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Preface

This volume contains the refereed proceedings of the Eighth International Conference
on Sequences and Their Applications (SETA 2014) held in Melbourne, Australia,
November 24–28, 2014. The previous seven conferences were held in Singapore 1998,
Bergen (Norway) 2001, Seoul (South Korea) 2004, Beijing (China) 2006, Lexington
(USA) 2008, Paris (France) 2010, and Waterloo (Canada) 2012.

SETA 2014 invited submissions of previously unpublished work on technical
aspects of sequences and their applications in communications, cryptography, coding,
and combinatorics, including:

– Randomness of sequences
– Aperiodic and periodic correlation of sequences
– Combinatorial aspects of sequences, including difference sets
– Sequences with applications in coding theory and cryptography
– Sequences over finite fields/rings/function fields
– Linear and nonlinear feedback shift register sequences
– Sequences for radar, synchronization, and identification
– Sequences for wireless communications
– Linear and nonlinear complexity of sequences
– Pseudorandom sequence generators
– Correlation and transformation of Boolean functions
– Multidimensional sequences and their correlation properties

Invited talks were given by Josef Dick (University of New South Wales, Australia),
Tor Helleseth (University of Bergen, Norway), Kathy Horadam (RMIT University,
Australia), and Bernhard Schmidt (Nanyang Technological University, Singapore).

The Program Committee of SETA 2014 has received 36 qualified submissions and
each was refereed by at least two experts. The Program Committee selected 24 of them
for presentation at the conference and for the inclusion in these proceedings. In
addition, these proceedings contain two refereed invited papers, which are based on the
talks given by Josef Dick and Kathy Horadam.

Our sincere thanks go to the Program Committee for their dedication in the chal-
lenging task of refereeing the submissions. Special thanks go to the General Chair,
Udaya Parampalli.

We gratefully acknowledge the School of Engineering of the University of Mel-
bourne and the Australian Mathematical Sciences Institute for their generous financial
support.

November 2014 Kai-Uwe Schmidt
Arne Winterhof
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Relationships Between CCZ and EA Equivalence
Classes and Corresponding Code Invariants

Kathy J. Horadam1(B) and Mercé Villanueva2

1 RMIT University, Melbourne, VIC 3001, Australia
kathy.horadam@rmit.edu.au

2 Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Abstract. The purpose of this paper is to provide a brief survey of CCZ
and EA equivalence for functions f : G → N where G and N are finite
and N is abelian, and, for the case f : Zm

p → Z
m
p , to investigate two codes

derived from f , inspired by these equivalences. In particular we show the
dimension of the kernel of each code determines a new invariant of the
corresponding equivalence class. We present computational results for
p = 2 and small m.

Keywords: EA-equivalence class · CCZ equivalence class · Code invari-
ant · APN function · Differential cryptanalysis

1 Introduction

The usefulness of any equivalence relation for functions between finite groups
depends on the groups, the types of functions and the purpose of the classifica-
tion. The resulting equivalence classes will have value when each class consists
of functions sharing common properties or invariants. If a potentially new func-
tion satisfying desirable conditions is found, it is important to be able to show
whether or not it is equivalent to a known function.

For functions between finite rings and fields, as functions between the under-
lying finite abelian groups, such classifications are needed for applications in
finite geometry, coding and cryptography. The equivalence classes should pre-
serve properties such as planarity or invariants such as differential uniformity or
maximum nonlinearity.

Two quite separate approaches to defining equivalence for functions over
Fpn , which preserve important algebraic or combinatorial properties across a
wide range of interesting functions, have been used.

The first of these approaches involves pre- and post-composition of a given
function f : G → G, G = (Fpn ,+), with other functions having specified charac-
teristics, to define an equivalent function. In 1964, Cavior [11] introduced weak
equivalence between f and f ′ as

f ′ = τ ◦ f ◦ σ (1)

c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 3–17, 2014.
DOI: 10.1007/978-3-319-12325-7 1



4 K.J. Horadam and M. Villanueva

for any elements τ, σ of the symmetric group Sym(G) of G. Mullen [22] restricted
τ and σ to (possibly equal) subgroups of Sym(G), so defining a relative form of
weak equivalence. Linear equivalence between f and f ′ is defined by

f ′ = τ ◦ f ◦ σ + χ , (2)

where τ, σ are linear permutations and χ is linear, so is a coarsening of weak
equivalence relative to linear permutations, by addition of a linear function.

When χ in (2) is extended to include affine functions, it defines extended
affine (EA) equivalence, introduced in [9] for p = 2, and now one of the main
classifying equivalences for cryptographic functions.

The second approach involves defining equivalence between functions in terms
of an equivalence between their graphs. This approach was originally proposed
by Carlet, Charpin and Zinoviev [10, Proposition 3] for p = 2 (as cited in [9]),
and is called CCZ equivalence. More generally, for a function f : G → N between
finite abelian groups G and N , Pott [24] suggests using properties of its graph
{(x, f(x)), x ∈ G} as a means of measuring combinatorial and spectral proper-
ties of f .

Horadam [17] generalises these two types of equivalence to functions f :
G → N between arbitrary finite groups G and N , and both types of equivalence
are shown to have a common source in the equivalence relation for splitting
semiregular relative difference sets. It is shown to be sufficient to restrict to
those functions f : G → N for which f(1) = 1, which form a group C1(G,N)
under the operation of pointwise multiplication of functions, and we will assume
this is the case throughout.

We further assume throughout that N is abelian, and is written multiplica-
tively unless context dictates otherwise. For the non-abelian case see [17,18].1

The affineness in an EA or CCZ equivalence of f is captured by a shift f · r
of f for some r ∈ G, where

f · r(x) = f(r)−1f(rx), x ∈ G .

Definition 1. Two functions f, f ′ ∈ C1(G,N) are EA equivalent if there exist
r ∈ G, θ ∈ Aut(G), γ ∈ Aut(N) and χ ∈ Hom(G,N) such that

f ′ = (γ ◦ (f · r) ◦ θ) χ . (3)

The graph of f is Gf = {(x, f(x)) : x ∈ G}. Two functions f, f ′ ∈ C1(G,N)
are CCZ equivalent if there exist r ∈ G and α ∈ Aut(G × N) such that

α(Gf ·r) = Gf ′ . (4)

If r = 1, we say f and f ′ are EA isomorphic and CCZ isomorphic, respectively.
1 In [17,18], EA equivalence is called bundle equivalence and CCZ equivalence is called

graph equivalence.
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In particular, suppose G = N = (Fpn ,+) ∼= Z
n
p . Every f ∈ C1(G,G) is

the evaluation map of some polynomial f(x) ∈ Fpn [x] of degree ≤ pn − 2
with f(0) = 0. The homomorphisms Hom(G,G) are the linearised polynomi-
als

∑n−1
j=0 aj xpj

, aj ∈ Fpn , and Aut(G) consists of the linearised permutation
polynomials. Weak equivalence (1) relative to Aut(G) is the case r = 0, χ ≡ 0
of (3) and linear equivalence (2) is the case r = 0 of (3). In [9], CCZ equivalence
uses translation by e ∈ G × G on the right, rather than on the left as in (4),
but composition with the inner automorphism defined by e shows they give the
same CCZ equivalence classes.

The equivalence defined by (3) is known implicitly to finite geometers, because
planar functions equivalent by (3) will determine isomorphic planes [12].
Planarity of f is preserved by addition of a linearised polynomial of G or pre- or
post-composition with a linearised permutation polynomial, or by linear trans-
formation. For instance, if r ∈ G, then f · r is a linear transformation.

A very large number of cryptographically strong functions over F2n have
been found in the past decade, and it is important to be able to tell if they are
genuinely new. The choice of equivalence relation best suited to classify crypto-
graphic functions has attracted considerable attention in this period. This has
been prompted by the observation that if f is invertible, then its compositional
inverse inv(f) has the same cryptographic robustness as f with respect to several
measures of nonlinearity, so the inverse of a function is often regarded as being
equivalent to it. However, inv(f) is not always EA equivalent to f .

CCZ equivalence is a coarser equivalence than EA equivalence and includes
permutations and their inverses in the same equivalence class. It is currently very
difficult to decide, either theoretically or computationally, whether two functions
are CCZ equivalent, and if so, whether they are EA-inequivalent.

The paper is organised as follows. In Sect. 2 we survey briefly the main results
known about CCZ and EA equivalence and their interrelationships. We will need
the coboundary function ∂f : G × G → N defined for f : G → N by

∂f(x, y) = f(x)−1 f(y)−1 f(xy), x, y ∈ G , (5)

which measures how much f differs from a homomorphism. Section 3 discusses
two codes inspired by these equivalences for functions over Z

m
p : the graph code

Gf and the coboundary code Df = im ∂f . We survey known results and show
that the dimension of the kernel of each code determines a new invariant of the
corresponding class. In Sect. 4 new computational results about the codes and
their invariants, and some open problems, are presented.

2 Equivalence of Functions Between Groups

Let G be a finite group and N a finite abelian group, written multiplicatively. If
α ∈ Aut(G × N), it has a unique factorisation α = η × ı, where its action on the
first component G×{1} determines a monomorphism η = (η2, η1) : G � G×N
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and its action on the second component {1} × N determines a monomorphism
ı = (ı2, ı1) : N � G × N which commutes with (η2, η1), with

α(x, a) = (η × ı)(x, a) = (ı2(a) η2(x), ı1(a) η1(x)). (6)

CCZ equivalence has the following functional form, which is a mix of weak
equivalence (1) and EA equivalence (3).

Proposition 1. [17] Two functions f, f ′ ∈ C1(G,N) are CCZ equivalent if
and only if there exist α = η × ı ∈ Aut(G × N) and r ∈ G such that:
the function ρ := (ı2 ◦ (f · r)) η2 that they define with f is a permutation of G;
and

f ′ = (ı1 ◦ (f · r) ◦ σ) (η1 ◦ σ) , (7)

where σ = inv(ρ).

Corollary 1. [17] For functions in C1(G,N), EA equivalence implies CCZ
equivalence.

Proof. If (3) holds, define α in Proposition 1 by setting ı = (1, γ) and η =
(inv(θ), χ ◦ inv(θ)). �

If α = η × ı ∈ Aut(G × N) in Proposition 1 fixes the subgroup {1} × N then
ı2 = 1 so η2 ∈ Aut(G) and (3) holds. This correspondence, proved in [9] for
p = 2, can be used as an alternative definition of EA equivalence.

Corollary 2. [17] Two functions f, f ′ ∈ C1(G,N) are EA equivalent if and
only if there exist r ∈ G and α ∈ Aut(G × N) such that

1. α(Gf ·r) = Gf ′ and
2. α({1} × N) = {1} × N . �

In a few cases (as well as those in Lemma 1 below) it is known that the
converse of Corollary 1 holds.

Corollary 3. The CCZ class of f ∈ C1(G,N) is its EA class in the following
cases:

1. if f ∈ Hom(G,N) ;
2. if gcd(|G|, |N |) = 1 .

Proof. Case 1 follows by definition. Case 2 follows from Corollary 2 because any
automorphism of G × N must fix {1} × N (and G × {1} by symmetry). The
argument is due to Pott and Zhou [25] for G abelian but holds in general, and
in particular, includes the case G ∼= Z

n
p , N ∼= Z

m
q , p, q different primes. �

The restricted set of automorphisms used to redefine EA equivalence in Corol-
lary 2 are not the only automorphisms preserving the graphs of EA equivalent
functions. It is possible to say exactly when a CCZ equivalence in (7) can be
rewritten as an EA equivalence in (3). Note that for any r ∈ G, f and f · r are
trivially EA equivalent by (3), and thus CCZ equivalent by Corollary 1, so here
we give the case for r = 1 and EA and CCZ isomorphism. The results extend
straightforwardly to the general case.
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Theorem 1. [18] Set r = 1 in (7) and (3). The CCZ isomorphism between f
and f ′ determined by α in (7) can be rewritten as an EA isomorphism (3) if and
only if

1. ρ ∈ Aut(G) and
2. there exists δ ∈ Aut(N) such that the permutation δ̂ of G × N defined by

δ̂ ◦ α((x, f(x)a)) = α((x, f(x))) (1, δ(a)), x ∈ G, a ∈ N , (8)

is an automorphism of G × N .

In this case, the rewriting as an EA isomorphism is

f ′ = (δ ◦ f ◦ σ) (χδ ◦ σ) ,

where χδ := (δ ◦ f)−1(f ′ ◦ ρ). �

2.1 The Case N ∼= Z
m
p

When N is elementary abelian, Condition 2 in Theorem1 always holds. If we
find an automorphism of G×Z

m
p which proves two functions are CCZ equivalent,

this gives us more flexibility than Corollary 2 does to determine if they are EA
equivalent. A direct proof is given for convenience.

Theorem 2. Let N = Z
m
p . Suppose f and f ′ are CCZ isomorphic. For α ∈

Aut(G × N) as in Proposition 1 (with r = 1), write f ′ = fα.
Then f and f ′ are EA isomorphic

1. ⇔ there exists α with f ′ = fα for which α({1} × N) = {1} × N
2. ⇔ there exists α with f ′ = fα for which ρ ∈ Aut(G).

Proof. 1 ⇒ 2. Suppose α({1} × N) = {1} × N . Then in (6), for all x ∈ G,
ı2(x) = 1 so ρ = η2 and is an automorphism of G.
2 ⇒ 1. Suppose ρ ∈ Aut(G). Let ι : N → {1}×N be given by ι(a) = (1, a), a ∈
N . Set J = α(ι(N)) ∩ ι(N), M = inv(α ◦ ι)(J) ≤ N and M ′ = inv(ι)(J) ≤ N ,
and let ᾰ : M → M ′ be the isomorphism induced by α, ie.

ᾰ(a) = inv(ι) ◦ α ◦ ι(a), a ∈ M.

Calculation using (5) shows im ∂f ⊆ M and ᾰ(∂f) = ∂(f ′ ◦ ρ). Then ᾰ can be
extended, by extension of a minimal generating set for M to one for N , to at
least one δ ∈ Aut(N). Thus ∂(f ′ ◦ ρ) = ᾰ(∂f) = δ(∂f) = ∂(δ ◦ f), so ∂((δ ◦
f)−1(f ′◦ρ)) = 1. Consequently, χδ = (δ◦f)−1(f ′◦ρ) ∈ Hom(G,N). Calculation
using (8) shows δ̂◦α((x, a)) = (ρ(x), δ(a)χδ(x)), so that δ̂◦α((1, a)) = (1, δ(a))
and f ′ = f δ̂◦α. �

It is worth noting that two functions that are CCZ equivalent as in Propo-
sition 1 may still be EA equivalent without the automorphism α satisfying ρ ∈
Aut(G). The following example is due to Hou [20]. A particular instance is
f : Z5 → Z5 defined by f(±1) = ∓1 and f(x) = x for all x ∈ Z5 \ {±1}; that is,
f(x) = −x3.
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Example 1. Let f : Zm
p → Z

m
p be such that f = inv(f) but f is not linear. Let

α ∈ Aut(Zm
p ×Z

m
p ) be defined by α(x, a) = (a, x) for all (x, a) ∈ Z

m
p ×Z

m
p . Then

α(x, f(x)) = (f(x), x) ∀x ∈ Z
m
p , so α(Gf ) = Ginv(f). Here f is necessarily EA

equivalent to itself (= inv(f)), but ρ is not linear. �

2.2 The Case G = Z
n
p and N = Z

m
p

From now on, we write G and N additively. It is known [7] that CCZ equiv-
alence implies EA equivalence for functions Z

n
2 → Z2. This is not always true

for functions Z
m
2 → Z

m
2 , however, as a permutation and its inverse under com-

position lie in the same CCZ class, but permutations over Z
m
2 exist which are

EA-inequivalent to their inverses.
Recall that if n ≥ m, a function f : Zn

p → Z
m
p is PN (perfect nonlinear) if for

each a �= 0 ∈ Z
n
p the function ∂(f)(a, x) takes each value of Zm

p exactly pn−m

times. A function f : Zm
2 → Z

m
2 is APN (almost perfect nonlinear) if for each

a �= 0, b ∈ Z
m
2 the equation ∂(f)(a, x) = b has no more than two solutions x in

Z
m
2 . In some important instances of PN and APN functions, CCZ equivalence

does imply EA equivalence.

Lemma 1. Over Z
m
p , CCZ equivalence implies EA equivalence in the following

cases.

1. [19] If p = 2 and m ≤ 3.
2. [21] If p is odd, two PN functions are CCZ equivalent if and only if they are

EA equivalent.
3. [4,29] If p = 2 and m ≥ 2, two quadratic APN functions are CCZ equivalent

if and only if they are EA equivalent. �

More generally, for G = Z
n
p with n large enough and N = Z

m
p with m > 1,

CCZ equivalence does not imply EA equivalence.

Theorem 3 (Budaghyan, Carlet, Helleseth [7,8]). Let p be an odd (even) prime,
n ≥ 3 (n ≥ 5) and k > 1 the smallest divisor of n. Then for any m ≥ k,
CCZ equivalence of functions from Z

n
p to Z

m
p is strictly more general than EA

equivalence. �

Even though the two equivalences can be compared directly using either
the functional or the graphical approach, it is more computationally difficult to
check functions for CCZ equivalence than for EA equivalence, and more com-
putationally difficult to generate CCZ equivalence classes than EA equivalence
classes.

One advantage of determining either equivalence lies in the properties shared
by equivalent functions, and the chance it provides of replacing a complex func-
tion by a simpler equivalent function to improve efficiency in applications.

A recent illustration of this appears in [27] for G = Z
m
2 × Z

m
2 . It is shown,

after mapping each element of Z2m to the coefficient vector of its binary repre-
sentation, that addition modulo 2m is CCZ equivalent to a very simple quadratic
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vectorial Boolean function. This is applied to simplify attacks on cryptosystems
which employ addition modulo 2m.

Conversely, finding more complex functions which are EA-inequivalent to
known simple functions but which nonetheless possess similar desirable proper-
ties can improve cryptographic security or enlarge the known set of sequences
with optimal correlation properties.

A recent illustration of this appears in [15] where it is shown that for p ≥ 5
and m an integer that does not divide pm + 1, then the function f(x) = xpm+2

over Z
m
p is an Alltop function (that is, its differential functions are PN) which

is EA-inequivalent to the Alltop function f ′(x) = x3, even though ∂f and ∂f ′

are EA equivalent PN functions.

2.3 The Case G = N = Z
m
2

EA equivalence partitions the set of (non-affine) functions over Z
m
2 into classes

with the same nonlinearity, differential uniformity and algebraic degree [9]. CCZ
equivalence partitions the set of functions over Z

m
2 into classes with the same

Walsh spectrum, differential uniformity and resistance to algebraic cryptanalysis
[9,10] but not necessarily the same algebraic degree.

It remains very difficult to tell when CCZ equivalent functions are EA-
inequivalent. Some results for APN functions in small orders are known. Com-
putation has shown [5] that there is 1 CCZ class of APN functions over Z

4
2,

containing 2 EA classes; and 3 CCZ classes of APN functions over Z
5
2, contain-

ing 1, 3 and 3 EA classes, respectively. There are at least 14 CCZ classes of APN
functions over Z

6
2 [5], at least 302 over Z

7
2 and at least 33 over Z

8
2 [28], and at

least 11 over Z9
2 [14]. Edel [13] has computed the partition of many of them into

EA classes. He shows, for example, that, for n = 5, 6, 7, 8 and 9 the CCZ class of
the Gold quadratic APN function f(x) = x3 contains 3, 3, 3, 2 and 5 EA classes,
respectively. Summaries appear in [6,21].

3 Code Invariants of EA and CCZ Classes of Functions
Over Z

m
p

For cryptographic applications, the focus is to find functions over Zm
2 which have

simultaneously low differential uniformity (APN or 4-uniform), high nonlinearity
and algebraic degree ≥ 4 and which are, preferably, permutations. This aim can
be aided by working with specific codes they generate. The graph code for APN
functions was introduced in [6] and the coboundary code was introduced in [19].

Definition 2. Let f : Zm
p → Z

m
p satisfy f(0) = 0.

Define the graph code of f to be the p-ary code
Gf = {(x, f(x)) : x ∈ Z

m
p } ⊆ Z

2m
p .

Define the coboundary code of f to be the p-ary code
Df = {∂f(x, y) : x, y ∈ Z

m
p } ⊆ Z

m
p .

The linear codes they generate are denoted 〈Gf 〉 and 〈Df 〉, respectively.
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Let n(f) = rankp Df = dimp 〈Df 〉 and s(f) = rankp Gf = dimp 〈Gf 〉 ; that is
|〈Df 〉| = pn(f) and |〈Gf 〉| = ps(f).

For the remainder of this Section we will investigate the properties of, and
relationships between, these codes. The following simple properties of their
dimensions appear in [19, Theorem 4].

Theorem 4. 1. 0 ≤ n(f) ≤ m and m ≤ s(f) ≤ 2m;
2. n(f) = 0 ⇔ f is linear ⇔ Gf = 〈Gf 〉 ⇔ s(f) = m;
3. {0} × 〈Df 〉 < 〈Gf 〉 and n(f) < s(f);
4. if n(f) = m then s(f) = 2m ; i.e. if Df generates Z

m
p then Gf generates

Z
2m
p . �

Both these dimensions are related to the differential uniformity Δ(f), which
is defined to be the maximum over a �= 0 ∈ Z

m
p of the number of solutions of

− f(x) + f(x + a) = b; b ∈ Z
m
p . (9)

Lemma 2 [19]. For each f , n(f) ≥ m − �logp Δ(f)� . In particular,

if p is odd and 1 ≤ Δ(f) < p , n(f) = m;
if p = 2 and Δ(f) = 2 , n(f) = m or n(f) = m − 1;
if p = 2 and Δ(f) = 4 , n(f) = m or n(f) = m − 1 or n(f) = m − 2. �

A further parameter of each of the codes Df and Gf is the dimension of its
kernel. Recall that the p-kernel of a code C over Zp of length n is defined [23] as

K(C) = {x ∈ Z
n
p : x + C = C} .

If 0 ∈ C, then K(C) is a linear subspace of C and C can be written as the union
of cosets of K(C). If so, K(C) is the largest such linear code for which this is
true. For p = 2, the kernel was introduced in [2].

Definition 3. Let f : Zm
p → Z

m
p satisfy f(0) = 0, so K(Gf ) is a linear subcode

of Gf and K(Df ) is a linear subcode of Df . Set K(f) = dimp K(Gf ).
Set k(f) = dimp K(Df ) and let M(f) be the multiset {{k(f · r), r ∈ Z

m
p }},

denoted M(f) = {0∧a0, 1∧a1, . . . , m
∧am}, for some a0, . . . , am with

∑m
i=0 ai =

pm.

It is known that differential uniformity Δ(f) is a combinatorial invariant of
the EA equivalence class of f [16, Corollary 9.52.1]. In fact this is a consequence
of it being a combinatorial invariant of the CCZ equivalence class of f .

Lemma 3. If f and f ′ are CCZ equivalent, then Δ(f) = Δ(f ′).

Proof. Differential uniformity is a combinatorial invariant of CCZ isomorphism
[18, Lemma 5], so if α(Gf ·r) = Gf ′ as in (4) then Δ(f · r) = Δ(f ′). It remains
only to show that Δ(f · r) = Δ(f). Suppose a �= 0 ∈ Z

m
p . Then for each b ∈ Z

m
p ,

{x ∈ Z
m
p : −(f ·r)(x)+(f ·r)(x+a) = b} = {x ∈ Z

m
p : −f(r+x)+f(r+x+a) =

b} = {y ∈ Z
m
p : − f(y) + f(y + a) = b} and the set sizes are identical. �
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We show that the dimensions n(f) and s(f) are algebraic invariants of the
EA and CCZ equivalence classes of f , respectively.

Theorem 5. If f and f ′ are EA equivalent, then n(f) = n(f ′). If f and f ′

are CCZ equivalent, then s(f) = s(f ′).

Proof. The dimensions n(f) and s(f) are algebraic invariants of EA and CCZ
isomorphism, respectively [19, Theorem 5], so that we only need to consider
f ′ = f · r, r �= 0 and note (f · r) · (−r) = f . Then ∂(f · r)(x, y) = ∂f(r + x, y) −
∂f(r, y) ∈ 〈Df 〉 so by symmetry 〈Df ·r〉 = 〈Df 〉. Also Gf ·r = Gf − (r, f(r)) so
〈Gf ·r〉 = 〈Gf 〉. �

Now we show that M(f) and K(f) are algebraic invariants of the EA and CCZ
equivalence classes of f , respectively.

Theorem 6. If f and f ′ are EA equivalent, then M(f) = M(f ′). If f and f ′

are CCZ equivalent, then K(f) = K(f ′).

Proof. If f and f ′ are EA equivalent, suppose θ, γ ∈ Aut(Zm
p ), χ ∈ Hom(Zm

p ,Zm
p )

and r ∈ Z
m
p are such that f ′ = γ ◦ (f · r) ◦ θ + χ , so that ∂f ′(ϑ(x), ϑ(y)) =

γ(∂(f · r)(x, y)) for all x, y ∈ Z
m
p , where ϑ = inv(θ). Suppose c ∈ K(Df ·r), so

that c = ∂(f · r)(a, b) for some a, b ∈ Z
m
p and c+∂(f · r)(x, y) = ∂(f · r)(x′, y′).

Then γ(c)+ γ(∂(f · r)(x, y)) = γ(∂(f · r)(x′, y′)) so γ(c) ∈ K(Df ′). Thus γ is an
isomorphism between K(Df ·r) and K(Df ′), so that k(f ′) = k(f · r) ∈ M(f). By
symmetry, k(f) ∈ M(f ′) and M(f) = M(f ′).

If f and f ′ are CCZ isomorphic, α ∈ Aut(Z2m
p ) and α(Gf ) = Gf ′ , suppose

c ∈ K(Gf ). Then c = (a, f(a)) for some a ∈ Z
m
p and if c+(x, f(x)) = (x′, f(x′))

then α(c) + α((x, f(x))) = α((x′, f(x′))) and α(c) ∈ K(Gf ′). Thus α is an
isomorphism between K(Gf ) and K(Gf ′). Finally, K(Gf ) = K(Gf ·r) for all r. �

When p = 2, we are interested in additional properties of the codes Gf and Df .

Definition 4. Let f : Z
m
2 → Z

m
2 satisfy f(0) = 0. Let H be an m × (2m −

1) parity check matrix of the Hamming code Hm, that is, its columns are the
transposes x� of the non-zero row vectors x ∈ Z

m
2 . Define

Hf =
(

H
H(f)

)

=
( · · · x� · · ·

· · · f(x)� · · ·
)

.

Let Cf be the linear code of length 2m −1 admitting Hf as a parity check matrix.

Note that Cf is a subcode of Hm. Since Gf = H�
f ∪ {(0,0)}, 〈H�

f 〉 = 〈Gf 〉, and
〈Hf 〉 is the dual of Cf . The dimension of Cf , or equivalently the dimension of
the extended code C∗

f , is 2m − 1 − s(f). Therefore, the rank of Gf can also be
computed using the dimension of C∗

f .

Proposition 2 [6]. Let f and f ′ be maps from Z
m
2 to Z

m
2 with dim2〈Hf 〉 =

dim2〈Hf ′〉 = 2m. Then, f and f ′ are CCZ equivalent if and only if their extended
codes C∗

f and C∗
f ′ are equivalent. �
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If f is APN, the dimension s(f) is already known to be maximal, ie. s(f) =
2m, by [6]. It has also been proved that s(f) = 2m for another class of functions,
the AF permutations [26], but the AF property itself is not an invariant of CCZ
equivalent permutations.

Consideration of Theorem 4 raises the possibility that s(f) and n(f) are not
independent invariants, which we formulate as a conjecture in the next Section.
However we demonstrate computationally that K(f) and M(f) are independent.

4 Examples for p = 2 with Low Dimensions

In this Section, we concentrate on computations for p = 2 and functions which
are either monomial power functions or have differential uniformity 4. Let Sn be
the symmetric group of permutations of length n, where n = 2m − 1.

4.1 Monomial Power Functions

Table 1 shows the classification of all monomial power functions into CCZ equiv-
alence classes for all 3 ≤ m ≤ 7. Additional properties have been computed, and
included in the table. These are: whether they are APN; the pair (rank, kernel
dimension) = (s(f),K(f)) for the binary code Gf ; and the possibilities for the
number of solutions of (9) for p = 2.

For m = 5, it is known that the three CCZ classes of APN functions in Table 1
contain 3, 3 and 1 EA classes respectively [5]. Two of the EA classes in the CCZ
equivalence class of x3 contain the monomials x3 and x11, respectively, and two
of the EA classes in the CCZ equivalence class of x5 contain the monomials x5

and x7, respectively. Non-monomial representatives of each other EA class are
given in [5].

For m = 7, it is only necessary to check the cases x7 and x21 computationally,
since the other CCZ classes of non-APN monomials can be distinguished by the
number of solutions of (9).

For m = 8, a classification of monomial power functions by cyclotomic coset,
differential uniformity and nonlinearity is given in [1, Table 3]. After combining
cyclotomic cosets containing f with those containing inv(f) (recall that f and
inv(f) are CCZ equivalent [10]) and comparing the number of solutions of (9)
for representative power functions, the only power functions which still need
distinguishing are x15 and x45. The graph codes corresponding to these two
functions have s(f) = 2m = 16, and as the two extended codes are inequivalent,
the functions are CCZ inequivalent by Proposition 2. The classification in [1,
Table 3] reduces to a list of 28 CCZ classes of monomial power functions. These
are given in Table 2, together with their differential uniformity Δ(f) and the
values (s(f),K(f)).

We have computed the invariant multiset M(f) for every f(x) = xi in
Tables 1 and 2. The results appear in Table 3. In these cases we have very simple
and uniform results in terms of the cyclotomic coset Ci of i mod 2m − 1. For
instance, for m = 4, M(x5) = {2∧16} and for m = 6, M(x9) = {3∧64}.
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Table 1. Classification of all monomial power functions f(x) = xi for 3 ≤ m ≤ 7 into
CCZ equivalence classes, and some properties of these classes.

m f APN j, for all xj CCZ equivalent (s(f), Number of solutions of (9)

K(f))

3 x1 no 1,2,4 (3,3) {0∧49, 8∧7}
3 x3 yes 3,5,6 (6,0) {0∧28, 2∧28}
4 x1 no 1,2,4,8 (4,4) {0∧225, 16∧15}
4 x3 yes 3,6,9,12 (8,0) {0∧120, 2∧120}
4 x5 no 5,10 (6,0) {0∧180, 4∧60}
4 x7 no 7,11,13,14 (8,0) {0∧135, 2∧90, 4∧15}
5 x1 no 1,2,4,8,16 (5,5) {0∧961, 32∧31}
5 x3 yes 3,6,11,12,13,17,21,22,24,26 (10,0) {0∧496, 2∧496}
5 x5 yes 5,7,9,10,14,18,19,20,25,28 (10,0) {0∧496, 2∧496}
5 x15 yes 15,23,27,29,30 (10,0) {0∧496, 2∧496}
6 x1 no 1,2,4,8,16,32 (6,6) {0∧3969, 64∧63}
6 x3 yes 3,6,12,24,33,48 (12,0) {0∧2016, 2∧2016}
6 x5 no 5,10,13,17,19,20,26,34,38,40,41,52 (12,0) {0∧3024, 4∧1008}
6 x7 no 7,14,28,35,49,56 (12,0) {0∧2205, 2∧1701, 4∧63, 6∧63}
6 x9 no 9,18,36 (9,0) {0∧3528, 8∧504}
6 x11 no 11,22,23,25,29,37,43,44,46,50,53,58 (12,0) {0∧2520, 2∧1323, 6∧126, 10∧63}
6 x15 no 15,30,39,51,57,60 (12,0) {0∧2205, 2∧1764, 8∧63}
6 x21 no 21,42 (8,0) {0∧3780, 12∧126, 20∧126}
6 x27 no 27,45,54 (9,0) {0∧3528, 2∧63, 6∧189, 8∧63, 12∧189}
6 x31 no 31,47,55,59,61,62 (12,0) {0∧2079, 2∧1890, 4∧63}
7 x1 no 1,2,4,8,16,32,64 (7,7) {0∧16129, 128∧127}
7 x3 yes 3,6,12,24,43,45,48,53,65,85,86,90,96,106 (14,0) {0∧8128, 2∧8128}
7 x5 yes 5,10,20,27,33,40,51,54,66,77,80,89,102,108 (14,0) {0∧8128, 2∧8128}
7 x7 no 7,14,28,55,56,59,67,91,93,97,109,110,112,118 (14,0) {0∧9906, 2∧5461, 6∧889}
7 x9 yes 9,15,17,18,30,34,36,60,68,71,72,99,113,120 (14,0) {0∧8128, 2∧8128}
7 x11 yes 11,13,22,26,35,44,49,52,69,70,81,88,98,104 (14,0) {0∧8128, 2∧8128}
7 x19 no 19,25,38,47,50,61,73,76,87,94,100,107,117,122 (14,0) {0∧10795, 2∧2794, 4∧2667}
7 x21 no 21,31,37,41,42,62,74,79,82,84,103,115,121,124 (14,0) {0∧9906, 2∧5461, 6∧889}
7 x23 yes 23,29,39,46,57,58,75,78,83,92,101,105,114,116 (14,0) {0∧8128, 2∧8128}
7 x63 yes 63,95,111,119,123,125,126 (14,0) {0∧8128, 2∧8128}

Thus M(f) can distinguish between some, but not all, representatives of
distinct CCZ classes for these special cases. Furthermore, for each CCZ class in
these Tables which consists of APN functions but contains more than one EA
class, we computed M(f) for a representative function from each EA class, and
obtained exactly the same M(f) for each EA class. In other words, in all these
cases, k(f) itself is an invariant of EA class. It is determined by the size of a
corresponding cyclotomic coset, and does not distinguish between different EA
classes in the same CCZ class of APN functions.

However, this does not hold in general, as we shall see in the following Sub-
section.

4.2 Differentially 4-uniform Permutations

For m = 4, in general (not only considering monomial power permutations), it
is well known that there are no APN permutations.

According to [19] there are 5 EA equivalent classes of differentially 4-uniform
permutations, and as they all have different extended Walsh spectra, they each
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Table 2. Classification of representative functions f(x) = xi for m = 8 into CCZ
equivalence classes, and some invariants of these classes. Classes with Δ(f) = 2 are the
APN functions.

i Δ(f) (s(f), K(f)) i Δ(f) (s(f), K(f)) i Δ(f) (s(f), K(f)) i Δ(f) (s(f), K(f))

1 256 (8,8) 15 14 (16,0) 31 16 (16,0) 63 6 (16,0)

3 2 (16,0) 17 16 (12,0) 39 2 (16,0) 85 84 (10,0)

5 4 (16,0) 19 16 (16,0) 43 30 (16,0) 87 30 (16,0)

7 6 (16,0) 21 4 (16,0) 45 14 (16,0) 95 4 (16,0)

9 2 (16,0) 23 16 (16,0) 51 50 (12,0) 111 4 (16,0)

11 10 (16,0) 25 6 (16,0) 53 16 (16,0) 119 22 (12,0)

13 12 (16,0) 27 26 (16,0) 55 12 (16,0) 127 4 (16,0)

Table 3. Invariant multiset M(f) for the monomial power functions f(x) = xi for all
3 ≤ m ≤ 8 in Tables 1 and 2, where Ci is the cyclotomic coset of i mod 2m − 1.

i M(f(x) = xi)

i ∈ C1 {0∧2m}
i �∈ C1 {|Ci|∧2m}

form a single CCZ equivalence class. On the other hand, using MAGMA [3] and
checking all differentially 4-uniform permutations in S15, there are exactly 10
CCZ equivalence classes, given by the following permutations:

σ1 = (5, 6, 7, 8)(10, 12, 11, 15, 13, 14) (= f3 in [19]),
σ2 = (5, 6, 7, 8)(10, 12, 14, 13)(11, 15) (= f4 in [19]),
σ3 = (5, 6, 8)(7, 10, 12)(9, 11, 15, 14, 13) (= f5 in [19]),
σ4 = (5, 6, 8)(7, 10, 12)(9, 11, 15, 14) (= f6 in [19]),
σ5 = (5, 6, 8)(7, 11, 14, 10, 12, 13),
σ6 = (5, 6, 8)(7, 11, 14)(10, 12, 13) (= f7 in [19]),
σ7 = (5, 6, 8)(7, 11, 13, 15)(9, 12, 10),
σ8 = (5, 6, 8)(7, 11, 13)(9, 12, 14, 10),
σ9 = (5, 6, 8)(7, 11, 13, 10, 9, 12, 14),
σ10 = (5, 6, 8)(7, 11)(9, 12, 10, 13, 15, 14) .

Table 4 corrects [19, Table 2], where the CCZ classes of σ1, σ2, σ3, σ4, σ6 were
claimed to exhaust the differentially 4-uniform classes of permutations fixing 0
over Z

4
2. For every f in Table 4, the dimension K(f) of the kernel of the binary

code Gf is the minimum value 0 and the rank s(f) is the maximum value 2m = 8,
so Proposition 2 applies. Computation of n(f) confirms that n(f) = 4 = m in
all cases. Table 4 lists invariants of the 10 CCZ equivalence classes: the order of
the automorphism group of C∗

f ; the minimum distance and covering radius of C∗
f

as a pair (d, ρ); the weight distribution of the dual of C∗
f ; and the possibilities

for the number of solutions of (9).
All these functions have n(f) = 4 = m so that Theorem 4 applies, and we

observe that n(f) = s(f) − 4. A computational check of the 7 CCZ classes of
functions over Z

3
2 ([19, Table 1]) shows that even though only f2 and f4 have

n(f) = 3, it remains true that n(f) = s(f) − 3. We conjecture that this holds in
general.
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Table 4. Classification of all differentially 4-uniform permutations of order 15 into
CCZ equivalence classes, and some invariants of these classes.

f |Aut(C∗
f )| (d, ρ) Weight distribution of the Number of

dual of C∗
f solutions of (9)

σ1 4 (4, 5) 1 + x2 + 28x4 + 119x6 + 214x8+ {0∧141, 2∧78, 4∧21}
119x10 + 28x12 + x14 + x16

σ2 96 (4, 5) 1 + x2 + 30x4 + 111x6 + 226x8+ {0∧144, 2∧72, 4∧24}
111x10 + 30x12 + x14 + x16

σ3 1152 (4, 4) 1 + 36x4 + 96x6 + 246x8 + 96x10+ {0∧144, 2∧72, 4∧24}
36x12 + x16

σ4 16 (4, 5) 1 + 32x4 + 112x6 + 222x8 + 112x10+ {0∧138, 2∧84, 4∧18}
32x12 + x16

σ5 12 (4, 5) 1 + 32x4 + 112x6 + 222x8 + 112x10+ {0∧138, 2∧84, 4∧18}
32x12 + x16

σ6 4 (4, 5) 1 + 30x4 + 120x6 + 210x8 + 120x10+ {0∧135, 2∧90, 4∧15}
30x12 + x16

σ7 28 (4, 5) 1 + x2 + 28x4 + 119x6 + 214x8+ {0∧141, 2∧78, 4∧21}
119x10 + 28x12 + x14 + x16

σ8 20 (4, 5) 1 + 30x4 + 120x6 + 210x8 + 120x10+ {0∧135, 2∧90, 4∧15}
30x12 + x16

σ9 16 (4, 5) 1 + 30x4 + 120x6 + 210x8 + 120x10+ {0∧135, 2∧90, 4∧15}
30x12 + x16

σ10 720 (4, 4) 1 + 30x4 + 120x6 + 210x8 + 120x10+ {0∧135, 2∧90, 4∧15}
30x12 + x16

Conjecture 1. Let f : Zm
p → Z

m
p satisfy f(0) = 0. Then n(f) = s(f) − m.

However, it is not the case that all parameters of the codes Df and Gf must
be related. For instance K(f) = 0 for every f in Table 4, but M(f) varies.

We have calculated
M(σ1) = {0∧8, 1∧4, 4∧4},
M(σ2) = {1∧6, 4∧10},
M(σ3) = {4∧16},
M(σ4) = {0∧4, 4∧12},
M(σ5) = {0∧6, 4∧10},
M(σ6) = {0∧4, 4∧12},
M(σ7) = {0∧15, 4},
M(σ8) = {0∧10, 4∧6},
M(σ9) = {0∧8, 4∧8},
M(σ10) = {4∧16}.
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So the two invariants K(f) and M(f) are independent in general. Furthermore,
in these examples, the dimension k(f ·r) of the kernel of the code Df ·r does vary
with the affine term r within an EA equivalence class.

4.3 Open Questions

It seems to us that Df provides a new code-based technique for investigating
EA equivalence classes, while Gf can be used for investigating CCZ classes and,
in some cases, EA classes [4,6]. For future work, we expect that further study of
the relationship between the invariants n(f) and s(f), and M(f) and K(f), will
clarify how CCZ classes partition into EA classes, particularly for functions with
low differential uniformity. Does K(f) take any other values than the two, 0 and
m, observed so far? Can n(f) or M(f) distinguish between two CCZ equivalent
functions which are EA-inequivalent, especially for APN functions? The cases
n(f) = m, m − 1 and m − 2 (for both odd and even p) are the most interesting.
Do APN functions f exist for which n(f) = m − 1? Of course, if the answer
to Conjecture 1 is “yes” then the answer to this question is “no”. We can ask
if, for the EA equivalence class of a power function f , the constant value of
k(f ·r), r ∈ Z

m
2 and its dependence on a cyclotomic coset that we have observed

in low dimensions, can be proved to hold in general. We can also ask if there is
a relationship between n(f) or M(f) and the algebraic degree of f , since they
are all invariants of EA equivalence class.
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23. Phelps, K.T., Rifà, J., Villanueva, M.: Kernels and p-kernels of pr-ary 1-perfect
codes. Des. Codes Cryptogr. 37, 243–261 (2001)

24. Pott, A.: Nonlinear functions in abelian groups and relative difference sets. Discr.
Appl. Math. 138, 177–193 (2004)

25. Pott, A., Zhou, Y.: CCZ and EA equivalence between mappings over finite Abelian
groups. Des. Codes Cryptogr. 66(1–3), 99–109 (2013)
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Abstract. In this paper, we introduce a class of cubic rotation sym-
metric (RotS) functions and prove that it can yield bent and semi-bent
functions. To the best of our knowledge, this is the second primary
construction of an infinite class of nonquadratic RotS bent functions
which could be found and the first class of nonquadratic RotS semi-bent
functions. We also study a class of idempotents (giving RotS functions
through the choice of a normal basis of GF (2n) over GF (2)). We derive
a characterization of the bent functions among these idempotents and
we relate their precise determination to a problem studied in the frame-
work of APN functions. Incidentally, the proofs of bentness given here
are useful for a paper studying a construction of idempotents from RotS
functions, entitled “A secondary construction and a transformation on
rotation symmetric functions, and their action on bent and semi-bent
functions” by the same authors, to appear in the journal JCT series A.
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1 Introduction

Boolean functions play a critical role in cryptography as well as in the design
of circuits and chips for digital computers. They can be defined over the finite
field GF (2n) and represented as univariate polynomials, or over the vector space
GF (2)n and represented as f(x0, x1, . . . , xn−1), the latter representation being
deduced from the former (and vice versa) through the choice of a basis of the
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GF (2)-vector space GF (2n). Idempotents, introduced by Filiol and Fontaine
in [12,13] are polynomials over GF (2n) such that f(z) = f(z2), for all z ∈
GF (2n). Rotation symmetric (RotS) Boolean functions, introduced by Pieprzyk
and Qu [24], are invariant under circular translation of indices. They can be
obtained from idempotents (and vice versa) through the choice of a normal
basis of GF (2n). Such class of Boolean functions is of interest because of its
smaller search space (≈ 2

2n
n ) comparably to the whole space (= 22

n

), which
allows investigating functions for a number of variables larger (by a factor of 2),
and also because of the more compact representation of RotS functions. It has
been experimentally demonstrated that the class of RotS Boolean functions is
extremely rich in terms of cryptographically significant Boolean functions. For
example, Kavut et al. have found Boolean functions on 9 variables with nonlin-
earity 241 [17], which solved an almost three-decade old open problem. Moti-
vated by this study, important cryptographic properties such as nonlinearity,
balancedness, correlation immunity, algebraic degree and algebraic immunity of
these functions have been investigated at the same time and encouraging results
have been obtained [10,14,27,28]. Note that RotS functions are also interesting
for the design of Substitution Boxes in block ciphers (see [16,25]).

Plateaued functions [29] represent much interest for the study of Boolean
functions in cryptography, as they can possess desirable cryptographic properties
such as high onlinearity, resiliency, propagation criteria, low additive autocor-
relation and high algebraic degree. Their class is larger than that of “partially
bent functions” introduced in [3]. Two important classes of plateaued functions
are those of bent functions and of semi-bent functions, due to their algebraic
and combinatorial properties. An n-variable (n even) bent function is a Boolean
function with the maximum possible nonlinearity 2n−1 − 2n/2−1. Such functions
provide the best resistance against attacks by affine approximations, such as
the fast correlation cryptanalysis (but are weak against other attacks like the
Siegenthaler correlation attack and the fast algebraic attack). They have been
extensively investigated in cryptography (Rothaus who introduced them in [26]
worked in this framework), spread spectrum, coding theory (the Kerdock codes
are made of affine functions and bent functions) and combinatorial design (in
relation with difference sets). A lot of research has been devoted to designing
constructions of bent functions. The two best known constructions produce the
so-called Maiorana-McFarland class, denoted by M [11,21] and the PS class [11].
A survey on bent functions can be found in [2].

It is well known that the Walsh transform of a bent function only takes on
the values ±2

n
2 . Hence, bent functions are unbalanced and exist only for even

number of variables. For even n, a semi-bent function has Walsh transform taking
values 0 and ±2

n
2 +1 only; it can also be called 3-valued almost optimal. Semi-bent

functions can provide protection against fast correlation attack and more general
cryptanalysis by affine approximation [22], and unlike bent functions can also be
balanced and resilient. A number of constructions of semi-bent functions have
been developed. For detailed discussion please see [5,9,23] and the references
therein.
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In [15], the authors presented a class of cubic RotS bent functions. But such
examples of bent RotS functions are very few. Further research is needed to
find other classes of cryptographically important RotS functions. In [6], the
authors studied the following transformation of RotS functions into idempo-
tents: given, f(x0, x1, . . . , xn−1) a RotS function over GF (2)n, the function
f ′ is defined over GF (2n) as: f ′(z) = f(z, z2, . . . , z2

n−1
). If the ANF of f is

f(x0, x1, . . . , xn−1) =
∑

u∈GF (2)n auxu, where x0, x1, . . . , xn−1 and au belong to

GF (2), we have: f ′(z) =
∑

u∈GF (2)n au

∏n−1
i=0 (z2

i

)ui =
∑

u∈GF (2)n auz
∑n−1

i=0 ui2
i

.
The transformation f �→ f ′ maps any RotS Boolean function f to a Boolean
idempotent f ′ over GF (2n). The algebraic degree is preserved. All Boolean idem-
potents are obtained this way, with uniqueness. This transformation, contrary
to the decomposition of an idempotent over a normal basis, allows obtaining
infinite classes from infinite classes. The question whether such infinite classes
exist for all situations “f bent / not bent” and “f ′ bent / not bent” is studied
in [6]. The proofs given in the present paper allow to reply positively.

We organize this paper as follows. Section 2 is an introductory part providing
some preliminary definitions and results. In Sect. 3, we characterize the Walsh
transform of a class of cubic RotS functions ft. Necessary and sufficient condi-
tions for ft to be bent or semi-bent functions are obtained. Section 4 presents a
class of idempotent bent functions.

2 Preliminaries

We first recall some general definitions about Boolean functions. Denote by
GF (2)n the n-dimensional vector space over the finite field GF (2) and by + the
addition operation over GF (2). Let 0 and 1 be the all-zero vector and the all-
one vector of GF (2)n respectively. An n-variable Boolean function f(x), where
x = (x0, x1, . . . , xn−1) ∈ GF (2)n, is a mapping from GF (2)n to GF (2), which
can be represented uniquely as a polynomial, called its algebraic normal form
(ANF), of the form:

f(x0, x1, . . . , xn−1) =
∑

u∈GF (2)n

λu(
n−1∏

i=0

xui
i ), λu ∈ GF (2).

The number of variables in the highest order product term with nonzero coeffi-
cient is called its algebraic degree. A Boolean function is said to be affine if its
degree does not exceed 1. The set of all n-variable affine functions is denoted
by An(x). We call a function nonlinear if it is not in An(x). The Hamming
weight wH(x) of a binary vector x ∈ GF (2)n is the number of its nonzero coor-
dinates, and the Hamming weight wH(f) of a Boolean function f is the size of
its support {x ∈ GF (2)n|f(x) = 1}. If wH(f) = 2n−1, we call f(x) balanced. We
say two n-variable Boolean functions f(x) and g(x) are affinely equivalent if
g(x) = f(Ax+b) where b is an element of GF (2)n and A is an n×n nonsingular
binary matrix. It is easy to see that if f(x) and g(x) are affinely equivalent then
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wH(f) = wH(g). Let x = (x0, x1, . . . , xn−1) and w = (w0, w1, . . . , wn−1) both
belong to GF (2)n and w ·x be an inner product in GF (2)n, for instance the usual
inner product w0x0+w1x1+· · ·+wn−1xn−1. Then the Walsh transform of f(x) is
the real valued function over GF (2)n defined as: Wf (w) =

∑

x∈GF (2)n
(−1)f(x)+w·x.

Definition 1. Let n be even. A Boolean function f(x) on GF (2)n is called bent
if its Walsh transform satisfies Wf (w) = ±2

n
2 , for all w ∈ GF (2)n.

Definition 2. Let n be any positive integer. A Boolean function f(x) on GF (2)n

is called semi-bent if its Walsh transform satisfies Wf (w) = 0,±2�n+1
2 �, for all

w ∈ GF (2)n.

Maiorana and McFarland [21] introduced independently a class of bent func-
tions by concatenating affine functions. We call the Maiorana-McFarland class
M the set of all the Boolean functions on GF (2)2m = {(x, y) |x, y ∈ GF (2)m},
of the form:

f(x, y) = π(x) · y + h(x), (1)

where π is any mapping from GF (2)m to GF (2)m and h(x) is any Boolean
function on GF (2)m. Then f is bent if and only if π is bijective.

Let xi ∈ GF (2) for 0 ≤ i ≤ n − 1. For 0 ≤ k ≤ n − 1, we define the left
k-cyclic shift operator ρk

n as ρk
n(xi) = x(i+k)modn (this is an abuse of notation

since x(i+k)modn does not depend on xi but on another coordinate of x; but this
notation will simplify the presentation below). Let (x0, x1, . . . , xn−1) ∈ GF (2)n,
we can extend the definition of ρk

n on tuples as follows: ρk
n(x0, x1, . . . , xn−1) =

(ρk
n(x0), ρk

n(x1), . . . , ρk
n(xn−1)), and on monomials as follows: ρk

n(xi0xi1 . . . xil) =
ρk

n(xi0)ρ
k
n(xi1) . . . ρk

n(xil) with 0 ≤ i0 < i1 < · · · < il ≤ n − 1.

Definition 3. A Boolean function f on GF (2)n is called rotation symmetric if
for each input (x0, x1, . . . , xn−1) ∈ GF (2)n, we have:

f(ρk
n(x0, x1, . . . , xn−1)) = f(x0, x1, . . . , xn−1), for 0 ≤ k ≤ n − 1.

Let us denote by Gn(xi0xi1 . . . xil) = {ρk
n(xi0xi1 . . . xil), for 0 ≤ k ≤ n − 1}

the orbit of the monomial xi0xi1 . . . xil . We select the representative element of
Gn(xi0xi1 . . . xil) as the lexicographically first element. For instance, the repre-
sentative element of the orbit {x0x1x2, x1x2x3, x2x3x0, x3x0x1} is x0x1x2. For a
RotS function f , the existence of a representative term x0xi1 . . . xil implies the
existence of all the terms from Gn(x0xi1 . . . xil) in the ANF of f .

3 Constructions of Rotation Symmetric Bent
and Semi-bent Functions

The lemma below is straightforward and well-known.

Lemma 1. Assume that a Boolean function f : GF (2)2m → GF (2) can be
expressed in the form (1). Then the following conditions hold.
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1. If π is a 2-to-1 mapping, then f is a semi-bent function.
2. If, for every b ∈ GF (2)m, the set Sb = {x ∈ GF (2)m|π(x) = b} is either

empty or an s-dimensional affine subspace of GF (2)m, then f is semi-bent
if and only if s = 1, or s = 2 and the restriction of h to Sb, viewed as a
2-variable function, has algebraic degree 2 (i.e. has odd Hamming weight).

Now, we are able to prove our main theorem.

Theorem 1. Let ft(x) be the n-variable RotS Boolean function of the form:

ft(x) =
n−1∑

i=0

ρi
n(x0xrx2r) +

2r−1∑

i=0

ρi
n(x0x2rx4r) +

ν(t)−1∑

i=0

ρi
n(x0xt) (2)

where ρi
n is the left i-cyclic shift operator, and n = 2m = 6r with r ≥ 1, t ≤ m,

ν(t) = n if 0 < t < m; ν(t) = m if t = m. Then we have

1. If 0 < t < m, then ft(x) is semi-bent if and only if gcd(2t,m) = 1 or if
gcd(2t,m) = 2 and gcd(t,m) = 1.

2. If t = m, then ft(x) is a bent function.

Proof. We first note that

ft(x) = (x0 + x3r)(xr + x4r)(x2r + x5r)
+ (x1 + x3r+1)(xr+1 + x4r+1)(x2r+1 + x5r+1)
...

+ (xr−1 + x4r−1)(x2r−1 + x5r−1)(x3r−1 + x6r−1) +
ν(t)−1∑

i=0

ρi
n(x0xt).

Let

E = {x ∈ GF (2)n|xi + xm+i = 0,∀ i = 0, . . . , m − 1}
and

W = {x ∈ GF (2)n|xm+i = 0,∀ i = 0, . . . , m − 1},

then E and W are two supplementary m-dimensional vector subspaces of GF (2)n,
that is, any vector x ∈ GF (2)n can then be uniquely represented as x = a + y
with a ∈ W and y ∈ E. By replacing x by a + y above, we deduce that:

1. If 0 < t < m, then

ft(x) = ft(a + y) = a0ara2r + a1ar+1a2r+1 + · · · + ar−1a2r−1a3r−1

+
n−1∑

i=0

ρi
n(a0 + y0)(at + yt)

=
r−1∑

i=0

ρi
m(a0ara2r) +

n−1∑

i=0

ρi
n(a0at + a0yt + aty0 + y0yt).
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Using am+i = 0 and yi = ym+i for 0 ≤ i ≤ m − 1, we have:

n−1∑

i=0

ρi
n(a0at) =

m−t−1∑

i=0

ρi
n(a0at)

=
m−t−1∑

i=0

ρi
m(a0at) (this is an abuse of notation),

n−1∑

i=0

ρi
n(a0yt) = a0yt + · · · + am−t−1ym−1 + am−ty0 + · · · + am−1yt−1

=
m−1∑

i=0

ρi
m(a0yt) =

m−1∑

i=0

ρi
m(am−ty0),

n−1∑

i=0

ρi
n(aty0) =

n−1∑

i=0

ρi
n(a0yn−t) =

m−1∑

i=0

ρi
m(a0ym−t) =

m−1∑

i=0

ρi
m(aty0).

