Characterizations of Plateaued and Bent Functions in Characteristic p

Sihem Mesnager^{1,2} (\boxtimes)

¹ Department of Mathematics, University of Paris VIII, Saint-Denis, France ² LAGA, UMR 7539, CNRS, University of Paris XIII, Villetaneuse, France smesnager@univ-paris8.fr

Abstract. We characterize bent functions and plateaued functions in terms of moments of their Walsh transforms. We introduce in any characteristic the notion of directional difference and establish a link between the fourth moment and that notion. We show that this link allows to identify bent elements of particular families. Notably, we characterize bent functions of algebraic degree 3.

1 Introduction

Binary bent functions are usually called Boolean bent functions. These functions were first introduced by Rothaus in [12]. Bent functions are closely related to other combinatorial and algebraic objects such as Hadamard difference sets, relative difference sets, planar functions and commutative semi-fields. Later, this notion has been generalized to that of p-ary bent functions [11]. Several studies on *p*-ary bent functions have been performed (a non exhaustive list is [5, 7-10, 13]). Most of them concern constructions of bent functions or studies of their properties. Another important family of binary functions is that of plateaued functions [3]. Like the notion of bent function, the notion of plateaued function can be generalized to *p*-ary plateaued functions (see [4] for instance). In this paper, we establish characterizations of bent functions and plateaued functions in terms of sums of powers of the Walsh transform (Theorems 1 and 3). We also introduce the notion of directional difference for p-ary functions, generalizing the directional derivative of Boolean functions (Definition 1). We then show that one can establish identities linking sums of fourth-powers of the Walsh transform and directional derivatives of a *p*-ary function (Proposition 1). We then deduce from our characterizations of all bent *p*-ary functions of algebraic degree 3 when p is odd (Theorem 4). We finally establish a link between the bentness of all elements of a family of *p*-ary functions and counting zeros of their directional differences (Theorem 6 and Corollary 2).

2 Notation and Preliminaries

Let p be a prime integer, $n \ge 1$ be an integer. We will denote \mathbb{F}_{p^n} the finite field of size p^n and $\mathbb{F}_{p^n}^{\star}$ the set of nonzero elements of \mathbb{F}_{p^n} . Let ξ_p be a primitive

pth-root of unity and set $\chi_p(a) = \xi_p^a$. Let f be a function from \mathbb{F}_{p^n} to \mathbb{F}_p . The Walsh transform of f at $w \in \mathbb{F}_{p^n}$ is defined as

$$\widehat{\chi_f}(w) = \sum_{x \in \mathbb{F}_{p^n}} \chi_p \Big(f(x) - Tr_p^{p^n}(wx) \Big).$$

Then f is bent if and only if $|Waf(w)|^2 = p^n$ for every $w \in \mathbb{F}_{p^n}$. It is said to be regular bent if there exists $f^* : \mathbb{F}_{p^n} \to \mathbb{F}_p$ such that $\widehat{\chi_f}(w) = \chi_p(f^*(w))p^{\frac{n}{2}}$ for all $w \in \mathbb{F}_{p^n}$. The function f^* is called the *dual function* of f (in characteristic 2, all bent functions are regular bent; when p is odd, regular bent functions can exist only if $p \equiv 1 \mod 4$). A function $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is said to be *weakly regular bent* if, for all $w \in \mathbb{F}_{p^n}$, we have $\widehat{\chi_f}(w) = \epsilon \chi_p(f^*(w))p^{\frac{n}{2}}$ for some complex number with $|\epsilon| = 1$ (in fact ϵ can only be ± 1 or $\pm i$). For every function f from \mathbb{F}_{p^n} to \mathbb{F}_p , we have

$$\sum_{w \in \mathbb{F}_{p^n}} \widehat{\chi_f}(w) = p^n \chi_p(f(0)).$$
(1)

Set $|z|^2 = z\bar{z}$ where \bar{z} stands for the conjugate of z. Then

$$\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^2 = p^{2n}.$$
 (2)

In the sequel, we shall refer to (2) as the Parseval identity. If $|\widehat{\chi_f}(w)| \in \{0, p^{\frac{n+s}{2}}\}$ for some nonnegative integer s then f is said to be s-plateaued. With this definition, bent functions are 0-plateaued functions (in the case where s = 0, $|\widehat{\chi_f}(w)| \in \{0, p^{\frac{n}{2}}\}$ is equivalent to $|\widehat{\chi_f}(w)| = p^{\frac{n}{2}}$). The Parseval identity allows to compute the multiplicity of each value of the Walsh transform (when p = 2, a more precise statement has been shown in [2]).

