045, 0) and setting pn = Fn(p0)); we have that after 350
periods |p0 − p19950| � 0.003. These iterates are depicted in Fig. 2.3b. In Fig. 2.3c,
the construction of the 57-periodic orbit via the Poncelet process is shown.

2.7 Some Words on the Genus 0 Case

With respect to the global dynamics of birational maps preserving a genus 0 invariant
foliation (2.2) no general results are known, although one should expect to have also
a large number of curves with periodic orbits of arbitrary period, curves filled with
dense solutions, as well as curves with one or two attractive and/or repulsive points.
An example of what is expected to be found is given in the first example of [5]. We
are now working on this problem together with M. Llorens.
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Fig. 2.3 (a) 5000 iterates of F with the grid of initial conditions I. (b) 19, 950 iterates with initial
condition (1.1000045, 0). (c) The Poncelet’s construction of the 57-periodic orbit
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Appendix. The Lyness Map and Curves: A Bit More than
an Academic Example.

The study of the Lyness map (2.3) has a long history. It started with the study of
the five-cycle corresponding to the particular case a = 1 in the Lyness equation.
According to Linero [36],

It is precisely under this aspect that Lyness cycle appeared: in fact, Gauss obtained it when
working in the spherical geometry of the pentagrama mirificum, a spherical pentagram
formed by five successively orthogonal great-circle arcs. To see its construction and the
relation with the 5-cycle, the reader can consult [23]. According to this paper, “This 5-cycle
seems to have been transmitted in the form of mathematical gossip for a long time.” The
5-cycle receives the name of Lyness cycle because R.C. Lyness accounted for it in a series
of papers dealing with the existence of cycles (see [37–39] and also [32]). Surprisingly, the
interest of Lyness was associated neither to dynamical systems nor difference equations, he
found the equation while investigating a problem related to the number theory: to obtain
three integer numbers such that the sum or the difference of any different pair of them is a
square. The first time that the equation is referred to as the “Lyness equation” occurred in
1961, in [48].

The study of the Lyness map has attracted the attention of the dynamical systems
community in the last years. Its dynamics is completely understood after the inde-
pendent work done by Bastien and Rogalski [4] and Zeeman [54], and the work of
Beukers and Cushman [10]. See also [3, 26, 28, 29].

The five-periodic Lyness map F1 also plays a structural role when studying the
group of symplectic birational transformations of the plane (i.e., birational transfor-
mations of C

2 which preserve the differential form ω = dx ∧ dy/(xy)), since this
group is generated by compositions of the Lyness map F1, a scaling, and a map of
the form (x, y) → (xayb, xcyd ) where a, b, c, and d are such that the matrix

(
a b

c d

)
∈ SL(2, Z).

This result has been recently proved by Blanc in [11], and it was conjectured by
Usnich in [52].

From the algebraic view point, it is also interesting to note that the Lyness curves
are a universal normal form for most elliptic curves with a relatively easy form for
the addition formula n · P . Recall that the addition formula is useful for instance in
Elliptic Curve Cryptography [35] and is generally complicated.

Theorem 2.15 (Lyness’ Curves Normal Form, [29]) The family of elliptic curves
Ca,h = {(x+1)(y+1)(x+y+a)−hxy = 0} over any field K (not of characteristic 2
or 3) together with the points O = [1 : −1 : 0] and Q = [1 : 0 : 0], is the universal
family of elliptic curves with a point of order n, n ≥ 5 (including n = ∞).

The above result states that for any elliptic curve E(K) with a point R of order
n ≥ 5, there exists some unique values a(E ,R),h(E ,R) ∈ K and a unique isomorphism
between E and Ca(E,R),h(E,R) sending the neutral element of E to O = [1 : −1 : 0] and
R to Q = [1 : 0 : 0].
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This also implies that the known results on elliptic curves with a point of order
greater than 4 also holds in Lyness curves. In particular, we find the curves with high
rank and prescribed torsion given in Dujella’s site [27].

To prove the above result it is only needed to observe that any elliptic curve having
a point R that is not a 2 or a 3 torsion point can be brought to the Tate normal form

Y 2Z + (1 − c)XYZ − bYZ2 = X3 − bX2Z.

where R is sent to (0, 0). But on the other hand the change of variables

X = bz, Y = bc(y + z), Z = c(x + y) + (c + 1)z

and the relations

h = − b

c2
, a = c2 + c − b

c2
,

show that the curves Ca,h = {(x + z)(y + z)(x + y + az) − hxyz = 0} and the Tate
normal form are equivalent. Finally, observe that the case c = 0 corresponds to a
curve with a 4-torsion point so, as seen in Sect. 2.5, it does not correspond to an
elliptic Lyness curve.
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Chapter 3
Discrete-Time Modelling of Sigma-Delta
Inspired Systems for MEMS

E. Blokhina, P. Giounanlis, M. Dominguez-Pumar, S. Gorreta, J. Pons-Nin
and O. Feely

Abstract This chapter discusses a variety of system structures for microelectrome-
chanical systems (MEMS) that employ a feedback loop inspired by sigma-delta
modulation. Sigma-delta modulators are classic electronic circuits that implement
data conversion. The feedback loop typical for sigma-delta modulation can be ap-
plied to actuate a MEMS device or control its state. The dynamics of such systems
are described by a set of discrete-time equations (map). We show how these maps
can be derived for different examples of MEMS and highlight the dynamics that are
universal for all examples.

3.1 Introduction

Sigma-delta (also denoted as ΣΔ) modulators are a class of data converters that have
been in use for several decades [1]. Their main advantages are simplicity and robust-
ness to component mismatch. The combination of the principles of oversampling,
noise shaping and decimation allows this type of circuit to reach higher resolutions
than in the case of other data converters, without the use of high-precision compo-
nents. They can also be embedded in the control loop of sensors or actuators. In this
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a b

c

Fig. 3.1 a Block diagram of a generic sigma-delta modulator consisting of a filter and a quantizer
(a comaprator). b Block diagram of a simplest first-order sigma-delta modulator. c Block diagram
of a MEMS sigma-delta architecture

way, two different goals are achieved: first, the closed-loop control of a given variable,
and second, an implicit analogue-to-digital conversion of a given magnitude.

Sigma-delta modulators convert a time-sampled analogue input signal to a stream
of bits (see the generic scheme of aΣΔmodulator in Fig. 3.1a). The quantised output
stream must subsequently be filtered in order to achieve a good representation of the
input signal. Therefore, it is necessary that the quantisation noise lie predominantly
outside the signal band for the successful operation of such a modulator [2]. Sigma-
delta modulators implement noise shaping by minimising an error between the input
signal x and the feedback loop signal y. The difference between the two signals is
passed to the loop filter. If the difference falls in the signal band, it passes to the output
without attenuation. On the contrary, a difference that is out of the signal band attenu-
ated by the filter. The signal from the filter is passed to the quantiser, which generates
the next output value y. This output values is used in the next comparison step. The
result of this strategy is a close match of input signal and quantised output in the
pass-band of the filter and shaping of the quantisation noise outside the signal band.

There are a large number of different circuit topologies of sigma-delta modula-
tors that include various loop filters or multiple feedback loop [2]. Continuous-time
sigma-delta modulators that have analogue (continuous-time) elements in the feed-
back loop are also possible. However, the simplest topology is a first-order
sigma-delta modulator shown in Fig. 3.1b, where the role of the loop filter is taken by
a discrete integrator. Remarkably, the evolution of this feedback system is described
by a simple discrete-time equation

un+1 = un + x − sgn(un) (3.1)

that is classified as a piecewise-smooth discontinuous map. Piecewise-smooth maps
model many physical systems, including switching circuits and systems with oscil-
latory behavior [3–6]. In 3.1, x is the magnitude to convert, un is the value that the
integrator takes at the time t = nT s and sgn(x) is the signum function. It is assumed
that the input x is constant or that its bandwidth is well below the sampling frequency.
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It can be shown that the average value of the output bitstream bn is x. To obtain the
digital conversion of x, this bitstream is fed into a low-pass filter and decimated.
We note here that in the analysis of ΣΔ modulators, the input x is often considered
as constant. Since standard converters operate at a rate many times greater than the
highest frequency of input signal, the input to the converter can be indeed consid-
ered as ‘quasi’-constant. A remarkable property of sigma-delta modulators is that the
output bits subsequently averaged retrieve a good approximation to the input. With
ideal integrators and constant input, the output of the system when averaged over a
‘long enough’ time period equals exactly the input.

The field of the applications of ΣΔ modulators has significantly expanded during
recent decades. Closed loop architectures employing the elements of sigma-delta
modulations have been introduced to the area of microelectromechanical systems. In
such an architecture, a microelectromechanical system serving as a physical sensing
element replaces the loop filter from Fig. 3.1a. Alternatively, we can say that a ΣΔ-
like structure serves as a feedback loop for the sensor. These topologies have been
proposed, designed and implemented as an essential part of inertial sensors [7–11],
gyroscopes [12], resonant sensors [13–15], air flow sensors [16–19] and capacitive
MEMS [20, 21]. In all these applications, physical sensing elements are embedded in
the control loop of sensors or actuators to keep constant, for example, the temperature
of a component, or the position of an actuator. Among many advantages of this
architecture, closed loop sensors which incorporate analogue-to-digital conversion
within the loop produce a digital signal in the output.

Figure 3.1c represents the generalised idea of the systems that we will study in this
chapter. It describes the basic principle of operation of a MEMS system that employs
the feedback loop similar to those of sigma-delta modulators. Please note here that a
MEMS is mechanical system, and as a result of applied forces, the inputFin and/or the
feedbackFfb, it changes its position x and velocity v. A conversion to the electrical do-
main is required for x and v and it is carried out by a sensing mechanism/circuit [22].
The sensing of x and v and representing them as an electrical signal before feeding
them to the comparator is shown by the corresponding block (x → V ). The reverse
conversion of the resulting actuation voltage to the mechanical domain in the form of
a force is carried out by the actuation mechanism or transducer and is shown as the
corresponding block after the comparator (V → x). In this chapter, we will consider a
range of MEMS devices serving different aims and representing different MEMS ap-
plications. Their 1D topologies are shown in Fig. 3.2, and the mechanical components
can deflect as shown in the figure if an actuation voltage and/or other mechanical force
is applied. The detailed description of each topology will be given in later sections.

For these feedback topologies, it has been shown that periodic sequences (cycles)
appear at the output of the comparator, and this is an intrinsic property of the system
observed in all types of the system—conventional sigma-delta modulators and sigma-
delta MEMS [13, 23–28]. In digital accelerometers, these cycles may be utilised for
self-calibration purposes in the system without input, since the MEMS parameters
may be extracted from their characteristics [26]. In resonant gravimetric sensors, the
frequency of oscillations of the mechanical structure can be extracted from this cycle
at the output [29].
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a b

c d

Fig. 3.2 Simple 1D models of MEMS mechanical structures from this study. a ΣΔ accelerometer
has a movable mass suspended between two electrodes. Voltage is applied to either top or bottom
electrode depending on the position of the movable mass. b Pulsed digital oscillator uses a MEMS
resonators that can be modelled as a mass-spring-damper system. The actuation force is applied to
the resonator depending its position and causes its displacement up or down. c Electrostatic pulsed
digital oscillator is similar to the conventional pulsed digital oscillator. The actuation force is created
by applying a voltage to a fixed bottom electrode while the movable mass is made conducting. d
Capacitive MEMS varactor/switch is a suspended electrode that can move and therefore change
the capacitance of the device if a voltage applied to it or to the fixed electrode. Every devices is
characterised by its mass m, spring constant k and damping coefficient b

Our aim is to derive models in the form of a map (discrete-time system) in order
to study this architecture as a dynamical system. We highlight here that due to the
use of a 1-bit quantizer (a comparator) in the feedback loop, the resulting maps have
the form of piecewise discontinuous maps. This approach explains the behaviour
of the system from the standpoint of nonlinear dynamics and allows us not only to
qualitatively explain the appearance of periodic cycles of the map but also to study
the behaviour of the system over a wide range of control parameters. In particular,
we introduce the plane spanned by parameters of the system where we define regions
of admissibility of cycles. We outline similarities which arise between conventional
ΣΔ [24] modulation and MEMS ΣΔ topologies.

We refer a reader who is interested in microtechnology and in practical aspects
of MEMS to the books and articles cited in this chapter. This chapter discusses the
statements of the problem that lead to piecewise-smooth discontinuous discrete-time
systems and the most interesting results.

3.2 ΣΔ Inertial MEMS Sensors

With the advance of microelectromechanical systems technologies, force-balanced
electromechanical modulation incorporating micromechanical transducers has
been employed in a number of inertial and force sensing applications, including
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accelerometers [6–11], gyroscopes [12] and pressure sensors [13]. Closed-loop
feedback for such applications makes the sensor characteristics insensitive to
mechanical properties of micromachined structures, which are often nonlinear and
subject to significant variations, thereby improving the sensor scale factor accuracy.

A typical MEMS sigma-delta based accelerometer is shown in Fig. 3.1b, and
many MEMS sensor systems are based on variations of this architecture. The MEMS
responds to an external force (acceleration) Fin by acquiring a displacement. The
displacement is measured and, depending whether it is below or above the rest posi-
tion, an appropriate force is applied to compensate this displacement. Therefore, the
micromechanical structure oscillates around its rest position. A remarkable property
of this system is that the displacement of the structure and the input can be calcu-
lated simply by processing the sequence of bits bn at the output of the comparator.
In this section, we describe a MEMS accelerometer topology with the first order
sigma-delta feedback loop (Fig. 3.1b), since it is an essential part of various inertial
sensors, for example, digital accelerometers [7–9, 23, 25, 30, 31].

3.2.1 Statement of the Problem

The block diagram in Fig. 3.1b shows a MEMS embedded into a feedback loop.
The MEMS represents a movable conducting plate/mass suspended between two
electrodes. A simple 1D model of the MEMS mechanical structure is shown in
Fig. 3.2a. When a voltage is applied to one of the electrodes, there is an attracting
electrostatic force between the movable plate and this electrode. If a voltage is applied
to the ‘bottom’ electrode the plate will move down, while if a voltage is applied to
the ‘top’ electrode the plate will move up. The feedback loop processes the current
position of the MEMS at every sampling time nT s , and if this position is below zero
(the decision bit from the comparator is bn = −1), the voltage is applied to the top
electrode (we symbolically denote this event as the application of+V ) to compensate
this position displacement, and vice versa if this position is above zero (the decision
bit from the comparator is bn = +1), the voltage is applied to the bottom electrode
(−V ). Thus, the system oscillates around its rest position. A typical waveform of
the feedback voltage/force is shown in Fig. 3.3a where during the time interval from
nT s to (n + 1)Ts a constant voltage depending on the position of movable mass is
applied to it.

The displacement of the mechanical structure (in this case, a micromechanical
resonator) from Fig. 3.1b as a function of time ξ (t) is described by the well-known
mass-spring-damper equation

mξ̈ (t) + bξ̇ (t) + kξ (t) = Fin(t) + Ffb(t) (3.2)

where m is the mass of the plate, b is the damping factor and k is the effective spring
constant. The net force F (t) consists of the feedback Ffb(t) and the input Fin(t).
Here, we assume that the feedback actuation takes place through electrostatic force,
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a b c

Fig. 3.3 In all examples from this chapter, the actuation force/voltage depends on the state of
the MEMS mechanical structure in a similar way. However, the actuation force waveform will
be specific for each example. a Voltage waveform for the actuation of a ΣΔ accelerometer. The
‘polarity’ of the applied voltage is defined by the sampled position of the mechanical structure at a
sampling time (n−D)Ts , and a constant voltage is turn on for the entire interval nT s < t < (n+1)Ts .
The similar actuation waveform is used for capacitive MEMS to control dielectric charging. b Force
waveform of the pulsed digital oscillator (PDO) consists of a train of very short (delta) pulses whose
polarity is defined by the sampled position of the MEMS resonator. c Voltage waveform of the
electrostatic pulsed digital oscillator. The oscillator is constantly biased. When a ‘negative’ pulse
must be applied to the resonator, the bias voltage is turned off for time interval dt and then turned
on for the rest of the sampling interval time (‘anti-pulse’). When a ‘positive’ pulse must be applied
to the resonator, the bias voltage does not change

which is the case for many systems. For Eq. (3.2), Ffb(t) is written in the following
form:

Ffb(t) =
⎧⎨
⎩
−ε0AV 2

0/
(
2[g + ξ (t)]2

)
for nT s < t < (n+ 1)Ts if ξ ((n−D)Ts) > 0

+ε0AV 2
0/
(
2[g − ξ (t)]2

)
for nT s < t < (n+ 1)Ts if ξ ((n−D)Ts) < 0

(3.3)

where ε0 is the permittivity in vacuum, A is the electrode area, V0 is the control
voltage and D is a delay in the feedback loop (D ≥ 1). As shown in [32, 33], the
number of delays is an effective control parameter that affects the dynamics of this
system, and therefore we give here a generalised model accounting for an arbitrary
number of delays D.

The nature of the electrostatic force is nonlinear, though it is usual to linearise it
by dropping off the small displacement ξ (t) compared to the equilibrium gap g. As
an alternative, expanding the nonlinear part of the electrostatic force, one can use
the following representation for linearised Ffb,lin(t):

Ffb,lin(t) ≈ −sgn(ξ ((n−D)Ts)F0 Π (t) + 2F0ξ (t)/g (3.4)

which substituted in (3.2), produces a shift in the natural frequency ω = √
k/m.

Thus, the new frequency now is ω0 = 2πf0 = ω
√

1 − 2F0/gω2 where F0 =
ε0AV 2

0 /2g2. The linearised feedback force, therefore, can be simply written as
Ffb,lin(t) = −sgn(ξ (tn−D))F0Π (t). The symbol Π (t) denotes a square pulse of
unit magnitude and length Ts .

Let us introduce the following variables: time τ = ω0t , displacement x =
mω2

0ξ/F0, dissipation β = b/(2mω0) and normalised input a = Fin/F0. We will
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consider in this chapter that a is a constant. Indeed, since the natural and sampling fre-
quencies are high, we may assume a time-varying input to be constant over relatively
large sampling events.

Thus, we obtain the following normalised equation instead of (3.2):

x ′′ + 2βx ′ + x = a − sgn(xn−D)Π (t) (3.5)

where now x ′ represents the derivative with respect to dimensionless time τ . In the
right-hand side of equation, the term xn−D , the position at the time instance (n−D)Ts ,
is present, reflecting the presence of multiple delays in the feedback loop.

The solution of a mass spring damper equation with the left part as in (3.5) and, in
the most general case, with some F (t) in the right part consists of two terms, namely,
the decaying free oscillations x1(t) and the forced ones x2(t). While the expression
for x1(τ ) is well-known, we note that for arbitrary F (t) the forced oscillations may
be found as follows:

x2(τ ) =
τ∫

0

F (t)e−β(τ−t)√
1 − β2

sin (
√

1 − β2(τ − t))dt (3.6)

where the integral can be easily solved in the interval [0, τ ] for certain functions F (t),
for instance, if it is a constant F0. Thus, solving (3.6) for F (t) = F0 and introducing
the new variable y = −(βx/

√
1 − β2) − v/

√
1 − β2 (where v = ẋ is the velocity),

one obtains

x1(τ ) = e−βτ
(
x0 cos (

√
1 − β2τ ) − y0 sin (

√
1 − β2τ )

)

y1(τ ) = e−βτ
(
y0 cos (

√
1 − β2τ ) + x0 sin (

√
1 − β2τ )

)

x2(τ ) = F0

(
1 − e−βτ cos (

√
1 − β2τ ) − βe−βτ√

1−β2
sin (

√
1 − β2τ )

)
= F0 ζ (β, τ )

y2(τ ) = F0

(
−β√
1−β2

+ βe−βτ√
1−β2

cos (
√

1 − β2τ ) − e−βτ sin (
√

1 − β2τ )

)
= F0 η(β, τ )

(3.7)

where ζ andη are defined as the expressions in the brackets in the latter two equations.
Knowing the solutions, it is easy now to obtain an iterative map from (3.7) by simply
assuming that xn = x(nτs) and yn = y(nτs) where τs = ω0Ts and τn = nτs .

Introducing the feedback force in the form

Fn = a − sgn(xn−D) (3.8)

(Fn will be constant during one sampling event), we write the sampled system as the
following equations [34]:

⎛
⎝xn+1

yn+1

⎞
⎠ = αR(2π f

√
1 − β2)

⎛
⎝xn

yn

⎞
⎠+ Fn

⎛
⎝ζ (β, f )

η(β, f )

⎞
⎠ (3.9)



44 E. Blokhina et al.

where we introduce the parameters α = exp (−βτs) = exp (−2πβf ) (or, returning
to the original variables, α = exp [−bTs/(2m)]) and the normalised frequency f =
τs/(2π ) (f = f0/fs). We also used the notation R(α) in (3.9) to denote the rotation
matrix

R(α) =
⎛
⎝cosα − sin α

sin α cosα

⎞
⎠ (3.10)

The terms ζ and η in (3.9) caused by the presence of F (t) in the right part of equation
(3.5) are functions of the parameters α, f and τs and not of xn and yn.

The system (3.9) is a piecewise-smooth discontinuous mapping

R
2 × BD −→ R

2 × BD (3.11)

where R is the set of real numbers and B is a two-element set such that B = {−1, 1}.
Map (3.9) belongs to the class of contracting mappings considered in [35]. It is
important to note that it has been formally shown there that the output of contracting
mapping is always a stable cycle, and therefore map (3.9) displays only stable cycles.

We can define the binary output sequence bn ∈ B as

bn = sgn(xn) (3.12)

and, according to the notes made in the introduction, this sequence represents the
digital output of the system.

Strictly speaking, (3.9) is written for the underdamped case when β < 1. For
the overdamped case, β > 1, the expression in the root

√
1 − β2 becomes negative

and f itself complex. The map (3.9) can still be written in this form if, considering
that the expression 2πf is now complex, we recall that cos (ix) = cosh (x) and
sin (ix) = i sinh (x) in the rotation matrix. Since the root

√
1 − β2 was also used in

the definition of y, the second variable must be transformed y∗ → −iy. (After these
changes, all variables and parameters in (3.9) will be still real).

The form of the map (3.9) resembles the map proposed for the pulsed digital
oscillator (PDO) topology [14]. Due to the difference in driving of the PDO and the
studied system, the iterative map for the PDO may be seen as a particular case of
the map (3.9) with ζ = 0 and η = const studied in detail in references [14, 28, 32].
The PDO dynamics is very different from that of first-order sigma-delta, although
it shares some common features such as, for example, after a nonlinear bitstream
conversion (edge detection), noise shaping [29].

3.2.2 Periodic Solutions

Independently from the study [35], it is well-known that the conventional ΣΔ ar-
chitecture displays periodic sequences (cycles) in the output [24]. A microresonator
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embedded into this type of structure displays periodic behaviour as well [26]. In this
section, we study periodic sequences {(xn, yn)} that are produced by the map (3.9).

For a given N-periodic sequence of signs bn such that xn = xn+N , the following
sequence determines the N -cycle of map (3.9)
⎛
⎝xn

yn

⎞
⎠ =

(
I − αNR(N2πf

√
1 − β2)

)−1 N∑
j=1

αN−jR((N − j )2πf
√

1 − β2) ×

× (a − sgn(xn−D+j−1))

⎛
⎝ζ

η

⎞
⎠ (3.13)

A cycle given by (3.13) will be asymptotically stable. Indeed, let us consider
the evolution of a small disturbance of some point xn, yn that belongs to the N -
cycle. Let also this disturbance lies in the δ-neighbourhood of this point such that
δ = min|xn| > 0 for all N . In this case, evolution after k iterations of x̃n = xn + δx

and ỹn = yn + δy is defined as
⎛
⎝x̃n+k

ỹn+k

⎞
⎠ =

⎛
⎝xn+k

yn+k

⎞
⎠+ αkR(2πkf

√
1 − β2)

⎛
⎝δx

δy

⎞
⎠ (3.14)

As is seen from this formula, the disturbed trajectory approaches the initial one since
α < 1.

To validate the existence and find the area of admissibility of a particular cycle
over a range of control parameters of (3.9), we can apply the following strategy:

• According to [35], the output of this map is always a cycle.
• Assume the sequence bn (3.12) for the sign of the position. For instance, studies

[24, 27, 29] describe the approaches to determine sequences bn.
• Fix the parameters of the map (namely β, f and a) and calculate {(xn, yn)} using

Eq. (3.13).
• Check if the condition (3.12) is fulfilled. It is worth noting that although the

sequence (3.12) is used to generate the cycle (3.13), the resulting cycle may have
a signature sequence that differs from the desired sequence. In this case we say
that at this parameters, the cycle is not admissible.

Varying β and f over wider regions with implementation of the above strategy allows
one to obtain the parameter plane (β, f ) with regions of cycles admissibility—so
called tongues.
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a b

Fig. 3.4 ΣΔ MEMS accelerometer described by map (3.9), underdamped case. a Regions of
admissibility (with overlapping) for N-cycles with 1 ≤ N ≤ 20 in the parameter plane calculated
from (3.13). The insert of the figure shows the form of the tongues that correspond to odd (by
the example of the 3-cycle) and even (by the example of 4-cycle) cycles. b Parameter plane with
tongues that correspond to different cycles obtained from numerical simulations of the map (3.9)
with the zero initial conditions

3.2.3 Results

3.2.3.1 System with No Input

First, we consider the system with no input, i.e. a = 0. The reasons of this study
are: (a) for certain types of inertial sensors, resonant accelerometers, a proof mass
changes the strain of an attached resonator, hence changing its resonant frequency.
The scheme may also be used as a part of a self-sustained oscillations system [11].
The parameter of interest in this case is the change of the frequency, and in terms
of the model (3.9) we have only two parameters that entirely control the dynamics
of the system—β and f ; (b) the topology with no input displays periodic sequences
(cycles) at the comparator output which may be used for self-testing purposes.

For a linear underdamped resonator, the output waveform in this case will be a
sinusoid, and, therefore, one can obtain the sequence bn for the expression (3.13) as
the sign of a sampled sinusoid

bn = sgn( cos (2πkM/N + ϕ0)) (3.15)

where ϕ0 is an arbitrary phase and 1 ≤ k ≤ N . The ratio M/N defines the rotation
number of a cycle, i.e. the number of loops around the origin a trajectory makes in one
iteration. The expression (3.15) is valid not only for the case of high-Q resonators but
also for cycles in the overdamped case (with no input for the both cases). The most
general discussion on admissible sequences is given in [27]. The sequence bn in the
case of a linear over damped resonator can be found using the algorithm described
in [24].

The parameter plane (β, f ) for tongues with rotation numbers M/N , 0 < N < 15
is shown in Fig. 3.4 (for the underdamped case) and Fig. 3.5 (for the overdamped



3 Discrete-Time Modelling of Sigma-Delta Inspired Systems for MEMS 47

a b

Fig. 3.5 ΣΔ MEMS accelerometer described by map (3.9), overdamped case. a Regions of ad-
missibility (with overlapping) for the 2, 4, 8, 12, 16 and 24-cycles. b Parameter plane with tongues
that correspond to different cycles obtained from numerical simulations of the map (3.9) with the
zero initial conditions

case). The grey areas show possible values of parameters at which a specific cycle can
be observed in the system. As is seen from the figure, the tongues overlap (shown by
darker gray shades): at the same β and f there coexist several cycles and which one
of them will eventually be displayed by the system depends only on initial conditions.
For example, the planes of parameters calculated for the zero initial conditions are
shown in Fig. 3.4b and 3.5b. For the areas of tongues overlapping, one can plot basins
of attraction, i.e. the areas on the plane spanned by the initial conditions x0 and y0

(Fig. 3.6c). In general, the picture that one observes for the underdamped case is
very similar to the PDO dynamics [28, 32] in the sense that tongues and overlapping
areas are very typical for the system.

As far as the tongues defined by (3.13) are concerned, firstly we note that the 2-
cycle (the area shown in blue) can formally exist everywhere in the plane (it is shown
by the lightest grey shade in Figs. 3.4a and 3.5a). In practice, for certain parameters
it would be almost impossible to obtain it since the initial conditions demanded for
it may be unrealsitic. We also note that only even cycles exist for the overdamped
resonator.

Secondly, we draw the attention to the different forms of tongues that correspond
to odd and even N for the underdamped case (see the insert in Fig. 3.4a where
the tongues with N = 3 and N = 4 are shown). Though the odd tongues have
conventional form, the even tongues are rather unusual and ‘cut off’ large areas in
the plane. To prove it, we obtained an explicit form for the 3- and 4-cycles directly
from (3.13) (which we do not give here due to its complex form).

The points xn as functions of the parameter f at a fixed β for the 3- and 4-cycles
are shown in Fig 3.6a and b, respectively. Since sgn(xn) must be the same as the
sequence bn which generated the cycle, we highlight the interval of the f axis over
which these cycles are admissible and this area is precisely the cross section of the
tongues from the plane 3.4a.
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Fig. 3.6 ΣΔ MEMS accelerometer described by map (3.9). a Points xn of the 3-cycle of map (3.9)
as a function of the normalised frequencyf . b Points xn of the 4-cycle as a function of the normalised
frequency f . The 3-cycle is admissible if x1 > 0, x2 > 0 and x3 < 0. The interval of f where this
condition is fulfilled is highlighted by grey. This interval is larger at larger β and tends to zero at
smaller β. The 4-cycle is admissible if x1, x2 > 0 while x3, x4 < 0. This is the case for any f < 0.25
and does not depend on β. This explains why the odd cycles have the regions of admissibility in
the form of tongues originating from a specific point at the axis f (β = 0) while all even tongues
cut off large areas in the (β, f ) plane. c Example of the basins of attraction of different cycles: at
the same values of parameters various output is possible depending on initial conditions

3.2.3.2 System with Input

In this section, we briefly discuss results for the topology of aΣΔMEMS accelerom-
eter which is used with an input (map (3.9) with a = 0). Here, we present results
only for the overdamped case, though the topology may be used also with high-Q
resonators [9]. We also restrict ourselves to the case when the sampling frequency is
much higher than the natural frequency of the resonator and the input a is constant.

As noted before, the system output represents a cycle with a frequency that depends
on the input and on the parameters of the device. Since this topology is based on the
same ideas as aΣΔmodulator, the input is obtained as an average of the output cycle.
First, we note that the average output xout that is the average on the bit sequence bn
as a function of the input a is close to a linear dependance, but a magnified part of
the plot reveals that it consists of a number of steps (Fig. 3.7). We recall that the same
situation is observed in a conventional ΣΔ modulator [24] and in the PDO [14, 28].
Such steps appear due to frequency locking and indicate that particular cycles exist
in a finite interval of a control parameter.
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Fig. 3.7 ΣΔ MEMS accelerometer described by map (3.9). Average output of a ΣΔ accelerometer
as a function of the input a and the magnified part of the plot. The plot displays a set of plateaus
and resembles devil’s staircase. The magnified plot also consists of a set of plateaus
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Fig. 3.8 ΣΔMEMS accelerometer described by map (3.9). a Tongues that correspond to the widest
steps of the plot (3.7) in the (a,β) plane. b The average output for different normalised inputs a

and dissipations β presented by different colours: from 0 (blue) to 1 (red)

The output of the system can be presented in the plane of parameters (β, a), see
Fig. 3.8a (similar to Fig. 3.4 and 3.5). To plot this plane, we choose those sequences bn
for the formula 3.13 that correspond to the widest steps in Fig. 3.7. Now, the steps in
xout (a) can be considered as cross sections of areas in which cycles are admissible.
As is seen from the plane (3.8), the width of steps depends on the dissipation β:
the higher the dissipation, the smaller the width (and, consequently, the higher the
resolution of the system). Figure 3.8(b) shows the average output coded by different
colours: from 0 (blue) to 1 (red).
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3.3 MEMS PDO

In this section, we describe how a map that is very similar to the one derived above
appears as a model of another MEMS-based application. This application is called
as a PDO. It belongs to the class of resonant sensors [36] in which an oscillating
mechanical structure (put in resonance) responds to an external stimulus such as an
environment change in pressure, concentration of a specific compound, viscosity, etc.
These sensors typically detect shifts in the frequency or amplitude of the oscillation
of a MEMS device as a result of this external influence.

The PDO is a micromechanical structure that is embedded into a sigma-delta
type feedback loop with appropriate control circuitry. As a result of the feedback
force applied to the microresonator, it maintains self-sustained oscillations [13–15].
Such structures can be used in resonant mass sensors. It detects the change in the
environment by changing its oscillation characteristics (mainly the frequency of
oscillations). These sigma-delta feedback not only allows to sustain self-oscillations
but also to monitor changes in the resonant frequency of the resonator simply by
processing the binary sequence bn generated at their output. In references [33, 37]
it was demonstrated how these circuits allow the actuation of multiple vibrational
modes of the mechanical structure and, therefore, increasing the sensitivity of the
measurements [38, 39].

3.3.1 Statement of the Problem

Similar to the previously discussed system, the PDO can be described through the
diagram shown in Fig. 3.1b. In this case, we assume that there is no external input to
the resonator (i.e. Fin = 0) and the system is self-oscillating. The MEMS mechanical
structure in the feedback loop is schematically shown in Fig. 3.2b. The position of
the MEMS resonator is evaluated at each sampling time Ts , and very short pulses
of force are applied to the resonator. A typical actuation waveform is presented in
Fig. 3.3b. In the case of a sigma-delta accelerometer whose actuation waveform is
shown in Fig. 3.3a, the feedback force is continuously applied to the microstructure
during the entire time interval Ts . In the case of the PDO, only a short pulse of a very
small duration is applied. This pulse can be modelled as a Dirac delta pulse.

Let us briefly discuss a dynamical model of such system. The derivation of the
governing equation is similar to those described in the previous section (Sect. 3.2).
Detailed study of the model has been carried out in [13, 28, 33]. The position x(t)
of the MEMS resonator is described by the second-order differential equation

mẍ(t) + bẋ(t) + kx(t) = Ffb(t) (3.16)

wherem is the mass of the movable plate, b is the damping factor, k is the spring factor,
Ffb(t) is the force that acts on the resonator. According to the actuation principle, the
position of the MEMS resonator is evaluated discretely every sampling time instant
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nT s and depending on its value, the corresponding feedback force is applied:

Ffb(t) =
⎧⎨
⎩
−F0 δ(t − nT s) if x((n−D − 1)Ts) > 0

+F0 δ(t − nT s) if x((n−D − 1)Ts)) < 0
(3.17)

where D is the number of delays in the feedback loop (D ≥ 0). The feedback force
Ffb represents a train of delta-pulses with a constant amplitude F0 depending on the
sign of the resonator position. For simplicity, we will use the notation tn = nTs and
xn = x(nT s), we also use Dirac delta function δ(t) to denote a short pulse.

General solutions of inhomogeneous differential equations consist of a superpo-
sitions of decaying eigen oscillations of the free resonator and the forces oscillations.
The form of the decaying oscillations is known from Sect. 3.2, and we give it here
in matrix form using the rotation matrix R

⎛
⎝x(t)

y(t)

⎞
⎠ = exp (−ω0β t)R(ω0

√
1 − β2 t)

⎛
⎝x(t0)

y(t0)

⎞
⎠ (3.18)

where β = b/(2mω0) and ω0 = √
k/m. In this equation, we also introduced a new

variable y that is a linear combination of the displacement x and the velocity v:
y(t) = −βx/

√
1 − β2 − v/(ω0

√
1 − β2).

The only result of the application of a delta-pulse is a change in the velocity of
the MEMS resonator:

y(tn+) − y(tn−) = F0

ω2
0

√
1 − β2

sgn(xn−D−1) . (3.19)

Collecting these two solutions, we can write discrete-time equations to describe
the evolution of the PDO. Assuming that xn = x(nT s) and yn = y(nT s+), we write
the equation in discrete-time matrix form

⎛
⎝xn+1

yn+1

⎞
⎠ = αR(2πf )

⎛
⎝xn

yn

⎞
⎠+ bn−D

⎛
⎝0

ζ

⎞
⎠ (3.20)

and

bn = sgn(xn) (3.21)

In Eq. (3.20), we have introduced the following parameters: contraction coefficient
α = exp (−2πf/

√
1 − β2), normalised sampling frequency f = Tsω0

√
1 − β2/2π

and normalised amplitude of the pulses ζ = F0/(ω0m
√

1 − β2). Similarly to (3.9),
the system (3.20) is a piecewise-smooth discontinuous mapping of the form

R
2 × BD+1 −→ R

2 × BD+1 (3.22)

where R is the set of real numbers and B is a two-element set such that B = {−1, 1}.
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3.3.2 Periodic Solutions

In [28], it was shown that periodic solutions of the mapping (3.20) are stable cy-
cles. More generally, the system (3.20) represents a piecewise contractive map and,
according to [35], always displays periodic stable sequences or cycles.

The procedure to investigate limit cycles is described in detail in the previous
Sect. 3.2. By assuming a specific sequence bn = sgn(xn), we can obtain the explicit
form of the N -cycles as
⎛
⎝xn

yn

⎞
⎠ = (I − αNR(2πNf )

)−1
N∑

j=1

αN−jR((N − j )2πf )sgn(xn−D+j−1))

⎛
⎝0

ζ

⎞
⎠

(3.23)

The stability analysis can be done in the same way as it was carried out in Sect. 3.2
and every cycle produced by (3.23) is stable.

To validate the existence of a particular cycle, we can apply the following strategy:

• Assume the sequence bn (3.21) for the sign of the position.
• Fix the parameters of map (3.20) (namely β, f and a) and calculate {(xn, yn)}

using Eq. (3.13).
• Check if the condition (3.21) is fulfilled. It is worth noting that although the

sequence (3.21) is used to generate the cycle (3.13), the resulting cycle may have
a signature sequence that differs from the desired sequence. In this case we say
that at this parameters, the cycle is not admissible.

Varying β and f over wider regions with implementation of the above strategy allows
one to obtain the parameter plane (β, f ) with regions of cycles admissibility—so
called tongues.

3.3.3 Results

To analyse the output sequences of map (3.20), we note that the MEMS waveform
in this case will be a sinusoid, and, therefore, one can obtain the sequence of signs
bn as the sign of a sampled sinusoid

bn = sgn(cos (2πkM/N + ϕ0)) (3.24)

where ϕ0 is an arbitrary phase and 1 ≤ k ≤ N . The ratio M/N defines the rotation
number of a cycle, i.e. the number of loops around the origin a trajectory makes in
one iteration.

The ‘parameter’ of interest in the case of the PDO is its oscillation frequency and
it can be calculated using two approaches. Since the PDO is a digital oscillator, the
oscillation frequency can be directly calculated from the output bitstream [14, 29].
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We will use the route suggested in [29] to generate the auxiliary sequence and obtain
the digital frequency of oscillations fD . The qn sequence is defined as follows:

qn =
⎧⎨
⎩

1, if bn = bn+1 ,

0, if bn = bn+1 .
(3.25)

The digital frequency of oscillations can now be written as

fD = 1

2
·

N∑
n=1

qn

N
(3.26)

On the other hand, one can calculate the rotation number of the map. If αn is the
angle made by the point (xn, yn) and the origin of the x, y plane, the rotation number
is defined as [40]

ρ = lim
n→∞

αn

2πn
(3.27)

Both, the digital frequency and the rotation number, are equivalent, and one can
ensure that they give the same result. Therefore, the resulting oscillation frequency,
in the oversampling regime (fosc/fs < 1/2), is

fosc = fsfD = fsρ (3.28)

where fs = 1/Ts is the sampling frequency.
The rotation number (related to the resulting oscillation frequency) as a function

of the normalised frequency f (related to the sampling and natural frequency) is
presented in Fig. 3.9a. In the ideal case, this should be a straight line displaying
that any small change in the sampling or natural frequency will result in a change of
the oscillation frequency detected by the electronics. However, this plot resembles a
devil’s staircase and consists of discrete steps. The oscillations are frequency-locked
in this case with one frequency being a rational number times the other frequency.
Practically this means that the system (MEMS sensor) has a limited resolution:
if the frequency is locked, the system is not responding to a small change in the
environment and this change cannot be detected from the bitstream sequence bn.
This phenomenon is only important when using resonators with low-quality factors,
i.e. with high losses. From the figure, one can see a magnified part of the plot shown
in Fig. 3.9b that also resembles a devil’s straicase. The size of steps is defined by the
dissipation parameter β: the smaller the β, the more straight and smooth the plot is.

The parameter plane (β, f ) for tongues with rotation numbers M/N , 0 < N < 16
is shown in Fig. 3.10. Plot 3.10a shows the domains of existence of specific cycles.
These domains can overlap (shown by a darker shade of gray): at the same β and f

there coexist several cycles and which one of them will eventually be displayed by
the system depends only on initial conditions. The planes of parameters calculated
for zero initial conditions are shown in Fig. 3.10b.
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a b

Fig. 3.9 Pulsed digital oscillator described by map (3.20). Rotation number ρ (or digital frequency
fD , both related to the resulting oscillation frequency fosc) as a function of the normalised frequency
f (related to the sampling frequency and/or the natural frequency. β = 0.05

a b

Fig. 3.10 Pulsed digital oscillator described by map (3.20). a Regions of admissibility (with over-
lapping) for N-cycles with 1 ≤ N ≤ 15 in the parameter plane calculated from (3.23). b Parameter
plane with tongues that correspond to different cycles obtained from numerical simulations of the
map (3.20) with zero initial conditions

3.4 Modification of the PDO: Electrostatic MEMS Oscillator

PDOs described in Sect. 3.3 are implemented using thermoelectric actuation that
allows one to emulate ‘positive’ and ‘negative’ pulses. Modern MEMS devices are
often implemented using electrostatic actuation. As it was described in Sect. 3.2,
the main difficulty of electrostatic actuation is that the generated force is always
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attractive and it is not possible to emulate a negative pulse. Therefore, a modification
of the actuation technique from Sect. 3.3 is required and we describe it in this section.
The corresponding oscillator is called the electrostatic PDO or e-PDO [41].

The e-PDO has the same application as the conventional PDO. Namely, it is used
as a resonant sensor that detect small shifts of the resonant frequency of a mechanical
structure as a result of changes in the variable to be measured. We give here the map
for this system as it has quite a complex form compared to the two studied cases, but
displays very similar features to the conventional PDO map.

3.4.1 Statement of the Problem

A schematic structure of the e-PDO can be described using the block diagram from
Fig. 3.1b with no external input force (Fin = 0). A simplified 1D mechanical structure
of the e-PDO is shown in Fig. 3.2c. The displacement of the microresonator ξ is
described by the following equation:

mξ̈ (t) + bξ̇ (t) + kξ (t) = Ffb(ξ , t) (3.29)

where m is its mass, b is the damping factor and k is the effective spring constant. The
force acting on the resonator will consist only of the feedback forceFfb. The e-PDO is
actuated electrostatically and therefore Ffb is an electrostatic force. The electrostatic
force is always attractive, and it is not possible to create a repulsive pulse required for
sigma-delta feeedback. To overcome the similar issue, inertial sensor/accelerometers
described in Sect. 3.2 employ two electrodes that located at the two opposite sides
of a movable mass. However, this is not always possible because of size or design
limitations. In the case of the e-PDO, we use the following actuation scheme:

Vfb(t) =
⎧⎨
⎩
V0(1 −Π (t)) for nT s < t < (n+ 1)Ts if ξ ((n−D)Ts) > ξav

V0 for nT s < t < (n+ 1)Ts if ξ ((n−D)Ts) < ξav

(3.30)

where Π (t) denotes a square-shaped pulse

Π (t) =
⎧⎨
⎩

0 for t > dt ,

1 for 0 < t < dt
(3.31)

In the above formula, ξav is the current average position of the resonator, V0 is a
constant voltage applied, D is the number of delays (D ≥ 1) and dt is a short
interval of time (dt < Ts). We can summarise this actuation scheme as follows. If
the position of the resonator at a given sampling time is below the time averaged
position (ξ < ξav), a constant bias voltage is held Vfb = V0 (no pulse applied). If the
position of the resonator at a given sampling time is above the time averaged position
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(ξ > ξav), an ‘anti’-pulse is applied: the constant biasing voltage V0 is turned off
for a very short time dt and then turn on again. A typical actuation waveform of the
e-PDO is presented in Fig. 3.3c.

The system is described by the following equation:

ξ̈ (t) + (b/m)ξ̇ (t) + ω2
0ξ (t) = ε0AV 2

0

2mg2(1 − ξ (t)/g)2

(
1 −

∑
n

bnΠ (t − nT s)

)

(3.32)

where the natural frequency ω0 = √
k/m, ε0 is the vacuum permittivity, A is the

area of the actuating electrode and g is the rest gap between the movable mass and
the electrode. The sequence of the position sign bn defines the application of an
anti-pulse:

bn = 1

2

[
1 + sgn(ξ ((n−D)Ts) − ξav)

]
(3.33)

Since most of the time a constant voltage is applied and it turned off only for short
time instances dt , the resonator will oscillate around an equilibrium position ξ0.
We introduce a small dimensionless deflection x from the electrostatic equilibrium
position such that ξ = g(x0 + x) and dimensionless time τ = ω0t . A linearised
equation describing the deflection x will have form

x ′′ + 2βx ′ + x = 2ψ0 x

(1 − x0)3

(
1 −

∑
n

bnΠ (τ − nτs)

)

− ψ0

(1 − x0)2

∑
n

bnΠ (τ − nτs) (3.34)

where β = b/(2mω0) is the normalised dissipation coefficient and ψ0 = ε0AV 2
0 /

(2mω2
0g

3) is the normalised force amplitude and the prime sign denotes the derivative
with respect to dimensionless time τ . The electrostatic equilibrium x0 is the solution
of the equation

x0 − ψ0

(1 − x0)2
= 0 (3.35)

and it is worth mentioning that x0 ≈ xav and with good accuracy we can assume that
xav = x0. To obtain a map, one has to solve differential Eq. (3.34). Let us consider
two cases.

No anti-pulse is applied. This case corresponds to bn = 0, and the system is
constantly biased. Equation (3.34) can be written into a simpler form

0 ≤ τ < τs : x ′′ + 2βx ′ + x(1 − 2ψ0/(1 − x0)3) = 0 (3.36)
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where τs = ω0Ts . Denoting ω1 = √
1 − β2 and ω2 = √

1 − β2 − 2ψ0/(1 − y0)3,
we can write the solution of (3.36) in the form:

⎛
⎝x(τs)

y(τs)

⎞
⎠ = e−βτs R(ω2τs)

⎛
⎝x(τ0)

y(τ0)

⎞
⎠ (3.37)

where R is the rotation matrix. In the above equation, we used the variable y =
−βx/ω2 − x ′/w2.

Anti-pulse is applied. This corresponds to the case bn = 1. Equation (3.34) can be
split into two equations

0 ≤ τ < dτ : x ′′ + 2βx ′ + x = − ψ0

(1 − x0)2

dτ ≤ τ < τs : x ′′ + 2βx ′ + x(1 − 2ψ0/(1 − x0)3) = 0 (3.38)

The solution of (3.38) is
⎛
⎝x(τs)

y(τs)

⎞
⎠ = e−βτs R(ω2(τs − dτ ))AR(ω1dτ )

⎛
⎝ x(τ0)

(ω2/ω1)y(τ0)

⎞
⎠

+ e−βτ2 R(ω2(τs − dτ ))F0

⎛
⎝ ζ

(ω1/ω2)η

⎞
⎠ (3.39)

where F0 = −ψ0/((1 − y0)2) and A =
⎛
⎝1 0

0 (ω1/ω2)b

⎞
⎠. The coefficients ζ and

η are the same as described in Sect. 3.2 and using the notation introduced in this
section, they can be presented in the following form:

ζ = 1 − e−βτ1 cos (ω1dτ ) − β e−βdτ√
1 − β2

sin (ω1dτ ),

η = − β√
1 − β2

+ β e−βdτ√
1 − β2

cos (ω1dτ ) − e−βτ1 sin (ω1dτ ) (3.40)

An iterative system of equations can be obtained from (3.37) and (3.39) by as-
suming that xn = x(nT s) and yn = y(nT s). In its compact form, the resulting map
can be written as⎛

⎝xn+1

yn+1

⎞
⎠ = αR(ω2(τs − dτ ))AR(ω2(ω1/ω2)bndτ )

⎛
⎝ xn

(ω2/ω1)bnyn

⎞
⎠

+ ατR(ω2(τs − dτ ))F0bn

⎛
⎝ ζ

(ω1/ω2)bnη

⎞
⎠ (3.41)
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where the sequence of signs bn is defined as follows

bn = 1

2

[
1 + sgn(x((n−D)Ts))

]
(3.42)

In these equations, α = exp (−βτs) andατ = exp (−β(τs−dτ )). This is a piecewise-
smooth discontinuous map

R
2 × BD −→ R

2 × BD (3.43)

where R is the set of real numbers and B is a two-element set such that B = {0, 1}.
Note that the this map transforms into to the conventional PDO map if ω1 = ω2 and
dτ � τs [41].

3.4.2 Results

Here we briefly discuss some of the results. Since the standard application for an
e-PDO is as part of a resonant sensor and it is important to extract the change
in the oscillation frequency in this system, the important parameter is the digital
frequency of oscillations fD or the rotation number ρ (recall that the actual frequency
of oscillation is fosc = fDfs = ρfs . The digital frequency can be calculated using
the approach discussed in Sect. 3.3 and formula (3.26). The digital frequency of
oscillation as a function of the normalised frequencyf = Tsω0

√
1 − β2/2π is shown

in Fig. 3.11a. This figure shows the same fractalised characteristic already seen in
sigma-delta accelerometers and PDOs. The smaller the dissipation parameter β, the
more straight is the plot. We also note that the system displays multistability, and a
large number of stable cycles are admissible in the output at the same parameters.
To demonstrate this, we present the basins of attractions corresponding to different
cycles (Fig. 3.11b). Depending on the initial conditions (x0, y0), the system converges
to different periodic solutions.

3.5 Control of Dielectric Charge for Capacitive MEMS

So far we have considered examples that are related to the actuation and control
of movable mechanical components of MEMS. In this section, we discuss a very
different example that is related to MEMS reliability and does not directly involve
the control of MEMS mechanics.

The electrostatic mechanism of actuation already mentioned in this study is very
common in MEMS. However, in some types of MEMS that utilise dielectric ma-
terials, it leads to the accumulation of charge in these dielectrics. It is known to
be a major reliability problem for these devices and especially a problem for radio
frequency (RF) MEMS [42]. As is reported in recent reviews [43, 44], the accumu-
lation of charge by dielectrics is very common and all typical dielectric materials are
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a b

Fig. 3.11 Electrostatic pulsed digital oscillator described by map (3.41). a Digital frequency of
oscillation (related to the actual oscillation frequency of the e-PDO) as a function of a normalised
frequency f (rested to the sampling frequency and the natural frequency). The plot consists of a
number of plateaus that are more visible when β is larger. b Example of the basins of attraction of
different cycles in the plane of initial conditions (x0, y0)

prone to it. In recent years, an alternative approach that consists of bipolar [45] and
smart actuation techniques [20, 46] is suggested to address the problem of dielectric
charging.

In references [20], a smart actuation method based on a feedback control was
proposed for the actuation of capacitive MEMS with dielectrics. The aim of the
actuation and control method is to ensure that the charge accumulated in the dielectric
is not increasing and stays fixed at a desired level by applying a bipolar actuation
voltage. We have investigated this method for a simple 1D model suitable for MEMS
positioners and varactors which operate below pull-in of the MEMS structure. (Pull-
in is a phenomenon when the movable suspended electrode collapses onto the fixed
electrode, since the electrostatic force can no longer be compensated by the restoring
mechanical force). In addition, we experimentally demonstrated that the method can
be applied to switches which operate beyond pull-in. The proposed closed-loop
feedback technique is based on the measurement of the MEMS capacitance at fixed
time instances nT s . The total capacitance of the device is a function of the position
x(t) which is directly linked to the accumulated total charge in the dielectric Qd .
Thus, the value of the total capacitance for a given voltage can be treated as an
‘indicator’ of the value of the total accumulated dielectric charge.

3.5.1 Statement of the Problem

A simple 1D model of a variable capacitor is shown in Fig. 3.2d. The deflection of the
top electrode y is described by a mass-spring-damper ordinary differential equation

mẍ(t) + bẋ(t) + kx(t) = Fel(V , x) (3.44)
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where m is the mass of the movable electrode, b is the damping factor and k is the
spring coefficient. The value of the damping coefficient is large as the top electrode
is moving in air, so the first two terms can be neglected. Thus, the system will reach
the steady state relatively fast. Then, the position x(t), for a given value of voltage, is
obtained analytically by solving the equation which expresses the balance of forces

ky = Fel(V , x) (3.45)

where

Fel = ε0A

2

(V − Vshift)2

(g − x + d
εd

)2
. (3.46)

Here, V is the applied voltage, ε0 is the vacuum permittivity, εd is the relative
permittivity of the dielectric, g is the gap distance between the upper electrode and
the dielectric, d is the thickness of the dielectric layer, A is the area of the device
and Vshift = Qd/Cd is the voltage shift due to the accumulated charge Qd into
the dielectric. The capacitance Cd associated with the dielectric layer is given by
Cd = ε0εdA/d. From (3.45), it follows that there is a critical value of Fel that
exceeds the restoring spring force ky. In this case, the equilibrium position of the
device cannot be maintained any longer. This results in the instantaneous collision of
the top electrode onto the dielectric layer and the bottom electrode. Such an event (the
collapse of the movable electrode) is called the pull-in event and the corresponding
voltage is known as the pull-in voltage VPI .

To make the above equations self-consistent, we must supply the equations that
define the evolution of the dielectric charge with the applied voltage and time. The
electrostatic force in (3.46) depends on the voltage shift

Vshift(t) = Qd (t)/Cd , Veff(t) = V − Vshift(t) (3.47)

that is a function of the charge accumulated in the dielectric. The device ‘sees’
that effective voltage which deviates from the applied voltage V . The evolution of
the dielectric charge Qd is related to the actuation voltage and time. In principle,
positive and negative charge can be accumulated into the dielectric. There are various
proposed models which describe that evolution taking into account charge injection,
dipole orientation, charge trapping along with others or combination of those [42].
The exact mechanism depends also on the device characteristics. Here, we will
use a semi-empirical multi-exponential charging model where positive and negative
charging components are included [20]. The time evolution of each component is

Qp(t) =
⎧⎨
⎩
Q

p
max
∑

i ζ
p

i e
−t/t

p
Di V > 0

Q
p
max(1 −∑i ζ

p

i e
−t/t

p
Ci ) V < 0

Qn(t) =
⎧⎨
⎩
Qn

max(1 −∑i ζ
n
i e

−t/tnCi ) V > 0

Qn
max

∑
i ζ

n
i e

−t/tnDi V < 0
(3.48)
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where Q
p
max and Qn

max are the maximum values of positive and negative charges, re-
spectively, tCi and tDi the charging and discharging time constants and ζi coefficients
which express the weight of each exponential to the total charge (thus

∑
i ζi = 1

for each component). The coefficients ζi and the characteristic times τi are can be
determined from experiment data and are different, in general, between the positive
and negative components. Now, the evolution of the total charge will be

Qd (t) = Qp(t) +Qn(t) (3.49)

The control method from [20] monitors the parasitic charge in the dielectric
by comparing the capacitance Cn of the device in each sampling time nTs with a
threshold value Cth, where

Cn = Cg,0

1 − xn
g
+ Cg,0

Cd

(3.50)

its discretised expression with Cg,0 = Aε0/g the capacitance of the gap and xn the
discretised position of the up electrode in sampling time nTs . As long as the value
of Cn is less than Cth a positive actuation voltage V + is applied. When the value of
Cn exceeds the threshold value the polarity in the next time instant will be inversed
and negative voltage V − will be applied. Summarising, the control method follows
the scheme:

Vn =
⎧⎨
⎩
V + if Cn < Cth

V − if Cn > Cth

(3.51)

with Vn the applied voltage at the nth sampling time. The capacitance threshold value
Cth biuniquely corresponds to a charge target value Qth that the control method aims
to fix into the dielectric. The voltage actuation waveform will be somewhat similar
to the waveform shown in Fig. 3.3a.

By defining the quantities αC = e−Ts/τC and αD = e−Ts/τD the discretised
equations for charge evolution Eq. 3.48 for the case i = 1 will have form

Qn+1 = αD

(
αC

αD

)bn

Qn +Qmax(1 − αC)bn = Φ(Qn, bn) (3.52)

where we introduced the decision bit sequence bn as

bn = 1

2
(1 + sgn(Cth − Cn)). (3.53)

The complete model that describes the evolution of charge can be expressed as

Qn+1 =
∑
i

Φi(Q
(i)
n , bn) = Θ(Qn, bn) (3.54)
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The general form of the map which expresses the evolution of the charge dynamics
under the operation of this control algorithm can be written for the state vector (Q, b)

⎛
⎝Qn+1

bn+1

⎞
⎠ =

⎛
⎝ Θ(Qn, bn)

1
2

[
1 + sgn

(
Cth − Cg,0

1+γ−x(Qn,bn)/g

)]
⎞
⎠ (3.55)

and this is a piecewise-smooth mapping of the form

R × B → R × B (3.56)

where R is the set of real numbers and B = {0, 1}.

3.5.2 Periodic Solutions

According to [35], the output of the map (3.55) are stable periodic sequences, or
cycles. By considering for simplicity i = 1 in (3.48) and introducing the parameters
ν = αC/αD , μ = Qmax(1 − αC) and the sum

Sq
p =

q∑
j=p

bn+j (3.57)

for p ≤ q, the kth iteration of the map is

Qn+k = αk
DνSk−1

0 Qn − μ

k−1∑
j=1

α
k−j

D ν
Sk−1
j bn+j−1 − μbn+k−1 (3.58)

Since the sequence {bn} is periodic [35], Qn = Qn+N . Using N instead of k and
SN = SN−1

0 as the sum of all bn in the sequence, we write that

Qn = −μ

1 − αN
DνSN

⎛
⎝bn+N−1 +

N−1∑
j=1

α
N−j

D ν
SN−1
j bn+j−1

⎞
⎠ (3.59)

and this equation defines the cycles of charge displayed by map (3.55) if the sequence
bn for 1 ≥ n ≤ N is given. The stability analysis of a cycle can be done using the
approach discussed in Sect. 3.2 and one can ensure that this cycle is asymptotically
stable.

3.5.3 Results

An important property of this control method is that subsequent discharging events
are not possible, i.e. the bitstream sequence cannot contain two subsequent zeros. At
the moment the polarity of the applied voltage changes (when the total capacitance
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a b

Fig. 3.12 Control of dielectric charge for capacitive MEMS described by map (3.55). Charge
Qd fixed by the control method in the dielectric as a function of a desired charge amount Qth. a
corresponds to a short sampling time (Ts = 0.01 s) while b corresponds to a larger sampling time
(Ts = 5 s). The large plateau seen in both figures corresponds to the 2-cycle. The parameters of the
device used in this simulation are taken from [20]

exceed the Cth value) the total capacitance drops below the Cth value. Thus, the next
event will be a charging event (of the opposite polarity). This means that the minimum
amount of charge the control algorithm is able to fix in the device is restricted to one
charging and one discharging events defining the two-cycle

Q̂1 = − αDμ

(1 − β)
, (b1 = 1)

Q̂2 = − μ

(1 − β)
, (b2 = 0) (3.60)

where we denoted β = αCαD .
Therefore, the minimum amount of charge in the dielectric is defined by this

two-cycle. If the target charge Qth set for the algorithm is less than the charge
defined by the two-cycle, the control algorithm will not be able to fix the desired
dielectric charge. Instead, the charge corresponding to the two-cycle will be fixed.
Thus, depending on the system parameters, the control method will yield either the
sequence of charge Qn given by (3.59) with N > 2 whose average value is equal to
the desired amount of charge Qth or a two-cycle (3.60) whose average value will be,
in the most general case, larger than the desired amount. Therefore, we say that the
control algorithm operates successfully if the output bit sequence bn corresponds to
a cycle with N > 2.

For the illustration of the control method, the parameters given in [20] are used
in this study. The parameter of interest in such a system is the time-averaged charge
in the dielectric controlled by the algorithm. In order to show the performance of the
control method, in Fig. 3.12 we plot the average dielectric charge as a function of the
target charge Qd (Qth). In the ideal case, this must be a straight line: a small change
in Qth must result in the small change of Qd that algorithm fixes in the dielectric.
This plot is shown in Fig. 3.12. Figure 3.12a corresponds to a very short sampling
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Fig. 3.13 Control of
dielectric charge for
capacitive MEMS described
by map (3.55). Simulated
capacitance and dielectric
charge transients applying the
charge control method

time Ts while Fig. 3.12b corresponds to a very long sampling time. For a relatively
large Ts , the plot is not a straight line, but resembles rather a devils staircase plot. The
devils staircase has already appeared in other examples from this study. Practically,
the presence of devils staircase in this system means that the algorithm will have a
finite resolution/accuracy of fixing the dielectric charge when Ts is large. There is
a large plateau seen in both figures for smaller Qth. This large plateau corresponds
to a two-cycle. In this case, some charge is fixed in the dielectric, but it does not
correspond to a desired level.

To obtain a broader understanding of the system dynamics, we can consider a
plane of parameters spanned by the target capacitance Cth (related to the desired
charge Qth) and the ratio of the discharging and charging times τD/τC that strongly
affect the behaviour of the system. We can define the area where the algorithm is
able to fix Qth (successful operation of the algorithm) and where the algorithm is
not able to fix Qth (the output of the algorithm is a two-cycle). The two boundary is
given by the following equation:

− αDμ

(1 − β)
= Qth (3.61)

Figure 3.13 shows such a plane with the above boundary plotted. Practically, this
means that for realistic devices one should select the algorithm parameters above the
dashed line shown in the figure.

