Characterizations of Plateaued and Bent Functions in Characteristic *p*

Sihem Mesnager^{1,2(\boxtimes)}

¹ Department of Mathematics, University of Paris VIII, Saint-Denis, France ² LAGA, UMR 7539, CNRS, University of Paris XIII, Villetaneuse, France \sim \sim \sim \sim

Abstract. We characterize bent functions and plateaued functions in terms of moments of their Walsh transforms. We introduce in any characteristic the notion of directional difference and establish a link between the fourth moment and that notion. We show that this link allows to identify bent elements of particular families. Notably, we characterize bent functions of algebraic degree 3.

1 Introduction

Binary bent functions are usually called Boolean bent functions. These functions were first introduced by Rothaus in [\[12\]](#page-10-0). Bent functions are closely related to other combinatorial and algebraic objects such as Hadamard difference sets, relative difference sets, planar functions and commutative semi-fields. Later, this notion has been generalized to that of p -ary bent functions [\[11](#page-10-1)]. Several studies on p -ary bent functions have been performed (a non exhaustive list is $[5,7–10,13]$ $[5,7–10,13]$ $[5,7–10,13]$ $[5,7–10,13]$ $[5,7–10,13]$. Most of them concern constructions of bent functions or studies of their properties. Another important family of binary functions is that of plateaued functions [\[3](#page-10-6)]. Like the notion of bent function, the notion of plateaued function can be generalized to p -ary plateaued functions (see [\[4\]](#page-10-7) for instance). In this paper, we establish characterizations of bent functions and plateaued functions in terms of sums of powers of the Walsh transform (Theorems [1](#page-2-0) and [3\)](#page-3-0). We also introduce the notion of directional difference for p -ary functions, generalizing the directional derivative of Boolean functions (Definition [1\)](#page-1-0). We then show that one can establish identities linking sums of fourth-powers of the Walsh transform and directional derivatives of a p -ary function (Proposition [1\)](#page-4-0). We then deduce from our characterizations of all bent p-ary functions of algebraic degree 3 when p is odd (Theorem [4\)](#page-6-0). We finally establish a link between the bentness of all elements of a family of p -ary functions and counting zeros of their directional differences (Theorem [6](#page-9-0) and Corollary [2\)](#page-9-1).

2 Notation and Preliminaries

Let p be a prime integer, $n \geq 1$ be an integer. We will denote \mathbb{F}_{p^n} the finite field of size p^n and $\mathbb{F}_{p^n}^*$ the set of nonzero elements of \mathbb{F}_{p^n} . Let ξ_p be a primitive pth-root of unity and set $\chi_p(a) = \xi_p^a$. Let f be a function from \mathbb{F}_{p^n} to \mathbb{F}_p . The
Walsh transform of f at $w \in \mathbb{F}_{p^n}$ is defined as
 $\widehat{\chi}_f(w) = \sum \chi_p(f(x) - Tr_p^{p^n}(wx)).$ Walsh transform of f at $w \in \mathbb{F}_{p^n}$ is defined as
 $\widehat{\chi_f}(w) = \sum \chi_p(f(x))$

$$
\widehat{\chi_f}(w) = \sum_{x \in \mathbb{F}_{p^n}} \chi_p \Big(f(x) - Tr_p^{p^n}(wx) \Big).
$$

 $\widehat{\chi}_f(w) = \sum_{x \in \mathbb{F}_{p^n}} \chi_p\Big(f(x) - Tr_p^{p^n}(wx)\Big).$
Then f is bent if and only if $|Waf(w)|^2 = p^n$ for every $w \in \mathbb{F}_{p^n}$. It is said to be *regular bent* if there exists $f^* : \mathbb{F}_{p^n} \to \mathbb{F}_p$ such that $\widehat{\chi_f}(w) = \chi_p(f^*(w))p^{\frac{n}{2}}$ for all $\begin{aligned} \n\mathbf{f} \left| Waf(w) \right|^2 &= p^n \text{ for even} \\ \n\mathbf{f} \cdot \mathbf{F}_{p^n} &\to \mathbb{F}_p \text{ such that } \widehat{\chi_f} \n\end{aligned}$ $w \in \mathbb{F}_{p^n}$. The function f^* is called the *dual function* of f (in characteristic 2, all bent functions are regular bent; when p is odd, regular bent functions can exist only if $p \equiv 1 \mod 4$. A function $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is said to be *weakly regular bent* bent functions are regular bent
bent functions are regular bent
only if $p \equiv 1 \mod 4$. A function
if, for all $w \in \mathbb{F}_{p^n}$, we have $\widehat{\chi}_f$
with $|\epsilon| = 1$ (in fact ϵ can only $\widehat{\chi}_f(w) = \epsilon \chi_p(f^{\star(w)}) p^{\frac{n}{2}}$ for some complex number ϵ = 1 (in fact ϵ can only be ±1 or ±*i*). For every function f from \mathbb{F}_{p^n} to
 ϵ have
 $\sum \widehat{\chi_f}(w) = p^n \chi_p(f(0)).$ (1) \mathbb{F}_n , we have

$$
\sum_{w \in \mathbb{F}_{p^n}} \widehat{\chi_f}(w) = p^n \chi_p(f(0)). \tag{1}
$$

Set $|z|^2 = z\overline{z}$ where \overline{z} stands for the conjugate of z. Then

$$
\sum |\widehat{\chi_f}(w)|^2 = p^{2n}. \tag{2}
$$

$$
\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^2 = p^{2n}.
$$
\nIn the sequel, we shall refer to (2) as the *Parseval identity*. If $|\widehat{\chi_f}(w)| \in \{0, p^{\frac{n+s}{2}}\}$.