Lemma 1. Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ be s-plateaued. Then the absolute value of the Walsh transform $\widehat{\chi_f}$ takes p^{n-s} times the value $p^{\frac{n+s}{2}}$ and $p^n - p^{n-s}$ times the value 0.

Proof. If N denotes the number of $w \in \mathbb{F}_{p^n}$ such that $|\widehat{\chi_f}(w)| = p^{\frac{n+s}{2}}$, then $\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^2 = p^{n+s}N$. Now, according to Eq. (2), one must have that $p^{n+s}N = p^{2n}$, that is, $N = p^{n-s}$. The result follows.

A map F from \mathbb{F}_{p^n} to \mathbb{F}_{p^n} is said to be planar if and only if the function from \mathbb{F}_{p^n} to \mathbb{F}_{p^n} induced by the polynomial F(X + a) - F(x) - F(a) is bijective for every $a \in \mathbb{F}_{p^n}^{\star}$. We finally introduce the directional difference.

Definition 1. Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$. The directional difference of f at $a \in \mathbb{F}_{p^n}$ is the map $D_a f$ from \mathbb{F}_{p^n} to \mathbb{F}_p defined by

$$\forall x \in \mathbb{F}_{p^n}, \quad D_a f(x) = f(x+a) - f(x).$$

3 New Characterizations of Plateaued Functions

Let p be a positive prime integer. For any nonnegative integer k, we set

$$S_k(f) = \sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^{2k}$$
 and $T_k(f) = \frac{S_{k+1}(f)}{S_k(f)}$

with the convention regarding k = 0 that $S_0(f) = p^n$ (in this case, $T_0(f) = \frac{S_1(f)}{S_0(f)} = p^n$). Let us make a preliminary but important remark : for every integer A and every positive integer k, it holds

$$\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - A \right)^2 \left| \widehat{\chi_f}(w) \right|^{2(k-1)}$$
$$= S_{k+1}(f) - 2AS_k(f) + A^2 S_{k-1}(f).$$
(3)

We are now going to deduce from (3) a characterization of plateaued functions in terms of moments of the Walsh transform (in Sect. 4, we shall specialize our characterization to bent functions, see Theorem 3).

Theorem 1. Let n and k be two positive integers. Let f be a function from \mathbb{F}_{p^n} to \mathbb{F}_p . Then, the two following assertions are equivalent.

- 1. f is plateaued, that is, there exists a nonnegative integer s such that f is s-plateaued.
- 2. $T_{k+1}(f) = T_k(f)$.

Proof.

1. Suppose that f is s-plateaued for some nonnegative integer s, that is, $|\widehat{\chi_f}(w)| \in \{0, p^{\frac{n+s}{2}}\}$. Then, by Lemma 1,

$$S_k(f) = \sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^{2k} = p^{n-s} \times p^{k(n+s)} = p^{(k+1)n+(k-1)s}$$
$$S_{k+1}(f) = p^{n-s} \times p^{(k+1)(n+s)} = p^{(k+2)n+ks}$$
$$S_{k+2}(f) = p^{n-s} \times p^{(k+2)(n+s)} = p^{(k+3)n+(k+1)s}.$$

Therefore

$$T_k(f) = \frac{p^{(k+2)n+ks}}{p^{(k+1)n+(k-1)s}} = p^{n+s}$$

and

$$T_{k+1}(f) = \frac{p^{(k+3)n+(k+1)s}}{p^{(k+2)n+ks}} = p^{n+s} = T_k(f).$$

2. Suppose $T_{k+1}(f) = T_k(f)$. According to (3)

$$\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - T_k(f) \right)^2 \left| \widehat{\chi_f}(w) \right|^{2k} \\ = S_{k+2}(f) - 2T_k(f)S_{k+1}(f) + T_k^2(f)S_k(f) \\ = S_{k+1}(f) \left(T_{k+1}(f) - 2T_k(f) + T_k(f) \right) = 0$$

proving that $|\widehat{\chi_f}(w)| \in \{0, \sqrt{T_k(f)}\}\$ for every $w \in \mathbb{F}_{p^n}$. Thus,

$$\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^2 = T_k(f) \# \{ w \in \mathbb{F}_{p^n} \mid \left| \widehat{\chi_f}(w) \right| = \sqrt{T_k(f)} \}.$$