3.6 Conclusions

We have considered a number of examples describing a MEMS, actuated or con-
trolled, by a feedback inspired by sigma-delta modulation. In the introduction, we
described the principles of sigma-delta conversion and showed how they can be
applied to actuated or controlled MEMS. We discussed three examples: an inertial
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sensor, a self-sustained oscillator and a charge control actuation method. In all cases,
we have shown how a piecewise-smooth discontinuous map arises as a model of
these systems. Although belonging to different class of devices, all the examples
display a number of similar features, for instance, a devil’s staircase as the repre-
sentation of frequency or charge locking. For all these models, the output is a stable
sequence (cycle) and frequency/charge locking corresponds to a specific cycle of the
map that persists or dominates in a large area of control parameters. A very similar
phenomenon was found in conventional leaky sigma-delta modulators and it reflects
the finite resolution in representing the input signal. In a self-sustained oscillator, the
persistence of limit cycles give rise to frequency locking, i.e. the inability of the oscil-
lator to change its frequency for certain values of control parameters. Finally, in the
problem of charge control in capacitive MEMS, we observe charge locking. Charge
locking is very similar to frequency locking and it displays the finite resolution of
charge control in MEMS. The persistence of limit cycles and frequency and charge
locking are parasitic phenomena. Since we present the study of the system dynamics
over wide range of parameters, we can estimate the values of parameters in order to
avoid these undesirable effects. The models we present in this chapter that describe
realistic systems and behaviour were experimentally validated in a number of cited
studies. We refer a reader who is interested in further investigation of MEMS, and
in particular of sigma-delta inspired MEMS to the literature cited in this chapter.
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Chapter 4
Kinetic Exchange Models in Economics
and Sociology

Sanchari Goswami and Anirban Chakraborti

Abstract In this chapter, we briefly review the different aspects and applications of
kinetic exchange models in economics and sociology. Our main aim is to show in
what manner the kinetic exchange models for closed economic systems were inspired
by the kinetic theory of gas molecules. The simple yet powerful framework of kinetic
theory, first proposed in 1738, led to the successful development of statistical physics
of gases towards the end of the nineteenth century. This framework was successfully
adapted to modelling of wealth distributions in the early 2000s. In later times, it
was applied to other areas like firm dynamics and opinion formation in the society,
as well. We have tried to present the flavour of the several models proposed and
their applications, intentionally leaving out the intricate mathematical and technical
details.

4.1 Introduction

The aim of statistical physics is to study the physical properties of macroscopic
systems consisting of a large number of particles. In such large systems, the number
of particles is of the order of Avogadro number. Thus, it is extremely difficult to have
a complete microscopic description of such a system, both experimentally and by
the way of solving equations of motion. In spite of the complexity of such systems,
they exhibit some macroscopic observable quantities, which represent averages over
microscopic properties [1–3].

A society can be described as a group of people sharing the same geographical or
social territory and involved with each other by means of sharing different aspects
of life.
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In sociology, a branch of social sciences, one studies the human social behaviour
in a society. Economics is another branch of the social sciences which analyses the
production, distribution, and consumption of goods and services. Since the society
is usually formed with a very large number of people, the study of an individual
is extremely difficult. However in various cases, one can observe and character-
ize some average behaviour of the people, e.g. in case of a voting a large number
of people selects a particular opinion. Similar to many physical phenomena, quite
well-understood by physicists, it has been found that a study of crime, a social phe-
nomenon, displays a first-order transition between states of high- and low-crime rates
as a function of severity of the criminal justice system. Also, a model of marriage,
another social phenomenon, shows critical behaviour such that the relation among
marriage rates, economic incentives, and social pressures show a surface similar to a
P -V -T surface of a fluid. Also, the dynamical nature of interaction of any economic
sector which is composed of a large number of cooperatively interacting agents, has
many features in common with the interacting systems of statistical physics. These
naïvely suggest that study of society as viewed by the economists and sociologists,
can also be done using the tools of statistical mechanics developed by the physicists.
The application of statistical mechanics to the fields of economics and sociology have
resulted in the interdisciplinary fields namely “econophysics” [4] and “sociophysics”
[5]. According to P. Ball [6],

At face value, there might seem to be little room left for statistical physics to make a realistic
contribution. But if there is one message that emerges clearly from this discipline, it is that
sometimes the details do not matter. That, in a nutshell, is what is meant by universality.
It does not matter that the Ising model is a ridiculously crude description of a real fluid;
they both have the same behaviour at the critical point because in that circumstance only
the broad-brush features of the system, such as the dimensionality and range of particle
interactions, determine the behaviour.

The kinetic exchange model is one of the simplest models in statistical mechanics,
which derives the average macroscopic behaviours from the microscopic properties
of particles. The kinetic exchange model is in general based on the exchange of
energy among particles due to elastic collisions occurring among them. Bernoulli, in
1738, gave a complete description of the movement and activities of gas molecules
in Hydrodynamica which is well known as “Kinetic theory of gases”. This attempt
was later developed and formalized by several other pioneers of “Statistical Ther-
modynamics”, such as Clausius, Maxwell, Boltzmann, Planck, and Gibbs. In this
chapter, we will present some existing models in several fields of, not only natural
sciences but also social sciences, such as economics and sociology [7].

4.2 Kinetic Exchange Models in Economics

An economy can be studied in various ways. For example, one can study the economy
in the light of individual’s wealth as well as production of goods or wealth by firms
in that economy. The economy consists of a large number of firms populated by
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workers. By firms we mean production units, each and every one of which is capable
of producing any kind of goods and services.

The famous Italian economist Vilfredo Pareto, in 1897, observed that the income
distribution in Europe follow a power-law tail [8]. The tail-end distribution of income
is given as,

p(m) ∼ m−(1+ν), (4.1)

where ν is called the Pareto exponent. The value of the exponent as measured by
Pareto for different kingdoms and countries varied between 1.1 to 1.7 [8]. Pareto also
observed that roughly 80% of the total wealth is limited to the hands of only 20%
people of the society; this signifies that there is a small finite number of extremely
rich people in a society.

Several surveys were done to verify Pareto law. Japanese, Australian, and Italian
personal income distribution have been shown to have a log-normal distribution for
the lower income range and a power-law tail at higher income portion [9–11]. In
India, studies revealed that the income of rich people follow power-law distribution
[12]. Similar thing is observed for the income and wealth distribution in the modern
USA and UK [13, 14], and other countries. All these studies show the evidence of
the power law tail but the Pareto exponent is found to vary between 1 and 3 [4, 9–22].

In any society or country, one finds that the total wealth remains fairly constant on
a longer time scale than its movement from individual to individual. This is because
the dynamics of the latter occurs at shorter time scales (e.g., daily or weekly). This
in turn results in very robust type of wealth distributions. Empirical data for society
show a small variation in the value of the power-law exponent at the “tail” of the
distribution, while it equals to unity for firms.

The interesting question is then, why is such “universal” behaviour as the
widespread Pareto law, observed in the case of wealth distribution in the society.
To this aim, a number of models have been proposed to reproduce these observed
features, specifically to obtain a power-law tail as was observed in empirical data.
Many of these models have been inspired by the kinetic theory of gas-like exchanges.
Notably, in 1960, the mathematician and economist Mandelbrot, wrote:

There is a great temptation to consider the exchanges of money which occur in economic
interaction as analogous to the exchanges of energy which occur in physical shocks between
molecules. In the loosest possible terms, both kinds of interactions should lead to similar
states of equilibrium. That is, one should be able to explain the law of income distribution
by a model similar to that used in statistical thermodynamics: many authors have done so
explicitly, and all the others of whom we know have done so implicitly.

4.2.1 Ideal Gas-Like Kinetic Wealth Exchange Models (KWEM)

A trading process may be realized in a manner similar to the gas molecules exchang-
ing energy in the kinetic theory of gases, where now a pair of traders exchange
wealth, respecting local conservation in any trading [23–30]. These models have a
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Fig. 4.1 A typical example of
two agents i and j taking part
in a trading process. Agent i
and j have wealth mi (t) and
mj (t) at time t . After a trading
their wealth become mi (t + 1)
and mj (t + 1) respectively

  m  (t)m  (t)

m  (t+1) m  (t+1)j

ji

i

TRADING

microcanonical description and nobody ends up with negative wealth (i.e. debt is
not allowed). Thus, for two agents i and j with wealth mi(t) and mj (t) at time t , the
general trading is given by:

mi(t + 1) = mi(t) +Δm; mj (t + 1) = mj (t) −Δm; (4.2)

time t changes by one unit after each trading. A typical wealth exchange process is
shown in Fig. 4.1.

4.2.1.1 Model with No Saving

In a simple conservative model proposed by Drăgulescu andYakovenko (DY model)
[25], N agents exchange wealth randomly keeping the total wealth M constant. The
simplest model considers a random fraction of total wealth to be shared:

Δm = εij (mi(t) +mj (t)) −mi(t), (4.3)

where εij is a random fraction (0 ≤ εij ≤ 1). The steady-state (t → ∞) wealth
follows a Boltzmann–Gibbs distribution: P (m) = (1/T ) exp (−m/T ); T = M/N ,
a result which is robust and independent of the topology of the (undirected) exchange
space [27, 28].

The Boltzmann–Gibbs distribution, a fundamental law of equilibrium statistical
mechanics, states that the probability P (ε) of finding a physical system or subsystem
in a state with the energy ε is given by the exponential function

P (ε) = ceε/T .

Here, the conserved quantity is the total energy.
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If m1 > m2 and the agents share some random fraction of wealth 2m2 and not of
the total (m1 +m2), which indicates trading at the level of lower economic class in
the trade, then all the wealth in the market drifts to one agent drastically [31, 32]. In
[33], different approaches to obtain the exponential Boltzmann–Gibbs distribution
have been addressed and a new operator in the framework of functional iteration
theory has been proposed. It shows the exponential distribution to be ubiquitous
in the framework of many multi-agent systems, not only economic ones but more
diverse ones which have some economic inspiration included.

4.2.1.2 Model with Uniform Saving

An additional concept of saving propensity was considered first by Chakraborti and
Chakrabarti [26] (CC model hereafter). Here, the agents save a fixed fraction λ of
their wealth when interacting with another agent. Thus, two agents with initial wealth
mi(t) and mj (t) at time t interact such that they end up with wealth mi(t + 1) and
mj (t + 1) given by

mi(t + 1) = λmi(t) + εij
[
(1 − λ)(mi(t) +mj (t))

]
,

mj (t + 1) = λmj (t) + (1 − εij )
[
(1 − λ)(mi(t) +mj (t))

]
; (4.4)

εij being a random fraction between 0 and 1, modelling the stochastic nature of the
trading. It is easy to see that theλ = 0 case is equivalent to the DY model—the market
is noninteracting in this case, and the most probable wealth per agent is 0 here. The
market is again noninteracting for λ = 1 when the most probable wealth per agent
is M/N . We have a so-called “interacting” market when λ has any nonvanishing
value between 0 and 1. The steady state distribution P (m) is exponentially decaying
on both sides. It is interesting to note that, the most probable value for such λ’s is
something in between 0 and M/N so that the fraction of deprived people decrease
with saving fraction λ and most people end up with some finite fraction of the average
wealth in the market. This is a “self-organizing” feature of the market. This results
in completely different types of wealth distribution curves, very well approximated
by Gamma distributions [34–36] given by,

P (m) = Cmα exp (−m/T ), (4.5)

where T = 1
α+1 and C = (α+1)α+1

Γ (α+1) . The exponent α is related to the saving propensity
λ by the relation :

α = 3λ

1 − λ
. (4.6)

The λ = 0 limit can be verified from the above results. This fits well to empirical data
for low and middle wealth regime [9–14, 19–22]. The model features are somewhat
similar toAngle’s work [37, 38]. Obviously, the CC model did not lead to the expected
behaviour according to Pareto law.
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In [39–41], the equivalence between kinetic wealth-exchange models and me-
chanical models of particles was shown and the universality of the underlying
dynamics was studied both through a variational approach based on the minimiza-
tion of the Boltzmann entropy and a microscopic analysis of the collision dynamics
of molecules in a gas. In case of systems with a homogeneous quadratic Hamilto-
nian and N (effective) degrees of freedom, the canonical equilibrium distribution
is a gamma distribution of order N/2. For the CC model, the effective dimension
N = 2(1+ α) = 2 1+2λ

1−λ
and therefore, the corresponding distribution has the special

property that it becomes a Dirac-δ or fair distribution when λ → 1 or N (λ) →∞.

4.2.1.3 Model with Distributed Savings

In a later model proposed by Chatterjee et al. [42, 43] (CCM model hereafter) it was
assumed that the saving propensity has a distribution and this immediately led to a
wealth distribution curve with a Pareto-like tail having ν = 1. Here,

mi(t + 1) = λimi(t) + εij
[
(1 − λi)mi(t) + (1 − λj )mj (t)

]
,

mj (t + 1) = λjmj (t) + (1 − εij )
[
(1 − λi)mi(t) + (1 − λj )mj (t)

]
; (4.7)

which are different from the CC model equations as λ’s are now agent dependent.
The steady state wealth distribution gave rise to a power law tail with exponent 2.
Various studies on the CCM model have been made soon after [44–55].

Manna et al. [56] used a preferential selection rule using a pair of continuously
tunable parameters upon traders with distributed saving propensities and was able
to mimic the trend of enhanced rates of trading of the rich. The wealth distribution
was found to follow Pareto law. It might be mentioned that in a similar context of
preferential selection rules in wealth exchange processes, Iglesias et al. [57, 58] had
considered much earlier a model for the economy, where the poorest in the society at
any stage takes the initiative to go for a trade (random wealth exchange) with anyone
else. Interestingly, in the steady state, one obtained a self-organized poverty line,
below which none could be found and above which, a standard exponential decay of
the distribution (Gibbs) was obtained.

4.2.1.4 Extended CCM Model

In the extended CCM model [59, 60], a trade takes place between two agents in such
a way that the investments of both agents are the same. For two agents i and j having
wealth mi and mj respectively, the “effective” saving propensities are λi = mi

mi+mj

and λj = mj

mi+mj
respectively, which are functions of time. It is observed that in

steady state, the wealth condenses to a single agent, a feature very similar to the
results obtained by Chakraborti [31]. By introducing taxation in the system not only
condensation can be avoided but at the same time the model tends towards reality.
The tax is applied for the agents who have wealth greater than the average wealth
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and this tax is collected periodically after a constant time interval. The total collected
tax is then redistributed over all the agents. It is found that the distribution of wealth
again has a power law tail with exponent 1.5.

4.2.2 Model with Phase Transition

In [61], the authors introduced the concept of “poverty line”, i.e. a threshold θ , in
the CCM model. A trade between two agents occurs as it is in the CCM model but
with the restriction that at least one of the two agents should possess wealth less than
θ . However, if all agents accumulate wealth greater than θ , then in such a situation
the dynamics stops. To continue the dynamics a perturbation is applied such that a
particle having energy above θ is selected randomly and its energy fully transferred
to any other particle. The maximum limit of the threshold value θ below which the
dynamics is stopped within some finite time, is the critical value of the threshold θc.
The order parameter O is defined as the average total number of agents having wealth
less than θ , i.e. O = ∫ θ

0 P (m)dm, where P (m) is the wealth distribution. After a
certain “relaxation time” τ , the system attains a steady state and several quantities
are measured. If the order parameter O is plotted against θ , it is observed that after
the point θ = θc = 0.6075 the order parameter increases. The model thus has a
“phase transition” near θc below which the number of particles in the steady state
goes to zero. Near the critical point, the order parameter obeys a scaling form as
O ∼ (θ − θc)β , where β = 0.97 is the order parameter exponent. Time variation of
the order parameter has the scaling form O(t) ∼ t δ with exponent δ = 0.93. Also a
clear time scale divergence behaviour is observed with scaling form τ ∼ |θ − θc|−z.

4.2.3 Nature of Transactions in Gas-Like Models
with Distributed Savings

The agent dynamics for models with saving propensity can be studied with emphasis
on the nature of transactions, i.e. whether it is a gain or a loss [62]. In order to
study the dynamics of the transactions (i.e. gain or loss), a walk was conceived for
the agents in an abstract one dimensional gain-loss space (GLS) where the agents
conventionally take a step towards right if a gain is made and left otherwise. Here the
amount of gain or loss was not considered, i.e. whatever be the amount of gain or loss,
the step length is only 1. If it is a gain, the corresponding walker moves one step to
the right and if it is a loss, walker moves one step to the left. For better understanding
this is shown in Fig. 4.2. It can be observed that in the CCM model, the amount of
wealth gained or lost by a tagged agent in a single interaction follows a distribution
which is not symmetric in general, well after equilibrium has been reached. The
distribution depends strongly on the saving propensity of the agent. For example, an
agent with larger λ suffers more losses of less denomination compared to an agent
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Fig. 4.2 Above : Plot of wealth M of an agent in different steps. Below : Plot of the distance
travelled x in the gain–loss space by the corresponding walker. Note that, whatever be the amount
of gain or loss, the step length of the walker is only 1

with smaller λ, although, in this case, the total wealth of the two agents has reached
equilibrium, i.e. each agent’s wealth fluctuates around a λ dependent value.

For such a walk, it can be found that 〈x〉, the distance travelled, scales linearly
with time t suggesting a ballistic nature of the walk for the CCM walk. Moreover,
the slope of the 〈x〉 versus t curves is dependent on λ; it is positive for small λ and
continuously goes to negative values for larger values of λ. The slope becomes zero
at a value of λ∗ � 0.469. In general for the CCM walk 〈x2〉 scales with t2 . For the
CC model on the other hand, 〈x2〉 scaled with t as in a random walk while 〈x〉 ≈ 0.
The above results naïvely suggests that the walk in the GLS is like a biased random
walk (BRW; except perhaps at λ∗) for the CCM model while it is like a random walk
(RW) for the CC model.
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4.2.4 Antipersistence Effect in CC/CCM Walk

In [63], the exact nature of the walk associated with CC and CCM model was explored
and it was shown through the effective bias p associated with the walks, distribution
of walk lengths at a stretch, etc. that CCM is not a simple BRW and CC is not a
simple RW.

For BRW, the probability of direction reversal is simply 2p(1 − p) which has a
maximum value of 1/2 for p = 1/2. But for CCM, the direction reversal probability
f is greater than 1/2 for all λ < 1 and f → 1/2 for λ → 1. Through further analysis
of time correlation and other relevant quantities it was shown that direction reversal
is preferred in these cases [63]. In the equivalent picture of the walk in the abstract
space for gains and losses, it is similar to the fact that here individuals has a tendency
to make a gain immediately after a loss and vice versa. This so called antipersistence
effect is in fact compatible with human psychology where one can afford to incur a
loss after a gain and will try to have a gain after suffering a loss.

It was also shown in [63] that the “antipersistence effect” is maximum for no
saving and decreases with saving. This is perhaps in tune with the human feeling of
security associated with the saving factor. In the CCM model, the saving propensity
is randomly distributed and the antipersistence effect occurs with a simultaneous bias
that too depends on λ.

4.2.5 Firm Dynamics

Size of a firm is measured by the strength of its workers. A firm grows when worker
leaves another firm and joins it. The rate at which a firm gains or loses workers
is called the “turnover rate” in economics literature. Thus, there is a redistribution
of workers and the corresponding dynamics can be studied. In the models of firm
dynamics, one assumes the following facts :

1. Any formal unemployment is avoided in the model. Thus, one does not have to
keep track of the mass of workers who are moving in and out of the employed
workers’ pool.

2. The workers are treated as a continuous variable.
3. The definition that size of a firm is just the mass of workers working in the firm,

is adopted.

In firm dynamics models, we may make an analogy with the previous subsections
that firms are agents and the number of workers in the firm is its wealth. Assuming
no migration, birth and death of workers, the economy thus remains conserved. As
the “turnover rate” dictates both the inflow and outflow of workers, we need another
parameter to describe only the outflow. That parameter may be termed as “retention
rate”, which describes the fraction of workers who decide to stay back in their firm.
This is identical to saving propensity in wealth exchange models, discussed earlier.
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4.2.5.1 Model with Constant Retention Rate

In this model [64, 65], the economy was considered to have N firms and any firm
could absorb any number of workers. Initially, all firms have one unit of workers.
The retention rate is denoted by λ. For this model, the retention rate of all firms are
taken to be identical, as was in [26], which in reality is not true. The size of the ith
firm was wi (i ≤ N ). At each time, it was considered that (1 − λ) fraction of the
workforce of n firms (not N !), wanted to leave voluntarily or the firms wanted them
to leave. The dynamics for the ith firm can be given as follows :

wi(t + 1) = λwi(t) + εi(t+1)(1 − λ)
n∑
j

wj (t), (4.8)

where εi(t+1) are random variables which describes the fraction of workers actually
moved to the ith firm at time t + 1 among those who wanted to move. Note that,
we use t within the first bracket when referring to the endogenous variables1 like
the size of the firm wi(t) and the same in subscript when referring to the exogenous
random variables2 εi(t).

Restrictions on ε

1.
∑n

j εj (t) = 1 for all t as the economy should be conserved.
2. Expectation E(εi) = 1/n for all i indicating that distributions of all εi’s are

identical.
3. If n = 2, εi ∼ [0, 1] so that at the lower limit of n, CC/CCM can be got back.

An exact solution was given in [64, 65] where it was assumed that all firms interact
at every step. The steady-state distribution of the firms was shown to be

f (w) = lim
k̄→∞

k̄∑
i=1

φi exp ( − φiw)
k̄∏

i=1,j =i

(
φj

φj − φi

), (4.9)

where φi = 1
λi (1−λ) .

4.2.5.2 Model with Distributed Retention Rate

Here instead of a fixed retention rate, we consider distributed λ, i.e. Eq. 4.8 can now
be written as

wi(t + 1) = λiwi(t) + εi(t+1)

n∑
j

(1 − λj )wj (t). (4.10)

1 A classification of a variable generated by a statistical model that is explained by the relationships
between functions within the model.
2 A variable whose value is determined outside the model in which it is used.
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The distribution of firm sizes can be shown to be a powerlaw, by calculations similar
to the one followed in [45].

4.2.5.3 Model with Time-Varying Retention Rate

In this model, the retention rate λ was taken to be a function of the evolving variable,
the work-force w [64, 65]. Thus Eq. 4.8 can be modified in the following way,

wi(t + 1) = λ(wi(t))wi(t) + εi(t+1)(1 − λ(wi(t)))
n∑
j

wj (t). (4.11)

Following [64, 65] the functional form of λ can be assumed as,

λ(w) = c1(1 − exp ( − c2w)); c1, c2 are constants, (4.12)

which signifies a more realistic scenario that retention rate increases as current work-
force increases. This model leads to prominent bimodality in the size distribution of
firms [64, 65]. This has been empirically found in the developing economies.

4.3 Kinetic Exchange Models in Sociology

Social systems offer some of the richest complex dynamical systems, which can be
studied using the standard tools of statistical physics. The study of Sociophysics
became popular in the last part of twentieth century [41, 66–68].

Auguste Comte used the term “social physics” in his 1842 work. He defined social
physics as the study of the laws of society or the science of civilization. In particular,
Comte (1856) stated that,

Now that the human mind has grasped celestial and terrestrial physics, mechanical and
chemical, organic physics, both vegetable and animal, there remains one science, to fill up the
series of sciences or observation—social physics. This is what men have now most need of...

Emergence of consensus is an important issue in sociophysics problems. Here, peo-
ple interact to select an option among different options of a subject which may be
vote, language, culture, opinion, etc. This then leads to a state of consensus. In opin-
ion formation, consensus is an “ordered Phase”, where most of the people have a
particular opinion. Several models can be proposed to mimic the dynamics of opin-
ion spreading. In the models of opinion dynamics, opinions are usually modelled
as discrete or continuous variables and are subject to either spontaneous changes or
changes due to binary interactions, global feedback, and external factors (see [66]
for a general review).
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However, in this chapter, only kinetic exchange models of opinion dynamics,
analogous to the ones in economics is discussed. These models are named after
Lallouache, Chakrabarti, Chakraborti, and Chakrabarti and are called LCCC model
hereafter. The opinions of individuals are assumed to be continuous variables in
[−1, 1] and change due to binary interactions. The tuning parameter in these models
is “conviction” λ, which is similar to the “saving propensity” as in KWEM. It deter-
mines the extent to which one remains biased to its own opinion, while interacting
with the other. Unlike KWEM, there is no stepwise opinion conservation.

4.3.1 LCCC Model

In this model [69, 70], opinion can be shared only in the two-body interaction mode.
At any time t a person i is assigned with an opinion value oi(t) ∈ [ − 1, 1]. For two
persons i and j , the interaction can be described in the following way :

oi(t + 1) = λ[oi(t) + εoj (t)],

oj (t + 1) = λ[oj (t) + ε′oi(t)], (4.13)

where ε and ε′ are uncorrelated random numbers between 0 and 1.
This type of interactions lead to a polarity or consensus formation depending

upon the value of λ. The steady state average opinion after a long time t would be
given by O =∑i |oi |/N . This represents the “ordering” in the system. The system
starts from a random disordered state (O ∼ 0) and after a certain relaxation time
t = τ moves to the “para” or “absorbing” state where all individual agents have zero
opinion for λ ≤ 2/3 or continuously changes to a “symmetry broken” or “active”
state where all individuals have opinion of same sign for λ ≥ 2/3. The variance of
O shows a cusp near λ = 2/3. The growth behaviour of the fraction of agents p

having extreme opinions oi = ±1 was found to be similar to O [71]. The relaxation
time behaviour of the system shows a critical divergence of τ , τ ∼ |λ − λc|−z for
both O and p at λ = λc = 2/3. Values of z for O and p are 1.0± 0.1 and 0.7± 0.1,
respectively.

Notably, this model with interactions has a behaviour very similar to the simple
iterative map,

y(t + 1) = λ(1 + εt )y(t), (4.14)

with y ≤ 1, where it was assumed that if y(t) ≥ 1, y(t) will be set equal to 1.
εt ∈ [0, 1] is a stochastic variable. In a mean-field approach Eq. 4.14 reduces to

y(t + 1) = λ(1 + 〈εt 〉)y(t), (4.15)

where 〈εt 〉 = 1/2. For λ ≤ 2/3 y(t) converges to 0. An analytical derivation for
the critical point was also given where it was found that λc = exp{−(2 ln 2 − 1)} ≈
0.6796.
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4.3.1.1 Generalized LCCC Model

In the generalized LCCC model [72], another parameter μ is introduced which is
called the “influence” parameter. It is a measure of the influencing power or the
ability of an individual to impose its opinion on some other individual. Thus the
interactions are described as follows,

oi(t + 1) = λioi(t) + εμjoj (t),

oj (t + 1) = λjoj (t) + ε′μioi(t). (4.16)

Note that here conviction and influence parameters of individual agents are different
which lead to inhomogeneity in the society. In a simpler version, we may consider
a homogeneous society so that all λ’s of different people are same. Also μ’s for
different people are same.

In this generalized version, the average opinion shows spontaneous symmetry
breaking in the λ−μ plane. In the steady state the condition for nonzero solution of
O is

(1 − λ)2 = 〈εε′〉μ2, (4.17)

which gives that “active” and “absorbing” phases, separated by a phase boundary
given by λ = 1 − μ/2.

4.3.1.2 Other Variants of the LCCC Model

Biswas et al. [71] studied some variants of the models discussed above. In one
version, it was considered that when an individual i meets another individual j , she
retains her own opinion proportional to her conviction parameter and picks up a
random fraction of j ’s opinion. Thus the interaction in equation form would now be,

oi(t + 1) = λoi(t) + εoj (t),

oj (t + 1) = λoj (t) + ε′oi(t). (4.18)

For λ < λc, for all agents oi = 0 giving O = 0. For λ > λc, O > 0 and O → 1
as λ → 1. Numerical value of λc = 1/2. Mean field estimate gives for the stable
value of O

O(1 − λ− 〈ε〉) = 0. (4.19)

Thus λc = 1/2.
Another variant of the LCCC model was studied [71] with a slight modification to

the original model that here a person in addition to being influenced by the interacting
person’s opinion, was influenced by the average opinion of the community. Thus,
the interaction equations read,

oi(t + 1) = λ[oi(t) + εoj (t)] + ε′O(t),
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oj (t + 1) = λ[oj (t) + ηoi(t)] + η′O(t). (4.20)

The symmetric phase occurs for λ ≤ 1/3 and symmetry-broken phase is obtained
for λ > 1/3.

By a mean-field approach as O reached a steady state value,

O = λ(1 + 〈ε〉)O + 〈ε′〉O, (4.21)

we have λc = 1/3. In all these models, the critical exponents associated with the
physics of phase transitions were all estimated.

4.3.1.3 Discrete LCCC Model

In the discrete version of LCCC model one considers that opinions can take only
discrete values, i.e. oi can take only three values [oi ∈ {−1, 0,+1}]. This particular
version of the LCCC model was exactly solved [73], which also showed an “active-
absorbing phase transition” as was seen in the continuous version [69, 70]. Apart
from the two-agent or binary interaction, the three-agent interaction were also taken
into account. While the phase diagram of the two-agent interaction led to a continuous
transition line, the three-agent interaction showed a discontinuous transition [73].

4.3.1.4 Disorder Induced Phase Transition in Kinetic Exchange Models
of Opinion Formation

In this model of continuous opinion dynamics, both positive and negative mutual
interactions were studied [74]. The interaction equations are as follows :

oi(t + 1) = oi(t) + μijoj (t),

oj (t + 1) = oj (t) + μijoi(t), (4.22)

where μij are randomly chosen to be either +1 or −1. Negative interactions are
included here with probabilityp, the role of which is like a disordering field, similar to
temperature in thermally driven phase transitions. Beyond a particular value p = pc

a phase transition from an ordered phase to a disordered phase occurs. Results from
exact calculation of a discrete version also shows the phase transition at pc.

4.3.1.5 LCCC Model with Bounded Confidence

In this restricted LCCC model [75], two agents interact according to Eq. 4.13 only
when |oi − oj | ≤ 2δ, where the parameter δ ∈ [0, 1] represents the “confidence”
level. There are two extreme limits corresponding to this model:

1. δ = 1 which brings it back to the original model (LCCC model).
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obtained approximately only from the behaviour of the order parameter. Taken from [75]

2. δ = 0 which is the case when two agents interact only when their opinions are
exactly same.

Three different states were defined to identify the status of the system.

• Neutral State : When oi = 0 for all i, the state is called neutral state.
• Disordered State : oi = 0 for all i, but O ∼ 0, the state is called disordered state.
• Ordered State : when O = 0 corresponding state is called an ordered state.

The three states are located in the δ−λ plane. The ordered and disordered regions in
the plane are separated by a first order boundary (continuous line in red) for δ ≥ 0.3
(obtained using a finite size scaling analysis). For δ < 0.3, the phase boundary
(broken line in blue) has been obtained approximately only from the behaviour of
the order parameter (Fig. 4.3).

4.3.1.6 Percolation in LCCC Model

The opinion spreading among people in a society may be compared to the percolation
problem in physics. The agents are assumed to be placed on the sites of a square
lattice and follow the LCCC dynamics [76]. A geometrical cluster consisting of the
adjacent sites having opinion value more than or equal to a predefined threshold value
Ω . At steady state, the percolation order parameter is measured. At a particular value
of λ = λ

p
c , the system undergoes a percolation transition. As Ω decreases, λp

c also
and approaches λc as Ω → 0. The critical exponents are independent of Ω as well
as λ and μ. The critical exponents are significantly different from those obtained for
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static and dynamic Ising system and standard percolation. The exponents suggest that
this LCCC model has a separate universality class from the viewpoint of percolation
transition.

4.3.1.7 Damage Spreading in Model of Opinion Dynamics

The damage spreading phenomena was studied in the opinion dynamics model
proposed in [74] in two ways,

• Traditional method (TM) : In this method, two systems of N individuals are
simulated using the same initial random opinions either discrete or continuous,
except for one randomly chosen individual. The two systems are then allowed to
evolve using same random numbers.

• Nature versus nurture method (NVN) : In this (NVN) method, the initial systems
are identical but different random numbers are used for the time evolution.

In both cases, a damage spreading transition occurs at pd where pd ≈ 0.18 for
TM and pd = 0 for NVN [77]. Here it is found that pd < pc, the order–disorder
transition point. The result signifies that for TM, for pd < p < pc , even when
consensus is reached, if we make very small changes even in a single agent, there
is always a finite probability that the system leads to a different consensus state. In
NVN, pd = 0 signifies that if the same agent goes through a different sequence of
interactions, the result will be different for any p with finite probability. However,
the dynamics of the damage shows a nonmonotonicity making it difficult to comment
on the exact nature of damage or to estimate the exponents related to it.

4.4 Summary and Discussions

We briefly described here, the kinetic exchange models for economics and sociology
and some applications derived from these models. Taking inspiration from kinetic
theory of gas molecules, a purely statistical system, these kind of models give an
idea of how completely different systems might lead to similar or emergent collective
behaviour, as they have some similar connections in the microscopic units. How-
ever, due to such “micro-oriented” framework one overlooks the system-wide effects
which can be very important for a real economy and society. However, one should
bear in mind that whatever we discussed here in this chapter, is to a large extent
idealistic. A real economy is much more complex than any or all of these models. In
case of a real economy, minute changes in the characteristics of the agents or firms,
or simply the addition or deletion of a link of the socioeconomic network, can alter
the emergent behaviour to a great extent. Models originating from simple multiagent
models such as the ones described here, should be extended to incorporate such fea-
tures and emergent behaviours, which might help one to understand many real-life
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economic phenomena or even the financial crisis, such as the one observed during
2007 − 2008.

It should also be borne in mind that besides being models of idealized economy
or society, these simple models have a very nice mathematical or statistical appeal.
Mathematicians, physicists, and economists, have tried to play around with these
models (or their variants) and studied the associated nonlinear dynamics, steady-
state behaviours, and related questions. Apenko [78] used a different approach and
proved the monotonic entropy growth for a nonlinear discrete-time model of a random
market, based on binary collisions, which may be also viewed as a particular case
of the Ulam’s redistribution of energy problem. In that study, a single step of the
nonlinear evolution was treated as a combination of two steps, first one is related to
an auxiliary linear two-particle process and second one is a kind of a coarse-graining.
It was shown that on both steps the entropy increases. Therefore he concluded that
the entropy is indeed monotonically increasing for the original nonlinear problem.
A similar entropy approach was followed in [79], where they considered different
versions of a continuous economic model, which takes into account some idealistic
characteristics of the markets and agents randomly exchange in pairs, and their
functional mappings. They showed that the system had a fixed point which can be
reached asymptotically following a trajectory of monotonically increasing entropy
which takes its maximum value on the equilibrium. In this manner, the existence of
an H-theorem could be computationally checked.

Acknowledgement The authors would like to thank all their collaborators and students, whose
works have been presented here.

References

1. Mandl, F.: Statistical Physics, 2nd edn. Wiley, New York (2002)
2. ter Haar, D.: Elements of Statistical Mechanics. Butterworth-Heinemann, Oxford (1995)
3. Sethna, J.P.: Statistical Mechanics. Oxford University Press, Oxford (2006)
4. Sinha, S., Chatterjee, A., Chakraborti, A., Chakrabarti, B.K.: Econophysics: An Introduction.

Wiley-VCH, Berlin (2010)
5. Sen, P., Chakrabarti, B.K.: Sociophysics : An Introduction. Oxford University Press, Oxford

(2013)
6. Ball, P.: Physica. A 314, 1 (2002)
7. Chakrabarti, B.K., Chakraborti,A., Chakravarty, S.R., Chatterjee,A.: Econophysics of Income

and Wealth Distributions. Cambridge University Press, Cambridge (2013)
8. Pareto, V.: Cours d’economie Politique. F. Rouge, Lausanne (1897)
9. Souma, W.: Growth and fluctuations of personal income. Fractals. 9, 463 (2001)

10. Di Matteo, T., Aste, T., Hyde, S.T.: In: Mallamace, F., Stanley, H.E. (eds.) The Physics of
Complex Systems (New Advances and Perspectives), p. 435. IOS Press, Amsterdam (2004)

11. Clementi, F., Gallegati, M.: Power law tails in the Italian personal income distribution. Physica.
A 350, 427 (2005)

12. Sinha, S.: Evidence for power-law tail of the wealth distribution in India. Physica. A 359, 555
(2006)

13. Silva, A.C.,Yakovenko, V.M.: Temporal evolution of the “thermal” and “superthermal” income
classes in the USA during 1983–2001. Europhys. Letts. 69, 304 (2005)



86 S. Goswami and A. Chakraborti
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Chapter 5
Nonlinear Maps: From the Toulouse Colloqium
(1973) to NOMA’13

Christian Mira

Abstract From the 1962s, a group of researchers located in Toulouse (France)
devoted a large part of its activity to the qualitative methods of nonlinear dynamics,
in this framework specially to nonlinear maps. In 1973, the group organized the first
international conference dedicated to nonlinear maps and their applications. The
purpose of this chapter is to present the original contribution of this research group
during about 40 years. Taking into account their particular interest, results on the
fractal bifurcations structure called box-within-the-box (1975) are here given in a
more developed form.

5.1 Introduction

From the 1962s, at times when the results on the nonlinear maps dynamics were vir-
tually unknown outside the Soviet Union, a group of researchers located in Toulouse
(France) devoted a large part of its activity to the qualitative methods of this topic.
In 1973, the Toulouse group organized the first international conference dedicated to
nonlinear maps and their applications [1, 2]. The group founded its work on results of
the French school of iteration theory, and those of teams of the former USSR, which
occupied the first rank in the nonlinear field, their contribution remaining unfamiliar
in Western countries until the 1980s. These USSR teams developed the Birkhoff and
Poincaré [3, 4] results, so giving rise to the qualitative theory of dynamical systems,
which developed at the same time as the analytical methods of nonlinear differential
equations.

With papers firstly published in French, some of the Toulouse group results were
rediscovered afterward, and are now known differently. This situation led Prof. Ralf
Abraham to ask the writing of Chap. 8 (I. Gumowski and a Toulouse research group
in the “prehistoric” times of chaotic dynamics) of the book [5] dealing with the early
days of chaos theory.
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The purpose of this chapter is to present the original contribution of the Toulouse
group. Taking into account their importance, results on the fractal bifurcations struc-
ture called box-within-the-box (1975) are given in a more developed form with respect
to the other topics of this text.

5.2 The International Colloquium Points Mappings
and Applications (Toulouse 1973)

Exactly 40 years prior to the NOMAD’13 workshop Nonlinear maps, and their
applications (Zaragoza, Spain, Sept. 3–4, 2013), in Sept. 1973 an international
colloquium held on the same topic, equivalently entitled Points Mappings and Ap-
plications (French title Transformations Ponctuelles et leurs Applications) [1], in the
framework of the Laboratoire d’Automatique et d’Analyse des Systèmes (LAAS) of
Toulouse. According to the mathematical field, and authors, map, point mapping,
recurrence relationship, iteration, correspond to the same discrete model, so the title
of each of the two conferences is the same. Eleven papers were devoted to stochastic
behaviors (i.e., chaotic, at that time the name did not exist), in the midst of the 33
ones presented.

Prof. Lagasse, director of the LAAS, was the colloquium’s chairman. Igor Gu-
mowski led the scientific committee. As a vice-chairman, I devoted the introductory
presentation of the colloquium to a short history of nonlinear dynamics (cf. [2],
pp. 19–27). It is in this framework that I announced an exhibition of stochastic
(i.e., chaotic) images, quoting the Birkhoff’s papers dealing with the laws of aes-
thetic (vol. 3 of [3], pp. 320–364), and a Poincaré’s text extracted from a Notice
sur Halphen (Journal de l’Ecole Polytechnique, 60, 137–161, 1890), also cf. [4]. In
this text Poincaré deals with the aesthetic emotion which can be communicated by
mathematics in the following terms:

Le savant digne de ce nom, le géomètre surtout, éprouve en face de son œuvre la même
impression que l’artiste; sa jouissance est aussi grande et de même nature. Si je n’écrivais
pour un public amoureux de la Science, je n’oserais pas m’exprimer ainsi; je redouterais
l’incrédulité des profanes. Mais ici, je puis dire toute ma pensée. Si nous travaillons, c’est
moins pour obtenir ces résultats positifs auxquels le vulgaire nous croit uniquement attachés,
que pour ressentir cette émotion esthétique et la communiquer à ceux qui sont capables de
l’éprouver.

I took the liberty of saying that exhibited images had begun to manifest such an
emotion in a form opened not only to specialists as Poincaré said, but also to a
general public (cf. [2], p. 27), this due to the new possibilities offered by numerical
simulations. A part of these images can be shown in Chap. 8 (I. Gumowski and a
Toulouse research group in the “prehistoric” times of chaotic dynamics) of [5].

As far as I know, the Toulouse colloquium was the first to deal specifically with
nonlinear maps and their applications. It also gave the opportunity to present a
series of original results obtained by the LAAS group, which devoted its activity in
the nonlinear dynamics field, this at a time when this research type was relatively
uncommon in Western countries. Under the professor Targonski’s leadership, then
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this colloquium has given rise to a series of regular meetings with a modified title
European Conferences on Iteration Theory (the last one was held in Ponta Delgada,
São Miguel Island, Azores, Sept. 2012). It also appears that another originality of the
colloquium was the exhibition of chaotic images, generated by solutions of nonlinear
maps. The same exhibition, entitled Morphogénèse et Mathématiques, was organized
by Marcel Barthes, Director of the Alliance Française Rio de Janeiro-Centre in the
Centre Culturel de la Maison de France, from May 8 to 30, 1975.

5.3 Researches on Nonlinear Maps and Applications in Toulouse
(1958–1973)

The organization of the colloquium Points Mappings and Applications was possible
from the experience of a research group, which dedicated its work to the study of
nonlinear maps and their applications. Indeed the first researches in the nonlinear
dynamics field were beginning in Toulouse from the 1958s, and for nonlinear maps
from 1962. This period was characterized by a close collaboration with Gumowski
(Université Laval Québec) who stayed 2 years in Toulouse as a visiting professor.
At that time, via his excellent knowledge of the Russian language, and other Slavic
languages, he was the Western scientist having the largest and the most profound
information, and understanding on the results of the schools on nonlinear dynamics
(qualitative and analytical methods) in the former Soviet Union [6–8]. So I had
access from 1958 to exceptionally wide information, rather unknown in Western
countries at that time. This unawareness occurred in spite of a text due to J.P. La
Salle and S. Lefschetz (J. of Math. Anal. and Appl., 2, pp. 467–499, 1961), who
wrote in 1961:

In USSR the study of differential equations has profound roots, and in this subject the USSR
occupies incontestably the first place. One may also say that Soviet specialists, far from
working in vacuum, are in intimate contact with applied mathematicians and front rank
engineers. This has brought great benefits to the USSR and it is safe to say that USSR has
no desire to relinquish these advantages.

It is essentially on the basis of such an information, joined to the Poincaré’s results,
and those of the French school of iteration theory (Grévy, Koenigs, Leau, Lémeray,
Hadamard, Lattès, Julia, Fatou, Montel) that researches in Toulouse were led. This
French school was the most active one in this field from the nineteenth century end
to around 1930. The Toulouse group operated under different names depending upon
the administrative place of its activity: Groupe Théorie et Simulation in Laboratoire
de Génie Electrique of ENSEEHT, and afterward with the same name in Labora-
toire d’Automatique et Applications Spatiales (CNRS) Toulouse, Groupe Systèmes
Dynamiques Non Linéaires in “Faculté des Sciences of Université Paul Sabatier of
Toulouse”, Groupe d’Études des Systèmes Non Linéaires et Applications” in Labo-
ratoire d’Études des Systèmes Informatiques et Automatiques of “Institut National
des Sciences Appliquées de Toulouse”. For simplicity sake we shall always speak
in this text of the Toulouse Group, the responsibility and the theses orientation of
which I had until 1997.
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My first meeting with Gumowski in 1958 was followed by a long and friendly
collaboration, source of fruitful results based on the qualitative methods [6], which
achieved their highest level of evolution in the framework of the Andronov’ School
(in Gorki, now Nijnynovgorod) [8], and the analytical methods [6] related to nonlin-
ear dynamical systems. For ODE, analytical methods (Poincaré’s small parameter
method, and asymptotic methods developed by Krylov, Bogoliubov, Mitropolski in
Kiev) quickly attain limits (case of complex dynamics, especially chaotic dynam-
ics), which restrict their use to some limited local behaviors. In the case of discrete
dynamics (models in the form of maps, recurrence relationships), the limits are more
quickly attained. It is the reason why the basic tools, at the origin of the Toulouse
group results, have been essentially those of the qualitative methods. Published in
French until 1980, a part of essential results were rediscovered afterward, as this will
appear below. The pioneering role of this group is presented in Chap. 8 (I. Gumowski
and a Toulouse research group in the “prehistoric” times of chaotic dynamics) of
the book [5], and in the paper Writing the History of Dynamical Systems and Chaos:
Longue Durée and Revolution, Disciplines and Cultures (cf. [9] § 1.2, 1.3, 1.8, 3.3,
and 4.1) devoted to the history of dynamical systems (authors D. Aubin and A. Dahan
Dalmedico).

5.4 Original Results Obtained by the Toulouse Group

5.4.1 Two-Dimensional Noninvertible Maps—Basin Boundaries
(1963–1975)

In 1963, the results on nonlinear maps were in an underdeveloped state with respect
to those related to ordinary differential equations. The first basic references of the
Toulouse group were those of the French school of iteration theory, more precisely
those of Grévy, Koenigs, Leau, Lémeray, Hadamard, Lattès [10], for the local behav-
ior in a neighborhood of a stationary state (fixed point, or cycle, or other type), and
those of Julia and Fatou for a global behavior (basin boundary of a stable stationary
state).

The Julia and Fatou’s papers are related to one-dimensional maps z′ = f (z)
with a complex variable z [11, 12], i.e., to the restricted class of two-dimensional
noninvertible maps with real variables defined by two functions satisfying the
Cauchy–Riemann conditions. In spite of this limitation, Julia and Fatou results of-
fered a starting point for studies of basin boundaries generated by more general
two-dimensional noninvertible maps with real variables. In 1963, I consulted Julia
about the existence of eventual results on basin boundaries, when they are gener-
ated by two-dimensional real maps not satisfying the particular Cauchy–Riemann
conditions. He said that such an extension did not exist, adding that cases which do
not satisfy the Cauchy–Riemann conditions might present high difficulties associ-
ated with a lot of possible different qualitative situations. Such difficulties emerged
gradually and laboriously long afterward in the Toulouse group researches, from
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studies of well chosen examples showing a lot of new properties. These obstacles
were progressively overcome. An idea of the richness of possibilities, mentioned by
Julia, is given in Chap. 5 of the book (1996) [13].

The beginning of studies on basin boundaries, generated by two-dimensional
real noninvertible maps, consisted in collecting many very simple generic examples
illustrating different qualitative situations generated by either quadratic or cubic
maps, and also by continuous piecewise linear maps. A first basic tool was obtained
with the generalization of the notion of critical point generated by one-dimensional
noninvertible maps: the critical curve for two-dimensional noninvertible maps, the
critical set for higher dimensions. It seems that this extension, defined as locus of
points having two merging rank-one preimages (inverses), was firstly introduced by
the Toulouse Group (1964) [14]. Such a set separates regions, the points of which
have a different number of preimages (cf. Chap. 3 of the more recent book [13]
for more details). Such a non classical singularity plays a fundamental role in the
structure of attractors and basins, ditto for their bifurcations. It is the case of contact
bifurcations, resulting from the meeting of two singularities of different nature: an
invariant manifold of a saddle fixed point with the critical set. This situation generally
gives rise to global bifurcations, which may be related to homoclinic and heteroclinic
bifurcations (cf. p. 605, index of the book [13], for sections dealing with these topics).

A second tool was given by the determination of the stable (resp. unstable) man-
ifold of a saddle fixed point, or cycle, from the series expansions defined by Lattès
[15]. This permits to obtain a “germ,” the iterates (resp. inverse iterates) of which
lead to get the unstable (resp. stable) manifold of a saddle. The references of the
books [16] (1980), and [13] (1996), give the list of publications made at that time
about the properties of some basin boundaries.

Following this way, step-by-step, after understanding of many “generic” exam-
ples of two-dimensional real maps not satisfying the Cauchy–Riemann conditions,
quickly three basic types of basins, with possible properties of self-similarity; ap-
peared: simply connected basin, nonconnected basin, multiply connected basin.
From 1964 to 1999 many results were obtained for noninvertible maps of the plane,
on the basis of the first ones obtained in the years 1965– 1972. New properties were
identified. They are related to the following global bifurcations:

• Simply connected basin←→nonconnected basin without basin self-similarity (at
that time the word fractal had not been introduced [17], also cf. [13], pp. 243–244,
[18, 19]). An application to a sampled data control system, the non linearity being
piecewise linear, made up of five segments, is given in [17].

• Simply connected basin←→nonconnected basin with basin self-similarity (1969)
[20] (also [13], pp. 243–247). This is the first example of bifurcation leading to a
fractal basin generated by a noninvertible plane map.

• Simply connected basin←→multiply-connected basin (1973; cf. [21], § 2.1), with
or without self-similarity properties.

Another type of nonclassical global bifurcation occurs by crossing through the sit-
uation of a whole singular curve made up of fixed points, or period-k cycle points,
described in [22] (1966), [19] (1969). More details about this global bifurcation
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(which seems remained quasi unknown even now) are given in pp. 399–406, 437–442
of the more recent book [13] (1996).

Chapter 5 of the book [13] collects the results on basin structures, identified since
1969. So, with many references, this document gives a larger view about basin
bifurcations, and related “mechanisms” of basin fractalization. Moreover, the article
Noninvertible maps (2007), published on the Website Scholarpedia (Mira C., 2 (9):
2328) gives a general presentation of the matter, associated with references and with
illustrative examples of basin evolutions described in its First Subpage.

5.4.2 Two-Dimensional Conservative, and Almost Conservative,
Maps (1970–1976)

From 1966 to 1976, Gumowski occupied a position of Senior Physicist in the Eu-
ropean Organization for Nuclear Research in Geneva. In this framework he had
particularly to study the problem of stochastic instability in accelerators and storage
rings. Such instabilities appear to increase with the amount of nonlinearity. Here
stochastic, adjective also used in the Geneva research center, has been called chaotic
from 1975. The new Gumowski’s position led to a collaboration with the Toulouse
group on a new topic: two-dimensional conservative (or Hamiltonian) maps, and
almost conservative maps [23–28]. Considering the results obtained in the frame-
work of this collaboration, it must be noted that the Gumowski’s part was the most
important.

The nonlinear terms, considered in such studies, were either quadratic, or cubic,
or exponential, or trigonometric, and also of unbounded, bounded type, symmetrical
and asymmetrical [29]. The corresponding results are the object of Chaps. 3 (conser-
vative maps) and 4 (almost conservative maps) of the book [30], and Chap. 5 of the
book [16]. An abbreviated presentation of the results is given in Chap. 8 of [5]. As
far as I know these results, with the considered particular nonlinear characteristics,
were new at the time of their publications. Their application was made to two models
of the longitudinal motion of particles in an accelerator.

5.4.3 Chaotic Attractors of Two-Dimensional Noninvertible
Maps (1968–1975)

The first publication of the Toulouse group, on what has been called afterward chaotic
attractor, or strange attractor, was made in the Proceedings of the International
Pulse Symposium (Budapest 1968) [18], with an attractor generated by a piecewise
linear two-dimensional noninvertible map. This example was also presented in a
paper of the journal Automatica (1969) [19], and with more details, indicating the
role of critical curves and bifurcations, in the Proceedings of the colloquium Point
Mapping and Applications (Toulouse, Sept. 10–14, 1973) [21], which gave other
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examples of attractors. The piecewise linear map gives rise to a period two area,
without stable cycle, denoted attractive limit set in [18], stochastic area in [21] (zones
stochastiques attractives in this text published in French). The use of such terms
illustrates the level of uncertainty about new complex dynamical behaviors called
chaotic afterward. More details are given in pp. 205–212, 463–467 of the 1996 book
[13]. The Toulouse group also used the expression Pulkin’s phenomenon associated
with such behaviors. This designation was inspired from a Russian paper published
in 1950 [31], showing that in an one-dimensional noninvertible map infinitely many
unstable cycles and increasing classes of their limit points may lead to bounded
complex iterated sequences.

More details on the different types of attractors generated by noninvertible maps
are given with references in Chap. 4 (1996 book [13], pp. 185–337).

Another type of attractors, called stochastic in the framework of the colloquium
Point Mapping and Applications [1], is the one generated by maps resulting from
a perturbation of conservatives cases. Such attractors, with “conservative images,”
were the object of the exhibition of aesthetical images. Some of them can be seen in
§ 9 of Chap. 8 of the book [5].

5.4.4 Normal Forms and Resonant Bifurcations (1969–1974)

Consider a two-dimensional nonlinear map. When a fixed point (or a cycle) has the
modulus of one of its two multipliers (or eigen values) equal to unity, this situation
leads to a critical case in the Ljapunov’sense (notion extended from the ODE case).
This means that it is impossible to define the fixed point nature (node, saddle, and
focus) and its stability, from the linear approximation related to this point. In a neigh-
borhood of the point, however small it may be, the phase portrait depends on nonlinear
terms. The more interesting cases are those related to multipliers (eigen values)
S1,2 = e±jϕ . From a parameter variation, the bifurcation by crossing through such a
critical case may give rise to an invariant closed curve, very often wrongly called Hopf
bifurcation. This appellation is even more surprising as historically it does not relate
maps but ODE with the birth of a limit cycle described by Poincaré , and incorrectly
attributed to Hopf (1942). This illustrates the confusion of quotations in Western
countries until the 1980s. In the case of maps, since 1967 the Toulouse group has
always called Neïmark’s bifurcation, this qualitative change leading in the simplest
situation to the birth of a closed invariant curve. Indeed the first contribution is due to
Neïmark, in the particular case giving rise to only one invariant closed curve (1959)
[32], ϕ being not commensurable with 2π . Moreover, the crossing through critical
situations with angles ϕ = 2π/3, ϕ = 2π/4, was also considered by this author.
Since, some 20 years this bifurcation is also known as Neïmark-Saker bifurcation,
but the Saker’s result (1964) is subsequent to the basic one due to Neïmark.

The Neïmark’s results [32–35] furnished the basic first information for the
Toulouse group studies. A generalization of these results, in a neighborhood of a
fixed point, leads to normal forms by using a variant of the Cigala’s method. This



96 C. Mira

method was described in [36] at the beginning of the twentieth century, in order to
solve the particular problem of stability in two-dimensional conservative diffeomor-
phisms. Extended to dissipative two-dimensional maps having a sufficiently high
degree of smoothness [37–43], the reduction to a normal form consists in identifying
and isolating the dominating terms of the nonlinear parts. This objective is achieved
by means of a sequence of nonlinear transformations of almost-identity type, which
successively remove the non dominating terms.

The critical case S1,2 = e±jϕ leads to two essentially different situations. The
most complex one, called exceptional critical case, occurs when the angle ϕ is com-
mensurable with 2π , ϕ = 2kπ/q (k and q being integers). After a certain number
of applications of Cigala’s transformations, it leads to a problem of denominators
which cancel, and small denominators near this angle value. Then at this level the
normal form is obtained, because it is impossible to continue the process of succes-
sive transformations. The exceptional cases lead to new singular points of different
types described in [37–39] (1969, 1970). Among them those defined locally by 2q
asymptotes (complex saddle) are associated with resonant cases. The second situa-
tion, called nonexceptional case, is related to the angle ϕ, either incommensurable
with 2π or if it is commensurable with 2π it does not lead to a problem of small de-
nominators. Such results were directly applied to resonant Hamiltonian bifurcations
generated by area-preserving maps (cf. the book [30], ϕ = 2π/3 pp. 134–136, ϕ =
2π/4 pp. 137–140). The case of a four-dimensional map, leading to two multipliers
with angles ϕ1 and ϕ2, was dealt in [43]. It gives rise to eight basic situations of
exceptional cases (also cf. [16] pp. 205–211).

In nonexceptional cases the Cigala’s method permitted to extend the Neïmark’s
results to bifurcations by crossing through the situation of a complex focus of multi-
plicity m, m > 1, when S1,2 = e±jϕ . This bifurcation may give rise to s, 0 ≤ s ≤ m,
invariant closed curves. In exceptional cases the method permitted to extend the Neï-
mark’s results for ϕ = 2kπ/q with q = 3 and q = 4. Such studies of exceptional and
nonexceptional cases were followed by their equivalent related to a four-dimensional
map, a fixed point having two pairs of complex multipliers.

The maps family defined by a plane conservative linear part with a fixed point of
center type (S1,2 = e±jϕ), the nonlinear terms having a small parameter α as coeffi-
cient, generates very interesting properties associated with resonant phenomena. This
family was studied by the Toulouse group with results presented in the framework of
the colloquium Points mapping and Applications [45] (1973), and also in an extended
form pp. 260–270 of [16] (in French), and in pp. 251–279 of [44] (in English).

Other results about critical cases were obtained in Toulouse when the two mul-
tipliers S1,2 of a fixed point are simultaneously equal, either to +1 or −1 in two
situations: (a) the linear approximation matrix is reducible to a diagonal form, (b) it
is not reducible to a diagonal form. The case (c) with S1 = +1, S2 = −1, was also
considered. Then, it was possible to identify the bifurcations by crossing through
such critical values (cf. pp. 181–222 of [16] (in French, 1980), and in pp. 207–279
of the book [44] (in English)).

These results on normal forms have been quoted in p. 184 of the Holmes and
Williams paper [46].
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5.5 Box-Within-a-Box Bifurcations Structure of Dim 1
Noninvertible Maps

From 1967, I had a regular correspondence with Sharkovskij. Shortly, after the
publication of his famous paper Coexistence of cycles of a continuous mapping of
the line into itself (in Russian) [47] (1964), given the cycles ordering related to their
period k, this author sent me this text, with other papers in Russian and Ukrainian.
At that time his outstanding theorem, which includes as a particular case the T.Y.
Li and A.J. York result Period three implies chaos [48] (1975), was not known in
Western countries. Considering the particular case of a smooth unimodal map, the
Sharkovskij’s paper [47] was at the origin of a thought about a possible refining
of his general ordering of cycles. Indeed, the number of cycles having the same
period k, generated by a smooth unimodal map, increases quickly with k. These
cycles having the same period differ from each other in different permutations of
their points by k successive iterations. So each period k-cycle can be identified by a
symbolism (k; j ), j being an index related to this permutation. In 1963, Myrberg [49]
made this characterization for the quadratic map, and called spectrum the parameter
interval of bifurcations by period doubling with its limit value when the period
tends toward infinity. In the Myrberg’ sense a spectrum is the infinite sequence
of bifurcations by period doubling related to a basic cycle (k; j ) created from a
fold bifurcation (multiplier, or eigen value, S = +1). Now this interval is known
as Feigenbaum cascade, result published (1978) 15 years after the Myrberg one.
Theses considerations led to the identification of the box-within-the-box bifurcation
structure (structure boîtes-emboîtées in French).

First identified with a well-defined symbolism (cf. below) in Toulouse, and pub-
lished from 1975, this bifurcation structure is common in nonlinear maps dynamics.
It has been qualified under different names, generally without a real understanding,
in particular from numerical simulations in a lot of papers. With respect to other
sections of this text, this is why more details are given lower down.

5.5.1 Toward the Identification of the Fractal Bifurcations
Organization

The bases of the results obtained in Toulouse were:

• The Pulkin’s paper [31], published in 1950: This publication deals with one-
dimensional maps generating infinitely many unstable cycles, giving rise to what
he named completely invariant sets. Such sets are related to the existence of limit
sets of different classes. So infinitely many limit points of the unstable cycles set,
when their period tends toward infinity, lead to class 1 limit sets. The limit sets
of class 1 generate limit points of class 2, and so on until limit points of class ∞.
Increasing rank classes of limit points leads to what was called 25 years afterward
fractal structure.
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• The Myrberg [49] and Sharkovskji [47] results: From 1972, step-by-step, they
gave the reference points, which permitted to identify the global fractal bifur-
cation organization generated by smooth maps defined by a function with only
one extremum. This organization was called box-within-the-box bifurcation struc-
ture (structure boîtes-emboîtées in French) [ 50, 51] by the Toulouse group, and
embedded boxes by Guckheimer when he quoted these results [52].

