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Abstract. We characterize bent functions and plateaued functions in
terms of moments of their Walsh transforms. We introduce in any char-
acteristic the notion of directional difference and establish a link between
the fourth moment and that notion. We show that this link allows to iden-
tify bent elements of particular families. Notably, we characterize bent
functions of algebraic degree 3.

1 Introduction

Binary bent functions are usually called Boolean bent functions. These functions
were first introduced by Rothaus in [12]. Bent functions are closely related to
other combinatorial and algebraic objects such as Hadamard difference sets,
relative difference sets, planar functions and commutative semi-fields. Later,
this notion has been generalized to that of p-ary bent functions [11]. Several
studies on p-ary bent functions have been performed (a non exhaustive list is
[5,7–10,13]). Most of them concern constructions of bent functions or studies
of their properties. Another important family of binary functions is that of
plateaued functions [3]. Like the notion of bent function, the notion of plateaued
function can be generalized to p-ary plateaued functions (see [4] for instance).
In this paper, we establish characterizations of bent functions and plateaued
functions in terms of sums of powers of the Walsh transform (Theorems 1 and
3). We also introduce the notion of directional difference for p-ary functions,
generalizing the directional derivative of Boolean functions (Definition 1). We
then show that one can establish identities linking sums of fourth-powers of the
Walsh transform and directional derivatives of a p-ary function (Proposition 1).
We then deduce from our characterizations of all bent p-ary functions of alge-
braic degree 3 when p is odd (Theorem 4). We finally establish a link between
the bentness of all elements of a family of p-ary functions and counting zeros of
their directional differences (Theorem 6 and Corollary 2).

2 Notation and Preliminaries

Let p be a prime integer, n ≥ 1 be an integer. We will denote Fpn the finite
field of size pn and F

�
pn the set of nonzero elements of Fpn . Let ξp be a primitive
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pth-root of unity and set χp(a) = ξa
p . Let f be a function from Fpn to Fp . The

Walsh transform of f at w ∈ Fpn is defined as

χ̂f (w) =
∑

x∈Fpn

χp

(

f(x) − Trpn

p (wx)
)

.

Then f is bent if and only if
∣

∣Waf(w)
∣

∣

2 = pn for every w ∈ Fpn . It is said to be
regular bent if there exists f� : Fpn → Fp such that χ̂f (w) = χp(f�(w))p

n
2 for all

w ∈ Fpn . The function f� is called the dual function of f (in characteristic 2, all
bent functions are regular bent; when p is odd, regular bent functions can exist
only if p ≡ 1 mod 4). A function f : Fpn → Fp is said to be weakly regular bent
if, for all w ∈ Fpn , we have χ̂f (w) = εχp(f�(w))p

n
2 for some complex number

with
∣

∣ε
∣

∣ = 1 (in fact ε can only be ±1 or ±i). For every function f from Fpn to
Fp , we have

∑

w∈Fpn

χ̂f (w) = pnχp(f(0)). (1)

Set
∣

∣z|2 = zz̄ where z̄ stands for the conjugate of z. Then

∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

2 = p2n. (2)

In the sequel, we shall refer to (2) as the Parseval identity. If
∣

∣χ̂f (w)
∣

∣ ∈ {

0, p
n+s
2

}

for some nonnegative integer s then f is said to be s-plateaued. With this
definition, bent functions are 0-plateaued functions (in the case where s = 0,
∣

∣χ̂f (w)
∣

∣ ∈ {

0, p
n
2
}

is equivalent to
∣

∣χ̂f (w)
∣

∣ = p
n
2 ). The Parseval identity allows

to compute the multiplicity of each value of the Walsh transform (when p = 2,
a more precise statement has been shown in [2]).

Lemma 1. Let f : Fpn → Fp be s-plateaued. Then the absolute value of the
Walsh transform χ̂f takes pn−s times the value p

n+s
2 and pn − pn−s times the

value 0.

Proof. If N denotes the number of w ∈ Fpn such that
∣

∣χ̂f (w)
∣

∣ = p
n+s
2 , then

∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

2 = pn+sN . Now, according to Eq. (2), one must have that
pn+sN = p2n, that is, N = pn−s. The result follows.