Now, the Parseval identity (2) states that

$$\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^2 = p^{2n}.$$

Therefore $T_k(f)$ divides p^{2n} proving that $T_k(f) = p^{\rho}$ for some positive integer ρ . Now, one has $\#\{w \in \mathbb{F}_{p^n} | |\widehat{\chi_f}(w)| = \sqrt{T_k(f)}\} = p^{2n-\rho} \leq p^n$ which implies that $\rho \geq n$, that is, $\rho = n + s$ for some nonnegative integer s.

Remark 1. Specializing Theorem 1 to the case where k = 1, we get that f is plateaued if and only if $T_2(f) = T_1(f)$, that is

$$S_3(f)S_1(f) - S_2^2(f) = p^{2n}S_3(f) - S_2^2(f) = 0.$$

Remark 2. In the proof, we have shown more than the sole equivalence between (1) and (2). Indeed, we have shown that if (2) holds then f is s-plateaued and $|\widehat{\chi}_f(w)| \in \{0, \sqrt{T_k(f)}\}.$

In Theorem 1, we have considered the ratio of two consecutive sums $S_k(f)$. In fact, one can get a more general result than Theorem 1. Indeed, for every positive integer k and every nonnegative integer l, we have

$$\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^{2l} - A \right)^2 \left| \widehat{\chi_f}(w) \right|^{2(k-1)}$$

$$= S_{k+2l-1}(f) - 2AS_{k+l-1}(f) + A^2 S_{k-1}(f).$$
(4)

Then, one can make the same kind of proof as that of Theorem 1 but with (4) in place of (3) (the proof being very similar, we omit it).

Theorem 2. Let n, k and l be positive integers and $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$. Then, the two following assertions are equivalent

1. f is plateaued, that is, there exists a nonnegative integer s such that f is s-plateaued.

2.
$$\frac{S_{k+2l}(f)}{S_{k+l}(f)} = \frac{S_{k+l}(f)}{S_k(f)}$$
.

4 The Case of Bent Functions

In this section, we shall specialize our study to bent functions and suppose that p is a positive prime integer. In the whole section, n is a positive integer. In Theorem 1, we have excluded the possibility to for the integer k to be equal to 0 because it does concern both plateaued functions and bent functions. In fact, if we aim to characterize only bent functions, we are going to show that it follows from comparing $T_1(f) = \frac{S_2(f)}{S_1(f)} = \frac{S_2(f)}{p^{2n}}$ to $T_0(f) = \frac{S_1(f)}{S_0(f)} = p^n$.

75

Theorem 3. Let n be a positive integer. Let f be a function from \mathbb{F}_{p^n} to \mathbb{F}_p . Then

$$S_2(f) = \sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^4 \ge p^{3n}$$

and f is bent if and only if $S_2(f) = p^{3n}$.

Proof. If we apply (3) with $A = p^n$ at k = 1, we get that

$$\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - p^n \right)^2 = S_2(f) - 2p^n S_1(f) + p^{2n} S_0(f).$$

Now, $S_0(f) = p^n$ and $S_1(f) = p^{2n}$ (Parseval identity, Eq. 2). Hence

$$\sum_{w \in \mathbb{F}_{p^n}} \left(\left| \widehat{\chi_f}(w) \right|^2 - p^n \right)^2 = S_2(f) - p^{3n}.$$
(5)

Since $\left(\left|\widehat{\chi_f}(w)\right|^2 - p^n\right)^2 \ge 0$ for every $w \in \mathbb{F}_{p^n}$, it implies that $S_2(f) \ge p^{3n}$. Now, f is bent if and only if $\left|\widehat{\chi_f}(w)\right|^2 = p^n$ for every $w \in \mathbb{F}_{p^n}$. Therefore, f is bent if and only if the left-hand side of Eq. (5) vanishes, that is, if and only if $S_2(f) = p^{3n}$.