From the Pulkin’s results, the Sharkovskij’s cycles ordering compared with the
Myrberg’s one was the germinal point to study the global bifurcations organiza-
tion generated by a unimodal map. Indeed the Sharkovskij’s ordering is general in
the sense that it concerns general forms of continuous of one-dimensional maps with
any extremums, but cannot discern between the cycles having the same period k, the
number of which drastically increases with the period growth (cf. [44] p. 96). For
example, in the case of unimodal maps (i.e., with only one extremum) the number
of cycles of period k = 30 is Nk = 35, 790, 267, and the number of bifurcation
values generating them is Nλ(k) = 17, 895, 679. Considering these basic results as
a starting point, to go further in the study of unimodal maps, the adopted guide line
was to introduce the set of critical points of rank r = 1, 2, 3, ...., (i.e., the increasing
sequence of images of the map extremum). Such a set is made up of nonclassical sin-
gularities introduced by the map noninvertibility. This leads to identify nonclassical
bifurcations corresponding to the merging of two singular points of different nature:
a critical point and an unstable cycle. Then the fractal organization of bifurcations
is known from an identification of these nonclassical bifurcations. This permitted a
new classification of the Myrberg’ spectra, through the fractal box-within-the-box
bifurcation structure (or embedded boxes). As indicated above, at that time the word
fractal did not exist, the Toulouse group used like a Von Koch curve, or the descrip-
tive sentence the whole is similar to the parts even if they are infinitesimal, “image”
of self similarity properties. This sentence was due to the French mathematician
Paul Levy (1928), who after 1938 was the author of the Levy’s curve, its Hausdorff
dimension being equal to 2, and the topological dimension equivalent to 1.9340,
values determined after Levy. In this chapter, as at the time of the description of the
box-within-the-box bifurcation structure, on purpose it is not useful to introduce the
notions of topological dimension, and fractal Hausdorff dimension, for preserving
the first introduction of the term fractal (by Mandelbrot who was one of the Levy’
students at the Ecole Polytechnique Paris) in its relation to objects whose structure
is invariant by scale change.

All these fundamental results have been passed over in most of papers dealing
with this subject, which has a very large vogue since 1978. The most part of these
results have been very often attributed to authors who rediscovered them after using
another forms of quadratic map, such as the logistic map, or maps of the unit interval.
So the publication [53] (1976) describes the situation called cycle en valeur moyenne
near one of the two boundaries of each box, which was rediscovered in 1980 under
the name intermittency phenomenon. The other box boundary, called in [53] segment
stochastique cyclique en valeur moyenne, was rediscovered in 1982 under the name
chaotic attractor in crisis, or boundary crisis. All the results of this section were
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published in French before 1976, but with more details they are presented in English
in Chaps. 3 and 4 of the book [44]. An abbreviated description is given in the more
recent paper [54].

In a first step, the bifurcation structure was identified via the quadratic map,

T : x ′ = x2 − λ. (5.1)

Here x is a real variable, λ a real parameter. Such a map, called Myrberg’s map,
is defined by a parabola with an ordinate minimum C−1 (x = 0), its rank-one image
C = T (C−1) being the rank-one critical point of T . The inverse map T −1 is defined
by x = ±√x ′ + λ. The map T is characterized by the following properties.

(a) All the bifurcations values of (5.1) occur into the parameter interval Ω1 =
[λ(1)0 , λ∗1], called overall box, λ(1)0 = −1/4, λ∗1 = 2. For each λ-value, −1/4 <

λ < 2, the map generates a unique attractor (a stable fixed point, or a stable
period k cycle, or a chaotic attractor). The value λ(1)0 = −1/4 corresponds to
a fold bifurcation giving rise to two fixed points qi , i = 1, 2, with multiplier
S = 2x(qi): q1 always unstable (S > 1), and q2 (S < 1, attracting when
−1 ≤ S < 1). No real fixed point exists for λ < λ(1)0 = −1/4. The value λ

= λ∗1 = 2 is a basic nonclassical bifurcation resulting from the merging of the
unstable fixed point q1 with the rank-two critical point C1 = T (C) = T 2(C−1).
It is characterized by the relations x(C1) = x(q1) = 2, x(C) = x(q−1

1 ) = −2,
T −1(q1) = q1 ∪ q−1

1 . When 0 < λ < λ∗1 the invariant segment [q−1
1 , q1] is the

closure of the basin of the absorbing segment CC1, which contains the unique
attractor. When λ = λ∗1 the segmentCC1 is chaotic and merges with [q−1

1 , q1], all
the possible cycles have been created, they belong toCC1. ThenCC1 is invariant
but not absorbing. An initial condition x0 on this segment gives a bounded orbit,
belonging to the interval [q−1

1 , q1], orbit very sensitive to very small changes of
x0. The repelling cycles and their increasing rank preimages constitute a real set
(E), the derived set (set of limit points) (E′) of which is perfect. The preimages
of (E) are everywhere dense on (E′).

For λ > 3/4, the fixed point q2 is always repelling with S(q2) < −1 and a
period k = 2 cycle, made up of two points q2i , i = 1, 2, having the multiplier
S(q2i) = 4 − 4λ, emerges from q2 . The value λ = λb1 = 3/4 corresponds
to a flip bifurcation. New increasing values of λ generates a sequence of flip
bifurcations for λ = λbm related to period 2i cycles, i = 1, 2, ...,m, with an
accumulation value limm→∞ λbm = λ1s � 1.401155189 given by Myrberg. For
λ < λ1s the number of repelling cycles is finite. They have the period 2m and
have been created after crossing through each λbm value. For λ > λ1s infinitely
many repelling period 2i cycles (i = 0, 1, 2, ...) exist, and they constitute a fractal
set. Myrberg calls spectrum the parameter interval ω1 ≡ [λ(1)0 ; λ1s], here related
to the sequence (cascade) of bifurcations by period doubling from the fixed point
q2 (i = 0).

(b) The number Nk of all possible cycles having the same period k, and the number
Nλ(k) of bifurcation values giving rise to these cycles, increase very rapidly
with k (book [44], pp. 93–94). Cycles with the same period k differ from one



100 C. Mira

another by the cyclic transfer (permutation) of one of their points by k successive
iterations by T . Then a period k-cycle is identified by the symbolism (k; j ), j
being an index characterizing this cyclic transfer. Considering a (k; j ) cycle, it
can be generated from two basic bifurcations: either a fold one, or a flip one. A
fold bifurcation generates two basic cycles from λ = λ

j

(k)0
, one with a multiplier

(or eigen value) S > 1, the other with S < 1. With increasing values of λ,
from the cycle (k; j )S<1 a flip bifurcations cascade occurs for (k2i ; ji)S<1 cycles
with accumulation at a value λ

j

ks when i → ∞, 2 > λ
j

ks > λ1s . Myrberg calls
spectrum the parameter interval ωj

k = [λj

(k)0
; λj

ks], k = 1, 3, 4, ..., made up of
parameter intervals leading to attracting cycles of period k2i , i = 0, 1, 2, .... The
cycle symbolisms (k; j ) and (k2i ; ji) correspond to what is called a nonembedded
representation [44].

When λ > λ∗1 = 2, [q−1
1 , q1] ⊂ CC1, the only attractor is the point at infinity, and

no bifurcation takes place. The set (E) (without the point at infinity) constitutes the
nonwandering set (E) ∈ [q1−1; q1]. All the possible cycles have been created by the
map T (5.1). They are real and repelling. (E) is completely disjointed, and is a Cantor
set. The situation equivalent to the λ∗1 one (but now with an attractor inside CC1) is
met for a (k; j ) cycle with multiplier S > 1 (thus generated from a fold bifurcation),
for a parameter value denoted by λ

∗j
k . In this case, λ∗jk is the least λ-value such that

the critical points Ck = T k(C), Ck+1, ..., C2k−1 merge into the k points of the (k; j )
cycle with S > 1. By consideration of T k the value λ

∗j
k reproduces qualitatively the

situation of T when λ= λ∗1. Differently from λ = λ∗1, for λ∗jk the map T generates k
attracting segments constituting a period-k chaotic segment which is now absorbing.

5.5.2 Description of the Structure

The fractal box-within-a-box structure, here defined for the map T (5.1), concerns all
types of smooth unimodal maps with correctly chosen parameter variation. This struc-
ture is of “Russian dolls” type. It considers the parameter interval Ω1 = [λ(1)0 , λ∗1]
(overall box) inside which all the possible bifurcations occur. Out of Ω1 no bifurca-
tion happens. Ω1 is generated from the two basic period k = 1 cycles, i.e., the fixed
points q1 and q2. Taking into account the Myrberg’ spectrum ω1 related to the fixed
point q2 (S < 1), the box Ω1 is defined by:

Ω1 = [λ(1)0 , λ∗1] = ω1 ∪Δ1, Δ1 = ]λ1s , λ
∗
1].

Note that the symbolism “2i” excludes even period cycles born from a fold bi-
furcation, or a flip bifurcation related to a basic cycle appearing out of ω1 (22 = 4,
23 = 8, ..., with such a symbolism). So cycles different from (2i ; ji) can appear
only for λ ∈ Δ1. For λ < λ(1)0 = −1/4 the map has neither fixed point (except the
point at infinity) nor cycles, every orbit is divergent. For λ > λ∗1 = 2 all the possible
period k cycles have been created. They are repelling, and the map has the properties
indicated above.
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Two period-k (k = 3, 4, ...) basic cycles (k; j ), one with S > 1, the other with
S < 1, generate a parameter interval, provisionally denoted Ω̂k , having the same
behavior as Ω1, Ω̂k ⊂ Δ1. If Ω̂k is not contained into another interval Ω̂k′ , k being
a multiple of k′, Ω̂k is called rank-one box, or box(k; j ) (embedded representation).
Then, it is denoted Ω

j

k with:

Ω
j

k = [λj

(k)0
, λ∗jk ],Δj

k = ]λj

ks , λ
∗j
k ],Ωj

k = ω
j

k ∪Δ
j

k ⊂ Δ1.

Here ω
j

k is the spectrum (k; j ). Then for T k the box Ω
j

k reproduces in the same
form (self similarity property) all the bifurcations contained in the box Ω1 for a set
of cycles having periods multiple of k. Denote Ω

j1
k1

one of such boxes. Inside Ω
j1
k1

it is possible to define rank-two boxes Ω
j1,j2
k1.k2

= [λj1,j2
(k1.k2)0

, λ∗j1,j2
k1.k2

] ⊂ Δ
j1
k1

, related to
two (k1.k2; j1, j2) basic cycles, which for (T k1 )k2 undergoes in the same order all the
bifurcations of the box Ω

j1
k1

, and so those of Ω1:

Ω
j1,j2
k1.k2

= [λj1,j2
(k1.k2)0

, λ∗j1,j2
k1.k2

] = ω
j1,j2
k1.k2

∪Δ
j1,j2
k1.k2

⊂ Δ
j1
k1

,Δj1,j2
k1.k2

= ]λj1.j2
(k1.k2)s , λ

∗j1,j2
k1.k2

].

More generally it is possible to define rank-a boxes, embedded into a rank-(a−1)
box

Ω
j1...,ja
k1....ka

= [λj1...,ja
(k1....ka )0

, λ∗j1...,ja
k1....ka

] = ω
j1...,ja
k1....ka

∪Δ
j1...,ja
k1....ka

⊂ Δ
j1...,ja−1
k1....ka−1

.

So Ω
j1...,ja
k1....ka

⊂ Ω
j1...,ja−1
k1....ka−1

, a = 1, 2, .... The boundary parameter λ∗ of each of these
boxes (a = 1, 2, ...) is defined from the merging of well defined critical points with
a repelling basic cycle having the multiplier S > 1. They are called boxes of first
kind. The representation of these boxes is given by Fig. 5.1a, with the enlargement
of Fig. 5.1b, c representing the embedding of boxes called of second kind (cf. next
page) [13, 54].

Other type of parameterλ∗ can be also defined from a repelling cycle withS < −1,
born from a flip bifurcation. Then when λ = λ

∗j
k2i , i = 1, 2, ..., k = 1, 3, 4, ..., k2i−1

critical points of well defined rank merge into a period k2i−1 cycle with S < −1 (born
from a flip bifurcation). We call box of second kind, a box denotedΩ

j

k2i which hasλ∗j
k2i

as one of the two boundary points (cf. Fig. 5.1c for k = 1). The second boundary point
is the flip bifurcation λ = λ

ji

bk2i−1 , parameter generating the attracting cycle (k; 2i).

When i → ∞, the two boundaries tend toward λ
j

ks , with λ
∗j
k2i > λ

j

ks . The first and
largest box of second kind isΩ21 ≡ [λb1, λ∗21 ], λ∗21 (k = 1) corresponding toC2 ≡ q2.
Figure 5.1 represents the whole box-within-a-box (or embedded boxes) bifurcations
structure. It is fractal because the boxes are self similar, i.e., the organization of the
set Ω1 is similar to that of its parts (the above defined boxes), even if these parts are
infinitesimal.
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Fig. 5.1 Box-within-a-box (or embedded boxes) bifurcations structure
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5.5.3 Properties

The box boundaries satisfy the following properties: out of Ωj

k , λ < λ
j

(k)0
, the value

λ
j

(k)0
is a limit point of boxes Ω

j ′
k′ for k′ → ∞, with λ > λ

∗j
k the value λ

∗j
k is a limit

point of boxesΩj"
k" when k”→∞. Considering the map T (5.1) and increasing values

of the parameter λ, the multiplier S of a cycle (k; j )S>1 increases and the multiplier
S of a cycle (k; j )S<−1 decreases. So these cycles become more and more repelling
and they cannot disappear via a bifurcation. The following properties results:

(a) Let [k, j ] (nonembedded representation), k = 1, 3, 4, ..., be the given basic
cycle of the box Ω

j

k with S < 1. For λ ≥ λ
j

ks , Ω
j

k has generated a Cantor
set Cs[k, j ] made up of all the repelling (k2i , ji)-cycles, i = 0, 1, 2, ..., with
multiplier S < −1, born from the flip bifurcations of ωj

k .
(b) Let (k1; j1) (embedded representation) be the basic cycle (S < 1) of the rank-one

box Ω
j1
k1

. For λ ≥ λ
∗j1
k1

, the box Ω
j1
k1

has generated the Cantor set Cs[k1, j1],
and infinitely many Cantor sets, Cs[k1k2; j1, j2], ..., Cs[k1k2...ka; j1, j2, ...ja],
..., a = 1, 2, ...,∞, from the infinitely many boxes (with fractal organization)
embedded into Ω

j1
k1

.

(c) For λ ≥ λ
∗j1
k1

, the map T (thus not only Ω
j1
k1

) has generated infinitely many

Cantor sets related to the infinitely many boxes created for λ ≤ λ
∗j1
k1

. For

λ < λ
j1
(k1)s the map has generated infinitely many Cantor sets related to the

infinitely many boxes created for λ ≤ λ
j1
(k1)0

.
(d) For λ ≥ λ∗1,T has generated all the possible Cantor sets, related to all the basic

cycles of T , from the infinitely many boxes embedded into the over all box Ω1.

The two boundaries of a given box are accumulation points (said of 1st type) of
infinitely many external boxes related to cycles with k →∞. Another type of boxes
accumulation point for λ = λ̃ (said of 2nd type) has different properties (cf. [44],
pp. 156–161), particularly it gives rise to nonclassical invariant measure situations
(cf. [44], pp. 166–174). Such singular accumulation points, λ∗jk , λ∗

k2i , λ̃, and their
embedded forms, are now known as Misiurewicz points (Publ. Math. I.H.E.S. 53,
17–51, 1981). Nevertheless, these parameter values were identified before (from
1975) in different terms by the Toulouse group.

DenoteΛ∗
λ, the fractal set resulting from the union of all the above Cantor sets, and

cycles with S > 1, k ≥ 3, including their limit points, generated for λ ≥ λ1s . This set
satisfies the propertyΛ∗

λ ⊆ CC1, and its structure is well defined from the knowledge
of fractal structure. When λ1s < λ < λ∗1, the set Λ∗

λ constitutes the nucleus of a
strange repeller SR, made up of Λ∗

λ and its increasing rank preimages. From the
initial point x0 ∈ CC1\Λ∗

λ, n iterations, n < N (N depending on x0) give rise to a
chaotic transient, followed by a regular convergence toward the attractor of T . When
λ > λ∗1 and x0 ∈ ]q−1

1 , q1[\Λ∗
λ, the set Λ∗

λ generates for n < N a chaotic transient
occurring in the interval ]q−1

1 , q1[, and for n > N the orbit diverges tending toward
infinity. On the x-axis, the repelling cycles, and their limits for the period k → ∞,
have a fractal organization when λ ≥ λ1s . For each point of the parameter λ-axis,
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λ ≥ λ1s , the fractal structure of the map singularities is completely identified from
the box-within-a-box bifurcation structure. Consider λ ∈ ω

j

k , with λ sufficiently near
λ
j

(k)0 for giving an attracting cycle (k; j ). For the map T k this cycle gives k attracting
fixed points Pi , i = 1, ..., k, each of them with an immediate basin D0(Pi), and a
total nonconnected basin D(Pi) = ∪n>0T

−nD0(Pi). The basins D(Pi) are fractal,
and have SR as a common limit set.

The above properties (a)–(d) bring out the limit points of different classes
mentioned by Pulkin in 1950 [31].

Variants of the fractal box-within-the-box bifurcation structure was extended to
one-dimensional maps defined by smooth functions with two extrema (cf. [16],
pp. 401–418), and can be identified for smooth functions having more than two
extrema.

5.6 Foliated Bifurcation Structures

This topic was the object of many studies (1980–1999) in the Toulouse group. They
were based on the fact that the set of bifurcation curves in a parameter plane must
be considered as giving only a coarse information about the map dynamics. Indeed
this set only represents the “skeleton” of a larger information permitting to follow
the dynamical evolution in presence of parameter variations. This evolution can be
identified by considering the parameter plane as made up of sheets, each sheet being
associated with a well defined stable, or unstable, cycle (with its period k and an index
j characterizing the permutation of its k points after k iterations). Then the parameter
plane is said foliated, and can be associated with a three-dimensional representation
of the sheets. Covering areas of several sheets, associated with stable cycles (or more
complex attractors), gives rise to the multistability phenomenon. Information from
a set of bifurcation curves alone, and that from the foliated parameter plane can be
compared with that obtained from an X-ray image and that of Magnetic Resonance
Imaging.

These sheets present folds along fold curves (one the multiplier is S = +1), have
junctions with branching along pitchfork curves (one the multiplier is S = +1), and
flip curves (one the multiplier is S = −1). Such curves correspond to codimension-1
bifurcations. The simplest singularities on these curves are of codimension-2 type.
Two among them have a particular importance: the cusp point of a fold curve, called
the fold codimension-2 point; and the tangential point of a flip curve and a fold
one having a double period, called the flip codimension-2 point (for more details,
and a three-dimensional representation of the sheets cf. [55–63], and the book [44],
pp. 349–395). These singular points correspond to complex communications be-
tween the sheets. Then the association of fold and flip curves in the neighborhood of
a fold cusp leads to the definition of three types of fundamental communications be-
tween sheets: crossroad area, saddle area , and spring area. So a three-dimensional
representation of the foliation appears particularly interesting for a complete char-
acterization of the sheets organization. In particular, it is possible to define the path
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followed by a stable cycle to continuously pass from a sheet to another one (cross-
road area), or after having turned unstable, recovering its stability to attain another
sheet (spring area).

A third parameter variation may lead to foliation bifurcations such as:

• Crossroad area ←→ saddle area; spring area←→ crossroad area [55],
• Crossroad area ←→ dissymmetrical spring area←→ symmetrical spring area

[58],
• Double crossroad area←→ double spring area [58].

Other types of foliation bifurcations are possible [57, 59, 61–63]. Moreover, the
Myrberg’ spectrum may give rise to other dynamical behaviors such as: cascade
of spring areas by period doubling, crossroad area communication between two
spring areas with period doubling of this structure (cf. the book [44], pp. 361–
373). Algorithms for identifying communication areas, with generalization to n -
dimensional maps have been the object of several papers [64–67].

Using a Poincaré section, various types of ordinary differential equations were
studied from the point of view of the foliated parameter plane, and its communication
areas, this via a three-dimensional representation of the foliation. Out of the Toulouse
group, such studies have been very rare. Generally, the parameter plane, related to
maps, or ODE, is analyzed from a numerical scanning which permits to identify
regions corresponding to the existence of stable cycles, or other complex attractors.
This method is coarse and the results interpretation is a cause of frequent errors due
to a lack of precision, and difficulties to follow the same cycle during the plane
scanning (jump from a sheet to another one). Nevertheless, a numerical scanning of
the parameter plane permits to detect the existence of crossroad area structures. It is
the case of structures called shrimps in [68] which are images of crossroad areas.

5.7 Imbedding of a Dim (p − 1) Noninvertible Map into a Dim
p Invertible One

The simplest situation is the case of a one-dimensional noninvertible map embedded
into a two-dimensional invertible map (p = 2). It was considered in [69] (1978) and
pp. 291–296 of the book [44]. It is about two-dimensional (p = 2) invertible maps
Tb (Jacobian J = −b) (written here in the recurrence form):

xn+1 = f (xn, a) + yn

yn+1 = bxn , n = 0, 1, ..... (5.2)

When b = 0, from the initial condition (x0, y0), y0 = 0, Tb turns into the one-
dimensional (r = 1) noninvertible map T0:

xn+1 = f (xn, a), n = 1, 2, ....., (5.3)

with the initial condition x1 for n = 1. If f is a quadratic function (5.2) is of Henon’s
map type.
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The case of the Hénon’s map (f (xn, a) ≡ 1 − ax2) was widely studied in the
Toulouse group, which has been the first to give the organization of the bifurcation
curves in the parameter plane (a, b) with its foliation [70, 71], and pp. 326–397
of the book [44]. The bifurcations organization for b = 0 is nonfoliated, fractal
of box-within-a- box type, so well known. The (k; j ) cycles of the plane axis b =
0, associated with the multipliers S = +1 (resp. S = −1) were the germ for
determining fold (resp. flip) bifurcation curves of the parameter plane (a, b). For
b = 0, such curves intersect, which shows that the parameter plane is foliated.
In the years 1984–1985, Hiroshi Kawakami stayed for 6 months in the Toulouse
group. During his stay, he considered the ordered list of (k; j ) cycles having the
same period k, associated with a binary word made up of k bits (0,1), equivalent of
the Myrberg rotation sequence made up of (k − 2) signs + and −, characterizing
the index j. From a rotational shift on the inverse of the binary word (cf. [72] and
the book [44], pp. 130–131, 341–349), he introduced the notions of adjoint cycles
having a link with another period k cycle, and self-adjoint cycles without no link
without another period k cycle. From these additional characteristics, in a complete
list period k cycles (cf. [44], pp. 342–343), it was possible to introduce the notions
of connections chains and communications cells (cf. [44], pp. 375–395). Associated
with a contracted representation of the parameter plane, they permit to forecast the
existence of different types of communication between the sheets of the foliated
parameter plane (a;b) (cf. [44], pp. 373–395).

The case p = 3 is shortly formulated in pp. 565–567 of the book [13], and in a
more developed form in [73].

The particular illustrative imbedding considered in the paper [72] is defined by
the invertible map Tb:

x ′ = f (x, y,α),

y ′ = g(x, y, λ) + z, (5.4)

z′ = b(x + y).

The following assumptions are made for the functions f (x, y,α) and g(x, y, λ):

(i) The map T0 is noninvertible.
(ii) The Jacobian of Tb does not change its sign for b = 0.

The condition (ii) ensures that the map Tb is invertible, whether the map is smooth
or nonsmooth. When the parameter of embedding is b = 0, the invertible map Tb

turns into a two-dimensional noninvertible map T0 :

x ′ = f (x, y,α), y ′ = g(x, y, λ). (5.5)

From theValiron’s results [74], the book [13] considers (pp. 8–13) the formulation
of the general embedding problem of a (p − k)-dimensional noninvertible map into
a p-dimensional invertible one, p = 3, 4, ..., k = 2, 3, ....
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5.8 Maps with Vanishing Denominators

From 1996, this research field was developed with the collaboration of Laura Gardini
and Gian-Italo Bischi (University of Urbino). Let T be a two-dimensional invertible,
or noninvertible map, denoted (x′, y′) = T (x, y) = [F (x, y),G(x, y)], where at
least one of the components F or G has a denominator that vanishes in a one-
dimensional subset of the phase plane. Here (x’,y’) denotes the image of the point
(x,y). Consequently, T is not defined in the whole plane and there can arise singular
sets called focal points (cf. [75], first introduction of this term) and prefocal sets.
These singularities give rise to nonclassical topological structures of attractors and
their basins, and to bifurcations that do not occur in continuous maps. At a focal
point, one of the components has the form 0/0. Roughly speaking, a prefocal curve
is a set of points for which there exists at least one inverse, that maps (or focalizes)
the whole set into a single point, the focal point. Note that these singularities also
play an important role for smooth maps (e.g., polynomial maps) without cancelling
denominator, but for which the inverse of the map has a denominator that vanishes
on a subset of phase space.

The article Maps with vanishing denominators (2007), published on the Website
Scholarpedia (Gardini L., Bischi G.I., Mira C., 2 (9): 3277) gives a general presen-
tation of the matter, associated with references and five illustrative examples in the
First Subpage.

5.9 Applications

Conducted in an engineering department, the Toulouse group researches on non-
linear maps were originally motivated by models of discrete-time control systems
(nonlinear sampled data control), in which a continuous plant is controlled via a
digital device. The results obtained by the group are presented in pp. 339–393 of the
book [76], which gives the associated references. The text below provides a brief
description of some contributions.

The simplest case is that of a periodic sampler, which may give rise to typical
nonlinear behaviors. So, in presence of two attractors (fixed point and period two
cycles) the phenomenon of nonconnected basin for one of them, multiply connected
basin for the other one, was identified. Moreover, the sampler playing the role of
a parametric periodic excitation, a variation of the sampling period may lead to
parametric resonances due to exceptional critical cases generated by the map model
(resonant bifurcations).

It is worth noting that the contribution of Alain Giraud played a fundamental role
in the Toulouse group history, for engineering applications, as well as for dynamical
behaviors of maps. In particular, he developed a theory of what was called at that
time Systèmes à Commutations (cf. Chap. 4 of the 1969 thesis [77], and [76], § 8.4),
which has appeared to belong to what has been called afterward Hybrid Systems.
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The general form of the model is the following:

Fi[Xn+1,Xn, tn+1] = 0, gk(Xn, t) = 0, X(tn) = Xn, (5.6)

where X is the state vector, the indices i and k correspond to different possible
forms of F and g, tn+1 is the smallest root of the relation g(Xn, t) = 0, larger than
tn (switching time, generally related to the determination having a physical sense).
The simplest case is that of sampled data systems with width modulation, or with
frequency modulation, or control systems with variable structure, which lead to the
explicit form:

Xn+1 = F (Xn, tn+1), g(Xn, t) = 0, X(tn) = Xn. (5.7)

In the Toulouse group, applications using variable structure control were made
for two one-link manipulators, speed and position control of an asynchronous motor,
adaptive control using only input and output measurements with two sliding surfaces.

The Systèmes à Commutations theory was elaborated for preparing a study of
rectifiers “alternating current→ direct current, using thyristors with voltage feed-
back, or current feedback, the load being made up of a resistance and an inductance
(1967–1971). A discrete model in the form of a recurrence relationship was con-
structed, the discrete states of this systems being determined at two consecutive
switching times of the thyristors. The analytical form of this model is very complex
and bulky, but can be programmed in a computer without any difficulty. It is of
implicit and parametric type, including several relations (Chap. 5 of [77], and [76],
§ 8.5). For a voltage feedback, X is a one-dimensional vector. For a current feedback,
X is a two-dimensional vector. In such a problem a stable fixed point corresponds to
the user specifications about what is called residual ripple of the rectifier output, the
mean value of which is associated with the system input. More details are given in
the Giraud’s thesis [77], a shorter version with figures being accessible in Chap. 8
of the book [5].

It is important to note that p. 190 of the Giraud’s thesis [77] says that the expression
cycle stable d’ordre élevé (very high period cycle) is used for convenience sake in
order to qualify a steady state without any periodicity (obtained in the framework
of this study), called pseudo-périodique by this researcher. Such a denomination
gives another example of the fluctuations in the vocabulary choice of the group,
revealing its perplexity in presence of phenomena identified as chaotic afterward (in
1975). At a time of very bad performances of computers, Giraud defined exactly the
basin of the specified residual ripple, in presence of another attractor (a period 3
chaotic one), and bifurcation curves in the parameter plane (K gain of the control
amplifier, τ time constant of the load). Before the Toulouse group studies (1967–
1971), the manufacturers of rectifiers thought that subharmonic behaviors (which
increase the residual ripple amplitude), and other complex behaviors in such systems,
were essentially due to asymmetries of the phases of the secondary winding of
the transformer, and to “antenna effects.” The Toulouse group results have shown
that, even with a perfect phases symmetry, the thyristors nonlinearities generate
nonwanted behaviors (subharmonics and chaos). Moreover, a correct choice of the



5 Nonlinear Maps: From the Toulouse Colloqium (1973) to NOMA’13 109

gain K for a given τ can lead to the global stability of a correct residual oscillation
specified by the users.

Other applications giving rise to complex dynamics have been made for systems
of satellite attitude controlled by a frequency modulator of second kind, and in a
satellite with inertia being a periodic function of time (1969–1975).

5.10 Conclusion

At a time when the results on the nonlinear maps dynamics were virtually unknown
outside the former Soviet Union, from the year 1962 the Toulouse group based its
researches not only on the results of the French school of iteration theory but also
on the works of the Gorki teams (called Andronov school) and those of the Kiev
school, which occupied the first rank in the nonlinear field, as noted in 1961 by P.
La Salle and S. Lefschetz (cf. Sect. 3). Such results, published in Russian, remained
rather unknown in Western countries until the 1980s. It was the same for the original
Myrberg contribution on one-dimensional noninvertible maps, firstly quoted in the
Toulouse group papers from 1975, but now attributed to authors who long after-
ward rediscovered his results published in Annales Academiae Scientarum Fennicae
(1958–1963). It is the case of Metropolis N., Stein M.L., Stein P.R. (characterization
of a cycle by a binary code L, R), and Feigenbaum (cascades of bifurcations by period
doubling with their limit points), that the popular notions of invariant coordinate and
that of kneading invariant are variants of the Myrberg’s ordering law of cycles. In
contemporary quotations, Cigala (1905) and Pulkin (1950) have also been remained
unknown, in spite of the importance of their results.

With papers firstly published in French, some of the Toulouse group results were
rediscovered, and are now known differently. In particular, it is the case of compound
windows (about the fractal box-within-the-box bifurcation structure), Misiurewicz
points (singular accumulation points of infinitely many boxes), intermittency phe-
nomenon (called in 1976 cycle en valeur moyenne near one of the two boundaries
of each box), chaotic attractor in crisis, or boundary crisis (called in 1976 segment
stochastique cyclique en valeur moyenne). It is this situation, related to many pa-
pers written in French, which led Prof. Ralf Abraham to ask the writing of Chap. 8
(I. Gumowski and a Toulouse research group in the “prehistoric” times of chaotic
dynamics) of the book [5] dealing with the early days of chaos theory.

Due to the extent of the topic to be exposed, this article only gives an overview
of the work of the Toulouse group over a period of 40 years.
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Chapter 6
Lebesgue Measure of Recurrent Scrambled Sets

Marek Lampart

Abstract It was proved by M. Babilonová-Štefánková (Int J Bifurc Chaos
13(7):1695–1700, 2003) that each bitransitive continuous map f of the interval
is conjugated to a map g which is distributionally chaotic with a distributionally
scrambled set D. The goal of this chapter is to improve this result, by showing
that D is formed by points that are recurrent but not almost periodic. Moreover, as
a main result it will be proved that any bitransitive map f ∈ C(I , I ) is topologi-
cally conjugate to a map g ∈ C(I , I ) which satisfies the following conditions: (i) g
is extremally Li–Yorke chaotic with Li–Yorke scrambled set S with full Lebesgue
measure and S ⊂ R(g)\A(g), (ii) g is ω chaotic and every ω scrambled set Ω has
zero Lebesgue measure and Ω ⊂ R(g)\A(g), (iii) g is distributionally chaotic with
a distributionally scrambled set D with full Lebesgue measure and D ⊂ R(g)\A(g).

6.1 Introduction

Within the last 40 years numerous papers and books have been devoted to the research
of discrete dynamical systems. The main aim of the theory of discrete dynamical
systems is focused the understanding of what the trajectories of all points from the
state space look like. Mostly the periodic structures and asymptotic properties of
the orbit were studied. Many authors were fascinated by those motions which are
not only periodic but also are not quasiperiodic. These movings were assumed to be
unpredictable or sensitive to initial conditions, later named as chaotic.

The first and crucial development in the field of dynamical systems was made by
H. Poincaré in 1890 [25] by recurrence, that is a point returns to itself arbitrarily close
under the actions (iterations), or equivalently the point belongs to its omega limit set.
Hence, a dynamical system preserves volume, all trajectories return arbitrarily close
to their initial position and they do this an infinite number of times. More precisely,
H. Poincaré discovered: If a flow preserves volume and has only bounded orbits then
for each open set there are orbits that intersect the set infinitely often.
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As a consequence of the orbit observation situations where the trajectory is dense
in the state space appear. Such a property is called transitivity and could be defined
equivalently for action F (under some assumptions of the state space): for any two
nonempty open sets U ,V , that are subsets of the state space, there is n ∈ N such
that Fn(U )∩ V = ∅. The notion of transitivity was introduced by G. D. Birkhoff in
1920 for flows [5].

Consequently, a transitive dynamical system has points which eventually move
under iteration from one arbitrarily small open set to any other. Such a dynamical
system cannot be decomposed into two disjointed sets with nonempty interiors which
do not interact under the transformation. So, the notion of transitivity is still too rough
for the observation of a local dynamics and moreover it is not possible to quantify
(and compare) the complexity of systems. The topological entropy (defined by R.
L.Adler, A. G. Konheim, and M. H. McAndrew in 1965 [1]) measures the complexity
of the dynamical system. Later on the notion of topological entropy was equivalently
formulated for compact metric spaces by R. Bowen in 1971 [9].

The periodic structure for continuous maps on the interval was also investi-
gated and the crucial and well-known result on periodic structure was proved by
A. N. Sharkovskiı̆ [27] in 1965 where chaos is due to infinitely many repulsive cy-
cles of increasing period, and their limit sets of increasing “classes” in the sense of
C. P. Pulkin [26] form 1950.

There appeared many notions of chaos, starting with the famous paper by T. Y. Li
and J. Yorke [19] in 1975. Later on, several notions of chaos motivated by diverse
aspects were introduced (for more see, e.g., [6, 11] and references therein). Many
natural questions arose. Which notion of chaos is the best one, or stronger than others
(see, e.g., [14] and references therein)? Or, if the map is chaotic in some sense, how
big is the scrambled set (in the sense of Lebesgue measure or Baire category, see,
e.g., [6])? Motivated by these questions, the goal in this chapter is to study scrambled
sets of Li–Yorke chaos, ω chaos, and distributional chaos for continuous maps on
the interval. For this purpose, the following conventions are recalled.

Let (X, d) be a compact metric space with metric d and C(X,X) the set of all
continuous maps f : X → X. Let f ∈ C(X,X), x ∈ X and n be a positive integer.
The nth iteration of x under f is denoted byf n, the set of all fixed points of f by
Fix(f ), the set of periodic points of f by Per(f ). The sequence {f n(x)}∞n=0 is the
trajectory of x, and the set ωf (x) of all limit points of the trajectory is the ω-limit set
of x. An ω-limit set is maximal if it is not properly contained in any other ω-limit
set. A point x ∈ X is said to be recurrent for f if x ∈ ωf (x), this means that for
each neighborhood U of the point x there is positive n such that f n(x) ∈ U . A point
x ∈ X is called an almost periodic point of f provided that for any neighborhood U

of x ∈ X, there exists N ∈ N such that {f n+i(x) : i = 0, 1, 2, . . . ,N} ∩ U = ∅ for
all n ∈ N. R(f ) denotes the set of all recurrent points of f ∈ C(X,X) and A(f ) the
set of all almost periodic points of f ∈ C(X,X) (for more about recurrence see, e.g.,
[12] or [29]). A map f ∈ C(X,X) is conjugate to g ∈ C(X,X) if there is a bijective
map h ∈ C(X,X) such that h ◦ f = g ◦ h. Let [0, 1] be the closed unite interval I .

It is worthy of noticing that results of this chapter, and references, stand for a
“macroscopic” point of view, that correspond to what can be either called as stable
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chaos (strange attractors or invariant bounded sets), or chaotic transients in other
disciplines, see, e.g., [21] and [22].

In this chapter notions of Li and Yorke chaos, ω chaos, and distributional chaos
are researched. These notions of chaos were introduced by T.Y. Li and J.Yorke [19],
S. Li [18], and B. Schweizer and J. Smítal [28] in 1975, 1993, and 1994, respectively,
which are defined as follows.

The map f ∈ C(X,X) is Li and Yorke chaotic (briefly, LYC) if there is an
uncountable set S ⊂ X such that for any two different points x, y is

lim sup
n→∞

d(f n(x), f n(y)) > 0

and
lim inf
n→∞ d(f n(x), f n(y)) = 0.

This set is called an LY-scrambled set. Moreover, f ∈ C(X,X) is extremally LYC if
lim supn→∞ d(f n(x), f n(y)) = diam(X).

The map f ∈ C(X,X) is ω-chaotic (briefly, ωC) if there is an uncountable set
Ω ⊂ X such that for any two different points x, y holds:

1. ωf (x)\ωf (y) is uncountable,
2. ωf (x) ∩ ωf (y) = ∅ and
3. ωf (x)\Per(f ) = ∅.

The set Ω is called ω-scrambled. Remember that the third condition from the def-
inition of ωC is not needed if X = I (see, e.g., [18] and for more about ωC see
[17]).

For f ∈ C(X,X), x, y ∈ X, t ∈ R and a positive integer n, let

ξ (x, y, n, t) =  {i; 0 ≤ i < n and |f i(x) − f i(y)| < t}.
Put

F ∗
xy(t) = lim sup

n→∞
1

n
 ξ (x, y, n, t),

and

Fxy(t) = lim inf
n→∞

1

n
 ξ (x, y, n, t).

Then bothF ∗
xy andFxy are nondecreasing maps, with 0 ≤ Fxy ≤ F ∗

xy ≤ 1, F ∗
xy(t) = 0

for t < 0, and Fxy(t) = 1 for t > 1. F ∗
xy and Fxy are referred to the upper and lower

distribution map of x and y, respectively. The map f is distributionally chaotic
(briefly, dC) if there is a set S ⊂ X containing at least two points such that, for
any x = y in S, Fxy < F ∗

xy (by this it is meant that Fxy(t) < F ∗
xy(t) for all t in

an interval), this set is called a d-scrambled set for the map f . There were stronger
forms of distributional chaos introduced in [4] (for progress paper comparing dC

and LYC see [30] and references therein).
A pair of points (x, y), x, y ∈ I , is called isotectic if for every positive integer n

the ω-limit set ωfn (x) and ωfn (y) are subsets of the same maximal ω-limit set of f n.
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The spectrum of f ∈ C(I , I ), denoted by Σ(f ), is the set of minimal elements of
the set {Fxy ; (x, y) is isotectic}. By [10], Σ(f ) is always a finite nonempty set, and
if f is bitransitive then Σ(f ) is singleton.

In the following section the result by M. Babilonová-Štefánková from [3] will
be improved and the analogous results by M. Babilonová from [2] and M. Lampart
from [15] will be summarized. The main result of the paper was announced (without
proof) by M. Lampart in [16]. Here complete proofs will be given.

As main result it will be proved that any bitransitive map f ∈ C(I , I ) is
topologically conjugate to a map g ∈ C(I , I ) which satisfies the following
conditions:

i. g is extremally LYC with LY-scrambled set S with full Lebesgue measure and
S ⊂ R(g)\A(g),

ii. g is ωC and every ω-scrambled set Ω has zero Lebesgue measure and Ω ⊂
R(g)\A(g),

iii. g is dC with d-scrambled setD with full Lebesgue measure andD ⊂ R(g)\A(g).

6.2 Properties of Bitransitive Maps

A map f ∈ C(I , I ) is (topologically) transitive if for any open intervals U ,V ⊂ I

there is a positive integer n such that f n(U ) ∪ V = ∅; f is bitransitive if f 2 is
transitive.

Proposition 6.1 ([7] or [10]). Let f ∈ C(I , I ) be a bitransitive map, and J ,K ⊂
(0, 1) compact intervals. Then f n(J ) ⊃ K , for any sufficiently large n.

Let f ∈ C(I , I ), A,B ⊂ I . It is said that f−approximates A if, for any ε > 0
and μ ∈ (0, 1), there is a K > 0 such that, for any x ∈ A and any integer m > K

there is a y ∈ B with  {i, 0 ≤ i ≤ m and |f i(x) − f i(y)| < ε} > μm.

Proposition 6.2 ([3]). Let f ∈ C(I , I ) be bitransitive. Then Per(f )\{0, 1} f -
approximates Per(f ).

Proposition 6.3 ([3]). Let f ∈ C(I , I ) and A ⊂ Per(f ). Then there is a countable
set B ⊂ A which f−approximates A.

Proposition 6.4 ([28]). If f ∈ C(I , I ) is bitransitive then Σ(f ) = F , i.e., the
spectrum of f is a singleton.

Proposition 6.5 ([3]). Let f ∈ C(I , I ) and Σ(f ) = F . If A ⊂ I f−approximates
I then F is the pointwise infimum of {Fxy ; x, y ∈ A}.

Formulas (6.2), (6.3), and (6.4) from the following Lemma 6.1 correspond with
those in Lemma 3.1 from [3]. Conclusion i. from Theorem 6.1 equates with the
property of Theorem 3.2 from [3]. These formulas are recalled for completeness
since they are needed as well for the proof of new parts of Lemma 6.1 and Theorem
6.1 as entire proof of the main statement, Theorem 6.2.



6 Lebesgue Measure of Recurrent Scrambled Sets 119

For simplicity the following special notation will be used. If a sequence α is a
subsequence of β, it is denoted α ≺ β; sequences may be finite or infinite. So it can
be written, e.g., {an}∞n=1 ≺ {bn}∞n=1.

Throughout this section, {An}∞n=1 is a fixed sequence of blocks of positive integers
determined by a division of the sequence {n}∞n=1 such that

lim
n→∞

n−1∑
i=1

|Ai |
|An| = 0, (6.1)

where |Ak| denotes the number of elements of Ak . Let us denote by mk the first
element of Ak .

Lemma 6.1 Let f ∈ C(I , I ) be bitransitive, {An}∞n=1 a sequence satisfying (6.1),
X ⊂ (0, 1) a nonempty countable set, and {pn}∞n=1 a sequence in X containing any
member of X infinitely many times, and let {rn}∞n=1 be a sequence of all rational
numbers in I .

Then, for any compact interval J ⊂ (0, 1) and any sequenceα = {an}∞n=1 ≺{n}∞n=1
there is a nonempty nowhere dense perfect set P ⊂ J , and a sequence β = {bn}∞n=1≺ α with the following properties:

{(bn,pn)}∞n=1 ≺ {(an,pn)}∞n=1, (6.2)

f k(P ) ⊂ B

(
f k−mbn (pn),

1

n

)
, f or k ∈ Abn , (6.3)

where B(x, r) stands for [x − r , x + r],

Fxy ≤ inf{Fpq ; p, q ∈ X}, for each x, y ∈ P , x = y, (6.4)

and

ωf (x) = I , for any x ∈ P. (6.5)

Proof Let {pn}∞n=1 be a sequence in X such that the sequence {(pn, qn)}∞n=1 contains
every pair of points of X infinitely many times. Let the set P be in the form P =⋂∞

n=1 Pn where, for any n,Pn is the union of pairwise disjoint compact intervals
Us , s ∈ {0, 1}n, and Pn+1 ⊂ Pn. The intervals Us are defined inductively by n.

Stage 1: Let U0,U1 be disjoined closed subintervals of J. Put P1 = U0 ∪U1, and
let k(1, 0) < k(1, 1) be positive integers such that (k(1, 0),p1, q1) is a member of a
sequence {(an,pn, qn)}∞n=1.

Stage n+ 1: Sets P1, . . . ,Pn and positive integers k(1, 0) < k(1, 1) < k(2, 0) <

k(2, 1) < k(2, 2) < · · · < k(n, 0) < k(n, 1) < · · · k(n, n) are available from stage n

such that, for any s = s1, . . . , sv ∈ {0, 1}v, 1 ≤ v ≤ n, 1 ≤ j ≤ v + 1,

{(k(j , 0),pj , qj )}∞j=1 ≺ {(ai ,pi , qi)}∞i=1, (6.6)

for any s = s1, . . . , sv ∈ {0, 1}v, 1 ≤ v ≤ n, 0 ≤ j ≤ v,
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|Us | ≤ 1

v
, (6.7)

f k(Us) ⊂ B

(
f k−mk(v,j ) (pv),

1

v

)
for k ∈ Ak(v,j ), if j = 0 or sj = 0, (6.8)

f k(Us) ⊂ B

(
f k−mk(v,j ) (qv),

1

v

)
for k ∈ Ak(v,j ), if sj = 1, (6.9)

f k(v,0)(Us) ⊂ B

(
rv,

1

v

)
. (6.10)

By Proposition 6.1 there is an integer k(n+ 1, 0) > k(n, n) such that, for any

s ∈ {0, 1}n, rn+1 ∈ f k(n+1,0)(Us).

Hence, for any s ∈ {0, 1}n there is a compact interval Vs ⊂ Us such that

f k(n+1,0)(Vs) ⊂ B

(
rn+1,

1

n+ 1

)
. (6.11)

Again by Proposition 6.1 there is an integer k(n+ 1, 1) > k(n+ 1, 0) such that

{(k(j , 0),pj , qj )}∞j=1 ≺ {(ai ,pi , qi)}∞i=1, (6.12)

and, for any s ∈ {0, 1}n, pn+1 ∈ f mk(n+1,0) (Us). Hence, for any s ∈ {0, 1}n, there is a
compact interval V 1

s ⊂ Vs such that

f k(V 1
s ) ⊂ B

(
f k−mk(n+1,0) (pn+1),

1

n+ 1

)
for k ∈ Ak(n+1,0). (6.13)

Also for any s ∈ {0, 1}n, rn+1 ∈ f t(n+1,0)(Us). Therefore, for any s ∈ {0, 1}n, there is
a compact interval Vs ⊂ Us such that

f t(n+1,0)(Vs) ⊂
(
rn+1,

1

n+ 1

)
. (6.14)

Next, there is an integer k(n+ 1, 2) > k(n+ 1, 1) such that, for any s ∈ {0, 1}n,
{pn+1, qn+1} ⊂ f mk(n+1,1) (V 1

s ). Thus, for any s = s1, s2, . . . , sn ∈ {0, 1}n there is a
compact interval V 2

s ⊂ V 1
s such that z ∈ f mk(n+1,1) (V 2

s ), where z = pn+1 if s1 = 0
and z = qn+1 otherwise, and such that |f k(V 2

s )| ≤ 1/(n+1) where k ∈ Ak(n+1,1). By
applying this processn times, integers k(n+1, 2) < k(n+1, 3) < · · · < k(n+1, n+1)
and compact intervals V 2

s ⊃ V 3
s ⊃ · · · ⊃ V n+1

s are obtained such that, for any
s = s1s2 · · · sn ∈ {0, 1}n and any 2 ≤ j ≤ n+ 1,

f k(V j
s ) ⊂ B

(
f k−mk(n+1,j ) (pn+1),

1

n+ 1

)
for k ∈ Ak(n+1,j ) if sj = 0, (6.15)
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and

f k(V j
s ) ⊂ B

(
f k−mk(n+1,j ) (qn+1),

1

n+ 1

)
for k ∈ Ak(n+1,j ) if sj = 1. (6.16)

Finally, let k(n + 1, n + 2) > k(n + 1, n + 1) be such that, for any s ∈
{0, 1}n, f mk(n+1,n+2) (V n+1

s ) ⊃ {pn+1, qn+1}. Then there are disjoint compact intervals
Us0,Us1 ⊂ V n+1

s such that

|Us0|, |Us1| ≤ 1

n+ 1
, (6.17)

f k(Us0) ⊂ B

(
f k−mk(n+1,n+2) (pn+1),

1

n+ 1

)
for k ∈ Ak(n+1,n+2), (6.18)

and

f k(Us1) ⊂ B

(
f k−mk(n+1,n+2) (qn+1),

1

n+ 1

)
for k ∈ Ak(n+1,n+2). (6.19)

Thus sets Us are defined for any s ∈ {0, 1}n+1. They satisfy the formulas (6.6), (6.7),
(6.8), and (6.9), for n := n+ 1, by (6.12), by (6.17), by (6.13), (6.15), (6.18), or by
(6.16), (6.19), respectively. This completes the induction.

For anynput b(n) = k(n, 1).Then (6.6) implies (6.2). LetP =⋂∞
n=1

⋃
s∈{0,1}n Us.

Then P is a nowhere dense perfect set; this follows by (6.7). By (6.8), P satisfies
(6.3). It remains to prove (6.4) and (6.5).

Let x and y be distinct points in P . Then for any positive integer K there are
s, s ′ ∈ {0, 1}K such that x ∈ Us , y ∈ Us′ . Take K > 1/(2|x − y|). Thus, by (6.7),
Us ∪ Us′ = ∅ and hence s = s ′. Consequently, sr = s ′r for some r . Without loss of
generality it can be assumed that sr = 0 and s ′r = 1.

Now, to prove (6.4) it suffices to show that, for any positive integer N ,
Fxy ≤ FpNqN . Let n > max{N ,K} be such that (pn, qn) = (pN , qN ). By (6.8)
and (6.9) it follows that, for k ∈ Ak(n,r), |f k(x) − f k−mk(n,r) (pN )| ≤ 1/n, and
|f k(y) − f k−mk(n,r) (qN )| ≤ 1/n. Hence, {k ∈ Ak(n,r); |f k(x) − f k(y)| < t} ⊂
{k ∈ Ak(n,r); |f k−mk(n,r) (pN )−f k−mk(n,r) (qN )| < t+2/n}, and consequently, by (6.1),
since n can be taken arbitrarily large,

Fxy(t) ≤ FpNqn (t + δ),

for any δ > 0 and t ∈ R. Thus, if t is a point of continuity of FpNqN , then Fxy(t) <

FpNqN (t) which proves (6.4).
Finally, it remains to prove (6.5). Since ({rn}∞n=1)′ = I the condition (6.10) is

fulfilled, consequently the property (6.5) is satisfied.
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6.3 Main Results

Denote the upper and lower distributional map of x and y for a map g by Gxy and
G∗

xy , respectively.

Theorem 6.1 Any bitransitive map f ∈ C(I , I ) is topologically conjugate to a map
g ∈ C(I , I ) which is dC almost everywhere. More precisely, there is a set H with
λ(H ) = 1 such that:

i. for any distinct x and y in H , Gxy = G where G is the unique member of Σ(g),
and G∗

xy ≡ 1,
ii. H ⊂ R(g)\A(g).

Proof By Proposition 6.4, f has a one-point spectrum, Σ(f ) = {F }, and by
Propositions 6.2, 6.3, and 6.5 there is a countable set X ⊂ Per(f )\{0, 1} such that
F = inf{Fpq ; p, q ∈ X} (note that the relation of f -approximability is transitive).
Let {pn, qn}∞n=1 be a sequence in X2 containing any pair of points o X infinitely many
times, and {An}∞n=1 blocks satisfying (6.1).

Firstly, to prove the first condition of Theorem 6.1, it suffices to define an increas-
ing sequence S1 ⊂ S2 ⊂ · · · ⊂ (0, 1) of perfect sets, and a decreasing sequence
{n}∞n=1 = α0 $ α1 $ α2 $ · · · of sequences of positive integers with the following
properties:

f k(Sm) ⊂ B

(
f k−man (pn),

1

n

)
for k ∈ Aan , (6.20)

where {an}∞n=1 is the sequence of αm,

Fxy ≤ inf{Fuv; u, v ∈ X} for x = y in Sm, (6.21)

S =
∞⋃

m=1

Sm is dense and hence c-dense in I. (6.22)

Indeed, by [13], any c-dense set Fσ is homeomorphic to a set of full Lebesgue
measure. So let φ be a homeomorphism of I such that λ(φ(S)) = 1. Put g = φ ◦ f ◦
φ−1 and H = φ(S). It is easy to see that φ(X) = Y ⊂ Per(g)\{0, 1} g-approximates
I . Hence, by (6.21) and Proposition 6.5, for any m and any x, y ∈ Hm = φ(Sm),
Gxy = inf{Gpq ; p, q ∈ Y } = G, where G is the unique distribution function in the
spectrum of g. On the other hand, by (6.20),

gk(Hm) ⊂ B

(
gk−man (φ(pn)), νφ

(
1

n

))
for k ∈ Aan , (6.23)

where νφ is defined by νφ(d) = sup|x−y|≤d |φ(x)−φ(y)|. This gives G∗
xy ≡ 1 for any

x, y ∈ Hm and hence for any x, y ∈ H .
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Thus, it remains to define Sm and αm for any m. Apply Lemma 6.1 to J =
[1/3, 2/3], and α = α0 to get P and β = α1, and put S1 = P .

Now assume by induction that Sm and αm satisfy (6.20) and (6.21). Let V be the
component interval of I\Sm of the maximal length and let J ⊂ {0, 1} be a compact
interval containing the center of V . Apply Lemma 6.1 to J , α = αm and to the
sequence {qn}∞n=1 instead of {pn}∞n=1 to get a set P , and a sequence β = {bn}∞n=1, and
put Sm+1 = Sm ∪ P . By (6.2) and (6.20) it derives

f k(Sm) ⊂ B

(
f k−mbn (pn),

1

n

)
for k ∈ Abn , (6.24)

and by (6.2) and (6.3)

f k(P ) ⊂ B

(
f k−mbn (qn),

1

n

)
for k ∈ Abn. (6.25)

Hence, for x ∈ Sm and y ∈ P , Fxy ≤ inf{Fuv; u, v ∈ X} and F ∗
xy ≡ 1 (see the final

part of the proof of the Lemma 6.1). Thus, (6.21) is true for m := m + 1. Finally,
let {dn}∞n=1 ≺ β be such that pdn = qdn for any n, and let αm+1 = {dn}∞n=1. This
implies (6.20) for m := m + 1. Finally, condition (6.22) follows as a consequence
of properties described above.

Finally, the main result, the following theorem, can be proved by using the main
results of [2], [15], and Theorem 6.1.

Theorem 6.2 Any bitransitive map f ∈ C(I , I ) is topologically conjugate to a map
g ∈ C(I , I ) which satisfies the following conditions:

i. g is extremally LYC with LY-scrambled set S with full Lebesgue measure and
S ⊂ R(g)\A(g),

ii. g is ωC and every ω-scrambled set Ω has zero Lebesgue measure and Ω ⊂
R(g)\A(g),

iii. g is dC with d-scrambled setD with full Lebesgue measure andD ⊂ R(g)\A(g).

As a consequence of Theorem 6.1 and a result byA. M. Blokh [8], that any continuous
map of the interval with positive entropy has an iteration which is semiconjugate to
a bitransitive map, the next corollary follows.

Corollary 6.1 Let f ∈ C(I , I ) be a map with positive topological entropy. Then,
for some k ≥ 1, f k is semiconjugate to a map g ∈ C(I , I ) which satisfies the
following conditions:

i. g is extremally LYC with LY-scrambled set S with full Lebesgue measure and
S ⊂ R(g)\A(g),

ii. g is ωC and every ω-scrambled set Ω has zero Lebesgue measure and Ω ⊂
R(g)\A(g),

iii. g is dC with d-scrambled setD with full Lebesgue measure andD ⊂ R(g)\A(g).

Remark 6.1 It is worthy to note that it is possible to construct scrambled sets using
residual relations and Mycielski’s theorem [23], that is the scrambled set consists of
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pairs which are proximal but not asymptotic. Additionally, in a transitive nonminimal
system the set of points (or pairs in a weakly mixing system) which are recurrent but
not almost periodic is residual (points with dense orbit are residual). Now, applying
this to our set adds that additional property to the scrambled set (all points will
be recurrent but not almost periodic). Unfortunately, it is not possible to get the
properties of ω - limit sets, hence ω chaos directly, which makes our construction
essential (for further reading compare with [20] and [24]).
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Chapter 7
On the Concept of Integrability for Discrete
Dynamical Systems. Investigation of Wandering
Points of Some Trace Map

S. S. Bel’mesova and L. S. Efremova

Abstract We extend the concept of integrability suggested by R.I. Grigorchuk for a
polynomial discrete dynamical system to an arbitrary discrete dynamical system in
the plane. This extension makes it possible to reduce an integrable dynamical system
to a dynamical system of the skew products class.

We formulate and prove the criterion for integrability. As the first step of the
investigation of the nonwandering set of the trace map F (x, y) = (xy, (x − 2)2),
which arises in quasicrystal physics, we describe some geometric constructions. We
prove that all points of constructed set are wandering.

7.1 Introduction

Traditionally, the problem of integrability for dynamical systems is of great interest.
In [1], Birkhoff has written: “If we try to formulate the exact definition of integra-
bility, we see that many definitions are possible, and every of them is of specific
theoretical interest.” Therefore, there is a vast bibliography on integrability problem
for dynamical systems. We mention here only three papers [2–4], where different
concepts of integrability for different classes of discrete dynamical systems are sug-
gested. In this chapter, we extend the concept of integrability given for a polynomial
discrete dynamical system in [4] to an arbitrary discrete dynamical system defined
in the plane.

The problem of reducibility of integrable discrete dynamical systems to discrete
dynamical systems of the skew products class has been formulated by R.I. Grigorchuk
in 2002.

Definition 7.1 We say that a map G : Π → Π , where Π ⊆ R2 is a domain in the
plane R2, is an integrable map if there exists a map ψ : J → J , where J ⊆ R1 is an
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interval in the real line R1, such that ψ is semiconjugate with G under a continuous
surjection H̃ : Π → J , i.e., the equality

H̃ ◦G = ψ ◦ H̃ (7.1)

is valid.

Definition 7.1 for integrability of a discrete dynamical system generalizes analogous
definition from paper [4], where polynomial, but not arbitrary, maps G and ψ are
considered. Note also that in Definition 7.1 maps G and ψ can be discontinuous.

In this chapter, we formulate and prove integrability criterion for a continuous
map G : Π → Π defined in a convex domain Π ⊆ R2.

Theorem 7.1 Let G : Π → Π be a continuous map of a compact convex domain
Π ⊆ R2 such that the section of Π (if it is not empty) by every line y = const is a
nondegenerate interval;
ψ : J → J be a continuous map of an interval J ⊆ R1.

Then G is integrable in the sense of Definition 7.1 with a continuous surjection
H̃ : Π → J such that H̃ is injective with respect to x

iff G is reducible under some homeomorphism to a skew product defined on a
compact rectangle in the plane.

Theorem 7.1 gives one of the main technical tools for description of the nonwandering
set of the quadratic map

F (x, y) = (xy, (x − 2)2). (7.2)

In [5–14], a scheme is used that makes it possible to reduce investigation of discrete
Schrödinger equation to investigation of special, so-called trace maps. It is shown in
[7] that study of passing and reflecting coefficients of the plane wave with a given
impulse in the field of a crystal lattice with knots formed Thue–Morse chain, can
be reduced to investigation of the trace map conjugate with map (7.2). Map (7.2) is
included into the family

Fμ(x, y) = (xy, (x − μ)2), where μ ∈ [0, 2].

Different aspects of dynamics of maps from the above one-parameter family for
μ ∈ [0, 2) are investigated in [15–19].

Call attention also on papers [20–23], where some aspects of dynamics of Lotka–
Volterra map are investigated.

The problem of investigation of map (7.2) was tackled by A.N. Sharkovsky
who posted some questions about this map in 1993. The questions formulated by
A.N. Sharkovsky are given below (see [24]).

1. Does map (7.2) possess unbounded ω-limit sets?
2. Is hypotenuse of the invariant triangle Δ = {(x; y) ∈ R2 : x, y ≥ 0, x + y ≤ 4}

an attractor of F (in Milnor sense)?
3. Is the triangle Δ an attractor of F (in Milnor sense)?



7 On the Concept of Integrability for Discrete Dynamical Systems . . . 129

4. Is restriction of map (7.2) on Δ topologically transitive?
5. Are periodic points of F everywhere dense in Δ?

In studying properties of a dynamical system, its set of nonwandering points (the
nonwandering set) plays an important role (see e.g., [25]).

Definition 7.2 Let Φ : X → X be a continuous map of a metric phase space. A
point x ∈ X is a nonwandering point of the map Φ if for every neighborhood U (x)
of x there exists a natural number m such that U (x)

⋂
Φm(U (x)) = ∅. The set Ω(Φ)

of all nonwandering points of Φ is the nonwandering set.

Let us note that the nonwandering set is not empty for a dynamical system with a
compact phase space. If the phase space of a dynamical system is not compact then
any of its point can be wandering. It’s not the case for map (7.2).

We formulate here the complete result concerning the nonwandering set Ω(F ) of
map (7.2). For this goal, we distinguish the following sets on the plane xOy:

1. The closed triangle Δ = {(x; y) ∈ R2 : x, y ≥ 0, x + y ≤ 4}
2. The unbounded set GΔ = {(x; y) ∈ R2 : x, y ≥ 0, x + y ≥ 4}
3. The unbounded set G◦

Δ = {(x; y) ∈ R2 : x, y ≥ 0, x + y > 4}
4. The unbounded set D+∞ = {(x; y) ∈ R2 : x ≥ 3, y ≥ 1}
5. The unbounded set G̃ = G◦

Δ ∩ (
+∞⋃
i=0

F−i(D+∞), where F−i(·) is ith complete

preimage of a set
6. The unbounded set G′ = GΔ\G̃

Theorem 7.2 The nonwandering set Ω(F ) of map (7.2) is the union of the triangle
Δ and perfect nowhere dense in GΔ set G′ satisfying

(2.1) the setG′ is the union of unbounded curves such thatG′∩G◦
Δ isF -completely

invariant local lamination1 of codimension 1 in the set G◦
Δ, in addition, the set of

algebraic curves is everywhere dense in G′;
(2.2) the map F|Δ is topologically mixing, and its periodic points are everywhere

dense in Δ.