Therefore, since
n−1∑

i=0

ρi
n(y0yt) = 2

m−1∑

i=0

ρi
n(y0yt) (mod 2) = 0:

ft(x) = ft(a + y)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−t−1∑

i=0

ρi
m(a0at) +

m−1∑

i=0

ρi
m((at + am−t)y0)

= π(a) · y + h(a),

where
π(a) = (at + am−t, at+1 + am−t+1, . . . , at−1 + am−t−1),

and

h(a) =
r−1∑

i=0

ρi
m(a0ara2r) +

m−t−1∑

i=0

ρi
m(a0at).

If t = m/2, then π = 0 and the function is neither semi-bent nor bent.
For t �= m/2, according to the expression obtained for π(a), we can assume
without loss of generality that 0 < t < m/2. Let s = gcd(2t,m). It follows
from Theorem 1 of [20, p. 190] that π is a 2s-to-1 mapping since gcd(xt +
xm−t, xm+1) = xs+1. This is equivalent to saying that Sw is either an empty
set or an s-dimensional affine subspace of GF (2)m. By Case 2 of Lemma 1,
we deduce that ft can be semi-bent only if s = 1, or s = 2.
– If s = 1, then π is a 2-to-1 mapping, which implies ft is semi-bent by Case

1 of Lemma 1.
– If s = 2, denote by G the kernel of π, then

G = {0,1, (1, 0, 1, 0, . . . , 1, 0), (0, 1, 0, 1, . . . , 0, 1)} ⊂ GF (2)m.



Results on Constructions of Rotation Symmetric Bent and Semi-bent 27

Suppose that Sw is nonempty. Then, for any a ∈ Sw, there exists some
vector b ∈ GF (2)m such that {b + e|e ∈ G} (b can be unique if we require
for instance that b0 = b1 = 0). Then the restriction g of h to Sw is:

g =
r−1∑

i=0

ρi
m((b0 + e0)(br + er)(b2r + e2r) +

m−t−1∑

i=0

ρi
m((b0 + e0)(bt + et))

=
r−1∑

i=0

ρi
m(b0brb2r + b0bre2r + b0b2rer + brb2re0

+b0ere2r + bre0e2r + b2re0er + e0ere2r)

+
m−t−1∑

i=0

ρi
m(b0bt + b0et + bte0 + e0et).

Since gcd(2t,m) = 2, then gcd(t,m) = 1, 2 and r is even. Using ei = ej if
i ≡ j (mod 2), we shall calculate the non-linearized part B of g relative to
e for the cases gcd(t,m) = 1 and gcd(t,m) = 2 respectively.
- If gcd(t,m) = 2, then t is even. We have

B =
r−1∑

i=0

ρi
m(e0ere2r + b0ere2r + bre0e2r + b2re0er) +

m−t−1∑

i=0

ρi
m(e0et)

=
r−1∑

i=0

ρi
m(e0e0e0 + b0e0e0 + bre0e0 + b2re0e0) +

m−t−1∑

i=0

ρi
m(e0e0)

=
r/2−1∑

i=0

((1 + b2i + br+2i + b2r+2i)e0

+(1 + b2i+1 + br+2i+1 + b2r+2i+1)e1)

+(
m − t

2
mod 2)(e0 + e1).

It shows that g is an affine function on b + G. According to Case 2 of
Lemma 1, ft can not be semi-bent if gcd(t,m) = 2.
To complete our proof, it will suffice to check that g is quadratic when
gcd(t,m) = 1. In this case, t is odd and so is m − t.
- If gcd(t,m) = 1, then

B =
r−1∑

i=0

ρi
m(e0ere2r + b0ere2r + b0ere2r + bre0e2r + b2re0er)

+
m−t−1∑

i=0

ρi
m(e0et)

=
r/2−1∑

i=0

((1 + b2i + br+2i + b2r+2i)e0
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+(1 + b2i+1 + br+2i+1 + b2r+2i+1)e1)
+(m − t mod 2)(e0e1)

= e0e1 +
r/2−1∑

i=0

((1 + b2i + br+2i + b2r+2i)e0

+(1 + b2i+1 + br+2i+1 + b2r+2i+1)e1).

Hence g has algebraic degree 2. We conclude that ft(x) is semi-bent if
gcd(2t,m) = 2 and gcd(t,m) = 1, completing the proof of Case 1 of Theo-
rem 1.

2. If t = m, by a straightforward computation, we have

fm(x) = fm(a + y)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)(am + ym))

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)am + (a0 + y0)ym)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)ym)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + y0)y0)

=
r−1∑

i=0

ρi
m(a0ara2r) +

m−1∑

i=0

ρi
m((a0 + 1)y0)

Obviously, fm(x) is a bent function from the class M, completing the proof.

Remark 1. From the proof of Theorem 2, one can claim that the homogenous
RotS function

∑n−1
i=0 ρi

n(x0xrx2r) +
∑2r−1

i=0 ρi
n(x0x2rx4r) can not be bent. It is

conjectured that there are no homogenous RotS bent functions [27].

4 Rotation Symmetric Functions Obtained as
Idempotents over GF (2n)

In this section we identify the vector space GF (2)n with the finite field GF (2n).
For any positive integer k dividing n, we denote the trace function from GF (2n)
to GF (2k) by Trn

k (z) = z+z2
k

+ · · ·+z2
n−k

. Note that for every integer k divid-
ing n, the trace function Trn

k satisfies the transitivity property Trn
1 = Trk

1 ◦Trn
k .

Every nonzero Boolean function f defined over GF (2n) has a unique representa-
tion of the form: f(z) =

∑2n−1
i=0 uiz

i where ui ∈ GF (2n). Thanks to the fact that
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f is Boolean, that is, satisfies (f(z))2 = f(z) [mod z2
n

+ z], it can be written in
the form (called its univariate polynomial form or trace form):

f(z) =
∑

j∈Γn

Tr
o(j)
1 (ajz

j) + ε(1 + z2
n−1), (3)

where Γn is the set of integers obtained by choosing one element in each cyclo-
tomic coset of 2 modulo 2n−1 (the most usual choice for j is the smallest element
in its cyclotomic class, called the coset leader of the class), o(j) is the size of
the corresponding cyclotomic coset containing j, aj ∈ GF (2o(j)) and ε ∈ GF (2).
The algebraic degree of f equals the maximum 2-weight of those j such that
aj �= 0, where the 2-weight of j is the Hamming weight of its binary expansion
(see e.g. [2]). Let us denote by ϕu(z) = Trn

1 (uz), u ∈ GF (2n), the general linear
Boolean function on GF (2n). The Walsh transform of f is defined as

Wf (u) =
∑

z∈GF (2n)

(−1)f(z)+Trn
1 (uz), u ∈ GF (2n).

Thanks to the identification between the vectors pace GF (2)n and the field
GF (2n), the Maiorana-McFarland class M of Boolean functions over GF (22m)
can be expressed in the form: f(x, y) = Trm

1 (π(x)y + h(x)), where π and h
are mappings from GF (2m) to GF (2m). A function f(z) given by (3) is an
idempotent if and only if every coefficient aj in every term Tro(j)(ajz

j) belongs
to GF (2).

4.1 The Bentness of Some Cubic Idempotents

It is known that the monomial function Tr2m
1 (λxd), when cubic, can yield bent

functions in M only if m = 3r, d = 1 + 2r + 22r [1], or d = 1 + 2j + 2m with
1 ≤ j < m [8] respectively. But [1, Theorem 3] and [8, Theorem 5.1] imply that
such cubic bent monomial functions can not be idempotent (i.e. such that λ = 1).
In this subsection, we characterize the bentness of the idempotent functions of
the form:

f
(c)
k (z) = Trn

1 (z1+2k+2m) +
m−1∑

i=1

ciTrn
1 (z1+2i) + cmTrm

1 (z1+2m), (4)

where n = 2m, 0 < k < m, and c = (c1, . . . , cm) ∈ GF (2)m.
The next theorem will show that function f

(c)
k (z) is from the class M, and

then the bentness of f
(c)
k (z) can be related to the bijectivity of some quadratic

polynomial of the form z1+2k + L(z), where L(z) is a linearized polynomial
over GF (2m). Such polynomials have received attention for their importance in
constructing quadratic APN permutations [19].

Theorem 2. Let f
(c)
k (z) be defined over GF (2n) by relation (4) and let L(z) =

z2
k−1

+ cmz +
�m−1

2 �∑

i=1

(ci + cm−i)(z2
i

+ z2
m−i

). Then f
(c)
k (z) is bent if and only if

z1+2k + L(z) is a permutation polynomial of GF (2m).
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Proof. Let V = GF (2m) and denote by U a subspace supplementary to V in
the vector space GF (2n). We have GF (2n) =

⋃

u∈U

(u + V ). Then, for any u ∈ U

and y ∈ V , we have

f
(c)
k (z) = f

(c)
k (u + y)

= Trn
1 ((u + y)1+2k+2m) +

m−1∑

i=1

ciTrn
1 ((u + y)1+2i) (5)

+cmTrm
1 ((u + y)1+2m)

= Trn
1 (u1+2k+2m) + Trn

1 (u2my1+2k + uy2k+2m + u2ky1+2m)

+Trn
1 (u1+2my2k + u2k+2my + u1+2ky2m) + Trn

1 (y1+2k+2m)

+
m−1∑

i=1

ciTrn
1 (u1+2i + uy2i + u2iy + y1+2i)

+cmTrm
1 (u2m+1 + u2my + uy2m + y2m+1). (6)

Since u1+2m , u + u2m , y ∈ GF (2m), we have:

Trn
1 (u2my1+2k + uy2k+2m) = Trn

1 ((u + u2m)y1+2k) = 0,

and
Trn

1 (y1+2i) = Trn
1 (y1+2k+2m) = Trn

1 (u1+2my2k) = 0.

By using the transitivity of the trace function, the part depending on y is

A = Trn
1 (u2ky1+2m + u2k+2my + u1+2ky2m) +

m−1∑

i=1

ciTrn
1 (uy2i + u2iy)

+cmTrm
1 (u2my + uy2m + y2m+1)

= Trn
1 (u2k−1

y + u2k(u + u2m)y) +
m−1∑

i=1

ciTrn
1 ((u2n−i

+ u2i)y)

+cmTrm
1 ((u2m + u + 1)y)

= Trm
1 (((u + u2m)2

k−1
+ (u + u2m)2

k+1)y)

+
m−1∑

i=1

ciTrm
1 (((u + u2m)2

i

+ (u + u2m)2
m−i

)y) + cmTrm
1 ((u + u2m + 1)y)

= Trm
1 (π(u)y),

where

π(u) = (u + u2m)2
k−1

+ (u + u2m)2
k+1 +

m−1∑

i=1

ci((u + u2m)2
i

+ (u + u2m)2
m−i

)

+cm(u + u2m + 1).
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Let

h(u) = Trm
1 (u2m+1(u + u2m)2

k

) +
m−1∑

i=1

ciTrn
1 (u2i+1) + cmTrm

1 (u2m+1).

Then the sum in Relation (5) is simplified as follows:

f
(c)
k (u + y) = Trym

1 (π(u)y) + h(u).

Denoting u + u2m by ξ, we have:

π(u) = ξ2
k+1 + ξ2

k−1
+ cmξ +

m−1∑

i=0

ci(ξ2
i

+ ξ2
m−i

) + cm

= ξ2
k+1 + ξ2

k−1
+ cmξ +

�m−1
2 �∑

i=1

(ci + cm−i)(ξ2
i

+ ξ2
m−i

) + cm

= ξ2
k+1 + L(ξ) + cm. (7)

This completes the proof.

Reference [19] addresses the problem of the bijectivity of functions of the
form z2

k+1 + L(z). But it does not address completely the case where k is not
co-prime with m:

Lemma 2. [19] Let gcd(d, 2m − 1) > 1 and L(z) be a linearized polynomial
on GF (2m). Then if L(z) is not a permutation on GF (2m), then zd + L(z) is
not a permutation. If d = 1 + 2k with gcd(k,m) = 1, then z1+2k + L(z) is a
permutation polynomial if and only if m is odd and L(z) = α2iz +αz2

i

for some
α ∈ GF (2m)∗.

Proposition 1. Let π(z) be given by (7). Then the following statements hold:

1. π(z) is a permutation only if cm = 1 and m/ gcd(m, k) is odd.
2. If k = 1, then π is a permutation only if ci +cm−i = 0 for all i = 1 . . . �m−1

2 �.
Proof. 1. If cm = 0, then π(z) can not be a permutation for π(0) = π(1). Now

we can assume that cm = 1. Then L(z) can not be a permutation on GF (2m)
since L(0) = L(1). And, if m/ gcd(m, k) is even, then gcd(2k +1, 2m−1) > 1.
Hence π(z) is not a permutation by Lemma 2.

2. From the conclusions above, we can suppose that cm = 1. If k = 1, then

π(z) = z3 +
�m−1

2 �∑

i=1

(ci + cm−i)(z2
i

+ z2
m−i

) + 1. By Lemma 2, π can not be

bijective if there exists some 1 ≤ i ≤ �m−1
2 � such that ci + cm−i �= 0. This

closed the proof.
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Abstract. In 2008, Carlet and Feng studied a class of functions with
good cryptographic properties. Based on that function, [18] proposed a
family of cryptographically significant Boolean functions which contains
the functions proposed by [28,30]. However, their study is not in-depth.
In this paper, we investigate the properties of those functions further,
and find that they can be divided into some affine equivalent classes.
The bent functions proposed by [18] are in fact in the same class with
the function proposed by [30]. We then prove that those functions have
optimum algebraic immunity if and only if a combinatorial conjecture is
correct, which gives a new direction to prove the conjecture. Furthermore,
we improve upon the lower bound on the nonlinearity, and our bound is
higher than all other similar bounds. Finally, we extend the construction
to a balanced function, and give an example of a 12-variable function
which has the best cryptographic properties among all currently known
functions.

Keywords: Boolean function · Algebraic immunity · Nonlinearity

1 Introduction

To resist the main known attacks, Boolean functions used in stream ciphers
should be balanced, with high algebraic degree, with high algebraic immunity,
with high nonlinearity and with good immunity to fast algebraic attacks. It is
hard to construct Boolean functions satisfying all these criteria.

Many classes of Boolean functions with optimum algebraic immunity have
been introduced [1,5,12,13,20,21,24,25]. However, the nonlinearity of these func-
tions are not good, and we do not know whether they can behave well against
fast algebraic attacks. In 2008, Carlet and Feng studied a class of functions which
had been introduced by [16], and they found that these functions seem to satisfy
all the cryptographic criteria [6]. This is a breakthrough in the field of Boolean
functions. Based on the Carlet-Feng function, some researchers proposed several
classes of cryptographically significant Boolean functions [4,26–31,34–36].

Functions constructed by [30] have the optimum algebraic immunity if a
combinatorial conjecture is correct, and the nonlinearity of them are very high.

c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-12325-7 3
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However, they are weak against fast algebraic attacks [3,32]. Based on a similar
conjecture which has been proved to be correct by [7], in [28], the authors con-
structed another class of functions which seems to satisfy all the criteria. In [18],
the authors proposed a family of Boolean functions which contains the functions
proposed by [28,30]. However, their study is not in-depth, and the proof they
gave is quite similar to [6,30]. In this paper, we investigate the properties of
those functions further, and get some new results.

The paper is organized as follows. In Sect. 2, the necessary background is
established. We discuss affine equivalent classes and prove that a family of
Boolean functions has optimum algebraic immunity if and only if a combina-
torial conjecture is correct in Sect. 3. In Sect. 4, we give a new bound on the
nonlinearity. We then extend the construction to a balanced function in Sect. 5.
We end in Sect. 6 with conclusions.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the finite field F2. We denote by

Bn the set of all n-variable Boolean functions, from F
n
2 into F2.

Any Boolean function f ∈ Bn can be uniquely represented as a multivariate
polynomial in F2[x1, · · · , xn],

f(x1, . . . , xn) =
∑

K⊆{1,2,...,n}
aK

∏

k∈K

xk,

which is called algebraic normal form (ANF). The algebraic degree of f , denoted
by deg(f), is the number of variables in the highest order term with nonzero
coefficient.

A Boolean function is affine if there exists no term of degree strictly greater
than 1 in the ANF and the set of all affine functions is denoted by An.

Let
1f = {x ∈ F

n
2 |f(x) = 1}, 0f = {x ∈ F

n
2 |f(x) = 0}.

The cardinality of 1f is called the Hamming weight of f , and will be denoted by
wt(f). The Hamming distance between two functions f and g is the Hamming
weight of f+g, and will be denoted by d(f, g). We say that an n-variable Boolean
function f is balanced if wt(f) = 2n−1.

Let f ∈ Bn. The nonlinearity of f is its minimum distance from the set of
all n-variable affine functions, i.e.,

nl(f) = min
g∈An

d(f, g).

The nonlinearity of an n-variable Boolean function is bounded above by 2n−1 −
2n/2−1, and a function is said to be bent if it achieves this bound. Clearly, bent
functions exist only for even n and it is known that the algebraic degree of a
bent function is bounded above by n

2 [2,11].
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For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if
fg = 0, and the algebraic immunity of f , denoted by AI(f), is the minimum
value of d such that f or f +1 admits an annihilator of degree d [23]. It is known
that the algebraic immunity of an n-variable Boolean function is bounded above
by �n

2 � [9].
If we can find g of low degree and h of algebraic degree not much larger than

n/2 such that fg = h, then f is considered to be weak against fast algebraic
attacks [8,17]. Let

FAI(f) = min
fg=h

1≤deg(g)<n/2

{deg(g) + deg(h)}.

It is known that FAI(f) ≤ n and the equality can be achieved only when n is
one more than a power of two [22].

The Walsh transform of a given function f ∈ Bn is the integer-valued function
over F2n defined by

Wf (ω) =
∑

x∈F2n

(−1)f(x)+tr(ωx),

where ω ∈ F2n and tr(x) denotes the trace function from F2n to F2. The nonlin-
earity of f can then be determined by

nl(f) = 2n−1 − 1
2

max
ω∈F2n

|Wf (ω)|.

3 Affine Equivalent Classes and Algebraic Immunity
of a Family of Boolean Functions

In [29], the authors proposed the following conjecture:

Conjecture 1. Let k ≥ 2, 1 ≤ u < 2k − 1 and (u, 2k − 1) = 1. For any 0 < t <
2k − 1, let

Ct = {(a, b)|0 ≤ a, b < 2k − 1, a − ub = t (mod 2k − 1),
wt(a) + wt(b) ≤ k − 1}

Then |Ct| ≤ 2k−1.

They verified it experimentally for k ≤ 15 (it is noticed that in the conjecture of
[29] a−ub is replaced by ua± b, and that conjecture is equivalent to Conjecture
1). Taking u = 1 induces a special case of Conjecture 1, which has been proved
by [7]. Based on this fact, [28] constructed two classes of Boolean functions with
optimum algebraic immunity. Taking u = 2k −2 induces the conjecture proposed
by [30], which has been investigated by [10,14,15] and it is still unsolved.

Base on Conjecture 1, [18] proposed the following function with optimum
algebraic immunity:
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Construction 1: Let n = 2k ≥ 4 and α be a primitive element of F2k . Let
Δs = {αs, · · · , α2k−1+s−1}, where 0 ≤ s < 2k − 1. Then a function f1 ∈ Bn is
constructed as follows:

f1(x, y) = g(xuy),

where the support of g is Δs and 1 ≤ u < 2k − 1.
Taking u = 2k − 2, we can get the first class constructed by [30], which is a

bent function. Taking u = 1, we can get the first class constructed by [28], which
is a function with optimum algebraic immunity and high algebraic degree and
nonlinearity.

In [18], the authors have discussed the cryptographic properties of the func-
tions given by Construction 1. However, the study is not in-depth. We now
investigate this construction further.

Proposition 1. f1(x, y) is affine equivalent to f1(x2, y).

Proof. Let β be a primitive element of F2k . Taking (1, β, · · · , βk−1) as a basis, we
can identify x =

∑k
i=1 xiβ

i−1 with the k-tuple of its coordinates (x1, · · · , xk) ∈
F

k
2 . Similarly, y =

∑k
i=1 yiβ

i−1 can be identified with (y1, · · · , yk) ∈ F
k
2 . f1(x, y)

can then be represented as an n-variable polynomial f1(x1, · · · , xk, y1, · · · , yk)
over F2. Clearly,

x2 = (x1 + x2β + · · · + xkβk−1)2

= x1 + x2β
2 + · · · + xkβ2(k−1)

= x′
1 + x′

2β + · · · + x′
kβk−1,

where (x′
1, · · · , x′

k) = (x1, · · · , xk)B and B is a k × k invertible matrix over F2.
Therefore,

f1(x2, y) = f1(xB, y) = f1((x, y)A),

where

A =
(

B 0
0 1

)

,

and the result follows.

Remark 1. In Sect. 4.4 of [18], the authors put forward a class of bent functions
with optimum algebraic immunity. By Proposition 1, those functions are in fact
affine equivalent to the function proposed by [30].
Remark 2. In [28], the authors found that g(xy) has good cryptographic proper-
ties. By Proposition 1, for any 0 ≤ i < k, g(x2i

y) shares the same cryptographic
properties with g(xy).
Remark 3. By Proposition 1, each affine equivalent class contained in Con-
struction 1 is corresponding to a monic nonlinear irreducible polynomial over
F2 whose roots are in F2k and it is a one-to-one correspondence. That is, it is
corresponding to a monic irreducible polynomial of degree d > 1, where d|k. By
[33], the number of monic irreducible polynomials of degree ≤ k over F2 is

2k+1

k
+

2k+1

k2
+ O(

2k+1

k3
), k → ∞.
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Table 1. Cryptographic properties of f1 ∈ B12

u deg AI nl FAI
1 10 6 1988 10

3 9 6 1976 11

5 9 6 1992 11

7 10 6 1964 10

9 9 6 1976 11

11 8 6 2000 10

13 9 6 1984 11

15 9 6 1992 10

21 10 6 1880 10

23 8 6 1984 10

27 9 6 1976 10

31 6 6 2016 8

Therefore, the number of affine equivalent classes is less than that value. If k is
a prime, then the number of affine equivalent classes is equal to the number of
k-variable irreducible polynomials of degree k, i.e.,

1
k

∑

d|k
μ(k/d)2d =

2k − 2
k

,

where d runs over the set of all positive divisors of k including 1 and k, and μ is
the Möbius function.

Using Proposition 1, we can divide functions contained in Construction 1
into some affine equivalent classes. A natural question to ask is whether these
classes are not affine equivalent to each other. We give an example for k = 6.

Example 1: Let k = 6. By Proposition 1, Construction 1 contains 12 classes
of 12-variable functions, and functions in the same class are affine equivalent
to each other. In Table 1, one can find the cryptographic properties of these
classes. The function constructed by [28] is in the class u = 1 and the function
constructed by [30] is in the class u = 31. Since algebraic degree, algebraic
immunity, nonlinearity and FAI are all affine invariants, these classes are not
affine equivalent to each other excluding the classes u = 3 and u = 9. We do
not know whether the class u = 3 is affine equivalent to the class u = 9, and we
leave it as an open problem.

In [18,28,30], the authors proved that those functions have optimum algebraic
immunity if the corresponding combinatorial conjectures are correct. But they
did not discuss the inverse propositions which are in fact also true.

Theorem 1. The function f1 has optimum algebraic immunity if and only if
Conjecture 1 is correct.
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Proof. Similar to the proof in [18,28,30], it can be proved that f1 has optimum
algebraic immunity if Conjecture 1 is correct. Now, we prove the inverse propo-
sition. Suppose f1 has optimum algebraic immunity and Conjecture 1 is not
correct. That is, there is a 0 < t1 < 2k − 1 such that |Ct1 | > 2k−1. We will
construct an h of degree less than k such that f1 ∗ h = 0.

Let h(x, y) =
∑2k−1

i=0

∑2k−1
j=0 hi,jx

iyj be a function satisfying

(1) h(x, γx2k−1−u) = 0 for ∀x ∈ F
∗
2k , γ ∈ Δs;

(2) hi,j = 0 if w2(i) + w2(j) ≥ k.

Then we have

h(x, γx2k−1−u) =
2k−2∑

i=0

2k−2∑

j=0

hi,jγ
jxi−uj

=
2k−2∑

t=0

ht(γ)xt,

where
ht(γ) =

∑

0≤i,j≤2k−2

i−uj=t (mod 2k−1)

hi,jγ
j .

Therefore, the condition (1) holds if and only if ht(γ) = 0, 0 ≤ t ≤ 2k − 2.
Consider the case t = t1. To satisfy the condition (2), hi,j can be nonzero only
when w2(i) + w2(j) ≤ k − 1. Since |Ct1 | > 2k−1, there are more than 2k−1 such
hi,j . Then ht1(γ) = 0 yields a system of homogeneous linear equations on hi,j ,
which has 2k−1 number of equations and more than 2k−1 number of variables.
Hence there exists at least one nonzero solution. Taking these hi,j to be one such
solution and all other hi,j = 0, we get a function h which is an annihilator of f1
with deg(h) < k. This is contradictory to the assumption that f1 has optimum
algebraic immunity, and the result follows.

Corollary 1. Given 1 ≤ u < 2k − 1, Conjecture 1 is correct for this u if and
only if it is correct for u ∗ 2i, where 0 ≤ i ≤ k − 1.

Proof. By Theorem 1, f1(x2i

, y) has the optimum algebraic immunity if and only
if Conjecture 1 is correct for u ∗ 2i. Then by Proposition 1, f1(x2i

, y) is affine
equivalent to f1(x, y) which has the optimum algebraic immunity if and only if
Conjecture 1 is correct for u, and the result follows.

Remark 4. It has been proved that Conjecture 1 is correct for u = 1. From
Corollary 1, we know that it is also correct for u = 2i. To prove Conjecture 1,
we only need to prove it for 2k−2

k number of u when k is a prime.
Remark 5. Theorem 1 gives a new direction to prove Conjecture 1, i.e., proving
those functions have the optimum algebraic immunity directly.
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4 New Bound on the Nonlinearity

Let χ(x) be a group homomorphism of F∗
2k into the unit circle, extended to x = 0

where it takes the value 0. Then χ is a mapping of F2k into C, which is called
a character. There are 2k − 1 characters and the set of characters forms a cyclic
group. Let χ be the primitive character defined by χ(αj) = ζj (0 ≤ j ≤ 2k − 2)

and χ(0) = 0, where ζ = e
2π

√−1
2k−1 . Then

G(χμ) =
∑

x∈F2k

χμ(x)(−1)tr(x)

is a Gauss sum, where 0 ≤ μ ≤ 2k − 2. We have G(χ0) = −1 and | G(χμ) |= 2
k
2

for 1 ≤ μ ≤ 2k − 2 [19].
Lemma 1. For 0 < x < π

4 , we have y = x2 sin x + 5 sin x − 5x > 0. That is,
1

sinx < 1
x + x

5 .

Proof. Clearly, y′ = x2 cos x+2x sin x+5 cos x−5 and y′′ = −x2 sin x+4x cos x−
3 sin x. Therefore,

y′′

4x sin x
= cot x − x2 + 3

4x
.

For 0 < x < π
4 , y1 = cot x is decreasing and convex, and y2 = x2+3

4x is decreasing
and concave. Clearly, cot x > x2+3

4x when x → 0 and cot x < x2+3
4x when x = π/4.

Therefore, y′′ > 0 on the interval (0, x0) and y′′ < 0 on the interval (x0, π/4),
where 0 < x0 < π

4 and cot x0 = x2
0+3
4x0

. Hence, y′ is increasing on (0, x0), and is
decreasing on (x0, π/4). Since y′(0) = 0 and y′(π/4) > 0, we have y′ > 0 on the
interval (0, π/4). Therefore, y is increasing on (0, π/4), and the result follows.

Lemma 2. Let
Γu =

∑

γ∈Δs

∑

x∈F
∗
2k

(−1)tr( 1
x+γxu),

where 1 ≤ u < 2k − 1 and k ≥ 5. Then |Γu| < ( ln 2
π k + 0.267)2k + 16

31 .

Proof. Since

(−1)tr(αj) =
1

2k − 1

2k−2∑

μ=0

G(χμ)χμ(αj),

where 0 ≤ j ≤ 2k − 2, then

Γu =
∑

γ∈Δs

2k−2∑

j=0

(−1)tr(α−j)(−1)tr(γαuj)

=
2k−1+s−1∑

i=s

2k−2∑

j,μ,ν=0

G(χμ)G(χν)
(2k − 1)2

ζμj−ν(i+uj)

=
2k−2∑

μ,ν=0

G(χμ)G(χν)
(2k − 1)2

2k−1+s−1∑

i=s

ζ−νi
2k−2∑

j=0

ζ(μ−νu)j .
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Clearly,
2k−1+s−1∑

i=s

ζ−νi =

{
2k−1 if ν = 0,

ζ−νs ζ−ν2k−1−1
ζ−ν−1 otherwise

and
2k−2∑

j=0

ζ(μ−νu)j =
{

2k − 1 if μ = νu,
0 otherwise.

Therefore,

|Γu| = | 2k−1

2k − 1
+

2k−2∑

ν=1

G(χν)G(χνu)
2k − 1

ζ−νs ζ−ν2k−1 − 1
ζ−ν − 1

|

≤ 2k−1

2k − 1
+

2k

2k − 1

2k−2∑

ν=1

|ζ
−ν2k−1 − 1
ζ−ν − 1

|

=
2k−1

2k − 1
+

2k

2k − 1

2k−2∑

ν=1

|ζ
−ν2k−2 − ζν2k−2

ζ− ν
2 − ζ

ν
2

|

≤ 16
31

+
2k

2k − 1

2k−2∑

ν=1

| sin
νπ2k−1

2k−1

sin νπ
2k−1

| =
16
31

+

2k+1

2k − 1
(
2k−2
∑

ν=1

sin 2k−1−ν
2k−1

π

sin 2ν−1
2k−1

π
+

2k−2−1∑

ν=1

sin νπ
2k−1

sin 2νπ
2k−1

)

=
16
31

+
2k+1

2k − 1
(
2k−2
∑

ν=1

cos (2ν−1)π
2(2k−1)

sin (2ν−1)π
2k−1

+
2k−2−1∑

ν=1

1
2 cos νπ

2k−1

)

=
16
31

+
2k

2k − 1
(
2k−2
∑

ν=1

1

sin (2ν−1)π
2(2k−1)

+
2k−2−1∑

ν=1

1
cos νπ

2k−1

).

By Lemma 1 and 1 + 1
3 + · · · + 1

2k−1−1
< k−1

2 ln 2 + 0.6353 (k ≥ 5), we have

2k−2
∑

ν=1

1

sin (2ν−1)π
2(2k−1)

<

2k−2
∑

ν=1

(
2(2k − 1)
(2ν − 1)π

+
(2ν − 1)π
10(2k − 1)

) <

2(2k − 1)
π

(
k − 2

2
ln 2 + 0.6353) +

π22k

160(2k − 1)
,
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and

2k−2−1∑

ν=1

1
cos νπ

2k−1

≤
2k−2−1∑

ν=1

(
2(2k − 1)

(2k − 1)π − 2νπ
+

(2k − 1 − 2ν)π
10(2k − 1)

) <
2(2k − 1)

π
0.35 +

π

10
(2k−2 − 1)

− π2k−2

10(2k − 1)
(2k−2 − 1) <

71
250

2k.

Therefore,

|Γu| < (
(k − 2) ln 2 + 1.2706

π
+

π

160
+

71
250

)2k + 1

< (
ln 2
π

k + 0.267)2k +
16
31

.

Theorem 2. The nonlinearity of the function f1(x, y) satisfies

nl(f1) > 2n−1 − (
ln 2
π

k + 0.267)2k − 16
31

.

Proof. For any (a, b) ∈ F2k × F2k − {(0, 0)}, we have

Wf1(a, b) =
∑

x,y∈F2k

(−1)f1(x,y)+tr(ax+by)

= −2
∑

x,y∈1f1

(−1)tr(ax+by)

= −2
∑

x∈F
∗
2k

(−1)tr(ax)
∑

γ∈Δs

(−1)tr(bγ/xu)

=

⎧
⎪⎨

⎪⎩

2k if a = 0, b ∈ F
∗
2k

2k if b = 0, a ∈ F
∗
2k

−2
∑

γ∈Δs

∑

x
(−1)tr( 1

x+abγxu) if a, b ∈ F
∗
2k .

Then by Lemma 3,

|Wf1(a, b)| < 2(
ln 2
π

k + 0.267)2k +
32
31

,

and the result follows.

Remark 6. The bound on the nonlinearity given by [18] is 2n−1 − 2 ln 2
π k2k.

Clearly, the new bound improves it largely.
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Table 2. Comparison of the bounds on nonlinearity

n Bound in [6] Bound in [28] Our bound

8 70 102 106

10 366 458 464

12 1700 1929 1940

14 7382 7931 7952

16 30922 32195 32236

18 126927 129823 129903

20 515094 521577 521735

22 2076956 2091288 2091603

24 8344600 8376003 8376632

26 33459185 33527429 33528684

28 134012775 134160165 134162673

5 Extending to a Balanced Function

Construction 2: Let m be odd and n = 2k = 2tm ≥ 4. We construct f2 ∈ Bn

as follows

f2(x, y) =
{

f1(x, y) if x �= 0
w(y) otherwise,

where w is a k-variable balanced function satisfying w(0) = 0, deg(w) = k − 1
and

|Ww(a)| ≤
{

2
m+1

2 if t = 1
∑t−2

i=0 22
im + 2

m+1
2 otherwise.

Similar to the above proof, it is easy to verify that f2 has the following
properties.

Theorem 3. f2 is a balanced function, deg(f2) = n − 1, AI(f2) = k and

nl(f2) >

⎧
⎪⎨

⎪⎩

2n−1 − ( ln 2
π k + 0.267)2k − 2

k−1
2 − 16

31 , if t = 1
2n−1 − ( ln 2

π k + 0.267)2k − ∑t−2
i=0 22

im−1

−2
m−1

2 − 16
31 , otherwise.

The lower bound on nonlinearity in Theorem 3 improves upon those bounds
deduced by others. In Table 2, one can find the comparison of our bound with
others.

There are many Boolean functions with very good cryptographic properties in
this family. In Table 3, one can find the cryptographic properties of the functions
f2 ∈ B12, where w = 566C27782E175359. In the following, we give an example
of a 12-variable function which has the best cryptographic properties among all
currently known functions.
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Table 3. Cryptographic properties of f2 ∈ B12

u deg AI nl FAI
1 11 6 1982 11

3 11 6 1970 11

5 11 6 1986 11

7 11 6 1982 11

9 11 6 1978 11

11 11 6 1994 10

13 11 6 1978 11

15 11 6 1986 11

21 11 6 1912 11

23 11 6 1978 10

27 11 6 1986 11

31 11 6 2010 8

Example 2: Let k = 6, f1 = g(x5y) ∈ B12 and w = 566C27782E175359. Then
f2 is balanced, deg(f2) = 11, AI(f2) = 6, nl(f2) = 1986 and FAI(f2) = 11. As a
comparison, the nonlinearity of the Carlet-Feng function is 1974 and the function
constructed by [28] has the nonlinearity 1982. The function f2 is balanced and
with the optimum algebraic degree, optimum algebraic immunity and optimum
FAI. It has the highest nonlinearity among all those known functions with the
above properties.

6 Conclusion

This paper studies a family of Boolean functions with optimum algebraic immu-
nity. We find that they can be divided into some affine equivalent classes, and
give a new direction to prove a combinatorial conjecture. The bound on the non-
linearity we deduced is higher than other similar bounds. Moreover, we extend the
construction to a balanced function, and give an example of a 12-variable function
which has the best cryptographic properties among all currently known functions.

We divide functions contained in Construction 1 into some affine equiva-
lent classes. But among these classes, we do not know whether they are affine
inequivalent to each other. We leave this as an open problem.
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References

1. Braeken, A., Preneel, B.: On the algebraic immunity of symmetric Boolean func-
tions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 35–48. Springer, Heidelberg (2005)



Properties of a Family of Cryptographic Boolean Functions 45

2. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Chapter of the monography Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering, pp. 257–397. Cambridge University Press (2010).
http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html

3. Carlet, C.: On a weakness of the Tu-Deng function and its repair. Cryptology
ePrint Archive, 2009/606 [Online]. Available: eprint.iacr.org/2009/606

4. Carlet, C.: Comments on ’Constructions of cryptographically significant Boolean
functions using primitive polynomials. IEEE Trans. Inf. Theory 57, 7 (2011)

5. Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S.: Algebraic immunity for crypto-
graphically significant Boolean functions: analysis and construction. IEEE Trans.
Inf. Theory 52(7), 3105–3121 (2006)

6. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal alge-
braic immunity, good immunity to fast algebraic attacks and good nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008)

7. Cohen, G., Flori, J.: On a generalized combinatorial conjecture involving addi-
tion mod 2k − 1. Cryptology ePrint Archive, 2011/400 [Online]. Available:
eprint.iacr.org/2011/400

8. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidel-
berg (2003)

9. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

10. Cusick, T.W., Li, Y., Stanica, P.: On a combinatorial conjecture. Integers 11(2),
185–203 (2011)

11. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications.
Elsevier-Academic Press, Amsterdam (2009)

12. Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically significant Boolean func-
tions: construction and analysis in terms of algebraic immunity. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg
(2005)

13. Dalai, D.K., Maitra, S., Sarkar, S.: Baisc theory in construction of Boolean func-
tions with maximum possible annihilator immunity. Des. Codes Crypt. 40(1), 41–
58 (2006)

14. Flori, J.P., Randriam, H.: On the Number of Carries Occuring in an Addi-
tion mod 2k − 1. Cryptology ePrint Archive, 2010/170 [Online]. Available:
eprint.iacr.org/2010/170

15. Flori, J.-P., Randriam, H., Cohen, G., Mesnager, S.: On a conjecture about binary
strings distribution. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338,
pp. 346–358. Springer, Heidelberg (2010)

16. Feng, K., Liao, Q., Yang, J.: Maximum values of generalized algebraic immunity.
Des. Codes Crypt. 50(2), 243–252 (2009)

17. Hawkes, P., Rose, G.G.: Rewriting variables: the complexity of fast algebraic
attacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004)

18. Jin, Q., Liu, Z., Wu, B., Zhang, X.: A general conjecture similar to T-D con-
jecture and its applications in constructing Boolean functions with optimal
algebraic immunity. Cryptology ePrint Archive, 2011/515 [Online]. Available:
eprint.iacr.org/2011/515

http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html


46 Q. Wang and C.H. Tan

19. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, Cambridge (1986)

20. Li, N., Qi, W.-F.: Construction and analysis of Boolean functions of 2t+1 variables
with maximum algebraic immunity. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 84–98. Springer, Heidelberg (2006)

21. Li, N., Qu, L., Qi, W., Feng, G., Li, C., Xie, D.: On the construction of Boolean
functions with optimal algebraic immunity. IEEE Trans. Inf. Theory 54(3), 1330–
1334 (2008)

22. Liu, M., Zhang, Y., Lin, D.: Perfect algebraic immune functions. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 172–189. Springer, Hei-
delberg (2012)

23. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 474–491. Springer, Heidelberg (2004)

24. Pasalic, E.: Almost fully optimized infinite classes of Boolean functions resistant to
(fast) algebraic cryptanalysis. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 399–414. Springer, Heidelberg (2009)

25. Qu, L., Feng, K., Liu, F., Wang, L.: Constructing symmetric Boolean functions
with maximum algebraic immunity. IEEE Trans. Inf. Theory 55(5), 2406–2412
(2009)

26. Rizomiliotis, P.: On the resistance of Boolean functions against algebraic attacks
using univariate polynomial representation. IEEE Trans. Inf. Theory 56(8), 4014–
4024 (2010)

27. Tan, C., Goh, S.: Several classes of even-variable balanced Boolean functions with
optimal algebraic immunity. IEICE Trans. E94(A:1), 165–171 (2011)

28. Tang, D., Carlet, C., Tang, X.: Highly nonlinear Boolean functions with optimal
algebraic immunity and good behavior against fast algebraic attacks. IEEE Trans.
Inf. Theory 59(1), 653–664 (2013)

29. Tang, D., Carlet, C., Tang, X.: Highly Nonlinear Boolean Functions with Optimal
Algebraic Immunity and Good Behavior Against Fast Algebraic Attacks. Cryptol-
ogy ePrint Archive, 2011/366 [Online]. Available: eprint.iacr.org/2011/366

30. Tu, Z., Deng, Y.: A conjecture about binary strings and its applications on con-
structing Boolean functions with optimal algebraic immunity. Des. Codes Crypt.
60(1), 1–14 (2011)

31. Wang, Q., Peng, J., Kan, H., Xue, X.: Constructions of cryptographically sig-
nificant Boolean functions using primitive polynomials. IEEE Trans. Inf. Theory
56(6), 3048–3053 (2010)

32. Wang, Q., Johansson, T.: A note on fast algebraic attacks and higher order non-
linearities. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584,
pp. 404–414. Springer, Heidelberg (2011)

33. Wang, Q., Kan, H.: Counting irreducible polynomials over finite fields. Czech.
Math. J. 60(135), 881–886 (2010)

34. Wang, Q., Tan, C.H.: Balanced Boolean functions with optimum algebraic degree,
optimum algebraic immunity and very high nonlinearity. Discrete Appl. Math.
1673, 25–32 (2014)

35. Wang, Q., Tan, C.H.: A new method to construct Boolean functions with good
cryptographic properties. Inform. Process. Lett. 113(14), 567–571 (2013)

36. Zeng, X., Carlet, C., Shan, J., Hu, L.: More balanced Boolean functions with
optimal algebraic immunity, and good nonlinearity and resistance to fast algebraic
attacks. IEEE Trans. Inf. Theory 57(9), 6310–6320 (2011)



A New Transform Related to Distance
from a Boolean Function (Extended Abstract)

Andrew Klapper(B)

Department of Computer Science, University of Kentucky, Lexington, USA
klapper@cs.uky.edu

http://www.cs.uky.edu/∼klapper/

Abstract. We introduce a new transform on Boolean functions gener-
alizing the Walsh-Hadamard transform. For Boolean functions q and f ,
the q-transform of f measures the proximity of f to the set of functions
obtained from q by change of basis. This has implications for security
against certain algebraic attacks. In this paper we derive the expected
value and second moment (Parseval’s equation) of the q-transform, lead-
ing to a notion of q-bentness. We also develop a Poisson Summation
Formula, which leads to a proof that the q-transform is invertible.

Keywords: Boolean function · Walsh-Hadamard transform · Poisson
summation formula

1 Introduction

In much of cryptography using linear operations leads to vulnerability to attack.
Moreover, in many cases a nonlinear function that can be approximated by a
linear function also is vulnerable. This occurs, for example, in various correlation
attacks such as linear cryptanalysis.

In some cases there is a suitable measure of nonlinearity that quantifies
resistance to the attack. Examples include algebraic degree, algebraic immu-
nity, resilience, and nonlinearity. The latter measure is closely related to the
Walsh-Hadamard transform (WHT). A Walsh-Hadamard (WH) coefficient of a
Boolean function f is the correlation between f and a linear function (described
in more detail in the next section). A function has large nonlinearity if and only
if all its WH coefficients are small. Thus the WHT is a measure of linearity.

We also mention algebraic cryptanalysis [2]. Suppose we know a Boolean
function f being used as a filter function for a linear sequence generator. The
initial state of the generator is unknown, but we know a sequence of outputs
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from f . In order to find the initial state, we can think of f and the known
output values as giving a nonlinear system of equations in the bits of the initial
state. Unfortunately, such a system is in general hard to solve, so we linearize the
system by treating it as a system of linear equations in the monomials of f . Even
this is not good enough since in general the number of monomials to consider
is exponential in the number of variables. To improve things, we instead try to
find a low degree multiple g of f and work with g rather than f . If the degree
of g is small enough, then the linear system we must solve becomes tractable.
Many variations on this approach have been studied.

The attack can be further improved by finding a low degree approximation h
to the filter function f . We then use h in place of f (or g) — treat the monomials
of h as variables in a linear system to solve for the initial state. Since h is just
an approximation to f some of these equations will be wrong, but if enough are
right the system may be solvable.

For this to work, the approximation should be chosen from a set of functions
that is preserved by composition on the right with (linear) state change functions.
The smallest such set of functions is of the form Sq = {qA : A is a nonsingular
matrix} for some fixed Boolean function q, where qA(b) = q(bA) for b ∈ {0, 1}n.
This paper concerns a generalization of the WHT, called the q-transform, that
measures proximity to the set Sq just as WHT measures proximity to linear
functions. We study basic properties of the q-transform, obtain expressions for
the mean and second moment (which leads to a notion of q-bent functions), and
develop Poisson summation formulas. Many proofs are omitted for lack of space.

2 Basics on Transforms

See Carlet’s book chapter [1] or Cusick and Stănică’s book [3] for background on
Boolean functions and WHTs. Let F2 = {0, 1}. Let n be a positive integer, let
Vn = F

n
2 , let Bn denote the set of Boolean functions on Vn, and let Rn denote

the set of real valued functions on Vn. We denote the vector of all 0s by 0. If
f ∈ Bn, then we let Φf (a) = (−1)f(a). Thus Φf ∈ Rn. If G ∈ Rn, then we let

Z(G) =
∑

a∈Vn

G(a).

If f ∈ Bn, then the imbalance of f is If = Z(Φf ). If F,G ∈ Rn, then the
correlation between F and G is

CF,G = Z(F · G) =
∑

a∈Vn

F (a)G(a).

Let ta ∈ Bn denote the linear function ta(b) = a · b (inner product). Let
Ta = Φta . The WHT of F ∈ Rn is the list of real numbers W (F )(a) = CF,Ta

.
Each W (F )(a) is called a Walsh-Hadamard coefficient. Our goal is to explore
analogous transforms defined by sets of functions other than the set of linear
functions. At the least such a set of functions must be rich enough so that the
mapping from functions to their transforms is invertible.
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Let q ∈ Bn, Q = Φq, and G ∈ Rn. Let GLn = GLn(F2) denote the set
of invertible n by n matrices over F2. Recall that the cardinality of GLn is
N = (2n − 1)(2n − 2)(2n − 4) · · · (2n − 2n−1). For any invertible A ∈ GLn and
a ∈ Vn, let qA(a) = q(aA) and let GA(a) = G(aA).

Definition 1. Let q ∈ Bn and F ∈ Rn. The q-transform of F is the list of real
numbers

Wq(F )(A) = CF,qA =
∑

a∈Vn

F (a)(−1)q(aA),

where A ranges over GLn, together with

Wq(f)(0) = Z(F ) =
∑

a∈Vn

F (a).

We let G = GLn ∪ {0}. We refer to Wq(F )(A) as the q-transform coefficient of
F associated with A. If f ∈ Bn, then we let W q(f)(A) = Wq(Φf )(A).

The inclusion of Wq(F )(0) is necessary for the q-transform to be an invertible
map. This becomes apparent in the proof of Corollary 2.

Theorem 1. Let A ∈ GLn. Let f ∈ Bn, G ∈ Rn, and B ∈ GLn. Then

1. W q(f)(A) = W f (q)(A−1);
2. WqB (G)(A) = Wq(G)(AB), so the qB-transform of G is a permutation of the

q-transform of G; and
3. Wq(GB)(A) = Wq(G)(B−1A), so the q-transform of GB is a permutation of

the q-transform of G.

Thus the q-transform is, up to a permutation, unchanged by a linear change
of basis. Apparently there are N + 1 ∼ 2n2

q-transform coefficients for a given
f ∈ Bn. However, by part (2) of the theorem, if H = {B : q(b) = q(bB)} is the
stabilizer subgroup of q for the action of GLn on Bn, then the effective number of
q-transform coefficients is N/|H| + 1. For example, for q(a) = a1a2 the effective
number of coefficients is only (2n − 1)(2n−1 − 1) + 1.

3 Relation to the Walsh-Hadamard Transform

In this section we assume that q is a non-zero linear function. If q′ is another non-
zero linear function, then there is an element B ∈ GLn so that q(a) = q′(aB).
Thus the q-transform of a function F is a permutation of the q′-transform of F .
Hence for many purposes we may assume q(c) = c1, where c = (c1, · · · , cn). Let
us assume this now. If A = [ai,j ], then q(cA) =

∑
j aj,1cj . Thus the q-transform

of f associated with the matrix A is just the WHT of f associated with the
vector a = (a1,1, · · · , an,1). Note that this depends only on the first column of
A, so for each a �= 0n there is a set of N/(2n − 1) distinct matrices A ∈ GLn

such that for all F , Wq(F )(A) = W (F )(a). Also, Wq(F )(0) = W (F )(0), the
zeroth WH coefficient of F . It follows that the information in the q-transform
of F is the same as the information in the WHT, although each WH coefficient
W (F )(a), a �= 0, occurs N/(2n −1) times as a Wq(F )(A), while W (F )(0) occurs
only once.
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4 Statistics

In this section we compute the mean and second moment of the q-transform. In
the classical setting, one takes expectations using a uniform distribution over the
set of WH coefficients. The expected WHT of F is F (0) and the second moment
is 2n by a straightforward calculation. However, in our more general setting
we must be careful about the distribution used in computing the mean. Recall
that when q is linear, each coefficient W (F )(A) occurs N/(2n − 1) times, while
W (F )(0) = Z(F ) occurs only once. It seems that this bias should be accounted
for in the expectation. Therefore we compute the expectations in two ways:
first we use a uniform distribution on the set of W (F )(A), excluding W (F )(0),
then we include W (F )(0), but weight it with N/(2n − 1). That is, we define a
probability distribution ω on G = GLn ∪ {0} by letting

ω(A) =
1

N + N/(2n − 1)
=

2n − 1
2nN

for A ∈ GLn and

ω(0) =
N/(2n − 1)

N + N/(2n − 1)
=

1
2n

.

If Z is a random variable on G, then the mean of Z with respect to ω is called
the full mean and is denoted by E[Z]. The mean of the restriction of Z to GLn

with the uniform distribution is called the partial mean and is denoted by E′[Z].
The full and partial means are related by

E[Z] =
2n − 1

2n
E′[Z] +

1
2n

Z(0). (1)

Let f ∈ Bn. Then the partial mean of the q-transform of F is

E′[Wq(F )] =
1

2n − 1
(Z(F ) − F (0))(Iq − Q(0)) + F (0)Q(0).

Thus the full mean is

E[Wq(F )] =
IqZ(F ) + (1 − Q(0))Z(F ) − F (0)Iq + 2nF (0)Q(0)

2n
.

To describe the second moment of the q-transform for any a, c ∈ Vn, let

Ka,c =
∑

B∈GLn

(−1)q(aB)+q(cB).

Let

X =
Q(0)Iq − 1

2n − 1
and Y =

I2q − 2n − 2Q(0)Iq + 2
(2n − 1)(2n − 2)

.

Lemma 1. We have Ka,c = N if a = c, Ka,c = NX if a �= c = 0 or c �= a = 0,
and Ka,c = NY otherwise.
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The partial second moment of the q-transform of f is

E′[Wq(F )2] = Y Z(F )2 + 2(X − Y )F (0)(Z(F ) − F (0)) + (1 − Y )2n.

The full second moment of the q-transform of f is E[Wq(F )2] = 2n−1
2n (Y Z(F )2+

2(X − Y )F (0)(Z(F ) − F (0)) + (1 − Y )2n) + 1
2n Z(F )2.

When q is balanced we have E′[Wq(F )] = −Q(0)Z(F )/(2n − 1) + (2n − 1 +
Q(0)F (0))/(2n−1) and E′[Wq(F )2] = (22n−Z(F )2)/(2n−1). Thus E[Wq(F )] =
(1 − Q(0))Z(F )/2n + (2n − 1 + Q(0))F (0)/2n and E[Wq(F )2] = 2n.

Definition 2. If q is balanced, then f ∈ Bn is q-bent if for all A ∈ GL2,
|W q(f)| = 2n/2.

Theorem 2. If f ∈ Bn is balanced, then

E′[W q(f)] = − 1
2n − 1

(Iq − Q(0)) + F (0) < 2 and

E′[W q(f)2] =
22n − I2q
2n − 1

< 2n + 2.

Definition 3. A balanced f ∈ Bn is q-nearly bent if for all A ∈ GL2,

|W q(f)| ≤
⎡

⎢
⎢
⎢

(
22n − I2q
2n − 1

)1/2
⎤

⎥
⎥
⎥

.

Theorem 3. If q and f are balanced, then f is q-nearly bent iff q is f-nearly
bent.

5 Poisson Summation Formulas

For any subset S ⊆ Vn, let S⊥ denote the set of vectors that are orthogonal to
every vector in S, the parity checks for S. Recall that if S is a linear subspace
of Vn, then dim(S⊥) = n − dim(S).

In classical theory of Boolean functions, the Poisson summation formula
(PSF) says that if F ∈ Rn and S ⊆ Vn is a linear subspace and d ∈ Vn, then

∑

a∈S

(−1)d·aW (F )(a) = |S|
∑

b∈d+S⊥
F (b),

where W (F )(a) is the Walsh-Hadamard coefficient of F at a. The PSF has
been used in the analysis of many important properties of Boolean functions.
Examples include bounds on the algebraic degree of a Boolean function from
divisibility properties of its WHT, characterization of cryptographic properties
such as correlation immunity, resilience, and propagation criteria in terms of the
WHT, and relations between bent functions and their duals [1].
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Here we consider summation formulas for the q-transform Wq(F )(A) where
q ∈ Bn and A ∈ GLn. Let S ⊂ GLn be a non-empty subset. Let χ : GLn → C.
Then we define

Γχ
S (F ) =

∑

A∈S

χ(A)Wq(F )(A).

We want to compute Γχ
S (F ) for various sets S and various functions χ. In general

we have

Γχ
S (F ) =

∑

A∈S

χ(A)
∑

b∈Vn

F (b)(−1)q(bA) =
∑

b∈Vn

F (b)
∑

A∈S

χ(A)(−1)q(bA).

Thus for fixed q we want to compute

σS,χ(b) =
∑

A∈S

χ(A)(−1)q(bA).

For any subset U ⊆ Vn, let ZU (F ) =
∑

b∈U F (u). If f ∈ Bn, let If,U =
ZU (Φf ), the imbalance of f over U . Thus Z(F ) = ZVn

(F ) and If = If,Vn
.

5.1 When q is Linear

When q is linear we are essentially in the case of the classical WHT. Suppose
q(b) = tc(b) = b · c for some nonzero c ∈ Vn. Then q(bA) = bAct. Let χ(A) =
(−1)dAct for some d ∈ Vn. Let L be a nontrivial linear subspace of Vn and let
S = {A ∈ GLn : Act ∈ Lt}. Then

χ(A)(−1)q(bA) = (−1)dAct+bAct .

We have dAct+bAct ⊆ (d+b)Lt. First suppose b ∈ d+L⊥. Then χ(A)(−1)q(bA) =
1 for all A ∈ S, so

σS,χ(b) =
∑

A∈S

= |S| = (|L| − 1)N/(2n − 1).

Now suppose b �∈ d+L⊥. As A varies in S, Act takes each value in L∗ N/(2n −1)
times, so σS,χ(b) = −N/(2n − 1).

Theorem 4. Suppose q = tc for some nonzero c ∈ Vn, χ(A) = (−1)dAct for
some d ∈ Vn, L is a nontrivial linear subspace of Vn, and S = {A ∈ GLn : Act ∈
L}. Then

Γχ
S (F ) =

N

2n − 1
((|L| − 1)Zd+L⊥(F ) − ZVn\(d+L⊥)(F )).