 $\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^2 = p^{2n}.$ (2)
In the sequel, we shall refer to (2) as the *Parseval identity*. If $|\widehat{\chi_f}(w)| \in \{0, p^{\frac{n+s}{2}}\}$
for some nonnegative integer s then f is said to be s-plateaued. With this
definition for some nonnegative integer s then f is said to be s-plateaued. With this definition, bent functions are 0-plateaued functions (in the case where $s = 0$, for some nonneg
definition, bent f
 $\widehat{\chi}_f(w) \in \{0, p^{\frac{n}{2}}\}$ the *T* also at dentity. If $|\chi_f(\omega)| \in \{0, p^2\}$

en *f* is said to be *s*-plateaued. With this

teaued functions (in the case where $s = 0$,
 $\widehat{\chi}_f(w)| = p^{\frac{n}{2}}$). The Parseval identity allows to compute the multiplicity of each value of the Walsh transform (when $p = 2$, a more precise statement has been shown in [\[2\]](#page-10-8)).

Lemma 1. Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ be s-plateaued. Then the absolute value of the **Lemma 1.** Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ be *s*-plateaued. Then the absolute value of the *Walsh transform* $\widehat{\chi}_f$ takes p^{n-s} times the value $p^{\frac{n+s}{2}}$ and $p^n - p^{n-s}$ times the value 0.
Proof. If N denotes the numb *value* 0*.* $\int p^n - p^{n-s} \ times \ the \ \left| \sqrt{\chi_{f}(w)} \right| \ = \ p^{\frac{n+s}{2}}, \ then$ $\frac{1}{2}$

 $\sum_{w\in \mathbb{F}_{p^n}}$ *N* denotes the number of $w \in \mathbb{F}_{p^n}$ such that $|\widehat{\chi_f}(w)| = p^{\frac{n+s}{2}}$, then $\widehat{\chi_f}(w)|^2 = p^{n+s}N$. Now, according to Eq. [\(2\)](#page-1-1), one must have that $p^{n+s}N = p^{2n}$, that is, $N = p^{n-s}$. The result follows.

A map F from \mathbb{F}_{p^n} to \mathbb{F}_{p^n} is said to be planar if and only if the function from \mathbb{F}_{p^n} to \mathbb{F}_{p^n} induced by the polynomial $F(X + a) - F(x) - F(a)$ is bijective for every $a \in \mathbb{F}_{p^n}^{\star}$. We finally introduce the directional difference.

Definition 1. Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$. The directional difference of f at $a \in \mathbb{F}_{p^n}$ is *the map* $D_a f$ *from* \mathbb{F}_{p^n} *to* \mathbb{F}_p *defined by*

$$
\forall x \in \mathbb{F}_{p^n}, \quad D_a f(x) = f(x+a) - f(x).
$$

3 New Characterizations of Plateaued Functions

Let p be a positive prime integer. For any nonnegative integer k , we set

The difference between the number of parameters, we have
$$
S_k(f) = \sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^{2k}
$$
 and $T_k(f) = \frac{S_{k+1}(f)}{S_k(f)}$.

with the convention regarding $k = 0$ that $S_0(f) = p^n$ (in this case, $T_0(f) =$ $\frac{S_1(f)}{S_0(f)} = p^n$). Let us make a preliminary but important remark : for every integer $S_0(f) - P$). Let us make a premiintary
 A and every positive integer *k*, it holds
 $\sum \left(\left| \widehat{\chi}_f(w) \right|^2 - A \right)$ but in
 $\int_0^2 |\widehat{\chi_f}|^2$ \mathbf{r}

$$
\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - A \right)^2 \left| \widehat{\chi_f}(w) \right|^{2(k-1)} \n= S_{k+1}(f) - 2AS_k(f) + A^2 S_{k-1}(f).
$$
\n(3)

We are now going to deduce from (3) a characterization of plateaued functions in terms of moments of the Walsh transform (in Sect. [4,](#page-3-1) we shall specialize our characterization to bent functions, see Theorem [3\)](#page-3-0).

Theorem 1. Let n and k be two positive integers. Let f be a function from \mathbb{F}_{p^n} *to* \mathbb{F}_n *. Then, the two following assertions are equivalent.*

- *1.* f *is plateaued, that is, there exists a nonnegative integer* s *such that* f *is* s*-plateaued.*
- 2. $T_{k+1}(f) = T_k(f)$.

Proof.