Let us note that claim (2.2) of Theorem 7.2 gives a positive answer on 4th and 5th
problems by A.N. Sharkovsky. Point out, for the comparison, that in [22], transitivity
(but not topological mixing) in analogous invariant triangle for Lotka–Volterra map
is proved.

In contrast to the announced result (Theorem 7.2), papers [28] and [29] contain
examples of the polynomial maps that have bounded nonwandering sets.

We divide the proof of Theorem 7.2 in some steps. First, geometric step of the
proof of Theorem 7.2 is fulfilled in this chapter. Reducing of map (7.2) to the skew
product on the unbounded rectangle [0, 4] × [0,+∞), analytic description of the
nonwandering set of map (7.2) based on the concept of weakly nonwandering points
with respect to the family of fibers maps (see [32]) is left to a future paper.

1 One can find the definition of a lamination in the book [26] and the definition of a local lamination
in the book [27]
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In Sect.7.2 of this chapter, we prove the criterion of integrability for a discrete
dynamical system (Theorem 7.1).

In Sects. 7.3 and 7.4, we prove the following geometric result.

Theorem 7.3 The set G̃ is open everywhere dense in GΔ and consists of F -
wandering points. The perfect nowhere dense in GΔ set G′ is the union of unbounded
curves such that G′ ∩G◦

Δ is F -completely invariant local lamination of codimension
1 in the set G◦

Δ, in addition, the set of algebraic curves is everywhere dense in G′.

Our concluding remarks (see Sect. 7.5) are devoted to saddle periodic points of
map (7.2) considered in this chapter.

7.2 Proof of the Integrability Criterion

We begin this part of the work from formulation of the existence theorem for a
nonlocal C1-smooth implicit function [30].

Theorem 7.4 Let a function Φ : (a, b) × (c′, d ′) → R1 defined on a rectangle

(a, b) × (c′, d ′) ⊂ R2

be such that

1. Φ ∈ C1((a, b)× (c′, d ′); R1) (as usually, C1((a, b)× (c′, d ′); R1) means the space
of C1-smooth maps of a rectangle (a, b) × (c′, d ′) into the real line R1);

2. in every point (x; y) ∈ (a, b) × (c′, d ′) satisfying Φ(x; y) = 0 the inequality

∂

∂x
Φ(x; y) = 0 (the inequality

∂

∂y
Φ(x; y) = 0)

is valid; in addition,

pr1({(x; y) : Φ(x; y) = 0}) = (a, b),

pr2({(x; y) : Φ(x; y) = 0}) = (c, d), (c, d) ⊆ (c′, d ′),

where pr1,pr2 are natural projections of the plane R2 on the x-coordinate and
the y-coordinate axes, respectively.

Then there exists a function x = x(y), x(y) ∈ C1((c, d), (a, b)) (a function y = y(x),
y(x) ∈ C1((a, b), (c, d))) satisfying Φ(x(y); y) ≡ 0 for every y ∈ (c, d) (respectively
Φ(x; y(x)) ≡ 0 for every x ∈ (a, b)).

One can find example of the application of Theorem 7.4 for bounded intervals (a, b)
and (c, d) in [31]. In paper [17], Theorem 7.4 is used for the case of unbounded
interval (a, b) or (c, d). In this chapter, we use above Theorem 7.4 in the case when
one of the intervals, (a, b), or (c, d) is unbounded too.

We get over the proof of Theorem 7.1.
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Proof 1. Let a continuous map G : Π → Π be integrable, and a domain Π ⊂
R2 satisfy conditions of Theorem 7.1. Then by Definition 7.1, Theorem 7.4 and
properties of H̃ (see formulation of Theorem 7.1) the following claims are valid:

(i) The set Π
⋂

(J ×{y}) is a nondegenerate interval for every point y ∈ pr2(Π ).
(ii) The complete preimage H̃−1(x) of every point x ∈ J has the unique common

point with every horizontal fiber Π
⋂

(J × {y}).
(iii) The equality H̃−1(x ′)

⋂
H̃−1(x ′′) = ∅ holds for every different points x ′, x ′′ ∈

J .
(iv) The equality Π = ⋃

x′∈J
H̃−1(x ′) is valid.

Hence, the set H̃−1(x ′) for every x ′ ∈ J is the graph (denoted by γx′ ) of some
continuous function x = γx′ (y), and H̃−1(x ′) is the connected set. Thus, by proper-
ties (ii) − (iv) the one-parameter family {γx′ }x′∈J of graphs of the above functions
defines the foliation in domain Π . By equality (7.1), the foliation {γx′ }x′∈J is
invariant: the inclusion G(γx′ ) ⊆ γψ(x′) holds for every x ′ ∈ J .

2. The map θ : ΠxOy → Π ′
uO ′v, where θ is defined by formulas
⎧⎨
⎩

u = H̃ (x, y)

v = y,
(7.3)

is the continuous bijective map of the domain ΠxOy on the domain Π ′
uO ′v. Let us

prove that θ : ΠxOy → Π ′
uO ′v is homeomorphism.

Indeed, since ΠxOy is the compact set, and θ is the continuous map then Π ′
uO ′v is

the compact set; in addition, θ is surjection. All these properties imply the following
property of the map θ : a set A ⊂ Π ′

uO ′v is closed iff the set θ−1(A) is closed. Hence,
θ is mutually continuous map (see [33]). If θ is mutually continuous and bijective
map then θ is a homeomorphism [33].

By formula (7.3), the set θ (γx′ ) is an interval of the straight line u = x ′ for every
x ′ ∈ J . By this property and above property (i), domain Π ′

uO ′v is the rectangle in the
plane.

Denoted by G′, the map corresponding to G in the plane of variables u and v.
Then G′ : Π ′

uO ′v → Π ′
uO ′v; G′ is topologically conjugate with G under θ , i.e.,

G′ = θ ◦G ◦ θ−1.

The first and second coordinate functions of the map G′ are denoted by g′1 and g′2,
respectively. Let us show that g′1 does not depend on the variable v.

In fact, G′ maps every vertical interval Π ′
uO ′v

⋂{(x ′; v) : v ∈ R1} into the ver-
tical interval Π ′

uO ′v
⋂{(ψ(x ′); v) : v ∈ R1}. Let us show that the partial derivative

∂
∂vg

′
1(u, v) exists in every point (u; v) ∈ Π ′

uO ′v and equals 0.
Let (x ′; v′) and (x ′; v) be the arbitrary points of the vertical interval

Π ′
uO ′v

⋂{(x ′; v) : v ∈ R1}. Then, we have

∂

∂v
g′1(u, v) = lim

v→v′
g′1(x ′; v) − g′1(x ′, v′)

v − v′
= lim

v→v′
ψ(x ′) − ψ(x ′)

v − v′
= 0. (7.4)
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Since Π ′
uOv is the convex connected set then by equality (7.4), coordinate function

g′1 of the map G′ does not depend2 on the variable v. Thus, G′ is the skew product
in the plane.3

3. Since every continuous skew product on a rectangle Π = Jx×Jy (Jx , Jy ⊂ R1

are intervals) is semiconjugate under the first natural projection pr1 : Π → Jx with
its quotient map (such that Definition 7.1 is fulfilled) then every skew product is an
integrable map. Theorem 7.1 is proved. �

7.3 Geometric Constructions in GΔ

Geometric constructions of this part of the work can be considered as the special
analog of Denjoy construction (see [34–36]).

1. In this part of § 3, we give the preliminary information that will be used.

The first and second coordinate functions of nth iteration ofF are denoted by fn(x, y)
and gn(x, y), respectively. Then Fn(x, y) = (fn(x, y), gn(x, y)) for every n ≥ 1.

By formula (7.2), the following recurrent relations hold:

fn(x, y) = fn−1(x, y)gn−1(x, y); gn(x, y) = (fn−1(x, y) − 2)2. (7.5)

Using formula (7.5), we obtain

fn(x, y) = f1(x, y)
n−2∏
i=0

(fi(x, y) − 2)2, n ≥ 2; (7.6)

gn(x, y) = (f1(x, y)
n−3∏
i=0

(fi(x, y) − 2)2 − 2)2, n ≥ 3. (7.7)

∂fn(x, y)

∂x
= gn−1(x, y)

∂fn−1(x, y)

∂x
+ fn−1(x, y)

∂gn−1(x, y)

∂x
; (7.8)

∂gn(x, y)

∂x
= 2(fn−1(x, y) − 2)

∂fn−1(x, y)

∂x
. (7.9)

The presentation of the partial derivative ∂fn(x,y)
∂y

(
∂gn(x,y)

∂y

)
can be obtained from the

right side of equality (7.8) (of equality (7.9)) with using of corresponding partial
derivatives with respect to y.

2 Assumption on the convexity of domain Π ′
uOv cannot be omitted.

3 Direct products are considered as elements of the set of skew products dynamical systems.
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Let J (Fn(x, y)) = ∂Fn(x, y)
∂(x;y) and detJ (Fn(x; y)) be Jacobian matrix and Jacobian

of the map Fn, n ≥ 1, respectively.
Let us formulate the main properties of the map F (see e.g., [15, 17]) will be used

for our geometric constructions.

Proposition 7.1 Map (7.2) possesses the properties:

1. The equality detJ (Fn(x; y)) = 0 holds iff coordinates of a point (x, y) satisfy
one of the equations fi(x, y) = 2 for some 0 ≤ i ≤ n − 1, x = 0 or y = 0 for
n ≥ 2; in particular, the set of critical points (critical set) of the map F consists
of two straight lines x = 0 and x = 2.

2. The map F has three fixed points: the flat singular saddle point A1(0; 4) and two
sources A2(3; 1) and A3(1; 1).

3. The following inclusions hold for every open quadrant Ki (i = 1, 2, 3, 4) of the
plane xOy: F (K3) ⊂ K1, F (K4) ⊂ K2 and F (K2) ⊂ K2, F (K1) ⊂ K1, where
(·) means the closure of a set.

4. For every point (x; y) of the unbounded invariant set D+∞ (see §1) the equalities
hold: lim

n→+∞ fn(x, y) = +∞, lim
n→+∞ gn(x, y) = +∞; in addition, restriction

F |D+∞ is diffeomorphism of D+∞ on F (D+∞) ⊂ D+∞.
5. The setD+∞ contains the graph of the C1-smooth strictly increasing function y =

Γ (1)(x) defined on the interval [3,+∞) and such that Γ (1)([3,∞)) = [1,+∞);
moreover, the graph Γ (1) of this function is a F -invariant curve [19].

6. Triangle Δ (see §1) is completely invariant (i.e., the equality F (Δ) = Δ is valid)
such that its legs kx = {(x; 0) : 0 ≤ x ≤ 4} and ky = {(0; y) : 0 ≤ y ≤ 4} satisfy
the equalities F (kx) = ky , F (ky) = (0; 4), in addition, the restriction F|h on its
hypotenuse h is defined by the equality F|h(x, y) = (x(4−x)); (2−y)2) such that
F (h) = h.

7. Hypotenuse h contains:
everywhere dense set of periodic points (the set of their (least) periods coincides
with the set N of natural numbers), in particular, the unique F -periodic orbit
with the (least) period 2 belongs to h; for every natural number l ≥ 1 the subset
of periodic points set with (least) periods ln, n ≥ 1, is everywhere dense in the
periodic points set (and, consequently, in h);
the residual set of points with everywhere dense trajectories,
everywhere dense set of F|h-homoclinic points4; in addition, between every two
homoclinic points to the fixed point A1(0; 4) there exists, at least, one homoclinic
point to the fixed point A2(3; 1), and, vice versa, between every two homoclinic
points to the fixed point A2(3; 1) there exists at least, one homoclinic point to the
fixed point A1(0; 4);
moreover, F |h possesses the property of complete extension: for every interval
J ⊂ h there is a natural number n0 such that F |n0

h (I ) = h.

4 One can find definition of homoclinic points for a map of an interval in [37].
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2. Our next step is to prove that the set G̃ = G◦
Δ ∩ (

+∞⋃
i=0

F−i(D+∞) (see § 1) is open

and is the union of interior points of pairwise disjoint maximal wedge-shaped
domains5 with vertexes in the fixed point A2(3; 1) and in homoclinic points of the
restriction F |h to the fixed point A2(3; 1) such that the interior of every maximal
wedge-shaped domain is a connected component of the set G̃.

Since F |D∞ is the diffeomorphism (see claim 4 of Proposition 7.1) then we use the
boundary ∂D∞ of the set D∞ in our geometric constructions, where

∂D∞ = {(x; y) : x = 3, y ≥ 1}
⋃

{(x; y) : x ≥ 3, y = 1} .
Let us note that

F ( {(x; y) : x = 3, y ≥ 1} ) = {(x; y) : y = 1, x ≥ 3} .
Therefore, the following equality is valid for every n ≥ 1:

∂F−n(D∞) = F−n( {(x; y) : x = 3, y ≥ 1} ) ∪ F−(n−1)( {(x; y) : x = 3, y ≥ 1} ).

Thus, preimages of the ray {(x; y) : x = 3, y ≥ 1} play the most important role in
our geometric constructions.

We begin from the construction of the first connected component of the set G̃

with the vertex in the fixed point A2(3; 1). For this goal, we consider the existence
problem for implicit functions defined by the equations

fn(x, y) = 3, (7.10)

with the initial conditions

fn(3, 1) = 3, n ≥ 1. (7.11)

We use mathematical induction principle. In fact, C1-smooth strictly decreasing
brunches of graphs of functions y = 3/x for x ≥ 3 and y = 3/x(x − 2)2 for
2 < x ≤ 3 give solutions of problem (7.10) with initial condition (7.11) for n = 1
and n = 2 respectively; moreover, the inequalities

∂f1(x, y)

∂x
> 0,

∂f1(x, y)

∂y
> 0

are valid for every point (x; y), x ≥ 3, which lies on the graph of the function
y = 3/x, and the inequalities

∂f2(x, y)

∂x
> 0,

∂f2(x, y)

∂y
> 0

are fulfilled for every point (x; y), 2 ≤ x ≤ 3, which lies on the graph of the function
y = 3/x(x − 2)2.

5 Explanation of the term “maximal wedge-shaped domain” will be given below (after Corollaries 20
and 21).
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Suppose that after n − 1 (n ≥ 4) steps, we constructed C1-smooth strictly de-
creasing nonlocal brunches of implicit functions y = η

A2
i,3 (x), 1 ≤ i ≤ n − 1, such

that each one of them is the solution of the problem fi(x, y) = 3 with the initial
condition fi(3, 1) = 3 (1 ≤ i ≤ n− 1).

If i = 2m, then y = η
A2
i,3 (x) is defined on the interval (2, 3], and the set of its

values equals [1,+∞); in addition, the inequalities

∂fi(x, y)

∂x
> 0,

∂fi(x, y)

∂y
> 0

are fulfilled for every point (x; y), which belongs to the graph η
A2
i,3 of the function

y = η
A2
i,3 (x).

If i = 2m − 1, then the function y = η
A2
i,3 (x) is defined on the interval [3,+∞)

and takes values on the interval (0, 1]; in addition, the inequalities

∂fi(x, y)

∂x
> 0,

∂fi(x, y)

∂y
> 0

are fulfilled in every point (x; y), which belongs to the graph η
A2
i,3 of the function

y = η
A2
i,3 (x). Hence, the inclusion

η
A2
i,3 ⊂ {(x; y) ∈ GΔ : x > 2} (7.12)

holds for every 1 ≤ i ≤ n− 1.
Let us describe nth step. If the fixed point A2(3; 1) is a source then the following

inequalities hold

∂fn(x, y)

∂x
|A2(3;1) > 0,

∂fn(x, y)

∂y
|A2(3;1) > 0.

Thus, there are ε > 0 (let ε be less than 1) and the strictly decreasing implicit function
y = y

A2
loc,n(x) (n ≥ 1), which is the solution of problem (7.10)–(7.11) on the interval

[3, 3+ ε] for odd numbers and on the interval [3− ε, 3] for even numbers. The local
function y = y

A2
loc,n(x) admits extension on the interval [3,+∞) for odd numbers n

and on the interval (2, 3] for even numbers n.
In fact, let us use formulas (7.8) and (7.9) and inclusion (7.12). Then we obtain

that the inequalities
∂fn(x, y)

∂x
> 0,

∂fn(x, y)

∂y
> 0

hold for every point (x; y), x > 2, satisfying (7.10). Then by Theorem 7.4, there
existC1-smooth strictly decreasing nonlocal implicit functionsy = η

A2
n,3(x) satisfying

equation (7.10) with initial condition (7.11); moreover, every function y = η
A2
n,3(x)

is defined on the interval (2, 3] for even n and on the interval [3,+∞) for odd n.
Thus, the following result is obtained.



136 S. S. Bel’mesova and L. S. Efremova

Theorem 7.5 Let F be quadratic map (7.2). Then

1. There are C1-smooth strictly decreasing functions y = η
A2
n,3(x) (n ≥ 1) defined on

the interval (2, 3] for even n (on the interval [3,+∞) for odd n) with the values
on the interval [1,+∞) for even n (on the interval (0, 1] for odd n); moreover,
these functions satisfy the initial condition η

A2
n,3(3) = 1.

2. The graph of every function y = η
A2
2m(x) (m ≥ 1) has the vertical asymptote,

which coincides with the critical line x = 2, in addition, ηA2
2m+2,3 ≺ η

A2
2m,3 on the

interval (2, 3).
3. The graph of every function y = η

A2
2m−1(x) (m ≥ 1) has the horizontal asymptote,

which coincides with the straight line y = 0, in addition, ηA2
2n+1,3 ≺ η

A2
2n−1,3 on

the interval (3,+∞)6.

Claims 2 and 3 of Theorem 7.5 follows immediately from formulas (7.6)–(7.7). Let
[a, 3] ⊂ (2, 3] and [3, b] ⊂ [3,+∞) be arbitrary closed intervals.

Theorem 7.6 Sequences of restrictions

{ηA2
2m,3|[a,3](x)}m≥1 and {ηA2

2m−1,3|[3,b](x)}m≥1

converge on the closed intervals [a, 3] and [3, b] in C1-norm to C1-smooth strictly
decreasing functions y = η

A2
l |[a,3](x) and y = ηA2

r |[3,b](x) respectively.
C1-smooth functions y = η

A2
l (x) with the graph η

A2
l and y = ηA2

r (x) with
the graph ηA2

r are defined on the intervals (2, 3] and [3,+∞) respectively and the
following equalities hold:

F (ηA2
l ) = ηA2

r ,F (ηA2
r ) = η

A2
l

such that
F 2(ηA2

l ) = η
A2
l ,F 2(ηA2

r ) = ηA2
r .

Proof For determination, we give the proof for the sequence {ηA2
2m−1,3|[3,b](x)}m≥1.

1. Using claim 3 of Theorem 7.5 and Weierstrass Theorem (on convergence of a
monotone bounded number sequence) we obtain that pointwise convergence to the
function y = ηA2

r (x) is realized for the functional sequence {ηA2
2m−1,3(x)}m≥1 on the

unbounded interval [3,+∞). It implies the equality F 2(ηA2
r ) = ηA2

r .

2.Let us prove thatC1-smooth functions y = η
A2
2m−1,3(x) are convex on the interval

[3,+∞) for every m ≥ 1. We use mathematical induction principle.
For n = 1, the function η

A2
1,3(x) = 3/x is strictly convex on the interval [3,+∞).

Suppose, that functions y = η
A2
2n−1,3(x) are strictly convex on the interval [3,+∞)

6 We say that η
A2
2m+2,3 precedes η

A2
2m,3 (ηA2

2m+2,3 ≺ η
A2
2m,3) on the interval (2, 3] (ηA2

2m+1,3 precedes

η
A2
2m−1,3 (ηA2

2m+1,3 ≺ η
A2
2m−1,3) on the interval [3,+∞)) if the inequality x2m+2,3 < x2m,3 is correct

for every y ∈ (1,+∞) (the inequality x2m+1,3 < x2m−1,3 is correct for every y ∈ (0, 1)), where
values x2m+2,3 and x2m,3 (values x2m+1,3 and x2m−1,3) are defined uniquely by the equalities y =
η
A2
2m+2,3(x2m+2,3) = η

A2
2m,3(x2m,3) (by the equalities y = η

A2
2m+1,3(x2m+1,3) = η

A2
2m−1,3(x2m−1,3)).



7 On the Concept of Integrability for Discrete Dynamical Systems . . . 137

for all 1 ≤ n ≤ m− 1. Prove that the function y = η
A2
2m−1,3(x) is strictly convex on

the interval [3,+∞). For this goal, we use the geometric criterion of convexity based
on the arrangement of the graph of a differentiable function with respect to tangents
in points of the graph. A differentiable function is strictly convex on an interval iff
every point of the graph of this function, with the exception of the point of contact,
lies above the tangent in this point [38].

Let M = (x; y) be an arbitrary point of the graph η
A2
2m−3,3, and τ(x;y)(η

A2
2m−3,3)

be the tangent to η
A2
2m−3,3 in the point M . By inductive hypothesis, τ(x; y)(η

A2
2m−3,3)

lies below the graph η
A2
2m−3,3 everywhere, with the exception of the point M . Then

the derivative (ηA2
2m−3,3)′x(x) strictly increases from (ηA2

2m−3,3)′(3) up to 0. Therefore,

the tangent τ(x; y)(η
A2
2m−3,3) intersects the graph η

A2
2m−1,3 in some point M ′ = (x ′; y ′)

such that the closed interval [M ,M ′] of the tangent τ(x;y)(η
A2
2m−3,3) belongs to the

unbounded domain between graphs η
A2
2m−1,3 and η

A2
2m−3,3 (see Theorem 7.5).

Differential DF−2 maps the tangent τ(x;y)(η
A2
2m−3,3) on the tangent

τF−2(x; y)(η
A2
2m−1,3) for the graph η

A2
2m−1,3 in the point F−2(x; y).

The map F−2 transforms the closed interval [M ,M ′] of the tangent τ(x;y)(η
A2
2m−3,3)

such that F−2([M , M ′]) is a closed arc of some curve, which lies in the unbounded
domain between graphs η

A2
2m−1,3 and η

A2
2m+1,3. By definition of differential, this

arc is tangent τF−2(x;y)(η
A2
2m−1,3) in the point F−2(x; y). Therefore, there exists a

neighborhood U (F−2(x; y)) of the point F−2(x; y) such that the interval

τF−2(x;y)(η
A2
2m−1,3)

⋂
U (F−2(x; y))

lies below the graph η
A2
2m−1,3

⋂
U (F−2(x; y)) everywhere, with the exception of the

contact point F−2(x; y).
Since the tangent τ(x;y)(η

A2
2m−3,3) for the graph η

A2
2m−3,3 in the point M(x; y) has

the unique common point with η
A2
2m−3,3 then the tangent τF−2(x;y)(η

A2
2m−1,3) for the

graph η
A2
2m−1,3 in the point F−2(x; y) has the unique common point with η

A2
2m−1,3 (it’s

the point F−2(x; y)). Therefore, by the above, the tangent τF−2(x; y)(η
A2
2m−1,3) for the

graph η
A2
2m−1,3 in the point F−2(x; y) lies below the graph η

A2
2m−1,3 everywhere, with

the exception of the point F−2(x; y)). Since M(x; y) is an arbitrary point of the
graph η

A2
2m−3,3, and the equality

η
A2
2m−1,3 = (F|ηA2

2m−1,3
)−2(ηA2

2m−3,3)

holds, then the function y = η
A2
2m−1,3(x) is strictly convex. Thus, C1-smooth functions

y = η
A2
2m−1,3(x) are strictly convex for every m ≥ 1.

3. Let us note that the number sequence {(ηA2
2m−1,3)′(3)}m≥1 decreases and is bounded,

moreover, the inequality

−1 < (ηA2
2m−1,3)′(3) ≤ −1

3
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holds for everym ≥ 1. Let us show that the sequence {(ηA2
2m−1,3)′(x)}m≥1 decreases

with respect to m for every x ∈ (3,+∞).

In fact, by above item 2, the derivative (ηA2
2m−1,3)′(x) strictly increases with respect to

x from (ηA2
2m−1,3)′(3) up to 0. Therefore, the inclusion

E((ηA2
2m−1,3)′) ⊂ E((ηA2

2m+1,3)′)

holds, where E(·) is the set of values of a function (·). Then there exists a point
xm ∈ (3,+∞) satisfying

(ηA2
2m+1,3)′(xm) = (ηA2

2m−1,3)′(3). (7.13)

It implies the inequality

(ηA2
2m+1,3)′(x) < (ηA2

2m−1,3)′(3),

which is valid for every x ∈ (3, xm). On the other hand, by strict convexity of the
function y = η

A2
2m−1,3(x), we have the inequality

(ηA2
2m−1,3)′(x) > (ηA2

2m−1,3)′(3).

Consequently, the inequality

(ηA2
2m+1,3)′(x) < (ηA2

2m−1,3)′(x)

holds for every x ∈ (3, xm).
If x = xm then by equality (7.13) and by strict convexity of the function y =

η
A2
2m−1,3(x) the inequality

(ηA2
2m+1,3)′(xm) < (ηA2

2m−1,3)′(xm) (7.14)

is fulfilled.
Let x > xm. Then by previous inequality (7.14) and by strict convexity of the

function y = η
A2
2m−1,3(x), the equality

(ηA2
2m+1,3)′(x) = (ηA2

2m−1,3)′(x ′)

is fulfilled for some x ′ < xm. Using strict increase with respect to x of the derivative
(ηA2

2m−1,3)′(x) of the strict convex function y = η
A2
2m−1,3(x), we obtain from here the

inequality
(ηA2

2m+1,3)′(x) < (ηA2
2m−1,3)′(x).

Thus, it is proved that the sequence {(ηA2
2m−1,3)′(x)}m≥1 decreases with respect to m

for every x ∈ [3,+∞).
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4. Hence, by above item 3, the sequence of derivatives y = (ηA2
2m−1,3)′(x) (m ≥ 1)

converges pointwisely on the unbounded interval [3,+∞) to some nonincreasing
function y = κ(x). Let us prove that

κ(x) = (ηA2
r )′(x)

for every x ∈ [3,+∞).

Let x be an arbitrary point of the interval [3,+∞). Use arcs of tangent curves
(denote these arcs by κm) for graphs of functions y = η

A2
2m−1,3(x) (m ≥ 2) in the

points (x, ym) ∈ η
A2
2m−1,3 (see item 2 of this proof). Since arcs κm lie between the

graphs η
A2
2m+1,3 and η

A2
2m−1,3 then by item 3 there exists a right-side neighborhood of

the point x ∈ [3, +∞), where every function y = κm(x) is defined (the arc κm is the
graph of this function for m ≥ 2). Thus, there exists the finite limit

lim
m→+∞ κm(x) = κ∗(x).

The angle between the graph η
A2
2m−1,3 and the arc κm in the point (x, ym)is denoted

by αm. By item 2, the equality αm = 0 holds for every m ≥ 2. Therefore, the angle
between κ∗ and ηA2

r in the point (x, ηA2
r (x)) equals 0 too. Using definition of the angle

between two differentiable curves and the equality

(κm)′(x) = (ηA2
2m−1,3)′(x)(m ≥ 2),

we obtain
(κ∗)′(x) = κ(x) = (ηA2

r )′(x).

Hence, it is proved that

κ(x) = (ηA2
r )′(x) for every x ∈ [3,+∞). (7.15)

5. Monotone function y = κ(x) either is continuous, or admits discontinuity points
of first kind. On the other hand, y = κ(x) as the derivative of the function
y = ηA2

r (x) (see equality (7.15)) either is continuous, or admits discontinuity
points of second kind. It means that the derivative (ηA2

r )′(x) is continuous.

6. Thus, by Dini Theorem [38], the sequence of restrictions {ηA2
2m−1,3|[3,b](x)}m≥1

uniformly converges inC1-norm on the closed interval [3, b] toC1-smooth strictly
decreasing function y = ηA2

r |[3,b](x).

7. Analogous considerations for the functional sequence {ηA2
2m,3(x)}m≥1 show that

the sequence of restrictions {ηA2
2m,3|[a,3](x)}m≥1 converges on every closed in-

tervals [a, 3] ⊂ (2, 3] in C1-norm to C1-smooth strictly decreasing function
y = η

A2
l |[a,3](x); in addition, C1-smooth function y = η

A2
l (x) with the graph

η
A2
l is defined on the intervals (2, 3], and the following equalities hold:

F (ηA2
l ) = ηA2

r ,F (ηA2
r ) = η

A2
l such that F 2(ηA2

l ) = η
A2
l .
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Theorem 7.6 is proved. �

Let us formulate important Corollaries of Theorem 7.6.
Eigenvalues λ1(A2) , λ2(A2) of differential DF in the fixed point A2 take values

λ1(A2) = 3, λ2(A2) = −2. Eigenvector qλ2(A2) = (−1√
2
; 1√

2
) corresponds to the least

eigenvalue λ2(A2) and lies on the hypotenuse h of the triangle Δ.
Using Theorem 7.6 and the limit equality lim

n�→+∞ |( λ2
λ1

)n| = 0, we obtain

Corollary 7.1 Union of graphs ηA2
l ∪ ηA2

r of two strictly decreasing functions such
that y = η

A2
l (x) is defined on the interval (2, 3] and takes values on the interval

[1,+∞), y = ηA2
r (x) is defined on the interval [3,+∞) and takes values on the

interval (0, 1], is C1-smooth F -invariant curve, which is tangent hypotenuse h of
triangle Δ in the point A2(3; 1).

The graph η
A2
l has the vertical asymptote x = 2, and the graph ηA2

r has the
horizontal asymptote y = 0.

Since the graphs ηA2
l and ηA2

r are C1-smooth curves then these curves are measurable
on the closed intervals [a, 3] and [3, b] respectively. Therefore, the following claim
is valid.

Corollary 7.2 The graphsηA2
l andηA2

r admit parametrization with the use of natural
parameter s with the origin in the fixed point A2 such that ηA2

l is represented in the
form x = η1

l,A2 (s), y = η2
l,A2 (s); and ηA2

r is represented in the form x = η1
r ,A2 (s),

y = η2
r ,A2 (s), where x = η1

p,A2 (s), y = η2
p,A2 (s) (p = l, r) are C1-smooth

functions on the interval [0,+∞).

Corollary 7.3 Let M0 ∈ h be F -periodic point with the (least) period m ≥ 1. Let
{Mn}n≥1 ⊂ h be a monotone sequence of points convergent to M0 on hypotenuse h

(in particular, the equality Mn = M0 (n ≥ 1) can be valid). Let γMn
⊂ GΔ be a

continuous curve beginning from the point Mn for every n ≥ 1 such that curves of
the set {γMn

}n≥1 are pairwise disjoint in intGΔ. Let the equality Fm(γMn
) = γMn−1

(or Fm(γMn−1 ) = γMn
) be valid. Then the pointwise limit of the sequence of curves

{γMn
}n≥1 is Fm-invariant set, which contains the initial point M0.

Denote by Hmax
0 (A2) the closed unbounded domain, which contains the set D+∞

and has the boundary ∂Hmax
0 (A2) satisfying the equality

∂Hmax
0 (A2) = η

A2
l ∪ ηA2

r . (7.16)

Definition 7.3 DomainHmax
0 (A2) is called the maximal wedge-shaped domain with

the vertex in the fixed point A2.

Let us consider connected components of kth (k ≥ 1) complete preimage (with
respect toF ) of the maximal wedge-shaped domainHmax

0 (A2) and construct maximal
wedge-shaped domains with vertexes in F |h-homoclinic points for the fixed point
A2(3; 1). For this goal, we introduce the concept of the order of a homoclinic point.
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Fig. 7.1 Maximal wedge-shaped domains Hmax
0 (A2), Hmax

1 (A1
1) è Hmax

2 (A4
2) with the vertexes in

the fixed point A2 and in the homoclinic points A1
1 and A4

2, respectively

Definition 7.4 Let (x; y) be a F |h-homoclinic point for a fixed point (x∗; y∗).
The least natural number n such that Fn(x, y) = (x∗; y∗) is called the order of a
homoclinic point (x; y).

As it follows from Definition 7.4, the equality Fk(x, y) = (x∗; y∗) holds for every
k ≥ n. By claim 6 of Proposition 7.1, the complete preimage of kth order (k ≥ 1) of
the fixed point A2(3; 1) with respect to the restriction F |h consists of (2k − 1) F|h-
homoclinic points for the fixed point A2(3; 1) and the fixed point A2(3; 1). Denote
by {Ai

k(xAi
k
; yAi

k
)}1≤i≤2k−1 the set of F|h-homoclinic points of an order k ≥ 1 for the

fixed point A2(3; 1).

Definition 7.5 The unbounded domain Hmax
k (Ai

k) is said to be the maximal
wedge-shaped domain with the vertex in a homoclinic point Ai

k of order k ≥ 1,
i ∈ {1, 2, . . ., 2k − 1}, if Hmax

k (Ai
k) is a connected component of kth complete

preimage of Hmax
0 (A2) contained F|h-homoclinic point Ai

k .

By claim 4 of Proposition 7.1, Definitions 7.3 and 7.5 the following statement holds.

Corollary 7.4 Every point

(x; y) ∈ (intHmax
0 (A2))

⋃ +∞⋃
k=1

2k=1⋃
i=1

(intHmax
k (Ai

k))
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possesses the property:

lim
n→+∞ fn(x; y) = lim

n→+∞ gn(x; y) = +∞.

Using claim 4 of Proposition 7.1 and Definitions 7.3 and 7.5, we obtain that the
map (F |Hmax

k (Ai
k ))

k is C1-diffeomorphism of the set Hmax
k (Ai

k) on the set Hmax
0 (A2).

Therefore, (F |Hmax
k (Ai

k ))
−k maps the interior intHmax

0 (A2) of the set Hmax
0 (A2) on the

interior intHmax
k (Ai

k) of the set Hmax
k (A2) and the boundary ∂Hmax

0 (A2) of the set
Hmax

0 (A2) on the boundary ∂Hmax
k (Ai

k) of the set Hmax
k (A2).

Lemma 7.1 (F |Hmax
1 (A1

1))
−1(ηA2

l ) and (F |Hmax
1 (A1

1))
−1(ηA2

r ) are C1-smooth curves
given by formulas

x = η1
p,A1

1 (s), y = η2
p,A1

1 (s), s ∈ [0,+∞) (p = l, r)

with the use of natural parameter s; moreover, these curves intersect each other in
the unique point A1

1 such that one of them has asymptote x = 0, and the other has
asymptote x = 2.

Proof In fact, using formula (7.5), we obtain the system
⎧⎨
⎩
η1

p,A1
1 (s)η2

p,A1
1 (s) = η1

p,A2 (s),

(η1
p,A1

1 (s) − 2)2 = η2
p,A2 (s),

where s ∈ [0,+∞), p = l, r . Using this system, we find the unique solution

η1
p,A1

1 (s) = 2 −
√
η2

p,A2 (s), η2
p,A1

1 (s) = η1
p,A2 (s)

2 −√η1
p,A2 (s)

,

corresponding to the boundary of the domain Hmax
1 (A1

1) with the vertex in the
homoclinic point A1

1(1; 3).
As it follows from the last formulas, every function x = η1

p,A1
1 (s) and y =

η2
p,A1

1 (s), s ∈ [0, +∞) (p = l, r) is a C1-smooth function of variable s. With the
use of Corollary 7.1, we obtain from here that one of the constructed curves has
asymptote x = 0, and the other has asymptote x = 2. Lemma 7.1 is proved. �

Corollary 7.5 (F |Hmax
0 (A2))−k(ηA2

l ) and (F |Hmax
0 (A2))−k(ηA2

r ) (k ≥ 1) areC1-smooth
curves, which form the boundary of the domain Hmax

k (Ai
k); in addition, these curves

are defined by the parametric equations

x = η1
p,Ai

k (s), y = η2
p,Ai

k (s); s ∈ [0,+∞)(p = l, r).

Let us study the mutual disposition of curves forming the boundary of every domain
Hmax

k (Ai
k), k ≥ 1, 1 ≤ i ≤ 2k − 1.
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Let DΦ be differential of an arbitrary smooth map Φ : R2 → R2. Then

DΦ : T(x;y) → TΦ(x,y),

where T(·) is the tangent space for R2 in a point (·) ∈ R2. Therefore, Corollary 7.1
and invariance of hypotenuse h imply the following statement.

Corollary 7.6 Every curve (F |Hmax
k (Ai

k ))
−k(ηA2

l ) and (F |Hmax
k (Ai

k ))
−k(ηA2

r ) (k ≥ 1) is
tangent hypotenuse h.

Let us use the invariant curve Γ (1) ⊂ D+∞ ⊂ Hmax
0 (see claim 5 of Proposition 7.1),

which is tangent to the eigenvector (of the differential DF in the fixed point A2)
(3/

√
13; 2/

√
13) ⊂ D+∞. Then the inclusion

(F|Hmax
k (Ai

k ))
−k(Γ (1)) ⊂ Hmax

k (Ai
k)

holds for every k ≥ 1, i ∈ {1, . . ., 2k − 1}; in addition, there exists an interval of the
tangent for the curve (F|Hmax

k (Ai
k ))

−k(Γ (1)), which contains the point Ai
k and lies in

the unbounded domain Hmax
k (Ai

k).
This property with Theorem 7.6 and Corollary 7.1 proves the following claim.

Corollary 7.7 There exists a neighborhood U (Ai
k) of every point Ai

k (k ≥ 1, i ∈
{1, . . ., 2k − 1}) such that for every point (x; y) ∈ U (Ai

k), (x; y) = Ai
k , which

lies either on the curve (F |Hmax
k (Ai

k ))
−k(ηA2

l ) or on the curve (F |Hmax
k (Ai

k ))
−k(ηA2

r ), the
inequality x < xAi

k
holds, and on the other curve the inequality x > xAi

k
holds,

where xAi
k

is the abscissa of the point Ai
k .

We denote by l−k
l (Ai

k) and by l−k
r (Ai

k) first and second curve respectively indicated
in Corollary 7.7. Thus, we have

∂Hmax
k (Ai

k) = l−k
l (Ai

k) ∪ l−k
r (Ai

k). (7.17)

Denote by l0l (A2) and by l0r (A2) graphs of the functions y = η
A2
l (x) and y = ηA2

r (x)
respectively. Hence, equality (7.16) can be written in the form

∂Hmax
0 = l0l (A2) ∪ l0r (A2). (7.18)

By Corollary 7.1 and Lemma 7.1, the maximal wedge-shaped domains Hmax
0 and

Hmax
1 lie from different sides of the critical line x = 2 such that

Hmax
1 (A1

1) ∩Hmax
0 (A2) = ∅.

Then by Definition 7.5, the following statement is correct.

Corollary 7.8 The maximal wedge-shaped domains

{Hmax
0 (A2),Hmax

k (Ai
k)}k≥1,i∈{1,...,2k−1}

are pairwise disjoint, and the equalities hold:

F (Hmax
1 (A1

1)) = Hmax
0 (A2),F (Hmax

k (Ai
k)) = Hmax

k−1 (Aj

k−1)

for some j , 1 ≤ j ≤ 2k−1 − 1.
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Since the restrictions F |Hmax
k

(Ai
k) and F |Hmax

0
(A2) are diffeomorphisms then we

immediately obtain the claim.

Corollary 7.9 The curves l−k
l (Ai

k) and l−k
r (Ai

k) (k ≥ 1, i ∈ {1, 2, · · ·, 2k − 1}) are
pairwise disjoint in intGΔ, and the following equality

Fk(l−k
l (Ai

k) ∪ l−k
r (Ai

k)) = l0l (A2) ∪ l0r (A2)

holds.

Results of this part of the chapter prove the following statement.

Lemma 7.2 The set G̃ is open, and the equality

G̃ = (intHmax
0 (A2))

⋃ +∞⋃
k=1

2k−1⋃
i=1

(intHmax
k (Ai

k))

holds.

7.4 Geometric Assistance of the Proof of Theorem 7.3

1. We begin this section from the construction of parts of preimages of the critical
line x = 0 (x = 2), which belongs to GΔ. Let us consider the problem

fm(x, y) = 2 (7.19)

with initial conditions

fm(x
B

j
m

, y
B

j
m

) = 2, (7.20)

where {Bj
m(x

B
j
m

; y
B

j
m

)}m≥1,j∈{1,...2m−1} is the set ofF |h – homoclinic points of order

m for the saddle A1(0; 4), Bj
m = (4; 0).

Lemma 7.3 There exist C1-smooth unbounded algebraic curves ϕB
j
m defined by

parametric equations

x = ϕ
B

j
m

1 (s), y = ϕ
B

j
m

2 (s), s ∈ [0,+∞),

moreover, each of these curves is the solution of equation (7.19) (m ≥ 3) with initial
conditions (7.20).

Proof Both coordinates of every homoclinic point Bj
m (m ≥ 1, j ∈ {1, . . . 2m − 1})

are the simple roots of the equationfm(x, 4−x) = 2 andfm(4−y, y) = 2 respectively
(see item 6 of Proposition 7.1). Therefore, the following inequalities are valid:

∂fm(x
B

j
m

, y
B

j
m

)

∂x
= 0,

∂fm(x
B

j
m

, y
B

j
m

)

∂y
= 0.

Then conditions of the local existence theorem for C1-smooth implicit function are
fulfilled in every homoclinic point Bj

m. By claim 1 of Proposition 7.1 the inequality
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DFm(x, y) = 0 holds on the connected components of algebraic curves defined by
the equation fm(x, y) = 2. Therefore, the inequality

(
∂fm(x, y)

∂x

)2

+
(
∂fm(x, y)

∂y

)2

= 0

is valid for these points (x; y). The algebraic equations

∂fm(x, y)

∂x
= 0 (7.21)

and

∂fm(x, y)

∂y
= 0 (7.22)

have a finite set of solutions.
Let us use the version of the local existence theorem for C1-smooth implicit

function from [39], which admits vanishing of one partial derivative ∂fm(x,y)
∂x

or ∂fm(x,y)
∂y

on a finite set of points. Then we obtain that in some neighborhood of every root of
the equations (7.21) or (7.22), there exists a local implicit function of the variable x

(if ∂fm(x,y)
∂y

= 0) or the variable y (if ∂fm(x,y)
∂x

= 0). Thus, the finite union of graphs

of C1-smooth implicit functions of either the variable x or the variable y is C1-
smooth unbounded algebraic curve, which is the solution of equation (7.19) with
initial condition (7.20).

Every constructedC1-smooth curve admits parametrization with the use of natural
parameter s ∈ [0,+∞) such that

x = ϕ
B

j
m

1 (s), y = ϕ
B

j
m

2 (s).

Lemma 7.3 is proved. �

Unbounded C1-smooth algebraic curves constructed in Lemma 7.3 are connected
components of intersection of the stable manifold of the saddle A1(0; 4) with GΔ.

Corollary 7.10 For every m ≥ 1 and j ∈ {1, . . ., 2m − 1} , there are natural

numbers m1 ≥ 1 and j1 ∈ {1, . . ., 2m1 − 1} such that ϕB
j1
m1 = F2(ϕB

j
m ).

Corollary 7.11 Any curves ϕB
j (m1)
m1 and ϕB

j (m2)
m2 (j (m1) = j (m2) for m1 = m2)

starting from different points of the set {(F |h)−j (A1)}j≥0 do not intersect each other
in the set GΔ.

Using Theorem 7.6, Lemma 7.3, and claim 7 of Proposition 7.1 we obtain the
statement.

Corollary 7.12 Any curves starting from different points of the set

{(F |h)−j (A1)}j≥0 ∪ {(F |h)−k(A2)}k≥0

do not intersect each other in GΔ2 .
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Between every two curves starting from points of the set {(F |h)−j (A1)}j≥0 there
exists at least one maximal wedge-shaped domain with the vertex in a point of the
set {(F |h)−k(A2)}k≥0;

and between two curves starting from different points of the set {(F |h)−k(A2)}k≥0

there exists at least one curve starting from a point of the set {(F |h)−j (A1)}j≥0.

Using Lemma 7.3 and formulas (7.6) and (7.7), we obtain

Corollary 7.13 Every curve ϕB
j
m (m ≥ 1) has asymptote x = 0 or x = 2 if

x
B

j
m
∈ (0, 2); asymptote x = 2 if x

B
j
m
∈ (2, 3); and asymptote y = 0 if x

B
j
m
∈ (3, 4).

2. Let us obtain the complement information concerning a mutual disposition of
curves constructed above. First, we consider the part of the critical line C0, which
lies in domain GΔ. Since A1(0; 4) is a source of the restriction F |h then by
claim 7 of Proposition 7.1 there is a sequence of homoclinic points B

j
m (m ≥ 1,

1 ≤ j ≤ 2m − 1) for the fixed point A1 satisfying

F (Bj (m)
m ) = B

j (m−1)
m−1 , (m ≥ 2); moreover, lim

m→+∞Bj (m)
m = A1. (7.23)

By Lemma 7.3, there are unbounded C1-smooth curves ϕB
j
m given by parametric

equations x = ϕ
B

j
m

1 (s), y = ϕ
B

j
m

2 (s), s ∈ [0,+∞), which are nonlocal solutions of
equation (7.19) with initial condition (7.20).

Take an arbitrary s∗ ∈ (0,+∞). Consider the space 2Γs∗ of all closed C1-smooth
arcs parametrized by natural parameter s ∈ [0, s∗], which lie in the set GΔ, start from
points of hypotenuse h. Endow the space 2Γs∗ with Hausdorff metric dist (see [33]).
Remind that

dist(γ1|[0,s∗], γ2|[0,s∗]) =
= max{ sup

(x;y)∈γ1 |[0,s∗]

ρ((x; y), γ2|[0,s∗]), sup
(x;y)∈γ2 |[0,s∗]

ρ((x; y), γ1|[0, s∗])}

for any closed arcs γ1|[0,s∗], γ2|[0, s∗] ⊂ GΔ, where

ρ((x1; y1), (x2; y2)) = max {|x1 − x2| , |y1 − y2|} .
The closed arc of the C1-smooth curve ϕB

j
m corresponding to the closed interval

[0, s∗] is denoted by ϕB
j
m,s∗ . Then x = ϕ

B
j
m,s∗

1 , y = ϕ
B

j
m,s∗

2 .

Let us show that a sequence of arcs {ϕB
j
m,s∗ }m≥1 starting from homoclinic points

B
j
m and satisfying the second equality (7.23) converges to the segment of ordinate

axes
x(s) = 0, y(s) = s, s ∈ [0, s∗], 7

with respect to Hausdorff metric in the space 2Γs∗ .

7 The equality (x
′
(s))2 + (y

′
(s))2 = 1 holds for an arc of a curve parametrized by natural parameter

s ∈ [0, s∗]. Therefore, the segment of y-axes starting from the point A1 and corresponding to the
parameter value s∗ is defined parametrically in the form x(s) = 0, y(s) = s, s ∈ [0, s∗]. Analogously,
the closed interval of x-axes starting from the point (4; 0) and corresponding to the parameter value
s∗ is given parametrically in the form x(s) = s, y(s) = 0, s ∈ [0, s∗].
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Denote by ϕ0,s the segment x(s) = 0, y(s) = s, s ∈ [0, s∗].

Lemma 7.4 The equality

lim
m→+∞ dist(ϕB

j
m,s∗

1 ,ϕ0,s) = 0

holds.

Proof In fact, A1(0; 4) is the saddle of the map F such that one of its eigenvectors
corresponding to λ1(A1) = 0 belongs to y-axes, and the other (corresponding to
λ2(A1) = 4) belongs to hypotenuse h. Therefore, there is a relative δ - neighborhood
Uδ in the set GΔ of the segment x(s) = 0, y(s) = s, s ∈ [0, s∗], defined by the
equality

Uδ = GΔ ∩ ((0, δ] × [4 − δ, 4 + δ])

such that the restriction (F |Uδ
)−1 : F (Uδ) �→ Uδ is the diffeomorphism contracting

along the hypotenuse not less than in 3 times and expanding along y-axis not less
than in 10 times. The set Uδ ∩ F−1(Uδ) is the proper subset of Uδ , which contains
the segment [0, δ∗] × {4 + δ} for some 0 < δ∗ ≤ δ

3 . Thus, the following inclusions

Uδ ⊃ Uδ ∩ (F |Uδ
)−1(Uδ) ⊃ . . . ⊃ Uδ ∩ (F |Uδ

)−n(Uδ) ⊃ . . . (7.24)

hold for every n ≥ 1. Then by [33] there is the topological limit

Lim
n→+∞Uδ ∩ (F |Uδ

)−n(Uδ) = {0} × [4, 4 + δ].

Using second equality (7.23) we find a natural numberm0 such that for everym ≥ m0

the following properties hold:

Bj (m)
m ∈ Uδ and ϕB

j
m,s∗ ∩ Uδ = ∅.

Then using equalities (7.23) we indicate m1 ≥ m0 such that the inequality

ϕB
j
m,s∗ ∩ ([4, 4 + δ] × {4 + δ}) = ∅

holds for every m ≥ m1. Using Lemma 7.3 and [33], we receive that there exists the

topological limit Lim
m→+∞ϕB

j
m,s∗ = {0} × [4, 4 + δ]. It implies the equality (see [33])

lim
m→+∞ dist(ϕB

j
m,s∗

1 ,ϕ0,s) = 0.

Lemma 7.4 is proved. �

Using uniform continuity of F on compact sets, Lemma 7.4, and Corollary 7.10 we
obtain the following statement.
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Corollary 7.14 Let {Bj
m}m≥1 be a sequence convergent to the point (4; 0). Then the

equality

lim
m→+∞ dist(ϕB

j
m,s∗

2 ,ϕs,0) = 0

holds.

Take an arbitrary homoclinic point Bj∗
m∗ (m∗ ≥ 1, j ∗ ∈ {1, . . ., 2m∗ − 1}) for the fixed

pointA1. Then by claim 7 of Proposition 7.1, there is a sequence of homoclinic points
{Bj

m}m≥1 (j = j (m), j ∈ {1, . . ., 2m − 1}) satisfying the equality lim
m→+∞B

j
m = B

j∗
m∗ .

Using Lemma 7.4, we obtain the following claim.

Corollary 7.15 The equality

lim
m→+∞ dist(ϕB

j
m,s∗ ,ϕB

j∗
m∗ ,s∗ ) = 0

holds for every sequence of homoclinic points {Bj
m}m≥1 convergent to the homoclinic

point Bj∗
m∗ .

Lemma 7.4, Corollaries 7.14, 7.15, and [33] imply the statement.

Corollary 7.16 In conditions of Lemma 7.4, Corollary 7.14 or Corollary 7.15 there

exists the topological limit Lim
m→+∞ϕB

j
m,s∗ . Moreover, in conditions of Lemma 7.4 the

equality Lim
m→+∞ϕB

j
m,s∗ = ϕ0,s is valid; in conditions of Corollaries 7.14 and 7.15 the

equalities Lim
m→+∞ϕB

j
m,s∗ = ϕs,0 and Lim

m→+∞ϕB
j
m,s∗ = ϕB

j∗
m∗ ,s∗ hold respectively.

Corollary 7.17 The set of the curves

{{ϕB
j
m,s∗ }m≥1,j∈{1,... ,2m−1},ϕ0,s , ϕs,0, }s∈[0,s∗]

is dense in itself with respect to Hausdorff metric dist in the space 2Γs∗ for every
s∗ ∈ [0,+∞).

We denote the closed arcs of the curves l0l (A2), l0r (A2), l−k
l (Ai

k), l−k
r (Ai

k) by l
0,s∗
l (A2),

l0, s∗
r (A2), l−k, s∗

l (Ai
k), l−k, s∗

r (Ai
k) respectively, corresponding to the natural parameter

s ∈ [0, s∗].
Using Corollaries 7.12 and 7.17, we obtain the following claim.

Corollary 7.18 The set of the curves

{{ϕB
j
m,s∗ }m≥1,j∈{1,... ,2m−1},ϕ0,s , ϕs,0, }s∈[0,s∗]

is contained in the closure (with respect to Hausdorff metric dist in the space 2Γs∗ )
of the set of the curves

{l0,s∗
l (A2), l0,s∗

r (A2), l−k,s∗
l (Ai

k), l−k,s∗
r (Ai

k)}k≥1,1≤i≤2k−1,s∈[0,s∗].
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3. In this part of the chapter, we prove the inverse inclusion (with respect to the
inclusion indicated in Corollary 7.18), i.e., we prove that the set of the curves

{l0,s∗
l (A2), l0,s∗

r (A2), l−k,s∗
l (Ai

k), l−k,s∗
r (Ai

k)}k≥1,1≤i≤2k−1,s∈[0,s∗]

is contained in the closure of the set of the curves

{{ϕB
j
m,s∗ }m≥1,j∈{1,...,2m−1}, ϕ0,s , ϕs,0, }s∈[0,s∗].

In fact, since A2(3; 1) is a source of F then by claims 6 and 7 of Proposition 7.1 for
every k ≥ 1 there exists i ′(k) ∈ {1, . . ., 22k−1} such that the sequence of homoclinic
points {Ai′

2k}k≥1 for the fixed point possesses the properties:

(i) The sequence {x
Ai′

2k
}k≥1 decreases

(ii) F 2(Ai′(k)
2k ) = A

i′(k−1)
2(k−1) , k ≥ 1

(iii) lim
k→+∞A

i′(k)
2k = A2

Consider the sequence of the unbounded arcs {ηAi′
2k

2k,3}k≥1 such that each one of them
is the C1-smooth extension (through the triangle Δ) into the set GΔ of the graph
η
A2
2k,3 (of the corresponding C1-smooth function y = η

A2
2k,3(x)) starting from the fixed

point A2 and belonging to the strip {(x; y) : 2 < x ≤ 3, x + y ≥ 4}. We have for
k = 1:

η
A2
2,3(x) = 3

x(x − 2)2
and(ηA2

2,3)
′′
(x) = 12x(3x2 − 4x + 2)

x4(x − 2)4
.

Hence, the curve η
A3

2
2,3 (for k = 1 the equality i

′ = 3 holds) is the graph of the

C1-smooth strictly decreasing convex function y = η
A3

2
2,3(x) with the initial condition

η
A3

2
2,3(xA3

2
) = yA3

2
.

Using mathematical induction principal and repeating arguments of the proof of
Theorems 7.5 and 7.6 we make sure of the correctness of the claim.

Lemma 7.5 There is a natural number k0 ≥ 1 such that for every k ≥ k0 the

unbounded arcs η
Ai′

2k
2k,3 ⊂ GΔ starting from homoclinic points Ai′

2k are the graphs of

the C1-smooth decreasing convex functions y = η
Ai

′
2k

2k,3(x).

Using the method described in the proof of Theorem 7.6; we obtain the following
statement.

Lemma 7.6 The sequence of restrictions {ηAi
′

2k
2k,3|[3,b]}k≥1 on an arbitrary closed in-

terval [3, b] converges in C1-norm to the C1-smooth decreasing convex function
y = l∗,A2

r |[3,b](x).

Corollary 7.19 There exists the C1-smooth strictly decreasing convex function y =
l∗,A2
r (x) (with the graph l∗,A2

r ), which is extension of the function y = l∗,A2
r |[3,b](x)

on the interval [3,+∞); in addition, the function y = l∗,A2
r (x) has the horizontal
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asymptote y = 0, and the graphs of the functions y = l∗,A2
r (x) and y = ηA2

r intersect
each other in the fixed point A2. Moreover, l∗,A2

r is F 2-invariant curve.

Prove the following statement.

Lemma 7.7 The equality l∗,A2
r = l0r (A2) holds.

Proof Suppose the contrary. Let the inequality l∗,A2
r = l0r (A2) hold. It means that

the inequality l∗,A2
r (x) < ηA2

r (x) is valid for every x > 3. If not, then the map F 2 has
the fixed point in intGΔ. It contradicts claims 2 and 7 of Proposition 7.1.

Let a number c satisfy the inequality c > 3. Denote by Vc the domain bounded by
the arcs of the curves l∗,A2

r , l0r (A2) for x ∈ [3, c] and by the nondegenerate vertical
closed interval {c}× [l∗,A2

r (c), ηA2
r (c)]. By Lemma 7.6, Corollaries 7.12 and 7.19 the

restriction F 2|Vc
is the diffeomorphism.

By the definition of the curve l0r (A2) the inequality ηA2
r (c) < 1 holds for every

c > 3. Then we have:

3 < 2 +
√

1

η
A2
r (c)

.

Hence, we can choose a number c satisfying the inequality

3 < c < 2 +
√

1

η
A2
r (c)

(7.25)

such that the inequality

||D(F 2|Vc
)−1|| < 1

2
(7.26)

holds for the maximal row norm of the differential of the map (F 2|Vc
)−1. Cor-

rectness of (7.26) follows immediately from the equality ||DF 2(A2)|| = 10. By
inequality (7.26) the following inclusion is valid:

(F 2|Vc
)−1(Vc) ⊂ Vc

and, in particular,

(F 2|Vc
)−1({c} × [l∗,A2

r (c), ηA2
r (c)]) ⊂ Vc.

Since F 2|Vc
is the diffeomorphism, then the arc

(F 2|Vc
)−1({c} × [l∗,A2

r (c), ηA2
r (c)]) (7.27)

has the unique common point both with the curve l∗,A2
r and with the curve ηA2

r ;
moreover, these points are different.

At the same time, (7.27) is the arc of the graph of function y = c

x(x−2)2 for x > 3.

Let us note that y(3) = c
3 , where y(3) > 1; and y(c) = 1

(c−2)2 . Since c satisfies the
inequality (7.25), and the function y = c

x(x−2)2 strictly decreases for x > 3, then the
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arc (7.27) does not intersect with the closed domain Vc. Thus, our assumption is not
valid, and the equality l∗,A2

r = l0r (A2) is fulfilled. Lemma 7.7 is proved. �

Take an arbitrary homoclinic point Ai∗(k∗)
k∗ for the fixed point A2. By Lemma 7.7 and

Corollary 7.12, the following statement holds.

Corollary 7.20 Let a sequence of homoclinic points {Ai
k}k≥1 or {Bj

m}m≥1 converges

to the homoclinic point Ai∗(k∗)
k∗ from the right (from the left). Then, the sequences of

arcs {l−k,s∗
r (Ai

k)} and {l−k,s∗
l (Ai

k)} or {ϕB
j
m,s∗ } satisfy the equalities:

lim
k→+∞ dist(l−k,s∗

r (Ai
k), l−k∗,s∗

r (Ai∗
k∗ )) = lim

k→+∞ dist(l−k,s∗
l (Ai

k), l−k∗,s∗
r (Ai∗

k∗ )) = 0,

or
lim

k→+∞ dist(ϕB
j
m,s∗ , l−k∗,s∗

r (Ai∗
k∗ )) = 0

(
lim

k→+∞ dist(l−k,s∗
r (Ai

k), l−k∗,s∗
l (Ai∗

k∗ )) = lim
k→+∞ dist(l−k,s∗

l (Ai
k), l−k∗,s∗

l (Ai∗
k∗ )) = 0.

or
lim

k→+∞ dist(ϕB
j
m,s∗ , l−k∗,s∗

l (Ai∗
k∗ )) = 0

)
.

Corollary 7.21 Let a sequence of homoclinic points {Ai
k}k≥1 or {Bj

m}m≥1 converges

to the homoclinic point Ai∗(k∗)
k∗ from the right (from the left). Then, the sequences of

arcs {l−k,s∗
r (Ai

k)} and {l−k,s∗
l (Ai

k)} or {ϕB
j
m,s∗ } satisfy the equations:

Lim
k→+∞

l−k,s∗
r (Ai

k) = Lim
k→+∞

l
−k,s∗
l (Ai

k) = l−k∗,s∗
r (Ai∗

k∗ )

or Lim
k→+∞

ϕB
j
m,s∗ = l−k∗,s∗

r (Ai∗
k∗ )

(
Lim
k→+∞

l
−k,s∗
l (Ai

k) = Lim
k→+∞

l−k,s∗
r (Ai

k) = l
−k∗,s∗
l (Ai∗

k∗ )

or Lim
k→+∞

ϕB
j
m,s∗ = l

−k∗,s∗
l (Ai∗

k∗ )
)
.

Results of Corollaries 7.20 and 7.21 make it possible to explain the term “maximal
wedge-shaped domain.” First, every maximal wedge-shaped domain is a connected
component of the set G̃. Second, in every neighborhood of an arbitrary maximal
wedge-shaped domain (in GΔ), there are the points, which belong to the stable
manifold of the saddle A1; at the same time by claim 4 of Proposition 7.1 and
Definitions 7.3, 7.5 every point from the interior of a maximal wedge-shaped domain
tends to +∞ by coordinates.



152 S. S. Bel’mesova and L. S. Efremova

Corollary 7.22 The set of arcs

{l0,s∗
l (A2), l0,s∗

r (A2), l−k,s∗
l (Ai

k), l−k,s∗
r (Ai

k)}
is dense in itself in the space 2Γs∗ and is contained in the closure (with respect to
Hausdorff metric dist in the space 2Γs∗ ) of the set

{{ϕB
j
m,s∗ }m≥1,j∈{1,... ,2m−1},ϕ0,s , ϕs,0, }s∈[0,s∗].

By Corollaries 7.18 and 7.22, the closure of the set

{l0,s∗
l (A2), l0,s∗

r (A2), l−k,s∗
l (Ai

k), l−k,s∗
r (Ai

k)}
coincides with the closure of the set

{{ϕB
j
m,s∗ }m≥1,j∈{1,... ,2m−1},ϕ0,s , ϕs,0, }s∈[0,s∗]

(with respect to Hausdorff metric dist in the space 2Γs∗ ).