Keeping in mind the term A = 0, this recovers the classical Poisson summa-
tion formula. In effect Wq(F )(0) should again be counted with weight N/(2n−1).
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5.2 χ(A) = (−1)q(dA), S Acting 2-uniformly

This time we take χ = χd, d ∈ Vn, defined by χd(A) = (−1)q(dA). Then

σS,χ(b) =
∑

A∈S

(−1)q(dA)+q(bA).

Definition 4. Let G be a group with a group action on a set R. Let S ⊆ G.
Then S acts uniformly on R if for all x, u ∈ R the cardinality of the set of
A ∈ S such that A(x) = u is |S|/|R|. Moreover S acts 2-uniformly on R if for
all x �= y, u �= v ∈ R the cardinality of the set of A ∈ S such that A(x) = u and
A(y) = v is |S|/(|R|(|R| − 1)).

It can be shown that if S acts 2-uniformly on R, then S acts uniformly on R.
We apply this definition with G = GLn, R = V ∗

n = Vn \{0n} and A(x) = xA
for A ∈ GLn and x ∈ V ∗

n . For example, GLn acts 2-uniformly on V ∗
n . We let

S ⊆ GLn act 2-uniformly on V ∗
n . Thus for all x �= y ∈ V ∗

n and u �= v ∈ V ∗
n ,

|{A ∈ S : xA = u ∧ yA = v}| = |S|/((2n − 1)(2n − 2)).

Lemma 2. For any b, d ∈ Vn we have

σS,χ(b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|S| if b = d

|S|Q(0n)(Iq − Q(0n))
2n − 1

if b �= d = 0n or d �= b = 0n

|S| (I2q − 2Q(0n)Iq − 2n + 2
)

(2n − 1)(2n − 2)
otherwise.

Corollary 1. If q is balanced, then σS,χ(d) = |S| and σS,χ(b) = −|S|/(2n − 1)
if b �= d.

Theorem 5. Let F ∈ Rn and χ = χd. Then

Γχ
S (f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|S|F (0n) +
|S|

2n − 1
Q(0n)(Iq − Q(0n))(Z(F ) − F (0n)) if d = 0n

|S|F (d) +
|S|

2n − 1
Q(0n)(Iq − Q(0n))F (0n)

+
|S|

(2n − 1)(2n − 2)
(
I2q − 2Q(0n)Iq − 2n + 2

)

·(Z(F ) − F (0n) − F (d)) otherwise.

If q is balanced, then

Γχ
S (F ) =

⎧
⎪⎪⎨

⎪⎪⎩

|S|
2n − 1

((2n − 2)F (0n) − Z(F )) if d = 0n

|S|
2n − 1

(2nF (d) − Z(F )) otherwise.
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Corollary 2. If F ∈ Rn, then F is uniquely determined by its q-transform.
That is, the q-transform is invertible.

Proof. Take S = GLn. Recall that Wq(F )(0) = Z(F ). Thus the case d = 0n

allows us to solve for F (0n). Then the second equation allows us to solve for
F (d) for any nonzero d. ��

5.3 Basing S on a Subspace

Suppose that q has rank r ≤ n. By change of basis we may assume that
q(a) depends only on a1, · · · , ar. We denote the restriction of q to its support
by q′. That is, q′ ∈ Br is defined by q′(a1, · · · , ar) = q(a1, · · · , an) for any
ar+1, · · · , an ∈ F2. Thus Iq = 2n−rIq′ . Let L be a subspace of Vn of dimen-
sion k ≥ r. In this section we let S = {A ∈ GLn : A1, · · · , Ar ∈ L}, where
Ai is the ith column of A, and χ(A) = (−1)q(dA) for some d ∈ Vn. We have
σS,χ(b) =

∑
A∈S(−1)q(dA)+q(bA).

Lemma 3. Let L ⊆ Vn be a subspace. Suppose that b ∈ Vn \ L⊥. Then as
A1, · · · , Ar vary in L, ψb(A1, · · · , Ar) = (b · A1, · · · , b · Ar) ∈ Vr takes on each
value in Vr |L|r/2r times.

Lemma 4. Let L ⊆ Vn be a subspace. Suppose that d, b, d+b ∈ Vn\L⊥. Then as
A1, · · · , Ar vary in L, τd,b(A1, · · · , Ar) = (d·A1, · · · , d·Ar, b·A1, · · · , b·Ar) ∈ V2r

takes on each value in V2r |L|r/22r times.

The hypotheses of Lemma 4 imply that dim(L) ≥ 2, so that |L|r/22r ∈ Z. If
d + b ∈ L⊥, then q(dA) = q(bA) for all A ∈ S, so

σS,χ(b) = |S| =
N

∏r−1
i=0 (2n − 2i)

r−1∏

i=0

(|L| − 2i).

If d ∈ L⊥ and b �∈ L⊥, then

σS,χ(b) =
∑

A∈S

(−1)q(0n)+q(bA) =
NQ(0n)

∏r−1
i=0 (2n − 2i)

∑

A1,··· ,Ar∈L
linearly independent

(−1)q′(b·A1,··· ,b·Ar).

A similar equation (with b replaced by d on the right hand side) holds if d ∈ L⊥

and b �∈ L⊥. If d, b, d + b �∈ L⊥, then

σS,χ(b) =
∑

A∈S

(−1)q(dA)+q(bA)

=
N

∏r−1
i=0 (2n − 2i)

∑

A1,··· ,Ar∈L
linearly independent

(−1)q′(d·A1,··· ,d·Ar)+q′(b·A1,··· ,b·Ar). (2)

We can evaluate these sums by first summing over all A1, · · · , Ar (not just the
linearly independent ones), then correcting by subtracting the terms that have
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been over counted. This leads to an inclusion/exclusion formula over subspaces
of Vr. We need some notation.

If v = (v1, · · · , vr) ∈ Vr and M = (A1, · · · , Ar) ∈ V r
n , let vM =

∑r
i=1 viAi ∈

Vn. That is, we think of the Ai as rows of a matrix and do matrix multiplication.
If T is a linear subspace of Vr, let UT = {M ∈ Lr : ∀v ∈ T : vM = 0}. Let ∅
denote the zero dimensional subspace of any vector space. Then U∅ = Lr.

For b ∈ Vn and M = (A1, · · · , Ar) ∈ V r
n , let b · M = (b · A1, · · · , b · Ar).

That is, think of the Ai as columns of a matrix and do matrix multiplication.
Let b, d ∈ Vn. Let

WT,b =
∑

M∈UT

(−1)q′(b·M) and XT,d,b =
∑

M∈UT

(−1)q′(d·M)+q′(b·M).

If b ∈ L⊥, then WT,b = |UT |Q(0n) = |L|r−dim(T )Q(0n). If b, d ∈ L⊥, then
XT,d,b = |UT | = |L|r−dim(T ). If T = ∅, then UT = Lr. By Lemma 3, if b �∈ L⊥,
then W∅,b = Iq′ |L|r/2r. By Lemma 4, if b, d, b+d �∈ L⊥, then X∅,d,b = I2q′ |L|r/22r.
Also, WVr,b = Q(0n) and XVr,d,b = 1.

For simplicity, let us write σS,χ(b) =
N

∏r−1
i=0 (2n − 2i)

σ′
S,χ(b).

If d ∈ L⊥ and b �∈ L⊥, then σ′
S,χ(b) = Q(0n)

r∑

j=0

(−1)jcj

∑

dim(T )=j

WT,b.

If d �∈ L⊥ and b ∈ L⊥, then σ′
S,χ(b) = Q(0n)

r∑

j=0

(−1)jcj

∑

dim(T )=j

WT,d.

If d, b, d + b �∈ L⊥, then σ′
S,χ(b) =

r∑

j=0

(−1)jcj

∑

dim(T )=j

XT,d,b.

The ci are constants, independent of q, L, d, and b. In the first case we want
to sum (−1)q(b·M) over all M whose components are linearly independent. We
take c0 = 1, so the j = 0 term sums (−1)q(b·M) over all M . Taking c1 = 1, the
j = 1 term subtracts (−1)q(b·M) for all M satisfying a linear relation. But if M
satisfies a 2 dimensional space of linear relations, then we have subtracted its
corresponding term three times, hence we have counted it twice too much. Thus
c2 = 2. Now if M satisfies a 3 dimensional space of linear relations then we have
counted its corresponding term once when j = 0, −7 times when j = 1 (a 3
dimensional space has 7 one dimensional subspaces), and 14 times when j = 2
(a 3 dimensional space has 7 two dimensional subspaces). Thus c3 = 8.

Now let

τ(k, 	) =
(2� − 1)(2�−1 − 1) · · · (2�−k+1 − 1)

(2k − 1)(2k−1 − 1) · · · (2 − 1)
,

the number of k dimensional subspaces of an 	 dimensional space. By similar
reasoning, it follows that for all 0 < 	 ≤ r the cj satisfy 0 = c0 − c1τ(1, 	) +
c2τ(2, 	) − + · · · + (−1)�c�τ(	, 	). We claim that

cj = 2(j
2). (3)
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To see this, we use the Möbius inversion formula for the lattice of subspaces
of a finite dimensional vector space over a finite field [5, p. 301]. We recall this
formula in the case when the finite field is F2. We write J ≤ K to indicate that
J is a subspace of the vector space K. Suppose that f and g are functions on a
vector space V with values in a ring R, satisfying

f(K) =
∑

K≤J≤V

g(J) (4)

for all subspaces K ≤ V . Then also

g(K) =
∑

K≤J≤V

μV (K,J)f(J), (5)

where μV is the Möbius μ function for the lattice of subspaces of V , defined by

μV (K,J) = (−1)dim(J)−dim(K)2(dim(J)−dim(K)
2 ).

In our case we can apply this with dim(V ) = 	, f(K) = 1 for all K ≤ Vr,
g(V ) = 1, and g(K) = 0 if K �= V . Then Eq. (4) holds, and so Eq. (5) with
K = ∅ then implies Eq. (3). This proves the following theorem.

Theorem 6. If d + b ∈ L⊥, then σS,χ(b) = |S| =
N

∏r−1
i=0 (2n − 2i)

r−1∏

i=0

(|L| − 2i).

If d ∈ L⊥, b �∈ L⊥, then σS,χ(b) =
NQ(0n)

∏r−1
i=0 (2n − 2i)

r∑

j=0

(−1)j2(j
2)

∑

dim(T )=j

WT,b.

If d �∈ L⊥, b ∈ L⊥, then σS,χ(b) =
NQ(0n)

∏r−1
i=0 (2n − 2i)

r∑

j=0

(−1)j2(j
2)

∑

dim(T )=j

WT,d.

If d, b, d + b �∈ L⊥, then σS,χ(b) =
N

∏r−1
i=0 (2n − 2i)

r∑

j=0

(−1)j2(j
2)

∑

dim(T )=j

XT,d,b.

Corollary 3. Let F ∈ Rn. If d ∈ L⊥, then

Γχ
S (F ) =

N
∏r−1

i=0 (2n − 2i)

(

ZL⊥(F )
r−1∏

i=0

(|L| − 2i)

+
∑

b∈Vn\L⊥
F (b)Q(0n)

r∑

j=0

(−1)j2(j
2)

∑

dim(T )=j

WT,b

⎞

⎠ .

If d �∈ L⊥, then

Γχ
S (F ) =

N
∏r−1

i=0 (2n − 2i)

⎛

⎝ZL⊥(F )Q(0n)
r∑

j=0

(−1)j2(j
2)

∑

dim(T )=j

WT,d

+Zd+L⊥(F )
r−1∏

i=0

(|L| − 2i) +
∑

b∈Vn\(L⊥∪d+L⊥)

F (b)
r∑

j=0

(−1)j2(j
2)

∑

dim(T )=j

XT,d,b

⎞

⎠ .
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5.4 Rank 2 and 3 Quadratic Forms

First let q ∈ Bn be quadratic of rank r = 2 [4]. By change of basis we may
assume q(a) = q′(a1, a2) = a1a2 or a1a2 + a1 + a2. Let ε = 1 if q in the first case
and ε = −1 in the second. Then Iq′ = 2ε. It follows that W∅,b = ε|L|2/2 and
WV2,b = 1 if b �∈ L⊥, and that X∅,d,b = |L|2/4 and XVr,d,b = 1 if d, b, d + b �∈ L⊥.

Let dim(T ) = 1. Suppose (a1, a2) ∈ {(0, 1), (1, 0)}. If b �∈ L⊥, then WT,b =
|L|(1+ ε)/2. If also d, b+ d �∈ L⊥, then XT,d,b = |L|(1+ ε)/2. Suppose (a1, a2) =
(1, 1). If b �∈ L⊥, then WT,b = 0. If also d, b + d �∈ L⊥, then XT,d,b = 0.

The following theorem follows from Corollary 3.

Theorem 7. Let q(a) ∈ Bn be quadratic of rank 2. Let χ(A) = (−1)q(dA). Then

Γχ
S (f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
(2n−1)(2n−2)

(
(|L| − 1) (|L| − 2)ZL⊥(F ))

+
(
ε |L|2

2 − (1 + ε)|L| + 2
)

ZVn\L⊥(F )
)

if d ∈ L⊥

N
(2n−1)(2n−2)

((
ε |L|2

2 − (1 + ε)|L| + 2
)

ZL⊥(F )
(|L| − 1)(|L| − 2)Zd+L⊥(F )
(

|L|2
4 − (1 + ε)|L| + 2

)
ZVn\(L⊥∪d+L⊥)(F )

)
if d �∈ L⊥.

Let q be a rank 3 quadratic form. We may assume that q(a) = q′(a1, a2, a3) =
a1a2 + a3. Now Iq = Iq′ = 0, so W∅,b = 0, WVr,b = 1 if b �∈ L⊥, X∅,d,b = 0, and
XVr,d,b = 1 if d, b, d + b �∈ L⊥. There are 7 one dimensional subspaces T ⊆ V3, of
the form T = {0n, a}. There are also 7 two dimensional subspaces T ⊆ V3, the
duals of the one dimensional subspaces. The values of WT,b (when b �∈ L⊥) and
of XT,d,b (when d, b, d + b �∈ L⊥) are given in Tables 1 and 2.

Table 1. Values of WT,b and XT,d,b for T = {0n, a}, r = 3.

a WT,b XT,d,b

(1, 0, 0), (0, 1, 0) 0 0

(1, 1, 0) 0 0

(0, 0, 1) |L|2/2 |L|2/4
(1, 0, 1), (0, 1, 1) |L|2/2 |L|2/4
(1, 1, 1) −|L|2/2 |L|2/4

The following theorem follows from Corollary 3.

Theorem 8. Let q ∈ Bn be quadratic rank 3. Let χ(A) = (−1)q(dA). If d ∈ Vn

Γχ
S (f) =

N

(2n − 1)(2n − 2)(2n − 4)
(|L| − 2)(|L| − 4)(|L|Zd+L⊥(F ) − ZVn

(F )).
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Table 2. Values of WT,b and XT,d,b for T = {0n, a}⊥, r = 3.

a WT,b XT,d,b

(1, 0, 0), (0, 1, 0) |L| |L|
(1, 1, 0) 0 0

(0, 0, 1) 0 0

(1, 0, 1), (0, 1, 1) 0 0

(1, 1, 1) |L| |L|

Corollary 4. If q ∈ Bn is a rank 3 quadratic form, f ∈ Bn is q-bent, and
L ⊆ Vn is a linear subspace of dimension k, then for all d ∈ Vn we have
2n/2−6|Id+L⊥(f).

6 The q-Transform of q with q Quadratic

In this section we consider the q-transform of q. When q is linear, this is equiva-
lent to the WHT of a linear function, which has one large peak and is otherwise
zero. The q-transform of q seems to be hard to compute in general, but we have
the following when s is a rank r quadratic form q(b) on Vn. If A ∈ GLn, let
qA(b) = q(b) + q(bA)

Theorem 9. Let q ∈ Bn be quadratic with rank r. Every even integer between
0 and min(2r, n) occurs as the rank of qA for some A ∈ GLn. Thus for every
even r′ with 0 ≤ r′ ≤ min(2r, n) there is a matrix A ∈ GLn with |Wq(q)(A)| =
2n−r′/2.

7 Questions

Perhaps the biggest open problem is how to construct q-bent functions for even
the simplest nonlinear q ∈ Bn, such as a rank 3 quadratic function. A computer
search showed that if n = 4, then there are no q-bent functions for any nonlinear
q. We further wonder what the right definition of q-bent is if q is not balanced.
Two possibilities are (1) functions f whose distance from Sq is maximal and (2)
functions f such that |W̄q(f)(A)| is constant. We also plan to explore notions of
cryptographic security, such as resilience, in the context of q-transforms.
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Abstract. Hyper-bent functions as a subclass of bent functions attract
much interest and it is elusive to completely characterize hyper-bent
functions. Most of known hyper-bent functions are Boolean functions
with Dillon exponents and they are often characterized by special values
of Kloosterman sums. In this paper, we present a method for charac-
terizing hyper-bent functions with Dillon exponents. A class of hyper-
bent functions with Dillon exponents over F22m can be characterized
by a Boolean function over F2m , whose Walsh spectrum takes the same
value twice. Further, we show several classes of hyper-bent functions with
Dillon exponents characterized by Kloosterman sum identities and the
Walsh spectra of some common Boolean functions.

Keywords: Bent function · Hyper-bent function · Dillon exponents ·
Walsh-Hadamard transform · Kloosterman sums

1 Introduction

Bent functions are maximally nonlinear Boolean functions with even numbers
of variables whose Hamming distance to the set of all affine functions equals
2n−1 ± 2

n
2 −1. These functions introduced by Rothaus [22] as interesting combi-

natorial objects have been extensively studied for their applications not only
in cryptography, but also in coding theory [3,18] and combinatorial design.
A bent function can be considered as a Boolean function defined over F

n
2 ,

F2m×F2m (n = 2m) or F2n . Thanks to good structures and properties of the finite
field F2n , bent functions can be well studied. Much research on bent functions on
F2n can be found in [2,4,5,7–9,12,14,17–20]. Youssef and Gong [26] introduced
a class of bent functions called hyper-bent functions, which achieve the maximal
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minimum distance to all the coordinate functions of all bijective monomials (i.e.,
functions of the form Trn

1 (axi)+ ε, gcd(i, 2n −1) = 1). However, the definition of
hyper-bent functions was given by Gong and Golomb [13] by a property of the
extended Hadamard transform of Boolean functions. Hyper-bent functions as
special bent functions with strong properties are hard to characterize and many
related problems are open. Much research give the precise characterization of
hyper-bent functions in certain forms, such as hyper-bent functions with Dillon
exponents and hyper-bent functions with Niho exponents.

Charpin and Gong [4] studied the hyper-bent functions with multiple trace
terms of the form

f(x) =
∑

r∈R

Trn
1 (arx

r(2m−1)),

where n = 2m, R is a set of representations of the cyclotomic cosets modulo
2m + 1 of full size n and ar ∈ F2m . The characterization of these hyper-bent
functions was presented by the character sums on F2m . Lisonek [15] presented
another characterization of Charpin and Gong’s hyper-bent functions in terms
of the number of rational points on certain hyperelliptic curves. And they proved
that there exists an algorithm for determining such hyper-bent functions with
time complexity and space complexity O(ra

maxmb), where rmax is the biggest
element in R, and a, b are some positive constants irrelevant to rmax and m. In
particular, when R = r and (r, 2m +1) = 1, these hyper-bent function are mono-
mial functions via Dillon-like exponents. Dillon [7] proved that Trn

1 (axr(2m−1))
(a ∈ F2m) is hyper-bent if and only if Km(a) = 0.

Mesnager [18] generalized Charpin and Gong’s hyper-bent functions and
presented the characterization of hyper-bent functions of the form

f(x) =
∑

r∈R

Trn
1 (arx

r(2m−1)) + Tr21(bx
2n−1

3 ),

where b ∈ F4 and ar ∈ F2m . In the case #R = 1, explicit characterization
in [17] by Mesnager is presented. With the similar approach, Wang et al. [25]
characterized the hyper-bentness of a class of Boolean functions of the form

f(x) =
∑

r∈R

Trn
1 (arx

r(2m−1)) + Tr41(bx
2n−1

5 ),

where b ∈ F16 and ar ∈ F2m . In [23,24], explicit characterization for the case
#R = 1 is given. When rmax is small, Flori and Mesnager [10,11] used the
number of rational points on hyper-elliptic curves to determine those classes
of Wang et al.’s hyper-bent functions. Mesnager and Flori [21] generalized the
above results and characterized the hyper-bentness of Boolean functions of the
form

f(x) =
∑

r∈R

Trn
1 (arx

r(2m−1)) + Trt
1(bx

s(2m−1)),
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where s|(2m + 1), t = o(s(2m − 1)), i.e., t is the size of the cyclotomic coset of s
modulo 2m + 1, ar ∈ F2m , and b ∈ F2t .

Li et al. [16] considered a class of Boolean functions of the form

f(x) =
q−1∑

i=0

Trn
1 (ax(ri+s)(q−1)) + Tr21(bx

q2−1
3 ),

where n = 2m, q = 2m, m is odd, gcd(r, q + 1) = 1, a ∈ Fq2 , and b ∈ F4. The
hyper-bentness of these functions is characterized by Kloosterman sums.

This paper characterizes hyper-bent functions with Dillon exponents c(2m−1)
with a new method. A hyper-bent function with Dillon exponents over F22m can
be characterized by two elements in F2m , which take the same Walsh-Hadamard
coefficient of a Boolean function over F2m . Further, Kloosterman sum identities
and the Walsh spectra of some common Boolean functions are used to characterize
several classes of hyper-bent functions.

This paper is organized as follows: Sect. 2 introduces some notations, hyper-
bent functions, and results of exponential sums. Section 3 presents our main
method for characterizing hyper-bent functions over F22m from Boolean func-
tions over F2m . Then we give several classes of hyper-bent functions from some
common Boolean functions over F2m . Kloosterman sum identities and the Walsh
spectra of some common Boolean functions are of use in the characterization of
these hyper-bent functions. Section 4 makes a conclusion for this paper.

2 Preliminaries

2.1 Boolean Functions and Bent Functions

Let n be a positive integer, n = 2m, and q = 2m. Let F2n be a finite field with 2n

elements and F
∗
2n the multiplicative group of F2n . Let α be a primitive element

of F2n . Let U be a subgroup of F∗
2n generated by ξ = αq−1. Then U is a cyclic

group of q + 1 elements.
Let F2k be a subfield of F2n . The trace function from F2n to F2k , denoted by

Trn
k (x), is a map defined as Trn

k (x) := x + x2k

+ x22k

+ · · · + x2n−k

.
A Boolean function f over F2n is an F2-valued function. The “sign” function

of f is defined by χ(f) := (−1)f . The Walsh-Hadamard transform of f is the
discrete Fourier transform of χf , whose value at ω ∈ F2n is defined by

χ̂f (w) :=
∑

x∈F2n

(−1)f(x)+Trn
1 (wx),

where w ∈ F2n . Then we can define the bent functions.

Definition 1. A Boolean function f : F2n → F2 is called a bent function, if
χ̂f (w) = ±2

n
2 (∀w ∈ F2n).

If f is a bent function, n must be even. Further, deg(f) ≤ n
2 [2]. Hyper-bent

functions as an important subclass of bent functions are defined below.
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Definition 2. A bent function f : F2n → F2 is called a hyper-bent function, if,
for any i satisfying (i, 2n − 1) = 1, f(xi) is also a bent function.

Many hyper-bent Boolean functions are with Dillon exponents. A Boolean func-
tion is with Dillon exponents if the exponents of the trace representation of this
function have the form c(q − 1), where c is a positive integer. Such functions
satisfies that for any y ∈ F

∗
q and x ∈ F2n , f(yx) = f(x). The characterization of

hyper-bent functions with Dillon exponents is given in the following proposition
[16,17].

Proposition 1. Let f(x) be a Boolean function with Dillon exponents defined
over F22m . Then f(x) is hyper-bent if and only if Λf =

∑
u∈U (−1)f(u) =

(−1)f(0).

2.2 Exponential Sums

In this subsection, we introduce some results for special exponential sums.

Definition 3. The binary Kloosterman sums associated with a on finite field
F2m are

Km(a) =
∑

x∈F2m

(−1)Trm
1 ( 1

x+ax), a ∈ F2m .

Note that 1
0 = 0 for x = 0.

Definition 4. The cubic sums on F2m are

Cm(a, b) =
∑

x∈F2m

(−1)Trm
1 (ax3+bx), a ∈ F

∗
2m , b ∈ F2m .

Carlitz computed the exact values of the cubic sums in the following two
propositions [1].

Proposition 2. Let m be an odd integer. Then
(1) Cm(1, 1) = (−1)(m

2−1)/82(m+1)/2.
(2) If Trm

1 (c) = 0, then Cm(1, c) = 0.
(3) If Trm

1 (c) = 1 and c �= 1, then Cm(1, c) = (−1)Trm
1 (γ3+γ)( 2

m )2(m+1)/2,
where c = γ4 + γ + 1,γ ∈ F2m , and ( 2

m ) is the Jacobi symbol.

Proposition 3. Let m be an even integer. Then,
(1) Cm(1, 0) = (−1)

m
2 +12

m
2 +1;

(2) Cm(1, λ) =

{
(−1)Trm

1 (γ3)(−1)
m
2 +12

m
2 +1, T rm

2 (λ) = 0
0, T rm

2 (λ) �= 0
, where γ is a

solution of γ4 + γ = λ2.
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3 A Class of Hyper-Bent Functions with Dillon
Exponents

Let n be a positive integer, n = 2m, and q = 2m. In this section, we present
our new method for characterizing hyper-bent functions over F2n by a Boolean
function over Fq, whose Walsh spectrum takes the same value twice.

Note that 1
0 = 0. Let g(y) be a Boolean function defined over Fq. Then we

define a Boolean function over Fq2 of the form

f(x) = g(
1

λ1 + λ2
· 1
xq−1 + x−(q−1)

) + Trm
1 (

λi

λ1 + λ2
· 1
xq−1 + x−(q−1)

) (1)

where λi ∈ Fq (i = 1 or 2) and λ1 �= λ2. Note that xq−1 + x−(q−1) ∈ Fq. Then
f(x) is well defined. The hyper-bentness of f(x) is characterized by the same
Walsh-Hadamard coefficient of g(y) in the following theorem.

Theorem 1. Let f(x) be defined in (1). Let g(0) = 0. Then f(x) is hyper-bent
if and only if χ̂g(λ1) = χ̂g(λ2), where χ̂g(λ) is the Walsh-Hadamard transform
of g(y).

Proof. Note that f(x) is a function with Dillon exponents c(q − 1). When y �= 0
and Trn

1 (y) = 1, the equation 1
u+u−1 = y has two solutions. Then u �→ 1

u+u−1 is
a 2-to-1 map from U \ {1} to {y ∈ Fq : Trn

1 (y) = 1} [17]. The map u �→ uq−1 is
a permutation of U . Then

Λf =
∑

u∈U

(−1)g( 1
λ1+λ2

· 1
u+u−1 )+Trm

1 (
λi

λ1+λ2
· 1

u+u−1 )

=(−1)g(0) + 2
∑

y∈Fq,Trm
1 (y)=1

(−1)g( y
λ1+λ2

)+Trm
1 (

λi
λ1+λ2

y).

Further, we have

Λf =(−1)g(0)+
∑

y∈Fq

(−1)g( y
λ1+λ2

)+Trm
1 (

λi
λ1+λ2

y)

−
∑

y∈Fq

(−1)g( y
λ1+λ2

)+Trm
1 (

λi
λ1+λ2

y)+Trm
1 (y)

=(−1)g(0)+
∑

y∈Fq

(−1)g( y
λ1+λ2

)+Trm
1 (

λi
λ1+λ2

y)−
∑

y∈Fq

(−1)g( y
λ1+λ2

)+Trm
1 (

λ3−i
λ1+λ2

y).

Note that y �→ y
λ1+λ2

is a permutation of Fq and g(0) = 0. Then Λf = 1 +
∑

y∈Fq
(−1)g(y)+Trm

1 (λiy)−∑
y∈Fq

(−1)g(y)+Trm
1 (λ3−iy). From Proposition 1, f(x) is

hyper-bent if and only if
∑

y∈Fq
(−1)g(y)+Trm

1 (λiy) =
∑

y∈Fq
(−1)g(y)+Trm

1 (λ3−iy),
i.e., χ̂g(λ1) = χ̂g(λ2). Hence, this theorem follows.
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Theorem 1 offers a new method to present hyper-bent funtions of the form (1).
On the Walsh spectra of g(y), there are many exisiting results, which can be
used to find two different elements λ1 and λ2 satisfying χ̂g(λ1) = χ̂g(λ2). From
the proper choice of a Boolean function g(y), λ1, and λ2, a lot of hyper-bent
functions f(x) can be given.

For further consideration, we give the following lemma.

Lemma 1. Let x ∈ Fq2 , u = xq−1, λ ∈ Fq, and m ≥ t ≥ 1. Then

(1) 1
u+u−1 =

∑2m−2

i=1 (u2(2i−1) + u−2(2i−1));

(2) Trm
1 (λ 1

xq−1+x−(q−1) ) =
∑2m−2

i=1 Trn
1 (λ2m−1

x(2i−1)(q−1));

(3) ( 1
u+u−1 )2

t−1−1 =
∑2m−t

i=1 (u2t−1(2i−1) + u−2t−1(2i−1));

(4) Trm
1 (λ( 1

xq−1+x−(q−1) )2
t−1−1) =

∑2m−t

i=1 Trn
1 (λ2m−t+1

x(2i−1)(q−1));

(5) (u + u−1)2
t−1 =

∑2t−1

i=1 (u2i−1 + u−(2i−1));

(6) Trm
1 (λ(xq−1 + x−(q−1))2

t−1) =
∑2t−1

i=1 Trn
1 (λx(2i−1)(q−1));

(7) (u + u−1)2
t+1 = u2t−1 + u−(2t−1) + u2t+1 + u−(2t+1);

(8) Trm
1 (λ(xq−1 + x−(q−1))2

t+1) = Trn
1 (λ(x(2t−1)(q−1) + x(2t+1)(q−1))).

Proof. This lemma can be easily verified.

In the rest of this section, some common classes of Boolean functions over Fq are
used to characterize hyper-bent functions over F2n . Kloosterman sum identities
and cubic sums are linked with the characterization of hyper-bent functions.

3.1 Hyper-Bent Functions from g(y) = Trm1 (ay−d)

From Theorem 1, we have the following proposition.

Proposition 4. Let d be an odd integer such that q − 3 ≥ d ≥ 1 and gcd(d, q −
1) = e > 1. Let a ∈ Fq, ρ ∈ F

∗
q , ρe = 1, and ρ �= 1. Then, the Boolean function

f(x) =
∑ d−1

2
j=0

(
d
j

)
Trn

1 (ax(d−2j)(q−1)) +
∑2m−2

j=1 Trn
1 ( ρi

1+ρx(2j−1)(q−1)) ∈ F2[x] is
hyper-bent, where i = 0 or i = 1.

Proof. Let g(y) = Trm
1 (ay−d). For any λ ∈ F

∗
q , we have

χ̂g(λ) =
∑

y∈Fq

(−1)Trm
1 (ay−d+λy)

=
∑

y∈Fq

(−1)Trm
1 (a(ρy)−d+λ(ρy)) =

∑

y∈Fq

(−1)Trm
1 (ay−d+λρy),

i.e., χ̂g(λ) = χ̂g(λρ). From Theorem 1, we have the hyper-bent function

f(x) = Trm
1 (aλd(1 + ρ)d(xq−1 + x−(q−1))d) + Trm

1 (
ρi

1 + ρ

1
xq−1 + x−(q−1)

).
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From Result (2) in Lemma 1, we have

f(x) =
d∑

j=0

Trm
1 (aλd(1 + ρ)d

(
d

j

)

x(2j−d)(q−1))

+
2m−2
∑

j=1

Trn
1 ((

ρi

1 + ρ
)2

m−1
x(2j−1)(q−1)),

=

d−1
2∑

j=0

Trm
1 (aλd(1 + ρ)d

(
d

j

)

(x(2j−d)(q−1) + x(d−2j)(q−1)))

+
2m−2
∑

j=1

Trn
1 ((

ρi

1 + ρ
)2

m−1
x(2j−1)(q−1)),

=

d−1
2∑

j=0

(
d

j

)

Trn
1 (aλd(1 + ρ)dx(d−2j)(q−1))

+
2m−2
∑

j=1

Trn
1 ((

ρi

1 + ρ
)2

m−1
x(2j−1)(q−1)).

We can replace a by a
λd(1+ρ)d and ρ by ρ2

m−1
and get that f(x) is still hyper-bent.

Hence, this proposition holds.

The coefficient
(
d
j

)
mod 2 can be determined by Lucas’s theorem. We will give

the hyper-bent function f(x) for cases d = 2s −1 and d = 2s +1 correspondingly
in the following corollary.

Corollary 1. Let a ∈ Fq and s be a positive integer.
(1) Let gcd(m, s) > 1, e = 2gcd(m,s) − 1, ρ ∈ Fq \ F2, ρe = 1, and i ∈

{0, 1}. Then the Boolean function f(x) =
∑2s−1

j=0 Trn
1 (ax(2j−1)(q−1)) +

∑2m−2

j=1

Trn
1 ( ρi

1+ρx(2j−1)(q−1)) is hyper-bent.
(2) Let m

gcd(m,s) be even, e = 2gcd(m,s) + 1, ρ ∈ Fq \ F2, ρe = 1, and i ∈
{0, 1}. Then the Boolean function f(x) = Trn

1 (a(x(2s−1)(q−1) + x(2s+1)(q−1))) +
∑2m−2

j=1 Trn
1 ( ρi

1+ρx(2j−1)(q−1)) is hyper-bent.

Proof. Take d = 2s−1. Then e = 2gcd(m,s)−1 = gcd(d, q−1). From Proposition 4,
we have the hyper-bent function

f(x) =
2s−1−1∑

j=0

(
2s − 1

j

)

Trn
1 (ax(d−2j)(q−1)) +

2m−2
∑

j=1

Trn
1 (

ρi

1 + ρ
x(2j−1)(q−1)).
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From Lucas’s Theorem, when 2s−1 −1 ≥ j ≥ 0,
(
2s−1

j

) ≡ 1 mod 2. We have the
hyper-bent function

f(x) =
2s−1
∑

j=1

Trn
1 (ax(2j−1)(q−1)) +

2m−2
∑

j=1

Trn
1 (

ρi

1 + ρ
x(2j−1)(q−1)).

Result (1) holds.
Take d = 2s + 1. Since m

gcd(m,s) is even, e = 2gcd(m,s) + 1 = gcd(d, q − 1).
From Proposition 4, we have the hyper-bent function

f(x) =
2s−1
∑

j=0

(
2s + 1

j

)

Trn
1 (ax(d−2j)(q−1)) +

2m−2
∑

j=1

Trn
1 (

ρi

1 + ρ
x(2j−1)(q−1)).

From Lucas’s Theorem, when 2s−1 ≥ j ≥ 0,
(
2s+1

j

) ≡ 1 mod 2 holds only for
j = 0, 1. Then we have the hyper-bent function

f(x) = Trn
1 (a(x(2s−1)(q−1) + x(2s+1)(q−1))) +

2m−2
∑

j=1

Trn
1 (

ρi

1 + ρ
x(2j−1)(q−1)).

Result (2) holds.

3.2 Hyper-Bent Functions from g(y) = Trm1 (y)

Take g(y) = Trm
1 (y). Note that

∑
y∈Fq

(−1)Trm
1 (μy) = 0 (μ �= 0). Thus, for any

λ ∈ Fq \F2, we have χ̂g(0) = χ̂g(λ) = 0. From Theorem 1, we have the following
hyper-bent function f(x) = Trm

1 ( 1
λ · 1

xq−1+x−(q−1) ). Further, from Lemma 1, we
have the following hyper-bent function

f(x) =
2m−2
∑

i=1

Trn
1 (

1
λ2m−1 x(2i−1)(q−1)).

Remark 1. Note that { 1

λ2m−1 : λ ∈ Fq \ F2} = Fq \ F2. Then, the Boolean

function f(x) =
∑2m−2

i=1 Trn
1 (λx(2i−1)(q−1)) is hyper-bent if and only if λ �∈ F2.

This hyper-bent function has been characterized in Corollary 4 in [16].

3.3 Hyper-Bent Functions from g(y) = Trm1 ( 1
y
)

Take g(y) = Trm
1 ( 1

y ), λi ∈ Fq (i = 1, 2), and λ1 �= λ2. The Boolean function
defined in (1) over Fq2 is

f(x) =Trm
1 ((λ1 + λ2)(xq−1 + x−(q−1))) + Trm

1 (
λi

λ1 + λ2

1
xq−1 + x−(q−1)

)

=Trn
1 ((λ1 + λ2)xq−1) + Trm

1 (
λi

λ1 + λ2

1
xq−1 + x−(q−1)

)

=Trn
1 ((λ1 + λ2)xq−1) +

2m−2
∑

j=1

Trn
1 ((

λi

λ1 + λ2
)2

m−1
x(2j−1)(q−1)).
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Note that χ̂g(λi) = Km(λi) (i = 1, 2). Hence, from Theorem 1, we have the
following theorem.

Theorem 2. Let λi ∈ Fq (i = 1, 2) and λ1 �= λ2. The following conditions are
equivalent.

(1) f1(x) = Trn
1 ((λ1 + λ2)xq−1) +

∑2m−2

i=1 Trn
1 (( λ1

λ1+λ2
)2

m−1
x(2i−1)(q−1)) is

hyper-bent.
(2) f1(x) = Trn

1 ((λ1 + λ2)xq−1) +
∑2m−2

i=1 Trn
1 (( λ2

λ1+λ2
)2

m−1
x(2i−1)(q−1)) is

hyper-bent.
(3) Km(λ1) = Km(λ2).

Usually, special values of Kloosterman sums are used to characterize hyper-bent
functions. From Theorem 2, we can characterize hyper-bent functions from two
distinct elements, which have the same evaluation of Kloosterman sums. Known
results on Kloosterman sum identities are of use. From known Kloosterman sum
identities, several hyper-bent functions can be given immediately.

Corollary 2. Let b ∈ Fq and ε ∈ F2. The following Boolean functions Trn
1 ((b2+

b)xq−1)+
∑2m−2

i=1 Trn
1 ((b+ ε)x(2i−1)(q−1)), (b �∈ F2), Trn

1 ((b2 + b)xq−1) +
∑2m−2

i=1

Trn
1 ((b2 + ε)x(2i−1)(q−1)), (b �∈ F2), and Trn

1 ((b4 + b)xq−1) +
∑2m−2

i=1 Trn
1 ((b4 +

ε)x(2i−1)(q−1)), (b �∈ F4) are all hyper-bent.

Proof. From [6], when b ∈ Fq \ F2, we have the following Kloosterman sum
identities: Km(b3(1 + b)) = Km((1 + b)3b), Km(b5(1 + b)) = Km((1 + b)5b), and
Km(b8(b4 + b)) = Km((1 + b)8(b4 + b)). Consider the following three cases:

(1) λ1 = b3(1 + b) and λ2 = (1 + b)3b, where b ∈ Fq \ F2. Then λ1 �= λ2;
(2) λ1 = b5(1 + b) and λ2 = (1 + b)5b, where b ∈ Fq \ F2. Then λ1 �= λ2;
(3) λ1 = b8(b4+b) and λ2 = (1+b)8(b4+b), where b ∈ Fq \F4. Then λ1 �= λ2;
From Theorem 2, this corollary can be obtained immediately.

3.4 Hyper-Bent Functions from g(y) = Trm1 (y2t−1−1)

Take g(y) = Trm
1 (y2t−1−1), t ≥ 1, λi ∈ Fq (i = 1, 2), and λ1 �= λ2. From Result

(2) and Result (4) in Lemma 1, the Boolean function defined in (1) over Fq2 is

f(x) =
2m−t
∑

j=1

Trn
1 ((λ1 + λ2)2

m−t+1−1x(2j−1)(q−1))

+
2m−2
∑

j=1

Trn
1 ((

λi

λ1 + λ2
)2

m−1
x(2j−1)(q−1)). (2)

From Theorem 1, we have the following theorem.

Theorem 3. Let f(x) be defined in (2). Then f(x) is hyper-bent if and only if
∑

y∈Fq
(−1)Trm

1 (y2t−1−1+λ1y) =
∑

y∈Fq
(−1)Trm

1 (y2t−1−1+λ2y).
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If gcd(t − 1,m) = 1, then gcd(2t−1 − 1, 2m − 1) = 1 and y �→ y2t−1−1

is a permutation of Fq, and
∑

y∈Fq
(−1)Trm

1 (y2t−1−1) = 0. Hence, we have the
following corollary.

Corollary 3. Let gcd(t − 1,m) = 1, λ ∈ F
∗
q , and ε ∈ F2. The Boolean function

f(x) =
2m−t
∑

j=1

Trn
1 (λ2m−t+1−1x(2j−1)(q−1)) + ε

2m−2
∑

j=1

Trn
1 (x(2j−1)(q−1))

is hyper-bent if and only if
∑

y∈Fq
(−1)Trm

1 (y2t−1−1+λy) = 0.

This corollary generalizes Theorem 6 in [16]. It is easy to verify that when
t = 1, 2, the hyper-bent function defined in (2) is just the hyper-bent function
in Remark 1. In the following subsection, we discuss the case t = 3. When t = 3,
χ̂g(λ) is just the cubic sum Cm(1, λ).

When m is odd, from Proposition 2, we have χ̂g(λ) ∈ {0,±( 2
m )2(m+1)/2}.

Define H1,0 = {λ ∈ Fq : χ̂g(λ) = 0}, H1,1 = {λ ∈ Fq : χ̂g(λ) = ( 2
m )2(m+1)/2},

and H1,−1 = {λ ∈ Fq : χ̂g(λ) = −( 2
m )2(m+1)/2}. Further, from Proposition 2, we

have H1,0 = {λ ∈ Fq : Trm
1 (λ) = 0}, H1,1 = {γ4+γ+1 : Trm

1 (γ3+γ) = 0}∪{1},
and H1,−1 = {γ4 + γ + 1 : Trm

1 (γ3 + γ) = 1}.
From Theorem 1, we have the following corollary.

Corollary 4. Let m be odd, λi ∈ Fq(i = 1, 2), and λ1 �= λ2. Then, the Boolean
function

f(x) =
∑2m−3

j=1
Tr

n
1 ((λ1 + λ2)

2m−2−1
x
(2j−1)(q−1)

) +
∑2m−2

j=1
Tr

n
1 ((

λi

λ1 + λ2
)
2m−1

x
(2j−1)(q−1)

)

is hyper-bent if and only if there exists j ∈ {0, 1,−1} such that λ1, λ2 ∈ H1,j.

Remark 2. Note that the cardinality of {χ̂g(λ)|λ ∈ Fq} is 3. If we suppose q =
2m > 3 and take four elements in Fq, then there exists two elements λ1, λ2 ∈ Fq

lying in some H1,j . Hence we can get a corresponding hyper-bent function.

Note that 0 ∈ H1,0. Then we have the following corollary.

Corollary 5. Let m be odd, λ ∈ F
∗
q , and ε ∈ F2. The Boolean function f(x) =

∑2m−3

j=1 Trn
1 (λ2m−2−1x(2j−1)(q−1)) + ε

∑2m−2

j=1 Trn
1 (x(2j−1)(q−1)) is hyper-bent if

and only if Trm
1 (λ) = 0, λ �= 0.

These corollaries generalize Result (3) in Corollary 6 in [16].
When m is even, from Proposition 3, χ̂g(λ) ∈ {0,±(−1)

m
2 +12

m
2 +1}. Define

H0,0 = {λ ∈ Fq : χ̂g(λ) = 0}, H0,1 = {λ ∈ Fq : χ̂g(λ) = (−1)
m
2 +12

m
2 +1},

and H0,−1 = {λ ∈ Fq : χ̂g(λ) = −(−1)
m
2 +12

m
2 +1}. From Proposition 3, we have

H0,0 = {λ ∈ Fq : Trm
2 (λ) �= 0}, H0,1 = {(γ4 + γ)2

m−1
: γ ∈ Fq, T rm

1 (γ3) = 0},
and H0,−1 = {(γ4 + γ)2

m−1
: γ ∈ Fq, T rm

1 (γ3) = 1}. Obviously, 0 ∈ H0,1.

Lemma 2. 1 ∈ H0,1 if and only if 8|m.
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Proof. From the definition of H0,1, we have 1 ∈ H0,1 if and only if there exists γ ∈
Fq satisfying γ4+γ+1 = 0 and Trm

1 (γ3) = 0. It is easy to verify that γ4+γ+1 = 0
is irreducible over F2. Thus, 4|m. Further, Trm

1 (γ3) = Tr41(Trm
4 (γ3)) = m

4 = 0.
Hence, this theorem follows.

From Theorem 1, we have the following corollary.

Corollary 6. Let m be even, λi ∈ Fq(i = 1, 2), and λ1 �= λ2. The Boolean
function

f(x) =
2m−3
∑

j=1

Trn
1 ((λ1 + λ2)2

m−2−1x(2j−1)(q−1))

+
2m−2
∑

j=1

Trn
1 ((

λi

λ1 + λ2
)2

m−1
x(2j−1)(q−1))

is hyper-bent if and only if there exists j ∈ {0, 1,−1} satisfying λ1, λ2 ∈ H0,j.

When 8|m, from Lemma 2, we have 0, 1 ∈ H0,1. Hence, we have the following

hyper-bent functions : f0(x) =
∑2m−3

j=1 Trn
1 (x(2j−1)(q−1)) and f1(x) =

∑2m−2

j=2m−3+1

Trn
1 (x(2j−1)(q−1)).

4 Conclusion

In this paper, we characterize hyper-bent functions from Boolean functions with
the Walsh spectrum taking the same value twice. From our method, many results
on exponential sums can be used in the characterization of hyper-bent functions.
We use some Kloosterman sum identities and the Walsh spectra of some common
Boolean functions to characterize several classes of hyper-bent functions.

Acknowledgements. This work was supported by the Natural Science Foundation
of China (Grant No.10990011, 11401480 & No. 61272499).
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Abstract. We characterize bent functions and plateaued functions in
terms of moments of their Walsh transforms. We introduce in any char-
acteristic the notion of directional difference and establish a link between
the fourth moment and that notion. We show that this link allows to iden-
tify bent elements of particular families. Notably, we characterize bent
functions of algebraic degree 3.

1 Introduction

Binary bent functions are usually called Boolean bent functions. These functions
were first introduced by Rothaus in [12]. Bent functions are closely related to
other combinatorial and algebraic objects such as Hadamard difference sets,
relative difference sets, planar functions and commutative semi-fields. Later,
this notion has been generalized to that of p-ary bent functions [11]. Several
studies on p-ary bent functions have been performed (a non exhaustive list is
[5,7–10,13]). Most of them concern constructions of bent functions or studies
of their properties. Another important family of binary functions is that of
plateaued functions [3]. Like the notion of bent function, the notion of plateaued
function can be generalized to p-ary plateaued functions (see [4] for instance).
In this paper, we establish characterizations of bent functions and plateaued
functions in terms of sums of powers of the Walsh transform (Theorems 1 and
3). We also introduce the notion of directional difference for p-ary functions,
generalizing the directional derivative of Boolean functions (Definition 1). We
then show that one can establish identities linking sums of fourth-powers of the
Walsh transform and directional derivatives of a p-ary function (Proposition 1).
We then deduce from our characterizations of all bent p-ary functions of alge-
braic degree 3 when p is odd (Theorem 4). We finally establish a link between
the bentness of all elements of a family of p-ary functions and counting zeros of
their directional differences (Theorem 6 and Corollary 2).

2 Notation and Preliminaries

Let p be a prime integer, n ≥ 1 be an integer. We will denote Fpn the finite
field of size pn and F

�
pn the set of nonzero elements of Fpn . Let ξp be a primitive

c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 72–82, 2014.
DOI: 10.1007/978-3-319-12325-7 6
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pth-root of unity and set χp(a) = ξa
p . Let f be a function from Fpn to Fp . The

Walsh transform of f at w ∈ Fpn is defined as

χ̂f (w) =
∑

x∈Fpn

χp

(
f(x) − Trpn

p (wx)
)
.

Then f is bent if and only if
∣
∣Waf(w)

∣
∣2 = pn for every w ∈ Fpn . It is said to be

regular bent if there exists f� : Fpn → Fp such that χ̂f (w) = χp(f�(w))p
n
2 for all

w ∈ Fpn . The function f� is called the dual function of f (in characteristic 2, all
bent functions are regular bent; when p is odd, regular bent functions can exist
only if p ≡ 1 mod 4). A function f : Fpn → Fp is said to be weakly regular bent
if, for all w ∈ Fpn , we have χ̂f (w) = εχp(f�(w))p

n
2 for some complex number

with
∣
∣ε

∣
∣ = 1 (in fact ε can only be ±1 or ±i). For every function f from Fpn to

Fp , we have ∑

w∈Fpn

χ̂f (w) = pnχp(f(0)). (1)

Set
∣
∣z|2 = zz̄ where z̄ stands for the conjugate of z. Then

∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣2 = p2n. (2)

In the sequel, we shall refer to (2) as the Parseval identity. If
∣
∣χ̂f (w)

∣
∣ ∈ {

0, p
n+s
2

}

for some nonnegative integer s then f is said to be s-plateaued. With this
definition, bent functions are 0-plateaued functions (in the case where s = 0,∣
∣χ̂f (w)

∣
∣ ∈ {

0, p
n
2
}

is equivalent to
∣
∣χ̂f (w)

∣
∣ = p

n
2 ). The Parseval identity allows

to compute the multiplicity of each value of the Walsh transform (when p = 2,
a more precise statement has been shown in [2]).

Lemma 1. Let f : Fpn → Fp be s-plateaued. Then the absolute value of the
Walsh transform χ̂f takes pn−s times the value p

n+s
2 and pn − pn−s times the

value 0.

Proof. If N denotes the number of w ∈ Fpn such that
∣
∣χ̂f (w)

∣
∣ = p

n+s
2 , then

∑
w∈Fpn

∣
∣χ̂f (w)

∣
∣2 = pn+sN . Now, according to Eq. (2), one must have that

pn+sN = p2n, that is, N = pn−s. The result follows.

A map F from Fpn to Fpn is said to be planar if and only if the function from
Fpn to Fpn induced by the polynomial F (X + a) − F (x) − F (a) is bijective for
every a ∈ F

�
pn . We finally introduce the directional difference.

Definition 1. Let f : Fpn → Fp . The directional difference of f at a ∈ Fpn is
the map Daf from Fpn to Fp defined by

∀x ∈ Fpn , Daf(x) = f(x + a) − f(x).



74 S. Mesnager

3 New Characterizations of Plateaued Functions

Let p be a positive prime integer. For any nonnegative integer k, we set

Sk(f) =
∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣2k and Tk(f) =

Sk+1(f)
Sk(f)

with the convention regarding k = 0 that S0(f) = pn (in this case, T0(f) =
S1(f)
S0(f)

= pn). Let us make a preliminary but important remark : for every integer
A and every positive integer k, it holds

∑

w∈Fpn

(∣
∣χ̂f (w)

∣
∣2 − A

)2 ∣
∣χ̂f (w)

∣
∣2(k−1)

= Sk+1(f) − 2ASk(f) + A2Sk−1(f). (3)

We are now going to deduce from (3) a characterization of plateaued functions
in terms of moments of the Walsh transform (in Sect. 4, we shall specialize our
characterization to bent functions, see Theorem 3).

Theorem 1. Let n and k be two positive integers. Let f be a function from Fpn

to Fp . Then, the two following assertions are equivalent.

1. f is plateaued, that is, there exists a nonnegative integer s such that f is
s-plateaued.

2. Tk+1(f) = Tk(f).

Proof.

1. Suppose that f is s-plateaued for some nonnegative integer s, that is,∣
∣χ̂f (w)

∣
∣ ∈ {0, p

n+s
2 }. Then, by Lemma 1,

Sk(f) =
∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣2k = pn−s × pk(n+s) = p(k+1)n+(k−1)s

Sk+1(f) = pn−s × p(k+1)(n+s) = p(k+2)n+ks

Sk+2(f) = pn−s × p(k+2)(n+s) = p(k+3)n+(k+1)s.

Therefore

Tk(f) =
p(k+2)n+ks

p(k+1)n+(k−1)s
= pn+s

and

Tk+1(f) =
p(k+3)n+(k+1)s

p(k+2)n+ks
= pn+s = Tk(f).

2. Suppose Tk+1(f) = Tk(f). According to (3)
∑

w∈Fpn

(∣
∣χ̂f (w)

∣
∣2 − Tk(f)

)2 ∣
∣χ̂f (w)

∣
∣2k

= Sk+2(f) − 2Tk(f)Sk+1(f) + T 2
k (f)Sk(f)

= Sk+1(f) (Tk+1(f) − 2Tk(f) + Tk(f)) = 0
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proving that
∣
∣χ̂f (w)

∣
∣ ∈ {0,

√
Tk(f)} for every w ∈ Fpn . Thus,

∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣2 = Tk(f)#{w ∈ Fpn | ∣

∣χ̂f (w)
∣
∣ =

√
Tk(f)}.

Now, the Parseval identity (2) states that
∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣2 = p2n.

Therefore Tk(f) divides p2n proving that Tk(f) = pρ for some positive integer
ρ. Now, one has #{w ∈ Fpn

∣
∣
∣
∣χ̂f (w)

∣
∣ =

√
Tk(f)} = p2n−ρ ≤ pn which implies

that ρ ≥ n, that is, ρ = n + s for some nonnegative integer s.

Remark 1. Specializing Theorem 1 to the case where k = 1, we get that f is
plateaued if and only if T2(f) = T1(f), that is

S3(f)S1(f) − S2
2(f) = p2nS3(f) − S2

2(f) = 0.

Remark 2. In the proof, we have shown more than the sole equivalence between
(1) and (2). Indeed, we have shown that if (2) holds then f is s-plateaued and∣
∣χ̂f (w)

∣
∣ ∈ {0,

√
Tk(f)}.

In Theorem 1, we have considered the ratio of two consecutive sums Sk(f). In
fact, one can get a more general result than Theorem 1. Indeed, for every positive
integer k and every nonnegative integer l, we have

∑

w∈Fpn

(∣
∣χ̂f (w)

∣
∣2l − A

)2 ∣
∣χ̂f (w)

∣
∣2(k−1) (4)

= Sk+2l−1(f) − 2ASk+l−1(f) + A2Sk−1(f).

Then, one can make the same kind of proof as that of Theorem 1 but with (4)
in place of (3) (the proof being very similar, we omit it).

Theorem 2. Let n, k and l be positive integers and f : Fpn → Fp . Then, the
two following assertions are equivalent

1. f is plateaued, that is, there exists a nonnegative integer s such that f is
s-plateaued.

2. Sk+2l(f)
Sk+l(f)

= Sk+l(f)
Sk(f)

.

4 The Case of Bent Functions

In this section, we shall specialize our study to bent functions and suppose that
p is a positive prime integer. In the whole section, n is a positive integer. In
Theorem 1, we have excluded the possibility to for the integer k to be equal to 0
because it does concern both plateaued functions and bent functions. In fact, if
we aim to characterize only bent functions, we are going to show that it follows
from comparing T1(f) = S2(f)

S1(f)
= S2(f)

p2n to T0(f) = S1(f)
S0(f)

= pn.
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Theorem 3. Let n be a positive integer. Let f be a function from Fpn to Fp .
Then

S2(f) =
∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣4 ≥ p3n

and f is bent if and only if S2(f) = p3n.