1. Suppose that f is s-plateaued for some nonnegative integer s , that is, by suppose that f is *s*-plateaued for sor $\widehat{\chi_f}(w) \in \{0, p^{\frac{n+s}{2}}\}$. Then, by Lemma [1,](#page-1-2) that f is s-plated
{0, $p^{\frac{n+s}{2}}$ }. Then, 1
 $S_k(f) = \sum |\widehat{\chi_f}$

$$
S_k(f) = \sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^{2k} = p^{n-s} \times p^{k(n+s)} = p^{(k+1)n + (k-1)s}
$$

$$
S_{k+1}(f) = p^{n-s} \times p^{(k+1)(n+s)} = p^{(k+2)n+ks}
$$

$$
S_{k+2}(f) = p^{n-s} \times p^{(k+2)(n+s)} = p^{(k+3)n + (k+1)s}.
$$

Therefore

$$
T_k(f) = \frac{p^{(k+2)n+ks}}{p^{(k+1)n+(k-1)s}} = p^{n+s}
$$

and

$$
T_{k+1}(f) = \frac{p^{(k+3)n + (k+1)s}}{p^{(k+2)n + ks}} = p^{n+s} = T_k(f).
$$

2. Suppose $T_{k+1}(f) = T_k(f)$. According to [\(3\)](#page-2-1)
 $\sum \left(\left| \widehat{\chi_f}(w) \right|^2 - T_k(f) \right)^2$

$$
f(x) = T_k(f)
$$
. According to (3)
\n
$$
\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - T_k(f) \right)^2 \left| \widehat{\chi_f}(w) \right|^{2k}
$$
\n
$$
= S_{k+2}(f) - 2T_k(f)S_{k+1}(f) + T_k^2(f)S_k(f)
$$
\n
$$
= S_{k+1}(f) (T_{k+1}(f) - 2T_k(f) + T_k(f)) = 0
$$

Characterizations of Plateaued and Bent Functions in Charact
proving that $|\widehat{\chi_f}(w)| \in \{0, \sqrt{T_k(f)}\}$ for every $w \in \mathbb{F}_{p^n}$. Thus,

at
$$
|\widehat{\chi_f}(w)| \in \{0, \sqrt{T_k(f)}\}\
$$
for every $w \in \mathbb{F}_{p^n}$. Thus,

$$
\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^2 = T_k(f) \# \{w \in \mathbb{F}_{p^n} \mid |\widehat{\chi_f}(w)| = \sqrt{T_k(f)}\}.
$$

Now, the Parseval identity [\(2\)](#page-1-1) states that

(2) states that
\n
$$
\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^2 = p^{2n}.
$$

Therefore $T_k(f)$ divides p^{2n} proving that $T_k(f) = p^{\rho}$ for some positive integer ρ . Now, one has $\#\{w \in \mathbb{F}_{p^n} \mid$ \mathbb{E}_{p^n}
roving
 $\widehat{\chi_f}(w)$ $\begin{aligned} \n\text{H}(t, t, t) &= p^{\rho} \text{ for some positive integer} \\ \n|\rho| &= \sqrt{T_k(f)} \text{ for some positive integer} \\ \n|\rho| &= p^{2n-\rho} \leq p^n \text{ which implies} \n\end{aligned}$ that $\rho \geq n$, that is, $\rho = n + s$ for some nonnegative integer s.

Remark [1](#page-2-0). Specializing Theorem 1 to the case where $k = 1$, we get that f is plateaued if and only if $T_2(f) = T_1(f)$, that is

$$
S_3(f)S_1(f) - S_2^2(f) = p^{2n}S_3(f) - S_2^2(f) = 0.
$$

Remark 2. In the proof, we have shown more than the sole equivalence between (1) and (2) . Indeed, we have shown that if (2) holds then f is s-plateaued and Remark 2. In the proof

1) and (2). Indeed, we
 $\widehat{\chi_f}(w) \in \{0, \sqrt{T_k(f)}\}.$

In Theorem [1,](#page-2-0) we have considered the ratio of two consecutive sums $S_k(f)$. In fact, one can get a more general result than Theorem 1. Indeed, for every positive fact, integer k and every nonnegative integer l, we have
 $\sum \left(|\widehat{\chi_f}(w)|^{2l} - A \right)^2 |\widehat{\chi_f}(w)|^{2(k)}$ than Theo

$$
\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^{2l} - A \right)^2 \left| \widehat{\chi_f}(w) \right|^{2(k-1)} \tag{4}
$$
\n
$$
= S_{k+2l-1}(f) - 2AS_{k+l-1}(f) + A^2 S_{k-1}(f).
$$

Then, one can make the same kind of proof as that of Theorem [1](#page-2-0) but with [\(4\)](#page-3-2) in place of [\(3\)](#page-2-1) (the proof being very similar, we omit it).