In characteristic 2, identities have been established involving the Walsh transform of a Boolean function and its directional derivatives (see [1,3]). For instance, for every Boolean function f, $S_2(f)$ and the second-order derivatives of f have been linked. We now show that one can link $S_2(f)$ and the directional difference defined in Definition 1.

Proposition 1. Let n be a positive integer. Let f be a function from \mathbb{F}_{p^n} to \mathbb{F}_p . Then

$$\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^4 = p^n \sum_{(a,b,x) \in \mathbb{F}_{p^n}^3} \chi_p(D_a D_b f(x)).$$
(6)

Proof. Since $|z|^4 = z^2 \overline{z}^2$ where \overline{z} stands for the conjugate of z and $\overline{\xi_p} = \xi_p^{-1}$, we have

$$\sum_{w \in \mathbb{F}_{p^n}} |\widehat{\chi_f}(w)|^4$$

= $\sum_{w \in \mathbb{F}_{p^n}} \sum_{(x_1, x_2, x_3, x_4) \in \mathbb{F}_{p^n}^4} \chi_p (f(x_1) - f(x_2) + f(x_3) - f(x_4))$
 $- Tr_p^{p^n} (w(x_1 - x_2 + x_3 - x_4))).$

Now,

$$\sum_{w \in \mathbb{F}_{p^n}} \chi_p \Big(-Tr_p^{p^n} (w(x_1 - x_2 + x_3 - x_4)) \Big) = \begin{cases} p^n \text{ if } x_1 - x_2 + x_3 - x_4 = 0\\ 0 \text{ otherwise.} \end{cases}$$

Hence,

$$\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^4 = p^n \sum_{(x_1, x_2, x_3) \in \mathbb{F}_{p^n}^3} \chi_p \big(f(x_1) - f(x_2) + f(x_3) - f(x_1 - x_2 + x_3) \big).$$

Now note that

$$D_{x_2-x_1}D_{x_3-x_2}f(x_1) = f(x_1) + f(x_3) - f(x_2) - f(x_1+x_3-x_2).$$

Then, since $(x_1, x_2, x_3) \mapsto (x_1, x_2 - x_1, x_3 - x_2)$ is a permutation of $\mathbb{F}_{p^n}^3$, we get

$$\sum_{w \in \mathbb{F}_{p^n}} \left| \widehat{\chi_f}(w) \right|^4 = p^n \sum_{(a,b,x) \in \mathbb{F}_{p^n}^3} \chi_p \left(D_a D_b f(x) \right).$$

Remark 3. In odd characteristic p, when f is a quadratic form over \mathbb{F}_{p^n} , that is, $f(x) = \phi(x, x)$ for some symmetric bilinear map ϕ from $\mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$ to \mathbb{F}_{p^n} , then, $f(x+y) = f(x) + f(y) + 2\phi(x, y)$. Let us now compute the directional differences of f at $(a, b) \in \mathbb{F}_{p^n}$:

$$D_b f(x) = f(x+b) - f(x) = f(b) + 2\phi(b,x)$$
$$D_a D_b f(x) = 2\phi(b,x+a) - 2\phi(b,x) = 2\phi(b,a).$$

According to Proposition 1, one has

$$S_2(f) = p^n \sum_{(a,b,x)\in\mathbb{F}_{p^n}^3} \chi_p(2\phi(b,a))$$
$$= p^{2n} \sum_{b\in\mathbb{F}_{p^n}} \sum_{a\in\mathbb{F}_{p^n}} \chi_p(2\phi(b,a)).$$

Now, classical results about character sums over finite abelian groups say that

$$\sum_{a \in \mathbb{F}_{p^n}} \chi_p(2\phi(b,a)) = \begin{cases} p^n & \text{if } \phi(b,\bullet) = 0\\ 0 & \text{otherwise.} \end{cases}$$

Hence,

$$S_2(f) = p^{3n} \# \mathfrak{rad}(\phi)$$

where $\mathfrak{rad}(\phi)$ stands for the radical of $\phi : \mathfrak{rad}(\phi) = \{b \in \mathbb{F}_{p^n} \mid \phi(b, \bullet) = 0\}$. One can then conclude thanks to Theorem 3 that f is bent if and only if $\mathfrak{rad}(\phi) = \{0\}$.