Corollary 7.23 The closure of the set of points of the curves

{l0l (A2), l0r (A2), l−k
l (Ai

k), l−k
r (Ai

k)}k≥1,i∈{1,... ,2k−1}

(of the curves {{ϕB
j
m}m≥1, j∈{1,... ,2m−1}, ϕ0,s , ϕs,0}) is perfect nowhere dense subset of

GΔ.

The curves
{l0l (A2), l0r (A2), l−k

l (Ai
k), l−k

r (Ai
k)}

and the rays {x = 0, y ≥ 4}, {y = 0, x ≥ 4} are said to be one-sided curves.
4. Let us prove that the space 2Γs∗ with Hausdorff metric dist is the complete

metric space, i.e., we should prove, using Corollary 7.22, that the topological limit
of a convergent sequence of continuous arcs from the set

{l0,s∗
l (A2), l0,s∗

r (A2), l−k,s∗
l (Ai

k), l−k,s∗
r (Ai

k)}
is a continuous parametrized curve.

Lemma 7.8 The space 2Γs∗ with Hausdorff metric dist is the complete metric space.

Proof 1. Let a sequence of the closed arcs {l−k,s∗
r (Ai

k)}k≥1 be fundamental in the
space 2Γs∗ and such that the sequence of the initial points {Ai

k}k≥1 of these arcs
converges to a point (x∗; y∗) ∈ h\{A2,A1, {Ai

k}k≥1, {Bj
m}m≥1}. Then, first, there is

the topological limit of this sequence, which is a compact subset of the set GΔ; and,
second, for any ε > 0 there exists a natural number k0 ≥ 1 such that for any natural
numbers k, q ≥ k0 the inequality

dist (l−k,s∗
r (Ai(k)

k ), l−q,s∗
r (Ai(q)

q )) < ε (7.28)

holds.
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Let c be an arbitrary number satisfying the inequality c > 4, and such that the
straight line x+y = c intersects every arc of the set {l−k,s∗

r (Ai
k)}k≥1. By Corollary 7.12

and formula (7.6), the straight line x + y = c has the unique common point with
every arc l−k,s∗

r (Ai
k) (k ≥ 1). Denote this point of intersection byC(l−k,s∗

r (Ai
k)). By the

inequality (7.28), the sequence of points {C(l−k,s∗
r (Ai

k))}k≥1 is fundamental. Hence,
this sequence converges on the straight line x + y = c to the unique point C∗(c).

2. Closed arcs l−k,s∗
r (Ai

k) (k ≥ 1) are subcontinua of the compact subset of the
set GΔ such that their low topological limit Li

k→+∞
l−k,s∗
r (Ai

k) coincides with their

topological limit and, hence, the low topological limit of the sequence of these arcs
is not empty. Then, using [33] we obtain from here that their upper topological limit
Ls

k→+∞
l−k,s∗
r (Ai

k), which coincides with the topological limit of the sequence of these

arcs, is the continuum, i.e., a compact connected Hausdorff space [33].
By item 1 of this proof the above continuum L has the unique common point

C∗(c) with every straight line x + y = c. It means that with the use of straight lines
x+y = c, we obtain homeomorphic correspondence between L and an arbitrary arc
l−k,s∗
r (Ai

k). Thus, L is the one-dimensional continuum, i.e., the topological limit L
of the sequence of arcs {l−k,s∗

r (Ai
k)}k≥1 is the continuous curve (see [33]). It implies

that L is the continuous image of an interval.
3. The result of previous item 2 makes it possible to apply fundamental Hahn–

Mazurkiewizc–Sierpinski theorem (see [33]). By this theorem, L is the locally
connected curve. Hence, for every ε′ > 0, there exists a distribution of L onto a
finite number of arcs with lengths < ε′. Thus, L is the measurable arc. It means that
L admits parametrization with the use of natural parameter.

Completeness of the space 2Γs∗ is established. Lemma 7.8 is proved. �

Let c > 4 be an arbitrary number. Using Corollary 7.22, Lemma 7.8, and criterion
for a perfect bounded set on the straight line [40], we obtain the following statement.

Corollary 7.24 The set of the intersection points of the straight line x+y = c with
the closure of the set of points of the curves l0l (A2), l0r (A2), l−k

l (Ai
k), l−k

r (Ai
k) (k ≥ 1)

is perfect nowhere dense subset of the segment of the straight line x+y = c between
the points (0; c) and (c; 0) of continuum cardinality.

Intervals of intersection of interiors of maximal wedge-shaped domains with
the straight line x + y = c are the complement intervals for the above perfect
nowhere dense set; moreover, the points of intersection of the straight line x+y = c

with the curves l0l (A2), l0r (A2), l−k
l (Ai

k), l−k
r (Ai

k) (k ≥ 1) are the boundary points of
complement intervals (i.e., one-sided points of the perfect nowhere dense set).

The following important result is the direct corollary of the above Lemma 7.8,
Theorem 7.6, Definitions 7.3, 7.5, and Corollaries 7.22, 7.24.

Theorem 7.7 The closure of the set of points belonging to the curves of the fam-
ily {l0l (A2), l0r (A2), l−k

l (Ai
k), l−k

r (Ai
k)} is F -completely invariant, consists of curves,

which are elements of the set of the continuum cardinality and start from every point
of the hypotenuse h.
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Moreover, a unique double-sided curve starts from every point of the set
h\{A1, (4; 0), A2, Ai

k}k≥1; the unique one-sided curve (the part of the axes Oy in
GΔ) starts from the point A1, the unique one-sided curve (the part of the axes Ox

in GΔ) starts from the point (4; 0), a pair of one-sided curves starts from every
point of the set {A2,Ai

k}k≥1 such that these curves form the boundary of the maximal
wedge-shaped domain with the vertex in this point.

Every two curves of the closure of the set of points belonging to the curves of the
family {l0l (A2), l0r (A2), l−k

l (Ai
k), l−k

r (Ai
k)} do not intersect each other in the set G◦

Δ.

Corollary 7.25 The set G̃ is open and everywhere dense in GΔ.

Corollary 7.26 The perfect nowhere dense in GΔ set G′ = GΔ\G̃ is the union of
unbounded curves such that G′ ∩G◦

Δ is F -completely invariant local lamination of
codimension 1 in the set G◦

Δ; in addition, the set of algebraic curves is everywhere
dense in G′.

Lemma 7.9 The set G̃ consists of F -wandering points.

Proof By Corollary 7.4 and Lemma 7.2, the limit equalities

lim
n→ fn(x, y) = +∞, lim

n→ gn(x, y) = +∞. (7.29)

are valid for every point (x; y) ∈ G̃.
Since the fixed point A2 is the source of F , then an arbitrary neighborhood U (A2)

possesses the property:

Hmax
0 (A2)∩U (A2) ⊂ F (Hmax

0 (A2)∩U (A2)) ⊂ . . . ⊂ Fn(Hmax
0 (A2)∩U (A2)) ⊂ . . . ,

moreover, by equalities (7.29), the sets {Fn(Hmax
0 (A2) ∩ U (A2))}n≥0 form the

exhaustion of Hmax
0 (A2), i.e.,

Hmax
0 (A2) =

+∞⋃
n=0

Fn(Hmax
0 (A2) ∩ U (A2)). (7.30)

Let (x0; y0) be an arbitrary point of intHmax
0 (A2). Separate the pointsA2 and (x0; y0)

by neighborhoods U (A2) and U ((x0; y0)) ⊂ intHmax
0 (A2) such that

U (A2)
⋂

U ((x0; y0)) = ∅. (7.31)

By the equality (7.30), there exists a natural number n0 ≥ 1 such that

U ((x0; y0)) ⊂ Fn0 (Hmax
0 (A2) ∩ U (A2)).

By this inclusion and the equality (7.31), the equality

U ((x0; y0))
⋂

(F |Hmax
0 (A2))

−n(U ((x0; y0))) = ∅ (7.32)

is valid for every n ≥ n0. The equality (7.32) means that the point (x0; y0) is a
wandering point of F . Hence, intHmax

0 (A2) consists of F -wandering points. Using
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Definition 7.5, we obtain from here that intHmax
k (Ai(k)

k ) consists of F -wandering
points for every k ≥ 1. Then, using Lemma 7.2 we obtain from the above that the
set G̃ consists of F -wandering points. Lemma 7.9 is proved. �

Thus, Theorem 7.7, Lemma 7.9, and Corollaries 7.25, 7.26 prove the main
Theorem 7.3 of this chapter. �

7.5 Concluding Remarks: Saddle Periodic Points of the Map F

We prove here the existence of saddle F -periodic points different from A1(0; 4) on
the hypotenuse h of the invariant triangle Δ.

Proposition 7.2 There exists the set C∗ ⊂ h possessing the properties

1. C∗ is homeomorphic to Cantor discontinuum
2. There are natural numbers m∗, n∗ ≥ 1 such that C∗ = Fm∗+n∗ (C∗)
3. Saddle F -periodic points, homoclinic points for saddle F -periodic points, and

recurrent nonperiodic points are everywhere dense in C∗.

Proof 1.The equality detJ (F (x, y)) = 2x(2−x) is valid for Jacobian of the map F .
The inequality |2x2 − 4x| ≤ 1 is fulfilled on the closed intervals [0, 2−√2

2 ] and

[ 2+√2
2 , 2+√6

2 ]. In addition, the equality |detJ (F (x, y))| = 1 is correct for x = 2±√2
2 ,

x = 2+√6
2 . Denote by I

′′
1 , I

′′
1 ⊂ h, the closed interval corresponding [0, 2−√2

2 ] and

by I
′′
2 , I

′′
2 ⊂ h, the closed interval corresponding [ 2+√2

2 , 2+√6
2 ].

By claim 7 of Proposition 7.1 for every segment I
′′
1 and I

′′
2 , there are natural

numbers n∗(I
′′
1 ) and n∗(I

′′
2 ) such that

(F |h)n
∗(I

′′
1 )(I

′′
1 ) = (F |h)n

∗(I
′′
2 )(I

′′
2 ) = h.

Set n∗ = LCM(n∗(I
′′
1 ), n∗(I

′′
2 )) (where LCM(·) is the least common multiple of

numbers). Then, there exist subintervals I
′
1 ⊂ I

′′
1 , I

′
2 ⊂ I

′′
2 such that

(F |h)n
∗
(I

′
1) = (F |h)n

∗
(I

′
2) = [A1;E∗], (7.33)

where E∗ = ( 2+√6
2 ; 3 −

√
6

2 ) is the right boundary point of the segment I
′
2, saddle

F -fixed point A1(0; 4) is the left boundary point of the segment I
′
1. Let us note that

I
′
1 ∩ I

′
2 = ∅. Since the point A1(0; 4) is the source of the restriction F |h (see claims 6

and 7 of Proposition 7.1), there are the segment I ∗ ⊂ I
′
1 (A1(0; 4) is the left boundary

point of I ∗) and the natural number m∗ so large that (F |h)m
∗
(I ∗) = I

′
1, and

|detJ ((F |I∗ )m∗+n∗ )| ≤ 1. (7.34)
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By formula (7.33) the equality (F |h)m
∗+n∗ (I ∗) = [A1,E∗] holds. Hence, there are

disjoint segments I1, I2 ⊂ I ∗ (A1 is the left boundary point of I1) such that

(F |h)m
∗+n∗ (I1) = (F |h)m

∗+n∗ (I2) = I ∗.

In addition, by formula (7.34) the inequality |detJ ((F |Ii1 )m
∗+n∗ )| ≤ 1 is valid for

i1 ∈ {1, 2}. Using mathematical induction principle, we construct pairwise dis-
joint segments Ii1 ... iq−1 iq ⊂ Ii1 ... iq−1 (q ≥ 2, i1, . . . , 2}) satisfying the equality
(F |h)n

∗+m∗
(Ii1...iq ) = Ii1 ... iq−1 . Then, the equality

lim
q �→+∞ l(Ii1...iq ) = 0 (7.35)

follows immediately from claim 7 of Proposition 7.1 (here l(·) is the length of a

segment). By equality (7.35) the set C∗ =
+∞⋂
q=1

⋃
i1,... ,iq∈{1,2}

Ii1...iq is homeomorphic to

Cantor discontinuum and

|detJ (F |C∗ )m
∗+n∗ | ≤ 1. (7.36)

By the properties of closed intervals Ii1... iq and definition of the set C∗, the equality
Fm∗+n∗ (C∗) = C∗ is valid.

2. Saddle periodic points are everywhere dense in C∗ (see claim 6 of Proposi-
tion 7.1 and inequality (7.36)). By claim 7 of Proposition 7.1, F|C∗ -homoclinic points
for saddle periodic points of C∗ are everywhere dense in C∗. The horseshoe C∗ has
continuum cardinality, and recurrent nonperiodic points are everywhere dense in C∗.
Proposition 7.2 is proved. �

Let us set C =
m∗+n∗−1⋃

i=0
F i(C∗).

Corollary 7.27 The setsCs =
+∞⋃
i=0

F−i(C) andCu = h\Cs are everywhere dense in

h; in addition, sources ofF , F|h-homoclinic points for sources ofF andF|h-transitive
points are everywhere dense in the set Cu.

Corollary 7.27 and Theorem 7.3 imply the following unusual property of the fibers
of the local lamination in the set G◦

Δ.

Proposition 7.3 Fibers over the points of the set Cs just as over the points of the
set Cu are everywhere dense in the set of all fibers of the local lamination in the set
G◦

Δ.
Let us note that Proposition 7.3 generalizes the claims of Corollaries 7.18 and 7.22.
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Chapter 8
Discrete Maps and the Problem of Round
Trip Time Scale Nonlinear Dynamics
in Solid-State Lasers

M. V. Gorbunkov, Yu. Ya. Maslova, V. A. Petukhov, M. A. Semenov
and Yu. V. Shabalin

Abstract We show numerically and analytically that the control based on the com-
bination of optoelectronic negative and positive feedback loops allows one to obtain
new time scale nonlinear dynamics regimes in solid-state lasers. The combination
of feedbacks enables the realization of nonlinear dynamics of the logistic map. In
lasers with external harmonic modulation of losses the combination of positive and
negative feedback loops makes it possible to obtain period doubling bifurcation at
the time scale in the range of few up to hundreds laser-cavity round trip times.

8.1 Introduction

Lasers, including class B, are a well-known object of nonlinear dynamics in optical
range [2, 6, 8, 13, 17]. Our investigation is based on the analysis of various discrete
maps and examination of laser generation regimes with ordered radiation fine time
structure (the time structure at a time scale of less than a cavity round trip time). The
approach gives ability to take a fresh look at the problem of nonlinear dynamics in
solid-state lasers. The main idea of this work is to show how the control based on the
combination of two feedback loops gives a solution to the problem of laser-cavity
round trip time scale nonlinear dynamics. In this work, we assume that feedback is
sensitive enough to minimize saturation of active medium. Section 8.2 focuses on the
realization of nonlinear dynamics of the logistic map by using the memory-erasing
method. In Sect 8.3 we analyze the dynamics of systems with external harmonic loss
modulation and two feedback control.
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Fig. 8.1 RC circuit (a) and the simplified scheme of the laser with the optoelectronic modulator
(b). k is a fraction of radiation which is reflected to the feedback system, En is non-normalized
pulse energy at the kth pass. The number of pass is incremented when the light pulse passes through
the polarizer and thus loses some energy

8.2 Nonlinear Dynamics in the Memory-Erasing Regime

Systems with controlled chaotic dynamics find increasing applications in science and
engineering. New methods of cryptography and wideband communication require
fast, simple, and reliable chaotic generators to be developed [4, 16, 20]. In optical
region, such a generator could be realized in a solid-state laser controlled by feedback.
Chaotic dynamics of the logistic map seems to be attractive for this reason. The
dynamics closest to that one may be expected in a mode-locked laser when a single
laser pulse circulates in a laser cavity. In such a case, if a negative feedback is fast
and memoryless, the energy of a pulse x normalized to the feedback sensitivity is
defined by the recurrence equation, also known as the logistic map [3, 7]:

xn+1 = rxn(1 − xn), (8.1)

where xn+1 is the pulse energy at the (n + 1)th pass, xn is the pulse energy at
the nth pass, r is the overall gain normalized to the threshold value, and the term
in parentheses represents the one-pass delayed feedback loop action. We say that
feedback is fast if the intrinsic delay of the feedback is short enough to control pulse
energy on the next pass.

Ultrashort-pulse lasers and methods of mode locking have been and remain a
subject of investigation in a field of laser physics [15]. It was shown in [18] that
a laser can be self mode-locked by the inertial (opposite to memoryless) negative
feedback which acts with a certain delay. An example of a laser controlled by a nega-
tive feedback loop based on an intracavity optoelectronic modulator is schematically
presented in Fig. 8.1. The optoelectronic modulator based on Pockels cell is con-
trolled by the photocurrent generated by the light deflected to the feedback loop with
a splitter. In the simplest case, electric circuit is formed by the modulator capacity
C and the resistor R. The characteristic time of the control circuit is τ = RC. The
importance of the feedback delay for the self-mode-locking regime is illustrated in
Fig. 8.2. Suppose that a single and short enough laser pulse has been formed and
circulates in a laser cavity, and the cavity round trip time is Tr . The sequence of ul-
trashort pulses would generate photocurrent pulses with period Tr (we assume here
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Fig. 8.2 Temporal variations of laser intensity I (t), photocurrent i(t), modulator control voltage
U (t), and modulator transmission P (t). Time is normalized to Tr

that the duration of a laser pulse τl and the response time of the photocell τph are
connected by the relation τl < τph � Tr ). In its turn, the sequence of photocurrent
pulses, when fed to the RC circuit input, forms on the capacity C sawtooth voltage
with a short front (determined by the photocurrent pulse duration) and a long tail
(determined by the RC circuit time constant τ ).

The sawtooth voltage has maximum and minimum values Umax and Umin, that
are related by the feedback memory

Umin = Umaxe
−Tr /RC. (8.2)

The Pockels cell transmission is

P = cos2

(
π

2
· U + U0

Uλ/4

)
, (8.3)

where U0 is the initial static bias voltage, U is the voltage generated by the optical
signal, Uλ/4 is the voltage needed to turn off the cell (see Fig. 8.1). If the control is
designed on the principle of negative feedback, then with the increase of the laser
intensity the control voltage increases and the modulator transmission decreases.
To realize the regime of self-mode-locking, it is necessary that photocurrent pulses
have a delay that corresponds to the laser pulse’s passage through the modulator at
the moment of maximum transmission. The regime of self-mode-locking occurs in
a number of regions of optical signal delay time. The first region corresponds to
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Fig. 8.3 Parts of bifurcation diagrams of system with memory (8.4) that correspond to the nonlinear
dynamics: a τ = 0.43Tr , b τ = Tr , c τ = 2Tr

the minimal delay of the control action. In this case, the control pulse turns off the
Pockels cell, and the laser pulse passes through it at the moment of nearly maximum
transmission. The transmission of the cell in the moment of the pulse passage is
determined by the pulse energy and by the energy of pulses on the previous round
trips taking into account the discharge of the capacity C. This case corresponds to
the recurrence relation [9]:

xn+1 = rxn

(
1 −

∞∑
m=0

xn−mγ
m

)
, (8.4)

where γ = e−Tr /τ . A good example of such a system with minimal delay is the
optoelectronically controlled solid-state laser in which the intracavity Pockels cell is
controlled by the photocurrent generated by high voltage subnanosecond semicon-
ductor structures [21]. In the case of mode-locking, (1–2)Tr is the optimal value of
the discharge time τ for the generation of self-sustained single on the axial interval
pulses with minimal duration [9, 22].

Bifurcation diagrams of map presented in Fig. 8.3 show the dynamics of system
with memory (8.4). Even at γ = 0.1 (τ = 0.43Tr ) the periodic window (superstable
cycle) with period of 3Tr , which occurs in map (8.1) at r > 1+√

8 ≈ 3.83, vanishes.
As γ is further increased, the dynamics of the system becomes less rich. Bifurcation
diagrams shown in Fig. 8.3b and c correspond to the values of τ = Tr and τ = 2Tr .

Nonlinear dynamics of the logistic map can be obtained in the system controlled
by a combination of two feedback loops: the negative feedback and the positive
feedback delayed by ΔT with respect to the negative one. The relative feedback
sensitivity α is adjusted to compensate the residual control effect (after the relative
delay time) of the negative feedback. Such a control design results in the memory
erasing. A discrete map that corresponds to the combination of the negative and the
positive feedback, where the delay of negative one is minimum, and ΔT = Tr , is

xn+1 = rxn

(
1 −

∞∑
m=0

xn−mγ
m + α

∞∑
m=0

xn−m−1γ
m

)
(8.5)

If α = γ the sums almost cancel out and map (8.5) is reduced exactly to map (8.1).
Nevertheless, the temporal variation of modulator transmission remains similar to
the behaviour transmission in Fig. 8.2, which allows one to lock modes (i.e., to gen-
erate ultrashort laser pulses) by means of optoelectronic feedback itself. Therefore,
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Fig. 8.4 Results of high-resolution numerical simulation of the laser system with “memory erasing”
in self-mode-locking regime. Main plot: energy of short laser pulses E versus time t (in units of
Tr ). The gain r is linearly changed from 1 to 5.5 with the cavity round trip number; the total number
of cavity round trips is n = 10, 000. Insets I–V: laser output intensity I (t) at different gain levels,
see text

the modification of control system up to the combination of negative and positive
feedback allows to enrich the laser dynamics.

The regimes of memory erasing were reproduced in numerical simulation when
the laser output radiation fine time structure evolution was taken into account
(Fig. 8.4). We followed the approach described in [9, 22]. It allows us to trace the
development of radiation fine time structure with resolution much less than Tr taking
into account finite amplification linewidth of active medium and spontaneous emis-
sion noise. The model is based on successive (round trip by round trip) calculation
of the laser intensity, the photocurrent, the voltage on capacitor C, and the Pockels
cell losses. The following parameters were used in the simulation: cavity round trip
time Tr = 10 ns, passive losses R = 50%, active medium linewidth 120 GHz (corre-
sponds to Nd:YAG), shift voltage of negative feedback U0 = 0.3Uλ/4, photocurrent
response time for both feedback loops τph = 500 ps. Relative sensitivity of positive
feedback in the memory-erasing regime was set according to the formula

α = e−ΔT/τ , (8.6)
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a b

Fig. 8.5 Results of high-resolution numerical simulation: radiation fine time structure of the laser
system with memory erasing in self-mode-locking regime. Temporal variation of laser intensity
I (t) and modulator transmission P (t): a in the period 3Tr window; b in the intermittency region (at
lower gain level). Time is normalized to Tr

where ΔT is the relative feedback delay, and τ = RC is the control circuit time
constant. Spontaneous emission noise was placed in the laser cavity and being sub-
sequently transformed. The process of a single short laser pulse development takes
several hundreds of laser-cavity round trip times. The numerical simulation showed
that in a solid-state laser, it is possible to organize the dynamics of the logistic map at
the time scale of a round trip time. For example, the well-defined period doubling is
observed which is followed by the chaotic dynamics, then the period 3Tr is formed
after the intermittency regime, etc. Insets I–V in Fig. 8.4 demonstrate the radiation
fine time structure in the typical regimes: I is a fixed point, II is the period doubling,
III is the period quadrupling, IV is the dynamics in period 3Tr window, and V is
deterministic chaos. The dynamics chaotization does not affect the mode locking
regime when the gain is increased to r = 4.5. The modulator transmission in the
regimes of period 3Tr and intermittency is shown in Fig. 8.5. In spite of local dra-
matic step-wise variation of the transmission, every jump occurs on the time scale
of a cavity round trip and it should be noted that a single laser pulse exists in a laser
cavity.

The locking of modes and a possibly short delay of negative feedback is important
for the realization of the dynamics of the logistic map. If the positive feedback
delay remains slightly larger than Tr while negative feedback is increased up to
the value slightly less than Tr (this corresponds to the smoothing of laser radiation
instead of short pulse generation), memory-erasing results in generation of a square
envelope shown in Fig. 8.6b. Starting from weak harmonic modulation at r = 3.63,
the envelope becomes square rapidly with the increase of gain (Fig. 8.6a). Period
doubling cascade is not observed. The development of chaotic dynamics starts with
high-frequency modulation (see Fig. 8.6c, d, and e).
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Fig. 8.6 Results of high-resolution numerical simulation: fine time structure of the output intensity
of the laser system with memory erasing in “square wave” regime: a r = 3.69, b r = 4, c r = 4.3,
d r = 4.58, e r = 4.7

8.3 Period Doubling in a Laser with Harmonic Loss
Modulation Under Feedback Control

Nonlinear dynamics of class B lasers have been discussed since 1980’s [1]. It was
shown that the observation of period doubling bifurcation is realized under the condi-
tion of external loss modulation in the range close to relaxation oscillation frequency
[23]:

Ω0 =
√

η − 1

T1tc
−
(

η

2T1

)2

≈
√

η − 1

T1tc
, (8.7)

where η is the ratio of unsaturated to saturated gain, tc is the photon lifetime in
the laser cavity, T1 is the lifetime of the upper laser level. For example, the period
doubling has been observed at 60 kHz [14] (corresponds to 2.5 · 103 of cavity round
trip time Tr ).

The regime of period doubling at frequencies substantially higher than Ω0 can be
observed if the laser control is based on the combination of feedbacks. In contrast to
the previous section, we consider the case when positive feedback acts earlier than
the negative one and the map that corresponds to the combination of feedback loops
can be written as

xn+1 = rxn

(
1 + β

∞∑
m=i

xn−mγ
m−i −

∞∑
m=i+1

xn−mγ
m−i−1

)
, (8.8)

where i = 0, 1, 2 . . . is the delay of positive feedback normalized by Tr , β > 0
is the relative sensitivity of positive feedback, γ is the damping coefficient. It has
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Fig. 8.7 A simplified scheme of the laser controlled by two feedback loops based on optoelectronic
modulator (crystals Cr1 and Cr2). R accounts for passive losses, G is one-pass active medium gain
coefficient

been shown [12] that the regular nonlinear dynamics in such self-mode-locked lasers
looks like microtrains of pulses, and the period of microtrains increases dramatically
when the relative sensitivity β tends to 1. The simplicity of map (8.8) allows us to
determine easily typical periods of laser dynamics under the control based on the
combination of feedbacks. In the case of noninertial feedback (γ = 0), the period of
nonlinear dynamics (just after Neimark–Saker bifurcation when r is increased, over
the boundary of stability region) can be approximated by [10]:

T = 2π√
1 − β

− π
√

1 − β

12
+ o(

√
1 − β) (8.9)

If feedback loops are inertial (γ > 0), period increases with γ . When β → 0, period
equals several tens of cavity round trip times (and depends on γ ). Thus, by varying
the relative sensitivity of feedback loops one can obtain intrinsic periods in the range
of few up to hundreds laser cavity round trip times.

In the case of one memoryless feedback (γ = 0) which is delayed by k cavity
round trip times:

xn+1 = rxn(1 − xn−k), k = 1, 2, 3 . . . (8.10)

we have obtained an exact analytic formula for period T :

T = 4k + 2, k = 1, 2, 3 . . . (8.11)

The period of harmonic modulation 6Tr (k = 1) could be reached in the case of
β = 0 and γ = 0:

xn+1 = rxn (1 − xn−1) (8.12)

To accomplish this experimentally in a real laser system, one needs to use the
memory-erasing regime discussed in the previous section, but with delays increased
by a cavity round trip time compared to logistic map case. Numeric calculation of
dynamics of map (8.8) with γ = 0 and harmonic loss modulation has been performed
using the following formula:

xn+1 = r
(

1 + δ sin
(

2π
n

N

))
xn (1 + βxn − xn−1), (8.13)
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Fig. 8.8 Dynamics of map (8.13) at β = 0.9, N = 100, δ = 0.06: a regular pulsation with period
100 at r = 1.0385; b period doubling at further r increase to 1.0485, the harmonic modulation of
gain is shown for period doubling demonstration

Fig. 8.9 Bifurcation diagram of map (8.13) at β = 0.9, N = 100, δ = 0.06. The amplitudes of two
pulsation groups are plotted versus gain r

where N is the modulation period and δ is the modulation depth. In such a system,
nonlinear dynamics starts from sharpening of harmonic pulsation maxima, at larger
values of gain r we observe an equidistant sequence of pulses with typical shape: on
the body of pulsations there appear short peaks shifted to the rising front (Fig. 8.8a). A
period doubling bifurcation results in generation of two groups of pulses of different
form and amplitude (Fig. 8.8b). Increase of gain results in noticeable suppression of
pulses of lower amplitude (Fig. 8.9).

The numeric calculation of the system dynamics at higher frequencies has showed
that the period doubling bifurcation can be observed down to N = 4 (Fig. 8.10).
The period introduced by the combination of feedback loops in such case has to be
decreased to 6Tr (using β = 0). The calculations of the dynamics of simple maps
prove that the period doubling is caused by the presence of two periods in the system:
a period which is determined by the control scenario, and the external period of loss
modulation. In this way the period which is introduced by the feedback control
substitutes for the relaxation oscillation period.

Experimentally, the regime of period doubling at frequencies higher than Ω0

was obtained in a self-mode-locked Nd:YAG laser controlled by the combination of
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Fig. 8.10 Dynamics of map (8.13) at β = 0, δ = 0.7: a N = 5, r = 1.74, b N = 4, r = 1.9

Fig. 8.11 Oscilloscope trace of period doubling bifurcation for the frequency corresponding to the
19th mode of shear vibration of DKDP crystal (T = 0.52 μs, 2T = 1.04 μs, t is in microseconds)

positive and negative feedback loops and harmonic loss modulation [11]. Harmonic
modulation was caused by shear acoustic vibration of the DKDP crystal of the in-
tracavity modulator [5, 19], and the modulation frequency corresponded to one of
vibration mode (in the range approximately from 50Tr to 800Tr ). Electrooptic mod-
ulator based on a DKDP crystal (cross section 8 × 8 mm2) allowed us to obtain a
set of periods corresponding to the first ten shear modes of the crystal by adjusting
the beam position in the intracavity DKDP crystal aperture. Pulsation periods down
to 0.52 μs were observed (cavity round trip time was equal 10 ns). The calculation
results show a very good match to the experimental observations in the microtrain
shape and period doubling scenario (Fig. 8.11).

The conclusion of this section is: if feedback is sensitive enough to minimize
saturation of active medium, it would be possible to observe the period doubling bi-
furcation not only in the relaxation oscillation frequency range, but also at frequencies
close to the reciprocal of the period introduced by the combination of feedback in
the range of several cavity round trip times.
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8.4 Conclusions

It has been shown that the combination of two inertial feedback loops is able to open
up a round trip time scale for nonlinear dynamics in solid-state lasers.

Application of negative and delayed positive optoelectronic feedback makes it
possible to observe the nonlinear dynamics of logistic map in a solid-state laser
on the time scale of one cavity round trip time. To accomplish this, it is neces-
sary to use memory-erasing technique. The detailed numeric simulation showed
that laser parameters are realistic for experimental realization on the basis of the
optoelectronically controlled solid-state laser in self-mode-locking regime.

In the regime of smoothing of laser radiation fine time structure, memory-erasing
technique leads to dynamics in the form of a square wave with period of two cavity
round trip times. However, further development of nonlinear dynamics differs from
that of the logistic map.

The combination of a positive and a delayed negative feedback loops allows one to
shift the range of period doubling bifurcation in a solid-state laser with harmonic loss
modulation up to much higher frequencies than ever before (relaxation oscillation
frequency), namely from several up to several hundreds laser cavity round trip times.
The frequency is determined by the relative sensitivity of feedback loops. Periods
4Tr can be realized in the regime of memory erasing with delays increased by a round
trip time compared to the logistic map case.
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Chapter 9
The Importance of the Strategy in Backward
Orbits

Carmen Pellicer-Lostao and Ricardo López-Ruiz

Abstract This work considers reversed evolution in dynamical systems. In partic-
ular, asymptotic behavior of chaotic systems, when their orbits evolve backward in
time. Reversed dynamics reveals important aspects of the trajectories, such as a new
necessary parameter. This is the strategy through which one orbit reaches an original
state in the past. As a result, it is found that backward orbits exhibit sensitivity to the
strategy. This gives additional evidence about the unpredictability of the past.

9.1 Introduction

Traditionally, the study of dynamical systems has been mostly concerned about
forward evolution, considering long term behavior of the orbits in the future. As a
consequence of these studies, chaos theory developed since the 1960s gave to an end
with the ideas about the possibility of predicting the future [8] in chaotic systems.
These ideas became the base of the well-known “butterfly effect,” which is the
property of nonlinear systems to have sensibility to initial conditions [9, 14]. Since
then, dynamical systems have been widely used to model many kind of phenomena
showing complex evolution and unpredictability in the distant future [7, 10, 13, 15].

Conversely, backward evolution of dynamical systems [2, 3, 5] can also be of
interest to model complex phenomena [4, 6, 11, 12]. Such as for example, to be able
to predict the origin of the evolution of a complex system given a known present
state. This work travels into the past states of the dynamical systems and analyzes
the asymptotic behavior of backward orbits. In particular, it will try to unravel some
amazing properties of predictability of earliest states of a system when coming from
a given state in the present.
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9.2 Backward Trajectories

An N dimensional iterative dynamical system is given by a function F : U ⊆ RN →
U that maps a state into a future state. Time is considered to be a discrete variable
and they are formulated as follows:

Xt+1 = F (Xt ) (9.1)

where t = 0, 1, . . . , n represents the temporal variable, X0,X1, . . . ,Xn are the
states of the system in different instants of time, and U is the region of the N -
dimensional space RN where the system evolves, also referred as the phase space.

The consecutive iterates of the system from an initial pointX0 is called the forward
orbit of X0 under F . It is customary to express the sequence of iterates that represent
the forward orbit as {F i(X0)}∞i=0, which is fully expanded in the following equation.

{F 0(X0) = X0,F 1(X0) = F (X0), . . . ,Fn+1(X0) = F (Fn(X0)), . . . } (9.2)

If the function F is invertible, we can also talk about the backward orbit of X0

under F , described as {F−i(X0)}∞i=0. Pairing the time variable with the space variable
gives us the full view of the evolution of the dynamical system:

{. . . , (t−n,F−n(X0)), .., (t−1,F−1(X0)), (t0,X0), (t1,F (X0)), .., (tn,Fn(X0)), . . . }
(9.3)

Considering chaotic systems, chaos requires F to be a nonlinear function. Con-
sequently, the inverse map F−1 is typically a multivalued function. This means that
there are multiple ways to map a unique future state into the past. Then, it will always
be necessary to define a strategy to map a state into a previous one.

To see that, observe for example Fig. 9.1. In this figure, a one-dimensional iterative
dynamical system, the tent map, and its inverse functions are depicted. In Fig. 9.1
(right), it can be seen that two different prior states X−1 are obtained, when iterating
backward from an initial state X0.

To produce a reversed orbit or backward orbit, it is necessary to select iteratively
one of these two values as we to follow our trip into the past. The selection of a
different path at any step means that it is necessary to choose a different strategy
of backward evolution. This is going to produce a different backward orbit and
presumably a different original state. Then, we can conclude that backward evolution
is deterministic only when the strategy is fully known. Also, a future state is not
necessarily linked to any fixed past state. This is so, in the sense that for a given
present state there are different options, that turn up to be possible prior states.

The above discussion is related in some way to iterated function system (IFS) [1]
formed by the collection of its inverse functions.

In fact, IFS provides a convenient framework to study this collection of functions.
However, we have to take into account that IFS perspective is quite different from
reverse dynamics. Actually, this is basically a geometric perspective, considering
these functions compressors of the phase space and global constructors of fractals.
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Fig. 9.1 (Left) Tent map and its inverse functions. (Right) Illustration of bivalued past sttes in the
inverse tent map

In this work, it is our interest to explore these systems from a temporal perspective.
Considering the temporal dimension, backward trajectories expose a new evidence
of nondeterminism worth to be explored. As a consequence, our objective is to
find out the relevance of the backward strategy and to seek for its significance in
reversed evolution. To study this, the mechanism of calculating the backward orbits
is expressed formally in the following section.

9.3 A New Parameter in Backward Dynamics

Let’s say, F is an noninvertible chaotic map, whose inverse map is a multivalued
function F−1. Let us suppose that the values of the inverse map at a point X−t are a
total of b possible X−(t+1) points, denoted as:

{F−1(X−t )}{b} (9.4)

To take a step backward in the evolution of the system, it is necessary to choose
one of these b values. Let us say that this decision may be called a backward selection
and let us represent it as s. In a backward iteration of n steps, it is necessary to make
n of such selections. Then, a series of selections can be called as a strategy of length
n and it will be denoted as Sn . Consequently, the strategy can be expressed as a
vector that stores the decisions taken at every step:

Sn = {si}i=n
i=1 = {s1, s2, .., sn} (9.5)

Here si describes the backward selection at instant −i.
Now, let us discuss how to code the values of a backward selection, si . Following

Eq. 9.4, the set of possible pasts of X−t at instant −i can expressed as:

{F−i(X−t )}{b} = {X−t−i}{b} (9.6)

To make a backward selection at instant −i is nothing but to pick one state out of
this set. Let us say that state k is chosen, being k = 0, 1, .., b − 1, and this state is
denoted as X

(k)
−t−i . Then the backward selection at instant −i is coded as si = k.
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Observe that with b possible values and n back steps, there will be a total of
bn possible back strategies Sn. Then let us express any of these possible backward
strategies as Sn

r , where the value of r is coded as follows:

r = s1 ∗ bn−1 + ...+ sn =
i=n∑
i=1

si ∗ bn−i (9.7)

From the discussion above, let us conclude that the calculus of a backward tra-
jectory of length n from a present point X0 = P according to the strategy Sn

r can be
obtained by applying the following iterative procedure:

X
(k)
−i = {F−i(X0)}(k), when k = si (9.8)

Here, k = 0, 1, ..., b − 1 and the iteration step is denoted by i = 0, 1, ..., n. This
means that to calculate a backward trajectory from P , given a specific strategy Sn

r ,
we need to set the initial point in the present X0 = P , then calculate n-times the
composite inverse map F−n choosing at each iteration −i one state out of all the
possible b past states. The selection X

(k)
−i is given by the value of si = k, the strategy

of backward evolution at step −i.
The strategy for traveling into the past appears here as a new parameter in the

evolution of the dynamic system. This parameter rules the strategy through which
one orbit reaches an original state in the past. Now, the point of interest is to consider
the predictability of the past states in terms of this strategy. To do that, a practical
example is considered in the following section. This illustrates the relevance of the
backward strategy in the dynamics of the system.

9.4 The Tent Map Moving Backward

A particular chaotic map is considered in order to illustrate the previous discussions
and measuring them in full detail. Simple examples make relevant concepts more
obvious. Then, for simplicity we take the skew tent map, whose F and F−1 are given
by the following equations:

xn+1 =
⎧⎨
⎩
xn/α, 0 ≤ xn ≤ α,

(xn − 1)/(α − 1), α ≤ xn ≤ 1,
(9.9)

xn−1 =
⎧⎨
⎩
αxn, 0 ≤ xn ≤ 1,

(α − 1)xn + 1, 0 ≤ xn ≤ 1,
(9.10)

This map has a parameter of evolution α, where α ∈ [0, 1].
The tent map and its inverse functions for the case of α = 0.3 are depicted in

Fig. 9.1, right and left, respectively. The figures illustrate how a forward iteration
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calculates the value of X0 = 0.2 from a previous state X−1 = 0.86. Continuing this
route of evolution the map advances into the future. Conversely, backward iteration
in the right panel of Fig. 9.1 shows how a future stateX0 = 0.2 produces two possible
previous states X−1 = 0.86 and X−1 = 0.06.

In Eqs. (9.9 and 9.10), it can be seen that two functions F−1[0, 1] → [0, 1] are
defined for the tent map in the range Xt ∈ [0, 1]. Then, the inverse map F−1(Xt ) is
a bivalued function and there are b = 2, two possible values of Xt−1 upon which we
can make a single backward selection s−1. These values are labeled X

(0)
t−1 and X

(1)
t−1.

Here the code of this selection means the following: when k = 0 the point in the
upper line of F−1 is chosen, and when k = 1 the lower line. Note that in this map
when Xt = 1, it occurs that X(0)

t−1 = X
(1)
t−1 = α. Then, for a given subset V ⊂ U

and Xt ∈ V , it is possible that a different number of inverse options [12] are found
and so, different values of b will exist for different V depending on the number of
precedents.

In a general form, it is possible to go n steps backward following a given Sn

strategy. In this case Sn is going to be a binary array of length n. The values si of
the strategy array Sn, are going to be either 0 or 1, depending on the selection of the
X

(0)
−i or X(1)

−i , respectively.
Additionally, chaotic maps are dependent on the parameters of evolution. Then,

backward dynamics is dependent on these parameters. As we can see in Eq. (9.10),
the inverse functions obtained for the tent map are dependent on α parameter . In the
following sections this dependence along with the strategy is illustrated.

9.4.1 Measuring Parameters of Backward Evolution

In this section, we will consider how we represent a given strategy and the details of
how this strategy rules the path to a given initial state in the past. To do that, consider
the case of moving from X0 = 0.2, n = 5 steps into the past. Then, one will find
bn = 25 = 32 different possible backward strategies, and so 32 different X−5 past
values giving rise to X0 = 0.2 in the future.

Let’s choose a strategy to travel into the past, such as for example S5
11 =

{0, 1, 0, 1, 1}, where r = 11 is calculated according to Eq. (9.7). This particular
S5

11 means that we move backward, choosing in the first step the upper branch of
F−1 in Fig. 9.1 (right), lower branch in the second step, upper in the third, and so
on. Table 9.1 and Fig. 9.2 show the details of this particular example.

Table 9.1 shows the details of the particular backward selections taken at every
step with strategy S5

11. The resulting backward orbit is called Ob and its values are
Ob = {0.2, 0.86, 0.258, 0.8194, 0.24582, 0.073746}. As we can see in this table, this
strategy lead the tent map to an initial state X−5 = 0.073746. This table reveals
the detail of every backward selection. At every step −i, two new possible values
{F−i(X0)}{2} = {X(0)

−i ,X
(1)
−i } are calculated.

The past state remains uncertain unless the strategy of backward selection is
defined. Then, it is the value of si , the one that fixes the next step into the past, X(si )

−i .
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Table 9.1 List of values for calculating backward trajectory Ob

i 0 1 2 3 4 5

X
(0)
−i 0.2 0.86 0.398 0.8194 0.42624 0.827926

X
(1)
−i – 0.06 0.258 0.0774 0.2458 0.073746

si – 0 1 0 1 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

Fig. 9.2 (Left) Forward orbit Of and (right) backward orbit Ob to arrive Xn = 0.2 in five steps
from Xn−5 = 0.073746

The value of X(si )
−i is printed in italics in the table, to remark the selection taken at each

step. Then, this value X
(si )
−i produces two new possible past values {F−1(X(si )

−i )}{2} in
the next step and then, backward iteration continues selecting one value of {X−i}{2}
according to si until i = n is reached.

Figure 9.2 shows the graphics considered in this example, the forward orbit Of

and the backward orbit Ob. The points of this orbits are Of = {0.073746, 0.24582,
0.8194, 0.258, 0.86, 0.2} andOb = {0.2, 0.86, 0.258, 0.8194, 0.24582, 0.073746}. In
Fig. 9.2 (left), the forward orbitOf is obtained from its reversed associateOb Fig. 9.2
(right). Moving into the future from an initial state X−5 = 0.073746 is a complete
deterministic process. The tent map evolves inevitably from X−5 = 0.073746 to the
future state X0 = 0.2, following the determined orbit Of .

In contrast, it is interesting to remark that moving in reverse is a nondeterministic
process unless the strategy is fixed. Here Fig. 9.2 (right) shows in detail the points of
Ob. Ob is one of the 25 = 32 possible backward orbits considered in this example.
This particular trajectory Ob is obtained moving from X0 = 0.2 to X−5 = 0.073746
according to a specific selected strategy, S11 = {0, 1, 0, 1, 1}.

9.4.2 Deterministic Backward Evolution with a Strategy

It is observed that every strategy carries us to a particular different past state, while
traveling through different branches of the inverse tent map. From this, it is logical
to think that if other branches are visited in the travel to the past, the initial state
to which the system returns is going to be different than X−5 = 0.073746. To see
this, let us move from X0 = 0.2, n = 5 steps into the past and compute all different
backward origins X−5 given by the bn = 25 = 32 different possible backward
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Fig. 9.3 Points of all possible 32 backward orbits that start from X0 = 0.2, move n = 5 steps into
the past. A total of 215 = 32 different initial past states are found for X−5

strategies Sn
r . Figure 9.3 shows the backward computation of all possible values of

X−1,X−2,X−3, and X−4 obtained at every step, up to reaching an earliest state X−5.
The x-axis presents the backward steps and the y-axis the different values of X in
the interval [0, 1] obtained at every step. The dotted lines link the states obtained for
every different possible strategy.

In Fig. 9.3, it can be observed that moving n = 5 steps backward from an initial
state X0 = 0.2 is a nondeterministic process. In fact, there are as may as bn = 25 =
32 strategies that lead the system to 32 different initial past states. It can be seen that
every strategy takes the system to a completely different X−5 point in the past. The
interested reader can easily recognize in this figure the particular backward orbit Ob

illustrated in Table 9.1 and Fig. 9.2 (right).
As a result, it can be said that reversed dynamics is sensitive to the backward

strategy. That situation is similar to the sensitivity to initial conditions observed in
forward dynamics. Note that a small change in the trajectory, modifying just one
si will lead the system to a completely different original state. Also note that as we
travel deeper into the past, many more possible origins may appear and the origin of
the system will be more difficult to predict, if the strategy is not recalled precisely.
This can be explicitly seen in Fig. 9.4 (left) where we take the evolution of n = 10
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Fig. 9.4 (Left) Points of all possible 210 backward orbits, that start from X0 = 0.2 with α = 0.3,
move n = 10 steps into the past, and arrive to 1024 different initial past states, X−10. (Right) Points
of all possible 25 backward orbits, that start from X0 = 0.2 with α = 0.9, move n = 10 steps into
the past, and arrive to 32 different initial past states, X−5

steps into the past instead of n = 5 as in Fig. 9.3. In Fig. 9.4 (left) there are 210

possible backward orbits and the same number of possible past points X−10. A small
change in the strategy takes us to a very different past state.

Therefore, similarly to the “Butterfly effect” observed in forward dynamics, the
sensitivity to the strategy tells us something important about the uncertainty of the
past. It is impossible to predict the origin of a system unless the strategy is precisely
known. It also can be said that, accurate data of a strategy may be unfeasible when
the origin is remote and exceeds the physical capabilities of knowledge. This gives
some evidence for the unpredictability of the past.

To illustrate dependence of backward dynamics to the other parameters of evo-
lution, Fig. 9.4 (right) displays the 25 possible backward orbits that can be obtained
moving n = 5 steps backward from an initial state X0 = 0.2 when α = 0.9. This
figure can be compared with Fig. 9.3 where α = 0.3 and compare the difference
obtained in the orbits when the parameter α = 0.9.

9.4.3 Sensitivity of Backward Evolution with the Strategy

Finally, let us measure the sensitivity of past trajectories to the backward strategy.
To do that, let us take the same case as before, traveling backward n steps into the
past form X0 = 0.2 with F−1 of Eqs. (9.9 and 9.10) and α = 0.3. The initial state
X−n is calculated for any of the 2n possible strategies, that takes the inverse tent map
from X0 = 0.2 to X−n. As it was shown before, for every different strategy Sn

r a
different origin point X−n is produced. It can also be seen that as n grows and the
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Fig. 9.5 Representations of 210 = 1024 possible past points obtained for a trip of n = 10 steps
into the past from X0 = 0.2 with α = 0.3

system travels deeper into the past, the values of X−n spread in a fractal way over
the interval of the phase space U = [0, 1].

To illustrate these facts, the pairs (X−n, r/2n) are plotted in Fig. 9.5. Here r is
the number of the strategy Sn

r that leads to the state X−n in the past. This number
is normalized to one, taking r/2n, in order to get a representation independent of n,
the number of steps into the past. In Fig. 9.5, a total of n = 10 is considered and
so, a total of 210 = 1024 different strategies are depicted. The y-axis represent the
normalized value r/2n of the number of the strategy and the x-axis the past state X−n

reached with strategy number r . This figure can be a more useful representation than
Fig. 9.3 in order to show all the possible X−n states in a travel to a remoter past state.

As it is observed in this figure, the unpredictability of the original state can be
appreciated graphically. This is due to the sensitivity to the backward strategy. In
particular, three important facts are observed. The first one is that the values of X−n

spread in a fractal way over the phase space, the interval U = [0, 1], in accordance
with IFS framework [1]. The second is that when n grows and the system travels
deeper into the past, many more possible values of X−n arise. And the third one is
that strategies differing just a single bit give very different initial states, that again
spread in a fractal way over the phase space.

This means that traveling into an initial state in the past requires recalling every
decision in the strategy. If a single bit of the strategy is forgotten the system arrives
to a different past origin. This can be explicitly seen in Fig. 9.6 (left) where we take
the evolution of n = 18 steps into the past instead of n = 10 as in Fig. 9.5. In Fig. 9.6
(left) there are 218 possible backward orbits and the same number of possible past
points X−18. A small change in the number of the strategy take us to a very different
past state.
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Fig. 9.6 (Left) Representations of 218 = 262144 possible past points obtained for a trip of n = 18
steps into the past from X0 = 0.2 with α = 0.3. (Right) Representations of 210 = 1024 possible
past points obtained for a trip of n = 10 steps into the past from X0 = 0.2 with α = 0.5

These results give a new perspective for modeling the origins of complex sys-
tems. They offer a complementary point of view to the “butterfly effect” observed
in forward dynamics. The study of reversed dynamics reveals that it is impossible to
discover the remote origin of complex phenomena. This is so, because this calculus
exceeds the capabilities of knowledge, when the origin is in the distant past. Put it in
another words, for chaotic systems not only the far future, but also the remote past
is unpredictable.

At this point let us remark that the unpredictability of future phenomena has
had great significance for applied sciences. The theory of complex systems has
given new perspectives to sciences where chaotic behaviors have been observed like
meteorology [9], economy [7], or others. In those sciences the discovery of the future
has been granted as limited. One striking example can be the present economic and
financial crisis, not predicted by anyone. Hence, the future is taken as uncertain and
it is gradually enlightened at every forward step. Conversely, the acknowledgment
of the unpredictability of the past exposes a new perspective to applied sciences, that
model the origin of complex phenomena. These sciences must consider the irony of
this uncertainty and be aware that the discovery of past must be granted as limited.
The past must be taken as uncertain, and it will only be gradually enlightened at
every backward step we make.

To illustrate dependence of backward dynamics to the other parameters of evolu-
tion, Fig. 9.6 (right) displays the 210 possible backward orbits that can be obtained
moving n = 10 steps backward from an initial state X0 = 0.2 when α = 0.5. This
figure can be compared with Fig. 9.5 where α = 0.3 and compare the difference of
the fractal depicted in x-axis when the parameter α = 0.5.

9.5 Conclusions

Reversed dynamics shows amazing mathematical aspects of the structure of the
trajectories. Precisely, it can be said that it is possible to construct backward orbits
and travel with reversed dynamics to the initial state of a nonlinear system. This is
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done through a new parameter of dynamical evolution, the so called the backward
strategy. Backward dynamics demonstrates high sensitivity to this strategy. Hence,
to calculate the earliest state of the system requires to recall precisely every step in the
past history of the system. If a single bit of the strategy is forgotten or misunderstood,
the system arrives to a completely different original state. In this sense and from an
asymptotic perspective, it can be concluded that the past is, in fact, unpredictable.

This can sound as a tautology but it could have some consequence in the studies of
complex phenomena. In noninvertible dynamical systems, not only the far future can
be chaotic and unpredictable, but the remote past is also uncertain. Applied sciences
that model the origin of the evolution of complex systems must be aware of that, just
that the discovery of the past must be taken as limited.

In summary, this work portrays the relevance of the strategy in backward orbits.
Backward dynamics turns out to be sensitive to the strategy and that makes it eligible
as a new parameter of the evolution of dynamical systems. Considering that so, the
strategy takes us to the evidence of the unpredictability of the past.
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Chapter 10
Minimal Cantor Type Sets on Discrete
Dynamical Systems

Francisco Balibrea

Abstract Cantor sets on topological spaces can be obtained as minimal sets with
respect to discrete dynamical systems (d.d.s.), (X, f ) where X is a compact metric
space and f could be an homeomorphism or a non-invertible continuous map. In
general, given a Cantor type set or simply a Cantor set in a compact metric space,
it is difficult to obtain a d.d.s. having it as minimal. Examples of Cantor sets that
are minimal or non-minimal can be obtained using the ternary Cantor set on the real
interval and constructing appropriate continuous maps. In the case of the minimality
of such Cantor sets, every point of them are uniformly recurrent points for f . Other
examples of minimal Cantor sets like the shift space Σ2 or subsets of it are given
for homeomorphisms. The whole Smale horseshoe is non-minimal for an adequate
homeomorphism or one of its subsets is minimal for it.

10.1 Introduction and Some Definitions

In what follows in Sects. 10.1, 10.2, and 10.3, we will concentrate mainly in discrete
dynamical systems (d.d.s.) of the form (I , f ), where I = [0, 1] and f : I → I is
continuous. The main aim is to study the behavior of the orbits of all points in I by
f . The orbit generate by the point x ∈ I , denoted by Orbf (x) = (f n)∞n=0, where
f n = f (f n−1) and f 0 is the identity in I .

A point x ∈ I is periodic of minimal period p if p is the minimum positive integer
for which is f p(x) = x, when p = 1 we say the point is fixed. The point x is
eventually periodic, if there exists a positive integer m for which f m(x) is periodic.
The knowledge of the periodic points allow us to state a criterium for chaotic behavior.
We will say that the d.d.s. (I , f ) is chaotic if it has a periodic point of a period not a
power of two which is equivalent to have positive topological entropy (see [2]). We
will say that a point x ∈ I is approximately periodic if for every ε > 0 there exists
a periodic point y and a positive integer N such that

| f n(x) − f n(y) |< ε for all n > N
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We say a point x ∈ I is asymptotically periodic for (I , f ) if limn→∞f nm(x) exists
for some m ∈ N . The system (I , f ) is uniformly non-chaotic if every point x ∈ I

is approximate periodic. The same system is strongly non-chaotic if every x ∈ I is
asymptotically periodic. Thus, if a system is strongly non-chaotic, then it is uniformly
non-chaotic. It can be proved also that if a d.d.s. is uniformly non-chaotic, then it is
non-chaotic (see [3]).

A point x ∈ I is uniformly recurrent if for every open set U containing x, there
exists a positive integer N = N (U ) such that if f m(x) ∈ U with m ≥ 0, then
f m+k(x) ∈ U for some k holding 0 < k ≤ N . It is clear that a strongly recurrent
point is one recurrent with bounded return times. A simple sufficient condition for a
point x to be uniformly recurrent is to be regularly recurrent, that is, for each open
set U containing x there exists a positive integer N = N (U ) such that f kN (x) ∈ U

for all k > 0.

10.2 Construction and Properties of the Ternary Cantor Set

We start recalling (see [12]) the well-known construction of the ternary Cantor set
on the unit interval I = [0, 1] of the real line. First, we remove the open interval
of length 1/3 from the center of I and we denote the remaining open set by I1,
I1 = [0, 1

3 ]
⋃

[ 2
3 , 1] . We continue with the process of removing from the center of

each new created subinterval the open interval whose length is one third of the length
subinterval to define inductively the kth set Ik; Ik is a union of 2k subintervals of
length 3−k and (Ik)k is a monotone decreasing sequence of compact sets. The limit
of such sequence is

C =
∞⋂
k=1

Ik

is a compact set called the ternary Cantor or Cantor set, which will be denoted by
C. We think of this set as a porous set. More precisely, the connected component
at each point of C is the singleton set of the point itself. We say that C is a totally
disconnected set. C is also perfect which means that it is closed and contains no
isolated point. As a consequence, there exists a ball center at each point of C with
arbitrary small radius such that its circumference does not intersect C. Therefore, it
follows that the topological dimension of C is zero (see [12]).

The ternary Cantor set is of measure zero since it is covered by interval of length
2
3n which is arbitrarily small for large enough n. Although C has no length, it contains
many points of I . Obviously 0 and 1 belongs to it. Similarly, both endpoints of any
deleted middle third also belong to it. After all, they will never end up in the middle
third of a remaining subinterval at any stage of the construction.
Surprisingly, the end points compose only a nonsignificative portion of the points of
C. For example the number 1/4, although never is an endpoint of any subinterval in
the construction, belongs to C. To see it, it is useful to prove the following result,



10 Minimal Cantor Type Sets on Discrete Dynamical Systems 185

Theorem 10.1 The ternary Cantor set consists of all points in I that can be
represented in base 3 using only the digits 0 and 2.

Proof (see [1]) Express the numbers between 0 and 1 in base-3 representation. For
any point from I , this representation is unique except for points with a finite base-3
representation. By a finite base-3 representation we mean that the ternary digit an is
non-zero and 0 = an+1 = an+2 = . . . . In this case a point r ∈ [0, 1] is represented
by exactly two base-3 expansions:

r = .a1a2...an = .a1a2...(an − 1)222...

The subinterval ( 1
3 , 2

3 ) consists of the points whose base-3 representation satisfy
a1 = 1. The number 1/3 can be expressed in two ways, as .1 = 02 in base 3. As
a consequence, the set I1 = [0, 1

3 ]
⋃

[ 2
3 , 1] consists of all numbers in I that can be

represented in base 3 with a1 = 0 or 2. Similarly, the set

I2 = [0,
1

9
]
⋃

[
2

9
,

1

3
]
⋃

[
2

3
,

7

9
]
⋃

[
8

9
, 1]

from the second step of the Cantor set construction is the set that consists of all
points having representations with a1 and a2 being either 0 or 2. We can ask what
the analogous property is for In and then ask what property a number must have if it
is simultaneously in all the In, that is, if it belongs to C.

For example, the base-3 point r = .02 belongs to C. To see it, note that

r = 0 × 3−1 + 2 × 3−2 + 0 × 3−3 + 2 × 3−4 + · · · = 2

9

1

1 − 1
9

= 1

4

As mentioned above, some points have two base-3 representations, for example, 1
3

can be expressed as either .10̄ or .1 in ternary expansion. However, each point in C

has exactly one representation including no 1′s. Using now the binary representation
of points in C, and the Cantor selection method, it is possible to prove that C is an
uncountable set (see for example [1]).

C has the following curious property (see [12]): for an arbitrary real number
x ∈ [− 1, 1], there exist numbers y, z ∈ C such that x = y − z. We indicate this
property by [− 1, 1] ⊂ C − C. Since C has zero Lebesgue measure, we compare it
with the known property due to Steinhaus: If the Lebesgue measure of A is positive,
then A - A contains some neighborhood of the origin.

The set L of Liouville numbers is even thinner than C but satisfies the above
property. In [7], Erdös proved that L − L = R. Before proving such property, it
was known that the Hausdorff dimension of L was zero (see [8]). To this respect,
assume that while L is a set of second category in the sense of Baire, C is of the first
category.
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10.3 An Interval Map for Which the Ternary Cantor
Set is Minimal

In [3], Block and Coppel give an example of an interval map having interesting
dynamical properties concerning chaoticity and which is an elaborate variant of
another previously constructed by Delahaye in [4].

Example (see [3])
Let f ∈ C(I ) defined by

f (0) = 2

3
, f (1) = 0,

f

(
1 − 2

3k

)
= 1

3k−1
, f

(
1 − 1

3k

)
= 2

3k+1
(k ≥ 1)

and in the rest of the interval we connect the points. The result is a piecewise linear
map.

More precisely, the map is

f (x) = x + 2

3
for 0 ≤ x ≤ 1

3

f (x) = 16

9
− 7x

3
for

1

3
≤ x ≤ 2

3

f (x) = f (3x − 2)

3
for

2

3
≤ x ≤ 1.

From definition, we have that for any 0 ≤ x ≤ 1

f 2
(x

3

)
= f (x)

3
(1)

and for iteration is

f 2n
(x

3

)
= f n(x)

3
for any n ≥ 1.

It is immediate that the map has a unique fixed point x0 = 8/15 and also that for any
x = x0 is f p(x) ∈ (0, 1

3 ) for some p = p(x) ≥ 0. If x = x0, it is immediate that
f m(x) ∈ (0, 1

3 ) for some positive integer m = m(x) ≥ 0. It means that any periodic
orbit with period greater than one, has a point in (0, 1

3 ).
Since f maps the interval [0, 1

3 ] = I onto [ 2
3 , 1] = J and vice versa, it follows

that the orbit of x must be of even period. To see it, since f (I ) = J and f (J ) = I ,
then f 2(I ) = I , that is f 2 has in I a fixed point which is a periodic point of f of
even period (see for example, [3]). In addition, using (1), x

3 is periodic if and only if
x is periodic. Then, if x has period n, x

3 has period 2n.
Let y be a point of period n = 2dq, where q > 1 is odd and let d ≥ 1. By what

was said previously, assume y ∈ (0, 1
3 ). Then x = 3y has period n/2. Repeating
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Fig. 10.1 Minimal piecewise linear map

the argument, we obtain a point of odd period q, which is a contradiction. Then the
topological entropy of f is zero and then the map is non-chaotic. Similarly, we find
that if there exists a unique periodic orbit of period n, then there exists a unique orbit
of period 2n. Therefore, f has a unique orbit of period 2d for every d ≥ 0.