A map F from Fpn to Fpn is said to be planar if and only if the function from
Fpn to Fpn induced by the polynomial F (X + a) − F (x) − F (a) is bijective for
every a ∈ F

�
pn . We finally introduce the directional difference.

Definition 1. Let f : Fpn → Fp . The directional difference of f at a ∈ Fpn is
the map Daf from Fpn to Fp defined by

∀x ∈ Fpn , Daf(x) = f(x + a) − f(x).
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3 New Characterizations of Plateaued Functions

Let p be a positive prime integer. For any nonnegative integer k, we set

Sk(f) =
∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

2k and Tk(f) =
Sk+1(f)
Sk(f)

with the convention regarding k = 0 that S0(f) = pn (in this case, T0(f) =
S1(f)
S0(f)

= pn). Let us make a preliminary but important remark : for every integer
A and every positive integer k, it holds

∑

w∈Fpn

(

∣

∣χ̂f (w)
∣

∣

2 − A
)2 ∣

∣χ̂f (w)
∣

∣

2(k−1)

= Sk+1(f) − 2ASk(f) + A2Sk−1(f). (3)

We are now going to deduce from (3) a characterization of plateaued functions
in terms of moments of the Walsh transform (in Sect. 4, we shall specialize our
characterization to bent functions, see Theorem 3).

Theorem 1. Let n and k be two positive integers. Let f be a function from Fpn

to Fp . Then, the two following assertions are equivalent.

1. f is plateaued, that is, there exists a nonnegative integer s such that f is
s-plateaued.

2. Tk+1(f) = Tk(f).

Proof.

1. Suppose that f is s-plateaued for some nonnegative integer s, that is,
∣

∣χ̂f (w)
∣

∣ ∈ {0, p
n+s
2 }. Then, by Lemma 1,

Sk(f) =
∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

2k = pn−s × pk(n+s) = p(k+1)n+(k−1)s

Sk+1(f) = pn−s × p(k+1)(n+s) = p(k+2)n+ks

Sk+2(f) = pn−s × p(k+2)(n+s) = p(k+3)n+(k+1)s.

Therefore

Tk(f) =
p(k+2)n+ks

p(k+1)n+(k−1)s
= pn+s

and

Tk+1(f) =
p(k+3)n+(k+1)s

p(k+2)n+ks
= pn+s = Tk(f).

2. Suppose Tk+1(f) = Tk(f). According to (3)
∑

w∈Fpn

(

∣

∣χ̂f (w)
∣

∣

2 − Tk(f)
)2 ∣

∣χ̂f (w)
∣

∣

2k

= Sk+2(f) − 2Tk(f)Sk+1(f) + T 2
k (f)Sk(f)

= Sk+1(f) (Tk+1(f) − 2Tk(f) + Tk(f)) = 0
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proving that
∣

∣χ̂f (w)
∣

∣ ∈ {0,
√

Tk(f)} for every w ∈ Fpn . Thus,
∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

2 = Tk(f)#{w ∈ Fpn | ∣

∣χ̂f (w)
∣

∣ =
√

Tk(f)}.

Now, the Parseval identity (2) states that
∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

2 = p2n.

Therefore Tk(f) divides p2n proving that Tk(f) = pρ for some positive integer
ρ. Now, one has #{w ∈ Fpn

∣

∣

∣

∣χ̂f (w)
∣

∣ =
√

Tk(f)} = p2n−ρ ≤ pn which implies
that ρ ≥ n, that is, ρ = n + s for some nonnegative integer s.

Remark 1. Specializing Theorem 1 to the case where k = 1, we get that f is
plateaued if and only if T2(f) = T1(f), that is

S3(f)S1(f) − S2
2(f) = p2nS3(f) − S2

2(f) = 0.

Remark 2. In the proof, we have shown more than the sole equivalence between
(1) and (2). Indeed, we have shown that if (2) holds then f is s-plateaued and
∣

∣χ̂f (w)
∣

∣ ∈ {0,
√

Tk(f)}.