Proof. If we apply (3) with A = pn at k = 1, we get that

∑

w∈Fpn

(∣
∣χ̂f (w)

∣
∣2 − pn

)2

= S2(f) − 2pnS1(f) + p2nS0(f).

Now, S0(f) = pn and S1(f) = p2n (Parseval identity, Eq. 2). Hence

∑

w∈Fpn

(∣
∣χ̂f (w)

∣
∣2 − pn

)2

= S2(f) − p3n. (5)

Since
(∣
∣χ̂f (w)

∣
∣2 − pn

)2

≥ 0 for every w ∈ Fpn , it implies that S2(f) ≥ p3n.

Now, f is bent if and only if
∣
∣χ̂f (w)

∣
∣2 = pn for every w ∈ Fpn . Therefore, f is

bent if and only if the left-hand side of Eq. (5) vanishes, that is, if and only if
S2(f) = p3n.

In characteristic 2, identities have been established involving the Walsh trans-
form of a Boolean function and its directional derivatives (see [1,3]). For instance,
for every Boolean function f , S2(f) and the second-order derivatives of f have
been linked. We now show that one can link S2(f) and the directional difference
defined in Definition 1.

Proposition 1. Let n be a positive integer. Let f be a function from Fpn to Fp .
Then ∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣4 = pn

∑

(a,b,x)∈F
3
pn

χp(DaDbf(x)). (6)

Proof. Since
∣
∣z|4 = z2z2 where z stands for the conjugate of z and ξp = ξ−1

p , we
have

∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣4

=
∑

w∈Fpn

∑

(x1,x2,x3,x4)∈F
4
pn

χp

(
f(x1) − f(x2) + f(x3) − f(x4)

−Trpn

p (w(x1 − x2 + x3 − x4))
)
.

Now,

∑

w∈Fpn

χp

( − Trpn

p (w(x1 − x2 + x3 − x4))
)

=
{

pn if x1 − x2 + x3 − x4 = 0
0 otherwise.
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Hence,
∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣4 = pn

∑

(x1,x2,x3)∈F
3
pn

χp

(
f(x1) − f(x2) + f(x3) − f(x1 − x2 + x3)

)
.

Now note that

Dx2−x1Dx3−x2f(x1) = f(x1) + f(x3) − f(x2) − f(x1 + x3 − x2).

Then, since (x1, x2, x3) �→ (x1, x2 − x1, x3 − x2) is a permutation of F3
pn , we get

∑

w∈Fpn

∣
∣χ̂f (w)

∣
∣4 = pn

∑

(a,b,x)∈F
3
pn

χp

(
DaDbf(x)

)
.

Remark 3. In odd characteristic p, when f is a quadratic form over Fpn , that is,
f(x) = φ(x, x) for some symmetric bilinear map φ from Fpn × Fpn to Fpn , then,
f(x+y) = f(x)+f(y)+2φ(x, y). Let us now compute the directional differences
of f at (a, b) ∈ Fpn :

Dbf(x) = f(x + b) − f(x) = f(b) + 2φ(b, x)
DaDbf(x) = 2φ(b, x + a) − 2φ(b, x) = 2φ(b, a).

According to Proposition 1, one has

S2(f) = pn
∑

(a,b,x)∈F
3
pn

χp(2φ(b, a))

= p2n
∑

b∈Fpn

∑

a∈Fpn

χp(2φ(b, a)).

Now, classical results about character sums over finite abelian groups say that

∑

a∈Fpn

χp(2φ(b, a)) =
{

pn if φ(b, •) = 0
0 otherwise.

Hence,
S2(f) = p3n#rad(φ)

where rad(φ) stands for the radical of φ : rad(φ) = {b ∈ Fpn | φ(b, •) = 0}. One
can then conclude thanks to Theorem 3 that f is bent if and only if rad(φ) = {0}.

Suppose that p is odd and consider now functions of the form

f(x) = Trpn

p

⎛

⎜
⎜
⎝

n−1∑

i,j,k=0
i�=j,j �=k,k �=i

aijkxpi+pj+pk

+
n−1∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟
⎟
⎠ . (7)
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We are going to characterize bent functions of that form thanks to Theorem 3
and Proposition 1. But before, let us note that we can rewrite the expression of
f as follows

f(x) = Trpn

p

⎛

⎜
⎜
⎝

n−1∑

i,j,k=0
i�=j,j �=k,k �=i

aijkxpi+pj+pk

⎞

⎟
⎟
⎠ + Trpn

p

⎛

⎜
⎜
⎝

n−1∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟
⎟
⎠

= Trpn

p

⎛

⎜
⎜
⎝

n−1∑

i,j,k=0
i�=j,j �=k,k �=i

ap−i

ijk x1+pj−i+pk−i

⎞

⎟
⎟
⎠ + Trpn

p

⎛

⎜
⎜
⎝

n−1∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟
⎟
⎠

= Trpn

p

⎛

⎜
⎜
⎝x

n−1∑

i,j,k=0
i�=j,j �=k,k �=i

ap−i

ijk xpj−i+pk−i

⎞

⎟
⎟
⎠ + Trpn

p

⎛

⎜
⎜
⎝

n−1∑

i,j=0
i�=j

bijx
pi+pj

⎞

⎟
⎟
⎠ .

In the second equality, we have used the fact that Trpn

p is invariant under the
Frobenius map x �→ xp. Set

ψ(x, y) =
1
2

n−1∑

i,j,k=0
i�=j,j �=k,k �=i

ap−i

ijk (xpj−i

ypk−i

+ xpk−i

ypj−i

)

φ(x, y) =
1
2
Trpn

p

⎛

⎜
⎜
⎝

n−1∑

i,j=0
i�=j

bij(xpi

ypj

+ xpj

ypi

)

⎞

⎟
⎟
⎠ ,

Therefore, a function f of the form (7) can be written

f(x) = Trpn

p (xψ(x, x)) + φ(x, x) (8)

where ψ : Fpn → Fpn is a symmetric bilinear map and φ : Fpn → Fpn is a
symmetric bilinear form. We can now state our characterization.

Theorem 4. Suppose that p is odd. Let φ be a symmetric bilinear form over
Fpn × Fpn and ψ be a symmetric bilinear map from Fpn × Fpn to Fpn . Define
f : Fpn → Fp by f(x) = Trpn

p (xψ(x, x)) + φ(x, x)) for x ∈ Fpn . For (a, b) ∈ Fpn ,
set �a,b(x) = Trpn

p (ψ(a, b)x + aψ(b, x) + bψ(a, x)). For every a ∈ Fpn , define
the vector space Ka = {b ∈ Fpn | �a,b = 0}. Then f is bent if and only if
{a ∈ Fpn , φ(a, •)

∣
∣
Ka

= 0} = {0}.
Proof. According to Theorem 3 and Proposition 1, f is bent if and only if

∑

(a,b,x)∈F
3
pn

χp(DbDaf(x)) = p2n. (9)



Characterizations of Plateaued and Bent Functions in Characteristic p 79

Now, for (a, b) ∈ F
2
pn ,

Daf(x) = Trpn

p ((x + a)ψ(a + x, a + x) − xψ(x, x))
+φ(x + a, x + a) − φ(x, x)

= Trpn

p

(
aψ(x, x) + 2xψ(a, x) + 2aψ(a, x) + xψ(a, a) + aψ(a, a)

)

+2φ(a, x) + φ(a, a).
DbDaf(x) = Trpn

p

(
2aψ(b, x) + aψ(b, b) + 2bψ(a, x) + 2xψ(a, b) + 2bψ(a, b)

+2aψ(a, b) + bψ(a, a)
)

+ 2φ(a, b))

= 2�a,b(x) + Trpn

p (aψ(b, b) + bψ(a, a) + 2(a + b)ψ(a, b)) + 2φ(a, b).

Note that, �a,b is a linear map from Fpn to Fpn . Furthermore, for any a ∈ Fpn

and b ∈ Ka, one has

�a,b(a) = Trpn

p (ψ(a, b)a + aψ(b, a) + bψ(a, a)) = 0,

�a,b(b) = Trpn

p (ψ(a, b)b + aψ(b, b) + bψ(a, b)) = 0

which implies, summing those two equations, that

Trpn

p (aψ(b, b) + bψ(a, a) + 2(a + b)ψ(a, b)) = 0.

Hence,
∑

(a,b,x)∈F
3
pn

χp(DbDaf(x)) =
∑

(a,b)∈F
3
pn

χp(2φ(a, b))
∑

x∈Fpn

χp(2�a,b(x))

= pn
∑

a∈Fpn

∑

b∈Ka

χp(2φ(a, b)).

Now, for every a ∈ Fpn , the map b ∈ Ka �→ φ(a, b) is linear over Ka. Therefore
∑

b∈Ka

χp(2φ(a, b)) =
{

#Ka if φ(a, •)
∣
∣
Ka

= 0
0 otherwise

Hence, according to (9), f is bent if and only if
∑

(a,b,x)∈F
3
pn

χp(DaDbf(x)) = pn
∑

a∈Fpn , φ(a,•)
∣
∣
Ka

=0

#Ka = p2n,

that is, if and only if,
∑

a∈Fpn , φ(a,•)
∣
∣
Ka

=0

#Ka = pn.

Now, if a = 0, then K0 = Fpn because �0,b = 0 for every b ∈ Fpn . Therefore, f is
bent if and only if ∑

a∈F
�
pn , φ(a,•)

∣
∣
Ka

=0

#Ka = 0

which is equivalent to #Ka = 0 for every a ∈ F
�
pn such that φ(a, •)

∣
∣
Ka

= 0.



80 S. Mesnager

We now turn our attention towards maps from Fpn to Fpm . Let us extend
the notion of bentness to those maps as follows.

Definition 2. Let F be a Boolean map from Fpn to Fpm . For every λ ∈ F
�
pn ,

define fλ : Fpn → Fp as : fλ(x) = Trpm

p (λF (x)) for every x ∈ Fpn . Then F is
said to be bent if and only if fλ is bent for every λ ∈ F

�
pn .

Theorem 3 implies

Theorem 5. Let F be a map from Fpn to Fpm . Then, F is bent if and only if
∑

λ∈F
�
pm

S2(fλ) = p3n(pm − 1). (10)

Proof. According to Theorem 3, for every λ ∈ F
�
pm , fλ is bent if and only if

S2(fλ) = p3n which gives (10). Conversely, suppose that (10) holds. Theorem 3
states that S2(fλ) ≥ p3n for every λ ∈ F

�
pm . Thus, one has necessarily, for every

λ ∈ F
�
pn , S2(fλ) = p3n implying that fλ is bent for every λ ∈ Fpn , proving that

F is bent.

We now show that one can compute the left-hand side of (10) by counting the
zeros of the second-order directional differences.

Proposition 2. Let F be a Boolean map from Fpn to Fpm . Then
∑

λ∈F
�
pm

S2(fλ) = pn+mN(F ) − p4n

where N(F ) is the number of elements of {(a, b, x) ∈ F
3
pn | DaDbF (x) = 0}.

Proof. According to Proposition 1, we have
∑

λ∈F
�
pm

S2(fλ) = pn
∑

λ∈F
�
pm

∑

a,b,x∈Fpn

χp

(
DaDbfλ(x)

)
.

Next, DaDbfλ = Trpm

p (λDaDbF ). Therefore
∑

λ∈F
�
pm

S2(fλ) = pn
∑

a,b,x∈Fpn

∑

λ∈F
�
pm

χp

(
Trpm

p (λDaDbF (x))
)
.

That is
∑

λ∈F
�
pm

S2(fλ) = pn
∑

a,b,x∈Fpn

( ∑

λ∈Fpm

χp

(
Trpm

p (λDaDbF (x))
)) − p4n.

We finally get the result from

∑

λ∈Fpm

χp

(
Trpm

p (λDaDbF (x))
)

=
{

0 if DaDbF (x) 	= 0
pm if DaDbF (x) = 0
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We then deduce from Theorem 3 a characterization of bentness in terms of zeros
of the second-order directional differences.

Theorem 6. Let F be a map from Fpn to Fpm . Then F is bent if and only if
N(F ) = p3n−m + p2n − p2n−m.

Proof. F is bent if and only if all the functions fλ, λ ∈ F
�
pn , are bent. Therefore,

according to Proposition 3, if F is bent then
∑

λ∈F
�
pm

S2(fλ) = (pm − 1)p3n.

Now, according to Proposition 2, one has
∑

λ∈F
�
pm

S2(fλ) = pn+mN(F ) − p4n.

We deduce from the two above equalities that

N(F ) = p−n−m(p4n + (pm − 1)p3n)
= p3n−m + p2n − p2n−m.

Conversely, suppose that N(F ) = p3n−m + p2n − p2n−m. Then
∑

λ∈F
�
pm

S2(fλ) = pn+mN(F ) − p4n = p4n + p3n+m − p3n − p4n = p3n(pm − 1).

We then conclude by Theorem 5 that F is bent.

Note that when a = 0 or b = 0, DaDbF is trivially equal to 0. We state below a
slightly different version of Theorem 6 to exclude those trivial cases to charac-
terize the bentness of F .

Corollary 1. Let F be a map from Fpn to Fpm . Then F is bent if and only
if N�(F ) = pn(pn − 1)(pn−m − 1) where N�(F ) is the number of elements of
{(a, b, x) ∈ F

�
pn × F

�
pn × Fpn | DaDbF (x) = 0}.

Proof. It follows from Proposition 2 by noting that {(a, b, x) ∈ F
3
pn | DaDbF (x)=

0} contains the set {(a, 0, x), a, x ∈ Fpn , } ∪ {(0, a, x), a, x ∈ Fpn} whose cardi-
nality equals pn(1 + 2(pn − 1)) = 2p2n − pn. Hence, the cardinality of N�(F )
equals p3n−m + p2n − p2n−m − (2p2n − pn) = p3n−m − p2n−m + pn − p2n =
p2n−m(pn − 1) + pn(1 − pn) = pn(pn − 1)(pn−m − 1).

In the particular case of planar functions, Theorem 1 rewrites as follows

Corollary 2. Let F : Fpn → Fpn . Then, F is planar if and only if, DaDbF does
not vanish on Fpn for every (a, b) ∈ F

�
pn × F

�
pn .

Proof. F is planar if and only if F is bent ([6, Lemma 1.1]). Hence, according
to Corollary 1, F is planar if and only if N�(F ) = 0 proving the result.
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Abstract. We have obtained an equality which expresses the absolute
value of the real part of autocorrelationvalues of a sequence over thequater-
nions as a fraction of the sums of the norms of its particular elements. Based
on this result,weobtaineda conditionnecessary forperfectionof a sequence
over the quaternions. This condition becomes necessary and sufficient for
perfection when applied to a symmetric sequence. Our result also allows
increasing efficiency of the exhaustive search for perfect sequences. During
exhaustive search experiments, we have attained up to 6 times reduction
in computer time required for completion of the exhaustive search for per-
fect sequences, in comparison with the traditional method involving direct
calculation of autocorrelation values. While we focused our study mainly
on sequences over the quaternions, all results are equally applicable for
sequences over the complex numbers.
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1 Introduction

Perfect sequences have many applications in communication systems. Tradition-
ally, perfect sequences are considered over commutative alphabets, usually
complex roots of unity. Since complex numbers are special cases of the quater-
nions, perfect sequences over the quaternions can be considered as a natural gen-
eralization of perfect sequences over the complex numbers. Studying the structure
and properties of quaternion perfect sequences may provide for advances in under-
standing perfect sequences over the complex numbers.

Some papers in electronic communications stated the importance of signal
design over the quaternions for polarization based systems. Isaeva and Sarytchev
[3] suggested that the polarization state of an electromagnetic wave can be mod-
elled by means of quaternions, whereby two complex signals z1 = x0 + x1i
and z2 = y0 + y1i are represented by the single quaternion number q = x0 +
x1i + y0j + y1k . Wysocki et al. [11] described a signal transmitted between two
dual-polarized antennas using a quaternion notation. The channel can then be
modelled by a single quaternion gain, instead of a matrix of four complex gains
as in the classic approach.
c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 85–96, 2014.
DOI: 10.1007/978-3-319-12325-7 7
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We continue the study of perfect sequences over the quaternions initiated
by Kuznetsov [5]. The perfect sequence results presented in this paper have
the potential to be used as synchronization preambles and channel sounding
sequences in polarization based communication systems.

Unlike complex numbers, the quaternion algebra is non-commutative. The
non-commutative nature of the quaternions calls for the definition of two differ-
ent autocorrelation functions: right and left autocorrelations, which, in general,
have non-equal values. Kuznetsov [5] defined the right and the left periodic auto-
correlation functions and gives corresponding definitions of right and left perfect
sequences. It has been proved that left and right perfection are equivalent over
the quaternions, that is, every right perfect sequence is also left perfect, and
vice versa.

Acevedo and Hall [1] found that there exist arbitrary long perfect sequences
over the quaternions. They have shown that any Lee sequence, which are proved
to exist for unbounded lengths [6–8], can be converted into a sequence over the
basic quaternions, that is, the elements of the quaternion group Q8 formed by
unit quaternions {±1,±i ,±j ,±k} [10]. Since elements of the group Q8 are, in
fact, the quaternionic 4-roots of unity, this result clearly indicates that the Mows
conjecture [9] stating the upper limit for the length of a perfect sequence over
complex roots of unity does not hold for sequences over the quaternionic roots
of unity.

At the present time, there exist no universal algorithms for constructing
perfect sequences over the quaternions, except the conversion of Lee sequences
into sequences over the quaternions. However, this method can only deliver per-
fect sequences of a very special form: they contain only one true quaternion,
which is not a complex number, with all other elements being complex 4-roots
of unity {±1,±i}. For finding perfect sequences of a general form, the exhaustive
computer search, when every possible sequence of a given length over a certain
alphabet is taken and checked for perfection, is the only available method. Since
each arithmetical operation with quaternions involves many operations with real
numbers, the exhaustive computer search is a very inefficient method of finding
new sequences over quaternion alphabets. With the most advanced modern com-
puters, even connected in grids, only sequences of lengths in the order of tens
can be accessed.

In the present paper, we introduce a new formula which allows accelerating
the exhaustive computer search for perfect sequences by 3–6 times in compari-
son with the traditional method involving direct calculation of autocorrelation
values. Our new optimized method of the exhaustive search is a result of appli-
cation of the new equality, introduced in the present paper, which relates the
absolute value of the real part of autocorrelation functions of a sequence with
the quotient of the sums of the norms of its individual elements.

It is worth noting that, since complex numbers are quaternions of a special
form, all our results are equally valid for sequences over the complex numbers.
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2 Notations and Definitions

In this paper, quaternions and sequences of quaternions are denoted by bold
fonts and ordinary fonts are reserved for real and complex numbers. All sum-
mations in indices are assumed modulo n.

Definition 1. An ordered n-tuple x = [x0,x1, . . . ,xn−1] of elements from a set
A is called a sequence. The set A is called an alphabet. The number n is called
the length of the sequence x.

Definition 2. The sequence x = [x0,x1, . . . ,xn−1] is called symmetric if there
exists an integer s so that xs+m = xs−m for every integer m.

The non-commutative quaternion algebra H over the real field R is generated
by two elements i and j , which satisfy i2 = j 2 = −1 and i j + j i = 0. This
algebra has a conjugation, commonly denoted by the star ‘∗’, i∗ = −i , j ∗ = −j ,
(ij )∗ = j ∗i∗ = −ij . The elements of the algebra H are real linear combinations
of 1,i ,j and k = ij :

q = q0 + q1i + q2j + q3k . (1)

The addition of quaternions is defined by the component-wise addition rule.
That is, for the quaternions p = p0+p1i+p2j +p3k and q = q0+q1i+q2j +q3k ,
the sum is

p + q = (p0 + q0) + (p1 + q1)i + (p2 + q2)j + (p3 + q3)k . (2)

The quaternion addition and multiplication satisfy the distributive and asso-
ciative laws, implying the following multiplication formula:

pq = (p0q0 − p1q1 − p2q2 − p3q3) + (p0q1 + p1q0 + p2q3 − p3q2)i
+(p0q2 + p2q0 + p3q1 − p1q3)j + (p0q3 + p3q0 + p1q2 − p2q1)k ,

(3)

for any real quaternions p = p0+p1i+p2j +p3k and q = q0+q1i+q2j +q3k .

Definition 3. The (reduced) norm of a quaternion q, denoted by ‖q‖r, is defined
by ‖q‖r = qq∗. A quaternion of norm 1 is called a unit quaternion.

It is easy to see that ‖q‖r = qq∗ = q∗q and ‖q‖r = q20 + q21 + q22 + q23 .

Definition 4. The left and right (periodic) autocorrelation functions of a
sequence x = [x0,x1, . . . ,xn−1] are defined as

ACFL
x (m) =

1
‖∑n−1

t=0 xt‖r

n−1∑

t=0

x∗
txt+m (4)

and

ACFR
x (m) =

1
‖∑n−1

t=0 xt‖r

n−1∑

t=0

xtx
∗
t+m (5)

respectively, for any integer m.
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Definition 5. A sequence x = [x0,x1, . . . ,xn−1] over an arbitrary quaternion
alphabet is called left (right) perfect if its left (right) periodic autocorrelation
function is equal to zero for all m, 1 ≤ m ≤ n − 1.

It is known [5] that, over the quaternions, a sequence x = [x 0,x 1, . . . ,xn−1]
is left perfect if and only if it is right perfect. Therefore, the designations ‘left’
and ‘right’ perfect are redundant for quaternion sequences and can be omitted.
Any left or right perfect sequence can be simply called ‘perfect’.

3 The Absolute Value of the Real Part of Autocorrelation
Coefficients of a Sequence Over the Quaternions

In this section we introduce the equality which relates the absolute value of the
real part of an arbitrary sequence over the quaternions to the quotient of the
sums of the norms of its particular elements.

Proposition 1. Let x = [x0,x1, . . . ,xn−1] be a sequence over the algebra of real
quaternions H and let m be an integer, 1 ≤ m ≤ n − 1. Then

|1 + Re(ACFL
x (m)| =

∑n−1
t=0 ‖xt + xt+m‖r
2
∑n−1

t=0 ‖xt‖r
. (6)

Before we prove Proposition 1, we prove some lemmas.

Lemma 1. Let x = [x0,x1, . . . ,xn−1] be a sequence over the algebra of real
quaternions H. Then

n−1∑

s=0

n−1∑

t=0

‖xsxt‖r =

(
n−1∑

t=0

‖xt‖r
)2

. (7)

Proof.
(

n−1∑

t=0

‖x t‖r
)2

=
n−1∑

s=0

n−1∑

t=0

‖x s‖r‖x t‖r =
n−1∑

s=0

n−1∑

t=0

‖x sx t‖r (8)

Lemma 2. Let x = [x0,x1, . . . ,xn−1] be a sequence over the algebra of real
quaternions H. Then

n−1∑

m=0

‖ACFL
x (m)‖r =

(
1

‖∑n−1
t=0 xt‖r

)2 n−1∑

t=0

n−1∑

s=0

n−1∑

m=0

x∗
txsx

∗
s+mxt+m. (9)

and

n−1∑

m=0

‖ACFR
x (m)‖r =

(
1

‖∑n−1
t=0 xt‖r

)2 n−1∑

t=0

n−1∑

s=0

n−1∑

m=0

xtx
∗
sxs+mx∗

t+m. (10)
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Proof. As shown in [5],

n−1∑

m=0

‖ACFL
x (m)‖r =

1
‖∑n−1

t=0 x t‖r

n−1∑

t=0

n−1∑

s=0

x ∗
tACFR

x (s − t)x s (11)

Hence,

n−1∑

m=0

‖ACFL
x (m)‖r =

1
‖∑n−1

t=0 x t‖r

n−1∑

m=0

n−1∑

t=0

x ∗
tACFR

x (m)x t+m

=
1

‖∑n−1
t=0 x t‖r

n−1∑

t=0

n−1∑

s=0

n−1∑

m=0

x ∗
tx sx

∗
s+mx t+m.

(12)

The second identity is proved similarly.

Lemma 3. Let x = [x0,x1, . . . ,xn−1] be a sequence over the algebra of real
quaternions H. Then

n−1∑

m=0

ACFL
x (m)2 =

(
1

‖∑n−1
t=0 xt‖r

)2 n−1∑

t=0

n−1∑

s=0

n−1∑

m=0

x∗
txs+mx∗

sxt+m. (13)

and
n−1∑

m=0

ACFR
x (m)2 =

(
1

‖∑n−1
t=0 xt‖r

)2 n−1∑

t=0

n−1∑

s=0

n−1∑

m=0

xtx
∗
s+mxsx

∗
t+m. (14)

Proof.

n−1∑

m=0

ACFL
x (m)2 =

(
1

‖∑n−1
t=0 x t‖r

)2 n−1∑

m=0

n−1∑

t=0

x ∗
tx t+m

n−1∑

s=0

x ∗
sx s+m

=

(
1

‖∑n−1
t=0 x t‖r

)2 n−1∑

m=0

n−1∑

t=0

n−1∑

s=0

x ∗
tx t+mx ∗

sx s+m

(15)

The second identity is proved similarly.

Proof (Proposition 1).
First, note that

n−1∑

s=0

n−1∑

t=0

‖(x s + x s+m)(x t + x t+m)‖r =

(
n−1∑

s=0

‖x s + x s+m‖r
)2

(16)

The norm ‖(x s + x s+m)(x t + x t+m)‖r can be expanded as follows:

‖(x s + x s+m)(x t + x t+m)‖r = ‖(x∗
s + x∗

s+m)(x t + x t+m)‖r

= (x∗
t + x∗

t+m)(x s + x s+m)(x∗
s + x∗

s+m)(x t + x t+m)
= (‖x sx t‖r + ‖x s+mx t‖r + ‖x sx t+m‖r + ‖x s+mx t+m‖r)

+(‖x s‖r + ‖x s+m‖r)(x
∗
tx t+m + x∗

t+mx t)
+(x∗

t (x sx
∗
s+m + x s+mx∗

s)x t + x∗
t+m(x sx

∗
s+m + x s+mx∗

s)x t+m)
+(x∗

tx sx
∗
s+mx t+m + x∗

tx s+mx∗
sx t+m + x∗

t+mx sx
∗
s+mx t + x∗

t+mx s+mx∗
sx t)

(17)
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Then,

n−1∑

t=0

n−1∑

s=0

‖(x s + x s+m)(x t + x t+m)‖r

=

n−1∑

t=0

n−1∑

s=0

(‖x sx t‖r + ‖x s+mx t‖r + ‖x sx t+m‖r + ‖x s+mx t+m‖r)

+

n−1∑

t=0

n−1∑

s=0

((‖x s‖r + ‖x s+m‖r)(x
∗
tx t+m + x∗

t+mx t))

+

n−1∑

t=0

n−1∑

s=0

(x∗
t (x sx

∗
s+m + x s+mx∗

s)x t + x∗
t+m(x sx

∗
s+m + x s+mx∗

s)x t+m)

+

n−1∑

t=0

n−1∑

s=0

(x∗
tx sx

∗
s+mx t+m + x∗

tx s+mx∗
sx t+m + x∗

t+mx sx
∗
s+mx t + x∗

t+mx s+mx∗
sx t)

(18)
Consider each of the four terms of the above sum separately. By Lemma 1, we

have
n−1∑

t=0

n−1∑

s=0

(‖x sx t‖r + ‖x s+mx t‖r + ‖x sx t+m‖r + ‖x s+mx t+m‖r)

= 4

(
n−1∑

t=0

‖x t‖r
)2 (19)

n−1∑

t=0

n−1∑

s=0

((‖x s‖r + ‖x s+m‖r)(x ∗
tx t+m + x ∗

t+mx t))

=

(
n−1∑

t=0

‖x t‖r
)

n−1∑

s=0

((‖x s‖r + ‖x s+m‖r)(ACFL
x (m) + ACFL

x (−m)))

= 2

(
n−1∑

t=0

‖x t‖r
)

n−1∑

s=0

((‖x s‖r + ‖x s+m‖r)Re(ACFL
x (m)))

= 4

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFL
x (m))

(20)

n−1∑

t=0

n−1∑

s=0

(x ∗
t (x sx

∗
s+m + x s+mx ∗

s)x t + x ∗
t+m(x sx

∗
s+m + x s+mx ∗

s)x t+m)

= 2

(
n−1∑

t=0

‖x t‖r
)

n−1∑

t=0

x ∗
t ((ACFR

x (m)) + ACFR
x (−m))x t

= 2

(
n−1∑

t=0

‖x t‖r
)

n−1∑

t=0

x ∗
t ((ACFR

x (m)) + ACFR
x (m)∗)x t

= 4

(
n−1∑

t=0

‖x t‖r
)

Re(ACFR
x (m))

n−1∑

t=0

x ∗
tx t = 4

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFR
x (m))

(21)
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The fourth term, by lemmas 2 and 3, satisfies the equations

n−1∑

t=0

n−1∑

s=0

(x ∗
tx sx

∗
s+mx t+m + x ∗

tx s+mx ∗
sx t+m

+x ∗
t+mx sx

∗
s+mx t + x ∗

t+mx s+mx ∗
sx t)

=

(
n−1∑

t=0

‖x t‖r
)2

(‖ACFL
x (m)‖r + ACFL

x (m)2

+ACFL
x (−m)2 + ‖ACFL

x (−m)‖r)

=

(
n−1∑

t=0

‖x t‖r
)2

(ACFL
x (m)2 + ACFL

x (m)∗ACFL
x (m)

+ACFL
x (m)ACFL

x (m)∗ + (ACFL
x (m)∗)2)

=

(
n−1∑

t=0

‖x t‖r
)2

(ACFL
x (m) + ACFL

x (m)∗)2

= 4

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFL
x (m))2

(22)

Then,

(
n−1∑

s=0

‖x s + x s+m‖r
)2

=
n−1∑

t=0

n−1∑

s=0

‖(x s + x s+m)(x t + x t+m)‖r

= 4

(
n−1∑

t=0

‖x t‖r
)2

+ 4

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFL
x (m))

+4

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFR
x (m)) + 4

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFL
x (m))2

= 4

(
n−1∑

t=0

‖x t‖r
)2

+ 8

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFL
x (m))

+4

(
n−1∑

t=0

‖x t‖r
)2

Re(ACFL
x (m))2

= 4

(
n−1∑

t=0

‖x t‖r
)2

(1 + 2Re(ACFL
x (m)) + Re(ACFL

x (m))2)

= 4

(
n−1∑

t=0

‖x t‖r
)2

(1 + Re(ACFL
x (m)))2

(23)

Thus,

(1 + Re(ACFL
x (m))2 =

(
∑n−1

t=0 ‖x t + x t+m‖r)2
4(

∑n−1
t=0 ‖x t‖r)2

, (24)
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or

|1 + Re(ACFL
x (m)| =

∑n−1
t=0 ‖x t + x t+m‖r
2
∑n−1

t=0 ‖x t‖r
, (25)

which proves the proposition.

Remark 1. A proposition similar to 1, but involving the right autocorrelation
values ACFR

x (m), can be proved in the same way. However, it is known [4] that
Re(ACFL

x (m)) = Re(ACFR
x (m)), for every m. Therefore, such a proof would

be redundant here.

While cumbersome at first glance, the formula of Proposition 1 is greatly simpli-
fied when applied to a perfect sequence. Since all out-of-phase autocorrelation
values of a perfect sequence are equal to zero, the following corollary follows
from Proposition 1.

Corollary 1. Let x = [x0,x1, . . . ,xn−1] be a perfect sequence over the algebra
of real quaternions H and let m be an integer, 1 ≤ m ≤ n − 1. Then

2
n−1∑

t=0

‖xt‖r =
n−1∑

t=0

‖xt + xt+m‖r. (26)

4 Necessary and Sufficient Condition for Perfection
of a Symmetric Sequence

In this part, we introduce a necessary and sufficient condition for perfection of a
symmetric sequence over the quaternions. We start with Lemma 4, which states
an important property of a symmetric sequence over the quaternions.

Lemma 4. Let a = [a0,a1, . . . ,an−1] be a symmetric sequence over the algebra
of real quaternions H. Then all its left (right) autocorrelation values are real
numbers.

Proof. Let a = [a0,a1, . . . ,an−1] be a symmetric sequence, and let s be the
integer for which as+m = as−m, for every integer m. Then

ACFL
a (m)∗ =

1
‖∑n−1

t=0 a t‖r

(
n−1∑

t=0

a∗
s+tas+t+m

)∗

=
1

‖∑n−1
t=0 a t‖r

n−1∑

t=0

a∗
s+t+mas+t =

1
‖∑n−1

t=0 a t‖r

n−1∑

t=0

a∗
s+tas+t−m

=
1

‖∑n−1
t=0 a t‖r

n−1∑

t=0

a∗
s−tas−t+m = ACFL

a (m)

(27)

Since ACFL
a (m) = ACFL

a (m)∗, it is a real number.
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Remark 2. Since all autocorrelation values of a symmetric sequence are real
numbers, the left and the right autocorrelation values of a symmetric sequence
are equal, ACFL

a (m) = ACFR
a (m), for every integer m.

From Proposition 1, it is clear that, for any sequence x = [x 0,x 1, . . . ,xn−1],
Re(ACFL

x (m)) = 0 if and only if 2
∑n−1

t=0 ‖x t‖r =
∑n−1

t=0 ‖x t + x t+m‖r. Since
all autocorrelation values of a symmetric sequence are real numbers (that is,
quaternions with the imaginary part equal to zero), the following corollary is
true:

Corollary 2 (necessary and sufficient condition for perfection of a sym-
metric sequence). Let a = [a0,a1, . . . ,an−1] be a symmetric sequence over the
algebra of real quaternions H. Then a is perfect if and only if, for all integers
m, 1 ≤ m ≤ n − 1,

2
n−1∑

t=0

‖at‖r =
n−1∑

t=0

‖at + at+m‖r. (28)

Remark 3 A symmetric sequence over the complex numbers is perfect if and
only if the same condition is satisfied.

5 An Improved Method of the Exhaustive Computer
Search for Perfect Sequences

While it is proved that perfect sequences of unbounded lengths over the quater-
nions exist [1], there is no known universal algorithm for finding long perfect
sequences of all possible lengths. In most cases, the exhaustive computer search
is the only available method for finding examples of perfect sequences. When
implementing the exhaustive computer search over symmetric sequences, the for-
mula of Corollary 2 may be used for a great reduction in computer time required
for checking perfection of each possible sequence. Indeed, checking perfection of a
symmetric unimodular (that is, with the property of having all elements of equal
norm) sequence of length n by direct calculation of its (left) autocorrelation val-
ues by the formula ACFL

a (m) = 1
‖∑n−1

t=0 at‖r

∑n−1
t=0 a∗

ta t+m = 0 would require

to complete n operations of taking conjugate (3 operations of taking negatives
over real numbers each), plus n operations of multiplication of one quaternion
by another (16 multiplications and 12 summation of real numbers each), plus n
summations of quaternions (4 operations over real numbers each), which results
in 35n operations over real numbers for each calculation of each autocorrelation
value.

In the contrast, checking perfection by calculation of
∑n−1

t=0 ‖a t + a t+m‖r
(note that

∑n−1
t=0 ‖a t‖r = n is a constant value for an unimodular sequence)

takes n summations of quaternions (4 operations over real numbers each), plus
n operations of calculating quaternion norm (4 multiplications and 3 summations
of real numbers each), plus n summations of real numbers, which only comes
to 12n operations over real numbers for each m. Thus, checking perfection of a
symmetric sequence by means of the formula of Corollary 2 is 3 times more time
efficient than by direct calculation of autocorrelation values.
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6 Experimental Results of the Exhaustive Computer
Search

We have performed some experimentation with finding perfect sequences over the
quaternions by the exhaustive search with our ordinary desktop computer (Intel
Pentium 4, 2.80 GHz, 1.00 GB of RAM) running the computational software
package Magma [2] under Windows XP. We conducted the exhaustive search over
symmetric sequences of the form a = [a0,a1, . . . ,an−2,an−1,an−2, . . . ,a1] for
different lengths 2(n−1) by using both methods: direct calculations of each auto-
correlation value and using the formula of Corollary 2. We considered sequences
with elements in two finite quaternion groups [10]: the double pyramid group
Q8 of order 8, formed by the unit quaternions {±1,±i ,±j ,±k}, and the double
tetrahedron group Q24 of order 24, which is a group generated by two unit quater-
nions, i and 1+i+j+k

2 , elements of which are unit quaternions {±1,±i ,±j ,±k}
along with unit quaternions ±1±i±j±k

2 , for all possible combinations of the plus
and minus signs. Results of our experiments were compiled in Tables 1 and 2
below for comparison.

It is worth noting that Proposition 1 can also be used for improvement of
the exhaustive computer search for perfect sequences in general (non-symmetric)
form. Since, by Proposition 1, Re(ACFL

x (m)) = 0 if and only if 2
∑n−1

t=0 ‖x t‖r =
∑n−1

t=0 ‖x t+x t+m‖r, checking the condition 2
∑n−1

t=0 ‖x t‖r =
∑n−1

t=0 ‖x t+x t+m‖r
for different m during the exhaustive search would eliminate many sequences
whose autocorrelation values have non-zero real part. The remaining sequences
can then be checked for perfection by direct calculation of autocorrelation values.
This way, a reduction in computer time can still be attained. Tables 3 and 4
below lists the results of our exhaustive search experiments for sequences over
Q8 and Q24.

It is clear from Tables 1, 2, 3 and 4 that use of the improved method offers
a great reduction in computer time required for completion of the exhaustive
computer search for both symmetric and general perfect sequences, especially
over larger quaternion alphabets.

Table 1. Computer time (in seconds) required for completion of the exhaustive
search for perfect sequences over the set of all symmetric sequences of the form
a = [a0,a1, . . . ,an−2,an−1,an−2, . . . ,a1] with elements from the group

Length 2(n − 1) Total number of per- Time for completion Time for completion

fect sequences of search by direct of search by use of

calculation Corollary 2

6 384 0.988 0.609

8 384 9.391 5.656

10 1152 88.406 52.594
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Table 2. Computer time (in seconds) required for completion of the exhaustive
search for perfect sequences over the set of all symmetric sequences of the form
a = [a0,a1, . . . ,an−2,an−1,an−2, . . . ,a1] with elements from the group

Length 2(n − 1) Total number of per- Time for completion Time for completion

fect sequences of search by direct of search by use of

calculation Corollary 2

6 3456 518.594 159.88

8 3456 15952.906 4608.938

10 35712 467773.344 139080.609

Table 3. Computer time (in seconds) required for completion of the exhaustive search
for perfect sequences of the general form x = [x 0, x 1, . . . , xn−1] with elements from
the group

Length n Total number of per- Time for completion Time for completion

fect sequences of search by direct of search by use of

calculation Corollary 2

6 1152 39.453 26.438

8 1536 1690.438 1401.313

Table 4. Computer time (in seconds) required for completion of the exhaustive search
for perfect sequences of the general form x = [x 0, x 1, . . . , xn−1] with elements from
the group

Length n Total number of per- Time for completion Time for completion

fect sequences of search by direct of search by use of

calculation Corollary 2

4 2304 284.828 57.359

6 10368 233364.609 34179.516

7 Conclusion

We have introduced a new equality, which holds for sequences over the quater-
nions and relates the absolute value of the real part of its autocorrelation values
to the fraction of the sums of the norms of its elements. Applying this equality to
perfect sequences over the quaternions, we have found a new condition necessary
for perfection of an arbitrary sequence and necessary and sufficient for perfection
of a symmetric sequence. Checking this condition during implementation of the
exhaustive computer search for perfect sequences provides for great reduction
(up to 6 times reduction) in computer time, in comparison with the exhaustive
search involving direct calculation of autocorrelation values.
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As a side result, we have shown that symmetric sequences have real (left and
right) autocorrelation values.
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Abstract. A new family of almost six-phase sequences with perfect
periodic autocorrelation function is obtained. The distinctive features of
these sequences are: fairly frequent grid of periods, quasi-perfect periodic
cross-correlation function, and nearly unit peak-factor.

Keywords: Almost six-phase sequence · Perfect PACF · M-sequence ·
Galois field

1 Introduction

Sequences with perfect periodic autocorrelation function (PACF) are required in
a variety of systems (communication, navigation, radiolocation, etc.) [1]. For a
long time the developers were interested in sequences with a small phase alphabet
(bi-phase, three-phase, and quadriphase). The generation and processing of such
sequences with a long length were not a problem [2]. The development of digital
electronic components and signal processors was followed by the appearance of
demand on multiphase sequences (MPS). The large families of MPS with perfect
PACF were synthesized by Frank [3], Chu [4] and Milewski [5]. In [6] Mow
offered the generalized methodology for generation of MPS with perfect PACF
and obtained the estimation for the total amount of such sequences. Based on
this estimation, he assumed that all possible MPS with perfect PACF and unit
peak-factor pf = N/W are already synthesized. Here N is the period of the
sequence and W – its weight (the number of nonzero symbols on the period).

Further expansion of the array of sequences with perfect PACF is related
to the synthesis of MPS with zero symbols on the period, which are frequently
called almost MPS [7]. Such sequences include ternary Ipatov [8] and Hoholdt-
Justesen [9] sequences, quadriphase Lee [10] and eight-phase Lüke [11] sequences
with one zero symbol, as well as sequences presented in the papers [12–14]. All
the listed sequences are generated over extended Galois fields. However, the need
for almost MPS is not satisfied both for a variety of properties and for a density
of periods’ grid.

The aim of this paper is the synthesis and study of one more almost MPS
family: almost six-phase sequences with perfect PACF.

The paper is prepared with financial support of the Ministry of Education and Sci-
ence of the Russian Federation within the basic part of the government assignment.

c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 97–103, 2014.
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2 Preliminaries

Let the generation of a new almost MPS family be implemented over an extended
Galois field. Further, we use the following notation:

– GF (qm) – an extended Galois field, where q = ps; p is a prime number; m ≥ 2
and s ≥ 1 – natural numbers;

– θ – a primitive root of the field GF (q);
– {dn} – q-ary M-sequence with the period qm−1;
– h = (qm − 1) / (q − 1) – the length of M-sequence’s train.

It is possible to sort nonzero elements of the field GF (q) in ascending order
by the power of the primitive root θn, n = 0, 1, . . . , q − 2. If q ≡ 1(mod 6), then
all nonzero elements of the field may be divided into six sets:

Hr =
{

θ6k+r

∣
∣
∣
∣ k = 0, 1, . . . ,

q − 1
6

− 1
}

,where r = 0, 1, . . . , 5.

Based on each set, we construct six binary sequences defined by the rule

x(r)
n =

{
1, dn ∈ Hr;
0, dn /∈ Hr.

We will refer to the binary sequences
{

x
(r)
n

}
as “structural sequences” (SS)

because they determine the cyclic structure of generated sequences. Let us note
several properties of SS

{
x
(r)
n

}
, which are defined by the known properties of

M-sequences [15].

Property 2.1. Every SS has the same period 6h.

Property 2.2. Every SS has the same cyclic structure.

Property 2.3. Every SS has the same PACF:

Rx(τ) = qm−2

⎧
⎪⎨

⎪⎩

q, τ ≡ 0 (mod 6h);
0, τ ≡ 0 (mod h);
1, else.

Property 2.4. Every pair of SS
{

x
(j)
n

}
and

{
x
(l)
n

}
has the same, with an accuracy

up to a cyclic shift, periodic cross-correlation function (PCCF):

Rj,l(τ) = R0,l−j(τ) = Rx (τ − (l − j) h) .

Now we associate one of the symbols from the alphabet

Z =
{

exp
(

πik

3

) ∣
∣
∣
∣ k = 0, 1, . . . , 5

}
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with each single symbol of every SS. The almost MPS is generated by the fol-
lowing rule:

yn = (−1)n
5∑

r=0

zrx
(r)
n , where zr ∈ Z. (1)

We may now find necessary and sufficient conditions for the almost MPS to
have a perfect PACF with respect to the coding rule (1).

Necessary conditions

zr+3 = −zr;
q,m − odd numbers; (2)

follow from the Properties of SS 2.1 – 2.4 and the coding rule (1).
Sufficient conditions follow from the comparison of two nonisomorphic almost

MPS

an = (−1)n

[

x(0)
n − x(1)

n + exp
(

4πi

3

)

x(2)
n − x(3)

n + x(4)
n + exp

(
πi

3

)

x(5)
n

]

and

bn = (−1)n

[

x(0)
n − x(1)

n + exp
(

2πi

3

)

x(2)
n − x(3)

n + x(4)
n + exp

(
5πi

3

)

x(5)
n

]

,

which have a perfect PACF only if the following conditions take place:
{

z2 = exp(4πi
3 );

z5 = exp(πi
3 ).

or

{
z2 = exp(2πi

3 );
z5 = exp(5πi

3 ).
(3)

Theorem 1. The sequence {an} has a perfect PACF.

Proof. The PACF of the sequence {an} is defined by the formula:

Ra(τ) = (−1)τ

[(

Rx(τ) − R0,1(τ) +
[

exp
(

4πi

3

)]∗
R0,2(τ) − R0,3(τ)+

+R0,4(τ) +
[

exp
(

πi

3

)]∗
R0,5(τ)

)

+
(

Rx(τ) −
[

exp
(

4πi

3

)]∗
R0,1(τ)+

+R0,2(τ) − R0,3(τ) −
[

exp
(

πi

3

)]∗
R0,4(τ) − R0,5(τ)

)

+ . . .

]

.

It follows from the properties of SS 2.3 and 2.4 that:

Ra(τ) = (−1)τ 6 [Rx(τ) − Rx(τ − 3h)] =

= (−1)τ 6qm−1

⎧
⎪⎨

⎪⎩

1, τ ≡ 0 (mod 6h);
−1, τ ≡ 0 (mod 3h);
0, else.
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Hence we obtain that the PACF Ra(τ) is perfect, if (−1)τ = −1 for τ ≡ 0
(mod 3h). This condition holds when q and m are odd numbers. At the same
time, the PACF becomes:

Ra(τ) = 3qm−1

{
1, τ ≡ 0 (mod 3h);
0, else.

This completes the proof.
��

In the similar way we can prove that the sequence {bn} has a perfect PACF.
Thus, there are only two coding rules of almost six-phase sequences that sat-

isfy the necessary existence conditions (2) and the sufficient existence conditions
(3). That is to say, for z0 = z4 = 1, z1 = z3 = −1, as well as for z2 and z5, which
satisfy (3), the sequences generated by (1) have a perfect PACF. Moreover, the
parameters of the extended Galois field q and m should be odd numbers. This
result does not depend on choice of initial values of M-sequence.

3 Properties of Almost Six-Phase MPS

Properties 2.3 and 2.4 of structural sequences determine the following property
of the almost MPS:

Property 3.1. The following formula defines the absolute value of the PCCF of
two sequences {an} and {bn} corresponding to the same M-sequence:

|Ra,b(τ)| =

{√
3qm−1, τ ≡ 0 (mod h);

0, else.

The proof of the Property 3.1 is similar to the proof of the theorem about
the perfect PACF of {an}.

From the cyclic properties of M-sequences we obtain the following property.

Property 3.2. The period of almost six-phase sequences with perfect PACF
equals to 3 (qm − 1) / (q − 1).

The proof of the Property 3.2 follows from the definition of the coding rule
(1) and the properties of SS.

The peak-factor of the almost MPS is:

pf =
3h

3qm−1
=

q

q − 1
− 1

qm−1 (q − 1)
.

Hence:

Property 3.3. The limit of the peak-factor, as the characteristic of the Galois
field over which the almost MPS was generated approaches infinity, is one.
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Property 3.4. The number of cyclically distinct almost six-phase MPS with per-
fect PACF is defined by the number of cyclically distinct corresponding M-
sequences and equals to:

φ(qm − 1)
m

, where φ(n) − Euler′s totient function .

It follows from the Property 3.4 that the sequences with perfect PACF gen-
erated by (1) based on nonisomorphic M-sequences are also nonisomorphic.

4 Examples

Now we illustrate the generation principles and properties of almost six-phase
MPS by several examples.

Example 1. Here we generate almost six-phase MPS over the Galois field GF (73)
and consider its properties.

1. Sets Hr over the prime Galois field GF (7) with the primitive root θ = 3 are:

H0 = {1} ;H1 = {3} ;H2 = {2} ;H3 = {6} ;H4 = {4} ;H5 = {5} .

2. The coding rules of {an} and {bn} are:

an = (−1)n

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, dn ∈ {1, 4} ;
−1, dn ∈ {3, 6} ;
exp(4πi

3 ), dn = 2;
exp(πi

3 ), dn = 5;
0, else.

bn = (−1)n

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, dn ∈ {1, 4} ;
−1, dn ∈ {3, 6} ;
exp(2πi

3 ), dn = 2;
exp(5πi

3 ), dn = 5;
0, else.

3. The PACFs of the almost MPS are:

Ra(τ) = Rb(τ) =

{
147, τ ≡ 0 (mod 171);
0, else.

4. The absolute value of the PCCF is:

|Ra,b(τ)| =

{
49

√
3, τ ≡ 0 (mod 57);

0, else.

5. The peak-factor of the almost MPS equals to pf ≈ 1.16.
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Example 2. Here we generate almost six-phase MPS over the Galois field GF (253)
and consider its properties.

1. Sets Hr over the extended Galois field GF (52) with the primitive root θ = x
and the primitive polynomial f(x) = x2 + x + 2 are:

H0 = {1, 2, 3, 4} ;H1 = {x, 2x, 3x, 4x} ;
H2 = {x + 2, 2x + 4, 3x + 1, 4x + 3} ;
H3 = {x + 3, 2x + 1, 3x + 4, 4x + 2} ;
H4 = {x + 4, 2x + 3, 3x + 2, 4x + 1} ;
H5 = {x + 1, 2x + 2, 3x + 3, 4x + 4} .

2. The coding rules of {an} and {bn} are:

an = (−1)n

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, dn ∈ {1, 2, 3, 4, x + 4, 2x + 3, 3x + 2, 4x + 1} ;
−1, dn ∈ {x, x + 3, 2x, 2x + 1, 3x, 3x + 4, 4x, 4x + 2} ;
exp(4πi

3 ), dn ∈ {x + 2, 2x + 4, 3x + 1, 4x + 3} ;
exp(πi

3 ), dn ∈ {x + 1, 2x + 2, 3x + 3, 4x + 4} ;
0, else.

bn = (−1)n

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, dn ∈ {1, 2, 3, 4, x + 4, 2x + 3, 3x + 2, 4x + 1} ;
−1, dn ∈ {x, x + 3, 2x, 2x + 1, 3x, 3x + 4, 4x, 4x + 2} ;
exp(2πi

3 ), dn ∈ {x + 2, 2x + 4, 3x + 1, 4x + 3} ;
exp(5πi

3 ), dn ∈ {x + 1, 2x + 2, 3x + 3, 4x + 4} ;
0, else.

3. The PACFs of the almost MPS are:

Ra(τ) = Rb(τ) =

{
1875, τ ≡ 0 (mod 1953);
0, else.

4. The absolute value of the PCCF is:

|Ra,b(τ)| =

{
625

√
3, τ ≡ 0 (mod 651);

0, else.

5. The peak-factor of the almost MPS equals to pf ≈ 1.04.

5 Conclusions

In this paper, we offered a new family of almost six-phase sequences with perfect
PACF. Their distinctive features are the following:

1. The grid of periods is fairly frequent: N = 3 (qm − 1) / (q − 1);
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2. The periodic cross-correlation function is quasi-perfect:

|Ra,b(τ)| =

{√
3qm−1, τ ≡ 0 (mod h);

0, else;

3. The peak-factor nearly equals to one:

pf =
q

q − 1
− 1

qm−1 (q − 1)
;

4. The number of cyclically distinct almost MPS is determined by the number
of cyclically distinct corresponding M-sequences and equals to φ(qm − 1)/m.

The validity of this paper is verified by numerous examples, and the achieved
results are modeled on the computer.

References

1. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: for Wireless Commu-
nication, Cryptography and Radar, p. 438. Cambridge University Press, Cambridge
(2005)

2. Fan, P., Darnell, M.: Sequence Design for Communications Applications, p. 493.
Research Studies Press Ltd., London (1996)

3. Frank, R.L.: Phase coded communication system. U.S. Patent 3,099,795, 30 July
1963

4. Chu, D.C.: Polyphase codes with good periodic correlation properties. IEEE Trans.
Inf. Theor. IT–18, 531–533 (1972)

5. Milewski, A.: Periodic sequences with optimal properties for channel estimation
and fast start-up equalization. IBM J. Res. Dev. 27(5), 425–431 (1983)

6. Mow, W.H.: A new unified construction of perfect root-of-unity sequences. In:
Proceedings of International Symposium on Spread Spectrum Techniques and its
Applications (ISSSTA’96), Mainz, Germany, pp. 955–959 (1996)
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Abstract. We introduce a construction for perfect periodic autocorre-
lation sequences over roots of unity. The sequences share similarities to
the perfect periodic sequence constructions of Liu, Frank, and Milewski.

Perfect periodic autocorrelation sequences see applications in many areas,
including spread spectrum communications [14], channel estimation and fast
start-up equalization [12], pulse compression radars [3], sonar systems [17], CDMA
systems [8], system identication [16], and watermarking [15].

There exists a number of known constructions for perfect periodic autocorre-
lation sequences over roots of unity. These include Frank sequences of length n2

over n roots of unity [4,6], Chu sequences of length n over n roots of unity for
n odd and length n over 2n roots of unity for n even [2], Milewski sequences of
length m2k+1 over mk+1 roots of unity [12], Liu-Fan sequences of length n over n
roots of unity for n even [11]. Other sequence constructions exist [1,5,7,9,10,13].

The periodic cross-correlation of the sequences, a = [a0, a1, · · · , an−1] and
b = [b0, b1, · · · , bn−1], for shift τ is given by

θa,b(τ) =
n−1∑

i=0

aib
∗
i+τ ,

where i + τ is computed modulo n. The periodic autocorrelation of a sequence,
s for shift τ is given by θs(τ) = θs,s(τ). For τ �= 0 mod n, θs(τ) is called an off-
peak autocorrelation. A sequence is perfect if all off-peak autocorrelation values
are zero.

The periodic autocorrelation of a sequence, s = [s0, s1, · · · , sld2−1], can be
expressed in terms of the autocorrelation and cross-correlation of an array associ-
ated with s [4,6,13]. The sequence s has the array orthogonality property (AOP)
for the divisor d, if the array S associated with s has the following two properties:

1. For all τ , the periodic cross-correlation of any two distinct columns of S is
zero.

2. For τ �= 0, the sum of the periodic autocorrelation of all columns of S is zero.

Any sequence with the AOP is perfect [13].

c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 104–108, 2014.
DOI: 10.1007/978-3-319-12325-7 9
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In most perfect sequence constructions, one proves the sequence has perfect
autocorrelation by reducing the autocorrelation to a Gaussian sum. A Gaussian
sum is given by

∑n−1
k=0 ωqk, where ω = e2π

√−1/n and q ∈ Z. If q �= 0 mod n, then
the sum is zero.

We present a construction for perfect sequences over roots of unity. Let s
be a sequence of length 4mnk+1 over 2mnk roots of unity, where n,m, k ∈
N. Construct a 2mnk+1 × 2 array, S, over 2mnk roots of unity, where S =
[Si,j ] = ω�i(i+j)/n� and ω = e2π

√−1/(2mnk). The sequence s is constructed by
enumerating, row-by-row, the array S.

We now show that s has perfect periodic autocorrelation. We show s is perfect
by showing that it has the array orthogonality property (AOP) for the divisor
2. First, we show that the cross-correlation of the two columns of S is zero for
every non-zero shift.