Theorem 2. Let n, k and l be positive integers and $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$. Then, the *two following assertions are equivalent*

1. f *is plateaued, that is, there exists a nonnegative integer* s *such that* f *is* s*-plateaued.*

2.
$$
\frac{S_{k+2l}(f)}{S_{k+l}(f)} = \frac{S_{k+l}(f)}{S_k(f)}.
$$

4 The Case of Bent Functions

In this section, we shall specialize our study to bent functions and suppose that p is a positive prime integer. In the whole section, n is a positive integer. In Theorem [1,](#page-2-0) we have excluded the possibility to for the integer k to be equal to 0 because it does concern both plateaued functions and bent functions. In fact, if we aim to characterize only bent functions, we are going to show that it follows from comparing $T_1(f) = \frac{S_2(f)}{S_1(f)} = \frac{S_2(f)}{p^{2n}}$ to $T_0(f) = \frac{S_1(f)}{S_0(f)} = p^n$.

Theorem 3. Let n be a positive integer. Let f be a function from \mathbb{F}_{p^n} to \mathbb{F}_p . *Then* positive integer. Let $S_2(f) = \sum |\widehat{\chi_f}(w)|$

$$
S_2(f) = \sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^4 \ge p^{3n}
$$

and f *is bent if and only if* $S_2(f) = p^{3n}$ *.*

Proof. If we apply (3) with
$$
A = p^n
$$
 at $k = 1$, we get that

$$
\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - p^n \right)^2 = S_2(f) - 2p^n S_1(f) + p^{2n} S_0(f).
$$

Now, $S_0(f) = p^n$ and $S_1(f) = p^{2n}$ (Parseval identity, Eq. [2\)](#page-1-1). Hence
 $\sum \left(\left| \widehat{\chi}_f(w) \right|^2 - p^n \right)^2 = S_2(f) - p^{3n}$.

$$
\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - p^n \right)^2 = S_2(f) - p^{3n}.
$$
\nSince $\left(\left| \widehat{\chi_f}(w) \right|^2 - p^n \right)^2 \geq 0$ for every $w \in \mathbb{F}_{p^n}$, it implies that $S_2(f) \geq p^{3n}$.

Since $\left(\left| \widehat{\chi_f}(w) \right|^2 - p^n \right)^2 \ge 0$ for ever
Now, f is bent if and only if $\left| \widehat{\chi_f}(w) \right|$ $\left(\frac{\partial f(w)}{\partial t}\right)^2 = p^n$ for every $w \in \mathbb{F}_{p^n}$. Therefore, f is bent if and only if the left-hand side of Eq. [\(5\)](#page-4-1) vanishes, that is, if and only if $S_2(f) = p^{3n}$.

In characteristic 2, identities have been established involving the Walsh transform of a Boolean function and its directional derivatives (see $[1,3]$ $[1,3]$ $[1,3]$). For instance, for every Boolean function f, $S_2(f)$ and the second-order derivatives of f have been linked. We now show that one can link $S_2(f)$ and the directional difference defined in Definition [1.](#page-1-0)

Proposition 1. *Let n be a positive integer. Let f be a function from* \mathbb{F}_{p^n} *to* \mathbb{F}_p .
 Then $\sum |\widehat{\chi_f}(w)|^4 = p^n \sum \chi_p(D_a D_b f(x))$. (6) *Then*

$$
\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^4 = p^n \sum_{(a,b,x) \in \mathbb{F}_{p^n}^3} \chi_p(D_a D_b f(x)). \tag{6}
$$

 $\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^4 = p^n \sum_{(a,b,x) \in \mathbb{F}_{p^n}^3} \chi_p(D_a D_b f(x)).$ (6)
 Proof. Since $|z|^4 = z^2 \overline{z}^2$ where \overline{z} stands for the conjugate of z and $\overline{\xi_p} = \xi_p^{-1}$, we
 $\sum |\widehat{\chi_f}(w)|^4$ have

$$
\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^4
$$
\n
$$
= \sum_{w \in \mathbb{F}_{p^n}} \sum_{(x_1, x_2, x_3, x_4) \in \mathbb{F}_{p^n}^4} \chi_p(f(x_1) - f(x_2) + f(x_3) - f(x_4)
$$
\n
$$
-Tr_p^{p^n}(w(x_1 - x_2 + x_3 - x_4))).
$$

Now,

ow,
\n
$$
\sum_{w \in \mathbb{F}_{p^n}} \chi_p(-Tr_p^{p^n}(w(x_1 - x_2 + x_3 - x_4))) = \begin{cases} p^n \text{ if } x_1 - x_2 + x_3 - x_4 = 0 \\ 0 \text{ otherwise.} \end{cases}
$$

Hence,

Hence,

$$
\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^4 = p^n \sum_{(x_1, x_2, x_3) \in \mathbb{F}_{p^n}^3} \chi_p(f(x_1) - f(x_2) + f(x_3) - f(x_1 - x_2 + x_3)).
$$

Now note that

$$
D_{x_2-x_1}D_{x_3-x_2}f(x_1) = f(x_1) + f(x_3) - f(x_2) - f(x_1 + x_3 - x_2).
$$

Then, since $(x_1, x_2, x_3) \mapsto (x_1, x_2 - x_1, x_3 - x_2)$ is a permutation of $\mathbb{F}_{p^n}^3$, we get $(x_1, x_2 - x_1, x_3 -$
 $\big|\widehat{\chi_f}(w)\big|^4 = p^n$

$$
\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^4 = p^n \sum_{(a,b,x) \in \mathbb{F}_{p^n}^3} \chi_p\big(D_a D_b f(x)\big).
$$