Suppose that p is odd and consider now functions of the form

$$f(x) = Tr_p^{p^n} \left(\sum_{\substack{i,j,k=0\\i\neq j, j\neq k, k\neq i}}^{n-1} a_{ijk} x^{p^i + p^j + p^k} + \sum_{\substack{i,j=0\\i\neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right).$$
(7)

We are going to characterize bent functions of that form thanks to Theorem 3 and Proposition 1. But before, let us note that we can rewrite the expression of f as follows

$$\begin{split} f(x) &= Tr_p^{p^n} \left(\sum_{\substack{i,j,k=0\\ i \neq j, j \neq k, k \neq i}}^{n-1} a_{ijk} x^{p^i + p^j + p^k} \right) + Tr_p^{p^n} \left(\sum_{\substack{i,j=0\\ i \neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right) \\ &= Tr_p^{p^n} \left(\sum_{\substack{i,j,k=0\\ i \neq j, j \neq k, k \neq i}}^{n-1} a_{ijk}^{p^{-i}} x^{1 + p^{j-i} + p^{k-i}} \right) + Tr_p^{p^n} \left(\sum_{\substack{i,j=0\\ i \neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right) \\ &= Tr_p^{p^n} \left(x \sum_{\substack{i,j,k=0\\ i \neq j, j \neq k, k \neq i}}^{n-1} a_{ijk}^{p^{-i}} x^{p^{j-i} + p^{k-i}} \right) + Tr_p^{p^n} \left(\sum_{\substack{i,j=0\\ i \neq j}}^{n-1} b_{ij} x^{p^i + p^j} \right). \end{split}$$

In the second equality, we have used the fact that $Tr_p^{p^n}$ is invariant under the Frobenius map $x \mapsto x^p$. Set

$$\psi(x,y) = \frac{1}{2} \sum_{\substack{i,j,k=0\\i\neq j,j\neq k,k\neq i}}^{n-1} a_{ijk}^{p^{-i}} (x^{p^{j-i}} y^{p^{k-i}} + x^{p^{k-i}} y^{p^{j-i}})$$
$$\phi(x,y) = \frac{1}{2} Tr_p^{p^n} \left(\sum_{\substack{i,j=0\\i\neq j}}^{n-1} b_{ij} (x^{p^i} y^{p^j} + x^{p^j} y^{p^i}) \right),$$

Therefore, a function f of the form (7) can be written

$$f(x) = Tr_p^{p^n}(x\psi(x,x)) + \phi(x,x)$$
(8)

where $\psi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is a symmetric bilinear map and $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is a symmetric bilinear form. We can now state our characterization.

Theorem 4. Suppose that p is odd. Let ϕ be a symmetric bilinear form over $\mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$ and ψ be a symmetric bilinear map from $\mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$ to \mathbb{F}_{p^n} . Define $f: \mathbb{F}_{p^n} \to \mathbb{F}_p$ by $f(x) = Tr_p^{p^n}(x\psi(x,x)) + \phi(x,x))$ for $x \in \mathbb{F}_{p^n}$. For $(a,b) \in \mathbb{F}_{p^n}$, set $\ell_{a,b}(x) = Tr_p^{p^n}(\psi(a,b)x + a\psi(b,x) + b\psi(a,x))$. For every $a \in \mathbb{F}_{p^n}$, define the vector space $\mathfrak{K}_a = \{b \in \mathbb{F}_{p^n} \mid \ell_{a,b} = 0\}$. Then f is bent if and only if $\{a \in \mathbb{F}_{p^n}, \phi(a, \bullet)|_{\mathfrak{K}_p} = 0\} = \{0\}.$

Proof. According to Theorem 3 and Proposition 1, f is bent if and only if

$$\sum_{(a,b,x)\in\mathbb{F}_{p^n}^3}\chi_p(D_bD_af(x)) = p^{2n}.$$
(9)