θSi,0,Si,1(κ) =
2mnk+1−1∑

i=0

Si,0 S∗
i+κ,1 (1)

Let i = qn + r, (r < n), and κ = q′n + r′, (r′ < n), then (1) becomes

θSqn+r,0,Sqn+r,1(q
′n + r′) =

2mnk−1∑

q=0

n−1∑

r=0

Sqn+r,0S
∗
(q+q′)n+r+r′,1

=
2mnk−1∑

q=0

n−1∑

r=0

ω

⌊
(qn+r)2

n

⌋

ω
−
⌊
((q+q′)n+r+r′)2+(q+q′)n+r+r′

n

⌋

=
2mnk−1∑

q=0

n−1∑

r=0

ω
−(2nq′+2r′+1)q−2q′r+

⌊
r2
n

⌋
−
⌊

(r+r′)(r+r′+1)
n

⌋

= ω−2q′r′−q′

⎛

⎝
2mnk−1∑

q=0

ω−(2nq′+2r′+1)q

⎞

⎠ ×
(

n−1∑

r=0

ω
−2q′r+

⌊
r2
n

⌋
−
⌊

(r+r′)(r+r′+1)
n

⌋
)

.

The leftmost summation above is zero, as −2nq′ − 2r′ − 1 �= 0 mod 2mnk (since
−2nq′ −2r′ −1 is odd for all n, q′, r′, whereas 2mnk is even for all n, q′, r′). Thus
s satisfies the first condition of the AOP.

Now we show that s satisfies the second condition of the AOP. That is, for all
non-zero shifts, we show that the sum of the periodic autocorrelations of both
columns of S sums to zero.
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θSi,0(κ) + θSi,1(κ) =
2mnk+1−1∑

i=0

Si,0 S∗
i+κ,0 +

2mnk+1−1∑

i=0

Si,1 S∗
i+κ,1

=
2mnk+1−1∑

i=0

ω

⌊
i2
n

⌋

ω
−
⌊

(i+κ)2

n

⌋

+
2mnk+1−1∑

i=0

ω

⌊
i2+i

n

⌋

ω
−
⌊

(i+κ)2+i+κ
n

⌋

((2)+(3))

Let i = qn + r, (r < n), and κ = q′n + r′, (r′ < n), then (2) becomes

ω−2q′r′−nq′2
2mnk−1∑

q=0

n−1∑

r=0

ω
−2(nq′+r′)q−2q′r+

⌊
r2
n

⌋
−
⌊

r2+r′2+2r′r
n

⌋

= ω−2q′r′−nq′2

⎛

⎝
2mnk−1∑

q=0

ω−2(nq′+r′)q

⎞

⎠

(
n−1∑

r=0

ω
−2q′r+

⌊
r2
n

⌋
−
⌊

r2+r′2+2r′r
n

⌋
)

. (4)

Similarly, (3) becomes:

ω−2q′r′−nq′2−q′
2mnk−1∑

q=0

n−1∑

r=0

ω
−2(nq′+r′)q−2q′r+

⌊
r2+r

n

⌋
−
⌊

r2+2r′r+r+r′2+r′
n

⌋

= ω−2q′r′−nq′2−q′

⎛

⎝
2mnk−1∑

q=0

ω−2(nq′+r′)q

⎞

⎠

×
(

n−1∑

r=0

ω
−2q′r+

⌊
r2+r

n

⌋
−
⌊

r2+2r′r+r+r′2+r′
n

⌋
)

. (5)

Then θSi,0(κ) + θSi,1(κ) = (4) + (5) is given by

ω−2q′r′−nq′2

⎛

⎝
2mnk−1∑

q=0

ω−2(nq′+r′)q

⎞

⎠

(
n−1∑

r=0

ω
−2q′r+

⌊
r2
n

⌋
−
⌊

r2+r′2+2r′r
n

⌋

+

ω−q′
n−1∑

r=0

ω
−2q′r+

⌊
r2+r

n

⌋
−
⌊

r2+2r′r+r+r′2+r′
n

⌋
)

.

The summation
∑2mnk−1

q=0 ω−2(nq′+r′)q is non-zero when −2(nq′ + r′) =
0 mod 2mnk, which is when q′ = −mnk−1, r′ = 0 (excluding q′ = r′ = 0
as we only consider off-peak autocorrelations). In which case we have
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n−1∑

r=0

ω
−2q′r+

⌊
r2
n

⌋
−
⌊

r2+r′2+2r′r
n

⌋

=
n−1∑

r=0

ω
−2q′r+

⌊
r2+r

n

⌋
−
⌊

r2+2r′r+r+r′2+r′
n

⌋

=
n−1∑

r=0

ω−2q′r =
n−1∑

r=0

e

(
2π

√−1
n

)
r = 0.

Thus, θSi,0(κ) + θSi,1(κ) = 0, so s satisfies the second condition of the AOP. It
follows that s is a perfect sequence.

We note that the array, S, also has perfect periodic autocorrelation. The
proof follows from the sequence, s, having the AOP.

In terms of the ratio of the sequence length to the number of phases, this
construction sits below the construction of Milewski and above the constructions
of Chu and Liu.
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Abstract. In this paper, we give a simple construction of almost perfect
quinary sequences for quinary amplitude shift keying (ASK) modulation
schemes in digital communication, and using those almost perfect quinary
sequences, we derive almost perfect quinary sequences for quinary quadra-
ture amplitude modulation with a correlation receiver. Those sequences
are constructed from the sequences with the two-tuple balance property
over a finite field with 5 elements where the field elements are presented
in a symmetric way.

Keywords: Almost perfect sequences · Quinary sequences · ASK and
QAM sequences · 2-tuple balance

1 Introduction

Sequences have been widely used in communications such as spread-spectrum
modulation including code-division multiple access (CDMA), frequency hopping,
and ultra wide-band (UWB) communications; orthogonal frequency division
multiplexing (OFDM) transmission; channel estimation and synchronization;
radar distance range and deep water detection; and compressing sensing.

We consider a sequence a = {at} with period N where at is a complex
number. The autocorrelation of a is defined as Ca(τ) =

∑N−1
i=0 aiai+τ where

x is the complex conjugate of x. In the applications of continuous wave (CW)
radar systems [21] or channel estimation, autocorrelation detection is used on
the returning reflected signal to determine the round-trip delay time, and thus
the range, to the target for former, and to determine the channel condition
for the later. In such an application, a perfect sequence, defined as Ca(τ) = 0
for all τ : 0 < τ < N , i.e., all the out-of-phase of autocorrelation values are
zero, has largest SNR, which gives the best performance. For a sequence with
(ideal) 2-level autocorrelation defined as Ca(τ) = −1 for all τ : 0 < τ < N ,
i.e., all the out-of-phase of autocorrelation values are equal to −1, the SNR is

c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-12325-7 10
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decreased by 3 dB. The other cases of autocorrelation functions of sequences will
induce worse degrading of the performance of a communication system. Thus, in
those applications, it is preferable to use either perfect sequences or ideal 2-level
autocorrelation sequences.

For practical applications, another factor shaped the way to construct sequen-
ces with perfect or ideal 2-level autocorrelation is their easy implementation or
not. Therefore, the most of sequences which could be considered in practice are
sequences whose elements taken from a finite field or a finite ring, then map to
polyphase sequences using additive characters, multiplicative characters or both
of them. The research along this line has been attracting researchers since the
end of 1950s, see earlier papers [6,12,14,29], just to list a few or a recent survey
in [9]. As a result, each term in such a sequence has unit magnitude. Neverthe-
less, it is hard to construct perfect or ideal 2-level autocorrelation sequences.
For perfect sequences with infinite families, the known class is Frank-Zadoff-Chu
(FZC) sequences [2,4], and some miscellaneous examples included in [24]. (There
exists some other constructions for perfect sequences, for example, see [20,26],
which do not belong to the constructions mentioned above.) For ideal 2-level
autocorrelation sequences, all known constructions for the binary case are col-
lectively included in [7] and the status remains unchanged until now; for the
up-date known non binary cases, it is collected in [9].

However, given a particular application scenario, it is possible that not all the
out-of-phase autocorrelation values need to be used. This inspires the studies of
almost perfect sequences defined as Ca(τ) = 0 for all τ : 0 < τ < N but one. It
seems hard as well, because until now, there exist a few constructions for almost
perfect sequences for which the most of the known constructions are given for
almost perfect ternary sequences, see [13,15,16,19,20,22,27,31,32], to just list
a few.

In digital communication, there are three ways to transmit signals: (i) varying
amplitude, called digital pulse amplitude modulation (PAM) in a baseband case,
and amplitude shift keying (ASK) in one dimensional signals and quadrature
amplitude modulation (QAM) in two dimensional signals; (ii) varying phase,
called phase shift keying (PSK); (iii) varying frequency, frequency shift keying
(FSK). (The reader is referred to [11,28] for the basic concepts and theory about
digital communications.) In the laster two methods, each element in a sequence
(i.e., signal) has unit magnitude.

In this paper, we will consider ASK sequences and QAM sequences over
Fp with almost perfect autocorrelation. From the sequences over Fp, a finite
field with p > 2 elements where p is prime, with the two-tuple balance and
representing Fp in a symmetric way, we obtain the autocorrelation functions of
those sequences, which are shown in Sect. 3. In Sect. 4, we give a new class of
almost perfect quinary ASK sequences, and in Sect. 6, we show a class of almost
perfect quinary QAM sequences constructed from almost perfect quinary ASK
sequences.
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2 Basic Concepts and Definitions

2.1 Notation

We list the following notation and basic properties, which will be used in the
paper (for details of the theory of sequences, see [7]).

– C is the complex field, and Z, an integer ring.
– p is a prime, n > 1 a positive integer, Fpn , a finite field with pn elements, F∗

pn ,
the multiplicative group of the field, q = pn, d = pn−1

p−1 , and N = pn − 1.
– t(x) = xn − ∑n−1

i=0 cix
i, ci ∈ Fp is a primitive polynomial over Fp of degree n

and f(α) = 0, α ∈ Fpn , so α is a primitive element in Fpn . If a = {at} satisfies
an+j =

∑n−1
i=0 ciai+j , j ≥ 0, then a is an m-sequence of degree n, generated

by t(x).
– Tr(x) = x + xp + · · · + xpn−1

is the trace function from Fpn to Fp. We have
at = Tr(βαt), for some β ∈ Fpn , t = 0, 1, . . . .

– Let a = {at} an arbitrary sequence over Fp of period N . Then we can write
at = f(αt), t = 0, 1, . . . where f(x) is a function from Fpn to Fp with f(0) = 0,
called the trace representation of a, since f(x) can be represented as the sum
of monomial trace terms.

2.2 Symmetric Representation of Field Elements in Fp

Throughout the paper, we represent the elements in Fp as

Fp =
{

−p − 1
2

, . . . ,−2,−1, 0, 1, 2, . . . ,
p − 1

2

}

. (1)

Thus, F3 = {−1, 0, 1}, and F5 = {−2,−1, 0, 1, 2}.

2.3 Correlation Functions

Let two sequences a = {at} and b = {bt} where at, bt ∈ C (note that they may
not have unit magnitude) and let their cross correlation be defined as

Ca,b(τ) =
N−1∑

t=0

atbt+τ (2)

where x is the complex conjugate of x and the computation is executed in the
complex field. Or equivalently, Ca,b(τ) = 〈a, Lτb〉, the inner product of the vec-
tors a and τ shift of b, where L is the left-shift operator, i.e., a = (a0, . . . , aN−1),
then La = (a1, . . . , aN−1, a0). If a = b, then the crosscorrelation function
becomes the autocorrelation function, denoted as Ca(τ). When the elements
of both a and b are real numbers, their correlation, given in (2) becomes

Ca,b(τ) =
N−1∑

t=0

atbt+τ , τ = 0, 1, . . . , . (3)
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The norm of the sequence a = {ai} is defined as ||a|| =
√∑N−1

t=0 |at|2 where
|x|2 = xx.

We define the balance property of a of period N as follows. Let {i0, . . . , ik−1}
be the subset of C which consists of all different elements in {ai | i = 0, 1, . . . , N −
1}. Let Nj = {t | at = ij , 0 ≤ t < N}. We say that a is balanced if |Nj − Ni| ≤ 1
for all i �= j.

Definition 1. We call a sequence perfect if it is balanced, and C(τ) = 0 for
0 < τ < N and C(0) = ||a||2; and a sequence (ideal) two-level autocorrelation
value if it is balanced, and C(τ) = −1, for 0 < τ < N and C(0) = ||a||2.
Furthermore, a sequence of period N is called almost perfect if C(τ) = 0 for all
τ : 0 < τ < N but one.

Example 1. Let p = 3, n = 3, t(x) = x3 − (x − 1), and {at} an m-sequence
generated by t(x) with period 26, i.e.,

{at} = 0 0 −1 0 −1 1 −1 −1 1 0 −1 −1 −1
0 0 1 0 1 −1 1 1 −1 0 1 1 1

The autocorrelation of {at} is given by

C(τ) =
∑25

t=0 atat+τ = 18 0 0 0 0 0 0 0 0 0 0 0 0
−18 0 0 0 0 0 0 0 0 0 0 0 0

Thus, {at} is a balanced almost perfect ternary sequence. This almost perfect
ternary sequence is equal to the one constructed in [25].

Note that many known almost perfect ternary sequences are not balanced.

2.4 Two-Tuple Balance

Let a = {ai} be a sequence over Fp with period N = pn − 1 and

S = {(ai, ai+τ ) | i = 0, . . . , N − 1}.

Recall d = (pn − 1)/(p − 1).

Definition 2. With the above notation, for 0 < τ < pn − 1,

1. we say that a is balanced if each nonzero element in Fp occurs pn−1 times in
one period of a and zero occurs pn−1 − 1 times; and

2. a is said to be two-tuple balanced when the following two conditions are
satisfied:
(a) If τ is not a multiple of d, then each pair (0, 0) �= (a, b) ∈ Fp ×Fp occurs

in S exactly pn−2 times and (0, 0) occurs pn−2 − 1 times.
(b) If τ = id, then (a, ca), a, c ∈ F

∗
p occurs in S pn−1 times and (0, 0) occurs

pn−1 − 1 times.
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Let f(x) be the trace representation of a. Sometimes, we interchange to use
the term two-tuple balance to either a or f(x). For a ∈ F

∗
p, we have f(ax) =

arf(x) where gcd(r, p−1) = 1, then we say that f(x) is Fp homomorphic (called
d-form in [17]). Thus, f(x) is Fp homomorphic, then the second property of the
two-tuple balance is satisfied. From [8], we have the following result.

Property 1. If a a sequence over Fp with period N is two-tuple balanced, then
it is balanced.

Note that until now there are only two known classes of sequences or functions
which are two-tuple balanced. The following result on m-sequence is from [33]
in 1959, and it can be easily extended to cascaded GMW sequences [18,30] as
done in the literature.

Lemma 1. Any m-sequence or GMW or cascaded GMW sequence over Fp are
two-tuple balanced.

Remark 1. The ideal distribution of the exponent sequences of m-sequences is
investigated in [5], and almost all known almost perfect sequences are constructed
using or indirectly using the exponent sequences of m-sequences through the rela-
tion to Singer difference sets or divisible difference sets. Especially, all interleaved
constructions use the exponent sequences of m-sequences (see [7]). However, the
two-tuple balance property is stronger than the ideal distribution of the exponent
sequences, which is discussed in [8] using the term, called array structure.

2.5 ASK and QAM Signals and Autocorrelation of QAM

Let T = {φi(t) : 0 ≤ i < h} where φi(t) is integrable in the interval T and the
norm of φi(t) is equal to unit. T is called an orthonormal set if 〈φt(t), φj(t)〉 = δij

where

δij =
{

1 i = j
0 i �= j.

Let x(t) =
∑h−1

i=0 xiφi(t), xi ∈ Z. If we draw the vector (x0, . . . , xh−1), the coor-
dinates of x(t) in the space spanned by T , then it is referred to as a signal point.
A diagram of all possible signal points is referred to as a signal constellation of
the signal set (see [11,28]).

M -ary Digital Pulse Amplitude Modulation (PAM) and ASK Signals.
Let

φ0(t) =
1√
T

and ψ0(t) =

√
2
T

cos 2πfct, 0 ≤ t ≤ T, (4)

where fc is the carrier frequency and T is the symbol interval. With some
variation from [28], we define a (symmetric) M -ary PAM (MPAM) or M -ary
amplitude shift keying (MASK) sequence of period N as w = {wi} where
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wi = xiφ(t), xi ∈ M0 or M1 where

M0 = {−(M − 1)a,−(M − 3)a, . . . ,−3a,−a, a, 3a, . . . , (M − 3)a, (M − 1)a}
for M is even

M1 = {−M−1
2 a,−(M−1

2 − 1)a, . . . ,−a, 0, a, . . . , (M−1
2 − 1)a, M−1

2 a}
for M is odd

(5)
where a > 0, a constant and φ(t) = φ0(t) for M -ary PAM and φ(t) = ψ0(t) for
M -ary ASK (MASK). We note that M -ary PAM and M -ary ASK sequences have
the same signal constellation (this means that their error probabilities can be
determined in the same way, see [28]). Furthermore, after the RF down converter,
the autocorrelation of an MASK sequence becomes the autocorrelation of the
sequence {xi}, which can be considered as a PAM sequence. Thus, when we talk
about the autocorrelation of MASK, we mean the autocorrelation of {xi}.

When {wi} is used in CW radar application, the transmitter transmits {wi}.
At the receiver side, after the RF down conversion if it is of MASK, the receiver
computes the correlation, i.e., the autocorrelation in this case, between the
incoming signal, which is a shift of x, and a locally generated signal, a shift
of x until it reaches the peak value, which is the autocorrelation function at
zero. If the sequence is perfect, the shift corresponding to this peak value gives
the round-trip delay time, and thus the range to the target is determined. If
the sequence is not perfect, the other autocorrelation values will contribute to a
wrong decision for the round-trip delay time. This is referred to as autocorrela-
tion detection.

M -ary QAM Sequences and Their Autocorrelation. Let an orthonormal
set with two functions be

φ0(t) =

√
2
T

cos(2πfct) and φ1(t) =

√
2
T

sin(2πfct), 0 ≤ t ≤ T. (6)

For a quadrature amplitude modulation (QAM), an M -ary QAM sequence u =
{ui} is defined as

ui = xiφ0(t) + yiφ1(t), 0 ≤ t ≤ T, i = 0, 1, . . . ,M − 1 (7)

where xi, yi ∈ S, a finite subset of Z. A receiver of M -ary QAM signal consists
of two branches, called in-phase and quadrature branches (see [1]), respectively
where the correlation detection is applied to each branch for detecting {xi} and
{yi} individually. According to this receiver structure, in this paper, we define
the autocorrelation of an M -ary QAM sequence as follows.

Definition 3. The autocorrelation of u is defined as

CQAM,u(τ) = Cx(τ) + jCy(τ)

j =
√−1, i.e., it is the linear combination of their respective autocorrelation

functions of x = {xi} and y = {yi} with respective to the basis {1, j}.
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In this paper, a sequence we consider here has the elements taken from Fp

represented in the symmetric way in (1) and the computation of the correlation
is to treat those elements as integers in the integer ring. Thus, these sequences
are not polyphase sequences for which they have unit amplitude for each element
in the computation of correlation.

3 Autocorrelation of Sequences over Fp with Two-Tuple
Balance

Theorem 1. Let a be a two-tuple balanced sequence over Fp with period N .
Then the autocorrelation function of a is given by

Ca(τ) =

⎧
⎨

⎩

1
12pn(p2 − 1), τ ≡ 0 mod N
0, τ �≡ 0 mod d, τ �≡ 0 mod N
−pn−1Cv(i), τ = id, τ �≡ 0 mod N

where v = (v0, . . . , vp−2) is a permutation of F∗
p.

Proof. Case 1. τ ≡ 0 mod N . From Property 1, we have

Ca(0) =
N−1∑

t=0

a2
t = 2 × pn−1

(

1 + 2 + · · · +
p − 1

2

)

.

The results follows immediately from the sum of the squares of the consecutive
integers.

Case 2. τ �≡ 0 mod d, τ �≡ 0 mod N . Since a satisfies the two-tuple balance
property, then each (0, 0) �= (a, b) ∈ F

2
p occurs pn−2 times in S = {(at, at+τ ) | t =

0, . . . , N −1} and (0, 0) occurs pn−2 −1 times. Note that (at, at+τ ) = (0, 0) gives
zero in Ca(τ). For each nonzero (a, b), it has another pair (a,−b), which produce
their respective products ab and −ab in Ca(τ). Thus, all terms are cancelled in
the sum of Ca(τ). Thus, the assertion follows.

Case 3. τ ≡ 0 mod d, τ �≡ 0 mod N . According to the two-tuple balance, we
have

Ca(id) =
N−1∑

t=0

atat+τ = pn−1
∑

a∈F ∗
p

a(ia) = pn−1Cv(i)

where Cv(i) =
∑

a∈F ∗
p

a(ia) where v = (v0, . . . , vp−2), a permutation of Fp. �

Example 2. In the following, we use Theorem 1 and compute the other values
of Ca(id). Those are almost perfect quinary sequences.

Case 1. Let p = 5, n = 2, t(x) = x2 − (x − 1), and {ai} an m-sequence with
period 24 generated by t(x), i.e.,

2 1 2 0 1 1 −1 2 −1 0 2 2
−2 −1 −2 0 −1 −1 1 −2 1 0 −2 −2
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According to Theorem 1 and the computation of Ca(id) where d = 6, the auto-
correlation spectrum is given by

50 0 0 0 0 0 0 0 0 0 0 0
−50 0 0 0 0 0 0 0 0 0 0 0

Case 2. Let p = 5, n = 3, t(x) = x3 − (2x + 2), and {ai}, an m-sequence of
period 124 generated by t(x), and the first 31 elements are given by

−2, 0,−1, 1,−2, 0,−2, 1, 1,−2,−1, − 2,−1,−1,−1, 1, 1, 0,

− 1, 2,−2, 2, 0, 0,−1, 0,−2,−2, 1, 2,−2.

According to Theorem 1 and the computation of Ca(id) where d = 31, the
autocorrelation spectrum Ca(τ), τ = 0, 1, . . . , 123 is given by

Ca(τ) =

⎧
⎪⎨

⎪⎩

250, τ = 0
0, τ �= 62, 0 < τ < 124
−250, τ = 62

Remark 2. For p = 3, the construction in Theorem 1 gives

Ca(τ) =

⎧
⎨

⎩

2 × 3n−1, τ = 0
0, 0 < τ < N, τ �= d where d = 3n−1

2−2 × 3n−1, τ = d

which is almost perfect. However, this is either equal to or is the complement of
the almost perfect ternary sequences constructed in [25]. Thus, it does not give
new almost perfect ternary sequences.

4 Almost Perfect Quinary ASK Sequences

In the two sequences constructed in Example 2, we have seen the examples of
almost perfect quinary ASK sequences. In the following, we present a general
construction for a new class of almost perfect quinary ASK sequences.

Theorem 2. Let a be an m-sequence, or a GMW sequence or a cascaded GMW
sequence over F5, represented in the symmetric way, of period N = 5n −1. Then
a is almost perfect and its autocorrelation function is given by

Ca(τ) =

⎧
⎨

⎩

10 × 5n−1, τ = 0
0, 0 < τ < N, τ �= 2d,where d = 5n−1

4−10 × 5n−1, τ = 2d.

Proof. In the following, we only show its detailed proof for a being an m-sequence.
The proof for the other cases are similar. From Theorem 1, for p = 5, we need
to determine τ = id for i = 1, 2, 3 where d = 5n−1

4 . We will use the trace
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representation of the m-sequence a = {at}, i.e., at = Tr(βαt), t = 0, 1, . . . . For
τ = id, 0 < i < 4, we have

at+τ = Tr(βαt+τ ) = Tr(βαid5αt) = αid5Tr(βαt).

Note that h = αd is a primitive element of F5. Thus we have v = (1, h, h2, h3)
where hi first reduced by modular 5, then represented in F5 in the symmetric
way. Since there are only two primitive element in F5 = {−2,−1, 0, 1, 2}, which
are 2 or −2. Thus, there are only two possibilities for v: v = (1, 2,−1,−2) or
v = (1,−2,−1, 2). For each case, we have

Cv(1) = Cv(3) = 0 and Cv(2) = −10.

(In fact, those two are decimation equivalent, i.e., one can be obtained from by
the decimation operation.) Using Theorem 1, the result is true.

For the case of a being a GMW or cascaded GMW sequence, let f(x) be its
trace representation, then f(x) is F5 homomorphic. Thus, for τ = id, we have
at = f(αt+τ ) = αridf(αt) where αrd is a primitive element of F5. Thus the
results are established for both GMW or cascaded GMW sequences. �

Remark 3. The result of Theorem 2 is true when f(x) is any function from F5n

to F5 which are two-tuple balanced. However, the current known classes of 2-
tuple balanced sequences are those considered above. Furthermore, Theorem 2
yields a new class of odd perfect quinary sequences.

5 Almost Perfect Quinary QAM Sequences

In this section, we give a construction for an almost perfect quinary QAM
sequence which is constructed through almost perfect quinary sequences in The-
orem 2. Let a = {ai} be an almost perfect quinary sequence in Theorem 2, and
b = {bi} where bi = a3

i or bi = ca3
i , c ∈ F

∗
5. Let u = {ui} be a QAM sequence

whose elements are given by

ui = aiφ0(t) + biφ1(t), i = 0, 1, . . . , N − 1 (8)

where φi(t), i = 0, 1 are defined in (6) Sect. 2. The following result is directly
obtained from the interleaved structure of m-sequences or GMW or cascaded
GMW sequences.

Property 2. Let

T0 = {(0, 0), (1, 1), (2,−2), (−1,−1), (−2, 2)}
T1 = {0, 0), (1,−2), (2,−1), (−1, 2), (−2, 1)}
T2 = {0, 0), (1,−1), (2, 2), (−1, 1), (−2,−2)}
T3 = {0, 0), (1, 2), (2, 1), (−1,−2), (−2,−1)}.

The set consisting of different elements in multi set {(ai, bi), | i = 0, . . . , N − 1}
of u is equal to one of Ti, i = 0, 1, 2, 3. Thus, u is a quinary QAM sequence.
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Theorem 3. With the above notation, u is an almost perfect quinary sequence
of period N with the following autocorrelation values

CQAM,u(τ) =

⎧
⎨

⎩

20 × 5n−1, τ = 0
0, 0 < τ < N, τ �= 2d,where d = 5n−1

4−20 × 5n−1, τ = 2d.
(9)

Proof. By the definition, the autocorrelation of u is given as follows

CQAM,u(τ) = Ca(τ) + jCb(τ). (10)

From the proof of Theorem 2, the quinary sequences a and b have the identi-
cal autocorrelation functions. Thus (9) follows immediately. Hence u is almost
perfect. �

The two different signal constellations of u, given by T0 and T1, are plotted
in Fig. 1, and the other two are rotated by 90◦ from those two. Although they
have the same minimum distance, the distance between any two signal points in
T0 is at least or larger than those in T1.

φ0(t)

φ1(t)

0 1 2−1−2

1

2

−1

−2

(a)

φ0(t)

φ1(t)

0 1 2−1−2

1

2

−1

−2

(b)

Fig. 1. Signal constellation of 5-ary QAM with minimum distance
√

2: (a). T0 and (b).
T1.

6 Concluding Remarks and Their Applications

In this paper, using the known sequences with two-tuple balance property, we
provide a simple construction for almost perfect quinary ASK sequences and
almost perfect quinary QAM sequences. These new almost perfect quinary ASK
sequences and QAM sequences can be used effectively in (continuous wave) CW
radar as well as channel estimation. In the later case, its zero autocorrelation
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zone is one half of the period of the sequence, which is doubled the length of
zero correlation zone of the Golay sequences discussed in [10].

Further investigation is needed for performance comparisons of those seque-
nces in terms their efficiency of implementation as well as their signal-to-noise
ratio in both CW radar detection and channel estimation. On the other hand,
how to construct almost perfect M -ary ASK sequences for M = p, p > 5 or
M = 2k and M ′-ary QAM sequences for M ′ = M2 deserves further study.

Another interesting problem is that the known constructions for almost per-
fect sequences are strongly related the constructions of odd perfect sequences.
In other words, if a sequence is almost perfect with the nonzero autocorrelation
value located in the middle point of the shifts, then the sequence is odd perfect.
This relation can be seen, say such as [19,23]. The construction of odd perfect
sequences given by Luke in [23] are from a special case of [3], which are not bal-
anced. Those constructed sequences in [19] are not balanced as well according
to the ideal symbol distribution. We have seen that the almost perfect quinary
sequences constructed in this paper are balanced. It is interested to see how we
can construct balanced odd perfect sequences through balanced almost perfect
sequences for other values of p where p /∈ {3, 5}.

Acknowledgement. The authors wish to thank Matthew Parker for pointing out
that the new almost perfect quinary sequences in Theorem 3 also have odd perfect
autocorrelation. The work is supported by NSERC and ORF.
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Abstract. Arasu and de Launey showed that every perfect quaternary
array (that is perfect arrays over the four roots of unity ±1,±i) of size
m × n, can be inflated into another perfect quaternary array of size
mp×np, provided p = mn− 1 is s prime number. Likewise, they showed
that every perfect quaternary array of size m × n, can be inflated into
another perfect quaternary array of size mq × nq, provided q = 2mn− 1
is a prime number and q ≡ 3(mod 4). Following from Arasu and de
Launey’s first construction, Barrera Acevedo and Jolly showed that every
perfect array over the basic quaternions, {1,−1, i,−i, j,−j, k,−k}, of
sizes m × n, can be inflated into a new perfect array over the basic
quaternions of size mp × np, provided p = mn − 1 is s prime number.
Combining this construction with the existence of infinitely many modi-
fied Lee sequences over {1,−1, i,−i, j} (in the sense of Barrera Acevedo
and Hall), they showed the existence of infinitely many perfect arrays
over the basic quaternions, with appearances of all the basic quaternion
elements 1,−1, i,−i, j,−j, k and −k. In this work, we show that every
perfect array over the basic quaternions, of size m × n, can be inflated
into a perfect quaternary array of size mq × nq, provided q = 2mn − 1
is a prime number and q ≡ 3(mod 4).

Keywords: Perfect arrays over the basic quaternions · Perfect autocor-
relation · Perfect arrays · Quaternions

1 Introduction

Perfect sequences and arrays over the quaternions H were recently introduced by
O. Kuznetsov (2009) and S. Barrera Acevedo (2013), respectively. A proof of the
existence of perfect sequences of unbounded lengths over the basic quaternions
H8 = {±1,±i,±j, ±k} was recently presented by Barrera Acevedo and Hall
(2012). In 2014 Barrera Acevedo and Jolly (2014) generalised an algorithm of
Arasu and de Launey (2001) to inflate perfect arrays over four roots of unity,
of size mn = p + 1, where p is a prime number, to perfect arrays over the
basic quaternions. They showed that every array A, of size m×n over the basic
quaternions {1,−1, i,−i, j,−j, k,−k}, with p = mn− 1 a prime number, can be
inflated into another perfect array over the basic quaternions of size mp × np.
c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 123–133, 2014.
DOI: 10.1007/978-3-319-12325-7 11
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Following from this, they showed the existence of a family of perfect arrays of
unbounded sizes over the basic quaternions (2014).

In this work we generalise another algorithm of Arasu and de Launey (2001)
to inflate perfect arrays over four roots of unity, of size mn = 2q + 1, where q is
a prime number and q ≡ 3(mod 4), to perfect arrays over the basic quaternions.
We will show that every array A, of size m × n over the basic quaternions
{1,−1, i,−i, j,−j, k,−k}, with mn = 2q + 1, q is a prime number and q ≡
3(mod 4), can be inflated into a perfect array over the basic quaternions of size
mq × nq.

2 Preliminaries

A finite m × n array A = (a(r, s)), where 0 ≤ r ≤ m and 0 ≤ s ≤ n, over a
set A, is a list of m×n elements taken from A ⊂ C, where repetition is allowed
and C denotes the set of complex numbers. The number m×n is called the size
of the array and A is called the alphabet. The shift of the array A by (t0, t1)
places is A(t0,t1) = (a(r + t0, s+ t1)), where subscripts are calculated modulo m
and n, respectively. The periodic (t0, t1)-autocorrelation value of the array
A is the inner product of A and A(t0,t1), which is given by:

ACA(t0, t1) =
m−1∑

r=0

n−1∑

s=0

a(r, s)a∗(r + t0, s + t1), (1)

for 0 ≤ t0 ≤ m and 0 ≤ t1 ≤ n. The indices r + t0 and s + t1 are reduced
modulo m and n, respectively, and a∗ denotes the conjugate of a. The m ×
n array ACA = (ACA(t0, t1)), where 0 ≤ t0 ≤ m and 0 ≤ t1 ≤ n, of all
the autocorrelation values of A, is called the autocorrelation array of A.
The auto-correlation value ACA(0, 0) is called the peak-value and all the other
autocorrelation values are called off-peak values. We say that the array A has
constant off-peak autocorrelation, if all its off-peak autocorrelation values
are equal. We call the array A perfect, if all its off-peak autocorrelation values
are zero.

3 Perfect Arrays Over the Quaternions

Definition 1. The quaternion algebra H is defined as follows: It is an algebra
generated by the elements i and j, over the real number field R, with the following
multiplication rules i2 = −1, j2 = −1 and ij = −ji. This last equation makes the
algebra non-commutative. For the sake of simplicity the product ij is denoted by
k. Then ij = k, jk = i, ki = j and ji = −k, kj = −i, ik = −j. This algebra has
conjugation given by i∗ = −i, j∗ = −j and k∗ = −k. The quaternion algebra can
be regarded as a 4-dimensional R-vector space with basis vectors 1 = (1, 0, 0, 0),
i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1). The norm of a quaternion
q = a + ib + jc + kj, denoted ‖q‖, is defined by ‖q‖ = qq∗ = a2 + b2 + c2 + d2.
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Since the quaternion algebra H is non-commutative, left and right cross-corre-
lation and autocorrelation definitions for arrays over the quaternions need to be
introduced.

Definition 2. Let A = (a(r, s)) and B = (b(r, s)) be two arrays of size m ×
n over an arbitrary quaternion alphabet. For any pair of integers (t0, t1), the
(t0, t1)-right and left periodic cross-correlation values of A and B are

CCR
A,B(t0, t1) =

m−1∑

r=0

n−1∑

s=0

a(r, s)b∗(r + t0, s + t1) (2)

and

CCL
A,B(t0, t1) =

m−1∑

r=0

n−1∑

s=0

a∗(r, s)b(r + t0, s + t1), (3)

respectively. The indices r+ t0 and s+ t1 are calculated modulo m and n, respec-
tively. When A = B, we denote CCR

A,B(t0, t1) and CCL
A,B(t0, t1) by ACR

A (t0, t1)
and ACL

A(t0, t1), respectively, and they are called the (t0, t1)-right and left peri-
odic autocorrelation values of A. Also, as usual, the autocorrelation value of
A, for the shift (0, 0), is called the peak value. The right and left autocorrelation
values of A, for all pairs (t0, t1) �= (0, 0), are called right and left off-peak
values.

The next theorem presents an important property of perfect arrays over the
quaternions, namely, right perfection of any array is equivalent to left perfec-
tion. This theorem generalises a result for sequences over quaternions (Kuznetsov
2009) to arrays over the quaternions. In preparation for this theorem, we intro-
duce the following lemma.

Lemma 1. Let A = (a(r, s)) be any two-dimensional array of size m × n, with
elements in the quaternion algebra H and let

ACR
A (u, v) =

m−1∑

r=0

n−1∑

s=0

ar,sa
∗
r+u,s+v (4)

CL
A =

m−1∑

t=0

n−1∑

s=0

a∗
r,sar+u,s+v (5)

be the right and left autocorrelation functions of the array A, respectively. Then

m−1∑

u=0

n−1∑

v=0

‖ACL
A(u, v)‖ =

m−1∑

t1=0

m−1∑

t2=0

n−1∑

s1=0

n−1∑

s2=0

a∗
t1,s1(AC

R
A (t2 − t1, s2 − s1)) at2,s2 ,

(6)
and

m−1∑

u=0

n−1∑

v=0

‖ACR
A (u, v)‖ =

m−1∑

t1=0

m−1∑

t2=0

n−1∑

s1=0

n−1∑

s2=0

at1,s1(AC
L
A (t2 − t1, s2 − s1)) a∗

t2,s2 .

(7)
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Proof.

m−1∑

u=0

n−1∑

v=0
‖ACL

A(u, v)‖ =

m−1∑

u=0

n−1∑

v=0
‖
m−1∑

t=0

n−1∑

s=0
a∗
t,sat+u,s+v‖ =

m−1∑

u=0

n−1∑

v=0

(
m−1∑

t1=0

n−1∑

s1=0
a∗
t1,s1at1+u,s1+v

)(
m−1∑

t2=0

n−1∑

s2=0
a∗
t2,s2at2+u,s2+v

)∗
=

m−1∑

u=0

n−1∑

v=0

m−1∑

t1=0

n−1∑

s1=0

m−1∑

t2=0

n−1∑

s2=0
a∗
t1,s1at1+u,s1+va

∗
t2+u,s2+vat2,s2 =

m−1∑

t1=0

n−1∑

s1=0

m−1∑

t2=0

n−1∑

s2=0
a∗
t1,s1

(
m−1∑

u=0

n−1∑

v=0
at1+u,s1+va

∗
t2+u,s2+v

)

at2,s2 =

m−1∑

t1=0

n−1∑

s1=0

m−1∑

t2=0

n−1∑

s2=0
a∗
t1,s1

(
ACR

A (t2 − t1, s2 − s1)
)
at2,s2 .

(8)

The second equation is proved in a similar way.

Theorem 1. Let A be any array over an arbitrary quaternion alphabet. Then
the array A is right perfect if and only if it is left perfect.

Proof. Assume that A is a right perfect array. We will show that the sum of
the norms of the left off-peak autocorrelation values

∑m−1
u=0

∑n−1
v=0

(u,v) �=(0,0)

‖ACL
A(u, v)‖

is equal to zero, for all (u, v) �= (0, 0). By Lemma (1), Eq. (6) we have

m−1∑

u=0

n−1∑

v=0

‖ACL
A(u, v)‖ =

m−1∑

t1=0

m−1∑

t2=0

n−1∑

s1=0

n−1∑

s2=0

a∗
t1,s1(AC

R
A (t2 − t1, s2 − s1)) at2,s2 ,

(9)
Since A is right perfect, all right autocorrelation values are equal to zero, for
all shifts (u, v) �= (0, 0). Also, it is true that ACL

A(0, 0) = ACR
A (0, 0). Then

ACR
A (t2 − t1, s2 − s1) = 0, for t1 �= t2 or s1 �= s1 �= s2. In this way, the Eq. (9)

above continues to

m−1∑

u=0

n−1∑

v=0

‖ACL
A(u, v)‖ =

m−1∑

t1=0

n−1∑

s1=0

a∗
t1,s1at1,s1AC

R
A (0, 0). (10)

Thus,

‖ACL
A(0, 0)‖ +

m−1∑

u=0

n−1∑

v=0
(u,v) �=(0,0)

‖ACL
A(u, v)‖ = ACL

A(0, 0)ACR
A (0, 0). (11)
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It follows that
m−1∑

u=0

n−1∑

v=0
(u,v) �=(0,0)

‖ACL
A(u, v)‖ = 0. (12)

Since the sum of non-negative real numbers is equal to zero, we have that
every summand is necessarily equal to zero. Thus, ‖ACL

A(u, v)‖ = 0, for (u, v) �=
(0, 0). So, A is left perfect by definition. The other direction of the statement is
proved similarly.

Henceforth, we will say that an array over the quaternions is perfect, if it is right
(or left) perfect.

Example 1. The array
(

1, i
j, k

)

over the quaternions is perfect.

4 Inflation of Perfect Arrays Over the Basic Quaternions

We modify the algorithm of Arasu and de Launey (2001), for inflating perfect
quaternary arrays, into an algorithm to inflate perfect arrays over the basic
quaternions. The new arrays will have larger size and perfect autocorrelation. We
will inflate arrays of size m×n, into arrays of size mq×nq, provided q = 2mn−1
is a prime number and q ≡ 3(mod 4).

Definition 3. For every prime number q, Legendre sequences, denoted Lq =
(st), are defined by

st =

⎧
⎨

⎩

0, if t = 0
1, if t is a quadratic residue mod q

−1, if t otherwise
(13)

Legendre sequences autocorrelation off-peak values are all equal to −1.

Theorem 2. If there is a perfect array, over the basic quaternions {±1,±i,±j,
±k}, of size m × n, where q = 2mn − 1 is a prime number and q ≡ 3(mod 4),
then there is a perfect array of size mq × nq, over the basic quaternions.

4.1 Construction

Let A be a perfect array of size m × n over the basic quaternions, where q =
2mn − 1 is a prime number and q ≡ 3(mod 4).
(1) Take a Legendre sequence Lq = (0, s1, . . . , sq−1) of length q and replace the
element 0 by i

q+1
2 , to obtain the sequence Si = (i

q+1
2 , s1, . . . , sq−1). The element 0

can also be replaced by j
q+1
2 or k

q+1
2 , producing the sequence Sj = (j

q+1
2 , s1, . . . ,

sq−1) or Sk = (k
q+1
2 , s1, . . . , sq−1), respectively and the following construction is

valid for each of these sequences. All three sequences have the same autocorre-
lation values (q,−1, . . . ,−1). In this construction we use the sequence S = Si.
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(2) Produce q + 1 arrays, called inflation arrays, from the sequence S and the
shifts St of S, for t = 0, 1, . . . , q − 1, as follows:

B0 =
(
S S . . . S
↓ ↓ ↓

)T

, B1 =
(
S S1 . . . Sq−1

↓ ↓ ↓
)

,

B2 =
(
S S(1)2 . . . S(q−1)2

↓ ↓ ↓
)

, . . . , Bq−1 =
(
S S(1)(q−1) . . . S(q−1)(q−1)

↓ ↓ ↓
)

,

Bq =
(
S S . . . S
↓ ↓ ↓

)

(14)
(The following step in this construction introduces the main variation from

the construction presented by Barrera Acevedo and Jolly (2014)).

(3) Construct q+1
2 inflation arrays of size q × q: for r = 0, 1, . . . , q+1

2 , and put

Cr =
(

1 + i

2

)

(B2r + iB2r+1) (15)

All the entries of this matrix are complex fourth roots of unity.

(4) Arrange the arrays A,C0, C1, . . . , C q−1
2

into a four-dimensional array D of
size m × q × q × n as follows: if cr+ms(u, v) is the (u, v) entry of the inflation
array Dr+ms, then for 0 ≤ r ≤ m − 1, 0 ≤ s ≤ n − 1 and 0 ≤ u, v ≤ q − 1, we
put

d(r, u, v, s) = a(r, s)cr+ms(u, v) (16)

(5) Reduce the dimensions of the array D from four to two dimensions, obtaining
an array E, with same number of entries, as follows. The (r, s) entry of the array
E is

e(r, s) = d(r(mod m), r(mod q), s(mod q), s(mod n)). (17)

4.2 Properties of the Inflation Arrays

The following properties of the inflation arrays C0, C1, . . . , C q+1
2

ensure that the
inflation process produces perfect arrays. These properties are given in (Arasu
and de Launey 2001) in polynomial form, and the following matrix form is a
simple equivalence.

(1) For 0 ≤ t0, t1 ≤ q − 1, the summation of all (t0, t1) off-peak autocorrelation
values, of the arrays C0, . . . , Cq, is equal to zero, that is, for (t0, t1) �= (0, 0)

m−1∑

r=0

n−1∑

s=0

ACCr+ns
(t0, t1) = 0 (18)

(2) For 0 ≤ r, s ≤ q, with r �= s, the cross-correlation values of Cr and Cs are
always one, that is, for all 0 ≤ t0, t1 ≤ q − 1

CCCr,Cs
(t0, t1) = 1 (19)
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(3) The autocorrelation values of the arrays C0, . . . , Cq are either q2 or −q.
The proofs in polynomial form of the above properties of the inflation arrays

are far simpler than what they would be in matrix form.

Lemma 2. The array D in Eq. (16) has perfect autocorrelation.

Proof. We need to prove that all off-peak autocorrelation values of the array D
are zero. First, we write the autocorrelation function of the array D in terms of
the arrays A,B0, . . . , Bq. The right (t0, t1, t3, t2)-autocorrelation value of D is
given by the equation

ACR
D(t0, t1, t2, t3) =

m−1∑

r=0

q−1∑

u=0

q−1∑

v=0

n−1∑

s=0

d(r, u, v, s)d∗(r+t0, u+t1, v+t2, s+t3) (20)

where
d(r, u, v, s) = a(r, s)cr+ms(u, v) (21)

and cr+ms(u, v) is the (u, v) entry of the inflation array Cr+ms. So, we can write
the right (t0, t1, t2, t3)-autocorrelation value of C as follows

ACR
D(t0, t1, t2, t3) =

m−1∑
r=0

q−1∑
u=0

q−1∑
v=0

n−1∑
s=0

a(r, s)cr+ms(u, v)
(
a(r + t0, s+ t3)cr+t0+n(s+t3)(u+ t1, v + t2)

)∗
=

m−1∑
r=0

n−1∑
s=0

a(r, s)

(
q−1∑
u=0

q−1∑
v=0

cr+ms(u, v)c
∗
r+t0+m(s+t3)

(u+ t1, v + t2)

)
a∗(r + t0, s+ t3)

(22)

Since the expression
q−1∑

u=0

q−1∑

v=0
cr+ms(u, v)c∗

r+t0+n(s+t3)
(u + t1, v + t2), in Eq. (22),

is the cross-correlation of the arrays Cr+ms and Br+t0+m(s+t3), we can write
Eq. (22) as

ACR
D(t0, t1, t2, t3) =

m−1∑

r=0

n−1∑

s=0
a(r, s)

(
CCCr+ms,Cr+t0+m(s+t3)(t1, t2)

)
a∗(r + t0, s + t3)

(23)

In order to prove that D is perfect, we consider the following four cases: t0 �=
0, t1 �= 0, t2 �= 0 and t3 �= 0.

Case (1) t0 �= 0. Then Cr+ms and Cr+t0+m(s+t3) are different arrays. So, by
Eq. (19), the (t1, t2) cross-correlation value of Br+ms and Br+t0+m(s+t3) is 1. So
Eq. (23) becomes

ACR
D(t0, t1, t2, t3) =

m−1∑

r=0

n−1∑

s=0
a(r, s) (1) a∗(r + t0, s + t3) (24)

Now, since A is a perfect array, from Eq. (24), we have

ACR
D(t0, t1, t2, t3) = 0 (25)
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Case (2) t2 �= 0. Similar to Case 1.
Case (3) t1 �= 0. We divide this case into three sub-cases.
Case (a) t0 = t3 = 0. Since t0 = t3 = 0, we have Cr+t0+m(s+te) = Cr+ms and
so, the (t1, t2) cross-correlation value of Cr+t0+m(s+t3) and Cr+ms becomes the
(t1, t2) autocorrelation value of Cr+ms. Equation (23) can be written as

ACR
D(t0, t1, t2, t3) =

m−1∑

r=0

n−1∑

s=0
a(r, s)

(
ACCr+ms

(t1, t2)
)
a∗(r, s) (26)

From Property (3) in Section (4.2), ACCr+ms
(t1, t2) is either q2 or −q, which are

integers and commute with quaternions. Equation (26) becomes

ACR
C (t0, t1, t2, t3) =

m−1∑

r=0

n−1∑

s=0
a(r, s)a∗(r, s)

(
ACCr+ms

(t1, t2)
)

=

m−1∑

r=0

n−1∑

s=0
1
(
ACCr+ms

(t1, t2)
)

(27)

From Eq. (18), we have that

m−1∑

r=0

n−1∑

s=0

ACCr+ms
(t1, t2) = 0 (28)

Thus, ACR
C (t0, t1, t2, t3) = 0.

Case (b) t0 �= 0. See Case 1.
Case (c) t2 �= 0. See Case 2.
Case (4) t3 �= 0. Similar to Case 3.
This completes the proof of Lemma (2)

Theorem 3. The array E in Eq. (17) has perfect autocorrelation.

Proof. We will show that each off-peak autocorrelation value of the array E is
equal to an off-peak autocorrelation value of the array D, which is perfect. We
will do this by showing that, if the shift (t0, t1) of E is non trivial, then the shift
of D associated with (t0, t1) is also non trivial.
For (t0, t1) ∈ Zmq × Znq \ {(0, 0)}, we use the equation

e(r, s) = d(r(mod m), r(mod q), s(mod q), s(mod n)) (29)

to produce the right (t0, t1)-autocorrelation value of E as follows

ACR
E (t0, t1) =

mq−1∑

r=0

nq−1∑

s=0

e(r, s)e∗(r + t0, s + t1) =

mq−1∑

r=0

nq−1∑

s=0

d(r(mod m), r(mod q), s(mod q)s(mod n)) (30)
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d(r(mod m) + t0(mod m), r(mod q) + t0(mod q), s(mod q) + t1(mod q),
s(mod n) + t1(mod n))

So Eq. (30) above continues

m−1∑

u=0

q−1∑

v=0

q−1∑

x=0

n−1∑

y=0

d(u, v, x, y)

d∗(u + t0(mod m), v + t0(mod q), x + t1(mod q), y + t1(mod n)) =

ACR
D(t0(mod m), t0(mod q), t1(mod q), t1(mod n))

(31)

Case (1) t0 �= 0. Since GCD(m, q) = 1, we have that no number less than mq
is divisible by m and q. Therefore, for 0 < t0 ≤ mq − 1, if t0 ≡ 0(mod m), then
t0 �≡ 0(mod q), and similarly if t0 ≡ 0(mod q), then t0 �≡ 0(mod m). Thus, the
shift (t0(mod m), t0(mod q), t1(mod q), t1(mod n)) of D is not equivalent to the
shift (0, 0, 0, 0) mod (m, q, q, n).
Case (2) t1 �= 0. Similar to Case (1). Thus E is perfect.

Example 2. The perfect two-dimensional array
(

1 i
j −k

)

(32)

of size 2×2 is inflated into a perfect two-dimensional array of size 14×14. Since
7 ≡ 3(mod 4), we construct 8 binary inflation arrays of size 7 × 7 as follows:

B0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 −1 1 −1 1 1
1 1 −1 −1 1 −1 1
1 1 1 −1 −1 1 −1

−1 1 1 1 −1 −1 1
1 −1 1 1 1 −1 −1

−1 1 −1 1 1 1 −1
−1 −1 1 −1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 −1 1 −1 1 1
1 −1 1 1 1 −1 −1
1 1 −1 −1 1 −1 1

−1 1 −1 1 1 1 −1
1 1 1 −1 −1 1 −1

−1 −1 1 −1 1 1 1
−1 1 1 1 −1 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 −1 1 −1 −1
1 −1 1 −1 −1 1 1
1 −1 −1 1 1 1 −1

−1 1 1 1 −1 1 −1
1 1 −1 1 −1 −1 1

−1 1 −1 −1 1 1 1
−1 −1 1 1 1 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(33)
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B4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 −1 1 −1 1 1
1 1 1 −1 −1 1 −1
1 −1 1 1 1 −1 −1

−1 −1 1 −1 1 1 1
1 1 −1 −1 1 −1 1

−1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 −1 1 −1 −1
1 −1 −1 1 1 1 −1
1 1 −1 1 −1 −1 1

−1 −1 1 1 1 −1 1
1 −1 1 −1 −1 1 1

−1 1 1 1 −1 1 −1
−1 1 −1 −1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 −1 1 −1 −1
1 1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 1

−1 1 −1 −1 1 1 1
1 −1 −1 1 1 1 −1

−1 −1 1 1 1 −1 1
−1 1 1 1 −1 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(34)

We use the above arrays and Eq. (15) to produce 4 inflation arrays of size 7 × 7

C0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i 1 1 −1 1 −1 −1
i i 1 −i i −i −1
i i i −i 1 −1 −i
1 i i −1 1 −i −1
i 1 i −1 i −i −i
1 i 1 −1 i −1 −i
1 1 i −i i −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i −1 −1 1 −1 1 1
i −i i 1 1 −1 −1
i 1 −i −1 i −1 1

−i i −1 i 1 i −i
i i 1 −1 −i 1 −1

−i −1 1 −i i i i
−i 1 i i −1 −i i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i −1 −1 1 −1 1 1
i 1 1 −1 −1 i −i
i −1 1 i 1 −i −1

−i −i i −1 i 1 i
i 1 −1 −i 1 −1 i

−i i i i −i −1 1
−i i −i 1 i i −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i i i −1 i −1 −1
i i −1 i −1 −1 i
i −1 i −1 −1 i i

−i 1 −i −i 1 1 1
i −1 −1 i i i −1

−i −i 1 1 1 −i 1
−i 1 1 1 −i 1 −i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(35)

We use the inflation arrays C0, C1, C2 and C3, to produce, from the array(
1 i
j −k

)

, the perfect array
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i −i 1 i 1 i −1 −1 1 −i −1 −i −1 i
−k j −k j j k j j k k j k j j
i −i i −1 1 1 −i −1 i i −i i −1 −i
k −k j j j −k k j −k j −k −k −k −k
i i i 1 i −i −i −1 1 −i −1 i −i −1
k j j −k −k j −k j j −k k −k −k −k
1 −1 i i i −1 −1 1 1 1 −i −1 −1 −i

−k j j k j k j j j j j j j k
i i 1 −i i −1 −1 −1 i i −i −i −i 1

−k k k k −k j j j j j j k j j
1 1 i −i 1 i −1 1 i −1 −1 −1 −i −1

−k k j j k j j j −k k j j j k
1 −1 1 −1 i −i −i 1 i −1 −1 1 −1 i
k −k −k −k j −k −k j j −k −k j k j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(36)

of size 14 × 14, with appearances of all the basic quaternion elements 1, −1, i,
−i, j, −j, k and −k.

5 Conclusion

In this paper we showed that every array A, of size m × n over the basic
quaternions {1,−1, i,−i, j,−j, k,−k}, with q = 2mn − 1 a prime number and
q ≡ 3(mod 4), can be inflated into another perfect array over the basic quater-
nions of size mq × nq. This construction paves the way for constructing new
families of perfect arrays over the basic quaternions with different sizes to those
showed in Barrera Acevedo and Jolly’s work (2014).