In Theorem 1, we have considered the ratio of two consecutive sums Sk(f). In
fact, one can get a more general result than Theorem 1. Indeed, for every positive
integer k and every nonnegative integer l, we have

∑

w∈Fpn

(

∣

∣χ̂f (w)
∣

∣

2l − A
)2 ∣

∣χ̂f (w)
∣

∣

2(k−1) (4)

= Sk+2l−1(f) − 2ASk+l−1(f) + A2Sk−1(f).

Then, one can make the same kind of proof as that of Theorem 1 but with (4)
in place of (3) (the proof being very similar, we omit it).

Theorem 2. Let n, k and l be positive integers and f : Fpn → Fp . Then, the
two following assertions are equivalent

1. f is plateaued, that is, there exists a nonnegative integer s such that f is
s-plateaued.

2. Sk+2l(f)
Sk+l(f)

= Sk+l(f)
Sk(f)

.

4 The Case of Bent Functions

In this section, we shall specialize our study to bent functions and suppose that
p is a positive prime integer. In the whole section, n is a positive integer. In
Theorem 1, we have excluded the possibility to for the integer k to be equal to 0
because it does concern both plateaued functions and bent functions. In fact, if
we aim to characterize only bent functions, we are going to show that it follows
from comparing T1(f) = S2(f)

S1(f)
= S2(f)

p2n to T0(f) = S1(f)
S0(f)

= pn.
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Theorem 3. Let n be a positive integer. Let f be a function from Fpn to Fp .
Then

S2(f) =
∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

4 ≥ p3n

and f is bent if and only if S2(f) = p3n.

Proof. If we apply (3) with A = pn at k = 1, we get that

∑

w∈Fpn

(

∣

∣χ̂f (w)
∣

∣

2 − pn
)2

= S2(f) − 2pnS1(f) + p2nS0(f).

Now, S0(f) = pn and S1(f) = p2n (Parseval identity, Eq. 2). Hence

∑

w∈Fpn

(

∣

∣χ̂f (w)
∣

∣

2 − pn
)2

= S2(f) − p3n. (5)

Since
(

∣

∣χ̂f (w)
∣

∣

2 − pn
)2

≥ 0 for every w ∈ Fpn , it implies that S2(f) ≥ p3n.

Now, f is bent if and only if
∣

∣χ̂f (w)
∣

∣

2 = pn for every w ∈ Fpn . Therefore, f is
bent if and only if the left-hand side of Eq. (5) vanishes, that is, if and only if
S2(f) = p3n.

In characteristic 2, identities have been established involving the Walsh trans-
form of a Boolean function and its directional derivatives (see [1,3]). For instance,
for every Boolean function f , S2(f) and the second-order derivatives of f have
been linked. We now show that one can link S2(f) and the directional difference
defined in Definition 1.

Proposition 1. Let n be a positive integer. Let f be a function from Fpn to Fp .
Then

∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

4 = pn
∑

(a,b,x)∈F
3
pn

χp(DaDbf(x)). (6)

Proof. Since
∣

∣z|4 = z2z2 where z stands for the conjugate of z and ξp = ξ−1
p , we

have
∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

4

=
∑

w∈Fpn

∑

(x1,x2,x3,x4)∈F
4
pn

χp

(

f(x1) − f(x2) + f(x3) − f(x4)

−Trpn

p (w(x1 − x2 + x3 − x4))
)

.

Now,

∑

w∈Fpn

χp

( − Trpn

p (w(x1 − x2 + x3 − x4))
)

=
{

pn if x1 − x2 + x3 − x4 = 0
0 otherwise.
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Hence,
∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

4 = pn
∑

(x1,x2,x3)∈F
3
pn

χp

(

f(x1) − f(x2) + f(x3) − f(x1 − x2 + x3)
)

.

Now note that

Dx2−x1Dx3−x2f(x1) = f(x1) + f(x3) − f(x2) − f(x1 + x3 − x2).