Now, for $(a, b) \in \mathbb{F}_{p^n}^2$,

$$D_{a}f(x) = Tr_{p}^{p^{n}}((x+a)\psi(a+x,a+x) - x\psi(x,x)) +\phi(x+a,x+a) - \phi(x,x) = Tr_{p}^{p^{n}}(a\psi(x,x) + 2x\psi(a,x) + 2a\psi(a,x) + x\psi(a,a) + a\psi(a,a)) +2\phi(a,x) + \phi(a,a). D_{b}D_{a}f(x) = Tr_{p}^{p^{n}}(2a\psi(b,x) + a\psi(b,b) + 2b\psi(a,x) + 2x\psi(a,b) + 2b\psi(a,b) +2a\psi(a,b) + b\psi(a,a)) + 2\phi(a,b))$$

$$= 2\ell_{a,b}(x) + Tr_p^{p^n}(a\psi(b,b) + b\psi(a,a) + 2(a+b)\psi(a,b)) + 2\phi(a,b).$$

Note that, $\ell_{a,b}$ is a linear map from \mathbb{F}_{p^n} to \mathbb{F}_{p^n} . Furthermore, for any $a \in \mathbb{F}_{p^n}$ and $b \in \mathfrak{K}_a$, one has

$$\ell_{a,b}(a) = Tr_p^{p^n}(\psi(a,b)a + a\psi(b,a) + b\psi(a,a)) = 0,$$

$$\ell_{a,b}(b) = Tr_p^{p^n}(\psi(a,b)b + a\psi(b,b) + b\psi(a,b)) = 0$$

which implies, summing those two equations, that

$$Tr_{p}^{p^{n}}(a\psi(b,b) + b\psi(a,a) + 2(a+b)\psi(a,b)) = 0.$$

Hence,

$$\sum_{(a,b,x)\in\mathbb{F}_{p^n}^3}\chi_p(D_bD_af(x)) = \sum_{(a,b)\in\mathbb{F}_{p^n}^3}\chi_p(2\phi(a,b))\sum_{x\in\mathbb{F}_{p^n}}\chi_p(2\ell_{a,b}(x))$$
$$= p^n\sum_{a\in\mathbb{F}_{p^n}}\sum_{b\in\mathfrak{K}_a}\chi_p(2\phi(a,b)).$$

Now, for every $a \in \mathbb{F}_{p^n}$, the map $b \in \mathfrak{K}_a \mapsto \phi(a, b)$ is linear over \mathfrak{K}_a . Therefore

$$\sum_{b \in \mathfrak{K}_a} \chi_p(2\phi(a,b)) = \begin{cases} \#\mathfrak{K}_a \text{ if } \phi(a,\bullet) \big|_{\mathfrak{K}_a} = 0\\ 0 \quad \text{otherwise} \end{cases}$$

Hence, according to (9), f is bent if and only if

$$\sum_{(a,b,x)\in\mathbb{F}_{p^n}^3}\chi_p(D_aD_bf(x)) = p^n \sum_{a\in\mathbb{F}_{p^n},\,\phi(a,\bullet)\big|_{\mathfrak{K}_a}=0} \#\mathfrak{K}_a = p^{2n}$$

that is, if and only if,

$$\sum_{a \in \mathbb{F}_{p^n}, \phi(a, \bullet) \Big|_{\mathfrak{K}_a} = 0} \# \mathfrak{K}_a = p^n$$

Now, if a = 0, then $\mathfrak{K}_0 = \mathbb{F}_{p^n}$ because $\ell_{0,b} = 0$ for every $b \in \mathbb{F}_{p^n}$. Therefore, f is bent if and only if

$$\sum_{a\in\mathbb{F}_{p^n}^{\star},\,\phi(a,\bullet)\big|_{\mathfrak{K}_a}=0}\#\mathfrak{K}_a=0$$

which is equivalent to $\#\mathfrak{K}_a = 0$ for every $a \in \mathbb{F}_{p^n}^{\star}$ such that $\phi(a, \bullet)|_{\mathfrak{K}_a} = 0$.

79

We now turn our attention towards maps from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Let us extend the notion of bentness to those maps as follows.