Remark 3. In odd characteristic p, when f is a quadratic form over \mathbb{F}_{p^n} , that is, $f(x) = \phi(x, x)$ for some symmetric bilinear map ϕ from $\mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$ to \mathbb{F}_{p^n} , then, $f(x+y) = f(x) + f(y) + 2\phi(x, y)$. Let us now compute the directional differences of f at $(a, b) \in \mathbb{F}_{p^n}$:

$$
D_b f(x) = f(x + b) - f(x) = f(b) + 2\phi(b, x)
$$

$$
D_a D_b f(x) = 2\phi(b, x + a) - 2\phi(b, x) = 2\phi(b, a).
$$

According to Proposition [1,](#page-4-0) one has

$$
S_2(f) = p^n \sum_{(a,b,x) \in \mathbb{F}_{p^n}^3} \chi_p(2\phi(b,a))
$$

=
$$
p^{2n} \sum_{b \in \mathbb{F}_{p^n}} \chi_p(2\phi(b,a))
$$

Now, classical results about character sums over finite abelian groups say that

$$
b \in \mathbb{F}_{p^n} \ a \in \mathbb{F}_{p^n}
$$
\nts about character sums over finite abel

\n
$$
\sum_{a \in \mathbb{F}_{p^n}} \chi_p(2\phi(b, a)) = \begin{cases} p^n & \text{if } \phi(b, \bullet) = 0 \\ 0 & \text{otherwise.} \end{cases}
$$

Hence,

$$
S_2(f) = p^{3n} \# \mathfrak{rad}(\phi)
$$

where $\text{rad}(\phi)$ stands for the radical of $\phi : \text{rad}(\phi) = \{b \in \mathbb{F}_{p^n} \mid \phi(b, \bullet) = 0\}$. One can then conclude thanks to Theorem [3](#page-3-0) that f is bent if and only if $\mathfrak{rad}(\phi) = \{0\}.$

Suppose that p is odd and consider now functions of the form

hat *p* is odd and consider now functions of the form
\n
$$
f(x) = Tr_p^{p^n} \left(\sum_{\substack{i,j,k=0 \ i \neq j,j \neq k, k \neq i}}^{n-1} a_{ijk} x^{p^i + p^j + p^k} + \sum_{\substack{i,j=0 \ i \neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right).
$$
\n(7)

We are going to characterize bent functions of that form thanks to Theorem [3](#page-3-0) And Proposition [1.](#page-4-0) But before, let us note that we can rewrite the expression of f as follows \overline{a} $\frac{1}{\sqrt{2}}$ $\ddot{}$ $\frac{1}{\sqrt{2\pi}}$

$$
f(x) = Tr_p^{p^n} \left(\sum_{\substack{i,j,k=0 \ i \neq j,j \neq k, k \neq i}}^{n-1} a_{ijk} x^{p^i + p^j + p^k} \right) + Tr_p^{p^n} \left(\sum_{\substack{i,j=0 \ i \neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right)
$$

$$
= Tr_p^{p^n} \left(\sum_{\substack{i,j,k=0 \ i \neq j,j \neq k, k \neq i}}^{n-1} a_{ijk}^{p^{-i}} x^{1+p^{j-i}+p^{k-i}} \right) + Tr_p^{p^n} \left(\sum_{\substack{i,j=0 \ i \neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right)
$$

$$
= Tr_p^{p^n} \left(x \sum_{\substack{i,j,k=0 \ i \neq j,j \neq k, k \neq i}}^{n-1} a_{ijk}^{p^{-i}} x^{p^{j-i}+p^{k-i}} \right) + Tr_p^{p^n} \left(\sum_{\substack{i,j=0 \ i \neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right).
$$

In the second equality, we have used the fact that $Tr_p^{p^n}$ is invariant under the Frobenius map $x \mapsto x^p$. Set

$$
\psi(x,y) = \frac{1}{2} \sum_{\substack{i,j,k=0\\i \neq j, j \neq k, k \neq i}}^{n-1} a_{ijk}^{p^{-i}} (x^{p^{j-i}} y^{p^{k-i}} + x^{p^{k-i}} y^{p^{j-i}})
$$

$$
\phi(x,y) = \frac{1}{2} Tr_p^{p^n} \left(\sum_{\substack{i,j=0\\i \neq j}}^{n-1} b_{ij} (x^{p^i} y^{p^j} + x^{p^j} y^{p^i}) \right),
$$

Therefore, a function f of the form (7) can be written

$$
f(x) = Tr_{p}^{p^{n}}(x\psi(x,x)) + \phi(x,x)
$$
 (8)

where $\psi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is a symmetric bilinear map and $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is a symmetric bilinear form. We can now state our characterization.