Then, since (x1, x2, x3) �→ (x1, x2 − x1, x3 − x2) is a permutation of F3
pn , we get

∑

w∈Fpn

∣

∣χ̂f (w)
∣

∣

4 = pn
∑

(a,b,x)∈F
3
pn

χp

(

DaDbf(x)
)

.

Remark 3. In odd characteristic p, when f is a quadratic form over Fpn , that is,
f(x) = φ(x, x) for some symmetric bilinear map φ from Fpn × Fpn to Fpn , then,
f(x+y) = f(x)+f(y)+2φ(x, y). Let us now compute the directional differences
of f at (a, b) ∈ Fpn :

Dbf(x) = f(x + b) − f(x) = f(b) + 2φ(b, x)
DaDbf(x) = 2φ(b, x + a) − 2φ(b, x) = 2φ(b, a).

According to Proposition 1, one has

S2(f) = pn
∑

(a,b,x)∈F
3
pn

χp(2φ(b, a))

= p2n
∑

b∈Fpn

∑

a∈Fpn

χp(2φ(b, a)).

Now, classical results about character sums over finite abelian groups say that

∑

a∈Fpn

χp(2φ(b, a)) =
{

pn if φ(b, •) = 0
0 otherwise.

Hence,
S2(f) = p3n#rad(φ)

where rad(φ) stands for the radical of φ : rad(φ) = {b ∈ Fpn | φ(b, •) = 0}. One
can then conclude thanks to Theorem 3 that f is bent if and only if rad(φ) = {0}.

Suppose that p is odd and consider now functions of the form

f(x) = Trpn

p

⎛

⎜

⎜

⎝

n−1
∑

i,j,k=0
i�=j,j �=k,k �=i

aijkxpi+pj+pk

+
n−1
∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟

⎟

⎠

. (7)
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We are going to characterize bent functions of that form thanks to Theorem 3
and Proposition 1. But before, let us note that we can rewrite the expression of
f as follows

f(x) = Trpn

p

⎛

⎜

⎜

⎝

n−1
∑

i,j,k=0
i�=j,j �=k,k �=i

aijkxpi+pj+pk

⎞

⎟

⎟

⎠

+ Trpn

p

⎛

⎜

⎜

⎝

n−1
∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟

⎟

⎠

= Trpn

p

⎛

⎜

⎜

⎝

n−1
∑

i,j,k=0
i�=j,j �=k,k �=i

ap−i

ijk x1+pj−i+pk−i

⎞

⎟

⎟

⎠

+ Trpn

p

⎛

⎜

⎜

⎝

n−1
∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟

⎟

⎠

= Trpn

p

⎛

⎜

⎜

⎝

x

n−1
∑

i,j,k=0
i�=j,j �=k,k �=i

ap−i

ijk xpj−i+pk−i

⎞

⎟

⎟

⎠

+ Trpn

p

⎛

⎜

⎜

⎝

n−1
∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟

⎟

⎠

.

In the second equality, we have used the fact that Trpn

p is invariant under the
Frobenius map x �→ xp. Set

ψ(x, y) =
1
2

n−1
∑

i,j,k=0
i�=j,j �=k,k �=i

ap−i

ijk (xpj−i

ypk−i

+ xpk−i

ypj−i

)

φ(x, y) =
1
2
Trpn

p

⎛

⎜

⎜

⎝

n−1
∑

i,j=0
i�=j

bij(xpi

ypj

+ xpj

ypi

)

⎞

⎟

⎟

⎠

,

Therefore, a function f of the form (7) can be written

f(x) = Trpn

p (xψ(x, x)) + φ(x, x) (8)

where ψ : Fpn → Fpn is a symmetric bilinear map and φ : Fpn → Fpn is a
symmetric bilinear form. We can now state our characterization.

Theorem 4. Suppose that p is odd. Let φ be a symmetric bilinear form over
Fpn × Fpn and ψ be a symmetric bilinear map from Fpn × Fpn to Fpn . Define
f : Fpn → Fp by f(x) = Trpn

p (xψ(x, x)) + φ(x, x)) for x ∈ Fpn . For (a, b) ∈ Fpn ,
set �a,b(x) = Trpn

p (ψ(a, b)x + aψ(b, x) + bψ(a, x)). For every a ∈ Fpn , define
the vector space Ka = {b ∈ Fpn | �a,b = 0}. Then f is bent if and only if
{a ∈ Fpn , φ(a, •)

∣

∣

Ka
= 0} = {0}.