References

Arasu, K.T., de Launey, W.: Two-dimensional perfect quaternary arrays. IEEE Trans.
Inf. Theory 47, 1482–1493 (2001)

Barrera Acevedo, S.: Perfect sequences and arrays of unbounded lengths and sizes over
the basic quaternions. Ph.D. Thesis, Monash University (2013)

Barrera Acevedo, S., Jolly, N.: Perfect arrays of unbounded sizes over the basic quater-
nions. Crypt. Commun. 6, 47–57 (2014)

Acevedo, S.B., Hall, T.E.: Perfect sequences of unbounded lengths over the basic
quaternions. In: Helleseth, T., Jedwab, J. (eds.) SETA 2012. LNCS, vol. 7280, pp.
159–167. Springer, Heidelberg (2012)

Kuznetsov, O.: Perfect sequences over the real quaternions. In: WSDA ’09: Fourth
International Workshop on Signal Design and its Applications in Communications,
vol, 1, pp. 17–20 (2009)

Kuznetsov, O., Hall, T.E.: Perfect sequences over the real quaternions of longer length.
Online J. Math. Stat. 1, 8–11 (2009) (The 2010 World Congress on Mathematics
and Statistics, WCMS 10)

Lee, C.E.: Perfect q-ary sequences from multiplicative characters over GF (p). Electron.
Lett. 28, 833–835 (1992)

Luke, H.D.: BTP transform and perfect sequences with small phase alphabet. IEEE
Trans. Aerosp. Electro. Syst. 32, 497–499 (1996)
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Abstract. This paper presents new constructions of families of binary
and ternary arrays with low off-peak (periodic) autocorrelation and low
cross-correlation for application to video watermarking. The construc-
tions are based on the composition method which uses a shift sequence
to cyclically shift a commensurate “column” sequence/array. The shift
sequence/array has auto and cross-hit values constrained to 1 or 2, while
the column sequence/array is pseudonoise. The shift sequences are new,
while the column sequence is a Sidelnikov sequence, and the column array
is a multi-dimensional Legendre array. The shift sequence constructions
involve mapping the elements of a finite field onto its associated mul-
tiplicative group, the field plus infinity and other such variations. The
constructions yield families of arrays suitable for embedding into video
as watermarks. Examples of such watermarks are presented. The water-
marks survive H264 compression, and are being considered for a video
security standard.

Keywords: Array · Correlation · Periodic · Costas · Legendre · Multi
dimensional · Shift sequence

1 Introduction

Since 1993, the area of digital watermarking has undergone an explosion in activ-
ity. Digital watermarks have been applied to still images, audio, video, text,
sheet music, etc. Watermarking techniques have been used to provide copy-
right protection, access control, audit trail, traitor tracing, provide certificates
of authenticity, etc. Watermark embedding and recovery techniques have been
studied extensively and have been tailored to use the masking effect of the human
visual system and human auditory system. Almost all of these advances have
occurred in the applications domain. Major advances have occurred in protect-
ing watermarks against unintentional distortions (compression, cropping, geo-
metrical effects etc.) and against deliberate cryptographic attack. New forms of
attack have emerged as a result of these advances. By contrast, the generators
or sequences used to carry the message have not changed significantly. As a
consequence, watermarks can benefit significantly by using families of sequences
or arrays with good auto and cross-correlation. This is because multiple sets
c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 134–145, 2014.
DOI: 10.1007/978-3-319-12325-7 12
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of such sequences or arrays can be embedded as composite watermarks. Such
composite watermarks have three significant advantages: they are more secure
against cryptographic attack, they can carry more information, and where the
watermarks are used as fingerprints, composite watermarks can have immunity
to collusion attack.

One popular watermarking technique that has been developed uses a statis-
tical method to generate the watermark patterns, employing a random number
generator or a noisy physical process. It is simple and effective, easy to imple-
ment, and can be made resistant to standard compression methods. Its weak-
ness is that it cannot specify a probability that the watermarks generated by
this process are “unique”, or at least sufficiently dissimilar, so as never to be
confused. This is not a problem for proof of ownership or copyright applica-
tions, where there are few watermarks needed, and many recipients of the media
receive the same watermark. This is not true for video surveillance cameras, nor
for audit trail applications, where a large number of watermarks are required.
It should be noted that the statistical method can be adapted, so that any sim-
ilar watermarks are “filtered out”. However, this only applies to a single node
of watermarking, and is difficult or impossible to implement in a distributed
watermarking system, such as a network of surveillance cameras.

By contrast, the watermark method developed by our group is based on an
algebraic construction [1]. Originally, it used m-sequences to embed watermark
information line by line in an image. It was primitive, difficult to implement,
and to make resistant to compression and attack. It also suffered from visibility
problems, due to the fact that each watermark was embedded in a small portion
of the image: a line. However, it was free from the weakness of other methods,
in that the probability of missed or mistaken detection could be specified for a
set of watermarks generated using this method.

While many video watermarking solutions have been proposed, few of them
are appropriate for hardware implementation. In addition, most are implemented
as post-processing steps after the initial video was obtained. This means that
an unwatermarked version of the image or data already exists, and that consti-
tutes a security vulnerability. The paper is organised as follows: Sect. 2 outlines
the method of array construction. Section 3 introduces the multi-dimensional
grid which is used in the construction as well as the generation of the multi-
dimensional Legendre array, which is used as a “column array” in our 3D con-
struction. Section 4 describes various 3D constructions in detail, whilst Sects. 5
and 6 demonstrate how the arrays have been applied to video watermarking.

Fig. 1. Two dimensional Legendre array
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2 Construction

Our constructions are based on a method developed in [2] and described briefly
in [3] and applied to 2D constructions for wireless communications in [4]. The
essential ingredients are a column sequence with good autocorrelation, and a
shift sequence which is applied as a cyclic shift to the column sequences to form
a watermarking array. The sequence below is adapted from one developed for
frequency hopping [5].

si = logα(Aα2i + Bαi + C) (1)

α is a primitive element of a finite field GF(q) where q is the number of elements
and is a prime power q = pn where p is prime and n is any positive integer,
including 1. i is an index taking on the values 0, 1, 2, ..., q − 2. si takes on the
values 0, 1, 2, ..., q −2,∞, where ∞ results from the argument of the log function
being equal to 0. A, B, C are suitably chosen entries from GF(q).
Here GF (q) = 0, α1, α2, ..., αq−1.

In this context log refers to logαx = j implies that x = αj . Note that the log
mapping is 1:1 i.e. there is a single value of si for each i.

The arrays from (1) have the following property: for any non-zero doubly
periodic shift of such an array, its auto correlation is 0 or 1. Some of the arrays
generated are shifts of each other, and hence have bad correlation. There is an
equivalence relation which makes (q − 1)2 choices of A, B or C redundant, and
hence there are approximately q inequivalent arrays in the family. It can be
shown that all inequivalent quadratics can be represented by q choices of C in
S where

si = logα(x2 + x + C). (2)

Each of these arrays from (1) can be assigned to a different user. A doubly
periodic cross-correlation between any pair of such arrays is also 0 or 1. These
arrays may also find application in modulating radar signals for multi-target
recognition and in OCDMA (Optical Code Division Multiple Access) [6].

The watermarking array construction relies on replacing any column i of
array S with a 1 in it (notice that each column has either 0’s and a 1 or an ∞)
by a known column over roots of unity, with good correlation in a cyclic shift
equal to si for that column in S. Note that columns commensurate with this
construction are: Sidelnikov sequences [7], Legendre sequences, m-sequences and
Hall sequences and others. This is the first time Sidelnikov sequences have been
used in such a construction.

Columns with ∞ in them can be replaced by a column of 0’s. This reduces
the peak autocorrelation by q − 1, but has almost no effect on the off-peak
autocorrelation, or the cross-correlation. Where there is only one column with
an ∞, the column can be replaced by a column of constant values, including +1
or −1. The autocorrelation is even better than when the constant is 0 whilst the
cross-correlation can increase by q− 1. When there are two or more entries with
∞, the best option is to replace them by a string of 0’s. This reduces the peak
autocorrelation even further, and makes such arrays less desirable.
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3 Multi-dimensional Grid

We write the elements of GF(p2) as doubletons (a, b) based on α, a primitive
element, following [8].

α1 = (1, 0) α2 = (., .) , α3 = (., .) , . . . , αp2−1 = (0, 1) (3)

where each doubleton has entries from Zp. Consequently, the doubletons define
an integer grid in two dimensions. This is shown in Fig. 1(a) where the field
elements are written in exponent notation.

The map of Fig. 1(a) can itself be converted into a two-dimensional array
over (0, 1,∞) as in Fig. 1(b), or over the symbols +1,−1, 0 as in Fig. 1(c). The
latter can be achieved by reducing the numbered entries in Fig. 1 modulo 2 and
mapping 0 onto +1, and 1 onto −1. The ∞ is mapped onto 0. We call this
new array a two-dimensional Legendre array. A two dimensional 7 × 7 Legendre
array derived from Fig. 1(a) is shown in Fig. 1(b). The two dimensional periodic
autocorrelation of this array is −1 for all non-trivial shifts. This method of
alphabet reduction can be applied modulo k, as long as k divides m. It can
be performed on arrays of this type in dimensions higher than 2. This array
will be employed in the construction of families of higher dimensional arrays in
constructions C. Its existence is vital.

4 Three Dimensional Constructions

In the following discussion the construction numbers are chosen to be consistent
with [9–11]. New three dimensional constructions can be obtained by using a
partition of the finite field GF(p2) to generate a unique (Costas) grid.

As in Sect. 3, we write the elements of GF(p2) as doubletons based on α, a
primitive element.

α1 = (1, 0) α2 = (., .) , α3 = (., .) , . . . , αp2−1 = (0, 1) (4)

where each doubleton has entries from Zp. Consequently, the doubletons define
an integer grid in two dimensions, which can be used as a basis for a three
dimensional periodic Costas array. The construction can be generalized to m
dimensions.

This grid can be used to construct a single array in three dimensions with
array correlation 1.

Consider s = logαX where X ∈ GF (p2).
Specifically for X = αi, si = logααi = i.
The sequence scheme is to use the doubleton representation of αi to determine

the coordinates (location) on the two dimensional integer grid defined above.
si is a periodic sequence with period p2 − 1. An example of this method of
mapping is shown in Fig. 1(a). It displays the map for GF(72). For our Costas
type construction we take the grid point location belonging to si, and place a 1
at position i in a column of length p2 −1 located below the grid point, and zeros
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in all other entries in that column. This array has an off-peak autocorrelation of
at most 1.

The array can be converted into a binary or higher alphabet array by sub-
stituting a pseudonoise sequence in place of the sequence of 0’s and 1’s. This
process is illustrated in Fig. 2. Figure 2(a)(i) shows the powers of a primitive ele-
ment in GF(32) raised to all its powers in the grid format. Figure 2(a)(ii) shows
a logarithmic mapping of Fig. 2(a)(i). Figure 2(a)(iii) shows a column sequence
of length 8, (a Sidelnikov sequence) which is used to generate a three dimen-
sional array. The array is generated by first placing a column of length 8 below
every entry in the grid. The column contains all zeros if the entry is * and oth-
erwise contains a solitary entry of one in the position determined by the entry
in the corresponding grid location. This is illustrated in Fig. 2(b). The columns
of Fig. 2(b) are then substituted by corresponding cyclic shifts of the Sidelnikov
sequence of Fig. 2(a)(iii). The all zeros column is not substituted. The resulting
array is shown in Fig. 2(c).

The array in Fig. 2(c) is solitary, so by itself it does not address the require-
ment of delivering large families of arrays with low off-peak autocorrelation and
low cross-correlation. However, the modifications described below do deliver such
families. In the next two constructions we use the grid just like the one in Fig. 1,
which is for arrays of size 7*7, or the one of Fig. 2, which is for arrays of size
3*3. We show how to construct two sets of families of arrays whose auto and
cross-correlation of 0 or 1.

4.1 Column Based Constructions

Construction C1
Take A, B, C ∈ GF (p2), A �= 0. Let:

skl = logα(AX2 + BX + C) (5)

Here X = αi with α being a primitive element of GF (p2) and k and l refer to the
grid coordinates of αi. In this family, two shift arrays skl and s′

kl are equivalent
if the watermark arrays they generate are multi-periodical shifts of each other.
The number of non-equivalent classes is approximately p2.

Construction C2
Take A, B, C,D ∈ GF (p2), AD − BC �= 0

skl = logα

AX + B

CX + D
(6)

The equivalence classes are defined similarly to Construction C1, and the
number of non-equivalent arrays is also similar to Construction C1.

Construction C1 can be generalized by using polynomials with degree greater
than 2 and Construction C2 with polynomials of degree greater than 1.

A watermarking array is constructed by using si belonging to each coordinate
on the grid to cyclically shift a binary Sidelnikov sequence of length p2 − 1.
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Fig. 2. Construction C1

Our construction guarantees that no more than 2 such Sidelnikov columns can
match and therefore the worst case autocorrelation and cross-correlation is of
the order of 2p2. The peak autocorrelation is of order p4.

Constructions C1 and C2 can be generalized to produce an m+1 dimensional
watermarking array by using the grid mapping method to map GF(pm) onto a
p × p × p × p grid by representing each power of a primitive element as an m-
tuple. The resultant watermarking array is of size p × p × p × p × (pm − 1).

The method of connecting elements of GF (pm) − {0} with Zpm−1 using a
logarithmic function has an inverse. In one dimension this has led to logarithmic
and exponential Costas array constructions. Here it leads to even more new
multi-periodic multidimensional arrays.

Observe than Zm
p −{0} and Zpm−1 have the same cardinality. Consequently,

there exists an inverse function to the one that gives a generic Costas Array,
since it is a 1-1 onto function. Consider now the inverse function

g : Zpm−1 −→ Zm
p − {0},

for the case of the generic Welch Costas Array. We take α, the corresponding
primitive element of the finite field. As in coding theory, we write the elements
of GF(pm) as m-tuples based on α, a primitive element.

α1 = (0, 0, 0, . . . , 1, 0), α2 = (., ., ., . . . , ., .) , , . . . , αpm−1 = (0, 0, 0, . . . , 0, 1) (7)

where each m-tuple has entries from Zp. Consequently, the m-tuples define an
integer grid in m dimensions, which can be used as a basis for a (m+1)-periodic
Costas arrays.
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αi can be written as an m-tuple on the grid. Consequently we can take g to
be g = αi for any i ∈ Zpm−1. Note that g is multi-periodic, and we now see that
it has the distinct difference property:

∀h �= 0, αi+h − αi = αj+h − αj =⇒ i ≡ j (8)

This is true since

αi+h − αi = αi
(
αh − 1

)
= αj

(
αh − 1

)
= αj+h − αj (9)

Therefore divide by
(
αh − 1

)
since h �= and we obtain αi = αj . This implies

that i = j.

Definition: An elementary Abelian Costas array f : Zpm−1 −→ Zm
p − {0} is

a 1-1 onto function which is periodic and with the distinctness of differences
property. Note that since + and − are the operations of the Abelian Group, we
also say this is elementary Abelian.

4.2 Plane Based Constructions

Construction D1 (Exponential Welch Generalization)
f (i) = αi is an elementary Abelian Costas Array. f : Zpm−1 −→ Zm

p −{0}. This
is a solitary array.

Construction D1 is illustrated by the example in Fig. 3. Figure 3(a)(i) shows
the starting 3 × 3 grid, as described before. Figure 3(a)(ii) shows the inverse
mapping, which produces an array of cells containing the two dimensional shifts
associated with each entry. Figure 3(a)(iii) shows the 3 × 3 Legendre array con-
structed by the method described above, and illustrated for a 7 × 7 array in
Fig. 1. Figure 3(b) shows how each of the two dimensional shifts of Fig. 3(a)(ii)
are used to shift the Legendre array of Fig. 3(a)(iii) to produce 8 layers of a
three-dimensional array.

Construction D2 (Quadratic Generalization – Family of Arrays)

fA,B,C (i) = A(αi)
2

+ Bαi + C , f : Zpm−1 −→ Zm
p − {0} (10)

where A, B, C are elements of the finite field GF(pm), gives a family of arrays.
Any two arrays which are multi-dimensional cyclic shifts of one another are called
equivalent. The autocorrelation of our arrays and the cross-correlation between
any non-equivalent arrays is bounded by two.

Construction D3
With the same assumptions and conclusions as in the previous constructions,
consider now:

fA,B,C,D (i) =
Aαi + B

Cαi + D
, f : Zpm−1 −→ Zm

p − {0} (11)

where A, B, C, D are elements of the finite field GF(pm). The autocorrelation
of our arrays and the cross-correlation between any non-equivalent arrays is
bounded by two.
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Fig. 3. Construction D2

Construction D4(a)
The elements of a finite field together with ∞ can be written in an order deter-
mined by Moreno-Maric. Each of these elements, except ∞ can also be expressed
as m-tuple commensurate with the grid described in the preamble to Construc-
tion D1. The fractional function of Construction 3 can then be used to map the
q + 1 entries of {GF(qm) ∪ ∞} onto GF(qm). Whenever the result is ∞, that
entry is left blank. The autocorrelation of these arrays and the cross-correlation
between any non-equivalent arrays is bounded by two. We obtain a watermark-
ing array by substituting the coordinates of a grid entry with corresponding
cyclic shifts of a commensurate Legendre array.

Construction D4(b)
In a manner similar to Construction 4(a), the entries in {GF(qm) ∪ ∞} result-
ing from the fractional function map of Construction D3 can be mapped onto
the multiplicative group GF(qm)/0 by using the log function described before.
The autocorrelation of these arrays and the cross-correlation between any non-
equivalent arrays is bounded by two. We obtain a watermarking array by sub-
stituting the entries on the grid with cyclic shifts of a commensurate Sidelnikov
or m-sequence.

Construction D5
In a way similar to previous generalizations, the quadratic of construction D2
can be generalized to a degree n polynomial with coefficients from the finite
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field. The autocorrelation of these arrays and the cross-correlation between any
non-equivalent arrays is bounded by n.

The constructions D2, D3, D4(a) and D5 of arrays with constrained correla-
tion can be converted into watermarking arrays by substituting the grids of shift
m’tuples into periodic shifts on a multi-dimensional Legendre array.

4.3 Correlation Calculation for Watermarking Array Using
Legendre Array Substitution

For a non-trivial quadratic shift sequence/array the array can match 0, 1, or
2 columns/planes of a shifted array within the family. Hence, for the con-
structions D2, D3, D4(a) the correlation takes on the following possible values:
(pm − 1)2,pm + 1,+1,−pm + 1. The absolute value of normalized off-peak auto-
correlation and cross-correlation is bounded by approximately p−m. For three
dimensional watermarks, m = 2. In general, m is one less than the number of
dimensions.

Arrays from Construction D4(b) are converted by substituting the integers 0,
1, . . . , pm−2 by a commensurate periodic sequence, such as a Sidelnikov sequence.

4.4 Higher Dimensions

Another application of the grid is a four dimensional construction E1, which uses
a map from a finite field onto itself. We use the same grid as in Constructions C
and Constructions D. Now we apply the following mapping to the powers of α

f(x) → Ax2 + Bx + C (12)

where x,A,B,C are elements of GF (q) and x is a variable.
f(x) is a mapping from GF(q) to GF(q) where q = pn.
Both x and f(x) can be seen as n-tuples using the grid. We obtain a water-

marking array by substituting the coordinates of a grid entry with corresponding
cyclic shifts of a commensurate multi-dimensional Legendre array.

Figure 4 illustrates the method of constructing a 4 dimensional array.
Figure 4(a)(i) shows the starting grid. Figure 4(a)(ii) shows a simple quadratic
map x → x2. Figure 4(a)(iii) shows the array of shifts obtained by looking up
Fig. 4(a)(i). This array of shifts is then used to cyclically shift a 3 × 3 Legendre
array shown in its (0, 0) shift in Fig. 4(a)(iv). The resulting four dimensional
array is shown schematically in Fig. 4(b), where only some of the entries are
shown. There are 8 shift inequivalent arrays corresponding to 8 quadratics of
the type x → Ax2 where in this case A is any non-zero element of the finite
field GF(32). The autocorrelation of each array is bounded by one and the cross-
correlation between any pair of the eight arrays is bounded by two.

The constructions in two, three and higher dimensions discussed above are
designed for image, video and multimedia watermarking, but may be applied to
or adapted to multiple target recognition in radar and optical communications.
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Fig. 4. Four dimensional construction

5 Examples of Arrays

Arrays derived from Construction C1 and D2 were generated using Wolfram
Mathematica. An example of C1 for p = 17 is available on http://youtu.be/
CU6-UEz8 UY.

6 Application to Video Watermarking

Arrays produced by Construction C1 and D2 were embedded in various videos
and extracted by filtered correlation. In order to comply with current indus-
try data transmission standards, the video was subjected to H264 compression
prior to watermark extraction. A histogram of the cross-correlation of the array
with the compressed video is shown in Fig. 5 (left). This demonstrates that the
video and the watermark are uncorrelated, since the bulk of histogram displays
Gaussian characteristics.

The autocorrelation peak of the watermark is an outlier as indicated by the
arrow and provides unambiguous proof of the existence of the watermark in the
video. This figure justifies the use of Gaussian statistics in watermark analysis.
The autocorrelation peak is more than 5 standard deviations from the mean. The
probability of error is 1/390,682,215,445. This is below the industry standard of
10−12. The watermark patterns were undetectable according to several viewers,
or were indistinguishable from compression artefacts. A correlation plot as a

http://youtu.be/CU6-UEz8_UY
http://youtu.be/CU6-UEz8_UY
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Fig. 5. left = Histogram of the correlation of the reference array with a watermarked
copy of “The Fringe”, right= Correlation as a function of cyclic shift

function of cyclic shift is shown in Fig. 5(right). The watermark is capable of
carrying 16 bits of information in its cyclic shift.

Since the arrays discussed in this paper have low cross-correlation, it is pos-
sible to embed and extract more than one array in the same video. Figure 6
shows the extraction of multiple concurrent watermarks. Figure 6(a) shows the
baseline correlation in the absence of embedded watermarks. The probability
of false detection is low. Figure 6(b) shows the correlation in the presence of
3 watermarks, clearly demonstrating the existence of 3 correlation peaks. Such
multiplexing increases the data payload from 16 bits to 48 bits. In the case of
construction D2, the arrays have a common frame structure. It is possible to
extract two correlation peaks from a single frame, as shown in Fig. 6(c). Such
integration of 2D and 3D techniques is being investigated.

Fig. 6. Cross-correlation of reference watermark with an unwatermarked video and
with a video in which multiple watermarks were embedded

7 Conclusions

Our results demonstrate that our families of 3D arrays with good correlation
can be used as superior watermarks for video. We show several methods of
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construction of the critical shift sequence/array. The examples presented use a
quadratic polynomial, but in principle, this can be extended to higher degrees,
resulting in virtually inexhaustible supplies of 3D video watermarks with slightly
worse correlation. The watermarks use Sidelnikov sequences or multi-dimensional
Legendre arrays as column sequences. Our arrays have extremely high linear
complexity, which makes them cryptographically secure. Research into quanti-
fying multi-dimensional complexity is ongoing.

References

1. Tirkel, A.Z., Rankin, G.A., van Schyndel, R.M., Ho, W.J., Mee, N.R.A., Osborne,
C.F.: Electronic water mark. In: DICTA 93, pp. 666–673, Macquarie University
(1993)

2. Tirkel, A.Z., Osborne, C.F., Hall, T.E.: Steganography - applications of coding
theory. In: IEEE - IT Workshop, pp. 57–59, Svalbard, Norway (1997)

3. Tirkel, A.Z., Hall, T.E.: Array construction using cyclic shifts of a column. In:
ISIT’05, pp. 2050–2054 (2005)

4. Moreno, O., Tirkel, A.: New optimal low correlation sequences for wireless com-
munications. In: Helleseth, T., Jedwab, J. (eds.) SETA 2012. LNCS, vol. 7280, pp.
212–223. Springer, Heidelberg (2012)

5. Moreno, O., Maric, S.: A class of frequency hop codes with nearly ideal character-
istics for multiple-target recognition. In: ISIT, p. 126 (1997)

6. Moreno, O., Ortiz-Ubarri, J.: Double periodic arrays with optimal correlation for
applications in watermarking. In: Golomb, S.W., Gong, G., Helleseth, T., Song,
H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 82–94. Springer, Heidelberg (2007)

7. Sidelnikov, V.M.: Some k-valued pseudo-random sequences and nearly equidistant
codes. Probl. Inf. Transm. 5(1), 12–16 (1969)

8. Bomer, L., Antweiler, M.: Optimizing the aperiodic merit factor of binary arrays.
Signal Process. (Elsevier) 30, 1–13 (1993)

9. Digital Watermarking PCT/AU2010/000990, WO2011/050390, US 2012213402,
EP2494516, AU2010312302

10. Digital Communications AU 2011904698, PCT/AU2012/001377
11. Algebraic Generators of Sequences for Communication Signals AU2011905002,

PCT/AU2012/001473



Relative Difference Sets



The Nonexistence of (18, 3, 18, 6) Relative
Difference Sets

David Clark and Vladimir Tonchev(B)

Department of Mathematical Sciences, Michigan Technological University,
Houghton, MI 49931, USA

{dcclark,tonchev}@mtu.edu

Abstract. It is known that relative difference sets with parameters
(18, 3, 18, 6) in a group of order 54 with normal subgroup N of order
3 do not exist in any abelian group of order 54. In this paper, using
the recent classification of all generalized Hadamard matrices of order 18
over a group of order 3 [5], we show that such relative difference sets do
not exist in any non-abelian group of order 54 as well. Our results are
validated computationally using the computer algebra system Magma.

1 Introduction

Suppose G is a finite group of order mn. Let N be a normal subgroup of G,
|N | = n, called the “forbidden” subgroup. Let R ⊂ G, and let

D = {xy−1 : x, y ∈ R, x �= y}.

The set R is called a (m,n, k, λ) Relative Difference Set (RDS) in G relative to
N , if

– |R| = k,
– D contains every element of G \ N exactly λ times, and
– D contains no element of N .

A difference set is an RDS with a forbidden group of order n = 1. An RDS is
called abelian if G is abelian, and non-abelian otherwise.

Relative difference sets are closely related to difference sets, group-divisible
designs, generalized Hadamard matrices, symmetric nets, and finite geometry
[2,6,9]. Similarly to ordinary difference sets, relative difference sets yield sequences
with interesting correlation properties [7]. A comprehensive survey on RDS is the
paper by Pott [8]. The existence problem of (pa, pb, pa, pa−b) RDSs is considered
to be one of the most important questions concerning RDSs [8]. The existence of
abelian (pa, pb, pa, pa−b) RDS was studied by Schmidt [10].

In this paper, we prove the nonexistence of (18, 3, 18, 6) RDSs. The nonexis-
tence of abelian RDSs with parameters (18, 3, 18, 6) is known and follows from
[1, Theorem 2.1], by taking m = 18, n = 3, k = 18, λ1 = 0, λ2 = 6, |U | = 2,
t = 1, and p = 2 (we note that this argument does not apply to the non-
abelian case). We extend this result to show that (18, 3, 18, 6) RDSs do not exist
c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 149–153, 2014.
DOI: 10.1007/978-3-319-12325-7 13
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in non-abelian groups either. We use the computer algebra package Magma [3]
for our computations. Our method is based on the close relation between RDS
with forbidden normal subgroup N and generalized Hadamard matrices over the
group N . The authors used this method to enumerate all RDS with parameters
(16, 4, 16, 4) [4], by utilizing the classification of all generalized Hadamard matri-
ces Hadamard matrices of order 16 over a group of order 4 [6]. In this paper,
we use the recent classification of all generalized Hadamard matrices of order 18
over a group of order 3 [5], to prove the non-existence of non-abelian (18, 3, 18, 6)
relative difference sets.

2 RDSs and Symmetric Nets

We simplify our search for (18, 3, 18, 6) RDSs by taking advantage of their con-
nection to symmetric nets, generalized Hadamard matrices and combinatorial
designs of certain type.

A t-(v, k, λ) design is a pair D = (P,B) of a set P of v points and a collection
B of blocks, such that each block B ∈ B is a k-subset of P, and every t-subset
of points appears in exactly λ blocks. The dual design D∗ is obtained by inter-
changing the roles of points an blocks of D. A design is symmetric if it has the
same number of blocks and points. Further background concerning designs may
be found in [2].

A parallel class in a design is a collection of blocks which partition the point
set P. A resolution is a partition of the blocks B into parallel classes. A design is
resolvable if it contains a resolution. A design is affine resolvable (or just affine)
if there exists a constant m �= 0 such that, for every pair of blocks B1, B2 from
distinct parallel classes, |B1 ∩ B2| = m.

An automorphism of a design is a permutation of P which preserves B.
The set of all automorphisms forms a group, called the (full) automorphism
group of D. Subgroups of Aut(D) are called automorphism groups. Two designs
D1 = (P1,B1) and D2 = (P2,B2) are called isomorphic if there exists a bijection
from P1 to P2 which takes B1 to B2.

A symmetric (m,n) net is a symmetric 1-(mn2,mn,mn) design D such that
both D and D∗ are affine, namely, both the points and the blocks can be parti-
tioned uniquely into parallel classes of size n. If a symmetric (m,n)-net admits
a group of automorphisms G of order n which acts transitively and regularly on
every point and block parallel class, then the net is called class regular and G is
called the group of bitranslations [2].

A generalized Hadamard matrix H(m,n) over a multiplicative group G of
order n is a mn×mn array with entries from G with the property that for every
i, j, 1 ≤ i < j ≤ mn, the multi-set

{hish
−1
js | 1 ≤ s ≤ nm}

contains every element of G exactly m times. Every generalized Hadamard
matrix H(m,n) determines a class-regular symmetric (m,n)-net with a group
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of bitranslations G, and conversely, every class-regular (m,n)-net with a group
of bitranslations G gives rise to a generalized Hadamard matrix H(m,n) [2].

In this paper, we consider symmetric (6, 3) nets, which correspond to general-
ized Hadamard matrices H(6, 3). All such matrices were recently enumerated in
[5]. Any generalized Hadamard matrices H(6, 3) gives rise to a symmetric (6, 3)
net, which is also a symmetric 1-(54, 18, 18) affine resolvable design, and its dual
design is also affine resolvable, with all parallel classes of size 3, on which the
group of order 3 acts semi-regularly, and every two blocks from different parallel
classes sharing exactly 6 points.

Consider a (18, 3, 18, 6) RDS R in a group G of order 54 relative to a normal
subgroup N ≤ G of order 3. Then G can be associated with a class-regular (6, 3)
net D. The points of D are the elements of G, and blocks are the subsets Bg ⊆ G
of the form

Bg = {Rg : g ∈ G}.

The point partition of the net is given by the partition of G into cosets of N .
As a result, G is an automorphism group of D, and N ≡ Z3 acts transitively on
each point group and on each parallel class.

Thus, every (18, 3, 18, 6) RDS corresponds to a class regular symmetric (6, 3)
net which admits a regular automorphism group. All nonisomorphic class reg-
ular symmetric (6, 3) nets were enumerated by Harada, Lam, Munemasa, and
Tonchev in [5]. Up to isomorphism, there are 53 such nets, having a group of
bitranslations N = Z3.

Consequently, the enumeration of (18, 3, 18, 3) RDSs is reduced to the fol-
lowing problem: for each class regular (6, 3) symmetric net D which admits an
automorphism group i Aut(D) acting transitively on its points and on its blocks,
find all regular subgroups G of Aut(D) such that Z3 is a normal subgroup of
G, and G is transitive on the blocks of D. Clearly, every (18, 3, 18, 3) RDS cor-
responds to a symmetric (6, 3) net having an automorphism group with the
described properties.

We note that our method essentially uses the fact that N is a normal sub-
group. We do not consider RDSs for which N is not normal.

There are 15 nonisomorphic groups of order 54: three abelian, 12 are non-
abelian. Up to monomial equivalence, there are 85 generalized Hadamard matri-
ces (6, 3) over a group of order 3 [5]. Among the 53 pairwise nonisomorphic
symmetric (6, 3)-nets corresponding to these matrices, 17 admit an automor-
phism group which is transitive on the points, with exactly one of these groups
is also transitive on the blocks. Within this single automorphism group (which
corresponds to net #4 in [5]), Magma finds 12 conjugacy classes of order 54
subgroups which are regular on the 54 points of the net. However, none of these
subgroups are also transitive on the blocks of the net. Therefore, there cannot
exist any RDSs within the automorphism groups of these nets. Thus, we have
the following.

Theorem 1. There are no (18, 3, 18, 6) RDSs.

It is known [8] that there can be no abelian RDSs with parameters
(18, 3, 18, 6), which is confirmed by this enumeration.
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3 Validation via Backtrack Search

To validate these results, we also performed an exhaustive search for RDSs in
all 15 groups of order 54. Using Magma, we identified all normal subgroups of
order 3 within each such group. For each group of order 54 and each normal
subgroup of order 3, we attempted to construct all possible (18, 3, 18, 6) RDSs
via a backtrack search. To simplify this search, we made several assumptions,
outlined below.

Lemma 1. Let R be any RDS in a group G relative to N ≤ G. Then for any
g ∈ G, Rg is also an RDS.

Proof. We calculate the multiset

{xy−1 : x, y ∈ Rg, x �= y} = {ag(bg)−1 : a, b ∈ R, a �= b}
= {ab−1 : a, b ∈ R, a �= b}.

This is exactly the multiset obtained from the RDS R.
Let G be a group of order 54, and N ≤ G be a normal subgroup of order 3.

Let e be the identity element of G. Let R be a (18, 3, 18, 6) RDS contained in G,
relative to N . By Lemma 1, we may assume that e ∈ R. Indeed, for any r ∈ R,
Rr−1 is also such an RDS which must contain e.

Our next result applies specifically to RDSs with m = k:

Lemma 2. Let R be an (m,n,m, λ) RDS in a group G relative to N ≤ G. For
any g ∈ G, R contains exactly one element of the coset Ng, that is, |Ng∩R| = 1.

Proof. Without loss of generality, assume that e ∈ R. No other element n
of N can be contained in R, or else ne−1 = n ∈ N appears in the multiset
of differences. Suppose r1, r2 ∈ R where r1 = n1g and r2 = n2g for some
n1, n2 ∈ N . Then

r1r
−1
2 = n1g(n2g)−1 = n1gg−1n−1

2 = n1n
−1
2 ,

which must be in N . Thus, n1 = n2, because only e ∈ N is also in R, and so at
most one element from Ng is contained in R. Because |G| = mn and |N | = n,
there are exactly m cosets of N in G. Thus, each such coset of N must contribute
exactly one element to R.

For each group G of order 54 and each normal subgroup N of order 3, we
arbitrarily ordered the cosets of N in G. We then used a backtrack search to
construct a partial RDS R′. Each level of the backtrack search corresponded
to one of the cosets of N within G. At each level of the search, we added a
single element from the corresponding coset. By Lemma 1, we chose e from the
coset N , and by Lemma 2 we needed exactly one element from each coset. This
significantly reduced the computational cost.

At each level of the backtrack search, we calculated the multiset

D = {xy−1 : x, y ∈ R′, x �= y}.
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If D contained any element more than 6 times, the partial RDS was rejected,
and the most recently added element was removed. The backtrack search then
appended the next possible element from the same coset of N . If at any point
every element within a given coset had been attempted, then the element added
from the previous coset was then rejected, and so forth. In this way, all possible
valid combinations of one element from each coset of N were tested.

This search took approximately 24 h (running on a single desktop computer),
and confirmed Theorem 1: There are no (18, 3, 18, 6) RDSs within any groups of
order 54.

Acknowledgments. The authors wish to thank the unknown referees for their con-
structive remarks, and Bernhard Schmidt and Alexander Pott for the helpful discussion
on the nonexistence of abelian (18, 3, 18, 6) RDSs.

References

1. Arasu, K.T., Jungnickel, D., Pott, A.: The mann test for divisible difference sets.
Graphs Combin. 7, 209–217 (1991)

2. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. Cambridge University
Press, Cambridge (1999)

3. Bosma, W., Cannon, J.: Handbook of Magma Functions. Department of Mathe-
matics, University of Sydney (1994)

4. Clark, D., Tonchev, V.D.: Enumeration of (16, 4, 16, 4) relative difference sets. Elec-
tron. J. Comb. 20(1), P72 (2013)

5. Harada, M., Lam, C., Munemasa, A., Tonchev, V.D.: Classification of generalized
Hadamard matrices H(6, 3) and quaternary Hermitian self-dual codes of length 18.
Electron. J. Comb. 17, 1–14 (2010)

6. Harada, M., Lam, C., Tonchev, V.D.: Symmetric (4, 4)-nets and generalized
Hadamard matrices over groups of order 4. Des. Codes Crypt. 34, 71–87 (2005)

7. Kumar, P.V.: On the existence of square dot-matrix patterns having a specified
three-valued periodic correlation function. IEEE Trans. Inform. Theory 34, 271–
277 (1988)

8. Pott, A.: A survey on relative difference sets. In: Arasu, K.T., Dillon, J.F., Harada,
K., Seghal, S.K., Solomon, R.I. (eds.) Groups, Difference Sets, and the Monster,
pp. 195–233. DeGruyter Verlag, Berlin (1996)
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Abstract. A brief survey of the problem to find binary sequences with
minimum peak sidelobe of aperiodic autocorrelation is given. Results of
an exhaustive search for minimum peak sidelobe level sequences are pre-
sented. Several techniques for efficiency implementation of search algo-
rithm are described. A table of number of non-equivalent optimal binary
sequences with minimum peak sidelobe level up to length 80 is given.
Such sequence families are important in low probability of intercept
radar. Examples of optimal binary minimum peak sidelobe sequences
having high merit factor for each length N ∈ [2, 80] are shown.

Keywords: Exhaustive search · Minimum peak sidelobe · Aperiodic
autocorrelation function · Binary sequences · Merit factor

1 Introduction

Binary sequences with low autocorrelation sidelobe levels have many applications
in communication, cryptography and radar engineering. The length of a binary
sequence represents the pulse compression ratio achieved via its use. In pulse
radar detection thresholds must be set higher than peak sidelobe (PSL) from
the compression of the largest target return expected in a scene. So there are
two problems: the problem of estimating the optimal PSL for a binary sequence
of length N and the problem of design such binary sequences.

Let A = (a0, a1, ..., aN−1) be a binary sequence of length N , where an = 1
or −1 for each n = 0, 1, ..., N − 1.

The aperiodic autocorrelation function (AACF) of A at shift τ defined as

Cτ =
N−1−τ∑

n=0

an · an+τ (1)

There are two principal measures of level of sidelobe level. The primary mea-
sure is the peak sidelobe level (PSL):

PSL (A) = max
1≤τ≤N−1

|Cτ | (2)

c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-12325-7 14
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For optimal binary sequences by PSL criteria the peak sidelobe has to be
minimum

MPS (N) = min
A

PSL (3)

taken over all binary sequences A of length N . Such sequences are called mini-
mum peak sidelobe (MPS) sequences.

A secondary measure, is the merit factor (MF)

MF (C) =
N2

2
∑N−1

τ=1 [Cτ ]2
(4)

PSL affects the maximum of self interference of the sequence and MF deter-
mines average interference. There are three transformations that preserve PSL
in binary codes: (1) reversal, which is R (an) = aN−1−n, (2) negation, which is
N (an) = −an, and (3) alternating sign S (an) = (−1)n

an. Such sequences form
an equivalence class.

The periodic autocorrelation function (PACF) of A at shift τ defined as

Rτ =
N−1∑

n=0

an · an+τ (mod N) (5)

First let us mention several relevant results to estimation of typical PSL.
Moon and Moser [1] proved that for almost all binary sequences

k (N) ≤ PSL (A) ≤ (2 + ε)
√

N ln N,

for any k (N) = o
(√

N
)
.

Mercer [2] improved this result and showed that

MPS (N) ≤
(√

2 + ε
) √

N ln N.

Dmitriev and Jedwab [3] conjectured and provided an experimental evidence
that the typical PSL of random sequences

√
N ≤ PSL (A) ≤

√
N ln N.

Recently [34] the result of Moon and Moser has been strengthened to

(
√

2 − e)
√

N · log(N) < PSL(A) < (
√

2 + e)
√

N · log(N),

for every e > 0 and almost all binary sequences A of sufficiently large length N .
Equivalently (and more precisely), if A is a random binary sequence of length
N , then

PSL(A)/
√

N · log(N) →
√

2 in probability.

This also proves the conjecture attributed to Dmitriev and Jedwav [3]. Also in
the paper [3] evidence was proved that
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PSL(A) = O(
√

N · log log N)

for all m-sequences A of length N (not just for typical m-sequence).
Also in the prior paper [35] by Jedwab and Yoshida it was proved that

PSL(A) = Ω(N)

for all m-sequence.
Schmidt [4] gave a construction for another family of binary sequences of

length N with proved value that the PSL is at most
√

2 · N · log (2 · N)

There are some interesting constructions based on difference sets [5] and
almost difference sets [6–8] that allowed get binary sequences for a wide range of
different lengths N with PSL level even less than

√
N . It should be noted that

this result can be experimentally estimated and there is no theoretical proven.
At the same time it is conjectured the result of Ein-Dor et al. [9] based on a
heuristic argument that

MPS (N) /
√

N → d, where d = 0, 435 · ··, N → ∞.

There is no known analytical technique to construct sequences with lowest
aperiodic autocorrelation, and exhaustive searches have to be made in order to
find the lowest autocorrelation binary sequence (LABS) for a give length. Many
authors have put considerable computational effort in finding binary sequences
with lowest or small peak sidelobe level.

Let us mention known results to computer search of such binary sequences.
There are two search strategies of finding binary sequences of desired length and
optimal aperiodic autocorrelations: global and local methods. The main idea [10]
to use an exhaustive search for optimal MF sequences is based on a branch and
bound (BB) algorithm. Symmetry breaking procedures for identifying equivalent
sequences allow the search space to be reduced to approximately one-eighth
with the runtime complexity O

(
1, 85N

)
. A similar approach has been applied

to exhaustive search for optimal MPS sequences. In addition to branch and
bound strategy using preserving operations and peak sidelobe level breaking,
sidelobe invariant transform, symmetry breaking, partitioning and parallelizing
it is further possible to reduce the runtime complexity. Lindner [11] in 1975 did
an exhaustive search for binary MPS sequences up to N = 40. Cohen et al. [12]
in 1990 continued up to N = 48. Coxson and Russo [13] in 2005 performed an
exhaustive search of binary MPS sequences for N = 64. The authors of these
works presented tables with identical numbers of the obtained MPS sequences.
Elders-Boll et al. [14] in 1997 found binary MPS sequences for the lengths up to
61 but they did not present the numbers of such sequences, but just gave sample
codes with lowest peak sidelobe for each lengths from N ∈ [49, 61]. Authors
of this paper did an exhaustive search for binary MPS sequences up to length
N = 74 in 2013 [15] and size of non-equivalent MPS sequences for each length
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from N ∈ [2, 74] were reported. Also authors published in [16] the result on
exhaustive search of binary MPS sequence and the number of non-equivalent
MPS sequences for the length N = 76.

The authors of [12], p. 633 make the statement about “some improvement
to the theory, which results in a computational growth rate of the problem of
1, 4N rather than 2N”. This value of runtime complexity repeatedly mentioned
in difference papers (for example [4]). However the runtime complexity was not
proved. Furthermore, the only way today to determine the runtime complexity
both for global and for local search algorithms is experimental computing. This
observation was not presented in [12]. Finally the runtime complexity of exhaus-
tive search algorithm for binary MPS sequence should depend on peak sidelobe
level due to procedure of peak sidelobe level breaking. Experimentally the run-
time complexity of algorithm for exhaustive search of binary MPS sequences
was determined in [15,16] by the authors of this paper. Just only for the level
PSL = 2 the runtime complexity is approximately equal to O

(
1, 42N

)
. The

other results are the next: for PSL = 3 is O
(
1, 57N

)
, for PSL = 4 is O

(
1, 7N

)

and for PSL = 5 is O
(
1, 79N

)
. The only disadvantage of an exhaustive search

method is that it takes exponentially long time and can not be used today for
the lengths more than N = 100.

Apart from known results of global exhaustive search of binary MPS
sequences, there are some useful results of local search of binary sequences with
low aperiodic autocorrelation. Kerdock et al. [17] in 1986 found binary sequences
for lengths N = 51, 69, 88 with PSL = 3, 4, 5 respectively. Coxson and Russo
[13] in 2005 continued the list of best known binary sequences.PSL sequences
with PSL = 4 up to length N = 70. In [18], binary sequences with sidelobe
level PSL = 4 were found up to length N = 82, while those with sidelobe
level PSL = 4 were found for lengths N ∈ [83, 105]. There are some different
stochastic local search methods for binary sequences. Evolutionary algorithm
(EA) algorithm [19] developed by Militzer and et.al in 1998 has a runtime
complexity “better than BB algorithm”. In 2001, Prestwich [20] proposed a
hybrid branch and bound algorithm and local search, called constrained local
search (CLS). The algorithm was estimated to run in time O

(
1, 68N

)
. Later in

2007, Prestwich [21] modified local search algorithm and constructed local search
relaxation (LSR) algorithm with runtime complexity O

(
1, 51N

)
. In 2003, Brgles

et al. [22] proposed EAs algorithm for escaping local minima with two new ter-
mination criterion using Kernighan-Lin (KL) solver and evolutionary strategy
(ES) solver. Runtime complexity of ES algorithm O

(
1, 4N

)
and runtime com-

plexity of KL algorithm is O
(
1, 46N

)
. In 2005, Borwein et al. [23] developed

direct stochastic search (DSC) algorithm with runtime complexity O
(
1, 5N

)
.

In 2006, Dotu and van Henteryck [24] proposed tabu search (TS) algorithm
with runtime complexity O

(
1, 49N

)
. In 2007, Gallarado et al. [25] proposed

memetic algorithm (MA) with runtime complexity O
(
1, 32N

)
. There are some

other stochastic local search algorithms: ants colony optimization [26], simulated
annealing [27], genetic [28], iterative local search [29], scatter search [30], vari-
able neighborhood search [31] etc. Using some of these local search methods the
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binary sequences with low level aperiodic autocorrelation were founded and pub-
lished in [32] for the lengths N ∈ [100, 300], for some lengths between N = 353
and N = 1019, for some lengths between N = 1024 and N = 4096. Local
search methods require relatively short time but have shortcomings. Although
they find “reasonable” answers, they can-not guarantee optimality. Also local
search methods usually based on initial codes, then determine next codes by
using an intermediate criterion. So, if all optimum sequences are required, the
only solution is a global search.

Let us present our main results.
1. In this paper a new modification of exhaustive search algorithm for opti-

mal MPS sequences is developed. Our algorithm takes into account analytical
dependences between sidelobes of a periodic and an aperiodic autocorrelation
and the distribution of sidelobes of aperiodic autocorrelation. The runtime com-
plexity of proposed global search method is approximately equal to the runtime
complexity of some known local search methods and it is the best known result
for exhaustive search methods today. Also we have some new improvements of
global algorithm for exhaustive search due to programming techniques.

2. This paper adds to available knowledge for record length of binary MPS
sequences and provides numbers of non-equivalent sequences for all lengths from
N ∈ [75, 80], this result improves our previous results for an exhaustive search
of binary sequences from the lengths N = 62, 63 and N ∈ [65, 74]. Moreover the
results published in [13] and in this paper are expanded the list of known numbers
of non-equivalent MPS sequences from the range N ∈ [2, 48] and N = 64 to the
range N ∈ [2, 80] which amount 40 percents to previous known results. Also it
proved that founded binary sequences in [12,16,17] for the lengths up to N = 80
are optimal minimum peak sidelobe sequences.

3. Also sample binary MPS sequences with highest value of merit factor (MF)
are shown for lengths 2 to 80. Most of these samples are new non-equivalent to
previous known binary MPS sequences and firstly published in this paper. Such
samples are very interesting especially for the lengths where number of non-
equivalent MPS sequence is a few units.

It should be noted that an exhaustive search of binary MPS sequences was
performed off and on during 12 months using 1 supercomputer Flagman RX240
on the base of 8 NVIDIA TESLA C2059 with 3584 parallel graphical processors
and on the base of 2 processors Intel Xeon X5670 (up to Six-Core) and using
CUDA compilation. For example an exhaustive search for the length N = 80
was performed in the background for 1 month.

2 Algorithm of Exhaustive Search

First of all we use all ideas of modification of BB algorithm for exhaustive search
of minimum peal sidelobe sequences presented in [12,13]. Also we add some new
improvements.

1. Our modification uses next analytical dependences between periodic and
aperiodic autocorrelations

Rτ = RN−1−τ = Cτ + CN−1−τ , τ = 1, 2, ..., �(N − 1)/2� (6)
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where �x� - ceil part of x,−PSL ≤ Cτ ≤ PSL.
It is easy to show that number of levels of periodic autocorrelation function is

≤ (PSL + 1). Sidelobes of periodic autocorrelation (6) can be determined from
next conditions:

Rτ = [min,min +4, ...,max] , (7)

where
min = −2 · PSL + 2 · (PSL mod 2) ,max = 2 · PSL − 2 · (PSL mod 2) ,

if N (mod 4) = 0;
min = −2·PSL+1+2·(PSL mod 2) ,max = 2·PSL−3+2·(PSL mod 2) ,

if N (mod 4) = 1;
min = −2·PSL+2·(PSL + 1 mod 2) ,max = 2·PSL−2·(PSL + 1 mod 2) ,

if N (mod 4) = 2;
min = −2·PSL+3−2·(PSL mod 2) ,max = 2·PSL−1−2·(PSL mod 2) ,

if N (mod 4) = 3.
So, we can determine last sidelobes of aperiodic autocorrelation

Cτ , τ = 	(N − 1)/2
 , 	(N − 1)/2
 + 1, ..., N − 1, by first known sidelobes
Cτ , τ = 1, 2, ..., �(N − 1)/2�. Let us note

Leftτ = Cτ , Rightτ = CN−1−τ , (8)

Now we can find
Leftτ = Rτ − Rightτ . (9)

Rτ is the same for all cyclically shifted copies of binary sequence A. So it is
once necessary to determine PACF Rτ for initial sequence using both Left and
Right parts of AACF (6). For all others (N − 1) cycle shifted copies it is sufficient
calculate only a Right part of AACF and determine Left part by Eq. (9).

2. Our next idea is about distribution of aperiodic autocorrelation sidelobes.
We assume that a number of excluding sequences at the first shifts more than a
number of excluding sequences at the central shifts, due to numbers of additions.
After calculating the last sidelobes for shifts τ = N − 1, N − 2, ..., �(N − 1)/2�
we jump to τ = 1 sidelobe, than to τ = 2 sidelobe and so on, i.e. we change
direction of calculation of aperiodic autocorrelation after central index �N/2�.
This is a way to calculate AACF and PACF for initial sequence. This technique
allows to reduce runtime complexity approximately to 25 %.

3. Partitioning and parallelizing give the way to reduce the number of initial
codes. For example for the length N = 50 we get P = 2122026 “initial” codes
with 13 bits (a0, a1, ... , a12) and (aN−12, aN−11, ... , aN−1) from each sides of
sequence. For the length N = 80 there are P = 1907802 “initial” codes with 13
bits from each sides of sequence.

4. Also we used “package” regime to find some binary PSL sequences with
the lengths N,N + 2, N + 4, ...., because cross correlation functions for left and
right parts of the sequences with lengths N,N + 2, N + 4, ...., are the same, so
they are computing just only once for minimum N .

Let us experimentally estimate the runtime complexity of offered algorithm.
The runtime complexity of the full search algorithm is determined as

O
(
(N − 1) · 2N

)
(10)
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Table 1. Runtime complexity of modified BB algorithm for exhaustive search of binary
MPS sequences

PSL = 2 PSL = 3 PSL = 4 PSL = 5

O
(
20.7 · 1.42N

)
O
(
18.3 · 1.57N

)
O
(
9.9 · 1.7N

)
O
(
6.9 · 1.79N

)

where 2N is the number of possible binary sequences of length N , (N − 1) is the
number of frames of AACF sidelobes. The experimental results from calculating
the computational complexity are approximated according to the law

O
(
c · bN

)
(11)

The runtime complexity of the algorithm for finding binary peak sidelobe
sequences with PSL = 2, 3, 4, 5 is shown in the Table 1. The results from calcu-
lating the experimental and theoretical runtime complexity of the new algorithm
for finding MPS sequences in the range of lengths N ∈ [10, 50] are shown in the
Fig. 1. The number of calculations for AACF frames is shown on the vertical axis
in logarithmic scale, while the length of a sequence is shown on the horizontal axis.

Fig. 1. Computational complexity of the new algorithm for global search for MPS
sequences

3 Program Implementation

1. Our main idea is to use new assembler instructions for computing autocor-
relation function of binary sequences. We can find side lobes of aperiodic auto-
correlation using XOR operation. To determine the level of sidelobe we have to
calculate the numbers of zeros and units for each shift of sequences. New Intel
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processors have microarchitecture Intel Core of version SSE4.2 which operating
with the set of command on low level. For example C/C++ Microsoft com-
piler has function popcnt64 of intrin library and also compilersGCC and G++
has function mm popcnt u64 of smmintrin library for calculation the number of
units in binary sequences by 1 cycle.

2. We used recursive implementation of our algorithm using inline options
for all external operations.

3. For excluding equivalent sequences we used reverse transformation for two
bytes at the time instead of each bit. All possible reverses are stored in static
massive with 65536 different bit variations.

4. We realized parallel computing in multiprocessor system for all set of non-
equivalent sequences separately each from other. We implemented our algorithm
on CUDA SDK using function popcll() for calculating number of unit bits.

4 Results of Exhaustive Search for Binary MPS
Sequences

Using our modification of BB algorithm we are able to find all non-equivalent
classes of binary MPS sequences for each length N up to N = 80. Today it is the
record length. The theoretical time of our algorithm of finding MPS sequences for
length N = 80 on a computing system with 3 TFlops is T = 9.9·1.780

3·1012·60·60·24 ≈ 31
days. Here we assume that check of aperiodic autocorrelation of each sequence
is implemented during 1 sample that is impossible today for Intel processors.
We realized an exhaustive search of binary MPS sequences with length N =
80 using our modification and parallel implementation on graphical processors
approximately during 30 days. So our theoretical and experimental results of
runtime complexity are the same.

Family size of non-equivalent sequences is shown in Table 2. Also the exam-
ples of binary MPS sequences in hexadecimal format for each length N ∈ [2, 80]
with highest value of MF are presented in Table 2. Whole list of synthesized
sequences are available on our website [33] for registered users. Most sample of
codes in the Table 2 are non-equivalent to previously published in papers [11–
14,17,18]. It should be noted that the optimal merit factor is not known for
lengths larger than 61.

Table 2. Results of an exhaustive search of binary MPS sequences

Length PSL MF Optimal or best Sequence Size of set

known by MF?

2 1 2 yes 0 1

3 1 4.5 yes 3 1

4 1 4 yes 2 1

(Continued)
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Table 2. (Continued)

Length PSL MF Optimal or best Sequence Size of set

known by MF?

5 1 6.25 yes 02 1

6 2 2.571 yes 0B 4

7 1 8.167 yes 0D 1

8 2 4 yes 16 8

9 2 3.375 yes 029 10

10 2 3.846 yes 076 5

11 1 12.1 yes 0ED 1

12 2 7.2 yes 0A6 16

13 1 14.083 yes 00CA 1

14 2 5.158 yes 019A 9

15 2 4.891 no 0329 13

16 2 4.571 no 1DDA 10

17 2 4.516 yes 0192B 4

18 2 6.48 yes 0168C 2

19 2 4.878 no 07112 1

20 2 5.263 no 04D4E 3

21 2 6.485 no 005D39 3

22 3 6.205 yes 013538 378

23 3 5.628 yes 084BA3 515

24 3 8 yes 31FAB6 858

25 2 7.102 no 031FAB6 1

26 3 7.511 no 07015B2 242

27 3 9.851 yes 0F1112D 388

28 2 7.84 yes 1E2225B 2

29 3 6.782 yes 031FD5B2 284

30 3 7.627 yes 03F6D5CE 86

31 3 7.172 yes 00E326A5 251

32 3 7.111 no 01E5AACC 422

33 3 8.508 yes 003CB5599 139

34 3 8.892 yes 0CC01E5AA 51

35 3 7.562 no 0CC01E5AA 111

36 3 6.894 no 3314A083E 161

37 3 6.985 no 006C94A8E7 55

38 3 8.299 yes 003C34AA66 17

(Continued)
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Table 2. (Continued)

Length PSL MF Optimal or best Sequence Size of set

known by MF?