Theorem 4. *Suppose that* p *is odd. Let* ϕ *be a symmetric bilinear form over* $\mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$ and ψ be a symmetric bilinear map from $\mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$ to \mathbb{F}_{p^n} . Define $f: \mathbb{F}_{p^n} \to \mathbb{F}_p$ *by* $f(x) = Tr_p^{p^n}(x\psi(x, x)) + \phi(x, x)$ *for* $x \in \mathbb{F}_{p^n}$ *. For* $(a, b) \in \mathbb{F}_{p^n}$ *, set* $\ell_{a,b}(x) = Tr_p^{p^n}(\psi(a,b)x + a\psi(b,x) + b\psi(a,x))$ *. For every* $a \in \mathbb{F}_{p^n}$ *, define the vector space* $\mathfrak{K}_a = \{b \in \mathbb{F}_{p^n} \mid \ell_{a,b} = 0\}$ *. Then* f *is bent if and only if* ${a \in \mathbb{F}_{p^n}, \phi(a, \bullet)|_{\mathfrak{K}_a} = 0} = {0}.$

Proof. According to Theorem [3](#page-3-0) and Proposition [1,](#page-4-0) f is bent if and only if

$$
\sum_{(a,b,x)\in\mathbb{F}_{p^n}^3} \chi_p(D_b D_a f(x)) = p^{2n}.
$$
\n(9)

Now, for $(a, b) \in \mathbb{F}_{p^n}^2$,

$$
D_{a}f(x) = Tr_{p}^{p^{n}}((x+a)\psi(a+x,a+x) - x\psi(x,x))
$$

\n
$$
+ \phi(x+a,x+a) - \phi(x,x)
$$

\n
$$
= Tr_{p}^{p^{n}}(a\psi(x,x) + 2x\psi(a,x) + 2a\psi(a,x) + x\psi(a,a) + a\psi(a,a))
$$

\n
$$
+ 2\phi(a,x) + \phi(a,a).
$$

\n
$$
D_{b}D_{a}f(x) = Tr_{p}^{p^{n}}(2a\psi(b,x) + a\psi(b,b) + 2b\psi(a,x) + 2x\psi(a,b) + 2b\psi(a,b)
$$

\n
$$
+ 2a\psi(a,b) + b\psi(a,a)) + 2\phi(a,b))
$$

\n
$$
= 2\ell_{a,b}(x) + Tr_{p}^{p^{n}}(a\psi(b,b) + b\psi(a,a) + 2(a+b)\psi(a,b)) + 2\phi(a,b).
$$

Note that, $\ell_{a,b}$ is a linear map from \mathbb{F}_{p^n} to \mathbb{F}_{p^n} . Furthermore, for any $a \in \mathbb{F}_{p^n}$ and $b \in \mathfrak{K}_a$, one has

$$
\ell_{a,b}(a) = Tr_p^{p^n}(\psi(a,b)a + a\psi(b,a) + b\psi(a,a)) = 0,\ell_{a,b}(b) = Tr_p^{p^n}(\psi(a,b)b + a\psi(b,b) + b\psi(a,b)) = 0
$$

which implies, summing those two equations, that

$$
Tr_p^{p^n}(a\psi(b,b) + b\psi(a,a) + 2(a+b)\psi(a,b)) = 0.
$$

$$
\chi_p(D_b D_a f(x)) = \sum \chi_p(2\phi(a,b)) \sum \chi_p
$$

Hence,

$$
\sum_{(a,b,x)\in\mathbb{F}_{p^n}^3} \chi_p(D_b D_a f(x)) = \sum_{(a,b)\in\mathbb{F}_{p^n}^3} \chi_p(2\phi(a,b)) \sum_{x\in\mathbb{F}_{p^n}} \chi_p(2\ell_{a,b}(x))
$$

$$
= p^n \sum_{a\in\mathbb{F}_{p^n}} \sum_{b\in\mathfrak{K}_a} \chi_p(2\phi(a,b)).
$$

Now, for every $a \in \mathbb{F}_{p^n}$, the map $b \in \mathfrak{K}_a \mapsto \phi(a, b)$ is linear over \mathfrak{K}_a . Therefore

$$
a \in \mathbb{F}_{p^n} \text{ for } a
$$

\n
$$
\mathbb{E} \mathbb{F}_{p^n}
$$
, the map $b \in \mathfrak{K}_a \mapsto \phi(a, b)$ is linear or
\n
$$
\sum_{b \in \mathfrak{K}_a} \chi_p(2\phi(a, b)) = \begin{cases} \#\mathfrak{K}_a \text{ if } \phi(a, \bullet)|_{\mathfrak{K}_a} = 0 \\ 0 \text{ otherwise} \end{cases}
$$

\nto (9), f is bent if and only if
\n
$$
\chi_p(D_a D_b f(x)) = p^n \qquad \sum_{b \in \mathfrak{K}_a} \phi(a, b)
$$

Hence, according to (9) , f is bent if and only if

$$
\sum_{(a,b,x)\in\mathbb{F}_{p^n}^3} \chi_p(D_a D_b f(x)) = p^n \sum_{a\in\mathbb{F}_{p^n}, \phi(a,\bullet)|_{\mathfrak{K}_a} = 0} \# \mathfrak{K}_a = p^{2n},
$$

that is, if and only if,

$$
\sum_{a \in \mathbb{F}_{p^n}, \phi(a, \bullet) \big|_{\mathfrak{K}_a} = 0} \# \mathfrak{K}_a = p^n.
$$