Proof. According to Theorem 3 and Proposition 1, f is bent if and only if
∑

(a,b,x)∈F
3
pn

χp(DbDaf(x)) = p2n. (9)
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Now, for (a, b) ∈ F
2
pn ,

Daf(x) = Trpn

p ((x + a)ψ(a + x, a + x) − xψ(x, x))
+φ(x + a, x + a) − φ(x, x)

= Trpn

p

(

aψ(x, x) + 2xψ(a, x) + 2aψ(a, x) + xψ(a, a) + aψ(a, a)
)

+2φ(a, x) + φ(a, a).
DbDaf(x) = Trpn

p

(

2aψ(b, x) + aψ(b, b) + 2bψ(a, x) + 2xψ(a, b) + 2bψ(a, b)

+2aψ(a, b) + bψ(a, a)
)

+ 2φ(a, b))

= 2�a,b(x) + Trpn

p (aψ(b, b) + bψ(a, a) + 2(a + b)ψ(a, b)) + 2φ(a, b).

Note that, �a,b is a linear map from Fpn to Fpn . Furthermore, for any a ∈ Fpn

and b ∈ Ka, one has

�a,b(a) = Trpn

p (ψ(a, b)a + aψ(b, a) + bψ(a, a)) = 0,

�a,b(b) = Trpn

p (ψ(a, b)b + aψ(b, b) + bψ(a, b)) = 0

which implies, summing those two equations, that

Trpn

p (aψ(b, b) + bψ(a, a) + 2(a + b)ψ(a, b)) = 0.

Hence,
∑

(a,b,x)∈F
3
pn

χp(DbDaf(x)) =
∑

(a,b)∈F
3
pn

χp(2φ(a, b))
∑

x∈Fpn

χp(2�a,b(x))

= pn
∑

a∈Fpn

∑

b∈Ka

χp(2φ(a, b)).

Now, for every a ∈ Fpn , the map b ∈ Ka �→ φ(a, b) is linear over Ka. Therefore
∑

b∈Ka

χp(2φ(a, b)) =
{

#Ka if φ(a, •)
∣

∣

Ka
= 0

0 otherwise

Hence, according to (9), f is bent if and only if
∑

(a,b,x)∈F
3
pn

χp(DaDbf(x)) = pn
∑

a∈Fpn , φ(a,•)
∣

∣

Ka
=0

#Ka = p2n,

that is, if and only if,
∑

a∈Fpn , φ(a,•)
∣

∣

Ka
=0

#Ka = pn.

Now, if a = 0, then K0 = Fpn because �0,b = 0 for every b ∈ Fpn . Therefore, f is
bent if and only if

∑

a∈F
�
pn , φ(a,•)

∣

∣

Ka
=0

#Ka = 0

which is equivalent to #Ka = 0 for every a ∈ F
�
pn such that φ(a, •)

∣

∣

Ka
= 0.
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We now turn our attention towards maps from Fpn to Fpm . Let us extend
the notion of bentness to those maps as follows.

Definition 2. Let F be a Boolean map from Fpn to Fpm . For every λ ∈ F
�
pn ,

define fλ : Fpn → Fp as : fλ(x) = Trpm

p (λF (x)) for every x ∈ Fpn . Then F is
said to be bent if and only if fλ is bent for every λ ∈ F

�
pn .

Theorem 3 implies

Theorem 5. Let F be a map from Fpn to Fpm . Then, F is bent if and only if
∑

λ∈F
�
pm

S2(fλ) = p3n(pm − 1). (10)

Proof. According to Theorem 3, for every λ ∈ F
�
pm , fλ is bent if and only if

S2(fλ) = p3n which gives (10). Conversely, suppose that (10) holds. Theorem 3
states that S2(fλ) ≥ p3n for every λ ∈ F

�
pm . Thus, one has necessarily, for every

λ ∈ F
�
pn , S2(fλ) = p3n implying that fλ is bent for every λ ∈ Fpn , proving that

F is bent.