39 3 6.391 no 13350BEF3C 30

40 3 7.407 yes 2223DC3A5A 57

41 3 7.504 no 038EA520364 15

42 3 8.733 yes 04447B874B4 4

43 3 6.748 no 005B2ACCE1C 12

44 3 6.286 no 202E2714B96 15

45 3 6.575 no 02AF0CC6DBF6 4

46 3 6.491 no 03C0CF7B6556 1

47 3 7.126 no 069A7E851988 1

48 3 6.128 no 24AC8847B87C 4

49 4 8.827 yes 05E859E984451 49088

50 4 8.17 yes 07837FB996B2A 25169

51 3 7.517 no 0E3F88C89524B 1

52 4 8.145 yes 50AE3808C8DB6 33058

53 4 7.89 no 07C0CFBDB4CD56 23673

54 4 7.327 no 116E1DF7D2C6E6 10808

55 4 7.451 no 1658A2BC0A133B 11987

56 4 8.167 yes 0C790164F6752A 15289

57 4 7.963 no 01B4DE3455B93BF 9476

58 4 8.538 yes 008D89574E1349E 4026

59 4 8.328 no 1CAD63EFF126A2E 4624

60 4 8.108 no 119D01522ED3C34 5542

61 4 7.563 no 0024BA568EB83731 3246

62 4 8.179 yes 000C67247C59568B 1212

63 4 9.587 yes 1B3412F0501539CE 1422

64 4 9.846 yes 26C9FD5F5A1D798C 1859

65 4 8.252 no 04015762C784EC369 1003

66 4 7.751 no 03FEF2CCB0B8CAC54 324

67 4 7.766 no 073C2FADC44255264 381

68 4 8.438 no 562B8CA48E0C9027E 489

69 4 7.988 no 0292582AC6A767CC03 248

70 4 7.313 no 01C2FFD4AF33356596 72

71 4 8.105 no 12493BE76A5EE2A3F1 115

72 4 7.2 no 27C8D6E165A71577FE 107

(Continued)
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Table 2. (Continued)

Length PSL MF Optimal or best Sequence Size of set

known by MF?

73 4 8.327 no 012DE781C9167577AB7 46

74 4 7.039 no 00ABFA66C560E3094C2 18

75 4 7.878 no 0E0038AEB50B59C99B6 16

76 4 7.113 no 2CD864E4AA90B8073DE 17

77 4 6.959 no 066B7BDB752AA6F80E3C 10

78 4 7.548 no 0C4852361E77C0574BAC 1

79 4 7.308 no 0028AE35C3A59AC4ED89 7

80 4 6.349 no 01A4F07798EA85AE6C48 8

5 Conclusion

This paper presents some improvements to previously known exhaustive search
algorithm for minimum peak sidelobe sequences. Such optimal sequences are
highly sought after in radar. Also there are some improvements due to pro-
gramming techniques and parallel implementation on graphical processors. It is
experimentally proven that the runtime complexity of offered global algorithm
of exhaustive search for binary minimum peak sidelobe sequences depends on
level of PSL and it the same as some of known local algorithms.

The list of size of non-equivalent optimal binary MPS sequences set is extended
approximately to 40 percent and it is included each lengths from 2 to 80. Examples
of optimal binary MPS sequences having high merit factor up to length 80 are
shown.

We conjecture that it is possible to find the maximum length of MPS binary
sequence with the minimum achievable sidelobe level PSL = 4 with the length
more than 84 (today the known maximum length is 82).

Acknowledgments. This work is supported by the grants: grant of Russian Founda-
tion of Basic Research 12-07-00552 and project of Russian Ministry of Education and
Science 1856.
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Abstract. The inverse of the star-discrepancy problem asks for point
sets PN,s of size N in the s-dimensional unit cube [0, 1]s whose star-
discrepancy D∗

N (PN,s) satisfies

D∗
N (PN,s) ≤ C

√
s/N,

where C > 0 is a constant independent of N and s. The first existence
results in this direction were shown by Heinrich, Novak, Wasilkowski,
and Woźniakowski in 2001, and a number of improvements have been
shown since then. Until now only proofs that such point sets exist are
known. Since such point sets would be useful in applications, the big
open problem is to find explicit constructions of suitable point sets PN,s.
We review the current state of the art on this problem and point out
some connections to pseudo-random number generators.

1 Introduction

The star-discrepancy is a quantitative measure for the irregularity of distribution
of a point set PN,s = {x0,x1, . . . ,xN−1} in the s-dimensional unit cube [0, 1)s.
It is defined as the L∞-norm of the local discrepancy

Δ(t) :=
#{n ∈ {0, 1, . . . , N − 1} : xn ∈ [0, t)}

N
− λs([0, t)),

for t = (t1, t2, . . . , ts) ∈ [0, 1]s, where [0, t) =
∏s

j=1[0, tj) and λs denotes the
s-dimensional Lebesgue measure. In other words, the star-discrepancy (or L∞-
discrepancy) of PN,s is

D∗
N (PN,s) = sup

t∈[0,1]s
|Δ(t)|.

Its significance arises from the classical Koksma-Hlawka inequality [23,25], which
states that ∣

∣
∣
∣
∣

∫

[0,1]s
f(x) dx − 1

N

N−1∑

n=0

f(xn)

∣
∣
∣
∣
∣
≤ V (f)D∗(PN,s), (1)
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where V (f) denotes the variation of f in the sense of Hardy and Krause, see,
e.g., [11,28,31]. This is the fundamental error estimate for quasi-Monte Carlo
rules Q(f) = (1/N)

∑N−1
n=0 f(xn).

To provide some insight into this inequality, we prove a simple version of it.
Let f : [0, 1] → R be absolutely continuous, then for x ∈ [0, 1] we have

f(x) = f(1) −
∫ 1

0

1[x,1](t)f ′(t) dt, (2)

where 1 denotes the indicator function. Using (2) we obtain

∫

[0,1]s
f(x) dx − 1

N

N−1∑

n=0

f(xn) =
∫ 1

0

f ′(t)

[
1
N

N−1∑

n=0

1[xn,1](t) −
∫ 1

0

1[x,1](t) dx

]

dt

=
∫ 1

0

f ′(t)

[
1
N

N−1∑

n=0

1[0,t](xn) − t

]

dt.

This implies that
∣
∣
∣
∣
∣

∫

[0,1]s
f(x) dx − 1

N

N−1∑

n=0

f(xn)

∣
∣
∣
∣
∣
≤

∫ 1

0

|f ′(t)|dt sup
0≤t≤1

∣
∣
∣
∣
∣

1
N

N−1∑

n=0

1[0,t](xn) − t

∣
∣
∣
∣
∣
.

The right-most expression in the above inequality is simply the star-discrepancy
of the point set {x0, x1, . . . , xN−1} and for absolutely continuous functions f , the
term

∫ 1

0
|f ′(t)|dt coincides with the Hardy-Krause variation. This approach can

be generalized to the s-dimensional unit cube [0, 1]s, yielding a version of the
Koksma-Hlawka inequality (1). To obtain quasi-Monte Carlo rules with small
quadrature error, it is therefore of importance to design point sets with small
star-discrepancy.

In many papers the star-discrepancy is studied from the viewpoint of its
asymptotic behavior in N (for a fixed dimension s). Define the N th minimal
star-discrepancy in [0, 1)s as

disc(N, s) := inf
PN,s

D∗
N (PN,s),

where the infimum is extended over all N -element point sets in [0, 1)s. It is well
known that disc(N, s) behaves like

(log N)(s−1)/2+δs

N
�s disc(N, s) �s

(log N)s−1

N
, (3)

where δs ∈ (0, 1/2) is an unknown quantity depending only on s. Here A(N, s) �s

B(N, s) means that there is a constant cs > 0 depending only on s but not on
N such that A(N, s) ≤ csB(N, s) for all large enough N . The lower bound
was shown by Bilyk, Lacey and Vagharshakyan [5] improving a famous result
of Roth [33]. For the upper bound several explicit constructions of point sets
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are known whose star-discrepancy achieves such a bound. See, e.g., [11,31].
Thus the upper bound on the Nth minimal star-discrepancy is of order of
magnitude O(N−1+ε) for every ε > 0. The problem however is that the func-
tion N �→ (log N)s−1/N does not decrease to zero until N > exp(s − 1). For
N ≤ exp(s − 1) this function is increasing which means that for N in this range
our discrepancy bound is useless.

In the following we mention two applications which illustrate that there is
a need for point sets with small star-discrepancy where N ≤ exp(s − 1), thus
motivating the need for different types of discrepancy bounds (which we discuss
in the next section). One such application was studied in [29], which deals with
partial differential equations with random coefficients. Without going into any
details, in this paper one always has N = sκ for some 0 < κ ≤ 1 (the interested
reader may consult [29, Theorem 8]). Another case arises when the dimension
s is very large. For instance, in some applications from financial mathematics,
the dimension s can be several hundreds, see for instance [32]. If s = 100, then
exp(s − 1) ≈ 1043. Due to the limitations of the current technology, the number
of points N we can use is much smaller than exp(s − 1) in this case.

In the next section we discuss bounds on the star-discrepancy which are of
interest for high-dimensional applications.

2 The Inverse of the Star-Discrepancy Problem

We review the current literature on the inverse of the star-discrepancy problem as
first studied in [20]. To analyze the problem systematically the so-called inverse
of the star-discrepancy is defined as

N(s, ε) = min{N ∈ N : disc(N, s) ≤ ε} for s ∈ N and ε ∈ (0, 1].

This is the minimal number of points which is required to achieve a star-
discrepancy less than ε in dimension s. The following theorem is the first classic
result in this direction. By A(N, s) � B(N, s) we mean that there is a constant
c > 0 which is independent of N and s such that A(N, s) ≤ cB(N, s).

Theorem 1 (Heinrich, Novak, Wasilkowski, Woźniakowski [20]). We
have

disc(N, s) �
√

s

N
for all N, s ∈ N. (4)

Hence
N(s, ε) � sε−2 for all s ∈ N and ε > 0.

The bound (4) does not achieve the optimal rate of convergence for fixed
dimension s as the number of points N goes to ∞. However, the dependence
on the dimension s is much weaker than in (3). Thus such point sets are more
suited for integration problems where the dimension s is large.

The proof of Theorem1 is based on the probabilistic method. It is shown that
the probability that the absolute local discrepancy |Δ(t)| of a randomly chosen



176 J. Dick and F. Pillichshammer

point set is larger than a certain quantity δ is extremely small. Then one applies
a union bound over all t ∈ [0, 1]s and chooses δ such that this union bound is
strictly less than one, which then implies the result. In this particular instance
the authors of [20] used a large deviation inequality for empirical processes on
Vapnik-Červonenkis classes due to Talagrand and Haussler. Details can be found
in [8,20]. A simplified proof which leads in addition to explicit constants was
given recently by Aistleitner [1].

It is also known that the dependence on the dimension s of the inverse of
the star-discrepancy cannot be improved. Hinrichs [21] proved the existence of
constants c, ε0 > 0 such that

N(s, ε) ≥ csε−1 for all ε ∈ (0, ε0) and s ∈ N

and disc(N, s) ≥ min(ε0, cs/N). The exact dependence of N(s, ε) on ε−1 is still
an open question which seems to be very difficult.

Doerr [13] on the other hand showed that, with very high probability, the
star-discrepancy of a random point set is at least of order

√
s/N , which shows

in some sense that the upper bound of [20] is asymptotically sharp.
A similar but slightly weaker result compared to Theorem 1 is the following:

Theorem 2 (Heinrich, Novak, Wasilkowski, Woźniakowski [20]). We
have

disc(N, s) �
√

s

N

√
log s + log N for all N, s ∈ N, (5)

and
N(s, ε) � sε−2 log(s/ε) for all s ∈ N and ε > 0.

The proof of this result is based on similar ideas as used in the proof of the
previous theorem, but instead of the result of Talagrand and Haussler, here the
authors of [20] used Hoeffding’s inequality, which is an estimate for the deviation
from the mean for sums of independent random variables. We give a short sketch
of the proof which offers some insights. More details can be found in [11,20,30].

Sketch of the proof of Theorem 2. Hoeffding’s inequality (in the form required
here) states that if X0, . . . , XN−1 are independent real valued random variables
with mean zero and |Xi| ≤ 1 for i = 0, . . . , N −1 almost surely, then for all t > 0
we have

Prob

(∣
∣
∣
∣
∣

N−1∑

i=0

Xi

∣
∣
∣
∣
∣
> t

)

≤ 2 exp
(

− t2

2N

)

.

Now let PN,s = {x0, . . . ,xN−1} where x0, . . . ,xN−1 are independent and
uniformly distributed in [0, 1)s. We want to show that

Prob (D∗
N (PN,s) ≤ 2ε) > 0

where 2ε is the right hand side in (5). That amounts to the task to show that
the event

|Δ(x)| > 2ε at least for one x ∈ [0, 1)s
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has a probability smaller than 1. These are infinitely many constraints, but it
can be shown that |Δ(x)| > 2ε implies |Δ(y)| > ε for one of the points in a
rectangular equidistant grid Γm,s of mesh size 1/m with m = 
s/ε�. Actually,
this holds either for the grid point directly below left or up right from x. Since
this grid Γm,s has cardinality (m + 1)s, a union bound shows that it is enough
to prove

Prob (|Δ(y)| > ε) < (m + 1)−s

for every y ∈ Γm,s. But now

NΔ(y) =
N−1∑

i=0

(
1[0,y)(xi) − λs([0,y))

)

is the sum of the N random variables Xi = 1[0,y)(xi) − λs([0,y)), which have
mean 0 and obviously satisfy |Xi| ≤ 1. So we can apply Hoeffding’s inequality
and obtain

Prob (|Δ(y)| > ε) = Prob

(∣
∣
∣
∣
∣

N−1∑

i=0

Xi

∣
∣
∣
∣
∣
> Nε

)

≤ 2 exp
(−Nε2

2

)

< (m + 1)−s,

where the last inequality is satisfied for the chosen values of the parameters. �
The results in Theorems 1 and 2 are only existence results. Until now no

explicit constructions of N -element point sets PN,s in [0, 1)s for which D∗
N (PN,s)

satisfy (4) or (5) are known. A first constructive approach was given by Doerr,
Gnewuch and Srivastav [15], which was further improved by Doerr and Gnewuch
[14], Doerr, Gnewuch, and Wahlström [17] and Gnewuch, Wahlström and Winzen
[18]. There, a deterministic algorithm is presented that constructs point sets PN,s

in [0, 1)s satisfying

D∗
N (PN,s) �

√
s

N

√
log(N + 1)

in run-time O(s log(sN)(σN)s), where σ = σ(s) = O((log s)2/(s log log s)) → 0
as s → ∞ and where the implied constants in the O-notations are independent
of s and N . However, this is by far too expensive to obtain point sets for high
dimensional applications. A slight improvement for the run time is presented in
Doerr, Gnewuch, Kritzer and Pillichshammer [16], but this improvement has to
be payed with by a worse dependence of the bound on the star-discrepancy on
the dimension.

3 The Weighted Star-Discrepancy

In the paper [34], Sloan and Woźniakowski introduced the notion of weighted
star-discrepancy and proved a “weighted” Koksma-Hlawka inequality. The idea
is that in many applications some projections are more important than others
and that this should also be reflected in the quality measure of the point set.
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We start with some basic notation: let [s] = {1, 2, . . . , s} denote the set of
coordinate indices. Let γ = (γj)j≥1 be a sequence of nonnegative reals. For
u ⊆ [s] we write γu =

∏
j∈u γj , where the empty product is one by definition.

The real number γu is the “weight” corresponding to the group of variables given
by u. Let |u| be the cardinality of u. For a vector z ∈ [0, 1]s let zu denote the
vector from [0, 1]|u| containing the components of z whose indices are in u. By
(zu, 1) we mean the vector z from [0, 1]s with all components whose indices are
not in u replaced by 1.

For an N -element point set PN,s in [0, 1)s and given weights γ = (γj)j≥1,
the weighted star-discrepancy D∗

N,γ is given by

D∗
N,γ(PN,s) = sup

z∈[0,1]s
max

∅
=u⊆[s]
γu|Δ(zu, 1)|.

If γj = 1 for all j ≥ 1, then the weighted star-discrepancy coincides with the
classical star-discrepancy.

Quite similar to the classical case, we define the N th minimal weighted star-
discrepancy

discγ(N, s) = inf
PN,s

D∗
N,γ(PN,s)

and the inverse of the weighted star-discrepancy

Nγ(s, ε) = min{N ∈ N : discγ(N, s) ≤ ε}.

Now we recall two notions of tractability. Tractability means that we control
the dependence of the inverse of the weighted star-discrepancy on s and ε−1 and
rule out the cases for which Nγ(s, ε) depends exponentially on s or on ε−1.

– We say that the weighted star-discrepancy is polynomially tractable, if there
exist nonnegative real numbers α and β such that

Nγ(s, ε) � sβε−α for all s ∈ N and ε ∈ (0, 1). (6)

The infima over all α, β > 0 such that (6) holds are called the ε-exponent and
the s-exponent, respectively, of polynomial tractability.

– We say that the weighted star-discrepancy is strongly polynomially tractable,
if there exists a nonnegative real number α such that

Nγ(s, ε) � ε−α for all s ∈ N and ε ∈ (0, 1). (7)

The infimum over all α > 0 such that (7) holds is called the ε-exponent of
strong polynomial tractability.

In both cases the implied constant in the � notation is independent of s and ε.
We collect some known results for the weighted star-discrepancy. The first

result is an extension of Theorem 2 to the weighted star-discrepancy.

Theorem 3 (Hinrichs, Pillichshammer, Schmid [22]). We have

discγ(N, s) �
√

log s√
N

max
∅
=u⊆[s]

γu
√

|u|.
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Note that the result holds for every choice of weights. It is a pure existence
result. Under very mild conditions on the weights, Theorem3 implies polynomial
tractability with s-exponent zero. See [22] for details. A slightly improved and
numerically explicit version of Theorem 3 can be found in the recent paper of
Aistleitner [2].

Theorem 4 (Dick, Leobacher, Pillichshammer [9]). For every prime num-
ber p, every m ∈ N and for given weights γ = (γj)j≥1 with

∑
j γj < ∞ one can

construct (component-by-component) a pm-element point set Ppm,s in [0, 1)s such
that for every δ > 0 we have

D∗
pm,γ(Ppm,s) �γ,δ

1
pm(1−δ)

.

Note that the point set Ppm,s from Theorem 4 depends on the choice of
weights. The result implies that the weighted star-discrepancy is strongly poly-
nomially tractable with ε-exponent equal to one, as long as the weights γj are
summable. See [9–11,22] for more details.

The next result (which follows implicitly from [37]) is about Niederreiter
sequences in prime-power base q. For the definition of Niederreiter sequences we
refer to [11,31].

Theorem 5 (Wang [37]). For the weighted star-discrepancy of the first N ele-
ments PN,s of an s-dimensional Niederreiter sequence in prime-power base q we
have

D∗
N,γ(PN,s) ≤ 1

N
max

∅
=u⊆[s]

∏

j∈u

[γj(C j log(j + q) log(qN))] ,

with a suitable constant C > 0.

One can easily deduce from Theorem 5 that the weighted star-discrepancy
of the Niederreiter sequence can be bounded independently of the dimension
whenever the weights satisfy

∑
j γjj log j < ∞. This implies strong polynomial

tractability with ε-exponent equal to one. A similar result can be shown for
Sobol’ sequences and for the Halton sequence (see [36,37]).

We also have the following recent existence result:

Theorem 6 (Aistleitner [2]). For product weights satisfying
∑

j e−cγ−2
j < ∞,

for some c > 0, we have

discγ(N, s) �γ
1√
N

for all s,N ∈ N.

Consequently, the weighted star-discrepancy for such weights is strongly polyno-
mially tractable, with ε-exponent at most 2.

All results described so far have either been existence results of point sets with
small star-discrepancy, or results for point sets with small star-discrepancy which
can be obtained via computer search. The Ansatz via computer search remains
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difficult and is limited to a rather small number of points N and dimensions s
(in fact, it is known that the computation of the star-discrepancy is NP -hard
as shown by Gnewuch, Srivastav, and Winzen [19], which makes it difficult to
obtain good point sets via computer search). To make the random constructions
useful in applications, Aistleitner and Hofer [3] show that with probability δ one
can expect point sets with discrepancy of order c(δ)

√
s/N . Another Ansatz for

obtaining explicit constructions is contained in [35].
In the following section we discuss results for explicit constructions of point

sets with low weighted star-discrepancy. Since the existence proofs above are
based on randomly selected point sets, it may not be so surprising that the
explicit constructions below are related to pseudo-random number generators.

4 The Weighted Star-Discrepancy of Korobov’s p-sets

Let p be a prime number. For a nonnegative real number x let {x} = x − �x�
denote the fractional part of x. For vectors we use this operation component-
wise.

We consider the so-called p-sets in [0, 1)s, a term which goes back to Hua
and Wang [24]:

– Let Pp,s = {x0, . . . ,xp−1} with

xn =
({

n

p

}

,

{
n2

p

}

, . . . ,

{
ns

p

})

for n = 0, 1, . . . , p − 1.

The point set Pp,s was introduced by Korobov [27].
– Let Qp2,s = {x0, . . . ,xp2−1} with

xn =
({

n

p2

}

,

{
n2

p2

}

, . . . ,

{
ns

p2

})

for n = 0, 1, . . . , p2 − 1.

The point set Qp,s was introduced by Korobov [26].
– Let Rp2,s = {xa,k : a, k ∈ {0, . . . , p − 1}} with

xa,k =
({

k

p

}

,

{
ak

p

}

, . . . ,

{
as−1k

p

})

for a, k = 0, 1, . . . , p − 1.

Note that Rp2,s is the multi-set union of all Korobov lattice point sets1 with
modulus p. The point set Rp2,s was introduced by Hua and Wang (see [24,
Sect. 4.3]).

We present some weighted star-discrepancy estimates for the p-sets.

Theorem 7 (Dick, Pillichshammer [12]). Assume that the weights γj are
non-increasing.
1 A Korobov lattice point set with modulus p and generator a ∈ {0, 1, . . . , p − 1}

consists of the points xn = ({n
p
}, {an

p
}, . . . , {as−1n

p
}) for n = 0, 1, . . . , p − 1.
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1. If
∑

j γj < ∞, then for all δ > 0 we have

D∗
p,γ(Pp,s) �γ,δ

1
p1/2−δ

, D∗
p2,γ(Qp2,s) �γ,δ

1
p1−δ

, and

D∗
p2,γ(Rp2,s) �γ,δ

1
p1−δ

,

where in all cases the implied constant is independent of p and s. This implies
strong polynomial tractability.

2. If there exists a real τ > 0 such that
∑

j γτ
j < ∞, then for all δ > 0 we have

D∗
p,γ(Pp,s) �γ,δ

s

p1/2−δ
, D∗

p2,γ(Qp2,s) �γ,δ
s

p1−δ
, and

D∗
p2,γ(Rp2,s) �γ,δ

s

p1−δ
,

where in all cases the implied constant is independent of p and s. This implies
polynomial tractability.

The proof of Theorem 7 is based on an Erdős-Turan-Koksma-type inequality
for the weighted star-discrepancy and the following estimates for exponential
sums. For details we refer to [12].

Lemma 1. Let p be a prime number and let s ∈ N. Then for all h1, . . . , hs ∈ Z

such that p � hj for at least one j ∈ [s] we have
∣
∣
∣
∣
∣

p−1∑

n=0

exp(2πi(h1n + h2n
2 + · · · + hsn

s)/p)

∣
∣
∣
∣
∣
≤(s − 1)

√
p, (8)

∣
∣
∣
∣
∣
∣

p2−1∑

n=0

exp(2πi(h1n + h2n
2 + · · · + hsn

s)/p2)

∣
∣
∣
∣
∣
∣
≤(s − 1)p, and

∣
∣
∣
∣
∣

p−1∑

a=0

p−1∑

k=0

exp(2πik(h1 + h2a + · · · + hsa
s−1)/p)

∣
∣
∣
∣
∣
≤(s − 1)p.

Inequality (8) is known as the Weil bound [38] and is often used in the
area of pseudo-random number generation. Constructions related to the p-sets
have also been considered in [7]. All of these constructions are related to the
generation of (streams of) pseudo-random numbers (rather than low-discrepancy
point sets and sequences). We discuss pseudo-random number generators in the
next section more generally.

5 Complete Uniform Distribution and Pseudo-random
Number Generators

Pseudo-random number generators are commonly used in computer simulations
to replace real random numbers for various reasons. These point sets are based
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on deterministic constructions with the aim to mimic randomness. A number of
quality criteria are applied to such pseudo-random number generators to assess
their quality. One such criterion is complete uniform distribution.

Let u1, u2, . . . ∈ [0, 1] be a sequence of real numbers. For s, n ∈ N we define

u(s)
n = (u(n−1)s+1, . . . , uns) ∈ [0, 1]s.

Then the sequence (un)n≥1 is completely uniformly distributed if for every s ≥ 1

lim
N→∞

D∗
N ({u

(s)
1 , . . . ,u

(s)
N }) = 0.

The concept of complete uniform distribution measures independence between
successive numbers ui, ui+s, ui+2s, . . .. For simulation purposes it is often assumed
that the random numbers are i.i.d. uniform, thus their discrepancy goes to 0 (in
probability), and so one wants pseudo-random numbers with the same property.2

Markov chain algorithms are a staple tool in statistics and the applied sci-
ences for generating samples from distributions for which only partial informa-
tion is available. As such they are an important class of algorithms which use
pseudo-random number generators. In [6] it was shown that if the random num-
bers which drive the Markov chain are completely uniformly distributed, then the
Markov chain consistently samples the target distribution (i.e. yields the correct
result). For instance, [6, Theorem 4] requires pseudo-random numbers (un)n≥1

such that for every sequence of natural numbers (sN )N≥1 with sN = O(log N),
we have

lim
N→∞

D∗
N ({u

(sN )
1 , . . . ,u

(sN )
N }) = 0.

In this case, bounds like (3) are not strong enough due to their dependence
on the dimension. Even a bound of the form CsN−δ, with C > 1 and some
δ > 0 which does not depend on the dimension s, is not strong enough, since for
s = c log N with c > δ

log C , we have CsN−δ = Cc log NN−δ = N−δ+c log C ≥ 1 for
all N ∈ N and so we do not get any convergence.

Thus it would be interesting for applications to explicitly construct a deter-
ministic sequence (un)n≥1 such that, say

D∗
N ({u

(s)
1 , . . . ,u

(s)
N }) ≤ C

√
s log N√

N
for all N, s ∈ N.

The existence of such a sequence has already been shown in [6, p. 684] and
an improvement has been shown in [4]. Such a sequence has good properties
when viewed as a pseudo-random sequences but is also useful as a deterministic
sequence in quasi-Monte Carlo integration.
2 For instance, the classic construction by van der Corput (φ(n))n≥0 in base 2, given

by

φ(n) =
n0

2
+

n1

22
+ · · · +

nm

2m+1
,

where n has dyadic expansion n = n0+n12+· · ·+nm2m, is not completely uniformly
distributed, since φ(2n) lies in the interval [0, 1/2), whereas φ(2n − 1) lies in the
interval [1/2, 1).
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Abstract. The Fibonacci-to-Galois transformation is useful for reduc-
ing the propagation delay of feedback shift register-based stream ciphers
and hash functions. In this paper, we extend it to handle Galois-to-Galois
case as well as feedforward connections. This makes possible transform-
ing Trivium stream cipher and increasing its keystream data rate by 27 %
without any penalty in area. The presented transformation might open
new possibilities for cryptanalysis of Trivium, since it induces a class of
stream ciphers which generate the same set of keystreams as Trivium,
but have a different structure.

1 Introduction

Shift register-based cryptographic systems are the fastest and the most power-
efficient cryptographic systems for hardware implementations [1]. The speed and
the power are two crucial factors for future cryptographic systems, since they
are expected to support very high data rates in 5G ultra-low power products
and applications. The 5G is envisioned to have 1000 times higher traffic volume
compared to current LTE deployments while providing a better quality of ser-
vice [2]. Consumer data rates of hundreds of Mbps are expected to be available
in a general scenario. In special scenarios, such as office spaces or dense urban
outdoor environments, reliably achievable data rates of multi-Gbps are foreseen.

An n-bit shift register implements an n-variate mapping {0, 1}n → {0, 1}n
of type ⎛

⎝
x0

. . .
xn−1

⎞

⎠ →
⎛

⎝
f0(x0, . . . , xn−1)

. . .
fn−1(x0, . . . , xn−1)

⎞

⎠ (1)

where each Boolean function fi, i ∈ {0, 1, . . . , n − 1}, is of type:

fi = xi+1 ⊕ gi(x0, . . . , xi, xi+2, . . . , xn−1) (2)

where “⊕” is addition modulo 2 and “+” is addition modulo n.
Note that the function gi in (2) does not depend on xi+1. This is a neces-

sary condition for invertibility of mappings implemented by a shift register [3].
A mapping x → f(x) on a finite set is called invertible if f(x) = f(y) if and only
if x = y. Stream ciphers usually use invertible mappings to prevent incremental
reduction of the entropy of the state [4].
c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 187–199, 2014.
DOI: 10.1007/978-3-319-12325-7 16
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Another desirable property is long period. The period of a mapping is the
length of the longest cycle in its state transition graph. Obviously, if we iterate
a mapping a large number of times, we do not want the sequence of generated
states to be trapped in a short cycle. Furthermore, as demonstrated by the crypt-
analysis of A5, short cycles can be exploited to greatly reduce the complexity of
the attack [5].

In this paper, we present a transformation which preserves both, invertibility
and period, of a mapping. It makes possible to construct classes of shift reg-
isters which have structurally isomorphic state transition graphs and generate
equivalent sets of output sequences. This is useful for optimizing the hardware
performance of shift register-based stream ciphers [6–10] and hash functions [11].
We apply the presented transformation to Trivium [7] and show that it increases
its keystream data rate by 27 % without any penalty in area. The transforma-
tion can also be potentially useful for cryptanalysis since, within the class of shift
registers generating equivalent sets of output sequences, some might be easier to
cryptanalysize than others.

The presented transformation extends Fibonacci-to-Galois transformation of
Non-Linear Feedback Shift Registers (NLFSR) [12] to the more general case of
shift registers. Two main differences are:

1. The presented transformation can be applied to shift registers with both,
feedback and feedforward connections (e.g. Trivium).

2. The presented transformation can be applied to any Galois NLFSR. The
transformation [12] is applicable to uniform NLFSRs only1.

The paper is organized as follows. Section 2 summarises basic notations used
in the sequel. Section 3 describes previous work. Section 4 gives an informal
description of the presented transformation. Section 5 formalizes the main result.
Section 6 shows how the presented transformation can be applied to Trivium.
Section 7 concludes the paper and discusses open problems.

2 Preliminaries

Throughout the paper, we use “⊕” and “·” to denote the GF(2) addition and
multiplication, respectively.

The Algebraic Normal Form (ANF) [13] of a Boolean function f : {0, 1}n →
{0, 1} is a polynomial in GF(2) of type

f(x0, x1, . . . , xn−1) =
2n−1∑

i=0

ci · xi0
0 · xi1

1 · . . . · xin−1
n−1 ,

where ci ∈ {0, 1} and (i0i1 . . . in−1) is the binary expansion of i.

1 An n-bit NLFSR is uniform if, for all i ∈ {τ, τ + 1, . . . , n − 1}, the largest index of
variables of function gi in (2) is smaller than or equal to τ , where τ is the maximal
index such that, for all j ∈ {0, 1, . . . , τ − 1}, gj = 0.
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1100
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0000

0111

Fig. 1. The state transition graph of the mapping (3). Each 4-tuple represents a state
(x0, x1, x2, x3).

The dependence set [14] of a Boolean function is defined by

dep(f) = {j | f(xj = 0) �= f(xj = 1)},
where f(xj = k) = f(x0, . . . , xj−1, k, xj+1, . . . , xn−1) for k ∈ {0, 1}.

Throughout the paper we also use the expression “dependence set of a mono-
mial of the ANF”. It should not create any ambiguity since each monomial of the
ANF represents a Boolean function. For example, for m = x1x3, dep(m) = {1, 3}.

The state of an n-variate mapping {0, 1}n → {0, 1}n is any specific assign-
ment of {x0, x1, . . . , xn−1}. The State Transition Graph (STG) is a directed
graph in which the nodes represent the states and the edges show possible tran-
sitions between the states.

For example, the STG of the 4-variate mapping {0, 1}4 → {0, 1}4:
⎛

⎜
⎜
⎝

x0

x1

x2

x3

⎞

⎟
⎟
⎠ →

⎛

⎜
⎜
⎝

x1

x2

x3 ⊕ x1x2

x0 ⊕ x3

⎞

⎟
⎟
⎠ . (3)

is shown in Fig. 1. This mapping is invertible. It has period 15.
Any n-variate mapping {0, 1}n → {0, 1}n can be implemented by an n-bit

shift register shown in Fig. 2. It consists of n binary storage elements, called
stages, and n updating functions fi : {0, 1}n → {0, 1} which determine how the
values of stages are updated [3]. At every clock cycle, the next state is computed
from the current state by updating the values of all stages simultaneously to the
values of the corresponding updating functions.

The degree of parallelization of a shift register is the number of bits of output
which are produced at each clock cycle.

A shift register can be implemented either in the Fibonacci or in the Galois
configuration [12]. In the former, all updating functions except fn−1 are of type
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...

...... ...

n−1 n−2 0fn−1 fn−2 f0
output

clock

Fig. 2. The general structure of an n-bit shift register with updating functions.

fi(x) = xi+1, for i ∈ {0, 1, . . . , n − 2}. In other words, feedback/feedforward
connections are applied to the input stage of the shift register only. In the latter,
feedback/feedforward connections can potentially be applied to every stage.

Two shift registers are equivalent if their sets of output sequences are equal.

3 Previous Work

For LFSRs, there exist a one-to-one mapping between the Fibonacci and the
Galois configurations. The Galois LFSR generating the same sets of output
sequences as a given Fibonacci LFSR can be obtained by reversing the order
of the feedback taps and adjusting the initial state. Several transformations
aiming to optimize the traditional LFSRs with respect to different parameters
were presented, including [15–19].

For NLFSRs, however, the Galois configuration is not unique. Usually, there
are many n-bit Galois NLFSRs which are equivalent to a given n-bit Fibonacci
NLFSR. On the other hand, not every n-bit Galois NLFSR has an equivalent
n-bit Fibonacci NLFSR. The latter is because, while an output sequence of every
n-bit Fibonacci NLFSR can be described by a nonlinear recurrence of order n [3],
for an n-bit Galois NLFSR such a recurrence may not exist. It was shown in [12]
that a nonlinear recurrence of order n always exists for uniform n-bit NLFSRs.
An algorithm for constructing a best uniform Galois NLFSR which is equivalent
to a given Fibonacci NLFSR was presented in [20].

A interesting type of NLFSRs was introduced by Massey and Liu in [21].
Similarly to the Fibonacci NLFSRs, these NLFSRs have a single feedback func-
tion Boolean function, f , of the state variables x0, x1, . . . , xn−1. However, the
output of f(x0, x1, . . . , xn−1) is fed not only to the bit n − 1 but also to other
bits, namely

fi(x0, x1, . . . , xn−1) = f(x0, x1, . . . , xn−1), for i = n − 1
fi(x0, x1, . . . , xn−1) = xi+1 ⊕ wi · f(x0, x1, . . . , xn−1), for i = {0, 1, . . . , n − 2}

where wi ∈ {0, 1}. It was shown in [21] that every NLFSR of this type has
an equivalent NLFSR in the Fibonacci configuration. Moreover, the mapping
between the two configurations is one-to-one.
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3 2 1 0

Fig. 3. The 4-bit ring with connections corresponding to the monomials of ANFs of
Boolean functions induced by the mapping (3).

4 Intuitive Description

We start with an intuitive description of the presented transformation.
Consider an n-variate mapping of type (1). It can be represented by an n-bit

ring with connections corresponding to the monomials of ANFs of functions fi
induced by the mapping2. Each connection has a single sink and one or more
sources. The sources originate in the stages corresponding to the state variables
of the monomial. The sink points to the stage i with the index of the updat-
ing function fi represented by the ANF, i ∈ {0, 1, . . . , n − 1}. The output is
represented by an outgoing edge from the corresponding stage.

For example, if we assume that the output is taken from the stage 0, then
the 4-variate mapping (3) is represented by the 4-bit ring shown in Fig. 3. The
connection with sources 1,2 and sink 2 corresponds to the monomial x1x2 of f2.

The transformation presented in the paper moves a connection either left
or right in the ring, without changing its length or shape, i.e. the sink and all
sources are moved by the same number of stages. For example, if the monomial
x1x2 of f2 in the mapping (3) is moved one stage right, we get the mapping

⎛

⎜
⎜
⎝

x0

x1

x2

x3

⎞

⎟
⎟
⎠ →

⎛

⎜
⎜
⎝

x1

x2 ⊕ x0x1

x3

x0 ⊕ x3

⎞

⎟
⎟
⎠ . (4)

Its STG is shown in Fig. 4.
Indexes crossing the 0 to n− 1 border of the ring are updated modulo n. So,

if we move the monomial x3 of f3 in the mapping (3) one stage left, we get
⎛

⎜
⎜
⎝

x0

x1

x2

x3

⎞

⎟
⎟
⎠ →

⎛

⎜
⎜
⎝

x1 ⊕ x0

x2

x3 ⊕ x1x2

x0

⎞

⎟
⎟
⎠ . (5)

Its STG is shown in Fig. 5.
2 We use an n-bit ring as a simplification of an n-bit shift register which shows the

structure of its feedback/feedforward connections. The gates implementing GF(2)
addition (XORs) are omitted and the gates implementing GF(2) multiplication
(ANDs) are represented by a dot. Everything unnecessary for structural analysis
is removed.



192 E. Dubrova

1110

1001

0100

1101

1000

0011

1111

1010

0101

0110

1011

0010

1100

0001

0000

0111

Fig. 4. The state transition graph of the mapping (4).

Three conditions should hold for the transformation to preserve the cycle
structure of the STG. First, only the connections corresponding to the monomials
of functions gi in the Eq. (2), i ∈ {0, 1, . . . , n− 1}, can be moved. The monomial
xi+1 of functions fi cannot be moved, where “+” is addition modulo n.

Second, sources of a connection can be moved k stages left/right if the func-
tions fi of the k stages on the left/right of each source do shifts only (i.e. no
source crosses any of the sinks of connections related to gis during its move). This
condition makes sure that time dependencies in the computation are preserved.

For example, the monomial x3 of f3 in the mapping (3) can be moved one
stage left to f0, or two stages left to f1, but not one stage right to f2 since
f2 = x3 ⊕ x1x2. Due to the circular structure of the ring, we can always reach
any stage either from the left or from the right. It is sufficient that the condition
is satisfied only in one of the directions. For example, although x3 cannot be
moved to f1 from the right, it can be moved to f1 from the left. So, we can move
x3 to f1.

Third, the sink of a connection can be moved k stages left/right if k stages
on the left/right of the sink do not serve as sources of any other connection
of any gi, i ∈ {0, 1, . . . , n − 1} (i.e. the sink does not cross any of the sources
of connections related to gis during its move). This condition makes sure that
values of variables participating in the computation are correct. For example,
the monomial x1x2 of f2 in the mapping (3) cannot be moved to f3 because x3

is a variable of a monomial of g3.
Suppose that, in addition to preserving the cycle structure of the STG of

a mapping, we want to preserve the binary sequence generated by one of its
functions, say fi, for any i ∈ {0, 1, . . . , n − 1}. This might be desirable because,
for example, this sequence is used as a keystream and we do not want to change
its properties. Then, in addition to the three conditions above, we need to add a
condition that neither the sink nor the sources of a shifted connection cross the
border between ith and i − 1st modulo n stage of the ring.

For example, if the value computed by the function f0 of the mapping (3)
is used as an output, then, in order to preserve the output sequence after the
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Fig. 5. The state transition graph of the mapping (5).

transformation, neither the sink nor the sources of a shifted connection should
cross the border between 0th and 3rd stage. This holds for the transformation
from (3) to (4). Indeed, we can see from Figs. 1 and 4 that, for the initial state
(x0, x1, x2, x3) = (0001), the functions f0 of both mappings generate the periodic
sequence3 000110101111001. However, this is not the case for the mapping (5).
From its STG in Fig. 5, we can see that the sequence generated by its function
f0, namely 000111101100101 is different from the sequence above for any initial
state. This is because the shifted connection crosses the border between 0th and
3rd stage.

5 Formal Description

In this section, we give a formal description of the presented transformation.

Definition 1. The shifting, denoted by fi
m→ fj, i, j ∈ {0, 1, . . . , n − 1}, i �= j,

transforms an n-variate mapping of type (1) to another n-variate mapping in
which the ANF monomial m of fi is moved to fj and each index a ∈ dep(m) is
changed to b defined by

b = (a − i + j) mod n (6)

For example, by applying shifting f2
x1x2→ f1 to the 4-variate mapping (3), we

get the mapping (4).
Given a shifting gi

m→ gj , we denote by g∗
i the function g∗

i = gi ⊕ m.

Definition 2. Given an n-variate mapping of type (1) in which the values com-
puted by fz, z ∈ {0, 1, . . . , n − 1} are used as an output sequence, a shifting
gi

m→ gj, i, j ∈ {0, 1, . . . , n − 1}, i �= j, is valid if for each a ∈ dep(m) and for b
defined by (6) the following three conditions hold:
3 Note that in this case the initial states are the same but generally they can be

different [22].
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1. For each c ∈ [a, b] \ {i}, gc = 0; if i ∈ [a, b], g∗
i = 0.

2. For all k ∈ [i, j]:
(a) k �∈ dep(g∗

i );
(b) for all p ∈ {0, 1, ..., i − 1, i + 1, ...n − 1}, k �∈ dep(gp).

3. Neither [a, b] nor [i, j] contains both, z and (z − 1) modulo n

where

[a, b] = {a, a − 1, . . . , b} and [i, j] = {i, i − 1, . . . , j} for i > j
[a, b] = {a, a + 1, . . . , b} and [i, j] = {i, i + 1, . . . , j} otherwise

and “+” and “−” are addition and subtraction modulo n, respectively.

If the values of more than one stage z are used to compute the output
sequence (e.g. as in Grain [6], Trivium [7], or other filter generators), then the
condition 3 should hold for each pair z and (z − 1) modulo n.

For example, for the mapping (3) with f0 as an output, shifting g2
x1x2→ g1 is

valid. However, shiftings g3
x3→ g2 and g2

x1x2→ g3 are not valid since the former
violates the condition 1 and the latter violates the condition 2 of Definition 2.

In the theorem below, we use f(s) to denote the value of the function f
evaluated for the vector s. We also use f |j (f |−j) to denote the function obtained
from f by adding (subtracting) j modulo n to (from) indexes of all variables of
f . For example, if f = x1x2 ⊕ x3, then f |2 = x3x4 ⊕ x5 and f |−1 = x0x1 ⊕ x2.

Theorem 1. Let F be a mapping of type (1) and F ′ be a mapping obtained
from F by applying a valid shifting gi

m→ gj, i, j ∈ {0, 1, . . . , n − 1}, i �= j. If F
is initialized to the state s = (s0, s1, . . . , sn−1) and F ′ is initialized to the state
r = (r0, r1, . . . , rn−1) such that

if i > j, then rk = sk ⊕ m|k−i−1(s) for k ∈ {i, i − 1, ..., j + 1}
if i < j, then rk = sk ⊕ m|k−j−1(s) for k ∈ {i + 1, i + 2, ..., j} (7)

and rk = sk for all remaining k ∈ {0, 1, . . . , n − 1}, then sequences of states
generated by F and F ′ may differ only in bit positions i, i − 1, . . . , j + 1 if i > j
and only in bit positions i + 1, i + 2, ..., j if i < j.

Proof. First we show that Theorem 1 holds for the case of i = j+1. In this case,
the Eq. (7) is reduced to rk = sk ⊕ m|−1(s) for k = j + 1.

Suppose that m = xa1xa2 . . . xat
, where al ∈ {0, 1, . . . , n − 1}, for all l ∈

{1, 2, . . . , t}, and a1 > a2 > . . . > at. For simplicity, let us assume that the
values computed by f0 are used as an output sequence of F . If the shifting
gi

m→ gj is valid, then, from the condition 3 of Definition 2, we can conclude that
at > 0. Thus, after shifting, m changes to xa1−1xa2−1 . . . xat−1. Furthermore,
from the condition 2 of Definition 2 we can conclude that {j + 1, j} �⊂ dep(g∗

j+1)
and {j + 1, j} �⊂ dep(gp) for all p ∈ {0, 1, ..., j, j + 2, ...n − 1}. Therefore, F is of
type
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0

. . .
xj

xj+1

. . .
xn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 ⊕ g0(x0, . . . , xj−1, xj+2, . . . , xn−1)
. . .

xj+1 ⊕ gj(x0, . . . , xj−1, xj+2, . . . , xn−1)
xj+2 ⊕ g∗

j+1(x0, . . . , xj−1, xj+2, . . . , xn−1) ⊕ xa1xa2 . . . xat

. . .
xn−1 ⊕ gn−1(x0, . . . , xj−1, xj+2, . . . , xn−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and F ′ is of type
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0

. . .
xj

xj+1

. . .
xn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 ⊕ g0(x0, . . . , xj−1, xj+2, . . . , xn−1)
. . .

xj+1 ⊕ gj(x0, . . . , xj−1, xj+2, . . . , xn−1) ⊕ xa1−1xa2−1 . . . xat−1

xj+2 ⊕ g∗
j+1(x0, . . . , xj−1, xj+2, . . . , xn−1)

. . .
xn−1 ⊕ gn−1(x0, . . . , xj−1, xj+2, . . . , xn−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Note that, due to the restriction imposed on the function gi in Eq. (2), j+2 �∈
{a1, a2, . . . , at} and therefore j + 1 �∈ {a1 − 1, a2 − 1, . . . , at − 1}. In addition,
from the condition 1 of Definition 2 we can conclude that, for all l ∈ {1, 2, . . . , t},
gcl = 0 for cl ∈ {al, al − 1}.

Suppose that F is initialized to a state s = (s0, s1, . . . , sn−1) and F ′ is ini-
tialized to a state r = (s0, s1, . . . , sj , sj+1 ⊕ sa1−1sa2−1 . . . sat−1, sj+2, . . . , sn−1).
On one hand, for F , the next state s+ = (s+0 , s

+
1 , . . . , s

+
n−1) is given by:

s+0 = s1 ⊕ g0(s0, . . . , sj−1, sj+2, . . . , sn−1)
. . .
s+j = sj+1 ⊕ gj(s0, . . . , sj−1, sj+2, . . . , sn−1)
s+j+1 = sj+2 ⊕ g∗

j+1(s0, . . . , sj−1, sj+2, . . . , sn−1) ⊕ sa1sa2 . . . sat

. . .
s+n−1 = s0 ⊕ gn−1(s0, . . . , sj−1, sj+2, . . . , sn−1)

On the other hand, for F ′, the next state r+ = (r+0 , r
+
1 , . . . , r

+
n−1) is given by:

r+0 = s1 ⊕ g0(s0, . . . , sj−1, sj+2, . . . , sn−1)
. . .
r+j = sj+1 ⊕ sa1−1sa2−1 . . . sat−1 ⊕ gj(s0, . . . , sj−1, sj+2, . . . , sn−1)

⊕ sa1−1sa2−1 . . . sat−1

= sj+1 ⊕ gj(s0, . . . , sj−1, sj+2, . . . , sn−1)
r+j+1 = sj+2 ⊕ g∗

j+1(s0, . . . , sj−1, sj+2, . . . , sn−1)
. . .
r+n−1 = s0 ⊕ gn−1(s0, . . . , sj−1, sj+2, . . . , sn−1)

We can see that the next states of F and F ′ can potentially differ in the bit
position j + 1 only. They are the same for all other bits.

In order to extend this conclusion to a sequence of states, it remains to show
that r+j+1 can be expressed as r+j+1 = s+j+1 ⊕ s+a1−1s

+
a2−1 . . . s

+
at−1. From

s+j+1 = sj+2 ⊕ g∗
j+1(s0, . . . , sj−1, sj+2, . . . , sn−1) ⊕ sa1sa2 . . . sat
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we can derive sj+2 = s+j+1 ⊕ g∗
j+1(s0, . . . , sj−1, sj+2, . . . , sn−1) ⊕ sa1sa2 . . . sat

.
By substituting this expression into

r+j+1 = sj+2 ⊕ g∗
j+1(s0, . . . , sj−1, sj+2, . . . , sn−1)

and eliminating the double occurrence of g∗
j+1(s0, . . . , sj−1, sj+2, . . . , sn−1),

we get
r+j+1 = s+j+1 ⊕ sa1sa2 . . . sat

.

Since sa1sa2 . . . sat
= s+a1−1s

+
a2−1 . . . s

+
at−1, we obtain

r+j+1 = s+j+1 ⊕ s+a1−1s
+
a2−1 . . . s

+
at−1.

By exchanging the roles of r and s and of i and j in the proof above, we can
show that the result also applies for the case of i = j − 1. Since any shifting can
be performed by repeatedly applying either gj+1

m→ gj or gj−1
m→ gj as many

steps as required, Theorem 1 holds for the general case.

�

The following result follows directly from Theorem 1.

Lemma 1. Let F be a mapping of type (1). Any mapping F ′ obtained from
F by applying a sequence of valid shiftings generates a set of output sequences
equivalent to the one of F .

6 Transforming Trivium

In this section, we show how the presented transformation can be applied to
Trivium stream cipher.

Trivium [7] is defined by a 287-variate mapping in which all but 3 out of 287
of functions are of type fi = xi+1. The remaining 3 functions are given by:

f287 = x0 ⊕ x1x2 ⊕ x45 ⊕ x219

f194 = x195 ⊕ x196x197 ⊕ x117 ⊕ x222

f110 = x111 ⊕ x112x113 ⊕ x24 ⊕ x126

The structure of 287-bit ring representing Trivium is shown in Fig. 6. The outputs
from stages 110, 94 and 287 are added to get the keystream:

foutput = f287 ⊕ f194 ⊕ f110.

There are many different possibilities for modifying Trivium. If the target
is to minimize the propagation delay, then one possible solution obtained by
applying the presented transformation is:

f287 = x0 ⊕ x219 f194 = x195 ⊕ x222 f110 = x111 ⊕ x24

f218 = x219 ⊕ x120x121 f131 = x132 ⊕ x133x134 f21 = x22 ⊕ x23x24

f210 = x211 ⊕ x133 f118 = x119 ⊕ x134 f17 = x18 ⊕ x63
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112 111 110 45 ... 24 ... 1 02117...... 126194197 196 195219...222...287 ...113......

Fig. 6. The structure of Trivium.

Table 1. Propagation delays for a typical 90 nm CMOS technology.

Gate Delay, ps

2 input AND 87

2 input XOR 115

flip-flop 221

and the remaining functions of type fi = xi+1. The keystream is computed as
previously. By Theorem 1, it is equivalent to the keystream generated by the
original Trivium. The reader can easily see that, in the original Trivium, the
propagation delay is given by:

doriginal = 2dXOR + dAND + dFF

where dXOR, dAND and dFF are the delays of the 2-input XOR, the 2-input
AND, and the flip-flop, respectively. On the other hand, for the modified Trivium:

dmodified = dXOR + dAND + dFF

By substituting dXOR, dAND and dFF by values shown in Table 1, we get
doriginal = 538 ps and dmodified = 423 ps.

A shift register with the propagation delay of 538 ps can support data rates
up to 1.86 Gbits/s. A shift register with the propagation delay of 423 ps can
support data rates up to 2.36 Gbits/s. Note that 0.5 Gbits/s improvement (27 %)
comes without any penalty in area, since the number of gates before and after
the transformation remains the same.

It should be noted that the transformation reduces the maximum possible
degree of parallelization of Trivium from the original 64 to 8. The modified
Trivium can generate up to 8 bits per clock cycle because no variables are taken
from 7 consecutive stages after each sink and after outputs 110, 94 and 287. The
modified Trivium with the degree of parallelization 8 can support data rates
up to 18.88 Gbits/s. The original Trivium with the degree of parallelization 8
can support data rates up to 14.88 Gbits/s.

7 Conclusion

We presented a transformation which can be applied to an n-bit shift register
to construct other n-bit shift registers which generate the same set of output
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sequences. Using the example of Trivium stream cipher, we demonstrated that
this transformation is useful for optimizing its hardware performance.

Being able to construct different shift registers generating equivalent sets of
output sequences might be potentially useful for cryptanalysis. Exploring this
opportunity to cryptanalyze Trivium is a focus of our future works.

Acknowledgements. This work was supported in part the research grant No 621-
2010-4388 from the Swedish Research Council and in part by the research grant No
SM12-0005 from the Swedish Foundation for Strategic Research.
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A Lattice Rational Approximation Algorithm
for AFSRs Over Quadratic Integer Rings
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Abstract. Algebraic feedback shift registers (AFSRs) [10] are pseudo-
random sequence generators that generalize linear feedback shift registers
(LFSRs) and feedback with carry shift registers (FCSRs). With a general
setting, AFSRs can result in sequences over an arbitrary finite field. It is
well known that the sequences generated by LFSRs can be synthesized
by either the Berlekamp-Massey algorithm or the extended Euclidean
algorithm. There are three approaches to solving the synthesis problem
for FCSRs, one based on the Euclidean algorithm [2], one based on the
theory of approximation lattices [8] and Xu’s algorithm which is also
used for some AFSRs [11]. Xu’s algorithm, an analog of the Berlekamp-
Massey algorithm, was proposed by Xu and Klapper to solve the AFSR
synthesis problem. In this paper we describe an approximation algorithm
that solves the AFSR synthesis problem based on low-dimensional lat-
tice basis reduction [14]. It works for AFSRs over quadratic integer rings
Z[

√
D] with quadratic time complexity. Given the first 2ϕπ(a) + c ele-

ments of a sequence a, it finds the smallest AFSR that generates a, where
ϕπ(a) is the π-adic complexity of a and c is a constant.

Keywords: AFSR synthesis · Rational approximation · Lattice basis
reduction · π-adic complexity

1 Introduction

Pseudo-random sequences are ubiquitous in modern electronics and information
technology. High speed generators of such sequences play essential roles in various
engineering applications, such as stream ciphers, radar systems, multiple access
systems, and quasi-Monte-Carlo simulation. Security has been a big concern in
register design for many years. Given a short prefix of a sequence, it is undesirable
to have an efficient algorithm that can synthesize a generator which can predict
the whole sequence. Otherwise, a cryptanalytic attack can be launched against
the system based on that given sequence. So finding such a synthesis algorithm
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is an interesting problem in cryptanalysis. For a class of generators F and a
sequence a, a register synthesis algorithm finds the smallest generator in F that
outputs sequence a given a sufficiently long prefix of a.

LFSRs are the most widely studied pseudorandom sequence generators. The
most famous LFSR synthesis algorithm is the Berlekamp-Massey algorithm. It
can find the smallest LFSR that generates a given sequence a with only 2λ(a)
consecutive bits of a, where λ(a) is the linear complexity of a [13].