Now, if $a = 0$, then $\mathfrak{K}_0 = \mathbb{F}_{p^n}$ because $\ell_{0,b} = 0$ for every $b \in \mathbb{F}_{p^n}$. Therefore, f is bent if and only if

$$
\sum_{a \in \mathbb{F}_{p^n}^{\star}, \phi(a, \bullet) \big|_{\mathfrak{K}_a} = 0} \# \mathfrak{K}_a = 0
$$

which is equivalent to $\#\mathfrak{K}_a = 0$ for every $a \in \mathbb{F}_{p^n}^*$ such that $\phi(a, \bullet)|_{\mathfrak{K}_a} = 0$.

We now turn our attention towards maps from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Let us extend the notion of bentness to those maps as follows.

Definition 2. Let F be a Boolean map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . For every $\lambda \in \mathbb{F}_{p^n}^*$, *define* $f_{\lambda}: \mathbb{F}_{p^n} \to \mathbb{F}_p$ *as* $: f_{\lambda}(x) = Tr_p^{p^m}(\lambda F(x))$ *for every* $x \in \mathbb{F}_{p^n}$ *. Then F is said to be bent if and only if* f_{λ} *is bent for every* $\lambda \in \mathbb{F}_{p^n}^*$.

Theorem [3](#page-3-0) implies

Theorem 5. Let F be a map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then, F is bent if and only if

$$
\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = p^{3n}(p^m - 1).
$$
 (10)

Proof. According to Theorem [3,](#page-3-0) for every $\lambda \in \mathbb{F}_{p^m}^{\star}$, f_{λ} is bent if and only if $S_2(f_\lambda) = p^{3n}$ $S_2(f_\lambda) = p^{3n}$ $S_2(f_\lambda) = p^{3n}$ which gives [\(10\)](#page-8-0). Conversely, suppose that (10) holds. Theorem 3 states that $S_2(f_\lambda) \geq p^{3n}$ for every $\lambda \in \mathbb{F}_{p^m}^{\star}$. Thus, one has necessarily, for every $\lambda \in \mathbb{F}_{p^n}^{\star}$, $S_2(f_{\lambda}) = p^{3n}$ implying that f_{λ} is bent for every $\lambda \in \mathbb{F}_{p^n}$, proving that F is bent.

We now show that one can compute the left-hand side of [\(10\)](#page-8-0) by counting the zeros of the second-order directional differences.

Proposition 2. Let F be a Boolean map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then

$$
\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = p^{n+m} \mathfrak{N}(F) - p^{4n}
$$

where $\mathfrak{N}(F)$ *is the number of elements of* $\{(a, b, x) \in \mathbb{F}_{p^n}^3 \mid D_a D_b F(x) = 0\}.$

Proof. According to Proposition [1,](#page-4-0) we have

the number of elements of
$$
\{(a, b, x) \in \mathbb{F}_{p^n}^{\circ} \mid D_a D_b\}
$$

ing to Proposition 1, we have

$$
\sum_{\lambda \in \mathbb{F}_{p^m}^{\star}} S_2(f_{\lambda}) = p^n \sum_{\lambda \in \mathbb{F}_{p^m}^{\star}} \sum_{a, b, x \in \mathbb{F}_{p^n}} \chi_p(D_a D_b f_{\lambda}(x)).
$$

Next, $D_a D_b f_{\lambda} = Tr_p^{p^m} (\lambda D_a D_b F)$. Therefore $Tr_{p}^{p^{m}}(\lambda D_{a}D_{b}F).$ ¹
 $S_{2}(f_{\lambda})=p^{n}$

$$
b_b f_{\lambda} = Tr_p^{p^m} (\lambda D_a D_b F).
$$
 Therefore

$$
\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_{\lambda}) = p^n \sum_{a, b, x \in \mathbb{F}_{p^n}^*} \sum_{\lambda \in \mathbb{F}_{p^m}^*} \chi_p \big(Tr_p^{p^m} (\lambda D_a D_b F(x)) \big).
$$

That is

$$
\lambda \in \mathbb{F}_{p^m}^* \qquad a, b, x \in \mathbb{F}_{p^m} \lambda \in \mathbb{F}_{p^m}^* \nS
$$
\n
$$
\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = p^n \sum_{a, b, x \in \mathbb{F}_{p^m}} \Big(\sum_{\lambda \in \mathbb{F}_{p^m}} \chi_p \big(Tr_p^{p^m} (\lambda D_a D_b F(x)) \big) \Big) - p^{4n}.
$$

We finally get the result from

Let the result from

\n
$$
\sum_{\lambda \in \mathbb{F}_{p^m}} \chi_p\big(Tr_p^{p^m} (\lambda D_a D_b F(x)) \big) = \begin{cases} 0 & \text{if } D_a D_b F(x) \neq 0 \\ p^m & \text{if } D_a D_b F(x) = 0 \end{cases}
$$

We then deduce from Theorem [3](#page-3-0) a characterization of bentness in terms of zeros of the second-order directional differences.