We now show that one can compute the left-hand side of (10) by counting the
zeros of the second-order directional differences.

Proposition 2. Let F be a Boolean map from Fpn to Fpm . Then
∑

λ∈F
�
pm

S2(fλ) = pn+mN(F ) − p4n

where N(F ) is the number of elements of {(a, b, x) ∈ F
3
pn | DaDbF (x) = 0}.

Proof. According to Proposition 1, we have
∑

λ∈F
�
pm

S2(fλ) = pn
∑

λ∈F
�
pm

∑

a,b,x∈Fpn

χp

(

DaDbfλ(x)
)

.

Next, DaDbfλ = Trpm

p (λDaDbF ). Therefore
∑

λ∈F
�
pm

S2(fλ) = pn
∑

a,b,x∈Fpn

∑

λ∈F
�
pm

χp

(

Trpm

p (λDaDbF (x))
)

.

That is
∑

λ∈F
�
pm

S2(fλ) = pn
∑

a,b,x∈Fpn

(
∑

λ∈Fpm

χp

(

Trpm

p (λDaDbF (x))
)

)

− p4n.

We finally get the result from

∑

λ∈Fpm

χp

(

Trpm

p (λDaDbF (x))
)

=
{

0 if DaDbF (x) 	= 0
pm if DaDbF (x) = 0
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We then deduce from Theorem 3 a characterization of bentness in terms of zeros
of the second-order directional differences.

Theorem 6. Let F be a map from Fpn to Fpm . Then F is bent if and only if
N(F ) = p3n−m + p2n − p2n−m.

Proof. F is bent if and only if all the functions fλ, λ ∈ F
�
pn , are bent. Therefore,

according to Proposition 3, if F is bent then
∑

λ∈F
�
pm

S2(fλ) = (pm − 1)p3n.

Now, according to Proposition 2, one has
∑

λ∈F
�
pm

S2(fλ) = pn+mN(F ) − p4n.

We deduce from the two above equalities that

N(F ) = p−n−m(p4n + (pm − 1)p3n)
= p3n−m + p2n − p2n−m.

Conversely, suppose that N(F ) = p3n−m + p2n − p2n−m. Then
∑

λ∈F
�
pm

S2(fλ) = pn+mN(F ) − p4n = p4n + p3n+m − p3n − p4n = p3n(pm − 1).

We then conclude by Theorem 5 that F is bent.

Note that when a = 0 or b = 0, DaDbF is trivially equal to 0. We state below a
slightly different version of Theorem 6 to exclude those trivial cases to charac-
terize the bentness of F .

Corollary 1. Let F be a map from Fpn to Fpm . Then F is bent if and only
if N�(F ) = pn(pn − 1)(pn−m − 1) where N�(F ) is the number of elements of
{(a, b, x) ∈ F

�
pn × F

�
pn × Fpn | DaDbF (x) = 0}.

Proof. It follows from Proposition 2 by noting that {(a, b, x) ∈ F
3
pn | DaDbF (x)=

0} contains the set {(a, 0, x), a, x ∈ Fpn , } ∪ {(0, a, x), a, x ∈ Fpn} whose cardi-
nality equals pn(1 + 2(pn − 1)) = 2p2n − pn. Hence, the cardinality of N�(F )
equals p3n−m + p2n − p2n−m − (2p2n − pn) = p3n−m − p2n−m + pn − p2n =
p2n−m(pn − 1) + pn(1 − pn) = pn(pn − 1)(pn−m − 1).

In the particular case of planar functions, Theorem 1 rewrites as follows

Corollary 2. Let F : Fpn → Fpn . Then, F is planar if and only if, DaDbF does
not vanish on Fpn for every (a, b) ∈ F

�
pn × F

�
pn .

Proof. F is planar if and only if F is bent ([6, Lemma 1.1]). Hence, according
to Corollary 1, F is planar if and only if N�(F ) = 0 proving the result.
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