Let I 1
0 = [0, 1

3 ], I 1
1 = [ 2

3 , 1] and suppose we have defined 2j pairwise disjoint

closed intervals I j = [αj

i ,αj

i + 1
3j ] (with 0 ≤ i ≤ 2j ) of length 1

3j . Then we introduce

2j+1 pairwise disjoint closed intervals I
j+1
i by setting

I
j+1
i =

[
α
j

i ,αj

i +
1

3j+1

]
, I j+1

i+2j =
[
α
j

i +
2

3j+1
,αj

i +
1

3j

]

for 0 ≤ i ≤ 2j . In this way it is possible to define by induction, the intervals
I
j

i (0 ≤ i ≤ 2j ) for every positive integer j . The left points α
j

i of I
j

i are rational
numbers of the form

b1

3
+ b2

32
+ ...+ bj

3j

with bj = 0 or 2. From the definition of f it is easy to see that the 2j intervals I
j

i

are permuted cyclically by f . Therefore, the orbit of period 2j (j > 0) is contained
in
⋃

i I
j

i .
For any x0 ∈ I , with x0 = x, it is possible to choose m0 ≥ 0 such that x1 =

f m0 (x0) ∈ I 1
0 . If x1 is not periodic, then neither is 3x1 and as a consequence we can

choose m1 ≥ 0 such that f m1 (3x1)/3 ∈ I 1
0 . Then we construct x2 = f m0+2m1 (x0) =

f 2m1 (x1) = f m1 (3x1)
3 ∈ I 2

0 . Following with this procedure, we see that, for any x ∈ I ,
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is either x eventually periodic or, for every positive integer j , f n(x) ∈⋃i I
j

i , for all
large n. It follows that x is approximately periodic, and therefore, f is a uniformly
non-chaotic map.

Besides the previous geometric introduction of the ternary Cantor set C0, it can
also be described [3] as the set of all points in I whose ternary expansion contain only
0’s and 2’s (including points like 1 whose expansion can be expressed by 0.2222 . . . ).
From the above constructions, it is immediate to see that I 1

a1
⊃ I 2

a2
⊃ . . . is a nested

sequence of intervals of type I
j

i , then
⋂

I
j
aj = y where y belongs to C0. Moreover,

each point of C0 can be obtained in this way. This means that the closure of the orbit
of 0 by f is C0 and in fact this is the case for all x ∈ I not being eventually periodic.
Thus, C0 is a minimal set of f and

R(f ) = P (f )
⋃

C0

In addition, since each point of C0 is regularly recurrent, it follows (see [3]) that
f |C0 is topologically conjugate to the adding machine transformation ([3]) τ . Such
transformation acts in the following way. If x ∈ C0 has the ternary expansion x =∑∞

i=0
2bi

3i+1 , then f (x) has the ternary expansion f (x) =∑∞
i=0

2ci
3i+1 determined by the

rule γ = β + 1, where β = (b0, b1, . . . ) and γ = (c0, c1, . . . ).
In the next result we state that any Cantor set on I can be obtained as minimal of

a map g.

Theorem 10.2 Let C ⊂ I be a Cantor set. Then there exists a continuous interval
map g such that C is minimal with respect to it.

Proof Let consider the interval map f constructed in the previous paragraphs and
C0 the ternary Cantor set. Using the result in topology saying that all Cantor sets are
homeomorphic (see for example [10]), there exists an homeomorphism h : C → C0.
Since the complement in I of C is a union of countably many open sets, C results
minimal with respect to the map g defined when g(x) = h−1 ◦f ◦h(x) when x ∈ C0

and linearly on any component of the complement of C.
The result cannot be extended to general metric spaces, since in such setting, a

Cantor set is a subset without isolated points and totally disconnected but we do
not know the structure of the complement of the Cantor set and as consequence it
is not possible to define a map in such general setting. But recently in maps from
the unit square Q = [0, 1]2 into itself called triangular, that is, continuous maps
F (x, y) = (f (x), g(x, y)) with f and g continuous, the above map has been used to
close some open problems in a so called Sharkovsky’s program for triangular maps
(see [5] and [6]).

10.4 A Minimal Cantor Set in the Full Shift Σ2

and in the Smale Horseshoe

The full shift on two symbols Σ2 is the Cantor space composed of all bi-sequences
of the form (...s−n...s−1 · s0s1s2...sn...), where si ∈ 0, 1 for i ∈ Z. It is well-known
that in the thirties, Marston Morse showed that there exists an element in such space
that is uniformly recurrent under the shift map σ , where
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σ (...s−n...s−1s0 · s1s2...sn...) = (...s−n...s−1 · s0s1s2...sn...)

Such bi-sequence is called the Morse sequence. If (X,h) is a d.d.s. where X is
a metric space and h : X → X a homeomorphism, then it is well-known (see for
example [3]) that ifM ⊆ X is a minimal set, then every x ∈ X is uniformly recurrent,
and conversely, if x ∈ X is uniformly recurrent, then the closure of its orbit, Orbh(x)
is a minimal set of X. Such results are also valid when f : X → X is a continuous
map and we use forward orbits. Since the Morse sequence is not periodic we have
that its orbit contains infinite distinct elements.

Since the closure of the Morse sequence, M is closed in Σ2, then M is a Cantor
set and additionally it is minimal.

In [11] is given a detailed account of the construction of a two-dimensional d.d.s.
which contains an invariant set called the Smale horseshoe denoted by Λ. In this
previous sections it is proved that there exists a homeomorphism Φ : Λ → Σ2.
Since Cantor sets are kept by homeomorphisms, then Φ−1(M) the inverse image
by such homeomorphism of the closure of Morse sequence, is also an example of a
minimal Cantor set.

In fact the d.d.s.
(
Σ2, σ

)
contains copies of all possible orbits of all d.d.s.. This

fact is proved in [9] by the result

Theorem 10.3 Let Orbf (x) be the orbit by a homeomorphism h on a metric space
X. Then there is a conjugation j : Orbf (x) → 0, 1Z such that σj = jh.

10.5 Non-Minimal Cantor Sets

To have non-minimal Cantor sets in d.d.s. is a usual situation since it is sufficient to
have a periodic orbit included in the Cantor set to be non-minimal. In such cases,
it is unusual to have a Cantor set as a unique invariant set. This is the situation that
arises in the following example. Let the d.d.s. (R, f ) and,

f (x) = 3x if 0 ≤ x ≤ 1

2

and

f (x) = 3(1 − x) if
1

2
≤ x ≤ 1

the orbit of any point x0 from the open interval ( 1
3 , 2

3 ) holds limn→∞f n(x0)∞n=0 =
−∞. But all open subintervals of I that are pre-images of it hold the same property.
The rest of I is composed of points belonging to the ternary Cantor set included 0
which is a fixed point of f . Outside I all points hold the former asymptotic property.
The unique invariant set is precisely the ternary Cantor set C.

Similarly, for the Smale horseshoe, the set Φ(Λ) = Σ2 is a Cantor set but
non-minimal, since it contains infiniteperiodic orbits (for a detailed account of such
details, see [11]).
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Fig. 10.2 Non-minimal piecewise linear map and the orbit of a point starting close to zero
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Chapter 11
Piecewise Expanding Maps and Conjugacy
Equations

Cristina Serpa and Jorge Buescu

Abstract Topological invariants of interval maps are preserved by conjugacy. We
investigate some features of the conjugacy equations associated to piecewise expand-
ing maps. For special cases, it is possible to construct explicitly a conjugacy function
in terms of the a-base expansion of numbers through a solution of the corresponding
functional equations.

One possible interest of conjugacy equations is to simplify the study of a family
of maps by considering the simplest possible cases while preserving topological
properties. In our case these will be the piecewise linear and expanding interval
maps.

The conjugacy equation h ◦ g = f ◦ h (where h is the unknown function) is
the subject of much research in the field of functional equations. The main results
already obtained for this kind of equation are those for invertible functions f , g (see
[9]), where f is a scalar or a linear operator on the range of h (see the Schröder
equation in [9, 10]). Other cases of interest arise when f , g are continuous functions
with real domain and real range, strictly increasing and fixed-point free (see [11]), or
f strictly decreasing continuous and g continuous (maybe nonmonotonic; see [14]).
Usual references of one-dimensional dynamics [2, 12, 13] treat the case where f is
continuous. In our case f is piecewise continuous.

We focus our attention on particular cases of the equation h ◦ g = f ◦ h, which
correspond to a conjugacy equation involving the piecewise linear case. From the
functional point of view we refer to results of de Rham [5] and their generalization by
Girgensohn [8]. Since this last generalization provides an explicit solution in terms
of the a-base expansion of numbers it is possible to construct explicitly a solution of
our equation.

Definition 11.1 (see [3]) A map f : I → I is a horseshoe map if it has more than
one lap and each lap is mapped onto the whole of I .
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The next Lemma is a generalization of a result of Ciepliński and Zdun [4] to
noncontinuous functions (only piecewise continuity is required).

Lemma 11.1 Let a ≥ 2, be an integer, g : [α1,β1] → [α1,β1], G : [α2,β2] →
[α2,β2] be piecewise continuous functions, respectively, with laps Ii =

[
xi , xi+1

]
,

Ji =
[
yi , yi+1

]
, i ∈ {0, 1, . . ., a − 1}. Consider the conjugacy equation

h (g (x)) = G(h (x)) , x ∈ [α1,β1] , (11.1)

where h : [α1,β1] → [α2,β2] is the unknown function.
Suppose g, G are horseshoe maps, and ϕ is a monotone and surjective solution of

(11.1). If ϕ is increasing, then ϕ (xi) = yi , and ϕ [Ii] = Ji for i ∈ {0, 1, . . ., a − 1}.
If ϕ is decreasing, then ϕ (xi) = ya−i , and ϕ [Ii] = Ja−i−1 for i ∈ {0, 1, . . ., a − 1}.
Proof Since g is a horseshoe map and ϕ is a monotone and surjective solution of
Eq. (11.1), we have for each i ∈ {0, 1, . . ., a − 1},

ϕ (g (xi)) = G(ϕ (xi)) ⇒ G(ϕ (xi)) ∈ {ϕ (α1) ,ϕ (β1)}
⇒ G(ϕ (xi)) ∈ {α2,β2}
⇒ ϕ (xi) ∈ {y0, y1, . . ., ya} .

Suppose for each i ∈ {0, 1, . . ., a − 1}, ϕ (xi) = ϕ (xi+1). Since ϕ is monotone,
ϕ [Ii] is a single point, as is G [ϕ [Ii]]. Again by Eq. (11.1) and surjectivity of ϕ

we obtain G [ϕ [Ii]] = ϕ [g [Ii]] = ϕ [α1,β1] = [α2,β2]. Then ϕ (xi) = ϕ (xi+1),
i ∈ {0, 1, . . ., a − 1}.

If ϕ is increasing, then ϕ (x0) < ϕ (x1) < · · · < ϕ (xa), implying ϕ (xi) = yi ,
because ϕ (xi) ∈

{
y0, y1, . . ., yp

}
. Then ϕ [Ii] = Ji , i ∈ {0, 1, . . ., a − 1}. If ϕ is

decreasing, then ϕ (x0) > ϕ (x1) > · · · > ϕ (xa), implying ϕ (xi) = ya−i , because
ϕ (xi) ∈ {y0, y1, . . ., ya}. Then ϕ [Ii] = Ja−i−1, i ∈ {0, 1, . . ., a − 1}.

We will restrict attention to the family M of piecewise monotone and expanding
interval maps f : [0, 1] → [0, 1] where there exists a partition 0 = a0 < a1 < · · · <
ar = 1, with r ≥ 2, of [0, 1] such that f|[ai−1,ai], for i = 1, 2, . . ., r , is a monotone

piecewise continuous function for which there exists λ > 1 such that
∣∣f ′ (x)

∣∣ ≥ λ,
for almost every x ∈ [0, 1].

Note that the expansivity condition does not necessarily require that the function
be differentiable. The definition of M may be weakened to the following expansivity
condition.

Definition 11.2 A continuous map f : X → X on a metric space (X, d) is
expanding if there exist constants ε > 0 and λ > 1 such that, for all x, y ∈ X,

d (x, y) < ε ⇒ d (f (x) , f (y)) ≥ λd (x, y) ,

λ is called the expansion factor of f .
Let f ∈ M with partition 0 = α0 < α1 < · · · < αa = 1 of [0, 1] such that

f|[αi−1,αi], for i = 1, 2, . . ., a, is an increasing, continuous and expanding func-
tion satisfying f (αi−1,αi) = (0, 1), for every i = 1, 2, . . ., a. We will see, in the
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piecewise linear case, that f is topologically conjugate to the map,

ga(x) =
⎧⎨
⎩
ax (mod 1) , if x ∈ [0, 1)

1, if x = 1,

i.e, there exists a homeomorphism h such that

h ◦ ga = f ◦ h. (11.2)

Let a ≥ 2. Define μ0,μ1, . . .,μa−1 ∈ (0, 1) by μi = αi+1 − αi for i ∈
{0, 1, . . ., a − 1}. Clearly

a−1∑
j=0

μj = 1.

In the linear case, is given by

f (x) =
⎧⎨
⎩

1
μi
x − αi

μi
, if x ∈ [αi−1,αi) , i ∈ {0, 1, . . ., a − 1}

1 , if x = 1,

it is possible to construct an explicit solution using the following results.

Theorem 11.1 Any monotone increasing and surjective solution of the conjugation
equation h◦ga = f ◦ h satisfies the functional equation

h (x) = μih (ax − i)+ αi , for each i ∈ {0, 1, . . ., a − 1} , x ∈
[
i

a
,
i + 1

a

]
.

(11.3)

Proof Let M be an increasing and surjective solution of Eq. (11.3). Then

M (ax − i) = 1

μi

M (x)− αi

μi

, i ∈ {0, 1, . . ., a − 1} , x ∈
[
i

a
,
i + 1

a

]
.

By direct computation,

M ◦ ga (x) =
⎧⎨
⎩
M (ax − i) , if x ∈ [ i

a
, i+1

a

)
, i ∈ {0, 1, . . ., a − 1}

1 , if x = 1.

=
⎧⎨
⎩

1
μi
M (x)− αi

μi
, if x ∈ [ i

a
, i+1

a

)
, i ∈ {0, 1, . . ., a − 1}

1 , if x = 1,

and

f ◦M (x) =
⎧⎨
⎩

1
μi
M (x)− αi

μi
, if M (x) ∈ [αi−1,αi) , i ∈ {0, 1, . . ., a − 1}

1 , if M (x) = 1.
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By Lemma 11.1, if M is monotone increasing and surjective, then for each i ∈
{0, 1, . . ., a − 1}M (x) ∈ [αi−1,αi) is equivalent to x ∈ [i/a, (i + 1) /a). �

Remark 11.1 An analogous result holds for decreasing and surjective solutions as
a consequence of Lemma 11.1.

Example For a = 3, Eq. (11.3) is

h (x) =

⎧⎪⎪⎨
⎪⎪⎩

μ0h (3x) , if x ∈ [0, 1
3

]
μ1h (3x − 1)+ α1 , if x ∈ [ 1

3 , 2
3

]
μ2h (3x − 2)+ α2 , if x ∈ [ 2

3 , 1
]
.

Lemma 11.2 Let a ≥ 2 be an integer. Consider the system of functional equations

h

(
k + t

a

)
= Fkh (t) , (11.4)

where k ∈ {0, 1, 2, . . ., a − 1}, Fk are contractions mappings and h : [0, 1] → [0, 1]
is the unknown function.

Then the system of functional equations (11.4) is equivalent to the functional
equation

h (t) = Fkh (at − k) , t ∈
[
k

a
,
k + 1

a

]
, k ∈ {0, 1, 2, . . ., a − 1} .

Theorem 11.2 (Girgensohn [9]) Let a ≥ 2 be an integer. Let sk : [0, 1] → R be
continuous, |rk| < 1 for 0 ≤ k ≤ a − 1 and assume

rk−1

1 − ra−1
sa−1 (1)+ sk−1 (1) = rk

1 − r0
s0 (0)+ sk (0) , 1 ≤ k ≤ a − 1. (11.5)

Then there exists exactly one bounded function f : [0, 1] → R which satisfies the
system

f

(
x + k

a

)
= rkf (x)+ sk (x) , x ∈ [0, 1] , 0 ≤ k ≤ a − 1. (11.6)

The function f is continuous and given in terms of the a-base expansion of x by

f

( ∞∑
n=1

ξn

an

)
=

∞∑
n=1

(
n−1∏
k=1

rξk

)
sξn

( ∞∑
k=1

ξk+n

ak

)
. (11.7)

We now return to the study of the general Eq. (11.2).
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Lemma 11.3 Any monotone increasing and surjective solution of the conjugation
equation h ◦ ga = f ◦ h satisfies the functional equation

h (x) = μih (ax − i)+ αi , i ∈ {0, 1, . . ., a − 1} , x ∈
[
i

a
,
i + 1

a

]
,

i.e.,

h

(
x + i

a

)
= μih (x)+ αi , i ∈ {0, 1, . . ., a − 1} , x ∈

[
i

a
,
i + 1

a

]
.

The condition

rk−1

1 − ra−1
sa−1 (1)+ sk−1 (1) = rk

1 − r0
s0 (0)+ sk (0) , 1 ≤ k ≤ a − 1

in this case assumes the form

μi−1

1 − μa−1
αa−1 + αi−1 = μi

1 − μ0
0 + αi , 1 ≤ i ≤ a − 1,

which is equivalent to

μi−1 = αi − αi−1, 1 ≤ i ≤ a − 1,

coinciding with the original hypothesis.
Applying Theorem 11.2, we obtain the following explicit solution in terms of the

a-base expansion of numbers.

Theorem 11.3 Let a ≥ 2, 0 = α0 < α1 < · · · < αa = 1, and μ0,μ1, . . .,μa−1 ∈
(0, 1), such that μi = αi+1 − αi , for i ∈ {0, 1, . . ., a − 1}.

Givenf andga defined above, there exists exactly one increasing homeomorphism
h : [0, 1] → [0, 1] such that h ◦ ga = f ◦ h, defined by

h

( ∞∑
n=1

ξn

an

)
=

∞∑
n=1

(
n−1∏
i=1

μξi

)
αξn . (11.8)

Proof By Lemma 11.3 and Theorem 11.2, there exists exactly one-bounded mono-
tone increasing and surjective h : [0, 1] → [0, 1], such that h ◦ ga = f ◦ h which
is defined by formula (11.8). Lemma 1 in [18] by Zdun shows that function h is a
homeomorphism. �

Remark 11.2 An analogous result may be proved for the case of a decreasing
homeomorphism.
We next provide two examples of application of the explicit formula (11.8) to
problems of Number Theory and Probability Theory.
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11.1 Applications: Variable Base Expansions and Bold Play

11.1.1 Q-Representation of Real Numbers

The usual a-base representation of a number is given by

x =
∞∑
n=1

ξn

an
. (11.9)

Turbin and Prats’ovytyi [15, 16] introduced a more general representation, where
the length of the intervals defining the expansion is not uniform.

Let a ≥ 2 be a fixed positive integer, and q0, q1, . . ., qp−1 ∈ (0, 1), such
that

∑p−1
j=0 qj = 1. Let r0 = 0, rj = ∑j

k=0 qk−1, for j ∈ {1, 2, . . ., a}, A =
{0, 1, 2, . . ., a − 1}, and Q = {q0, q1, . . ., qp−1

}
.

Theorem 11.4 (Turbin and Prats’ovytyi) For any number x ∈ [0, 1], there exists a
sequence of numbers ν = (νn) ∈ A such that

x =
∞∑
n=1

(
n−1∏
k=1

qνk

)
rνn . (11.10)

Remark 11.3 Obviously, for any real number x there exists an expansion

x = [x] +
∞∑
n=1

(
n−1∏
k=1

qνk(x)

)
rνn(x). (11.11)

Definition 11.3 Given x ∈ R, the representation by series (11.10) or (11.11) is
called a-symbol Q-representation or a-symbol Q-expansion of x. For x ∈ [0, 1] we
use the notation given by

&Q
ν = &Q

ν1ν2···νn··· :=
∞∑
n=1

(
n−1∏
k=1

qνk

)
rνn . (11.12)

Remark 11.4 An algorithm to find an a-symbol Q-representation of a number x ∈
[0, 1] is:

0. Let n = 1 and x1 = x.
1. Find νn ∈ {0, 1, . . .,p − 1}, such that rνn ≤ xn < rνn+1. If x = rνn , do νN = 0,
for N > n, and the process is finished. Else do step 2.
2. Find the difference xn − rνn and divide by qνn :

xn+1 = xn − rνn

qνn
.

3. Do step 1 for n+ 1.
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The sequence ν = (νn) ∈ A determines the a-symbol Q-representation of x.
We now show that representations (11.9) and (11.12) are related by a homeomorphism
which is a solution of an equation of the form (11.2).

Theorem 11.5 There is a homeomorphism ϕ such that the image of each x ∈ [0, 1]
by ϕ is the a-symbol Q-expansion of x, where the sequence of numbers (νn) ∈ A

of the image obtained is the same as the a-base representation of x, i.e., νn = ξn,
∀n ∈ N. Moreover, ϕ is the unique bounded solution of the system of equations

ϕ

(
x + k

a

)
= qkϕ (x)+ rk , x ∈ [0, 1] , 0 ≤ k ≤ a − 1. (11.13)

Proof By definition of qk and rk , condition (11.5) is satisfied. Applying Theorem
11.2 there exists a unique bounded solution of (11.13) given, in terms of the a-base
representation, by

ϕ

( ∞∑
n=1

ξn

an

)
=

∞∑
n=1

(
n−1∏
k=1

qξk

)
rξn . (11.14)

�

This result may be viewed as a special case of Lemma 1 in [18] by Zdun which
shows that the function ϕ is a homeomorphism. Girgensohn’s result (Theorem 11.2)
is more general, since in its statement the rk are allowed to be continuous functions
of x, rk : [0, 1] → R, instead of constants.

Remark 11.5 The function ϕ in (11.14) may be given in the equivalent forms

ϕ

( ∞∑
n=1

ξn

an

)
= &Q

ξ , (11.15)

ϕ−1
(
&Q

ξ

)
=

∞∑
n=1

ξn

an
. (11.16)

In a similar fashion, the function that transforms a-symbol Q-expansions in other
a-symbol Q-expansions was given by Prats’ovytyi and Kalashnikov [17]. If we
denote by &Q[q,r]

ν = &Q[q,r]
ν1ν2···νn··· the a-symbol Q-expansion in terms of qj , rj , and ν,

defined above, the system of functional equations

ψ
(
&Q[q,r]

kν1ν2···νn···
)
= tkψ

(&Q[q,r]
ν1ν2···νn···

)+ sk , k ∈ {0, 1, . . ., a − 1}

has a unique bounded solution ψ defined by

ψ
(&Q[q,r]

ν

) = &Q[t ,s]
ν . (11.17)
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We note that our results imply immediately construction (11.17). In fact, let
a ≥ 2 be an integer, and let (a,Q [q, r]) and (a,Q [t , s]) be bases of a-symbol
Q-representations. Remark 11.5 implies that the diagram

∞∑
n=1

ξn
an

→
id[0,1]

∞∑
n=1

ξn
an

ϕq,r ↓ ↓ ϕt ,s

&Q[q,r]
ξ

→
ψ

&Q[t ,s]
ξ

is commutative, where the indices of ϕ correspond to the parameters of the system
(11.13) for which ϕ is solution.

Thus the required homeomorphism ψ in (11.17) is given by

ψ = ϕt ,s ◦ ϕ−1
q,r . (11.18)

Thus Theorem 11.2 allows us to construct an alternative, equivalent representation
of the homeomorphism ψ .

11.1.2 Bold Play Gambling

Our second example, bold play gambling, originates in casino games (see [1] for
a detailed description). Consider a gambler playing roulette, staking the amount
of money s at each turn of the wheel. The probability of winning s is p and the
probability of losing s is q = 1 − p.

Suppose the initial capital is C and the gambler’s goal is G. The gambler will
play until his fortune has reached G or has dwindled to nothing. The game strategy
called bold play is the following: in each turn of the wheel the gambler either stakes
his entire fortune, if this fortune does not exceed half the goal, or bets the difference
between the goal and his current fortune. For a normalized problem, consider G = 1,
and the domain will be the interval [0, 1].

Formalizing the problem, denote the gambler’s current fortune by x, so that
0 ≤ x ≤ 1. If 0 ≤ x ≤ 1/2, he bets x (all the money); a win gives him a new fortune
of 2x, and a loss ruins him (lose everything). If 1/2 ≤ x ≤ 1, he bets 1 − x, just
enough to carry him to his goal of 1; a win gives him a new fortune of 1 (a success),
and a loss leaves him with 2x − 1.

Proposition 11.1 Let p + q = 1, p > 0, q > 0. The probability of success under
bold playf (x) for an initial fortune x is the unique solution of the system of equations⎧⎨

⎩
f (x) = pf (2x) , if 0 ≤ x ≤ 1

2

f (x) = p + qf (2x − 1) , if 1
2 ≤ x ≤ 1,

(11.19)

constrained to f (0) = 0, f (1) = 1.
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Remark 11.6 If p = q = 1/2, it is immediate that the identity is a solution of
(11.19). From Proposition 11.1 this solution is unique.

Proof (see [1]) For the case p = q = 1/2, a classical result in probability applies
(see e.g. [7]). For x = 0, f (x) = 0, and equation f (x) = pf (2x) is satisfied.
For x = 1, f (x) = 1, and equation f (x) = p + qf (2x − 1) is verified. For
0 < x ≤ 1/2, under bold play the gambler stakes the amount x. In case of success
in the first turn, with probability p, his new fortune is 2x. Since each turn has
independent outcomes, the probability of success in the second turnf (2x)multiplied
by p equals the initial probability of success f (x), proving the first equation of
(11.19).

For 1/2 ≤ x < 1, the first stake is 1 − x. In case of success in the first turn,
with probability p, his new fortune is 1. In case of loss, with probability q, his new
fortune is 2x − 1. The probability of success after a loss is f (2x − 1). Since each
turn has independent outcomes, the probability of success given by p+ qf (2x − 1)
equals the initial probability of success f (x), proving the second equation of (11.19).
Uniqueness of the solution now follows from Theorem 11.3 given initial conditions.

The probability of success of a strategy of bold play gamble satisfies a system of
equations of type (11.3). Applying Theorem 11.3 we have the following explicitly
defined function of probability of success, in terms of binary representation of real
numbers.

Corollary 11.1 The probability of success under bold play for an initial fortune

x =
∞∑
n=1

ξn

2n

is

f

( ∞∑
n=1

ξn

2n

)
=

∞∑
n=1

(
n−1∏
i=1

μξi

)
αξn ,

where α0 = 0, α1 = p, μ0 = p, and μ1 = q.
Dubins and Savage [6] showed that in case where the game is unfair for the player

(p < q), the bold play strategy is optimal, although it is not the only optimal strategy.
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Chapter 12
In Search of H -theorem for Ulam’s
Redistribution of Energy Problem

Sergey M. Apenko

Abstract We discuss the possibility of deriving an H -theorem for the nonlinear
discrete time evolution known as Ulam’s redistribution of energy problem. In this
model particles are paired at random and then their total energy is redistributed
between them according to some probability law. It appears useful to represent the
evolution as a combination of two processes. The first is a linear transformation of
two-particle distribution function due to redistribution while the second one is a kind
of “reduction” which corresponds to new random pairing. Then information theory
approach leads to a general inequality for the Ulam’s problem, which may be viewed
as a kind of Clausius inequality. However, only for a special set of redistribution laws,
given by symmetric beta distributions, this inequality results in the H -theorem. The
H -functional in this case differs from the usual entropy by an additional term that
vanishes only for the uniform redistribution law.

12.1 Introduction

Ulam’s redistribution of energy problem was introduced in a paper by Blackwell and
Mauldin [1] and was formulated as follows: “Consider a vast number of particles and
let us redistribute the energy of these particles . . . First, pair the particles at random.
Second, for each pair, redistribute the total energy of the pair between these particles
according to some given fixed probability law of redistribution . . . .” This means
that if initial energies of two particles were x and y, then after the redistribution

x ′ = ε(x + y), y ′ = (1 − ε)(x + y), (12.1)

where 0 < ε < 1 is a random number with a distribution D(ε). Since particles are
indistinguishable we assume that D(ε) = D(1−ε) so that the mean value of ε is just
1/2. Ulam had suggested that after many iterations of this process the energy distri-
bution p(x) (x > 0) should finally converge to some fixed equilibrium distribution
p0(x), which depends only on a given redistribution law, and this conjecture was
proved in [1, 2]. For absolutely random redistribution, when D(ε) = 1, it was shown
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that in equilibrium p0(x) = λ exp (−λx) [1], where 1/λ = 〈x〉 is determined by the
mean energy 〈x〉, which is conserved in this process. Later it was realized, however,
that this problem was actually just a particular case of a more general one, related
to “smoothing transformations,” discussed in details earlier in [3, 4], where almost
all necessary theorems had been already proved and exact equilibrium solutions for
some other redistribution laws were found.

All these papers remained practically unknown to physicists for several decades,
while similar models were independently introduced in an economic context as ran-
dom market models, which assume that transactions occur by binary “collisions”
between agents, who, e.g., exchange money in the same way as particles in a gas ex-
change their energy (see e.g., [5–7] and references therein). It is interesting that one
toy model of money redistribution, introduced among several others by Drăgulescu
and Yakovenko [8] was exactly the same as (12.1) with uniform redistribution law
D(ε) = 1.

Our study of Ulam’s redistribution problem is based on the approach initiated by
López-Ruiz and his colleagues [9, 10], who have proposed a discrete time nonlinear
evolution equation for the process (12.1) with uniform redistribution law in terms of
a distribution function p(x). An obvious generalization of their equation for general
D(ε), which will be studied below, is

p′(x) =
∫ ∞

0

∫ ∞

0
dudv

θ (u + v − x)

u + v
D

(
x

u + v

)
p(u)p(v). (12.2)

This nonlinear mapping shows how the probability distribution function transforms
on each step of iterations when p(x) → p′(x). For uniform redistribution law D = 1
and only the factor 1/(u + v) remains, which is just the normalized probability
distribution for x that can have any value from zero to u + v. In this case Eq. (12.2)
coincides with the one used in [9, 10].

Since this evolution is based on pairwise interactions, just as in a gas of particles,
described by the Boltzmann equation, one might expect some kind of H -theorem to
be valid here. And indeed, for the uniform redistribution law the Boltzmann entropy

S(p) = −
∫

dx p(x) ln p(x)

increases on each time step [9, 11], i.e., S(p′) ≥ S(p) . However for an arbitraryD(ε)
one cannot expect that the entropy S(p) always grows. Thus a question arises—What
is the proper H -function (if it exists) that is monotone during the relaxation for an
arbitrary redistribution law?

Here we will follow the approach of [11] which makes use of the two-particle
distribution function. However, this will lead to an H -theorem only for a special
case of symmetric beta redistribution law. We will be able to obtain H -functional
which is equal to the Boltzmann entropy plus some additional term. For the general
case, however, only some more general inequality, similar to Clausius inequality
in ordinary thermodynamics, is available. This suggests a point of view that the
system of particles with redistribution of energy according to (12.1) is, in fact, an
open system in contact with a reservoir of the special type with a “heat” flow to this
reservoir due to redistribution of energy.
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12.2 Two-Stage Representation of the Redistribution Process

Our search for the H -theorem is based on the approach of [11] which transforms
initial nonlinear problem into a linear one, supplemented by a subsequent projection
operation, by introducing a two-particle distribution function f (x, y). After a “col-
lision” and redistribution of energy f (x, y) → f ′(x, y) and it appears possible to
write down a simple equation describing this evolution.

12.2.1 Two-Particle Distribution Function

There exist a regular way to obtain an equation for the two-particle probability
distribution function f (x, y) from the original equation for p(x). We start from the
integral representation for the theta-function in (12.2)

θ (u + v − x) =
∫ ∞

0
dy δ(x + y − u − v). (12.3)

Since the delta-function here obviously represents the conservation law during the
collision, it is quite natural to view y as energy of the second particle after the
collision. Now we substitute this expression into Eq. (12.2) and after changing the
order of integration we may write

p′(x) =
∫ ∞

0
dy f ′(x, y), (12.4)

where f ′(x, y) is given by

f ′(x, y) = D

(
x

x + y

)∫ ∞

0

∫ ∞

0
dudv

δ(x + y − u − v)

u + v
f (u, v), (12.5)

with f (u, v) = p(u)p(v). Now we make a change of variables in the integral u, v →
E, ξ where E = u + v and ξ = u/(u + v). The Jacobian of this transformation is
just u + v so it exactly cancels the denominator in the integrand. Integration over E
is trivial because of the delta-function, so finally we arrive at

f ′(x, y) = D

(
x

x + y

)∫ 1

0
dξ f (ξ (x + y), (1 − ξ )(x + y)), (12.6)

For D = 1 this equation was obtained in [11]. This is a linear transformation and it
conserves positivity of f (x, y), its norm and the mean “energy” 〈x + y〉.

Physically it is rather obvious that f (x, y) is a two-point distribution function that
gives the probability that one particle has the energy x while the other has y. It should
be noted, however, that Eq. (12.6) alone does not describe correctly the true evolution
of the two-particle probability distribution in Ulam’s problem. It takes into account
only collisions within fixed pairs of particles while the true evolution includes also
new random pairings of particles on each step, not accounted for in (12.6).
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The transformation of the original nonlinear equation made above suggests a
new physical representation of the problem. In terms of of the two-particle function
f (x, y) the evolution may be represented as consisting of two steps.

1. On the first step, when we pair particles at random, we have f (x, y) = p(x)p(y)
and then, as a result of energy redistribution,

f (x, y) = p(x)p(y) → f ′(x, y), (12.7)

where the new probability distribution is given by (12.6).
2. Next we perform a new random pairing, destroying all correlations induced

by previous interactions. Therefore, this second step may be describes as a
“reduction”

f ′(x, y) → p′(x)p′(y), (12.8)

where p′(x) is a marginal distribution given by (12.4). One can easily verify, that
combination of these two steps is completely equivalent to the original nonlinear
equation, i.e., the final p′(x) is indeed given by (12.2).

This approach is actually an opposite one to the normal derivation of the Boltzmann-
type equation from the general equation for many-particle distribution function. For
wealth exchange problems such a derivation was performed in [12] for the continuous
time evolution. Obviously our reduction condition (12.8) is similar to “molecular
chaos” assumption used when Boltzmann equation is obtained. But here we already
have this nonlinear equation for p(x) as a starting point and simply restore the
corresponding exact two-stage evolution of the two-particle function.

12.2.2 Inequality for Two-Particle Relative Entropy

The advantage of Eq. (12.6) is that this is a linear evolution equation similar to what
we have for a stationary Markov chain for which the monotone functional can be
easily constructed. Normally, it is the relative entropy with respect to a stationary
state f0(x, y) that monotonically decreases during relaxation for such equations.

The regular way to prove such monotonicity theorems is to start from the relative
entropy, or Kullback–Leibler (KL) distance D(μ||ν) = ∑

μ ln μ/ν between two
probability distributions μ and ν. It is well-known from information theory that
D(μ||ν) cannot increase under “coarse-graining” of these distributions, when some
variables are integrated out. This immediately follows from the chain rule for relative
entropy [13]. Consider now the distribution

μ(ξ , x, y) = D

(
x

x + y

)
f (ξ (x + y), (1 − ξ )(x + y)), (12.9)

defined on the space ξ ∈ [0, 1], x, y ∈ [0,∞) and define ν(ξ , x, y) in the same way
through the stationary solution f0(x, y) of (12.6), i.e., with f (x, y) → f0(x, y) in
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(12.9). Both μ(ξ , x, y) and ν(ξ , x, y) are obviously positive and normalized to unity
(this follows from

∫
dεD(ε) = 1).

It is easy to see that Eq. (12.6) actually has many stationary solutions. In fact, any
probability distribution of the form

f0(x, y) = D

(
x

x + y

)
F (x + y) (12.10)

with arbitrary F (x + y), is such a stationary solution.
Next, define the coarse-graining procedure μ → μ̃ as averaging over the ξ

variable, i.e.,

μ̃(x, y) =
∫ 1

0
dξ μ(ξ , x, y) = f ′(x, y), (12.11)

according to Eq. (12.6), and, obviously, ν̃(x, y) = f0(x, y).
The above statement about the monotonic behavior of KL distance can be written

as
∫ 1

0
dξ

∫ ∞

0
dxdy μ(ξ , x, y) ln

μ(ξ , x, y)

ν(ξ , x, y)
≥

≥
∫ ∞

0
dxdy μ̃(x, y) ln

μ̃(x, y)

ν̃(x, y)
(12.12)

In the integral on the left-hand side we now make a change of variables

u = ξ (x + y), v = (1 − ξ )(x + y), z = x − y (12.13)

with the obvious property x + y = u + v. Then the integration measure and ranges
of integration transform as follows

∫ 1

0
dξ

∫ ∞

0
dxdy . . . = 1

2

∫ ∞

0
dudv

∫ (u+v)

−(u+v)
dz

1

u + v
. . . (12.14)

According to (12.9) the ratio μ/ν does not depend on z, so integration over z reduces
simply to

∫ (u+v)

−(u+v)
dz D

(
u + v + z

2(u + v)

)
= 2(u + v)

∫ 1

0
dεD(ε), (12.15)

and gives 2(u + v) which exactly cancels the Jacobian in (12.14).
Then, using also exact expressions for μ̃ and ν̃, we can finally rewrite Eq. (12.12)

as expected monotonicity of relative entropy
∫ ∞

0
dudv f (u, v) ln

f (u, v)

f0(u, v)
≥

≥
∫ ∞

0
dxdy f ′(x, y) ln

f ′(x, y)

f0(x, y)
. (12.16)
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12.2.3 Redistribution as Interaction with Reservoir:
Clausius Inequality

Next, we can recall that initial distribution is factorized, f (x, y) = p(x)p(y), and
hence for the entropy S(f ) = − ∫ dxdy f ln f we have

S(f ) = 2S(p). (12.17)

And for the distribution f ′(x, y) we have a simple information theory inequality,
which follows from the positivity of the mutual information of x and y variables
after the collision [13]

I =
∫ ∫

dxdy f ′(x, y) ln
f ′(x, y)

p′(x)p′(y)
≥ 0. (12.18)

This mutual information obviously can be written as

I = 2S(p′) − S(f ′), (12.19)

where S(p′) = − ∫ dxp′(x) ln p′(x). Hence from I ≥ 0 it follows

2S(p′) ≥ S(f ′). (12.20)

Combining this inequality with (12.16), substituting Eq. (12.10) for the stationary
solution, and noticing that terms with F cancels from both sides of (12.16), because
the total energy x + y is not changed in a collision, we finally arrive at an inequality

S(p′) + 1

2

∫ ∞

0
dxdy f ′(x, y) ln

[
D

(
x

x + y

)]
≥

≥ S(p) + 1

2

∫ ∞

0
dxdy p(x)p(y) ln

[
D

(
x

x + y

)]
. (12.21)

Only in the case when D = 1 there are no additional terms in this inequality and
we have entropy growth S(p′) ≥ S(p). Unfortunately f ′(x, y) cannot be expressed
in terms of p′, therefore for arbitrary D we cannot derive any H -theorem from Eq.
(12.21). But we will see now that actually this inequality may be interpreted as a
Clausius inequality for an irreversible process, accompanied by some “heat” flow.

For this purpose we first introduce new variables: the total energy of a given pair
E and a fraction of this total energy that one of the particles has

E = x + y, ξ = x

x + y
. (12.22)

In terms of these variables the redistribution process (12.1) looks very simple E →
E′ = E and ξ → ξ ′ = ε. The two-particle probability distribution as a function of
these new variables is

φ(E, ξ ) = Ef (ξE, (1 − ξ )E), (12.23)



12 In Search of H -theorem for Ulam’s Redistribution of Energy Problem 209

where the additional factor appears because of the normalization condition (it cancels
the Jacobian of the transformation from ξ ,E to x, y). Then we can rewrite the linear
Eq. (12.6) in terms of φ(ξ ,E) in a very simple form

φ′(ξ ,E) = D(ξ )
∫ 1

0
dξ ′φ(ξ ′,E). (12.24)

This means that after the energy exchange all information about the original distribu-
tion of ξ is completely destroyed and the distribution in question is simply substituted
by D(ξ ). But this is just the same thing that happens when we put a system in a con-
tact with a thermal reservoir, with D(ξ ) playing the role of the Gibbs distribution.
We can even introduce the new “pseudoenergy” E(ξ ) according to

D(ξ ) = 1

Z
exp ( − E(ξ )/T ), Z =

∫ 1

0
dξ exp ( − E(ξ )/T ) (12.25)

In general, introducing an independent “temperature” T does not make much sense,
but in the next section we will see that sometimes this may be quite reasonable. Now,
if we change variables in additional integrals in Eq. (12.21) we can rewrite them in
terms of E(ξ ) and marginal distributions φ(ξ ) = ∫

dEφ(ξ ,E) and φ′(ξ ) = D(ξ )
before and after the collision.

Then our main inequality (12.21) may be rewritten in the form of a Clausius
inequality for Boltzmann entropy on each time step

S(p′) − S(p) ≥ Q

T
, (12.26)

where the “heat” transferred during the relaxation φ(ξ ) → D(ξ ) is given by the
change in mean pseudoenergy per particle

Q = 1

2

∫ 1

0
dξE(ξ )[D(ξ ) − φ(ξ )]. (12.27)

This inequality suggests the following interpretation of the evolution. We should
probably assume that particles are essentially noninteracting and the usual Boltzmann
expression for entropy is valid, but consider the system as an open one, which on
every time step is brought in contact with a thermal reservoir in a very specific way.
Namely, we pair particles at random and then the distribution of ξ , defined for these
pairs, irreversibly relax to equilibrium with the reservoir while the amount of “heat”
Q is transmitted to the system.

It is interesting that in general we do not expect, that in a stationary state φ(ξ ) =
D(ξ ). This means that Q may be nonzero even in equilibrium and then Q ≤ 0, as
follows from (12.26) for p(x) = p′(x) = p0(x), i.e., there is a constant heat flow to
the reservoir. But this implies in its turn that in the two-stage representation we have
a nonequilibrium steady state instead of a true equilibrium. The evolution of the two-
particle function in such a steady state looks like a kind of a cyclic process, consisting
of an instantaneous “thermalization” φ(ξ ) → D(ξ ) followed by a subsequent new
random pairing that drives pairs out of this equilibrium.



210 S. M. Apenko

12.3 H -Theorem for Beta Redistribution Laws

There exist, however, special cases, when Q = 0 in a stationary state. This happens
when we take the redistribution law in the form of symmetric beta distribution

D(ε) = Cεa(1 − ε)a , (12.28)

where C is a normalization constant and a > −1 is a parameter that determines the
shape of the distribution. When a → ∞ this distribution tends to a delta-function
located at ε = 1/2 (the total energy of a pair is divided in half), while for negative a

the distributionD(ε) diverge at ε = 0 and ε = 1 indicating that after the redistribution
one particle normally gets much more energy than the other.

For these redistribution laws, equilibrium solutions are already known

p0(x) ∼ xa exp ( − λx). (12.29)

These solutions were obtained by Bassetti and Toscani [14] (see also [3]) for their pure
gambling model which is in fact a continuous time version of Ulam’s redistribution
problem. For a → ∞ with fixed mean energy this distribution tends to a delta-
function and then in equilibrium all particles have the same energy, as was noticed
already in [1], i.e., the system finally is in a fully “ordered” state.

The important thing is that for beta redistribution laws (12.28) the equilibrium
two-particle distribution function, which was factorized, f0(x, y) = p0(x)p0(y),
before the collision, was factorized also in variables ξ and E. Indeed, in this case
φ0(ξ ,E), given by (12.23), is simply a product of D(ξ ) and a function that depends
only onE. This factorization in its turn implies that the two-particle distribution is not
changed during the collision and remains factorized after the redistribution, so that
f0(x, y) = p0(x)p0(y) is a stationary solution of the linear evolution equation (12.6).

But for a factorized f0(x, y) it immediately follows from (12.16) that also the
single-particle relative entropy

K =
∫ ∞

0
dx p(x) ln

p(x)

p0(x)
(12.30)

is monotonic during the relaxation. Such a monotonicity is a rather nontrivial result
for a nonlinear evolution, because contrary to a Markov process with linear master
equation no general theorem exists in this case. Similar monotonicity was found
recently also for a Boltzmann equation with nonconservative interactions[15].

It is also easy to obtain anH -theorem for beta redistribution law from the Clausius-
like inequality (12.21). For D from (12.28) we can take

E(ξ ) = ln (ξ (1 − ξ )), T = 1/a, (12.31)

so the inverse “temperature” may be taken as just a. This seems quite natural, since
then a →∞ corresponds to zero temperature with fully-ordered steady state, while
in case of uniform redistribution we have a = 0 with maximum disorder in equi-
librium. For factorized D, the logarithm in Eq. (12.21) is a sum of functions that
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depend either only on x, or y, or on x+y. Terms with x+y cancel because the total
energy of a pair is conserved and we finally obtain the H -theorem H (p′) ≥ H (p)
from Eq. (12.21) with

H (p) = S(p) + a

∫ ∞

0
dx p(x) ln x. (12.32)

Thus only for the uniform redistribution law, when a = 0 it is the entropy S(p) that
always grows. This H -functional is maximized by the equilibrium distribution p0(x)
from (12.29) under the constraint that the mean energy is conserved.

There are many ways to understand the result (12.32). First note that H -functional
(12.32) has a very general form, the same as discussed byAttard [16]. Entropy usually
has such a form when x represents some macrostate for which a lot of microstates
are possible, so that this macrostate has a nonzero entropy.

Next, the H -functional from (12.32) may be rewritten as

H (p) = −
∫ ∞

0
dx p(x) ln

p(x)

xa
. (12.33)

This suggests that probably the additional term in H may be related to the “graining”
with which the space of x is actually resolved [17]. Indeed, in their paper Maynar and
Trizac argued that because of the measure problem the entropy for a continuous vari-
able should generally be of the form − ∫ dx p(x) ln [Λ(x)p(x)] and clearly (12.33)
is exactly the same with Λ(x) = x−a . It should be noted, however, that this result
was derived in [17] from the Jacobian of the transformation x, y → x ′, y ′ while in
our case the Jacobian of (12.1) is exactly zero (the transformation does not have the
inverse) so that the method of Maynar and Trizac can not be directly applied here.

Surely other interpretations of H are also possible, probably because nonlinear
equation (12.2) for a one-point distribution function does not uniquely determines
the underlying stochastic process. Different physical realizations of the process de-
termine then what interpretation is more adequate. However, here we prefer to think
that the system of particles in question is actually an open one, subjected to the ac-
tion of some external agents, that actually redistribute the energy, so that H is likely
related to the total entropy of the whole system, including these additional agents.

12.4 Conclusion

We have tried to obtain an H -theorem for Ulam’s redistribution of energy problem,
but it appeared possible only for special redistribution laws, given by symmetric beta
distributions. H -functional differs from the Boltzmann entropy by an additional term,
which may be interpreted in different ways. Also the relative entropy in these cases
decreases monotonically just as for an ordinary stationary Markov chain (compare
with [15]). Unfortunately, in a general case only some Clausius-type inequality is
available from which no proper H -theorem follows.
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Interpretations of the H -functional obtained depend on how we view the redistri-
bution process. Certainly it is tempting to call this functional “entropy” in agreement
with [16, 17]. One can also recall that for a system of hard spheres described by
the nonlinear Enskog equation, the true entropy functional also differs from the sim-
ple Boltzmann entropy [18, 19]. Indeed, it is generally accepted that Boltzmann
expression for the entropy is actually valid only for dilute gases.

However, in the present case it seems that quite a different interpretation is pos-
sible. Probably here there is no need to change the usual expression for the entropy
of a gas, but one should simply consider the system of particles as an open one.
In the redistribution problem there is one important element that is hidden in the
original formulation, where it is assumed that particles somehow perform this redis-
tribution by themselves. But actually we need some additional agent, or a device that
performs this control function, because general redistribution laws are not quite “nat-
ural”. This agent is, of course, similar to Maxwell’s demon, as was already noticed
in [5]. In this situation the Clausius-type inequality (12.26) seems more adequate for
the description of the irreversibility in this problem.

Thus finally we believe that the two-stage evolution in terms of the two-particle
distribution function is probably the most instructive way to view the redistribution
of energy process. This approach suggests that the regulating device is actually a
special type of a thermal reservoir and for a general redistribution law the final state
of evolution is not a true equilibrium, but rather a non-equilibrium steady state, with
constant production of ‘heat’ in each irreversible act of redistribution. Certainly this
makes the search for a possible general H -theorem much more difficult.
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8. Drăgulescu, A.A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B 17,
723–729 (2000)

9. López-Ruiz, R., López, J.-L., Calbet, X.: Exponential wealth distribution : a new approach
from functional iteration theory. ESAIM Proc. 36, 189–196 (2012)

10. López, J.-L., López-Ruiz, R., Calbet, X.: Exponential wealth distribution in a random market.
A rigorous explanation. J. Math. Anal. Appl. 386, 195 (2012)

11. Apenko, S.M.: Monotonic entropy growth for a nonlinear model of random exchanges. Phys.
Rev. E 87, 024101 (2013)

12. Lallouache, M., Jedidi, A., Chakraborti, A.: Wealth distribution: to be or not to be a Gamma?
Sci. Cult. (Kolkata, India) 76, 478 (2010)

13. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd ed., Wiley, Hoboken (2006)
14. Bassetti, F., Toscani, G.: Explicit equilibria in a kinetic model of gambling. Phys. Rev. E 81,

066115 (2010)
15. Marconi, U.M.B., Puglisi, A., Vulpiani, A.: About an H-theorem for systems with

non-conservative interactions. J. Stat. Mech. 8, 2 (P08003) (2013)
16. Attard, P.: Is the information entropy the same as the statistical mechanical entropy?

arXiv:1209.5500
17. Maynar, P., Trizac, E.: Entropy of continuous mixtures and the measure problem. Phys. Rev.

Lett. 106, 160603 (2011)
18. Resibois, P.: H-theorem for the (modified) nonlinear Enskog equation. J. Stat. Phys. 19,

593–609 (1978)
19. Garrido, P., Goldstein, S., Lebowitz, J.L.: Boltzmann entropy for dense fluids not in local

equilibrium. Phys. Rev. Lett. 92, 050602 (2003)



Chapter 13
Random Market Models with an H -Theorem

R. López-Ruiz, E. Shivanian and J. L. López

Abstract In this chapter, some economic models given by functional mappings are
addressed. These are models for random markets where agents trade by pairs and ex-
change their money in a random and conservative way. They display the exponential
wealth distribution as asymptotic equilibrium, independently of the effectiveness of
the transactions and of the limitation of the total wealth. The entropy increases with
time in these models and the existence of an H -theorem is computationally checked.
Also, it is shown that any small perturbation of the models equations make them to
lose the exponential distribution as an equilibrium solution.

13.1 Introduction

In the past years, it has been reported [1, 2] that in Western societies, around 95 % of
the population, the middle and lower economic classes of society arrange their in-
comes in an exponential wealth distribution. The incomes of the rest of the population,
around 5 % of individuals, fit a power law distribution [3].

The kind of models considering the randomness associated to markets are the
gas-like models [4]. These random models interpret economic exchanges of money
between agents similarly to collisions in a gas where particles share their energy [5].

In this chapter, we consider a continuous version of a homogeneous gas-like
model [6, 7], which we generalize to a situation where the agents present a control
parameter to decide the degree of interaction with the rest of economic agents [8]
and also to another new situation where there is an upper limit of the total richness.
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The appearance of the exponential (Gibbs) distribution as a fixed point for all
these three cases is mathematically explained [7]. Also, the increase in the entropy
when these systems evolve toward the asymptotic equilibrium is checked. This is
associated with the existence of an H -theorem for all these economic models [9, 10].
Despite their apparent simplicity, these models based on functional mappings can
help to enlighten the reasons of the ubiquity of the exponential distribution in many
natural phenomena but in particular in the random markets.

13.2 The Continuous Gas-Like Model

We consider an ensemble of economic agents trading with money by pairs in a random
manner. The discrete version of this model is as follows [5]. For each interacting pair
(mi ,mj ) of the ensemble of N economic agents the trading rules can be written as

m′
i = ε (mi +mj ),

m′
j = (1 − ε)(mi +mj ), (13.1)

i, j = 1 . . . N ,

where ε is a random number in the interval (0, 1). The agents (i, j ) are randomly
chosen. Their initial money (mi ,mj ), at time t , is transformed after the interaction
in (m′

i ,m
′
j ) at time t + 1. The asymptotic distribution pf (m), obtained by numerical

simulations, is the exponential (Boltzmann–Gibbs) distribution,

pf (m) = β exp (−β m), with β = 1/ <m>gas ,

where pf (m)dm denotes the probability density function (PDF), i.e., the probability
of finding an agent with money (or energy in a gas system) between m and m+ dm.
Evidently, this PDF is normalized, ||pf || =

∫∞
0 pf (m)dm = 1. The mean value of

the wealth, <m>gas , can be easily calculated directly from the gas by <m>gas=∑
i mi/N .
The continuous version of this model [6] considers the evolution of an initial

wealth distribution p0(m) at each time step n under the action of an operator T .
Thus, the system evolves from time n to time n + 1 to asymptotically reach the
equilibrium distribution pf (m), i.e.,

lim
n→∞ T n (p0(m)) → pf (m).

In this particular case, pf (m) is the exponential distribution with the same average
value, < pf >, than the initial one, < p0 >, due to the local and total richness
conservation.

The derivation of the operator T is as follows [6]. Suppose that pn is the wealth
distribution in the ensemble at time n. The probability to have a quantity of money
x at time n+ 1 will be the sum of the probabilities of all those pairs of agents (u, v)
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able to produce the quantity x after their interaction, that is, all the pairs verifying
u + v > x. Thus, the probability that two of these agents with money (u, v) interact
between them is pn(u) ∗ pn(v). Their exchange is totally random and then they can
give rise, with equal probability, to any value x comprised in the interval (0, u + v).
Therefore, the probability to obtain a particular x (with x < u+v) for the interacting
pair (u, v) will be pn(u) ∗pn(v)/(u+ v). Then, T has the form of a nonlinear integral
operator,

pn+1(x) = Tpn(x) =
∫ ∫

u+v>x

pn(u)pn(v)

u + v
dudv .

If we suppose T acting in the PDFs space, it has been proved [7] that T conserves
the mean wealth of the system, < Tp >=< p >. It also conserves the norm (|| · ||),
i.e., T maintains the total number of agents of the system, ||Tp|| = ||p|| = 1, that
by extension implies the conservation of the total richness of the system. We have
also shown that the exponential distribution pf (x) with the right average value is
the only steady state of T , i.e., Tpf = pf . Computations also seem to suggest
that other high-period orbits do not exist. In consequence, it can be argued that the
convergence relation toward the limit point above explained is true. We sketch some
of these properties.

First, in order to set up the adequate mathematical framework, we provide the
following definitions.

Definition 13.1 We introduce the space L+
1 of positive functions (wealth distribu-

tions) in the interval [0,∞),

L+
1 [0,∞) = {y : [0,∞) → R+ ∪ {0}, ||y|| < ∞},

with norm

||y|| =
∫ ∞

0
y(x)dx.

Definition 13.2 We define the mean richness < x >y associated to a wealth
distribution y ∈ L+

1 [0,∞) as the mean value of x for the distribution y. Then,

<x>y= ||xy(x)|| =
∫ ∞

0
xy(x)dx.

Definition 13.3 For x ≥ 0 and y ∈ L+
1 [0,∞) the action of operator T on y is

defined by

T (y(x)) =
∫ ∫

S(x)
dudv

y(u)y(v)

u + v
,

with S(x) the region of the plane representing the pairs of agents (u, v) which can
generate a richness x after their trading, i.e.,

S(x) = {(u, v), u, v > 0, u + v > x}.
Now, we remind the following results recently presented in Ref. [7, 8].
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Theorem 13.1 For any y ∈ L+
1 [0,∞) we have that ||Ty|| = ||y||2. In partic-

ular, consider the subset of PDFs in L+
1 [0,∞), i.e., the unit sphere B = {y ∈

L+
1 [0,∞), ||y|| = 1}. Observe that if y ∈ B then Ty ∈ B. (It means that the number

of agents in the economic system is conserved in time).

Theorem 13.2 The mean value <x>y of a PDF y is conserved, that is <x>Ty=<

x>y for any y ∈ B. (It means that the mean wealth, and by extension the total
richness, of the economic system are preserved in time).

Theorem 13.3 Apart from y = 0, the one-parameter family of functions yα(x) =
αe−αx , α > 0, are the unique fixed points of T in the space L+

1 [0,∞).

Proposition 13.1 For some members y, w ∈ B, ||Ty − T w|| ≥ ||y −w||, hence T

is not a contraction.

Example 13.1 Take y(x) = 1
(1+x)2 and w(x) = e−x which belong to B. By using

Mathematica, it is seen that ||y − w|| = 0.407264 and ||Ty − T w|| = 0.505669.
If we consider the restriction of T for the subset Bx0 of distributions with the

same mean wealth x0, i.e., Bx0 = {y ∈ B| <x>y= x0}, then by using the Laplace
transform of the operator T , it has been proved [11] that T is a contraction in Bx0 ,
hence the truth of the following relation:

lim
n→∞ T ny(x) =

⎧⎪⎪⎨
⎪⎪⎩

δe−δx with δ = 1/x0 ,

or

0+ when <x>y= +∞ .

Let us observe that the above pointwise limit of T ny when n → ∞ can be outside
of B in the case that <x>y= +∞. See the next example.

Example 13.2 Take y(x) = 1
(1+x)2 which belongs to B, with < x >y= +∞.

Evidently, T ny ∈ B for all n. But it can be seen that limn→∞ T ny(x) = 0+ /∈ B.

Example 13.3 Assume now the rectangular distribution: y(x) = 1
2 if 2 < x < 4, and

y(x) = 0 otherwise. So, y ∈ B and δ = 1
3 , then the steady state in this case is μ(x) =

1
3e

− 1
3 x . We find numerically that ||y−μ|| > ||Ty−μ|| > ||T 2y−μ|| > ||T 3y−μ||,

and so on. This is shown in Fig. 13.1. Then we can guess that limn→∞ ||T ny−μ|| = 0.
If we consider the entropy of y(x) given by H = − ∫ y(x) log y(x)dx, then it is

found that H increases in a monotonic way when T is successively applied to an
initial state y0(x). If we define Hn = H (T ny0(x)), then the following H -theorem
[10] yields:

lim
n→∞Hn = H (δe−δx) with δ = 1/ <x>y0 ,

Hn ≤ Hn+1 ∀n .

Summarizing, the system has a fixed point, δe−δx , which is asymptotically reached
depending on the initial average value <x>y0 and following a trajectory of increasing
entropy. This behavior is essentially maintained in the extension of this model for
other similar random markets (see the next sections).
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Fig. 13.1 Plot of y(x) = 1
2 if 2 < x < 4, and y(x) = 0 otherwise, T -iterates of y and μ(x) =

1
3 e

− 1
3 x . (a) ||y − μ||, (b) ||Ty − μ||, (c) ||T 2y − μ||

13.3 The Continuous Gas-Like Model with Homogeneous
Effectiveness

Let us think now that many of the economical transactions planned in markets are
not successful and they are finally frustrated. It means that markets are not totally
effective. We can reflect this fact in our model in a qualitative way by defining
a parameter λ ∈ [0, 1], which indicates the degree of effectiveness of the random
market. When λ = 1, the market will have total effectiveness and all the operations
will be performed under the action of the random rules (13.1). The evolution of the
system in this case is given by the operator T . When λ = 0, all the operations become
frustrated, there is no exchange of money between the agents and then the market
stays frozen in its original state. The operator representing this type of dynamics
is just the identity operator. Therefore, we can establish a generalized continuous
economic model whose evolution in the PDFs space is determined by the operator
Tλ, which depends on the parameter λ as follows:
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Definition 13.4 Tλy(x) = (1 − λ)y(x) + λTy(x), with λ ∈ [0, 1].
Observe that the parameter (1 − λ) can also be interpreted as a kind of saving

propensity of the agents, in such a way that for λ = 1 they do not save anything and
they game all their resources, and for λ = 0 they save the totality of their money and
then all the transactions are frustrated and the market stays in a frozen state.

We present some properties of the operator Tλ, which shows a dynamical behavior
essentially similar to the behavior of T . Concretely, the exponential distribution
is also the asymptotic wealth distribution reached by the system governed by Tλ,
independently of the effectiveness λ of the random market.

Let us observe that Tλ = I for λ = 0 and Tλ = T for λ = 1, where I is the
identity operator.

Proposition 13.2 Tλ conserves the norm, i.e., for each y ∈ B, we have Tλy ∈ B.

Proposition 13.3 Tλ conserves the average value of y ∈ B, i.e., <x>y=<x>Tλy ,
where <x>y represents the mean value expressed in Definition 13.2.

Theorem 13.4 For any λ ∈ (0, 1), the operators T and Tλ have the same fixed
points.

Corollary 13.1 The function y(x) = 0 and the family of exponential distributions
yδ(x) = δe−δx , δ > 0, are the only fixed points of Tλ in L+

1 [0,∞), with λ ∈ (0, 1].