Theorem 6. Let F be a map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then F is bent if and only if $\mathfrak{N}(F) = p^{3n-m} + p^{2n} - p^{2n-m}.$

Proof. F is bent if and only if all the functions $f_{\lambda}, \lambda \in \mathbb{F}_{p^n}^{\star}$, are bent. Therefore, according to Proposition [3,](#page-3-0) if F is bent then

$$
\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = (p^m - 1)p^{3n}.
$$

Now, according to Proposition [2,](#page-8-1) one has

$$
\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = p^{n+m} \mathfrak{N}(F) - p^{4n}.
$$

We deduce from the two above equalities that

$$
\mathfrak{N}(F) = p^{-n-m} (p^{4n} + (p^m - 1)p^{3n})
$$

= $p^{3n-m} + p^{2n} - p^{2n-m}$.

Conversely, suppose that $\mathfrak{N}(F) = p^{3n-m} + p^{2n} - p^{2n-m}$. Then

$$
\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = p^{n+m} \Re(F) - p^{4n} = p^{4n} + p^{3n+m} - p^{3n} - p^{4n} = p^{3n} (p^m - 1).
$$

We then conclude by Theorem 5 that F is bent.

Note that when $a = 0$ or $b = 0$, $D_a D_b F$ is trivially equal to 0. We state below a slightly different version of Theorem [6](#page-9-0) to exclude those trivial cases to characterize the bentness of F.

Corollary 1. Let F be a map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then F is bent if and only $if \mathfrak{N}^*(F) = p^n(p^n-1)(p^{n-m}-1)$ *where* $\mathfrak{N}^*(F)$ *is the number of elements of* $\{(a, b, x) \in \mathbb{F}_{p^n}^{\star} \times \mathbb{F}_{p^n}^{\star} \times \mathbb{F}_{p^n} \mid D_a D_b F(x) = 0\}.$

Proof. It follows from Proposition [2](#page-8-1) by noting that $\{(a, b, x) \in \mathbb{F}_{p^n}^3 \mid D_a D_b F(x) =$ 0} contains the set $\{(a, 0, x), a, x \in \mathbb{F}_{p^n}, \} \cup \{(0, a, x), a, x \in \mathbb{F}_{p^n}\}\$ whose cardinality equals $p^{n}(1 + 2(p^{n} - 1)) = 2p^{2n} - p^{n}$. Hence, the cardinality of $\mathfrak{N}^{\star}(F)$ equals $p^{3n-m} + p^{2n} - p^{2n-m} - (2p^{2n} - p^n) = p^{3n-m} - p^{2n-m} + p^n - p^{2n} =$ $p^{2n-m}(p^{n}-1)+p^{n}(1-p^{n})=p^{n}(p^{n}-1)(p^{n-m}-1).$

In the particular case of planar functions, Theorem [1](#page-2-0) rewrites as follows

Corollary 2. Let $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$. Then, F is planar if and only if, $D_a D_b F$ does not vanish on \mathbb{F}_{p^n} for every $(a, b) \in \mathbb{F}_{p^n}^{\star} \times \mathbb{F}_{p^n}^{\star}$.

Proof. F is planar if and only if F is bent ([\[6,](#page-10-10) Lemma 1.1]). Hence, according to Corollary [1,](#page-9-2) F is planar if and only if $\mathfrak{N}^*(F) = 0$ proving the result.

References

- 1. Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: Propagation characteristics and correlation-immunity of highly nonlinear boolean functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 507–522. Springer, Heidelberg (2000)
- 2. Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Trans. Inf. Theory **49**(8), 2004–2019 (2003)
- 3. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)
- 4. Cesmelioglu, A., Meidl, W.: A construction of bent functions from plateaued functions. Des. Codes Crypt. **66**(1–3), 231–242 (2013)
- 5. Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Crypt. **10**(2), 167–184 (1997)
- 6. Helleseth, T., Hollmann, H., Kholosha, A., Wang, Z., Xiang, Q.: Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inf. Theory **55**(11), 5272–5283 (2009)
- 7. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory **52**(5), 2018–2032 (2006)
- 8. Helleseth, T., Kholosha, A.: On the dual of monomial quadratic *p*-ary bent functions. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 50–61. Springer, Heidelberg (2007)
- 9. Hou, X.-D.: *p*-ary and *q*-ary versions of certain results about bent functions and resilient functions. Finite Fields Appl. **10**(4), 566–582 (2004)
- 10. Hou, X.-D.: On the dual of a Coulter-Matthews bent function. Finite Fields Appl. **14**(2), 505–514 (2008)
- 11. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Comb. Theory, Ser. A **40**(1), 90–107 (1985)
- 12. Rothaus, O.S.: On "bent" functions. J. Comb. Theory, Ser. A **20**(3), 300–305 (1976)
- 13. Tan, Y., Yang, J., Zhang, X.: A recursive construction of p-ary bent functions which are not weakly regular. In: IEEE International Conference on Information Theory and Information Security (ICITIS), pp. 156–159 (2010)