Definition 2. Let F be a Boolean map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . For every $\lambda \in \mathbb{F}_{p^n}^*$, define $f_{\lambda} : \mathbb{F}_{p^n} \to \mathbb{F}_p$ as $: f_{\lambda}(x) = Tr_p^{p^m}(\lambda F(x))$ for every $x \in \mathbb{F}_{p^n}$. Then F is said to be bent if and only if f_{λ} is bent for every $\lambda \in \mathbb{F}_{p^n}^*$.

Theorem 3 implies

Theorem 5. Let F be a map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then, F is bent if and only if

$$\sum_{\lambda \in \mathbb{F}_{p^m}^{\star}} S_2(f_{\lambda}) = p^{3n}(p^m - 1).$$
(10)

Proof. According to Theorem 3, for every $\lambda \in \mathbb{F}_{p^m}^{\star}$, f_{λ} is bent if and only if $S_2(f_{\lambda}) = p^{3n}$ which gives (10). Conversely, suppose that (10) holds. Theorem 3 states that $S_2(f_{\lambda}) \geq p^{3n}$ for every $\lambda \in \mathbb{F}_{p^m}^{\star}$. Thus, one has necessarily, for every $\lambda \in \mathbb{F}_{p^n}^{\star}$, $S_2(f_{\lambda}) = p^{3n}$ implying that f_{λ} is bent for every $\lambda \in \mathbb{F}_{p^n}$, proving that F is bent.

We now show that one can compute the left-hand side of (10) by counting the zeros of the second-order directional differences.

Proposition 2. Let F be a Boolean map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then

$$\sum_{\lambda \in \mathbb{F}_{p^m}^{\star}} S_2(f_{\lambda}) = p^{n+m} \mathfrak{N}(F) - p^{4n}$$

where $\mathfrak{N}(F)$ is the number of elements of $\{(a, b, x) \in \mathbb{F}_{p^n}^3 \mid D_a D_b F(x) = 0\}$.

Proof. According to Proposition 1, we have

$$\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_{\lambda}) = p^n \sum_{\lambda \in \mathbb{F}_{p^m}^*} \sum_{a,b,x \in \mathbb{F}_{p^n}} \chi_p \big(D_a D_b f_{\lambda}(x) \big).$$

Next, $D_a D_b f_{\lambda} = T r_p^{p^m} (\lambda D_a D_b F)$. Therefore

$$\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = p^n \sum_{a,b,x \in \mathbb{F}_{p^n}} \sum_{\lambda \in \mathbb{F}_{p^m}^*} \chi_p \big(Tr_p^{p^m}(\lambda D_a D_b F(x)) \big).$$

That is

$$\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_\lambda) = p^n \sum_{a,b,x \in \mathbb{F}_{p^n}} \left(\sum_{\lambda \in \mathbb{F}_{p^m}} \chi_p \left(Tr_p^{p^m}(\lambda D_a D_b F(x)) \right) \right) - p^{4n}.$$

We finally get the result from

$$\sum_{\lambda \in \mathbb{F}_{p^m}} \chi_p \left(Tr_p^{p^m} (\lambda D_a D_b F(x)) \right) = \begin{cases} 0 & \text{if } D_a D_b F(x) \neq 0\\ p^m & \text{if } D_a D_b F(x) = 0 \end{cases}$$

We then deduce from Theorem 3 a characterization of bentness in terms of zeros of the second-order directional differences.

Theorem 6. Let F be a map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then F is bent if and only if $\mathfrak{N}(F) = p^{3n-m} + p^{2n} - p^{2n-m}$.

Proof. F is bent if and only if all the functions $f_{\lambda}, \lambda \in \mathbb{F}_{p^n}^{\star}$, are bent. Therefore, according to Proposition 3, if F is bent then

$$\sum_{\lambda \in \mathbb{F}_{p^m}^{\star}} S_2(f_{\lambda}) = (p^m - 1)p^{3n}.$$

Now, according to Proposition 2, one has

$$\sum_{\lambda \in \mathbb{F}_{p^m}^*} S_2(f_{\lambda}) = p^{n+m} \mathfrak{N}(F) - p^{4n}.$$