Theorem 13.5 Suppose that for a given λ ∈ (0, 1) we have limn→∞ ||T n
λ y(x) −

μ(x)|| = 0, with μ(x) a continuous function, then μ(x) should be the fixed point of
the operator Tλ for the initial condition y(x) ∈ B. In other words, μ(x) = δe−δx

with δ = 1
<x>y

.

Example 13.4 Take the Gamma distribution y(x) = xe−x , so that y ∈ B and
δ = 1

2 , then in this case μ(x) = 1
2e

− 1
2 x . For λ = 0.5, we find numerically that

||y − μ|| = 0.368226, ||Tλy − μ|| = 0.273011, ||T 2
λ y − μ|| = 0.206554, ||T 3

λ y −
μ|| = 0.158701, and so on. This is shown in Fig. 13.2. Then we can guess that
limn→∞ ||T n

λ y − μ|| = 0.
Also, the increasing of entropy in the system evolution can be checked. Then, sim-

ilarly to the first model, this model has a fixed point, δe−δx , which is asymptotically
reached depending on the initial average value <x>y0 and following a trajectory
of increasing entropy. The difference with the first model remains in the transient
toward equilibrium, that evidently is a longer time for a lower effectiveness λ of the
random market.

13.4 The Continuous Gas-Like Model with Limitation
of the Richness

Here, we study the effect of a limitation in the maximum richness that an agent can
have. We establish this upper limit to be $ for x: x ∈ [0,$]. Now, the mean wealth
of the system is:
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Fig. 13.2 Plot of y(x) = xe−x , Tλ-iterates of y for λ = 0.5 and μ(x) = 1
2 e

− 1
2 x . (a) ||y − μ||, (b)

||Tλy − μ||, (c) ||T 2
λ y − μ||

<x>y=
∫ $

0
xy(x)dx.

Evidently, <x>y< $.
The existence of the cutoff $ in the economic system not only means that agents

can not have more money than $ if not the creation of some kind of control on the
system that do not let the agents to perform trades that surpass the limit $. In the
case of interaction by pairs, it implies that only the pairs verifying u + v < $ are
allowed to trade and then they can exchange their money according to rules (13.1).
In the rest of interactions surpassing the upper limit, that is u + v > $, the agents
are not allowed to trade and then they conserve their original money. Hence, the
generalization of the operator T for this system is the following:

[T$y](x) =
∫ ∫

x≤u+v≤$

y(u)y(v)

u + v
dudv + y(x)

∫ $

$−x

y(v)dv,
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where the first term integrates the allowed trades according to rules (13.1) and the
second term gives account of the total probability of encounters with forbidden trades
that an agent of richness x can have with other agents of the ensemble.

Observe that lim$→∞ T$ = T . Also:

[T$y](x) =
∫ x

0
du
∫ $−u

x−u
dv

y(u)y(v)

u + v
+

+
∫ $

x

du
∫ $−u

0
dv

y(u)y(v)

u + v
+ y(x)

∫ $

$−x

y(v)dv.

Theorem 13.6 For any y ∈ L+
1 [0,∞) and $ > 0 we have that ||T$y|| = ||y||2. In

particular, if ||y|| = 1 then ||T$y|| = 1.

Proof Take y ∈ L+
1 [0,∞). Then

||T$y|| =
∫ $

0
[T$y](x)dx =

∫ $

0
du
∫ $−u

0
dv
∫ u+v

0
dx

y(u)y(v)

u + v
+
∫ $

0
y(x)dx

∫ $

$−x

y(v)dv =
∫ $

0
y(u)du

∫ $−u

0
y(v)dv +

∫ $

0
y(u)du

∫ $

$−u
y(v)dv = ||y||2.

�

Theorem 13.7 The mean richness is conserved by T$, that is <x>T$y=<x>y for
any y ∈ B.

Proof

<x>T$y=
∫ $

0
xy(x)dx =

∫ $

0
du
∫ $−u

0
dv
∫ u+v

0
xdx

y(u)y(v)

u + v
+
∫ $

0
xy(x)dx

∫ $

$−x

y(v)dv

= 1

2

∫ $

0
du
∫ $−u

0
dv(u + v)y(u)y(v) +

∫ $

0
xy(x)dx

∫ $

$−x

y(v)dv

= 1

2

∫ $

0
uy(u)du

∫ $−u

0
y(v)dv + 2

2

∫ $

0
uy(u)du

∫ $

$−u
y(v)dv

+ 1

2

∫ $

0
y(u)du

∫ $−u

0
vy(v)dv

= 1

2

∫ $

0
uy(u)du

∫ $

0
y(v)dv + 1

2

∫ $

0
y(v)dv

∫ $

$−v
uy(u)du

+ 1

2

∫ $

0
y(u)du

∫ $−u

0
vy(v)dv
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= 1

2

∫ $

0
uy(u)du

∫ $

0
y(v)dv + 1

2

∫ $

0
y(v)dv

∫ $

0
uy(u)du

= 1

2
<x>y +1

2
<x>y=<x>y .

�

Theorem 13.8 The function

ya,$(x) = ae−ax

1 − e−a$

has ||ya,$|| = 1 and is a fixed point of the operator T$ for any a > 0. The mean
richness for this function is

<x>ya,$=
1

a
+ $

1 − ea$
.

Proof It is just a straightforward computation. �

Proposition 13.4 For the fixed point ya,$(x), we have 2 <x>ya,$< $.

Hence, if we define m =<x>ya,$ , we can consider the middle class, CM , as all
those agents having richness between m/2 and 2m, that is,

CM(a,$) =
∫ 2m

m/2
ya,$(x)dx = e−am/2 − e−2am

1 − e−a$
.

The richness accumulated by the middle class is

< xCM > (a,$) =
∫ 2m

m/2
xya,$(x)dx

= m
(2 + am)e−am/2 − 2(1 + 2am)e−2am

2am[1 − e−a$]
,

where

am = 1 + a$

1 − ea$
, x = a$.

When we plot CM(x) or < xCM > (x) for fixed m, we see that it is always a
decreasing function of x = a$. Therefore, the smaller the richness limit $ is, the
larger the middle class is.

The same tendency can be observed if we calculate the mean wealth per individual
of the middle class:

< xCM > (a,$)

< CM > (a,$)
= m

am
+ m[e−am/2 − 4e−2am]

2[e−am/2 − e−2am]
,

which is also a decreasing function of x = a$, for fixed m.
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The proportion of the total richness accumulated by the middle class is

< xCM > (a,$)

m
= (2 + am)e−am/2 − 2(1 + 2am)e−2am

2am[1 − e−a$]
,

that is again a decreasing function of x = a$.
Summarizing, an upper limit in the richness allowed in a random market provokes

an enlargement of the middle class and also an enrichment of such a middle class.

13.5 Slightly Perturbed Gas-Like Models

Here, we put in evidence that the asymptotic equilibrium distributions for these mod-
els are not stable under slight perturbations. It means that even a small modification
that conserves the mean value and the total wealth of the system provokes the loss of
the exponential distribution as a fixed point of the perturbed model equations. This
fact also has its consequences on the behavior of the entropy of the system, concretely
the H -theorem is not already verified, unless new forms for the H functional are
introduced.

As an example, define the modified operator

(TKy)(x) =
∫ ∫

u+v≥x

K(u, v, x)
y(u)y(v)

u + v
dudv,

with the kernel

K(u, v, x) =
N∑

n=0

(n+ 1)an

(
x

u + v

)n

,

where eventually N may be infinity. It is straightforward to check that

||TKy || = ||y||2
N∑

n=0

an

and

<x>TKy= 2 <x>y

N∑
n=0

n+ 1

n+ 2
an.

Therefore, the operator verifies TK : B → B and conserves the wealth when

N∑
n=0

an =1,

N∑
n=0

n+ 1

n+ 2
an =1

2
.
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For N = 1 the unique solution of this system is a0 = 1 and a1 = 0, that is, the
well-known operator studied elsewhere. For N = 2 we have an infinity of solutions
parametrized with ε ∈ R: a0 = 1 − ε/3, a1 = ε and a2 = −2ε/3. That is,

K(u, v, x) = 1 − ε

3
+ 2εx

u + v
− 2εx2

(u + v)2
.

If we take the exponential distribution y(x) = ae−ax and N = 2 we find that

(TKy)(x) =
(

1 − ε

3

)
ae−ax − 2εxa2Ei(−ax) − 2εx2a2

[
e−ax

x
+ aEi(−ax)

]
,

where Ei(x) is the exponential integral,

Ei(−ax) = −
∫ ∞

x

e−at

t
dt.

It means that y(x) = ae−ax is not the fixed point of the perturbed operator TK and a
new asymptotic equilibrium emerges for this ε-slightly modified system.

13.6 Conclusions

Different versions of a continuous economic model [6] that takes into account ide-
alistic characteristics of the markets have been considered. In these models, the
agents interact by pairs and exchange their money in a random way. The asymptotic
steady state of these models is the exponential wealth distribution. The system de-
cays to this final distribution with a monotonic increasing of the entropy taking its
maximum value just on the equilibrium. These are specific H -theorems that can be
computationally checked, independently on the effectiveness of the markets or the
limitation of the richness in the economic system. Also, it has been argued that slight
modifications of these models provoke the loss of the exponential distribution as an
asymptotic equilibrium and its correspondent consequences for the establishment of
an H -theorem for the new perturbed models.
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Chapter 14
Synchronization and Phase Ordering in Globally
Coupled Chaotic Maps

O. Alvarez-Llamoza and M. G. Cosenza

Abstract We investigate the processes of synchronization and phase ordering in
a system of globally coupled maps possessing bistable, chaotic local dynamics.
The stability boundaries of the synchronized states are determined on the space of
parameters of the system. The collective properties of the system are characterized
by means of the persistence probability of equivalent spin variables that define two
phases, and by a magnetization-like order parameter that measures the phase-ordering
behavior. As a consequence of the global interaction, the persistence probability
saturates for all values of the coupling parameter, in contrast to the transition observed
in the temporal behavior of the persistence in coupled maps on regular lattices.
A discontinuous transition from a nonordered state to a collective phase-ordered
state takes place at a critical value of the coupling. On an interval of the coupling
parameter, we find three distinct realizations of the phase-ordered state, which can
be discerned by the corresponding values of the saturation persistence. Thus, this
statistical quantity can provide information about the transient behaviors that lead to
the different phase configurations in the system. The appearance of disordered and
phase-ordered states in the globally coupled system can be understood by calculating
histograms and the time evolution of local map variables associated to the these
collective states.

14.1 Introduction

Globally coupled systems have been a research topic receiving a large amount of
attention because of their applicability to a variety of contexts. The dynamical ele-
ments in such systems are subject to a common interaction field. Global interactions
arise in the description of many physical, biological, chemical, and social systems,
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such as Josephson junction arrays [1], multimode lasers [2], coupled oscillators
[3, 4], charge density waves [5], parallel electric circuits, neural dynamics, ecologi-
cal systems, evolution models [6], economic exchange [7], social networks [8], mass
media models [9], cross-cultural interactions [10], etc. Global interactions also play
a relevant role in models of many systems driven by long-range interactions, able to
generate strong correlations between highly interconnected elements. Systems with
global interactions can exhibit a variety of phenomena, such as chaos synchroniza-
tion, nontrivial collective behavior, dynamical clustering, chaotic itineracy [6, 11],
quorum sensing [12], etc. These behaviors have been experimentally investigated in
arrays of globally coupled oscillators in several systems [13–17].

In addition to these phenomena, the description of generic effects associated to
the presence of global coupling in dynamical processes in complex systems is still
an open problem. In this respect, globally coupled maps [18] constitute paradigmatic
models for the study of dynamical systems with global interactions. Spatial concepts
lose meaning and only temporal properties become relevant in globally coupled
maps. These characteristics should introduce new features in many processes that
have been investigated in spatially extended systems with short range interactions.

In particular, there has been much interest in the study of the phase-ordering
properties of systems of coupled bistable maps and their relationship with Ising
models in statistical physics [19–28]. These works have mainly assumed the phase
competition dynamics taking place on networks with local interactions.

In this chapter we investigate the collective behavior of a system of globally cou-
pled bistable chaotic maps, including the occurrence of synchronized states and the
phenomenon of phase competition. This model provides a scenario to compare the
roles that local and global interactions play on the occurrence of phase growth and
phase transitions on spatiotemporal systems. In Sect. (14.2) we present the model
of globally coupled maps and describe local dynamics that exhibits bistable, chaotic
behavior. In Sect. (14.3) we determine analytically the stability condition for synchro-
nized states on the space of parameters of the system. The phase-ordering properties
associated to the collective dynamics of the system are studied in Sect. (14.4) by
employing appropriate statistical quantities. Section (14.5) contains the conclusions
of this work.

14.2 Globally Coupled Bistable Chaotic Maps

We consider a globally coupled map system defined by

xi
t+1 = (1 − ε)f (xi

t ) +
ε

N

N∑
j=1

f (xj
t ), (14.1)

where xi
t describes the state variable of element i (i = 1, 2, . . . ,N ), at discrete time

t , the parameter ε measures the coupling strength between the elements, and f (x)
is a map that expresses the local dynamics. The term expressing the global coupling
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between the maps corresponds to the mean field of the system. In this chapter, we
employ a system size N = 105.

The local dynamics is given by a piecewise linear, odd map

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

−2μ/3 − μx, if x ∈ [−1,−1/3] ,

μx, if x ∈ [−1/3, 1/3] ,

2μ/3 − μx, if x ∈ [1/3, 1] ,

(14.2)

where the local parameter μ ∈ [−3, 3] and x ∈ [−1, 1]. For μ = 3, f (x) becomes
the chaotic map introduced by Miller and Huse [19]. For μ ∈ [−1, 1], the map
possesses the stable fixed point f (x∗) = x∗ = 0. When the parameter μ ∈ (1, 2), the
local map is chaotic and bistable: There are two symmetric chaotic band attractors,
corresponding to the invariant intervals I± = [±μ(2−μ)/3,±μ/3], and separated
by a finite gap about the origin. This map has been shown to exhibit phase-ordering
properties on locally coupled map lattices [21, 22].

14.3 Synchronized States

The coupled map system Eq. (14.1) can be expressed in vector form as

xt+1 = (1 − ε)f(xt ) + ε

N
Mf(xt ) =

[
(1 − ε)I + ε

N
M
]

f(xt ), (14.3)

where xt and f(xt ) are N -dimensional vectors with components [xt ]i = xi
t and

[f(xt )]i = f (xi
t ), respectively, I is the N × N identity matrix, and M is an N ×

N matrix expressing the coupling between the elements. For the global coupling,
Eq. (14.1), all the components of M are equal to 1.

A synchronized state occurs whenxi
t = x

j
t , ∀ i, j . From the linear stability analysis

of synchronized states in coupled map lattices, it can be shown that these states are
stable if the following condition is satisfied [18, 29],

∣∣∣
(

1 − ε + ε

N
mk

)
eλ
∣∣∣ < 1, (14.4)

where {mk : k = 1, 2, . . . ,N} is the set of eigenvalues of the coupling matrix
M and λ is the Lyapunov exponent of the local map, Eq. (14.2). In the globally
coupled case, the eigenvalues are mk = 0, k = 1, . . . , (N − 1), which has (N − 1)-
fold degeneracy, and mN = N . Because of these eigenvalues, the synchronization
condition, Eq. (14.4), is independent of the size of the system N .

The set of eigenvectors of the matrix M constitutes a complete orthogonal basis
in terms of which any state xt of the system Eq. (14.3) can be represented as a linear
combination. The eigenvector corresponding to mN = N is homogeneous and it
expresses the coherent or synchronized state at any time. Thus, perturbations of the
state xt along this eigenvector do not destroy the coherence, and the stability condition
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associated with mN = N is irrelevant for the synchronized state. The other (N − 1)
eigenvectors associated with mk = 0 are not homogeneous, and perturbations along
their directions affect the synchronized state. Thus, the stability condition Eq. (14.4)
with mk = 0 defines a region on the space of parameters (μ, ε) where all the stable
synchronized states can be found.

Two types of synchronized states fulfilling condition Eq. (14.4) can be observed
in the system:

1. Synchronized stationary states, for which xi
t = x∗, ∀ i. This corresponds to the

range of parameter μ ∈ [−1, 1], where the local map possesses the stable fixed
point f (x∗) = x∗ = 0. The boundaries of the region of parameters where this
state is stable are given by Eq. (14.4) with μk = 0 and eλ = f ′(x∗),

(1 − ε) |f ′(x∗)| = ±1. (14.5)

2. Synchronized chaotic states, for which xi
t = f (xt ), ∀ i. This occurs in the regions

μ ∈ [− 3,−1] ∪ [1, 3], where the local map is chaotic. The region of stability
of these states is bounded by the curves

(1 − ε) eλ = ±1, (14.6)

Since f ′(x∗) = μ and λ = ln |μ| for the map Eq. (14.2), both boundaries (14.5) and
(14.6) can be expressed on the space of parameters (μ, ε) by the curves

(1 − ε) |μ| = ±1, (14.7)

with μ in the appropriate range for each state. The straight lines μ = −1 and μ = 1
separate the synchronized stationary states from the synchronized chaotic states on
the plane (μ, ε).

The occurrence of synchronization can also be numerically characterized by
the asymptotic time-average 〈σ 〉 (after discarding a number of transients) of the
instantaneous standard deviationsσt of the distribution of state variablesxi

t , defined as

σt =
[

1

N

N∑
i=1

(
xi
t − x̄t

)2]1/2

, (14.8)

where

x̄t = 1

N

N∑
i=1

xi
t . (14.9)

Then, a synchronization state corresponds to a value 〈σ 〉 = 0. In practice, we use
the numerical criterion 〈σ 〉 < 10−7 as a synchronization condition.

For some values of parameters, the iterates of the state variables xi
t in the system

Eq. (14.1) leave the interval [−1, 1] and, eventually, escape to infinity. The iterates
of xi

t stay in the interval [−1, 1] if the product (1− ε)μ lies in the range [−3, 3], that
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Fig. 14.1 Regions of stable synchronized states for the system Eq. (14.1) on the space of parameters
(μ, ε). The labels indicate where the synchronized stationary states and the synchronized chaotic
states occur. The synchronization boundaries correspond to continuous lines. The labels±1 on each
curve identify the corresponding sign in Eq. (14.7). The dashed lines indicate the escape boundaries
Eq. (14.10) beyond which the iterates of the state variables of the system Eq. (14.1) leave the interval
[−1, 1]. The interval μ ∈ [1, 2] for bistability is marked on the μ axis. T identifies the regions
where collective turbulent states exist

is, if |(1 − ε)μ| < 3. Thus, the boundaries for escape from the interval [−1, 1] are
described by the curves

(1 − ε) μ = ±3. (14.10)

Figure (14.1) shows the stability boundaries of the synchronized states and the es-
cape boundaries for the globally coupled system Eq. (14.1) on the space of parameters
(μ, ε).

14.4 Collective Phases

For μ ∈ (1, 2), the local map displays bistability in the form of two chaotic band
attractors: corresponding to the interval I+ for the positive values of the iterates,
and the interval I− for the negatives values. Then the states of the elements in the
system Eq. (14.1) can be associated to two well-defined symmetric phases that can
be characterized by spin variables associated to the sign of the state at time t , defined
as sit = +1 if xi

t > 0, and sit = −1 if xi
t < 0.

To study the collective behavior of the globally coupled map system Eq. (14.1)
in the bistable chaotic range, we fix the value of the local parameter μ = 1.9
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Fig. 14.2 Persistence probability as a function of time for the system Eq. (14.1) with fixed μ = 1.9
and size N = 105, for different values of the coupling parameter ε, as indicated on each curve

and choose an even number N as system size. Then we set the initial conditions
symmetrically as follows: one half of the maps are randomly chosen and assigned
random values uniformly distributed on the positive attractor while the other half are
similarly assigned values on the negative attractor.

The dynamical properties of the phase-ordering process can be described by using
the persistence probability pt , defined as the fraction of maps that have not changed
spin variable (sign) up to time t [30]. Figure (14.2) shows pt as a function of time
for the globally coupled map system Eq. (14.1), for several values of the coupling
parameter ε. The persistence probability saturates in a few iterations for all positive
values of the coupling ε. This means that the phases associated to the spin variables
freeze in the globally coupled system. In contrast, in regular lattices the persistence
saturates for small couplings, while it decays algebraically in time for coupling
strengths greater than some critical value, corresponding to the growth of one phase
at the expense of the other [21].

Figure (14.2) reveals that the saturation value of the persistence probability, de-
noted by p∞, depends on the value of the coupling parameter. Figure (14.3a) shows
the quantity p∞ as a function of ε. We find that p∞ displays different constant values
in different intervals of the coupling parameter and exhibits discontinuous transitions
at critical values ε1 = 0.43 and ε2 = 1. For ε < ε1, we have p∞ = 1, indicating
that for small enough coupling, every map remains in its initial chaotic attractor, I−
or I+. In the intermediate range of coupling parameters ε1 < ε < 1, the saturation
value of the persistence changes to p∞ = 0.5, indicating that one-half of the total
number of maps have switched attractor. Finally, for ε > 1, we obtain p∞ = 0;
this means that all the maps have changed their initial attractors at some time during
the evolution of the system. The value of ε1 depends on the value of the local map
parameter μ, but ε2 = 1, independently of μ.
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Fig. 14.3 Statistical
quantities as functions of the
coupling parameter ε for
system Eq. (14.1) with fixed
μ = 1.9 and size N = 105. a
p∞, b 〈σ 〉, c 〈M〉. The critical
values ε1 and ε2 are marked
on the ε axis 0
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Figure (14.3b) shows the synchronization measure 〈σ 〉, given by Eq. (14.8), as
a function of ε. For the value μ = 1.9, the chaotic synchronization range of the
coupling, obtained from Eq. (14.7), is ε ∈ [0.473, 1.526]. For this interval of the
coupling, we get 〈σ 〉 = 0 as expected.

To characterize the statistical properties of the phase-ordering process in the glob-
ally coupled map system Eq. (14.1), we define the instantaneous “magnetization” of
the system Mt , as

Mt = 1

N

N∑
i=1

sit . (14.11)

Then, we employ, as an order parameter, the absolute value of the asymptotic time-
average (after discarding a number of transients) of the values Mt , denoted by 〈M〉.

Figure (14.3c) shows the order parameter 〈M〉 as a function of the coupling ε. The
critical value of the coupling ε1 marks a discontinuous transition from a collective
state characterized by 〈M〉 = 0, where the maps remain symmetrically distributed
about the two attracting intervals I+ and I−, to an ordered state characterized by
〈M〉 = 1, where all the maps settle on one of the attractors, either I+ or I−. Note that
the critical value ε1 is smaller than the lower synchronization boundary at ε = 0.473.
This means that the phase-ordering transition occurs before full synchronization is
achieved. When the value of the coupling strength reaches the upper synchronization
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boundary, there is another discontinuous transition to the turbulent, disordered state,
for which 〈M〉 = 0.

The quantities p∞ and 〈σ 〉 in Fig. (14.3) allow to distinguish three different
situations in the range of the parameter ε where the collective phase-ordered state
with 〈M〉 = 1 occurs: (i) a desynchronized ordered state, where 〈M〉 = 1, 〈σ 〉 > 0,
and p∞ = 0.5; (ii) a synchronized ordered state, where 〈M〉 = 1, 〈σ 〉 = 0, and
p∞ = 0.5; and (iii) a synchronized ordered state, characterized by 〈M〉 = 1, 〈σ 〉 = 0,
and p∞ = 0.

In order to elucidate the nature of these three realizations of the phase-ordered
state, as well as the transitions exhibited by the statistical quantities p∞ and 〈M〉, we
plot in Fig. (14.4) the instantaneous probability distributions (normalized histograms)
of the states xi

t of the system Eq. (14.1) with fixed μ = 1.9, denoted by ρ(x), for
different values of the coupling parameter ε.

Figure (14.4a) corresponds to ε = 0.2 < ε1. The probability distribution ρ(x) at
t = 2000 shows two separated peaks that maintain the initial symmetrical distribution
of the maps on the two chaotic band attractors. The mean field coupling term is
negligible in this situation Fig. (14.5a) shows the time evolution of the state variables
xi
t of two maps in the system Eq. (14.1) for ε = 0.2: one having positive initial spin

variable and another with negative initial spin variable. Each trajectory remains in
its attractor. Since no map has left its initial attractor, no spin variable has changed
sign, and thus p∞ = 1. Then, two symmetric subsets associated to the spin variables
coexist in the globally coupled system for these parameters values, yielding 〈M〉 = 0
as a result.

For couplings ε1 < ε < 0.473 in Fig. (14.4b), the probability distribution ρ(x)
at time t = 2000 displays one single peak. This indicates that the N/2 maps that
initially belonged to one attractor have switched to the other attractor; the direction
of the change depends on the initial conditions, in this case from I− to I+. All
the maps form a cluster that moves chaotically and stays in the interval I+. Then,
the saturation value of the persistence probability is p∞ = 0.5 in this range of the
coupling strength. Figure (14.5b) illustrates this process through the time evolution
of the orbits of two maps that have been initially assigned opposite spin variables.
Note that the two chaotic orbits do not synchronize on the interval I+. This situation
corresponds to the presence of a single ordered phase of spin variables in the system,
and therefore the magnetization becomes 〈M〉 = 1. The discontinuous change in the
statistical quantities occurring at the critical value ε1 in Fig. (14.3) describes a first
order phase transition in the collective behavior of the system, from a non-ordered
state, characterized by the values 〈σ 〉 > 0, p∞ = 1, 〈M〉 = 0, to a desynchronized
phase-ordered state, characterized by 〈σ 〉 > 0, p∞ = 0.5, 〈M〉 = 1, and denoted as
situation (i) above.

For coupling values 0.473 < ε < 1, the probability ρ(x) at t = 2000 displays
a single vertical line on one of the attracting intervals, as shown in Fig. (14.4c).
This indicates that the N/2 maps initially assigned to one of the attractors have
switched to the other attractor, resulting in the synchronization of the N maps on
a single chaotic orbit that stays on that attractor. The corresponding time evolution
of two maps with initial opposite spin variables is shown in Fig. (14.5c). Thus,
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Fig. 14.4 Instantaneous probability distributions ρ(x) of states at time t = 2000 on the interval
[−1, 1] for the system Eq. (14.1) with N = 105 and fixed μ = 1.9, for different values of the
coupling ε. The interval [−1, 1] on the x axis was divided into 1000 subintervals, and the value
of ρ for a given subinterval corresponds to the number of points xi

t falling into that subinterval,
divided by N . a ε = 0.2 (nonordered phase, p∞ = 1, 〈M〉 = 0), b ε = 0.45 (desynchronized
ordered phase, 〈σ 〉 > 0, p∞ = 0.5, 〈M〉 = 1), c ε = 0.55 (synchronized ordered phase, 〈σ 〉 = 0,
p∞ = 0.5, 〈M〉 = 1), d ε = 2.4 (turbulent)

the system displays a synchronized, phase-ordered state characterized by 〈σ 〉 = 0,
p∞ = 0.5, and 〈M〉 = 1 in this parameter range. This constitutes realization (ii) of
the phase-ordered state.

If the coupling is increased to values 1 < ε < 1.526, we observe realization (iii)
of the ordered state. In this case, the factor (1 − ε) in Eq. (14.1) becomes negative
allowing the maps to reverse the signs of their initial spin variables at early times
during the evolution of the system. This transient behavior of the spin variables is
reflected in the quantity p∞ = 0; the parameter ε2 = 1 marks the discontinuity in the
value of the saturation value of the persistence. Since the synchronized state is stable
for this range of coupling parameters, the maps eventually become synchronized on
one of the attracting intervals, yielding 〈σ 〉 = 0. In addition, we obtain 〈M〉 = 1.
Figure (14.5d) portrays the time evolution of the orbits of two maps with different
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Fig. 14.5 Temporal evolution of the state variables xi
t of a map with positive initial spin variable

(empty squares) and a map with negative initial spin variable (black circles) in the globally coupled
system Eq. (14.1) with N = 105 and fixed μ = 1.9, for different values of the coupling ε. For
t > 0, time is displayed in a logarithmic scale. a ε = 0.2; nonordered state, with 〈σ 〉 > 0,
p∞ = 1, 〈M〉 = 0. b ε = 0.45; desynchronized, ordered state, with 〈σ 〉 > 0, p∞ = 0.5,
〈M〉 = 1. c ε = 0.55; synchronized, ordered state, with 〈σ 〉 = 0, p∞ = 0.5, 〈M〉 = 1. d ε = 1.1;
synchronized, ordered state, with 〈σ 〉 = 0, p∞ = 0, 〈M〉 = 1

initial spin variables in this situation. Then, we have again a synchronized, phase-
ordered state, distinguished by the value p∞ = 0, in contrast to realization (ii) where
p∞ = 0.5. Thus, the saturation value of the persistence probability can provide
information about the transient processes that lead to frozen configurations and to
phase-ordered states in the system.

In Fig. (14.4d) for ε > 1.526, the maps become desynchronized and the cor-
responding probability distribution ρ(x) is spread over a a subset of the interval
x ∈ [1, 1]; its bimodal form reflects the underlying presence of the two attractors
in the local chaotic dynamics. We refer to this collective state as turbulent. This
corresponds to a desynchronized, disordered state for which 〈σ 〉 > 0, p∞ = 0, and
〈M〉 = 0.

If the initial conditions are modified in such a way that a fraction N1/N > 1/2 of
values of the maps is uniformly distributed on one attractor interval, either I+ or I−,
while the remaining fraction (1−N1/N ) is similarly assigned to the other attractor,
then the symmetry of the globally coupled system Eq. (14.1) is lost. We have found
that the main features of the collective behavior of the system are maintained under
such partition: the persistence probability pt saturates after a few iterations for all
values of the coupling parameter; there is a disordered state for low coupling values;
and a synchronized phase-ordered state emerges for an intermediate range of the
coupling strength.

In this situation, the mean field of the system initially acquires the sign of the
attractor where the largest fraction N1/N of maps lies. This attractor dominates the
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dynamics of the globally coupled bistable system. However, for low enough intensity
of the coupling, the maps tend to stay in their initial intervals and therefore they do not
change the sign of their spin variable. Correspondingly, the asymptotic persistence
probability has the value p∞ = 1 and the average magnetization is 〈M〉 = 0.
As the coupling strength is increased, the maps in the smallest subset switch to
the dominating attractor, eventually giving rise to a phase-ordered state. The initial
fraction of maps N1/N remain on that attractor and therefore do not change sign
in their spin variables. Then, the saturation value of the persistence probability for
ordered state in this case should be p∞ = N1/N . We have numerically verified these
values for different partitions (N1,N − N1) of initial conditions over the attracting
intervals.

14.5 Conclusions

We have investigated the collective behavior of a system of globally coupled maps
having bistable, chaotic local dynamics. The system possesses two types of synchro-
nized dynamics: synchronized stationary states and synchronized chaotic states. We
have analytically determined the stability boundaries of these states on the space
of parameters (ε,μ) of the system. In addition, we have numerically measured the
occurrence of synchronization by means of the statistical quantity 〈σ 〉.

The presence of two symmetric attracting intervals in the local chaotic dynamics
permits to assign a spin-like variable to each map and to define associated phases.
The persistence probability pt describes the evolution and competition of the phases.
The absence of spatial relations in the system of globally coupled maps rules out the
possibility of supporting spatial domains in either phase and a defined interface which
would be necessary for a continuous phase growth. As a consequence, the phases
always freeze in globally coupled maps, causing the saturation of the persistence
probability in time for all values of the coupling parameter, in contrast to the transition
observed in the temporal behavior of the persistence in coupled maps on regular
lattices. We have found that the saturation value of the persistence probability p∞
reaches different constant values in different intervals of the coupling parameter and
shows discontinuous transitions at critical values ε1 = 0.43 and ε2 = 1.

We have introduced the magnetization-like order parameter 〈M〉 to characterize
the phase-ordering behavior of the system. The phase-ordered state, corresponding
to 〈M〉 = 1, exhibits three distinct realizations as the coupling ε is varied and which
can be discerned by employing the quantities 〈σ 〉 and p∞: (i) a desynchronized
ordered state, with 〈M〉 = 1, 〈σ 〉 > 0, and p∞ = 0.5; (ii) a synchronized ordered
state, characterized by 〈M〉 = 1, 〈σ 〉 = 0, and p∞ = 0.5; and (iii) a synchronized
ordered state, distinguished by 〈M〉 = 1, 〈σ 〉 = 0, and p∞ = 0. Thus, the value of
〈σ 〉 distinguishes between realizations (i) and (ii); while p∞ differentiates realization
(ii) from realization (iii).
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There also exist two desynchronized, non-ordered collective states, both described
by the values 〈σ 〉 > 0 and 〈M〉 = 0. One of these states corresponds to the persis-
tence of the initial symmetric distribution of spin variables, characterized byp∞ = 1;
and the other is a turbulent state, where p∞ = 0. Our results reveal that the satura-
tion value of the persistence probability can provide information about the transient
behaviors that lead to the different phase configurations in the system.

In addition, we have studied the histograms and the time evolution of local map
variables associated to the disordered and to the phase-ordered states in order to
understand the appearance of these collective states in the globally coupled system.

The transitions between the disordered and the phase-order states occur discon-
tinuously, as in a first-order phase transition, reflecting the global nature of the inter-
action in the system. In contrast, continuous transitions are typical in regular lattices.

In general, the investigation of dynamical processes in networks and the role of
the topology in determining emerging collective behaviors is a topic of much interest
in the current research on complex systems [8, 31].
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Chapter 15
Maximizing a Psychological Uplift
in Love Dynamics

Malay Banerjee, Anirban Chakraborti and Jun-ichi Inoue

Abstract In this chapter, we investigate the dynamical properties of a psychological
uplift in lovers. We first evaluate extensively the dynamical equations which were
recently given by Rinaldi et al. (Physica A, 392: 3231–3239, 2013). Then, the
dependences of the equations on several parameters are numerically examined. From
the viewpoint of lasting partnership for lovers, especially, for married couples, one
should optimize the parameters appearing in the dynamical equations to maintain
the love for their respective partners. To achieve this optimization, we propose a
new idea where the parameters are stochastic variables and the parameters in the
next time step are given as expectations over a Boltzmann–Gibbs distribution at a
finite temperature. This idea is very general and might be applicable to other models
dealing with human relationships.

15.1 Introduction

“Love is composed of a single soul inhabiting two bodies.” – Aristotle
“Love never dies a natural death. It dies because we don’t know how to replenish its source. It
dies of blindness and errors and betrayals. It dies of illness and wounds; it dies of weariness,
of witherings, of tarnishings.” – Anaïs Nin

Love—mysterious and unexplained—often forms the basis of a relationship be-
tween two persons; undoubtedly, a partnership between lovers is a time-dependent
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phenomenon. Even if a man and a woman were in deep love at some initial stages,
the psychological uplift for one or both of them could eventually decay to very
low-levels, and could even result in a breakup or divorce, in the worst scenario.

A simple mathematical model for the dynamics of love between a man and woman
was introduced by Strogatz [2, 3]—the first attempt to model the love dynamics with
the help of coupled ordinary differential equations. The idea of Strogatz was then
extended by other researchers [4–6] to understand the influence of the factors like
appeal, secure relation between the couple, and separation for a finite time period,
which are important factors to maintain the relationship. Similar type of mathematical
models have been proposed and analyzed up to certain extent for triangular love by
Sprott [7, 8], but the uncertainty for the final outcome remains unclear. Recently,
Rinaldi et al. [1] again proposed a simple dynamical model for lovers emotion to
investigate a law of big hit film from the dynamical behavior of feeling in the partner
for lovers. Their approach, based on a coupled differential equations, was applied to
the movie “Gone With The Wind” (GWTW); they found that the resulting time series
of lovers’ feelings can mimic the story of the film to some extent. The differential
equations contain several parameters and Rinaldi et al. chose them to mimic the lives
of Scarlet and Rhett, with full of ups and downs. In the romantic film GWTW, the
drastic ups and downs in the lovers’ emotions indeed constituted a notable factor to
attract the attention of audience, and the sequences of such psychological climaxes
in the film might have been a key issue in making the film a big hit, as suggested by
Rinaldi et al. [1].

In reality, for a married couple, such extreme ups and downs could however
prove to be deterrent to the continuation of a peaceful married life. Hence, from
the viewpoint of lasting partnership for lovers, especially for a married couple, one
should optimize the parameters appearing in the dynamical equations to maintain the
love for their partner. In other words, it would be interesting to obtain the optimum
levels of the parameters in order to maintain the minimum level of love and happiness
required to maintain a happy and prolonged marital life.

To this aim, we propose a simple new idea in this chapter. We assume that the
parameters involved with the love dynamics are not constant over the entire time
period, rather they are stochastic variables and the parameters in the next time step
are given as expectations over a Boltzmann–Gibbs distribution at a finite temperature.
By decreasing the temperature during the dynamics of coupled equations, one can
accelerate the rate of increase of the sum of feelings (and decrease the difference of
feelings) of lovers at each time step. The idea is quite general and might be applicable
to other models dealing with human relationships.

15.2 Differential Equations of Gross and Gap for Lovers’
Feelings

In the original model by Rinaldi et al. [1], the governing equations with respect to
the feelings of lovers, denoted as x1, x2, are given by two coupled nonlinear ordinary
differential equations:
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dx1

dt
= −α1x1 + ρ1A2 + k1x2 e−η1x2 , (15.1)

dx2

dt
= −α2x2 + ρ2A1 + k2x1 e−η2x1 , (15.2)

subjected to the positive initial conditions, where the parameter αi is forgetting coef-
ficient, ki and ηi are the parameters characterizing the measure of insecurity feelings,
Aj is the measure of appeal toward xi produced by xj and ρi is a multiplicative factor
representing the amount of recognition of the appeal Aj (see [1] for detailed inter-
pretation). All the parameters involved with the model are positive. Interestingly,
once we choose the initial values of x1, x2, these variables remain positive.

As one can see above, there are many parameters to be calibrated. From the
engineering point of view, one could determine them by means of “optimization”
of some appropriate cost functions. In the following, we consider several such cost
functions.

First, we introduce the following new variables, namely, the “gross” S (sum) and
“gap” D (difference):

S ≡ x1 + x2, D ≡ (x1 − x2)2 = x2
1 + x2

2 − 2x1x2. (15.3)

This allows us to write:

x1 = 1

2
(S +√

D), x2 = 1

2
(S −√

D), (15.4)

where we should bear in mind that we have to consider the case x1 ≥ x2 in order
to have the well-defined expressions for x1 and x2 in terms of S and D. Of course,
this condition may not always be satisfied. However, as we are focusing here on the
gap D, the above choice might be indeed justified. It should be noted that the gross
feelings S could be regarded as a cost function to be maximized. This is because
the total degree of “passion” amongst the lovers might be one of the most important
quantities to make the relationship strong and durable. On the other hand, the gap the
two partners’ love x1, x2 might determine the “stability” of the relationship—namely,
even if the S is high, the mutual relation could be unstable when x1 � x2 or x1 � x2.
In other words, it is very hard for the lovers to continue their good relationship if only
one of them expresses too much love to his/her love partner and the other partner
becomes indifferent about their relationship which was established due to their love
affairs. Two hypothetical cases can be considered for illustrating this.

• For young lovers, the variable S takes high values temporally; however, one
person (girl or boy) suddenly loses interest and becomes indifferent. As a re-
sult, the variable D increases rapidly and the love affair (marriage) breaks down
prematurely.

• For senior lovers, the variable S normally does not take a high value; however,
they know each other quite well, and as a result, the feelings x1 and x2 are quite
similar. Hence, variableD increases and the love affair (marriage) becomes stable.
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Fig. 15.1 The time-dependence of S and D calculated by Eqs. (15.5) and (15.6). We set the
parameters as α1 = α2 = ρ1 = ρ2 = η1 = η2 = 1 and k1 = k2 = 15,A1 = A2 = 1. The initial
condition are selected as (x1, x2) = (1, 1) (left), this reads D0 = 0, and (x1, x2) = (2, 1) (right),
this reads D0 = 0

We do not have any real survey data to validate these idealized examples. Neverthe-
less, we consider an utility function S, which is to be maximized, and the energy
functionD, which is to be minimized, in order to determine the parameters appearing
in the original model [1].

Then, the original equations are rewritten in terms of S and D. The equation for
S is easy to obtain, and we have

dS

dt
=− α1

S +√
D

2
+ ρ1A2 + k1

S −√
D

2
e−η1(S−√D)/2 − α2

S −√
D

2

+ ρ2A1 + k2
S +√

D

2
e−η2(S+√D)/2 ≡ f (θ : S,D) (15.5)

dD

dt
=2(x1 − x2)

(
dx1

dt
− dx2

dt

)
≡ g(θ : S,D), (15.6)

where θ ≡ (α1,α2, ρ1, ρ2,A2,A2, k1, k2, η1, η2).
In the following sections, we discuss in detail the behavior of the nonlinear dy-

namics of Eqs. (15.5) and (15.6), within the framework of Rinaldi et al. [1] model,
and consider the possible optimization of the parameters. Here, we have chosen the
model by Rinaldi et al. just as a basic example, and in principle one could easily
extend the study by taking into account much more complicated and appropriate
lovers’ interactions.

15.2.1 Some Specific Choices of Parameters

We first examine the behavior of the differential Eqs. (15.5) and (15.6) with respect
to S and D for the case of a specific choice of parameters θ . Apparently, Dt = 0
is always a solution of the Eq. (15.6). In Fig. 15.1, we plot the St and Dt for two
distinct initial conditions. In the left panel, we choose the initial condition so that
x1(0) = x2(0) = 1, this reads D0 = 0. From this panel we easily find that the
gap D is time-independently zero. On the other hand, in the right panel, we choose
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Fig. 15.2 The flows S-D calculated by Eqs. (15.5) and (15.6) for several distinct initial conditions.
We find that for any initial conditions, the flows converge to (7.61, 28.19). We set the parameters
as α1 = α2 = ρ1 = ρ2 = η1 = η2 = 1 and k1 = k2 = 15,A1 = A2 = 1

as x1(0) = x2(0), namely, D0 = 0. For this case, the gap D evolves in time and
converges to some finite value. In Fig. 15.2, we show the flows (trajectories) S-D
for D0 = 0. All flows converge to (7.61, 28.19).

15.2.1.1 Symmetric Case

For symmetric case Dt = 0 (x1 = x2), the differential equation with respect to S is
simply obtained by

dS

dt
= −αS + 2ρA+ kSe−ηS/2. (15.7)

The steady state is given by the following nonlinear equation.

αS = 2ρA+ kSe−ηS/2 (15.8)
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Fig. 15.3 The solution of the steady state which satisfies αS = 2ρA + kSe−ηS/2 as function of
1/η (left) and k (right). For simplicity, we set ρ = A = 1

In Fig. 15.3, we show the solution S of the steady state which satisfies Eq. (15.8) as
function of 1/η (left) and k (right). From this figure, we find that the S in the steady
state increases monotonically in 1/η and k. As we shall discuss in the next section,
from the view point of maximization of the gross S, we should increase k and 1/η to
infinity. Hence, one cannot choose these parameters as finite values as k, 1/η < ∞
in the limit of t →∞.

15.2.1.2 Breaking of Symmetric Phase by Noise

As we saw before, as long as we choose the parameters to satisfy A1 = A2,α1 =
α2, · · · , we have a symmetric solution Dt = 0. To break this symmetric phase, here
we consider two types of additive noise, namely:

(a) Additive noise on A1:

A1 = A2 + δn, n ∈ [ − 1, 1] (uniform random number), A2 = 1

(b) Additive noise on 1/η1

1/η1 = 1/η2 + δ|n|, n ∈ [ − 1, 1] (uniform random number), 1/η2 = 1

and change the “amplitude,” δ. The results are shown in Fig. 15.4. In this figure, we
set the parameters as α2 = ρ1 = ρ2 = 1/η2 = 1 and k1 = k2 = 15,A1 = A2 = 1.
Then, we break the symmetry as A1 = A2+δn (left) and 1/η1 = 1/η2+δ|n| (right).
The initial condition are selected symmetrically as (x1, x2) = (1, 1).

From the left panel, we find that the symmetric phase specified by Dt = 0 remains
up to tc even if we add a noise on A1. The tc decreases as the amplitude δ increases.
On the other hand, from the right panel, we find that the symmetric phase is easily
broken when we add a small noise on 1/η1. In fact, even for δ = 0.1, the critical
time tc is close to zero. Moreover, we find that Dt rapidly increases when δ increases
and it takes a maximum at time tp.
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Fig. 15.4 The time-dependence of S and D calculated by Eqs. (15.5) and (15.6). We set the
parameters as α2 = ρ1 = ρ2 = 1/η2 = 1 and k1 = k2 = 15,A1 = A2 = 1. Then, we break the
symmetry as A1 = A2 + δn (left) and 1/η1 = 1/η2 + δ|n| (right). The initial condition are selected
symmetrically as (x1, x2) = (1, 1)

15.3 Optimization of Parameters

In the previous section, we examined the differential equations with respect to the
gross S and the gap D of lovers’ feelings for some specific choice of parameters θ .

In Rinaldi et al. [1], they chose those parameters to reproduce Scarlett O’Hara and
Rhett Butler’s feelings according to the fascinating plot of the movie GWTW. For
this purpose, the parameters should be time-dependent because the fluctuating (up–
down) behavior of main characters (Scarlett and Rhett) should be induced frequently.
There is no doubt about this procedure of determining the parameters because the
GWTH was historically a remarkable hit movie, and the scenario (plot) was the most
important factor to make the movie success.

On the other hand, as explained earlier, in realistic situations of lovers or married
couples, the persons do not have to make their feelings fluctuate (up–down) to disrupt
their peaceful life and should instead enhance their psychological uplift so as to keep
their affection for the partner strong. In this sense, we might treat the problem of
psychology uplift for the lovers mathematically, by regarding it as an optimization
or an optimal scheduling of parameters in the differential Eqs. (15.5) and (15.6), so
as to maximize the gross S and minimize the gap D, as quickly as possible.
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From this viewpoint, we should solve the optimization problem for each time step
t because the optimal parameters are dependent on the time step through the gross
and the gap. Hence, we might choose the variables θ , so as to satisfy:

θ = arg max
θ

φ(θ , ξ : S,D) (15.9)

for each time step, where we defined the following utility function:

φ(θ , ξ : S,D) ≡ f (θ : S,D) − ξg(θ : S,D) (15.10)

for ξ ≥ 0. The maximization given by Eq. (15.9) means that we accelerate the
speed of increase dS/dt( = f ) and −dD/dt( = −g) as much as possible during
the dynamics of S and D. Hence, when we choose the variable S for the case of
ξ = 0 to be maximized for lovers, we should optimize the parameters appearing in
the function f . For each time step, the landscape of f changes due to the dynamics
of D and S, and one should choose the solution, say, θ = (α1,α2, · · · ) so as to
maximize the function f at each time step. As the result, we obtain the trajectory in
the parameter space: (α1(0),α2(0), · · · ) → (α1(1),α2(1), · · · ) → · · · .

15.3.1 “Hard” and “Soft” Optimizations by Using a Concept
of Physics

In the following, for simplicity, we only consider the case of ξ = 0 and we also carry
out the maximization of the speed of increase dS/dt (see Eq. (15.5) and do not take
into account the maximization of −dD/dt (see Eq (15.6)).

To achieve the parameter choice by means of physics, we start our argument from
the following energy function:

E(θ : St ,Dt ) ≡ −f (θ : St ,Dt ). (15.11)

Obviously, in terms of f , we should maximize f as a utility function. We should
keep in mind that we use the definition of St ,Dt instead of S,D to recall us that f
is time dependent through those variables. We should bear in mind that the function
f is defined at each time step t . In this sense, f is just a function of only parameters
α1,2, etc., to be selected at each time step. Therefore, the function f is definitely
conserved at each time t .

From the viewpoint of “hard optimization,” we might utilize the following gradient
descent learning for the parameters θ as

dθ

dt
= −∂E

∂θ
= +∂f

∂θ
(15.12)

Obviously, the cost function for each time step is dependent on the state (St ,Dt ).
As we mentioned in the previous section (see Fig. 15.4), St ,Dt might contain some
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noise and through the fluctuation in St ,Dt , the parameters θ fluctuate around the
peak of the locally concave function f . To determine the parameters, we temporarily
assume here that the parameters are all “stochastic” variables.

Namely, to adapt ourselves to such realistic cases, we consider ensemble of the
parameters and we carry out the following maximization of Shannon’s entropy under
the usual two constraints of energy conservation and probability conservation:

H = −
∫

dθP (θ ) logP (θ ) + β

(
E −

∫
dθE(θ : St ,Dt )P (θ )

)
+ λ

(
1 −

∫
dθP (θ )

)

(15.13)

where β, λ are Lagrange multipliers. By making use of derivative with respect to
P (θ ), λ, we have

P (θ ) = exp(βf (θ : St ,Dt ))∫
dθ exp(βf (θ : St ,Dt ))

(15.14)

This is nothing but the Boltzmann–Gibbs distribution with temperature T = β−1.
To obtain the appropriate parameters, we construct the following iterations:

θ (t+1) =
∫

dθP (θ ) =
∫
dθ θ exp(βf (θ : St ,Dt ))∫
dθ exp(βf (θ : St ,Dt ))

(15.15)

We should keep in mind that the strict maximization of f is achieved by taking the
limit of β →∞. Namely, the solution for “hard optimization” is recovered as

θ
(t+1)
hard = lim

β→∞

∫
dθ θ exp(βf (θ : St ,Dt ))∫
dθ exp(βf (θ : St ,Dt ))

. (15.16)

These types of adaptive learning procedure have been well-known since the reference
[9] in the literature of neural networks.

It is important for us to obtain the strict solution, of course. However, here we
consider only the case of β = 1, since we are dealing with the situation in which the
parameters θ are not deterministic variables; rather, stochastic variables fluctuating
around the peaks of f .

From the viewpoint of optimization, note that the function f is not locally “con-
cave” for any choice of St ,Dt . Hence, the parameters θ which should be selected
are trivially going to their “bounds.” Nevertheless in the following, we derive the
concrete update rule for each parameter. We first consider the parameter α1. Here,
we assume that α1,2 take any value in [0,∞). Hence, we obtain

α
(t+1)
1 =

∫∞
0 dα1α1e−α1(St+√Dt )/2∫∞

0 dα1 e−α1(St+√Dt )/2
= 2

St +√
Dt

, α
(t+1)
2 = 2

St −√
Dt

. (15.17)

Hence, we find that the parametersα1,2 decrease as inverse of the dynamics St to zero,
when we consider the symmetric case Dt = 0. Therefore, as we expected, α1,2 go
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to the bound α1,2 = 0 but the optimal scheduling, namely, the speed of convergence
to the bound α1,2 ∼ 1/St is not trivial and would be worthwhile for us to investigate
extensively.

We next consider ρ1,2. For simplicity, we assume that these two parameters take
values in [0, 1]. After simple algebra, we have

ρ
(t+1)
1 =

∫ 1
0 dρ1ρ1eA2ρ1

∫ 1
0 dρ1eA2ρ1

= A
(t)
2 eA

(t)
2 − eA

(t)
2 + 1

A
(t)
2 (eA

(t)
2 − 1)

, ρ
(t+1)
2 = A

(t)
1 eA

(t)
1 − eA

(t)
1 + 1

A
(t)
1 (eA

(t)
1 − 1)

.

(15.18)

Since ρ and A are “conjugates” in the argument of the exponential, we immediately
have

A
(t+1)
1 = ρ

(t)
2 eρ

(t)
2 − eρ

(t)
2 + 1

ρ
(t)
2 (eρ

(t)
2 − 1)

, A
(t+1)
2 = ρ

(t)
1 eρ

(t)
1 − eρ

(t)
1 + 1

ρ
(t)
1 (eρ

(t)
1 − 1)

. (15.19)

For k1,2, the structures are exactly similar to those of A and ρ, when we assume that
k1,2 ∈ [0, 1]. We easily obtain

k
(t+1)
1 = Q

(t)
1 eQ

(t)
1 − eQ

(t)
1 + 1

Q
(t)
1 (eQ

(t)
1 − 1)

, Q
(t)
1 ≡ (St −√

Dt )

2
e−η

(t)
1 (St−√Dt )/2, (15.20)

k
(t+1)
2 = Q

(t)
2 eQ

(t)
2 − eQ

(t)
2 + 1

Q
(t)
2 (eQ

(t)
2 − 1)

, Q
(t)
2 ≡ (St +√

Dt )

2
e−η

(t)
2 (St+√Dt )/2. (15.21)

Finally, we consider η1,2. Here we also assume that η1,2 ∈ [0,∞). Then, we can
write

η
(t+1)
1 =

∫∞
0 dη1η1exp[ k(t)(St−√Dt )

2 e−η1(St−√Dt )/2]∫∞
0 dη1exp[ k(t)(St−√Dt )

2 e−η1(St−√Dt )/2]
(15.22)

η
(t+1)
2 =

∫∞
0 dη2η2exp[ k(t)(St+√Dt )

2 e−η2(St+√Dt )/2]∫∞
0 dη2exp[ k(t)(St−√Dt )

2 e−η1(St−√Dt )/2]
(15.23)

Carrying out the above procedure, one could only “soft” (not “hard”) optimize the
quantity S. By substituting the results into the differential equation with respect to
D (see Eq. (15.6)) at the same time, we may obtain the behavior of the gap.

15.4 Discussions and Remarks

In this chapter, we first introduced the Rinaldi model and the framework to discuss
some kind of optimality of a person’s behavior, in terms of optimization in the math-
ematical sense. For this, we have just formulated the acceleration rate of the gross
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dS/dt , namely, the right-hand side of Eq. (15.5), the function f , at each time step.
However, the function f is not locally concave and the value of optimal parameters
go either to zero or to infinity, as t → ∞. Nevertheless, we can still discuss the
scheduling of parameters. For instance, the parameters α1,2 should decay as ∼ S−1

t

when we attempt to maximize thef from the viewpoint of “soft optimization.” In near
future, we would like to consider and discuss the result of optimization extensively,
by considering the validity of the model itself.

Here, we have set β = 1 in the calculations. However, we can always regard β as
a time dependent parameter—the “inverse-temperature,” appearing in the context of
“simulated annealing,” and defined by

Tt = β−1
t = c1

(t + c2)ζ ( log (t + c3))ε
(15.24)

where the coefficients c1,2,3, ζ , ε determine the speed of convergence. As we already
mentioned, the utility function f changes through the dynamical variables St ,Dt .
Hence, the utility surface also evolves in time. In the above scheduling, we have also
assumed that the temperate is decreasing within the same time scale as dynamical
variables St ,Dt and parameters θ . However, we can also consider the case in which
T is scheduled in much shorter time scale than St ,Dt and in the same time scale as θ ,
namely, Tτ , θ τ with τ � t . Then, the procedure defined by Eq. (15.16) is regarded
as the “deterministic annealing” [10]. In such a general case, the optimal scheduling
for the parameters θ might be changed and extensive study along this direction will
be reported in our forthcoming paper.

A few other specific remarks are mentioned below:

1. In the model considered here, the parameters values are the same as those of
Rinaldi et al. [1], but this choice is neither unique nor true for all the “realis-
tic” situations. A thorough study with other choices of parameters is very much
necessary.

2. Identification of the most sensitive parameters responsible for the long-time
survival of the relationship remains an interesting and open problem. Such iden-
tification and then introduction of stochastic fluctuations at the limiting situations
could certainly provide more insight toward the modeling approach.

3. The present work is sort of a preliminary attempt of understanding the love
dynamics—theory for the case of sustainability of the love relation between a
couple. In reality, the dynamics of love affairs and related modeling approach
need more careful and thorough investigations; the effects of several factors have
not been considered so far, for example, how the presence of one or more compet-
ing person(s) along with the couple, who are in a love relation to each other, can
influence the dynamics. Along the lines of the triangular love studies by Sprott
[7, 8], it might be very interesting to investigate the role of S and D, in order to
determine the steady-state relationship between a couple for the case of triangu-
lar love. Amongst many other interesting questions, one could also investigate
how does a period of separation affect the system dynamics, within this modeling
approach.
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Chapter 16
From Weak Allee Effect to No Allee Effect
in Richards’ Growth Models

J. Leonel Rocha, Abdel-Kaddous Taha and D. Fournier-Prunaret

Abstract Population dynamics have been attracting interest since many years.
Among the considered models, the Richards’ equations remain one of the most
popular to describe biological growth processes. On the other hand, Allee effect is
currently a major focus of ecological research, which occurs when positive density-
dependence dominates at low densities. In this chapter, we propose the dynamical
study of classes of functions based on Richards’ models describing the existence
or not of Allee effect. We investigate bifurcation structures in generalized Richards’
functions and we look for the conditions in the (β, r) parameter plane for the existence
of a weak Allee effect region. We show that the existence of this region is related
with the existence of a dovetail structure. When the Allee limit varies, the weak Allee
effect region disappears when the dovetail structure also disappears. Consequently,
we deduce the transition from the weak Allee effect to no Allee effect to this family
of functions. To support our analysis, we present fold and flip bifurcation curves and
numerical simulations of several bifurcation diagrams.

16.1 Introduction and Motivation

The Richards’ equation is one the most popular of the more flexible growth equa-
tions, since it was presented by Richards in 1959 (see [9]). It is used for diverse
purposes, including modeling tree growth, growth of turkeys, growth of juvenile
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mammals and birds, and comparisons of treatment effects on plant growth, see for
example references in [12]. The Richards growth dynamics is given by the following
differential equation:

f (N (t)) = dN (t)

dt
= r∗N (t)

(
1 −

(
N (t)

K

)β
)

, (16.1)

where t is a variable representing time; N (t) is a value of a measure of size or density
of an organism or population; β > 0 is an additional shape parameter, introduced as a
power law so that it can define asymmetric curves (dimensionless scalar), considered
as intraspecific competition factor; r∗ > 0 is the maximum intrinsic rate of increase
of N (t) and K is the carrying capacity, for more details see for example [12] and [13].

The class of models given by Eq. (16.1), those with β ∈ ]0, 1[, do not exhibit
Allee effect, because the per capita growth rates decrease at low densities. One of
the main motivations of the present work are the results presented in [12], where we
introduce correction factors in Richards’ models with β ∈ ]0, 1[, in such a way that
the new generalized Richards’ models have Allee effect.

The Allee effect is an important dynamic phenomenon first described by Allee in
1931. Stephens et al. in 1999 distinguished between component Allee effects and de-
mographic Allee effects. All mechanisms giving rise to an Allee effect (for example,
difficulty in finding mates or cooperative feeding) result in component Allee effects,
i.e., a positive relationship between a component of individual fitness, e.g., survivor-
ship or per capita reproduction, and population size or density. If these component
Allee effects are not offset by negative density dependence in other components of
fitness they may cause demographic Allee effects, i.e., positive density dependence
manifested at the population level [5]. The population level consequences of demo-
graphic Allee effects are classified as either weak or strong, where a strong Allee
effect results in a critical density below which per capita population growth rate is
negative, while in the case of a weak Allee effects this critical density does not exist,
see for example [5] and [12]. In this chapter, we use the concept of demographic
Allee effect, which is manifested by a reduction in the per capita growth rate at
low-population sizes. In this case, the per capita growth rates are higher than the
population growth rate at the initial time. Such phenomenon can be observed in the
evolution of biological species interacting with themselves and their environment.
The definitions of strong and weak Allee effects that we will use are in the sense of
[5], [12], and references therein.

The generalized population growth rate or generalized Richards’ growth models
are defined in [12] by the following differential equation:

f ∗(N (t)) = dN (t)

dt
= r∗N (t)

(
1 −

(
N (t)

K

)β
)
N (t) − E

N (t) + C
, (16.2)

with r∗ > 0, β ∈ ]0, 1[, C > 0 and the Allee limit E satisfies |E| < K . The
remaining quantities are defined as such in Eq. (16.1). The parameter C allows us
to define and study more flexible models with variable extinction rates, see [12]. We



16 From Weak Allee Effect to No Allee Effect in Richards’ Growth Models 255

remark that the consideration of the parameter −K < E < 0 follows as a sufficient
condition for per capita growth rates increasing at low densities (weak Allee effect)
or decreasing for all densities (no Allee effect), as proven in Props. 2 and 3 of [12].
On the other hand, the consideration of the parameter 0 < E < K is a sufficient
condition for the existence of strong Allee effect, i.e., there is a critical threshold
below which populations experience rapid extinction, as proven in Prop. 1 of [12].

Motivated by the interest and relevance of the study of growth models and the
extinction phenomenon, we propose to study in this chapter the transition from weak
Allee effect to no Allee effect in Richards’ growth models. The layout of this chapter
is as follows. In Sect. 16.2, we present a new dynamical approach to Richards’growth
equation: a new class of one-dimensional discrete dynamical systems, a family of
unimodal maps which was first studied in [12], designated by generalized Richards’
functions. For this family of functions, two classes of functions are established: weak
Allee effect functions and functions with no Allee effect. Sect.16.3 is devoted to the
study of bifurcation structure of this functions at the parameter plane (β, r). To sup-
port our results, we present fold and flip bifurcation curves and numerical simulations
of the bifurcation diagrams. Generically, the dynamics of these functions are cate-
gorized in the following types: extinction, semistability, stability, period doubling,
chaos and chaotic semistability. In Sect. 16.3.2 we study the evolution of bifurcation
curves when the parameter E varies: the transition from the weak Allee effect to
no Allee effect with respect to the parameter E is identified. This phenomenon is
associated with the appearance and disappearance of a dovetail structure. Finally,
we discuss our results and provide some relevant conclusions.

16.2 Generalized Richards’ Functions

In this section, we present a dynamical approach to generalized Richards’ growth
models, new classes of functions describing the existence or nonexistence of Allee
effect. Consider the families of functions fr ,β : [0, 1] → [0, 1], defined by

fr ,β (x) = rx
(
1 − xβ

)Kx − E

Kx + C
, (16.3)

where x = N (t)
K

is the normalized population dimension, r = r∗K > 0 is an intrinsic
growth rate of the number of individuals or organisms, β ∈ ]0, 1[ is a shape
parameter, with |E| < K and C > 0. These families of functions will be designated
by generalized Richards’ functions, see some examples in Fig. 16.1. Generically,
these functions are unimodal or bimodal maps and are proportional to the right-hand
side of the generalized Richards’ models, Eq. (16.2).

Let Ar = fr ,β(Ar ) be the first positive fixed point of fr ,β and A∗
r =

max{f −1
r ,β (Ar)}. The following conditions are satisfied:

(A1) fr ,β is continuous on [0, 1];
(A2) there exists

[
Ar ,A∗

r

] ⊂ [0, 1] : fr ,β (x) ≤ Ar , ∀x ∈ [0, 1] \ ]Ar ,A∗
r

[
;
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Fig. 16.1 Generalized Richards’ functions fr ,β (x): a weak Allee effect functions at β = 7/9, r =
4, 6, 9.7, K = 10, C = 8.5, and E = −0.55; (3 fixed points: 0,Ar and Br ); b functions with no
Allee effect fr ,β (x) at K = 10,C = 7.5, and E = −1 : red graphic at β = 0.2 and r = 10 (2
fixed points: 0 and Or ; region R4 in Fig.16.3); blue graphic at β = 0.3 and r = 9 (4 fixed points:
0,Or ,Ar and Br ; region R3 in Fig.16.3); green graphic at β = 0.4 and r = 14 (2 fixed points;
region R4 in Fig.16.3)

(A3) fr ,β has an unique critical point c ∈ ]Ar ,A∗
r

[
;

(A4) f ′
r ,β(x) = 0, ∀x ∈ ]Ar ,A∗

r

[ \{c}, f ′
r ,β(c) = 0 and f ′′

r ,β(c) < 0;
(A5) fr ,β ∈ C3

(]
Ar ,A∗

r

[)
;

(A6) the Schwarzian derivative of fr ,β(x) given by

S
(
fr ,β(x)

) = f ′′′
r ,β(x)

f ′
r ,β(x)

− 3

2

(
f ′′
r ,β(x)

f ′
r ,β(x)

)2

verifies S
(
fr ,β(x)

)
< 0, ∀x ∈ ]Ar ,A∗

r

[ \{c} and S
(
fr ,β(c)

) = −∞.

Conditions (A1) − (A6) and more particularly the negative Schwarzian derivative
ensures a “good” dynamic behavior of the models. In the case of unimodal maps
there is at most one stable orbit, and in the case of bimodal maps there are at most
two stable orbits. In general, the growth models studied have negative Schwarzian
derivative and the use of unimodal maps is also frequent, see for example [10–12].

To generalized Richards’ functions, Eq. (16.3), we define two classes of functions
that describe the growth of a population with weak Allee effect and without Allee
effect.

Definition 16.1 Consider −K < E ≤ 0, 0 < lim
x→0+

f
′
r ,β (x) < 1, C > 0, r >

0, β ∈ ]0, 1[ and fr ,β defined by Eq. (16.3). The generalized Richards’ functions
fr ,β : [0, 1] → [0, 1] attaining its maximum at c are a family of weak Allee effect
functions, if there are numbers Ar and Br such that:
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Table 16.1 Summary of the most important properties for functions with no Allee effect, with weak
Allee effect and with strong Allee effect, in the (β, r) parameter plane

No Allee effect Weak Allee effect Strong Allee effect
function function function, see [12]

Parameter values E < 0, C > 0, |E| < K E < 0, C > 0, |E| < K E > 0, C > 0, |E| < K

Number of Two (0,Br ) or One (0) or One (0) or
fixed points four (0,Or ,Ar ,Br ) three (0,Ar ,Br ) three (0,Ar ,Br )

Stability of unstable always stable stable or unstable or
origin negative values (E/K)

Extinction No R1 r below Λ(1)0 ; essential
region (Λ∗

1 ≡ ΛNA) (Λ∗
1 ≡ ΛNA) ext. between Λ∗

1 and ΛNA

Weak Allee No R2 No
effect region

Strong Allee No No r above Λ(1)0 and
effect region r below Λ∗

1

(i) 0 < Ar < c < Br < 1;
(ii) ∀x ∈ [0, 1] \ [Ar ,Br ] ⇒ fr ,β (x) < x;

(iii) ∀x ∈ ]Ar ,Br [ ⇒ fr ,β (x) > x.

Note that, if 0 < E < K then lim
x→0+

f
′
r ,β (x) = −∞. This class of functions has been

studied in [12] and is designated by strong Allee effect functions, see also Table 16.1.
In the case of weak Allee effect functions, the fixed point x = 0 is always stable, see
some examples in Fig. 16.1a. On the other hand, the generalized Richards’ functions
fr ,β also includes another class of important functions.

Definition 16.2 Consider −K < E ≤ 0, C > 0, r > 0, β ∈ ]0, 1[ and fr ,β

defined by Eq. (16.3). The generalized Richards’ functions fr ,β : [0, 1] → [0, 1]
attaining its maximum at c are a family of functions with no Allee effect, if there are
numbers Or ,Ar , and Br such that:

(i) 0 < Or < Ar < c < Br < 1;
(ii) ∀x ∈ [0, 1] \ ([0,Or ] ∪ [Ar ,Br ]) ⇒ fr ,β (x) < x;

(iii) ∀x ∈ (]0,Or [ ∪ ]Ar ,Br [) ⇒ fr ,β (x) > x.

The class of functions with no Allee effect verifies lim
x→0+

f
′
r ,β (x) > 1, i.e., the fixed

point x = 0 is always unstable. It is for this reason that this class of functions does
not include extinction. From Definition 16.1 it follows that in the case of weak Allee
effect functions, we will have at maximum three fixed points 0,Ar ,and Br , see
Fig. 16.1a. On the other hand, from Definition 16.2, in the case of functions with no
Allee effect, we will have at least two fixed points 0 and Or , and at most four fixed
points 0,Or ,Ar and Br , depending on the evolution of the parameter r , see some
examples in Fig. 16.1b. In Table 16.1 we present a summary of the most important
properties for this kind of functions.
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16.3 Bifurcation Structure of Weak Allee Effect Functions
and of Functions with No Allee effect

In this section we investigate the dynamical complexity of the proposed models
at (β, r) parameter plane. The evolution of the bifurcation structure is studied by
varying the third parameter E, parameters C and K being fixed. The analysis of
their bifurcations structure is done based on the bifurcation diagrams, see Figs. 16.2,
16.3, 16.5, and 16.6. We will make use of the fold and flip bifurcations, related with
some cycles of order n ∈ IN set of natural numbers. We recall that an order n cycle

(x1, x2, ..., xn) is stable (or attractive) iff
∣∣∣ ∂f n

r

∂x
(xj )
∣∣∣ < 1, ∀j = 1, 2, ..., n. The fold

bifurcation corresponds to the appearance of two order n cycles, one stable and the

other unstable, when it is verified
∂f n

r ,β

∂x
(xj ) = 1, ∀j = 1, 2, ..., n. On the other hand,

the flip bifurcation corresponds to the change of stability of an order n cycle and the
appearance of an order 2n cycle. Before the bifurcation, the order n cycle is stable,
after the bifurcation, the order n cycle is unstable and the 2n cycle is stable. At the

bifurcation it is verified that
∂f n

r ,β

∂x
(xj ) = −1, ∀j = 1, 2, ..., n. For more details about

bifurcation theory see for example [6] and [8].
Generically, to generalized Richards’ functions fr ,β (x), defined by Eq. (16.3),

with r > 0, β ∈ ]0, 1[, |E| < K and C > 0, the fold and the flip bifurcation curves
relative to a cycle of order n are calculated as follows. In the (β, r) parameter plane,
if x ∈ [0, 1[ is a point of an order n cycle that satisfies the equations

f n
r,β

(x,K ,E,C) = x and
∂f n

r ,β

∂x
(x,K ,E,C) = 1 (16.4)

then there exists a solution ϕn in implicit form, such that the fold bifurcation curves
relative to a cycle of order n ∈ IN set of natural numbers are given by r(β) =
ϕn (x,β,K ,E,C), and are denoted by Λ

j

(n)0
, where j differentiates cycles of same

order. On the other hand, if x ∈ [0, 1[ and

f n
r ,β (x,K ,E,C) = x and

∂f n
r ,β

∂x
(x,K ,E,C) = −1 (16.5)

then there exists a solution ψn, in implicit form, such that the flip bifurcation curves
relative to a cycle of order n ∈ IN set of natural numbers, in the parameter plane
(β, r), are given by r̄(β) = ψn (x,β,K ,E,C), and are denoted by Λ

j
n.

In [1] a necessary and sufficient condition is given for the existence of a cusp point
on a fold bifurcation curve relative to a cycle of order n, in a parameter plane of a
one-dimensional map, see also [2] and [4]. Generically, to the class of generalized
Richards’ functions with Allee effect fr ,β (x), with r > 0, β ∈ ]0, 1[, |E| < K and
C > 0, that condition is given by the following expressions:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f n
r ,β (x,K ,E,C) = x,

∂f n
r ,β

∂x
(x,K ,E,C) = 1

∂2f n
r ,β

∂x2 (x,K ,E,C) = 0,
∂3f n

r ,β

∂x3 (x,K ,E,C) = 0

∂f n
r ,β

∂β
(x,K ,E,C)

∂2f n
r ,β

∂x∂r
(x,K ,E,C)− ∂f n

r ,β

∂r
(x,K ,E,C)

∂2f n
r ,β

∂x∂β
(x,K ,E,C) = 0

.

(16.6)

16.3.1 Foliated Bifurcation Structure of Generalized Richards’
Functions

In particular, to generalized Richards’ functions fr ,β (x), the Eqs. (16.4) and (16.5)
for n = 1 are given by:

⎧⎪⎪⎨
⎪⎪⎩

fr ,β (x) = x

ϕ1 (x,β,K ,E,C) = (Kx+C)2

(β E−(β+2)C)Kxβ+1+(β+1)xβ(EC−K2x2)+K2x2+2KxC−EC

ψ1(x,β,K ,E,C) = −ϕ1(x,β,K ,E,C)

.

(16.7)

For this family of functions, the condition (16.6) is equivalent to:

⎧⎨
⎩
x = 0

r = −C
E

, ∀ C > 0, E = 0
or

⎧⎨
⎩
x = E(β−1)

K(β+1) , r = β−1
xβ(β+1)+β−1

C = E(1−β)(xβ(β+1)−2xβ+β+1)
(β+1)(xβ (β+1)+β−1)

. (16.8)

The first solution means that the fold bifurcation curve of the fixed point 0, Λ(1)0 :=
r = −C

E
, in the parameter plane (β, r), is a singular curve. Considering that x ∈

[0, 1], r > 0 and β ∈ ]0, 1[, by the above conditions for the existence of the cusp
point (16.8), we have that −K < E < 0. Remark that if 0 < lim

x→0+
f

′
r ,β (x) < 1

and are satisfied the conditions of Definition 16.1, then the family fr ,β (x) has weak
Allee effect. Otherwise, if lim

x→0+
f

′
r ,β (x) > 1, then this family has no Allee effect.

As stated in Lemma 4.1 of [12], the extinction region associated to weak Allee
functions is characterized by the following propositions:

(i) If 0 is the unique fixed point of the weak Allee functions fi;ri ,β (x), then

lim
n→∞ f n

r ,β (x) = 0, ∀x ∈ [0, 1] ;

(ii) If the weak Allee functions fr ,β (x) have more than one fixed point, then

lim
n→∞ f n

r ,β (x) = 0, ∀x ∈ [0, 1] \ [Ar ,A
∗
r

]
.
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Fig. 16.2 Bifurcation diagram of generalized Richards’ functions fr ,β (x), in the (β, r) parameter
plane at K = 10,E = −1, and C = 7.5. The white region is the extinction region. The blue region
is the stability region. The region between the blue and the turquoise ones corresponds to period
doubling region and chaotic region. The turquoise region is the no admissible region

Fig. 16.2 shows a bifurcation diagram of the family fr ,β (x), at K = 10,E = −1
and C = 7.5. Each colored domain indicates existence of at least one stable cycle
whose order corresponds to upper colored squares in figure. In the (β, r) parameter
plane, for the parameter values considered, this family incorporates weakAllee effect
functions and functions with no Allee effect. In this case, the extinction region is
bounded below by r(β) = 0 and is upper bounded by the fold bifurcation curve Λ1

(1)0
,

of the fixed points 0 and Or , and by the fold bifurcation curve aΛ2
(1)0

, of the fixed
points Ar and Br , see also Fig. 16.3. Remark that, the fold bifurcation curve Λ1

(1)0
,

of the fixed points 0 and Or , and the fold bifurcation curve aΛ2
(1)0

, of the fixed points
Ar and Br , define the semistability curve associated to weak Allee functions, [12].

The blue region is the stability region, which is bounded below by the semi-
stability curve and is upper bounded by the flip bifurcation curve Λ1, of the stable
fixed point nonzero Br . The region between the blue and the turquoise ones corre-
sponds to period doubling region and chaotic region. The period doubling region is
bounded below by the flip bifurcation curve of the stable fixed point nonzero Br ,
Λ1. The upper limit of this region is defined by the accumulation value of the flip
bifurcation curves of the cycle of order 2n, of the stable fixed points nonzero, see [6]
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r

7.5
a Λ(1)0

2Λ(1)0

1 R1
R2

R4
b Λ(1)0

2

R3

Λ3

R4
Λ2

Λ1

Λ1

* ≡ ΛNA

P1

P2

Fig. 16.3 Bifurcations curves of generalized Richards’ functions f n
r ,β (x), with n = 1, 2, 3, in

the (β, r) parameter plane, at K = 10,E = −1 and C = 7.5. Λ1
(1)0

, aΛ2
(1)0

and bΛ2
(1)0

are
the fold bifurcation curves; Λ1, Λ2 and Λ3 are the flip bifurcation curves of the cycles of order
n = 1, 2, 3, respectively; Λ∗

1 is the chaotic semistability curve and ΛNA is the bifurcation curve of
non admissibility. In this case Λ∗

1 ≡ ΛNA. The cusp points P1 and P2 correspond to solutions of
Eq.(16.8). The yellow region is the weak Allee effect region R2

and [8]. This bifurcation curve is denoted by Λ∞ and from Eq. (16.5) we have,

Λ∞ = lim
n→∞ψ2n (x,β,K ,E,C)

with x ∈ [0, 1[ a fixed point. In Fig. 16.2 the period doubling regions are well evi-
denced, highlighting in particular the cycles of order 2 and 4. Moreover, in Fig. 16.3
we can see some flip bifurcations curves corresponding to this region.

In Fig. 16.2, the chaotic region is bounded below by the accumulation value of
the flip bifurcation curves of the cycle of order 2n, Λ∞, and is upper bounded by the
chaotic semistability curve, when the maximum size of a growing population equals
the critical density. In this region are observed all fold and flip bifurcation curves of
the cycle of order different than 2n, Λk , with k = 2n, identified and ordered in the
“box-within-a-box” bifurcation structure, [3], [6], [8] and [12]. In a general way, in
this region, this bifurcation structure is limited by Λ∞ < r(β) < r̄(β), where r̄(β)
represents the chaotic semistability curve, in implicit form, defined by f 2

r ,β (c) = Ar ,
with c the positive critical point and Ar the first positive fixed point, of each family
of generalized Richards’ functions.

The chaotic semistability is defined when it is verified f 2
r ,β (c) = Ar , with Ar the

first positive fixed point, i.e., the maximum size growth of the population is equal
to the critical density, see [12]. This curve is a bifurcation curve that corresponds
to the transition between chaotic region and essential extinction region, which is
denoted by Λ∗

1, see Fig. 16.3. The essential extinction is defined by the condition
f 2
r ,β (c) < Ar , with Ar the first positive fixed point, i.e., when the maximum size

growth of the population exceeds the critical density and the populations are almost
surely doomed to extinction, see [12].
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s<1

s>1

s>1

s<1
P1

P2Λ(1)0

1

a Λ(1)0

2

b Λ(1)0

2

Fig. 16.4 Foliated bifurcation structure of generalized Richards’functionsfr ,β (x), atK = 10,E =
−1 and C = 7.5 ( dovetail structure). Λ1

(1)0
, aΛ2

(1)0
and bΛ2

(1)0
are the fold bifurcation curves. The

cusp points P1 and P2 correspond to solutions of Eq. (16.8)

Remark 16.1 In the cases where there is no Allee effect, the chaotic semistability
curve is not defined. At this stage, the fixed point 0 is unstable and the chaotic region
is upper bounded by the curve defined by fr ,β (c) = 1. Since, we are in the “fullshift”
curve, which is denoted byΛNA. In these cases, there is no essential extinction region,
after the chaotic region we have a no admissible region, it is verified that Λ∗

1 ≡ ΛNA,
see Fig. 16.3.

The no admissible region includes the values of the parameters for which the
intrinsic growth rates r(β) > ř(β). The graphic of any family of functions, defined
by Eq. (16.3), is no longer totally in the invariant set [0, 1]. The maps under these
conditions do not already belong to the studied families of generalized Richards’
functions and are not good models for populations dynamics, see [10–12].

In Fig. 16.3, we present some fold and flip bifurcation curves of f n
r ,β (x) in the

(β, r) parameter plane, for the same parameter values of Fig. 16.2. Figure 16.4
displays the three-dimensional representation of the sheets (foliated representation)
associated with the same parameter plane of Fig. 16.3. The cusp pointP1 corresponds
to the first solution of Eq. (16.8), associated to the fixed point x = 0. This cusp point
is given by P1 = (β, r), where β is the intersection of the fold bifurcation curve
Λ1

(1)0
, of the fixed points 0 and Or , and of the fold bifurcation curve bΛ2

(1)0
, of the

fixed points Ar and Br ; and r = −C
E

. The cusp point P2 corresponds to the second
solution of Eq. (16.8), intersection between the fold bifurcation curves aΛ2

(1)0
, of

the fixed points Ar and Br , and bΛ2
(1)0

, of the fixed points Or and Ar . By fixing the
parameters K ,E, and C in the second solution of Eq. (16.8), the coordinates of the
cusp point P2 = (β, r) are given by: β is a numerical solution of the expression of
C, when we substitute the expression of x in the expression of C; and consequently,
we obtain directly the expressions of the fixed point x and of r .

These threefold bifurcation curves, Λ1
(1)0

, aΛ2
(1)0

, and bΛ2
(1)0

, define in the
parameter plane R = {(β, r) ∈ R2 : (β, r) ∈ ]0, 1[ × ]0, 40[

}
, the following regions:
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(i) The extinction region, associated to weak Allee functions,

R1 =
{
(β, r) ∈ R : (β, r) < Λ1

(1)0
∧ (β, r) < aΛ2

(1)0

}
,

with an unique fixed point 0, established in Lemma 4.1 of [12], see also
Figs. 16.2, 16.3 and Fig. 16.1a (blue graphic);

(ii) The weak Allee effect region, with three fixed points 0,Ar and Br ,

R2 =
{
(β, r) ∈ R : aΛ2

(1)0
< (β, r) < Λ1

(1)0

}
,

see also Fig. 16.3 and Fig. 16.1a (green and red graphics). In this region, we
verify that 0 < lim

x→0+
f

′
r ,β (x) < 1 and the origin’s basin of attraction is Ω0 =

[0,Ar [∪
]
A∗

r , 1
]
. Moreover, the basin of attraction of the second positive fixed

point Br is ΩBr
= ]Ar ,A∗

r

[
and

∣∣∣∣ lim
x→Br

f
′
r ,β (x)

∣∣∣∣ < 1. The fixed points 0 and Br

are stable, and the fixed point Ar is unstable;
(iii) The region of functions with no Allee effect, with four fixed points 0,Or ,Ar

and Br ,

R3 =
{
(β, r) ∈ R : (β, r) > Λ1

(1)0
∧ aΛ2

(1)0
< (β, r) < bΛ2

(1)0

}
,

see Fig. 16.3 and Fig. 16.1b (blue graphic);
(iv) The region,

R4 =
{
(β, r) ∈ R : (β, r) > Λ1

(1)0
∧ (

(β, r) < aΛ2
(1)0

∨ (β, r) > bΛ2
(1)0

)}
,

which includes functions with no Allee effect, with two fixed points 0 and Or ,
see Fig. 16.3 and Fig. 16.1b (red graphic); and functions with behavior like
logistic functions, with two fixed points, see also Fig. 16.1b (green graphic).

In Fig. 16.5 we present the bifurcation diagram of a family of functions with no Allee
effect fr ,β (x), in the (β, r) ∈ ]0, 1[ × ]0, 35[ parameter plane at K = 10,E = −2
and C = 3. In this case, the extinction region is bounded by 0 < r(β) < 3/2, where
Λ(1)0 := r1(β) = 3/2 is a bifurcation curve that corresponds to the instability of the
origin and the appearance of a stable fixed point, see also Fig. 16.6. The horizontal
band (in white) corresponds to the positive region of stability of the fixed point 0.
The blue region is the stability region. The region between the blue and the turquoise
ones corresponds to period doubling region and chaotic region. The turquoise region
is the no admissible region. The respective bifurcation curves are shown in Fig. 16.6.

16.3.2 Evolution of Bifurcation Curves When E Varies:
Dovetail Structure

In this paragraph, the transition from the weak Allee effect to no Allee effect with
respect to the third parameter E is investigated. Remark that the parameter E is
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Fig. 16.5 Bifurcation diagram of generalized Richards’ functions with no Allee effect fr ,β (x),
in the (β, r) parameter plane at K = 10,E = −2 and C = 3. The white horizontal band is the
extinction region. The blue region is the stability region. The region between the blue and the
turquoise ones corresponds to period doubling region and chaotic region (existence region of cycles
as shown on top of figure). The turquoise region is the no admissible region

associated to the Allee limit. This phenomenon is described by the appearance and
disappearance of a dovetail structure. We consider an initial situation, with weak
Allee effect, illustrated in Fig. 16.3 ((β, r) parameter plane) and Fig. 16.4 (foliated
representation) which provide a dovetail structure involving cycle of order 1 and
made up of the two cusp points P1 and P2. See [7] for more details on dovetail
bifurcation structure.

For the values of the parameters considered, we verify that when the parameter
E tends toward −2, the cusp points P1 and P2 merge into the same point of the
fold bifurcation curve Λ1

(1)0
. Simultaneously the fold bifurcation curves aΛ2

(1)0
, of

the fixed points Ar and Br , and bΛ2
(1)0

, of the fixed points Or and Ar , tend to
merge with a fold bifurcation curve Λ1

(1)0
, see Fig. 16.8. After the bifurcation, a

dovetail structure disappears, because the two cusp points P1 and P2 disappear and
the bifurcation curves aΛ2

(1)0
and bΛ2

(1)0
merge with a fold bifurcation curveΛ1

(1)0
. The

final situation is giving at Fig. 16.6 ((β, r) parameter plane) and Fig. 16.7 (foliated
representation), where there is no Allee effect.
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* ≡ ΛNA

r

Fig. 16.6 Bifurcations curves of generalized Richards’ functions with no Allee effect f n
r ,β (x), with

n = 1, 2, 3, in the (β, r) parameter plane atK = 10,E = −2 andC = 3. Λ(1)0 is the fold bifurcation
curve; Λ1, Λ2 and Λ3 are the flip bifurcation curves of the cycles of order n = 1, 2, 3, respectively;
Λ∗

1 is the chaotic semistability curve and ΛNA is the bifurcation curve of non admissibility. In this
case there is no Allee effect, hence Λ∗

1 ≡ ΛNA

s<1

s>1

s<1

Λ(1) 0
1

2

Λ1

Λ

Fig. 16.7 Foliated bifurcation structure of generalized Richards’functionsfr ,β (x), atK = 10,E =
−2 and C = 3. Λ1

(1)0
is the fold bifurcation curve and Λ1 and Λ2 are the flip bifurcation curves of

the cycles of order n = 1, 2, respectively

16.4 Conclusion

The discussion and concern over the extinction of certain species of trees, plants, and
mammals is one of the most current and worrying problems. In this chapter we studied
the new classes of functions that contribute to understanding this ecological phe-
nomenon: weak Allee effect functions and functions with no Allee effect, associated



266 J. L. Rocha et al.

r

3

2

1
a

(1)0

2b

(1)0
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(1)0

1

3.75

P1
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Fig. 16.8 Bifurcations curves of generalized Richards’ functions with no Allee effect f n
r ,β (x), with

n = 1, 2, 3, in the (β, r) parameter plane at K = 10,E = −1.85 and C = 7.5. Λ1
(1)0

, aΛ2
(1)0

and
bΛ2

(1)0
are the fold bifurcation curves; Λ1, Λ2 and Λ3 are the flip bifurcation curves of the cycles

of order n = 1, 2, 3, respectively. The cusp points P1 and P2 correspond to solutions of Eq. (16.8)

to Richards’growth types. In Table 16.1 we present a summary of the most important
properties for this kind of functions. The study of the foliated bifurcation structure of
the generalized Richards’ functions allows us to relate the classes of functions with
Allee effect and those that have no Allee effect with the appearance and disappear-
ance of a dovetail structure. Thus, the type of extinction studied, characterized by
the existence of weak Allee effect, is associated with the emergence of cusp points
of fold bifurcation curves of the fixed point.
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Chapter 17
Systoles on Compact Riemann Surfaces
with Symbolic Dynamics

Clara Grácio

Abstract In this chapter, systolic inequalities are established, precise values are
computed, and their behavior is also examined with the variation of the Fenchel–
Nielsen coordinates on a compact Riemann surface of genus 2.

17.1 Introduction

The metric and geometric structure of surfaces may be studied by using the closed
geodesics spectrum and the Laplace–Beltrami operator spectrum. It is not easy to
obtain these spectra and even more difficult is to describe their dependence on the
parameters which determine the metric and geometric structure of a surface. The
dependence of such spectra dependence is examined using a boundary map when a
Riemann surface M of genus 2, thus with negative curvature, is considered.

From a classical point of view the hyperelliptic surfaces are the simplest Riemann
surfaces [12]. They can be denned by an algebraic curve y2 = F (x) where F (x)
is a polynomial of degree 2τ + 1 or 2τ + 2 with distinct roots (τ is the genus of
the surface). Hyperelliptic surfaces of genus τ are characterized by the fact that the
number of different Weierstrass points is minimal, namely 2τ +2 (the fixed points of
the hyperelliptic involution), while the weight of each Weierstrass point is maximal,
namely 1

2τ (τ − 1).
For our purposes, two results for surfaces (see [17]) are significant:

Theorem 17.1 A closed surface M of genus t = 2 is hyperelliptic if and only if M
contains 2t−2 different simple closed geodesics which all intersect at the same point
and mutually intersect in no other point.

Theorem 17.2 All closed surfaces of genus 2 are hyperelliptic.
The systole of a compact Riemann surface is defined as the minimum length of

a noncontractile curve. In the 1990s, a number of studies developed this concept:
in particular, the article published by Schmutz Schaller (see [17]) that spurred the
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search for maximum surfaces for the systole; also important is the contribution of
Bavard (see [1]), which provides a good theoretical framework, modeled on network
analysis.

The aim of the present chapter is to provide an understanding of the behavior
of systolic quantities on a compact Riemann surface over the geodesic length spec-
trum of M , endowed with a metric of constant curvature −1. The use of symbolic
dynamics, a powerful tool which allows the explicit calculation of the parameters
considered, is an essential feature of this study.

The chapter is organized as follows: Sect. 17.2 introduces a geometric description
of the surface and defines the Teichmuller space and the global coordinate system,
coordinates of Fenchel–Nielsen. The method described in this section involve de-
composing a Riemann surface into a set of “pairs of pants” using three simple closed
geodesic. The Riemann surface is represented by a quotient space M = H 2/G

of the upper half-plane H 2 using a Fuchsian group G which is isomorphic to the
fundamental group of M . In Sect. 17.3 a detailed construction of the fundamental
domain is given, side-pairing transformations are determined, and the boundary map
is obtained. These constructions are the main element of the computations which
follow. In Sect. 17.4 the generators of the fundamental group are obtained, and the
identification, enumeration, and codification of orbits is carried out. Finally, in Sect.
17.5, explicit values are calculated for the geodesic length spectrum and systolic
inequalities are obtained, which is the main objective of this work, reflecting the be-
havior of the systoles spectrum with the variation of the parameters that characterize
the Riemann surface. Applying the main theorems, in the final section, upper and
lower limits are determined for the systoles length spectrum under deformation of
the surface.

17.2 Geometric Description and Fenchel–Nielsen Coordinates

Let C be the Riemann sphere and GL+
2 (R) the 2×2 matrices group with real entries

and a positive determinant. Let us consider the action given by this group of Mobius
transformations

(g, z) → gz = az + b

cz + d
, g =

⎛
⎝a b

c d

⎞
⎠

where g(−d/c) is interpreted as ∞, and g(∞) as a/c. It is observed that

(λa) z + (λb)

(λc) z + (λd)
= az + b

cz + d
for any matrices

⎛
⎝a b

c d

⎞
⎠ ∈ GL+

2 (R) and λ ∈ R, so

any Mobius transformation can be realized by an element of SL2(R). Furthermore,
a Mobius transformation

gz = az + b

cz + d
, a, b, c, d ∈ R, ad − bc = 1
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determines the matrix
(
a b
c d

)
less than signal, and SL2(R) contains the elements

1 =
(

1 0
0 1

)
and −1 =

(−1 0
0 −1

)
which act trivially. Then the quotient group is

considered

PSL2(R) = SL2(R)/ {±1} .
Given a surface M of negative curvature and genus g = 2, the universal covering

surface of M is given by the hyperbolic plane which can be represented by the

Poincaré disk, D2 = {z ∈ C : |z| < 1}, with metric ds2 = dz·dz

(1 − |z|2)2
or upper

half-plane, H 2 = {z = x + iy : y < 0}, with metric ds2 = dz·dz

y2
. In both

realizations, the isometry group is made up of the linear fractional transformations

h(z) = az + b

cz + d
. In the half-plane H 2, the matrices A =

⎛
⎝a b

c d

⎞
⎠, a d − b c = 1

belong to SL2(R), the real unimodular group. Schematically:

Aut(H 2) ∼= PSL(2, R) = SL(2, R)/ {±I }
Aut(D2) ∼= PSU (1, 1) = SU (1, 1)/ {±I }

The covering group G is a Fuchsian model of M. In this case considering the
half-plane H 2, then G is a subgroup of Aut(H 2)

The Fuchsian model of a closed Riemann surface of genus g(≥2) may thus be
characterized exactly. An element of a Fuchsian model of a closed Riemann surface
of genus g(≥2) is the identity map either a hyperbolic transformation (see [13]).

The pair (M, δ) denotes a Riemann surface M equipped with a conformal struc-
ture δ (an equivalence class of metrics). When there is no risk of confusion, it is
denoted only by M.

Let gi : [0, 1] → M, i = 1, 2 be curves, such that g1(0) = g2(0) = p0 and
g1(1) = g2(1) = p1. It can be said thatg1 andg2 are homotopic if there is a continuous
map g : [0, 1] × [0, 1] → M such that g : {0} × [0, 1] = p0, g : {1} × [0, 1] = p1,
g : [0, 1] × {0} = g1 e g : [0, 1] × {1} = g2.

For any p0 ∈ M, the fundamental groupπ1(M,p0) is the group of the homotopy
classes g : [0, 1] → M such that g(0) = g(1) = p0, i.e., the group of classes of
closed paths with p0 as a starting and terminal point. Often a system of generators
Σp = {[Aj

]
,
[
Bj

]}g
j=1 of a fundamental group π1(M,p) of a genus 2 closed Rie-

mann surface M is called a mark in M. Since the choice of base point is irrelevant,
the group π1(M) is called the fundamental group of M.

Let us consider the triple(M, δ, f ), where δ is a conformal structure and f :
M → M is a diffeomorphism.
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Two triples (M, δi , fi), i = 1, 2 are considered equivalent if there is a conformal
map k : (M, δ1) → (M, δ2) for which the diagram

M f1→ (M, δ1)
f2↘ ↓ k

(M, δ2)

commutes by homotopy, i.e., f2 ◦ f −1
1 and k are homotopic.

Definition 17.1 The space consisting of those equivalence classes, is called the
Teichmüller space and is denoted by Tg (where g is the genus of M).

In 1940, Teichmüller showed that Tg (g ≥ 2) is homeomorphic to R
6g−6. One way

to realize this homeomorphism is through F-N coordinates. The Teichmüller space
Tg of genus g is given by a system of generators of the fundamental group of closed
Riemann surface M of genus g. The set of generators is denoted by

{[
αj

]
,
[
βj

]}g
j=1.

As both an Fuchsian model G of M and G′ = h−1Gh, for any h ∈ Aut(E), are
Fuchsian models of M, it is necessary to establish a normalization that allows to
define what we call canonical system of generators. The conditions of normalization
are:

(i) The generator βg has the attractive fixed point at∞ and the repulsive fixed point
at 0.

(ii) The generator αg has the attractive fixed point at 1.
(iii) The axes of these two generators are disjoint.

Such a system of generators satisfies a single fundamental relationship (obtaining
the presentation of this discrete group), i.e.:

α1 ◦ β1 ◦ α−1
1 ◦ β−1

1 ◦ ... ◦ αg ◦ βg ◦ α−1
g ◦ β−1

g = id. (17.1)

In order to obtain a geometric image of the correspondence between the Riemann
surface M and its Fuchsian model G, let us use the concept of fundamental domain
for G.

Definition 17.2 Let E = D2,H 2 and F is an open subset of E. It is said that F is
a fundamental domain for G if it satisfies the following conditions:

(i) g(F ) ∩ F = ∅ for any g ∈ G, with g = id .
(ii) If F is the closure of F in E, then E =⋃ g(F ), g ∈ G.

(iii) The boundary ∂F of F in E is of measure zero (with respect to Lebesgue
measure).

The family {g(F ) : g ∈ G} is called a pavimentation of E. This means that the
Riemann surface M = E/G is considered to be F , with points on ∂F identified by
groupG. In this chapter, H 2 is the universal covering space ofM and the fundamental
group G, is a subgroup of SL2(R).
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Fig. 17.1 Two pants decomposition

A domain of three circles is homeomorphic to the set

P =
{

z ∈ C : |z| ≤ 1,

∣∣∣∣z − 1

2

∣∣∣∣ ≥ 1

4
,

∣∣∣∣z + 1

2

∣∣∣∣ ≥ 1

4

}
,

(a sphere with three holes in it), equipped with the hyperbolic metric, where the
three components of boundary geodesics are simple. As explained above, P is usu-
ally called a “pair of pants.” The complex structure of P is uniquely determined
by the hyperbolic lengths of the ordered boundary components of P . M may be
decomposed into a union of two “pairs of pants” (surfaces of genus zero with three
boundary circles) (see Fig. 17.1).

Figure 17.2 represents an example of decomposition and gluing. This figure is
considered j = 1, i.e., geodesic L1.

In this figure ci are the points of intersection between the geodesic L1 and the
geodesics D1,i . The link between these geodesics is forged by means of another
geodesic D1,i , with minimum length. Denoted by T1, the arc with the orientation of
L1 between the points c1 and c2 and the length of T1 is denoted τ1. Then the twist
parameter for L1 is defined by

θ1 = 2π
τ1

l1
. (17.2)

And, similarly, θj is well defined, module 2π

θj = 2π
τj

lj
, j=1,2,3.

Definition 17.3 LetL1,L2,L3 be the oriented decomposition curves. The functions
lj and θj , j = 1, 2, 3 denote the lengths and angles of torsion (twist) of L1,L2,L3

used for gluing the pieces. This system of coordinates {lj , θj }j=1,2,3 is called the
Fenchel–Nielsen (F-N) coordinate system.
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Fig. 17.2 Example of decomposition and gluing

17.3 Construction of Fundamental Domain and Definition
of Boundary Map

A chain on a surface M is a set of four simple closed nondividing geodesics, labeled
γ1, γ2, γ3, γ4, where γ2 intersects γ1 exactly once; γ3 intersects γ2 exactly once and
is disjoint from γ1; γ4 intersects γ3 exactly once and is disjoint from both γ1 and γ2.
It is assumed throughout that these geodesics are directed so that, in terms of the
homology intersection number, γi × γi+1 = +1.

Given the chain γ1, γ2, γ3, γ4, it can easily be seen that there are unique simple
closed geodesics γ5 and γ6 so that γ5 intersects γ4 exactly once and is disjoint from
γ1, γ2, and γ3; and γ6 intersects both γ5 and γ1 exactly once and is disjoint from the
other γi . As above, it may be assumed that these geodesics are also directed so that,
using cyclic ordering, γi × γi+1 = +1. This set of six geodesics is called a geodesic
necklace (see[14] and Figure 17.3).

If the surface M0 is cut along the geodesics of a chain, a simply connected subsur-
face is obtained. It follows that elements A0, B0, C0, D0 may generate π1(M00), and,
conversely, the shortest geodesics in the free homotopy class of loops, corresponding
to A0, B0, C0, D0, are, respectively, γ1, γ2, γ3, γ4. There are several possible choices
for these elements; let us adopt Maskit’s choice, which yields to defining relation:
A0B0D0A

−1
0 C−1

0 D−1
0 C0B

−1
0 = 1 (see [13]).
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Fig. 17.3 Geodesic necklace

A particular system of generators of a Fuchsian group is obtained, (denoted by
G0) and our surface (nondeformed) M0 is given by M0 = H 2/G0. It is possible to
express explicitly the matrices A0, B0, C0, D0, E0, F0 ∈ SL(2, R) (see [8], [14]).

A point in T can be regarded as being an equivalence class of orientation-
preserving homeomorphisms h of H 2. Two such homeomorphisms are equivalent if
the corresponding representations are equivalent; two such representations, A and
B are equivalent if there is an element S ∈ PSL(2, R) so that SAS−1 = B. When
the rule of the decomposition (the way of gluing, see Fig. 17.2) and the lengths of
closed geodesics are chosen, the decomposition is determined. The set of lengths of
all geodesics used in the decomposition into pants, and the set of so-called twisting
angles used to glue the pieces, provide a way of realizing this homeomorphism.

As this group G0 is discrete, consisting only of hyperbolic elements, the surface,
M0, represented byG0, is our base surface. But our aim is to study the dependence of
dynamic properties on the parameters which implies the variation of these parameters,
forcing the consideration of the deformation spaces of the space base defined above.
Deformation space D is defined as the space of representationsϕ : G0 → PSL(2, R).

The image of the group G = ϕ(G0) is a discrete group with M = H 2/G a closed
Riemann surface of genus 2.

Let us consider the chain γ1, γ2, γ3, γ4 in M which is decomposed along these
geodesics in 4 hexagons triangles. These geodesics are the shortest length of the
class of homotopy corresponding to some elements hi (i = 1, ..., 6) of π1(M), the
fundamental group of M. Building up hexagon H1, as can be seen in Fig. 17.4,
whose sides si are arcs γi , these arcs are contained in the axes of the hyperbolic
transformations hi (i = 1, ..., 6). The translation distance of these axes (measured
counterclockwise) along the axes is 2 li where li denotes the length of γi = l(γi).

From this initial hexagon H1 the fundamental domain can be constructed by
reflection and symmetry operations that reflect the decomposition of surface M
along the geodesics (that form the chain γ1 , γ2, γ3, γ4 chosen). In this construction,
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Fig. 17.5 Hexagons H1 ∪H2

a reflection on the axis of h4 is considered, while hexagon H1 is reflected in another
hexagon H2, see Fig. 17.5.

Finally, with the reflection in relation to the imaginary axis (symmetry) the other
two hexagonsH3 andH4 are obtained, building the dodecagon that is the fundamental
domain: F = H1 ∪H2 ∪H3 ∪H4, see Fig. 17.6.

If this is not the case, it means that the glue is different and the fundamental
domain is different as shown in Fig. 17.7.

This construction depends on the original choice of geodesic chain {γi}, and the
form of gluing, i.e., the parameters considered.

Definition 17.4 Let us consider a geodesic necklace on a closed Riemann surface
M. When all the geodesics have the same length and there is no twist in the collage,
it may be said that the regular case for the fundamental domain of a closed Riemann
surface M in the F-N coordinates is being considered.

However, the form of the generators of the Fuchsian group G may be determined
(for all cases) ([6], [14]).



17 Systoles on Compact Riemann Surfaces with Symbolic Dynamics 277

-15 -10 -5 5 10 15

2

4

6

8

10

12

14

Fig. 17.6 Fundamental domain F = H1 ∪H2 ∪H3 ∪H4

Fig. 17.7 Two dodecagons with twist angles zero (α1 = α2 = α3 = 0) and one with angles
α1,α2,α3 = 0

Let us consider once more hexagon H1. γ , the axis of h, which is also common
among the orthogonal axes h1 and h3, and is chosen as a reference geodesic segment.
Let μ′ = |γ |, and let us consider the ray joining the origin of the axes to the point of
intersection between h and h1, determining an angle μ between the axis of h3 and
this radius. Then, by using hyperbolic geometry, μ is defined by coth μ = cosh μ

(see [3]).
The point of intersection between h and h3 is denoted by P and the point of

intersection between h2 and h3 by P2. The other parameters are given by the angles
of gluing. Then σ is determined by the distance between the intersection of h with
h3 and the intersection of h2 with h3. Note that if h2 = h then σ is equal to zero. The
other two parameters τ and ρ are determined by angle θ2 and θ3 between h2, h3, and
h3, h4, respectively, see Fig. 17.8. Schematically: l1 = l(γ1), l2 = l(γ2), l3 = l(γ3),
l4 = l(γ4), μ = arc coth (cosh μ′), σ = |P − P2|, τ = arc tanh (cos (θ2)), and
ρ = arc tanh (− cos (θ3)).
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Fig. 17.8 Representation of the parameters in the hexagon

Through the operations of reflection and symmetry (as exemplified above) the
following representations (see [9] and [14]) are obtained:

A = 1

sinh μ

⎛
⎝sinh (μ− α) sinh α

− sinh α sinh (μ+ α)

⎞
⎠ ,C =

⎛
⎝eγ 0

0 e−γ

⎞
⎠ ,

B = 1

cosh τ

⎛
⎝cosh (τ + β) eσ sinh β

e−σ sinh β cosh (τ − β)

⎞
⎠ ,D = 1

cosh ρ

⎛
⎝cosh (ρ − δ) −eσ+γ sinh δ

−e−σ−γ sinh δ cosh (ρ + δ)

⎞
⎠.

Teichmüller space T of genus 2 is given by a system of generators of a Fuchsian
group, the fundamental group of the surface of the closed Riemann surface M of
genus 2. A particular system of generators determined by following expressions may
be considered: h1 = B, h2 = A, h3 = F , h4 = E, h5 = BD, h6 = DF−1.
h7 = h−1

1 , ...,h12 = h−1
6 (see Fig.17.9).

Proposition 17.1 If the twist angles are zero, σ1 = σ2 = σ3 = 0, then the
fundamental domain is a right-angle polygon.

Proof If τ = 0, then θ2 = π
2 so the axes of B and C are orthogonal; if σ = 0 then

P = P2 so h2 ≡ h. With this equality and the definition of h it may be concluded
that the axis of h2 is orthogonal to the axes of both h3 and h1; if ρ = 0, then θ3 = π

2 ,
which implies that the axes of h3 and h4 are orthogonal. As we have a hyperbolic
hexagon with three direct consecutive internal angles it may be concluded that the
other three also are right angles and, thus, H1 is a right-angled hexagon. As the
hyperbolic reflection maintains the angles invariant, the resulting polygon F is a
right-angled polygon.

This construction depends on the choice of original geodesics γi , i = 1, ..., 4.
The chain is then dependent on the parameters %i = %(γi). The sides are obtained
by the intersection of the axes, and are geodesic segments. The single point which
is the intersection between two consecutive sides is called a vertex.The circular arc
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Fig. 17.9 Axes h1,...,h12 and terminal points {pi , qi}, i = 1, ..., 12 on ∂F

that contains a side si intersects the real axis at two points pi and qi (see Fig.17.9).
The sides are labeled s1, ..., s12 reading counterclockwise from zero.

It is known (see [3]) that if F is any locally finite fundamental domain for a
Fuchsian group G, then

{g ∈ G : g(F) ∩ F = φ}
generates G. The fundamental domain F is a bounded fundamental polygon whose
boundary ∂F consists of the 12 geodesic segments s1, ..., s12. There is a bijection:

Ψ : LF → GF ; Ψ (g) = F ∩ g(F)

between the set of the sides of F and the set of elements g in G for which F ∩ g(F)
is a side of F . These pairing transformations g : si → sj identifying the sides
(side-pairing), elements of GF , i.e., generate the group G.

The identification rule chosen is

s1 , -s7 ; s2 , -s12; s3 , - s5;

s4 , -s10; s6 , -s8 ; s9 , -s11

(17.3)

Adopting this choice, formulas for the side pairing transformations g1, ..., g12

are calculated and the generators gi = gi(%1, %2, %3, σ1, σ2, σ3), i = 1, ..., 12,
where %1, %2, %3, σ1, σ2, σ3 are the F-N coordinates, are explicitly obtained. With the
linear fractional transformations defined above the boundary map may be obtained:
fΓ : ∂F → ∂F , defined by piecewise linear fractional transformations in the
partition P = { Ii = [pi ,pi+1), i = 1, ..., 11, [p12,p1)}, which is orbit equivalent
to the action of the fundamental group G on ∂F .

Adopting the identification rule, (17.3) formulas for the side pairing transfor-
mations g1, ..., g6, g7 = g−1

1 , ..., g12 = g−1
6 may be determined. This means that

s7 = g1(s1), ..., s9 = g6(s11), s1 = g7(s7), ..., s11 = g12(s9).
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Let gi(z) = (aiz + bi) /(ciz + di) for gi(sj ) = sk , with
⎧⎪⎪⎨
⎪⎪⎩

ri = (qi − pi)/2,

ci = 1/(rj rk)1/2,

bi = (aidi − 1)/ci

then the following system of equations is solved
⎧⎨
⎩

(aipj + bi)/(cipj + di) = qk ,

(aiqj + bi)/(ciqj + di) = pk

and {ai , di} is determined, i = 1, ..., 12. With {ai , di} the generatorsgi = gi(%1, %2, %3,
σ1, σ2, σ3), i = 1, ..., 12 are computed. The system of generators of G is denoted by
G0.

Let the partition be Q = {Ii = [pi ,pi+1), i = 1, ..., 11, [p12,p1)}. Although this
is not a Markov partition it may be refined so as to obtain one that is. One way of
doing this is to introduce the lateral limits p±

i of the discontinuity points pi (see [9]).
By means of fractional linear transformations carried out on Q, the boundary map

fG : ∂F → ∂F is defined, represented by:

fG :
⋃

i=1,...,12

Ii →
⋃

i=1,...,12

Ii ; fG(x)|Ii = gi(x), i = 1, .., 12.

17.4 Fundamental Group

The boundary map fG determines the associated Markov matrix A. This matrix is
given by (see [6])

aij =
⎧⎨
⎩

1 if Ii ⊂ fG(Ii)

0 otherwise.

The identification, enumeration, and codification of orbits use symbolic dynamics
through constructions that involves the geometry of the surface and the algebraic
structure of its fundamental group G. The action of this fundamental group on the
Poincaré upper half plane boundary is shown to be orbit equivalent to the Markov
map, fG, which has been defined, and codification is obtained by the expansion of
the boundary points.

Definition 17.5 Letxi0 be an element of the limit set of G . As it belongs to one of
the intervalsIi0 of the Markov partitionW the image underfG(xi0 ) = gi0 (xi0 ) = xi1 ,
is another boundary pointxi1 . The pointxi1 belongs to the intervalsIi1 sofG(xi1 ) =
gi2 (xi1 ) = xi2 .This process is repeated successively obtaining the (fG−expansion)
of boundary point x. This sequence is called the word associated with the point x.
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Example 17.1

(1) Consider the regular dodecagon: l1 = l2 = l3 = log (2 + √
3) and σ1 = σ2 =

σ3 = 0.
x = 1.5− > word 1− > 6, 12, 3, 8, 7, 3, 3, 7, 2, 3, 6, 12, 3, 8
x = 2.0− > word 2− > 11, 7, 11, 6, 10, 5, 11, 12, 3, 12, 3, 3, 10, 6

(2) Consider the dodecagon: l1 = log (2 +√
3) + 0.3, l2 = l3 = log (2 +√

3) and
σ1 = σ2 = σ3 = 0.
x = 1.5− > word 1− > 6, 10, 7, 2, 10, 2, 7, 10, 12, 3, 4, 7, 7, 7
x = 2.0− > word 2− > 12, 6, 10, 7, 9, 12, 5, 4, 8, 7, 4, 1, 5, 4.

Proposition 17.2 Each point of the limit set is associated with a single word. This
word is the fG−expansion boundary point. The admissibility of a given block or
word is given by the Markov matrix A.

Proof The Markov matrix A identifies the possible transitions between states and
the associated subshift of finite type, (ΣA, σ ), is identified by the limit set. Thus the
occurrences in the limit set are given by the admissibility in subshift of finite type,
therefore by A.

The representation (codification) of a geodesic γ in H 2(or D2) is the juxtaposition
of fG−expansions of its extreme points γ− and γ+ on the real axis (or the unit
circle Σ).

γ � γ−.γ+ � ...gi2gi1 .hi1hi2 ... where gi2 , gi1 ,hi1 ,hi2 ∈ G0.

Definition 17.6 Given g ∈ G (and γ ∈ calM) we define its word length |g| to
be the smallest number of elements from G needed in a presentation of g, i.e.,
|g| = inf{n : g = g1...gn with g1, ..., gn ∈ G0}; for a closed geodesic γ and
associated class [h] in G, we denote |γ | = inf{|g| : g ∈ G e [g] = [h]}, that is the
word length of γ ; the geometric length of γ is given by %(γ ) = ∫

γ
m(z) |dz| and is

dependent on the metric of the surface.
By convention, |e| = 0, where e is the identity element in G.

Theorem 17.3 Admissible geodesics are conjugate underG if and only if the
corresponding sequences are shift equivalent.

Proof See [9].

Theorem 17.4 On surfaces of negative curvature there is a bijection between closed
geodesic, γ , in M and conjugacy classes of the fundamental group G associated
with the fundamental domain F, i.e., each conjugacy class [gγ ] to G represents a
closed geodesic, γ , in M.

Proof See [15].
These results establish equivalence between concepts and different mathematical

spaces.
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Proposition 17.3 With a finite number of exceptions there is a bijection between
the closed geodesic, γ ∈ M (word length |γ | and length %(γ )) and the primitive
periodic orbits of period k, O(x) = {x, f (x), f 2(x), ..., f k(x)}.
Proof See [16].

Schematically:

Periodic points forfG ↔ Admissible sequences for the shiftσ

/ /
Primitive closed geodesics in M ←→ Conjugacy classes inG

If the elements of group G are viewed as matrices in SL2(R), then the identifi-
cation of the matrices g and −g in PSL2(R) = SL2(R)/{±1} may be understood
automatically. The following proposition allows for the identification of conjugacy
classes, by algebraic methods, using the traces of these elements.

Proposition 17.4 Consider two elements g and h of group G. Its conjugacy classes
are equal, if and only if, the squares of its traces are also equal. That is,

[g] = [h] ⇔ tr2(g) = tr2(h).

Proof See [3].
The identification of the conjugacy classes is dependent on traces of matrices that

represent the elements of the group; but these matrices are, in turn, dependent on
the choice of the parameters of F-N. Consequently, the following conclusion may be
drawn:

Proposition 17.5 The conjugacy classes of the fundamental group are dependent
of the Fenchel–Nielsen coordinates.

Example 17.2 If words of length 1 are considered for the case of regular domain
(l1 = l2 = l3 = log (2 + √

3) and σ1 = σ2 = σ3 = 0) there is only one conjugacy
class (Table 17.4), while, for example, for l1 = l2 = log (2 + √

3), l3 = 1.7 and
σ1 = σ2 = σ3 = 0 4 distinct classes of conjugation are obtained (Table 17.5).

⎡
⎣tr(gi) 4 4 −4 −4 4 4 4 4 4 4 −4 −4

tr2(gi) 16 16 16 16 16 16 16 16 16 16 16 16

⎤
⎦

⎧⎨
⎩
l1 = l2 = l3 = log (2 +√

3), σ1 = σ2 = σ3 = 0

1 distinct class
(17.4)

⎡
⎣tr(gi) −4 5.65663 −8.96989 2.89726 −8.96989 5.65663

tr2(gi) 16 16 16 16 16 16
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..... 4 5.65663 8.96989 2.89726 8.96989 5.65663

..... 16 16 16 16 16 16

⎤
⎦

⎧⎨
⎩
l1 = l2 = log (2 +√

3), l3 = 1.7, σ1 = σ2 = σ3 = 0

4 distinct classes
(17.5)

17.5 Systolic Inequalities

In order to examine systolic quantities, the spectrum length of the closed geodesics
must be determined. This spectrum may be determined by means of the trace of the
matrix associated with the boundary map. As g is an element of group G, its length
is obtained by the expression (see [3]):

l(g) = 2 cosh−1

[
tr(g)

2

]
.

Consider two examples with the same word length, |g| = 1 (examples 17.6, 17.7),
but different choices of F-N parameters:

Example 17.3
⎡
⎣gi g1 g2 g3 ... g10 g11 g12

l(gi) 2.63392 2.63392 2.63392 ... 2.63392. 2.63392 2.63392.

⎤
⎦

⎧⎨
⎩
l1 = l2 = l3 = log (2 +√

3), σ1 = σ2 = σ3 = 0

1 distinct class, word length, |g| = 1.
(17.6)

Example 17.4
⎡
⎣gi g1 g2 g3 g4 g5 g6

l(gi) 3.4 2.63392 3.85452 1.60608 3.85452 2.63392

... g7 g8 g9 g10 g11 g12

... 3.4 2.63392 3.85452 1.60608 3.85452 2.63392

⎤
⎦ (17.7)

⎧⎨
⎩
l1 = l2 = log (2 +√

3), l3 = 1.7, σ1 = σ2 = σ3 = 0

4 distinct classes, word length, |g| = 1.

Consider two examples with the same Fenchel–Nielsen parameters but different
word lengths, |g| = 1 and |g| = 2 (examples 17.8, 17.9). Let us choose the regular
case, %1 = %2 = %3 = log (2 +√

3) and σ1 = σ2 = σ3 = 0.
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Example 17.5 If the word length, |g| = 1, then there is just one distinct element of
the geodesic length spectrum that is, %(g) � 2.63392.

gi %(gi) = li

g1 l1 = 2.63392...

... ...

g12 l12 = 2.63392...

(17.8)

Example 17.6 If the word length, |g| = 2, we have 9 distinct conjugacy classes,
then there are 9 distinct values for the length spectrum. Some values:

g1.gi �%(g1gi) g2.gi �%(g2gi) g3.gi �%(g3gi)

g1.g1 5.26783 g2.g1 4.12687 g3.g1 5.98645

g1.g2 4.12687 g2.g2 5.26783 g3.g2 6.51323

g1.g3 5.98645 g2.g3 6.51323 g3.g3 5.26783

g1.g4 4.12687 g2.g4 5.98645 g3.g4 4.12687

g1.g5 2.63392 g2.g5 4.58486 g3.g5 0

g1.g6 4.12687 g2.g6 7.82325 g3.g6 4.58486

g1.g7 0 g2.g7 4.12687 g3.g7 2.63392

g1.g8 4.12687 g2.g8 7.05099 g3.g8 6.51323

g1.g9 2.63392 g2.g9 6.51323 g3.g9 7.05099

g1.g10 4.12687 g2.g10 2.63392 g3.g10 4.12687

g1.g11 5.98645 g2.g11 4.58486 g3.g11 7.82325

g1.g12 4.12687 g2.g12 0 g3.g12 4.58486

(17.9)

(...)

Every simple closed curve in the plane satisfies the inequality

A

π
≤
(

L

2π

)2

where L is the length of the curve and A is the area of the region it bounds. This
is a classical isoperimetric inequality. In the 1950s, C. Loewer and P. Pu proved a
classical isosystolic inequality(this result was not published, see [4]).

Let RP
2 be the real projective plane endowed with an arbitrary metric, i.e., an

embedding in some R
n. Then

(
L

π

)2

≤ A

2π
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where A is its total area and L is the length of its shortest noncontractible loop.
Similarly, every metric torus T

2 satisfies the inequality

L2 ≤ 2√
3
A

In the 1970s, Marcel Berger began studying a new Riemannian invariant, which
came to be know as the systole.

The systole of a compact Riemann surface is defined as the minimal length of
a noncontractile curve, (by abuse language one employs the same word for the
curves carrying out this length). The geometry of systoles was studied by Schmutz
within the framework of hyperbolic geometry (see [17] and [18]) and Bavard (see
[1]) in the context of abelian manifolds. The notion of systole, in particular, led to
the characterization of arithmetic groups using the length spectrum. The study of
systoles also provided geometrical answers to the Schottky problem on the Jacobian
Riemann surface. This approach was developed by Buser and Sarnak in (to see [5])
Gromov in (to see [10]).

sysπ1(M,m) denoted as the shortest length of a noncontractible loop of M .

sysπ1(M,m) = min
|γ |=0,γ∈M

length(γ )

The systolic ratio SR of (M,m) is defined as

SR(M,m) = sysπ1(M,m)2

vol(M,m)
, (17.10)

and the optimal systolic ratio of M as

SR(M) = sup
m

SR(M,m), (17.11)

where m runs over the space of all metrics, (see [11]).
The optimal systolic ratio of a genus 2 surface is unknown, but it satisfies the

Loewner inequality SR(M) ≤ 2/
√

3, the best available upper bound for the optimal
systolic ratio of an arbitrary genus 2 surface, (see [12]). However, the latter ratio
is known for the Klein bottle, in addition to the torus, and also the real projective
plane. It should be noted that averaging a conformal metric by hyperelliptic involution
improves the systolic ratio of the metric. Systolic geometry has recently experienced a
period of great development, (see [10], [11]). Thus, a surface is Loewner ifSR(M) ≤
2/
√

3, and in (see [12]) it has recently been shown that the genus 2 surface is Loewner.
In the case of hyperbolic surfaces, a compact surface, is entirely determined by

a decomposition into a “pair of pants” and 6g − 6 real parameters, the F-N coor-
dinates. The regular domain choice corresponds, in geometric terms, to considing
the non-deformed surface M = H 2/G . With the explicit computation of geodesic
length, explicit inequalities are obtained that show the dependence of systoles on
F-N parameters. The variations of F-N coordinates modifies the metric structure of
the surface and this implies the alteration of systole length.
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Fig. 17.10 Systoles with Fenchel–Nielsen coordinates variation

Let M0 be a closed, nondeformed, surface with genus g = 2 and %0 =
max {%(γ (t))} the maximum of the shortest closed geodesic lengths onM0The
following result may be introduced:

Theorem 17.5 Let M be a closed surface with genus g = 2. Thus the length l(γ )
of every systole, γ , verifies the inequality l(γ ) ≤ %0 .

It is established that the regular case is a lower bound for systoles with F-N
coordinates variation (see Fig. 17.10). Each line represents systole behavior for each
F-N parameter: the blue line for %3; the magenta line for %3 and the green line for %1.
The fundamental domain that was constructed in the previous section is a dodecagon.
In order to maintain this structure in the present study, it was necessary to establish
the possible intervals of variation for each of the F-N coordinates.

Computation of the values of systoles lengths was carried out considering these
intervals.

Corollary L et M be a closed, non-deformed, surface with genus g = 2. Then

sysπ1(M ,m) ≤ log (2 +√
3)

for every systole, γ ∈ M.
However, our aim is a more global (not just two cases), study of this length

spectrum with F-N coordinates, in order to provide an understanding of how the
geodesic length spectrum behaves under deformation of the surface. Let us recall
that these coordinates constitute a system of global coordinates in Teichmüller space
T . If considering the variation of the lengths, in function of the coordinates of
F-N, also considering the maximum value as the minimum value of these lengths,
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Fig. 17.11 Upper and lower limits of shortest closed geodesic length

the maximum and the minimum, respectively, are obtained, with the regular case.
This regular case corresponds, in geometric terms, to surface M0 being a closed,
non-deformed, surface with genusg = 2.

Definition 17.7 Let M0be a closed, non-deformed, surface with genusg = 2 and
%0 = max {%(γ (t))} the maximum of the shortest closed geodesic length onM

It may be clearly observed (see Fig. 17.11), that it is in the regular case that the
upper/lower limits of the shortest closed geodesic length are reached. In the figure,
each of the F-N coordinates covers all the possible values (different limits for each
%i) so that the basic domain remains a dodecagon. Thus the following is obtained:

Theorem 17.6 LetM be a closed surface with genusg = 2. Thus the length l(γ )
of every systole,γ , verifies the inequality%(γ ) ≤ %0.

17.6 Final Considerations

In this chapter new insights have been provided into the study of the systoles length
spectrum under deformation of a compact Riemann surface endowed with a metric
of constant curvature −1. Rigorous detailed constructions have been achieved using
the techniques of symbolic dynamics. Systolic inequalities that determine the upper
limits of the systoles lengths spectrum have been established.
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