We deduce from the two above equalities that

$$\begin{split} \mathfrak{N}(F) &= p^{-n-m}(p^{4n} + (p^m-1)p^{3n}) \\ &= p^{3n-m} + p^{2n} - p^{2n-m}. \end{split}$$

Conversely, suppose that $\mathfrak{N}(F) = p^{3n-m} + p^{2n} - p^{2n-m}$. Then

$$\sum_{\lambda \in \mathbb{F}_{p^m}^{\star}} S_2(f_{\lambda}) = p^{n+m} \mathfrak{N}(F) - p^{4n} = p^{4n} + p^{3n+m} - p^{3n} - p^{4n} = p^{3n}(p^m - 1).$$

We then conclude by Theorem 5 that F is bent.

Note that when a = 0 or b = 0, $D_a D_b F$ is trivially equal to 0. We state below a slightly different version of Theorem 6 to exclude those trivial cases to characterize the bentness of F.

Corollary 1. Let F be a map from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then F is bent if and only if $\mathfrak{N}^{\star}(F) = p^n(p^n - 1)(p^{n-m} - 1)$ where $\mathfrak{N}^{\star}(F)$ is the number of elements of $\{(a, b, x) \in \mathbb{F}_{p^n}^{\star} \times \mathbb{F}_{p^n}^{\star} | D_a D_b F(x) = 0\}.$

Proof. It follows from Proposition 2 by noting that $\{(a, b, x) \in \mathbb{F}_{p^n}^3 | D_a D_b F(x) = 0\}$ contains the set $\{(a, 0, x), a, x \in \mathbb{F}_{p^n}, \} \cup \{(0, a, x), a, x \in \mathbb{F}_{p^n}\}$ whose cardinality equals $p^n(1 + 2(p^n - 1)) = 2p^{2n} - p^n$. Hence, the cardinality of $\mathfrak{N}^{\star}(F)$ equals $p^{3n-m} + p^{2n} - p^{2n-m} - (2p^{2n} - p^n) = p^{3n-m} - p^{2n-m} + p^n - p^{2n} = p^{2n-m}(p^n - 1) + p^n(1 - p^n) = p^n(p^n - 1)(p^{n-m} - 1).$

In the particular case of planar functions, Theorem 1 rewrites as follows

Corollary 2. Let $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$. Then, F is planar if and only if, $D_a D_b F$ does not vanish on \mathbb{F}_{p^n} for every $(a, b) \in \mathbb{F}_{p^n}^{\star} \times \mathbb{F}_{p^n}^{\star}$.

Proof. F is planar if and only if F is bent ([6, Lemma 1.1]). Hence, according to Corollary 1, F is planar if and only if $\mathfrak{N}^*(F) = 0$ proving the result.

References

- Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: Propagation characteristics and correlation-immunity of highly nonlinear boolean functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 507–522. Springer, Heidelberg (2000)
- Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Trans. Inf. Theory 49(8), 2004–2019 (2003)
- Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)
- Cesmelioglu, A., Meidl, W.: A construction of bent functions from plateaued functions. Des. Codes Crypt. 66(1–3), 231–242 (2013)
- Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Crypt. 10(2), 167–184 (1997)
- Helleseth, T., Hollmann, H., Kholosha, A., Wang, Z., Xiang, Q.: Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inf. Theory 55(11), 5272–5283 (2009)
- Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006)
- Helleseth, T., Kholosha, A.: On the dual of monomial quadratic *p*-ary bent functions. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 50–61. Springer, Heidelberg (2007)
- 9. Hou, X.-D.: p-ary and q-ary versions of certain results about bent functions and resilient functions. Finite Fields Appl. 10(4), 566–582 (2004)
- Hou, X.-D.: On the dual of a Coulter-Matthews bent function. Finite Fields Appl. 14(2), 505–514 (2008)
- Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Comb. Theory, Ser. A 40(1), 90–107 (1985)
- 12. Rothaus, O.S.: On "bent" functions. J. Comb. Theory, Ser. A 20(3), 300-305 (1976)
- Tan, Y., Yang, J., Zhang, X.: A recursive construction of p-ary bent functions which are not weakly regular. In: IEEE International Conference on Information Theory and Information Security (ICITIS), pp. 156–159 (2010)