FCSRs were first described by Goresky and Klapper [6,9]. They have many
good algebraic properties similar to those of LFSRs. They can also be imple-
mented efficiently, especially in hardware. FCSRs are good candidates as build-
ing blocks of stream ciphers since they seem to proffer resistance to algebraic
attacks. The register synthesis problem for FCSRs was solved by Klapper and
Goresky using integer approximation lattices [8,9]. These were originally pro-
posed by Mahler [12] and de Weger [4]. In the case of binary FCSRs, the lattice
approximation algorithm can construct the smallest FCSR which generates the
sequence a, and it does so using only a knowledge of the first 2ϕ2(a)+2 log ϕ2(a)
elements of a, where ϕ2(a) is the 2-adic span of a [7].

In later work, Klapper and Xu defined a generalization of both LFSRs and
FCSRs called algebraic feedback shift registers (AFSRs) [10], described in detail
in Sect. 2.1 of the current paper. Based on a choice of an integral domain R
and π ∈ R, an AFSR can produce sequences whose elements can be thought of
elements of the quotient ring R/(π). A modification of the Berlekamp-Massey
algorithm, Xu’s algorithm solves the synthesis problem for AFSRs over a pair
(R, π) with certain algebraic properties [11].

In this paper, we introduce a new synthesis algorithm for AFSRs. It can be
seen as an extension of lattice approximation approach based on low-dimensional
lattice basis reduction. For AFSRs over (R, π), where R = Z[π] with π2 = D ∈ Z,
the algorithm can find the smallest AFSR that generates the sequence a given
at least 2ϕπ(a) + 2 + �log|D|(4D2 + 2|1 + D|)� terms of sequence a, where ϕπ(a)
is the π-adic complexity of a. It has quadratic time complexity.

2 Preliminaries

2.1 Algebraic Feedback Shift Registers

In this section we recall the construction of AFSRs and properties of AFSR
sequences. For more details on AFSRs, the reader should refer to [7, Chap. 5].

Let R be an integral domain and π be an element in R. Let S be a complete
set of representatives for the quotient ring R/(π) (i.e., the composition S →
R → R/(π) is a one to one correspondence). For any u ∈ R denote its image in
R/(π) by ũ = u (mod π). Given S, every element a ∈ R has a unique expression
a = a0 + bπ, where a0 ∈ S. The element a0 is the representative of ã in S, and
a−a0 is divisible by π. We write a0 = a(mod π) and b = a(div π) = (a−a0)/π.

Definition 1 [7]. Let q0, q1, q2, · · · , qm ∈ R and assume that q0 is invertible
(mod π). An algebraic feedback shift register (or AFSR) over (R, π, S) of length
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m with multipliers or taps q1, q2, · · · , qm is a sequence generator whose states
are elements s = (a0, a1, · · · , am−1; z) ∈ Sm × R consisting of cell contents ai

and memory z. The output is out(s) = a0. The state change operation is:

1. Compute

σ =
m∑

i=1

qiam−i + z.

2. Find am ∈ S such that −q0am ≡ σ (mod π). That is, ãm = −q̃−1
0 σ̃.

3. Replace (a0, a1, · · · , am−1) by (a1, a2, · · · , am) and replace z by σ(divπ) =
(σ + q0am)/π.

The register outputs an infinite sequence a0, a1, . . . of elements in S. The
state change rules may be summarized by saying that this sequence satisfies a
linear recurrence with carry,

− q0an + πzn = q1an−1 + · · · + qman−m + zn−1 (1)

for all n ≥ m. Here, zi represent the sequence of memory values, with z = zm−1

being the initial value. The procedure of an AFSR is illustrated in Fig. 1.

�

� � � �

��

��

��

��

��

��

��

��

a0a1· · ·

· · ·

am−2am−1

q1q2qm−1 qm

σ

����

��

��
θ

�z

�

�

modπ
divπ

Fig. 1. An algebraic feedback shift register of length m

The element

q =
m∑

i=0

qiπ
i ∈ R

plays a central role in the analysis of AFSRs and is referred to as the connection
element. To simplify the analysis, we suppose all the qi’s are in S.

An LFSR over a field (or even an integral domain) K, is an AFSR where
R = K[x] is the ring of all polynomials with coefficients in K, π = x and
S = K is the set of polynomials of degree 0, which also is the quotient ring
R/(π) = K[x]/(x). An FCSR with elements in Z/(N) is an AFSR with R = Z,
π = N , and S = {0, . . . , N − 1}.
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In this paper, we focus on AFSRs over quadratic extensions of Z. That is,
fix π ∈ Z such that π2 = D, where D ∈ Z is square free. So x2 −D is irreducible
over the rational numbers Q. Let R = Z[π], a quadratic extension of Z. It is an
integral domain in which every prime ideal is maximal. It can be proved that
S = {0, 1, . . . ,D − 1} is a complete set of representatives for the quotient ring
R/(π) [7, p.102].

An infinite sequence, a = a0, a1, · · · , generated by an LFSR can be identified
with its generating function

a(x) =
∞∑

i=0

aix
i,

an element of the ring of formal power series. An N -adic integer of the form∑∞
i=0 aiN

i is associated with the sequence a = a0, a1, · · · generated by an FCSR
[8,9,11]. Similarly, a sequence a = a0, a1, · · · over R generated by an AFSR has
an associated π-adic integer, defined below.

Definition 2 [7]. Let R be an integral domain, let π ∈ R and let S be a complete
set of representatives for R modulo π. Then the ring of π-adic integers, Rπ, is
the set of expressions α =

∑∞
i=0 aiπ

i with all ai ∈ S.

Take R = Z[π] with π2 = D as above for example. The ring α ∈ Rπ consists
of elements α = a0 + a1π + · · · with coefficients ai ∈ S = {0, 1, . . . ,D − 1}. In
carrying out algebraic operations we must remember that D = π2. The addition
of π-adic integers may be described as term-wise addition with a “delayed carry”:
each carried quantity is delayed 2 steps before adding it back in. In other words,
if β = b0 + b1π + · · · ∈ Rπ then

α + β =
∞∑

i=0

eiπ
i,

with 0 ≤ ei ≤ D−1, means that there exist c0, c1, . . . ∈ {0, 1} with ai + bi + ci =
ei + Dci+2. That is, ci is the carry to the ith position.

Theorem 1 (Fundamental Theorem on AFSRs [10]). Let the output sequence
a = a0, a1, . . . of an AFSR with connection element q and initial state (a0, a1, · · · ,
am−1; z) have associated π-adic integer α =

∑∞
i=0 aiπ

i. Then

α =
∑m−1

n=0

∑n
i=0 qian−iπ

n − zπm

q
=

u

q
∈ Rπ. (2)

The expression u/q is called a rational expression of α.

If (u, q) is found, then the AFSR that generates sequence a can be constructed
by Eq. (2). So our goal is to find a rational expression u/q using as few terms of
sequence a as we can.
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2.2 Size and π-Adic Complexity

From here on, we suppose R = Z[π] = {a0 + a1π : a0, a1 ∈ Z} and π2 = D ∈ Z

unless otherwise mentioned. To measure the size of the elements of R, let size
function ϕR,π : R → Z be ϕR,π(q) = q20 + q21 , where q = q0 + q1π and q0, q1 ∈ Z.

Proposition 1. For any u, q ∈ R, we have

1. ϕR,π(u ± q) ≤ 2(ϕR,π(u) + ϕR,π(q)) and
2. ϕR,π(uq) ≤ (D2 + |1 + D|/2)ϕR,π(u)ϕR,π(q).

Proof. Let u = u0 + u1π and q = q0 + q1π where u0, u1, q0, q1 ∈ Z. We have
u ± q = (u0 ± q0) + (u1 ± q1)π, so

ϕR,π(u ± q) = (u1 ± q1)2 + (u0 ± q0)2

= u2
1 + q21 + u2

0 + q20 ± 2u1q1 ± 2u0q0

≤ 2(u2
1 + q21 + u2

0 + q20)
= 2(ϕR,π(u) + ϕR,π(q)).

We have uq = (u0 + q0π)(u1 + q1π) = (u0q0 + Du1q1) + (u0q1 + u1q0)π, so

ϕR,π(uq) = (u0q0 + Du1q1)2 + (u0q1 + u1q0)2

= u2
0q

2
0 + D2u2

1q
2
1 + u2

0q
2
1 + u2

1q
2
0 + (2 + 2D)u0u1q0q1

≤ u2
0q

2
0 + D2u2

1q
2
1 + u2

0q
2
1 + u2

1q
2
0 + |(2 + 2D)| · |u0u1q0q1|

Since ϕR,π(u)ϕR,π(q) = u2
0q

2
0 + u2

1q
2
1 + u2

0q
2
1 + u2

1q
2
0 ≥ 4|u0u1q0q1|, we have

ϕR,π(uq) ≤ D2ϕR,π(u)ϕR,π(q) +
|2 + 2D|

4
ϕR,π(u)ϕR,π(q)

= (D2 +
|1 + D|

2
)ϕR,π(u)ϕR,π(q)

�

For any u, q ∈ R, let ΦR,π(u, q) = log|D|(ϕR,π(u) + ϕR,π(q)). ΦR,π(u, q) is
defined to be the size of the AFSR reconstructed by Eq. (2). That is, u/q is a
rational expression of α, the associated π-adic integer of sequence a. Then the
π-adic complexity of a is ϕπ(a) = min{ΦR,π(u, q) : α = u/q}.

The AFSR synthesis problem can be rephrased as follows:

– Given A prefix of the eventually periodic sequence a= a0, a1, · · · over R/(π).
– Find u, q ∈ R satisfying α = u/q and minimizing ΦR,π(u, q).

This problem was studied by Xu and Klapper using Xu’s rational approximation
algorithm, which is a modification of the Berlekamp-Massey algorithm. They
defined the π-adic complexity a little differently. For the imaginary extensions,
that is D < 0, the size function of AFSRs was defined to be max(ϕD(N(u)),
ϕD(N(q))), where N(·) is the rational norm function on Z[π], and ϕD(·) is the
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length of the D-adic representation of an integer. For real extensions, they used
max(ϕ(u), ϕ(q)), where ϕ(q) = max(2	logD |q0|
, 2	logD |q1|
+1). Although the
form of size function is different from what we use, they are related. E.g., when
D > 0, we have

ΦR,π(u, q) ≤ logD(4max(u2
0, u

2
1, q

2
0 , q

2
1))

≤ logD 4 + 2max (	logD |u0|
, 	logD |u1|
, 	logD |q0|
, 	logD |q1|
) + 2
≤ max(ϕ(u), ϕ(q)) + 2 + logD 4.

2.3 Low-Dimensional Lattice Basis Reduction

A lattice L of rank d is a discrete additive subgroup of Rn of the form

L(b1,b2, · · · ,bd) :=
d∑

i=0

biZ,

where b1,b2, . . . ,bd ∈ R
n are linearly independent vectors over R. We call

(b1,b2, . . . ,bd) a basis of lattice L. Usually, the basis of a lattice is not unique.
For arbitrary vectors b1,b2, . . . ,bd ∈ R

n, let

span(b1,b2, · · · ,bd) :=
d∑

i=0

biR

be the space spanned by b1,b2, . . . ,bd.
Here is some notation we use. Let || · || and 〈·, ·〉 be the Euclidean norm and

inner product of Rn respectively. The notation [b1,b2, . . . ,bd]≤ means ‖b1‖ ≤
‖b2‖ ≤ · · · ≤ ‖bd‖ which is to say the bis are ordered. The Gram matrix,
denoted by G(b1,b2, . . . ,bd), is a d × d symmetric matrix with entries given
by Gij = 〈bi,bj〉. The Voronöı cell is Vor(b1,b2, . . . ,bd) = {x ∣

∣ ‖x − v‖ ≥
‖x‖, ∀ v ∈ L}.

Loosely speaking, the lattice reduction problem is: given an arbitrary lattice
basis, obtain a basis of shortest possible vectors which are mutually orthogo-
nal. Finding a good reduced basis has many important applications in math-
ematics, computer science, and cryptography [5]. For two dimensional lattices,
Gauss’s basis reduction algorithm, which is a generalization of the Euclidean
Algorithm, can be used. For higher dimensions, there are many different kinds of
basis reduction, such as Hermite, Minkowski, Hermite-Korkine-Zolotarev(HKZ),
and Lenstra-Lenstra-Lovász(LLL). The one we use here is Minkowski reduction
because it can reach all the successive minima of a lattice.

Definition 3 [3] (Successive Minima λ1, λ2, . . . , λn). For every lattice L ∈
R

n of rank d the successive minima λ1, λ2, . . . , λn are defined as:

λi = λi(L) := min

⎧
⎨

⎩
r > 0

∣
∣
∣
∣
∣

∃ linearly independent
c1, c2, . . . , ci ∈ L with
‖cj‖ ≤ r for j = 1, 2 . . . , i

⎫
⎬

⎭
, for i = 1, 2, . . . , n.



206 W. Liu and A. Klapper

Definition 4 [14] (Minkowski reduction). A basis [b1,b2, . . . ,bd]≤ of a lat-
tice L is Minkowski-reduced if for all 1 ≤ i ≤ d, bi has minimal norm among all
lattice vectors bi such that [b1,b2, . . . ,bi]≤ can be extended to a basis of L.

Notice that the first vector in a Minkowski-reduced basis is the shortest
nonzero vector in lattice L. Given a basis of a lattice L, finding a lattice vector
whose norm is exactly λ1(L) is one of the most famous lattice problems. It is
called the shortest vector problem (SVP). It has been proved to be NP-hard
if the dimension is unrestricted [1]. Nguyen and Stehlé [14] proposed a greedy
algorithm that generalizes Lagrange’s algorithm for lattice reduction to arbitrary
dimension. They showed that up to dimension four, their algorithm computes a
Minkowski-reduced basis in quadratic time without fast arithmetic but as the
dimension increases, the analysis becomes more complex. Figure 2 is an iterative
description of Nguyen and Stehl’s greedy algorithm from [14].

1: procedure GreedyLatticeReduction(b1, b2, . . . , bd)
2: Input: A basis [b1,b2, . . . ,bd]≤ with its Gram matrix
3: Output: An ordered basis of L(b1,b2, . . . ,bd) with its Gram matrix
4: m := 2
5: while m ≤ d do
6: Compute a vector c ∈ L(b1,b2, . . . ,bm−1) closest to bm

7: end while
8: bm := bm − c and update the Gram matrix
9: if ‖bm‖ ≥ ‖bm−1‖ then
10: m := m + 1
11: else
12: insert bm between bm′−1 and bm′ such that ‖bm′−1‖ ≤ ‖bm‖ < ‖b′

m‖.
13: update the Gram matrix and set m := m′ + 1.
14: end if
15: end procedure

Fig. 2. Lattice reduction greedy algorithm

Theorem 2 [14]. Let d ≤ 4. Given as input an ordered basis [b1,b2, . . . ,bd]≤
and its Gram matrix, the greedy algorithm of Fig. 2 outputs a Minkowski-reduced
basis of L(b1,b2, . . . ,bd), with bit complexity in O(log ‖bd‖ · [1 + log ‖bd‖ −
log λ1(L)]), where the O() constant is independent of the lattice. Moreover, in
dimension five, the output basis may not be Minkowski-reduced.

We use the greedy algorithm in four dimensions, i.e., d = 4, to find the
shortest vector in L in our Rational Approximation algorithm. More exactly,
the closest vector problem in step 6 of GreedyLatticeReduction can be
found as follows.
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1. Let h =
∑m−1

i=1 yibi be the orthogonal projection of bm on span(b1,b2, . . . ,
bm−1). Then

G(b1,b2, . . . ,bm−1)

⎛

⎜
⎜
⎜
⎝

y1
y2
...

ym−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

〈b1,bm〉
〈b2,bm〉

...
〈bk−1,bm〉

⎞

⎟
⎟
⎟
⎠

.

2. Let c be the closest vector to h in L(b1,b2, . . . ,bm−1). Then h − c ∈
Vor(b1,b2, . . . ,bm−1). With Theorem 3, c can be found by a suitable exhaus-
tive search.

Theorem 3 [14]

1. Let [b1,b2]≤ be a Minkowski-reduced basis and u ∈ Vor(b1,b2). Write u =
xb1 + yb2. Then |x| < 3/4 and |y| ≤ 2/3.

2. Let [b1,b2,b3]≤ be a Minkowski-reduced basis and u ∈ Vor(b1,b2,b3). Write
u = xb1 + yb2 + zb3. Then |x| < 3/4, |y| ≤ 2/3 and |z| ≤ 1.

3 k-th Approximation Lattices

Definition 5. Let π =
√

D, where D ∈ Z is square free. Let R = Z[π] and
let Rπ be the ring of π-adic integers. Suppose α = a0 + a1π + a2π

2 + · · · is an
element in Rπ. The kth approximation lattice of α is defined as

Lk = Lk(α) := {(u1, u2, u3, u4) ∈ Z
4 : α(u3 + u4π) − (u1 + u2π) ≡ 0 (mod πk)}

Notice that for every element (u1, u2, u3, u4) in Lk(α), we have

α ≡ u1 + u2π

u3 + u4π
(mod πk) if u3 + u4π �= 0.

Thus the pair (u, q) with u = u1+u2π and q = u3+u4π represents a fraction u/q
whose π-adic expansion agrees with α in the first k places. We call (u, q) a rational
approximation of α up to k terms. If αk =

∑k−1
i=0 aiπ

i = a + bπ, where a, b ∈ Z,
then u1 = (a, b, 1, 0) ∈ Lk. Also, it can be verified that u2 = (Db, a, 0, 1) ∈ Lk.
Suppose

πk = c + dπ =

{
D

k−1
2 π, if k is odd;

D
k
2 , if k is even.

Then u3 = (c, d, 0, 0) ∈ Lk and u4 = (Dd, c, 0, 0) ∈ Lk.

Theorem 4. Lk(α) is a four dimensional lattice and (u1,u2,u3,u4) is a basis
of Lk(α). Li+1 is a sublattice of Li for any i ∈ Z.
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Proof. If u = (u1, u2, u3, u4) ∈ Lk and v = (v1, v2, v3, v4) ∈ Lk, then u + v ∈
L. So Lk is a lattice. The four vectors u1,u2,u3,u4 are linearly independent
elements of Lk. Now suppose that x = (x1, x2, x3, x4) is an arbitrary vector in
Lk. So αk(x3 + x4π) − (x1 + x2π) = γπk for some γ = r1 + r2π ∈ R. Making
corresponding terms equal, we have

{
ax3 + bx4D − x1 = r1c + r2dD
bx3 + ax4 − x2 = r2c + r1d.

This also means that x = x3u1 + x4u2 − r1u3 − r2u4. So (u1,u2,u3,u4) is a
basis of Lk.

For any (y1, y2, y3, y4) ∈ Li+1 and any i ∈ Z we have α(y3+y4π)−(y1+y2π) ≡
0(mod πi+1). So α(y3 + y4π)− (y1 + y2π) ≡ 0(mod πi). That is, (y1, y2, y3, y4) ∈
Li. So Li+1 is a sublattice of Li for any i ∈ Z. �

4 The Approximation Algorithm

In this section we give an approximation algorithm based on the algorithm
GreedyLatticeReduction. Let a be a sequence with associated π-adic integer
α. Given a sufficiently large prefix of a, this algorithm finds the rational expres-
sion of α that realizes the π-adic complexity of a. With the help of Greedy-
LatticeReduction, we can find the shortest vector of the kth approximation
lattice which gives the best rational approximation of α up to k terms. Suppose
the π-adic complexity is known. Theorem 5 shows that if k is chosen big enough,
then such a rational approximation is exactly the rational expression we want.
The algorithm shown in Fig. 3 is just for the case when k is even. The odd case
is similar, so details are omitted here.

Theorem 5. Let a be a π-adic sequence with associated π-adic integer α. Sup-
pose the size of the AFSR that generates a is less than or equal to n. That is, the
π-adic complexity of a, ϕπ(a), is less than or equal to n. Let ApproxLattice
(Fig. 3) be executed with k ≥ 2n + 2 + �log|D|(4D2 + 2|1 + D|)�. Suppose the
algorithm outputs a pair (u, q) of elements of R. Then

α =
∞∑

i=0

aiπ
i =

u

q
.

Proof. Let u′/q′ be a rational expression of α with ΦR,π(u′, q′) = ϕπ(a). That
is

α =
∞∑

i=0

aiπ
i =

u′

q′ .

It follows that ΦR,π(u′, q′) ≤ n. Suppose v1 = (v1, v2, v3, v4) where u′ =
v1 + v2π, q′ = v3 + v4π. So v1 ∈ Lk(a).

Let (u, q) be the output of ApproxLattice. Then Theorem 2 shows that
u1 = (u1, u2, u3, u4) in step 14 is the minimal vector in Lk(α).
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1: procedure ApproxLattice(a0, a1, . . . , ak−1)
2: Input: first k terms of sequence a
3: Output: u, q ∈ R satisfying α = u/q and minimizing ΦR,π(x, y)
4: a :=

∑

0≤i≤k/2

a2iD
i

5: b :=
∑

0≤i≤(k−2)/2

a2i+1D
i

6: c := Dk/2

7: u1 := (a, b, 1, 0)
8: u2 := (Db, a, 0, 1)
9: u3 := (c, 0, 0, 0)
10: u4 := (0, c, 0, 0)
11: Sort u1,u2,u3,u4 by their norm ‖ · ‖. Let (u1,u2,u3,u4) be ordered.
12: Compute the Gram matrix G so that Gij = 〈ui,uj〉.
13: (u1,u2,u3,u4) :=GreedyLatticeReduction(u1,u2,u3,u4)
14: Suppose u1 = (u0, u1, q0, q1)
15: return (u0 + u1π, q0 + q1π)
16: end procedure

Fig. 3. Lattice Rational Approximation Algorithm for AFSRs over quadratic extension

We have u = u1 + u2π and q = u3 + u4π. So

‖u1‖ =
√

u2
1 + u2

2 + u2
3 + u2

4 ≤
√

v2
1 + v2

2 + v2
3 + v2

4 = ‖v1‖.

Since

ΦR,π(u, q) = log|D|(u
2
1 + u2

2 + u2
3 + u2

4)

≤ log|D|(v
2
1 + v2

2 + v2
3 + v2

4)

= ΦR,π(u′, q′) ≤ n.

This shows that ϕR,π(u′), ϕR,π(q′), ϕR,π(u), ϕR,π(q) are all less than or equal to
|D|n. We have

u

q
≡ u′

q′ (mod πk),

so

πk
∣
∣
∣
uq′ − u′q

qq′ .

Thus there exists t ∈ R such that tqq′πk = uq′ − u′q. From Proposition 1,

ϕR,π(uq′ − u′q) ≤ 2(ϕR,π(uq′) + ϕR,π(u′q))
≤ (2D2 + |1 + D|)(ϕR,π(u)ϕR,π(q′) + ϕR,π(u′)ϕR,π(q′))
≤ (4D2 + 2|1 + D|)|D|2n.

For any e = e1 + e2π �= 0 ∈ Z[π], we have

eπk =

{
e1D

k
2 + e2D

k
2 π if k is even

e2D
k+1
2 + e1D

k−1
2 π if k is odd.
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Therefore ϕR,π(eπk) > |D|k−2. This is to say, ϕR,π(tqq′πk) > |D|k−2 if t �= 0. But
from k ≥ 2n+2+�log|D|(4D2+2|1+D|)� we have |D|k−2 ≥ (4D2+2|1+D|)|D|2n.
So t must be 0, which also means uq′ − u′q = 0. This proves that

u

q
=

u′

q′ =
∞∑

i=0

aiπ
i.

From the proof we also know that ΦR,π(u, q) reaches the π-adic complexity of
sequence a which means that we find the smallest AFSR that generates a. �

Theorem 6. The Lattice Rational Approximation Algorithm, ApproxLattice,
runs in time O(k2) if k elements of a are used.

Proof. The time complexity of getting u1,u2,u3,u4 from step 4 to step 10 in
Fig. 3 is O(k log k). Since

|a| =

∣
∣
∣
∣
∣
∣

∑

0≤i≤k/2

a2iD
i

∣
∣
∣
∣
∣
∣
≤ |D|k/2+1,

|b| =

∣
∣
∣
∣
∣
∣

∑

0≤i≤(k−2)/2

a2iD
i

∣
∣
∣
∣
∣
∣
≤ |D|k/2, and

|c| ≤ |D|k/2,

we have max(‖u1‖, ‖u2‖, ‖u3‖, ‖u4‖) ≤ √
2|D|(k+3)/2.

In step 11, to compute and sort ‖u1‖, ‖u2‖, ‖u3‖, ‖u4‖ takes time O(k2)
because the dimension of Lk is fixed. Also, the time complexity for computing
the Gram matrix G is O(k2).

The most costly step in ApproxLattice is Step 13 that calls Greedy-
LatticeReduction. According to Theorem2, the time complexity is bounded
by O

(
log(

√
2|D| k+3

2 )[1 + log(
√

2|D| k+3
2 ) − log λ1(Lk)]

)
= O(k2), where λ1(L) is

the smallest vector in Lk. To sum up, the time complexity of ApproxLattice
is O(k2). �

Xu’s algorithm [11] has worst case time complexity O(
∑ϕ(a)

k=1 σ(k)), where
σ(k) is the time needed to add two elements a, b ∈ Z[π] with the length of
π-adic expansion at most k. So it also runs in quadratic time. The number
of terms needed to get the exact rational expression is 52ϕ(a) + c, with some
constant c. ApproxLattice only needs 2ϕπ(a) + c′ terms to get the exact
rational expression, with some constant c′.

5 Conclusions

In this paper we proposed a synthesis algorithm for AFSRs over Z[
√

D] based on
low-dimensional lattice reduction. It has the same time complexity as Xu’s algo-
rithm but needs fewer terms of the sequence to get the exact rational expression.
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With the same idea, we may extend this approach to cubic or higher extensions of
Z. This becomes complicated because of the complexity of the lattice reduction
problem. In further work we will try to use other lattice reduction algorithms,
such as the LLL lattice basis reduction algorithm, to reduce the basis of kth
approximation lattice so that we can find the shortest possible vectors.
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Abstract. One of the main contributions which Harald Niederreiter
made to mathematics is related to pseudorandom sequences theory. In
this article, we improve on a bound on one of the pseudorandom number
generators (PRNGs) proposed by Harald Niederreiter and Arne Winter-
hof and study its lattice structure. We obtain that this generator passes
general lattice tests for arbitrary lags for high dimensions.

Keywords: Lattice tests · Inversive methods · Additive order

1 Introduction

Pseudorandom numbers are used in many fields, like cryptography, financial math-
ematics, simulations, etc. The diversity among methods comes from the different
nature of requirements, citing a famous sentence “what is appropiate for a video
game is not appropiate for a nuclear reactor”. Linear methods are the most pop-
ular choice for generating pseudorandom sequences and are implemented in the
API of the java language. Inversive methods are popular and competitive alterna-
tives to the linear method for generating pseudorandom numbers, see [7] and the
surveys [8,9,16,17].

In this paper we analyze the lattice structure of digital explicit inversive
pseudorandom numbers introduced in [10] and further analyzed in [6,11,12,14].
To introduce this class of generators we need some notation.

Let q = pr be a prime power and Fq the finite field of order q. Let

γ =
{

γ−1, if γ ∈ F
∗
q ,

0, if γ = 0.

We order the elements of Fq = {ξ0, ξ1, . . . , ξq−1} using an ordered basis {γ1, . . . ,
γr} of Fq over Fp for 0 ≤ n < q,

ξn = n1γ1 + n2γ2 + · · · + nrγr,

Dedicated to Harald Niederreiter on the occasion of his 70th birthday.

c© Springer International Publishing Switzerland 2014
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if
n = n1 + n2p + · · · + nrp

r−1, 0 ≤ ni < p, i = 1, . . . , r.

For n ≥ 0 we define ξn+q = ξn. Then the digital explicit inversive pseudorandom
number generator of period q is defined by

ρn = αξn + β, n = 0, 1, . . .

for some α, β ∈ Fq with α �= 0. Digital explicit inversive pseudorandom number
generators are used for generating low discrepancy sequences. If

ρn = cn,1γ1 + cn,2γ2 + · · · + cn,rγr

with all cn,i ∈ Fp, we derive digital explicit inversive pseudorandom numbers of
period q in the interval [0, 1) by defining

yn =
r∑

j=1

cn,jp
−j , n = 0, 1, . . . .

Bounds on the discrepancy of points generated from these sequences appear
in [10] and in [1,2]. Also, inversive methods were considered by Hu and Gong
in [5] where it was proven a bound on the autocorrelation of this family of
sequences.

Our goal in this paper is to study the behaviour of the digital explicit inversive
pseudorandom number generator under a generalized test introduced in [13]. For
the convenience of the reader, we give here a brief description of this test.

For given integers L ≥ 1, 0 < d1 < · · · < dL−1 < T and (sn) a sequence of ele-
ments in Fq, (sn) passes the L−dimensional N -Lattice Test with lags d1, . . . , dL−1

if the vectors

{sn − s0 : sn = (sn, sn+d1 , . . . , sn+dL−1), for 0 ≤ n < N},

span F
L
q . The greatest dimension L such that (sn) passes the L-dimensional

N -lattice test for all lags d1, . . . , dL−1 is denoted by T ((sn), N).
The authors in [14] studied the lattice test for digital explicit inversive gen-

erators and they obtained bounds on T ((ρn), N), even in parts of the sequence.
We cite here part of their main result.

Lemma 1 (Theorem 1 and 2 in [14]). Let (ρn) be a sequence arising from
a digital explicit inverse pseudorandom number generator defined over Fq with
q = pr, then we have that,

T ((ρn), N) ≥ log N − log log N − 1
r − 1

− 1,

for 2 ≤ N < q if r > 1. For r = 1 the inequality

T ((ρn), N) ≥ N

2
− 1,

holds for 2 ≤ N < q.
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We want to stress the different nature of both results. For r = 1, the bound is
linear in N whereas only a logarithmic lower bound is given for r > 1. Indeed,
the bound for r > 2 can be obtained when N = q for any sequence (sn) of period
q with sufficiently high linear complexity, see [4].

Here, we show that this bound can be improved using hyperplane arrange-
ments.

2 Hyperplane Arrangements

Hyperplane arrangements is a concept well studied in the field of combinatorial
geometry, see [3]. We only introduce enough theory to understand the proof of
the main result and follow the nice introduction given in [15].

Let d be a positive integer and R the field of real numbers. We denote by

a = (a1, . . . , ad), a1, . . . , ad ∈ R

elements of R
d, where R

d is a vector space of dimension d over the field R.
We also consider matrices with the usual operations involving matrices, namely
multiplication, addition and transposition. Also, it is needed the topological
concept of dimension of a set of points in R

d. Vectors in R
d are matrices with d

rows and 1 column. The notation for the transposition of a matrix A is AT.

Definition 1. Given a ∈ R − {0} and b ∈ R, the set {x ∈ R
d : aTx = b} is

called a hyperplane.

We also use a · x to denote aTx, which correspond to the standard dot product,
and the matrix form Ax = b to encode the finite set of hyperplanes H =
{H1, . . . ,Hm}, where

Hi = {x ∈ R
d :

d∑

j=1

ai,jxj = bi}. (1)

Definition 2. A set of hyperplanes in R
d partitions the space into relatively

open convex polyhedral regions, called faces, of all dimensions. This partition is
called a hyperplane arrangement.

We make a distinction between the two sides of a hyperplane. A point p ∈ R
d is

on the positive side of hyperplane Hi, denoted by H+
i , if

d∑

j=1

ai,jpj > bi.

Similarly, we define p ∈ R
d is on the negative side of hyperplane Hi and we

denote it by H−
i .
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For each point p ∈ R
d we define a sign vector of length m consisting of

1, 0,−1 signs as follows:

sv(p)i =

⎧
⎪⎨

⎪⎩

1 if p ∈ H+
i ,

−1 if p ∈ H−
i ,

0 if p ∈ Hi,

where i = 1, . . . , m and m is the number of hyperplanes.

Definition 3. A face is a set of points with the same sign vector. It is called a
i-face if its dimension is i ≤ d and a cell if the dimension is d.

As a small comment, the dimension of a face is at least d minus the number of
ceros in the sign vector of any of the points of the face. The number of faces of
given dimension in a hyperplane arrangement is given in the following result

Lemma 2 (Theorem 1.3 in [3]). Given a set of hyperplanes H={H1, . . . , Hm}
in R

d, then the number of i-faces in the correspondent hyperplane arrangement
can be bounded by,

i∑

j=0

(
d − j

i − j

)(
m

d − j

)

.

3 Main Result

Now, we have all the technical tools to prove the main result. The proof is a
minor modification of the one in [14, Theorem 1] and the only difference is the
estimate for the number of possible carries. Nevertheless, for the sakeness of
completeness, we include it here without claiming any priority over it.

Theorem 1. For the sequence of elements (ρn) defined by an inversive pseudo-
random number generator of period q = pr, we have

6T ((ρn), N) ≥
(

N

(r)r−1

)1/r

,

for 2 ≤ N ≤ q.

Proof. The case r = 1 is stated in Lemma 1 so assume that r ≥ 2 and the
sequence (ρn) does not pass the L-dimensional N -lattice test for some lags 0 <
d1 < d2 < · · · < dL−1 < q. Put

ρn = (ρn, ρn+d1 , . . . , ρn+dL−1), n ≥ 0,

and let V be the subspace of FL
q spanned by all ρn −ρ0 for 0 ≤ n < N . Consider

the orthogonal space of V , i.e. {u : u · v = 0, ∀v ∈ V }, whose dimension is
different from 0. So, there exits α �= 0 such that,

ρn · α = ρ0 · α, for 0 ≤ n < N.
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Calling δ = ρ0 · α and j the smallest index with αj �= 0 we have1

αjρn+dj
+ αj+1ρn+dj+1 + · · · + αL−1ρn+dL−1 = δ, for 0 ≤ n < N. (2)

For all 1 ≤ i < L and 0 ≤ di, n < q, let

di =
r∑

j=1

di,jp
j−1, 0 ≤ di,1, . . . , di,r < p,

and

n =
r∑

j=1

njp
j−1, 0 ≤ n1, . . . , nr < p,

be the p-adic expansions of di and n, respectively. We now define the vectors
of the carries that occur in the additions of n + di. Let wi,1 = 0 and define for
1 ≤ h ≤ r recursively

wi,h+1 =

{
1, if di,h + nh + wi,h ≥ p,

0, otherwise.

Then we have

n + di =
r∑

j=1

zi,jp
j−1, 0 ≤ zi,1, . . . , zi,r < p,

with
zi,j = di,j + nj + wi,j − wi,j+1p, 1 ≤ j ≤ r,

and

ξn+di
= ξn + ξdi

+ wi, where wi =
r∑

j=1

wi,jγj .

Previously only trivial estimates were used to count the number of possible
choices for wj , . . . , wL−1. Now, we are going to use hyperplane arrangements to
bound this number. Consider the following sets of hyperplanes in R

r,

{H1
i,j : 1 ≤ i ≤ L, 1 ≤ j ≤ r} ∪ {H2

i,j : 1 ≤ i ≤ L, 1 ≤ j ≤ r},

where

H1
i,j = {x ∈ R

r : xj + di,j = p − 0.1}, H2
i,j = {x ∈ R

r : xj + di,j = p − 1.1}.

It is easy to encode the union of these two sets of hyperplanes by Ax = b as in
Eq. (1). Matrix A is a matrix with 2Lr rows and r columns that it is constructed

1 If j = 0, we will denote d0 = 0, although the lags are d1, . . . , dL−1.
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by stacking 2L identity matrices of dimension r. The first L components of vector
b are just joining the following L vectors,

(p − 0.1, . . . , p − 0.1), (p − d1,1 − 0.1, . . . , p − d1,r − 0.1),
. . . , (p − dL−1,1 − 0.1, . . . , p − dL−1,r − 0.1),

and the next L components are,

(p − 1.1, . . . , p − 1.1), (p − d1,1 − 1.1, . . . , p − d1,r − 1.1),
. . . , (p − dL−1,1 − 1.1, . . . , p − dL−1,r − 1.1).

Using the previous notation, it is trivial that if n, n′ are two different integers
satisfying

ξn+di
= ξn + ξdi

+ wi, ξn′+di
= ξn′ + ξdj

+ w′
i,

with wi �= w′
i for some i ∈ 1, . . . , r, then the sign vectors of the points (n1, . . . , nr),

(n′
1, . . . , n

′
r) ∈ R

r are different, where

n =
r∑

j=1

njp
j−1, n′ =

r∑

j=1

n′
jp

j−1, 0 ≤ n1, . . . , nk, n
′
1, . . . , n

′
k < p.

The reason is the following, if sv((n1, . . . , nr)) = sv((n′
1, . . . , n

′
r)), then both

points must be in the same side of the hyperplanes H1
i,1,H

2
i,1 for i = 1, . . . , L,

which is equivalent to,

di,1 + n1 > p − 0.1 ⇐⇒ di,1 + n′
1 > p − 0.1, =⇒ wi,2 = w′

i,2.

In general, wi,h = w′
i,h because

– wi,h = w′
i,h = 1 and the points lie in the same side of H2

i+L,h+1.
– wi,h = w′

i,h = 0 and the points lie in the same side of H1
i,h+1.

We are only interested in the faces of dimension greater or equal than r − 12

Using Lemma 2, we get that the number of (r − 1)-faces plus the number of
r-faces is less than

(r + 1)
r−1∑

j=0

(
2rL

r − j

)

≤ (6rL)r−1.

So there exists a vector (wj , . . . , wr−1) such that for at least

N

(6rL)r−1
,

2 Because we always consider wi,1 = 0. It is also equivalent to discard x1, i. e. working
in R

r−1.
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different n with 0 ≤ n < N we have ξn+di
= ξn + ξdi

+ wi, j ≤ i < r. We have
ρn+di

= 0 for some value 1 ≤ i < r for at most r − j different n. If ρn+d �= 0
then we can write ρn+d = αξn+d + β. By Eq. (2), we have

αjαξn + ξdj
+ wj + β + . . . + αL−1αξn + ξdL−1 + wL−1 + β = δ,

for at least N/(6rL)r−1−L different elements ξn. Operating and using Lagrange
theorem, the number of solutions of the previous equation is less than L, so

2L ≥ N/(6rL)r−1 or, 6L ≥
(

N
(r)r−1

)1/r

and this finishes the proof.

Final Comments

No effort has been put in getting the best possible constant in the theorem. The
reason is to avoid technical details as much as possible and focus on hyperplane
arrangements. The new idea in this paper is using hyperplane arrangements,
which seems to be new to study sequences via additive order. We think that
this could lead to improvements to study distribution of sequences via additive
order. However, new ideas are needed to be added. For example, hyperplane
arrangements applied to the results in [2], give better constants in the results
but not significant improvements. Also, the result in this paper applies only
when p is sufficiently large. It would certainly be very interesting to see how to
apply this technique for p = 2.

Acknowledgement. This work is supported in part by the Spanish Ministry of Sci-
ence, project MTM2011-24678.
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Abstract. The Common Scrambling Algorithm Stream Cipher (CSA-
SC) is a shift register based stream cipher designed to encrypt digital
video broadcast. CSA-SC produces a pseudo-random binary sequence
that is used to mask the contents of the transmission. In this paper,
we analyse the initialisation process of the CSA-SC keystream generator
and demonstrate weaknesses which lead to state convergence, slid pairs
and shifted keystreams. As a result, the cipher may be vulnerable to dis-
tinguishing attacks, time-memory-data trade-off attacks or slide attacks.

Keywords: Common scrambling algorithm · Stream cipher · Initialisa-
tion · State convergence · Slid pairs · Shifted keystream

1 Introduction

European digital television signals are encrypted using the Digital Video Broad-
casting Common Scrambling Algorithm (CSA) specified by the European Tele-
communications Standards Institute (ETSI) [12]. CSA consists of a cascade of
block and stream ciphers. To encrypt, the block cipher is applied first, followed
by the stream cipher. To decrypt, the stream cipher is applied first, followed
by the block cipher. Both block and stream ciphers use the same 64-bit key,
although Tews et al. [17] note that many applications use keys with only 48 bits
of entropy. The stream cipher component of the Common Scrambling Algorithm
is referred to as CSA-SC, as in [4]. CSA-SC consists of a keystream generator
which produces a pseudo-random binary sequence. This sequence is combined
with the underlying digital video stream using bitwise XOR (binary addition),
so the security of CSA-SC depends solely on the keystream generator.

CSA-SC has been described in several different ways, with different internal
state sizes. Bewick’s patents [3,4] have an internal state of 107 bits. Weinmann
and Wirt [18] reduced this to 103 bits by removing a 4-bit memory. Simpson
et al. [16] model CSA-SC with an 89-bit internal state, by shifting the positions
c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 220–233, 2014.
DOI: 10.1007/978-3-319-12325-7 19
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of the inputs to the S-boxes by one stage, to remove additional memories. These
models are functionally equivalent. This paper uses the 89-bit model from [16].

Keystream generators are finite state machines and require an initial state
to be set before keystream can be produced. This paper analyses the initialisa-
tion process of CSA-SC; previous analyses [16,18] relate only to the keystream
generation process. Two security flaws in the initialisation process of CSA-SC
are investigated, which lead to state convergence, slid pairs and the production
of phase-shifted keystreams. State convergence results in two generators with
different inputs producing the same output sequence. Slid pairs occur when the
same internal state is obtained in two different generators at slightly different
times; this can lead to keystream sequences where one sequence is simply a
shifted version of the other. We conclude by discussing the security implications
of these weaknesses.

2 Description of CSA-SC

CSA-SC uses word based registers (with a 4-bit word size) and bit based state
update functions. There are two feedback shift registers (denoted A and B), a
combiner with memory (with stages denoted E, F and c) and seven 5×2 S-boxes,
as shown in Fig. 1. Registers A and B each have ten stages; each stage stores a
nibble (4-bit word). The combiner memories E and F each store a nibble, and c
stores only 1 bit. Figure 1 shows the structure and operation of CSA-SC during
both keystream generation and initialisation. (Dashed lines apply only during
initialisation.) The least significant bit or stage of each nibble is indexed by 0, ⊕
denotes bitwise XORs, � denotes addition modulo 24 and ≪ i represents a left
rotation by i bits. Note also that all S-Box outputs in this model are constrained
to be zero for the first iteration of initialisation [16].

0 6 90 9

14 Boolean 
functions

35
bits

16
bits

RegisterRegister

4 4 

4 

4 

4 

2 

1 

4 

4 

4 4 

4 

4 

4 

Output

if q = 0
swap (E,F )
c = c

else
E = F
F = (E � Z � c) mod 24

c = (E � Z � c) div 24

≪ 1
if p = 1

4 1 

Fig. 1. Common Scrambling Algorithm Stream Cipher (CSA-SC)
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Let At
i and Bt

i denote the contents of the ith stage of registers A and B
respectively, for i ∈ {0, . . . , 9}, at time t. Let at

i,j and bt
i,j denote the content of

the jth bit position of the ith stage at time t for registers A and B, respectively,
for i ∈ {0, . . . , 9} and j ∈ {0, . . . , 3}. Let Et, F t and ct represent the contents of
the memory stages E, F and c at time t, respectively. Let et

j and f t
j represent

the jth bit of the memories E and F at time t for j ∈ {0, . . . , 3}.
CSA-SC uses a 64-bit secret key K = k0, . . . , k63 and a 64-bit initial value

(IV) V = v0, . . . , v63, where ki and vi are the ith key and IV bits, respectively.
During initialisation the Key and IV are spread across the entire internal state.
Let It

A and It
B denote 4-bit words taken from the IV, and used at time t as input

to registers A and B respectively (details are given in the following section). Let
itA,j and itB,j represent the jth bits of It

A and It
B respectively for j ∈ {0, 1, 2, 3}.

We treat the seven 5 × 2 S-boxes as 14 5-input Boolean functions, each of
which takes inputs from register A. Let Sj(i0, i1, i2, i3, i4) represent the jth

Boolean function with respect to 5 inputs (i0, i1, i2, i3, i4) for j ∈ {1, . . . , 14}.
Consistent with previous references [16,18], we denote the outputs of the 14
Boolean functions as X = (xt

0, x
t
1, x

t
2, x

t
3), Y = (yt

0, y
t
1, y

t
2, y

t
3), Z = (zt

0, z
t
1, z

t
2, z

t
3),

pt and qt. For more detail, see Tables 6 and 7 (in Appendix A).

2.1 Initialisation Process

During initialisation, the key and IV are introduced into the 89-bit internal state
in two phases: key loading and diffusion. Unlike most stream ciphers, loading of
the IV in CSA-SC is performed during the diffusion phase.

Key Loading Phase: All registers and memories are first set to zero and the
key is transferred to specified positions in registers A and B as follows:

a−32
i,j =

{
k4·i+j for i ∈ {0, . . . , 7}, j ∈ {0, . . . , 3}
0 for i ∈ {8, 9}, j ∈ {0, . . . , 3}

b−32
i,j =

{
k32+4·i+j for i ∈ {0, . . . , 7}, j ∈ {0, . . . , 3}
0 for i ∈ {8, 9}, j ∈ {0, . . . , 3}

Diffusion Phase: After loading the key, 32 iterations of the initialisation state
update function are performed (starting at t = −31) [18] while simultaneously
loading the IV. At each iteration two different nibbles of the IV, denoted It

A and
It
B, are input to stages At

0 and Bt
0. The nibbles It

A and It
B are defined as:

It
A =

{
vx, vx+1, vx+2, vx+3 for t ∈ {−31,−29, . . .}
vx+4, vx+5, vx+6, vx+7 for t ∈ {−30,−28, . . .}

It
B =

{
vx+4, vx+5, vx+6, vx+7 for t ∈ {−31,−29, . . .}
vx, vx+1, vx+2, vx+3 for t ∈ {−30,−28, . . .}

for x = 8 × [7 + �t/4�]
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Thus, every byte of the IV is used in four consecutive iterations of the state
update function, with the high and low nibbles of the byte being input alternately
to each of A0 and B0.

The state update functions for shift registers A and B during the initialisation
process (shown in Fig. 1, including the dashed lines) are as follows:

At
i = At−1

i−1 for i ∈ {1, . . . , 9} (1a)

At
0 = At−1

9 ⊕ Xt−1 ⊕ Dt−1 ⊕ It
A (1b)

Bt
i = Bt−1

i−1 for i ∈ {1, . . . , 9} (2a)

Bt
0 = (Bt−1

6 ⊕ Bt−1
9 ⊕ Y t−1 ⊕ It

B) ≪ pt−1 (2b)

The state update functions for memories E, F and c are:

Et = F t−1 (3a)

F t =

{
Et−1 if qt−1 = 0
Et−1 � Zt−1 � ct−1 mod 24 if qt−1 = 1

(3b)

ct =

{
ct−1 if qt−1 = 0
(Et−1 � Zt−1 � ct−1) div 24 if qt−1 = 1

(3c)

Selected bits from register B are XORed with Et and Zt to give a 4-bit word
denoted Dt:

Dt = Et ⊕ Zt ⊕ Bt
out (4)

where Bt
out = (bt

0,out ‖ bt
1,out ‖ bt

2,out ‖ bt
3,out)

= (bt
8,2 ⊕ bt

5,3 ⊕ bt
2,1 ⊕ bt

7,0 ‖ bt
4,3 ⊕ bt

7,2 ⊕ bt
3,0 ⊕ bt

4,1 ‖
bt
5,0 ⊕ bt

7,1 ⊕ bt
2,3 ⊕ bt

3,2 ‖ bt
2,0 ⊕ bt

5,1 ⊕ bt
6,2 ⊕ bt

8,3)

and || denotes concatenation. During initialisation, D is used in updating A, as
per Eq. 1b.

At the end of the initialisation process (t = 0), the cipher is in its initial state
and keystream generation can begin.

2.2 Keystream Generation

During this phase, there is no feedback from pre-output word D to register A
and no IV input. The state update functions for A and B are simply:

At
0 = At−1

9 ⊕ Xt−1

Bt
0 = (Bt−1

6 ⊕ Bt−1
9 ⊕ Y t−1) ≪ pt−1
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At time t, the keystream generator generates a 2-bit output word zt from Dt

by combining bits as follows: zt = ((dt
2 ⊕ dt

3)||(dt
0 ⊕ dt

1)).

3 State Convergence in CSA-SC

Before considering state convergence in CSA-SC, we note a related issue. CSA-
SC uses a 64-bit secret key and a 64-bit IV to form an 89-bit internal state. Thus,
the 2128 possible Key-IV combinations are mapped to at most 289 internal states,
so clearly multiple Key-IV pairs map to the same internal state. On average, each
internal state corresponds to 239 Key-IV pairs.

State convergence occurs when two or more distinct states at time t are
mapped to the same state at time t + 1; that is, when the state update function
is not one-to-one. As the state size is fixed, this implies that some states at
time t + 1 must have no pre-image, that is, these states cannot occur at time
t + 1. Thus state convergence reduces the effective state size, which may leave
the stream cipher vulnerable to attacks such as distinguishing attacks [15] or
time-memory-data trade-off attacks [5].

State convergence does not occur in CSA-SC during keystream generation,
as the state update function is one-to-one during this process; however, it does
occur during initialisation (specifically, in the diffusion phase). To show this, we
assume that the state contents are known at time t and consider possible pre-
image states at time t − 1. Most of the state contents at time t − 1 are directly
transferred to known locations at time t; these cannot take multiple values at
time t − 1. The exceptions are At−1

9 , Bt−1
9 and, when qt−1 = 1, Et−1 and ct−1;

we consider possible contents for these locations.
We present below the analysis for the case qt−1 = 0. (As the Boolean function

S14 is balanced, this case applies to exactly half of the possible internal states.)
State convergence can also occur in CSA-SC when qt−1 = 1, as demonstrated
by the example in Table 1, but we omit details of that analysis.

Table 1. Two pre-images for a given state when qt−1 = 1

A B E F c

State 0010010101010111000100001101110101010001 1001111001011110010101101110110101110011 0010 0011 1
1st pre-image 0101010101110001000011011101010100010111 1110010111100101011011101101011100111000 0101 0010 0
2nd pre-image 0101010101110001000011011101010100010100 1110010111100101011011101101011100111100 0101 0010 1

3.1 Bit-Level Analysis (qt−1 = 0)

Assume the state contents at time t are known and consider the possible contents
of At−1

9 . The contents of At−1
9 affect the values of At

0 and Bt
0, but are not in the

state at time t. We show below that multiple distinct values for At−1
9 may result

in the same value for each of At
0 and Bt

0.
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After substituting from Eq. 4, Eqs. 1b and 2b can be re-written to give the
following bit-level equations for At−1

9 and Bt−1
9 :

at−1
9,0 = C0 ⊕ at

0,0 ⊕ S9(at−1
2,1 . . . at−1

9,1 ) (6a)

at−1
9,1 = C1 ⊕ at

0,1 ⊕ S10(at−1
4,0 . . . at−1

9,0 ) (6b)

at−1
9,2 = C2 ⊕ at

0,2 ⊕ S3(at−1
2,1 . . . at−1

9,1 ) ⊕ S11(at−1
3,1 . . . at−1

9,3 ) (6c)

at−1
9,3 = C3 ⊕ at

0,3 ⊕ S4(at−1
4,0 . . . at−1

9,0 ) ⊕ S12(at−1
5,2 . . . at−1

9,2 ) (6d)

bt−1
9,0 = C4 ⊕ b′t

0 ⊕ S5(at−1
3,1 . . . at−1

9,3 ) (7a)

bt−1
9,1 = C5 ⊕ b′t

1 ⊕ S6(at−1
5,2 . . . at−1

9,2 ) (7b)

bt−1
9,2 = C6 ⊕ b′t

2 (7c)

bt−1
9,3 = C7 ⊕ b′t

3 (7d)

In these equations, C0 to C7 represent terms that are unaffected by the values
of at−1

9,0 to at−1
9,3 and b′t

j = bt
0,j(1 ⊕ pt−1) ⊕ bt

0,(j−1)mod4(p
t−1) for j ∈ {0, 1, 2, 3}.

More specifically,

C0 = S1(at−1
3,3 . . . at−1

8,0 ) ⊕ et−1
0 ⊕ bt−1

0,out ⊕ itA,0

C1 = S2(at−1
1,3 . . . at−1

6,2 ) ⊕ et−1
1 ⊕ bt−1

1,out ⊕ itA,1

C2 = et−1
2 ⊕ bt−1

2,out ⊕ itA,2

C3 = et−1
3 ⊕ bt−1

3,out ⊕ itA,3

C4 = bt−1
6,0 ⊕ itB,0

C5 = bt−1
6,1 ⊕ itB,1

C6 = bt−1
6,2 ⊕ S7(at−1

3,3 . . . at−1
8,0 ) ⊕ itB,2

C7 = bt−1
6,3 ⊕ S8(at−1

1,3 . . . at−1
6,2 ) ⊕ itB,3

Note that at−1
9,0 to at−1

9,3 appear implicitly on the right hand sides of Eqs. 6 and 7
and that bt−1

9,0 to bt−1
9,3 are determined uniquely once at−1

9,2 and at−1
9,3 are known.

That is, every distinct solution for At−1
9 from Eqs. 6a to 6d yields a unique

corresponding solution for Bt−1
9 .

We now examine Eqs. 6a–6d to identify conditions for state convergence in
CSA-SC. Let x denote the complement of x. For any of the Boolean functions
S3, S4, S9, S10, S11 and S12, the function is said to have even parity with respect
to i4 if S(i0, i1, i2, i3, i4) = S(i0, i1, i2, i3, i4), and to have odd parity with respect
to i4 if S(i0, i1, i2, i3, i4) = S(i0, i1, i2, i3, i4). For example, S9(0, 1, 1, 0, 0) =
S9(0, 1, 1, 0, 1) = 0, so S9 has even parity with respect to i4 when (i0, i1, i2, i3) =
(0, 1, 1, 0). For brevity, we refer to these parity conditions by saying that S is even
or odd. We fix the values of at

0,0 to at
0,3 in Eqs. 6a–6d and investigate possible

solutions at−1
9,0 to at−1

9,3 .
If S9 is even, at−1

9,0 is determined uniquely by Eq. 6a; Eq. 6b then determines
a unique value for at−1

9,1 . Similarly, if S10 is even, at−1
9,1 is determined uniquely
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and leads to a unique solution for at−1
9,0 . Thus at−1

9,0 and at−1
9,1 are both uniquely

determined if either S9 or S10 is even. For example, if at
0,0 = at

0,1 = C0 = C1 = 0
and the inputs (i0, i1, i2, i3) = (0, 1, 1, 0) for both S9 and S10, then S9 is even,
at−1
9,0 = 0 from Eq. 6a and at−1

9,1 = 1 from Eq. 6b.
If S9 and S10 are both odd, the solutions of Eqs. 6a and 6b depend on each

other and the equations may be either inconsistent (no valid solution) or consis-
tent (two valid solutions for at−1

9,0 and at−1
9,1 ). For example, if at

0,0 = at
0,1 = C0 =

C1 = 0 but (i0, i1, i2, i3) = (0, 1, 1, 1) for both S9 and S10, then Eq. 6a gives
at−1
9,0 = S9(0, 1, 1, 1, at−1

9,1 ) = at−1
9,1 but Eq. 6b gives at−1

9,1 = S10(0, 1, 1, 1, at−1
9,0 ) =

at−1
9,0 and these equations have no consistent solution for at−1

9,0 and at−1
9,1 . Con-

versely, if at
0,0 = at

0,1 = C0 = C1 = 0 and (i0, i1, i2, i3) = (1, 0, 1, 0) for both S9

and S10, then Eq. 6a gives at−1
9,0 = S9(1, 0, 1, 0, at−1

9,1 ) = at−1
9,1 , while Eq. 6b gives

at−1
9,1 = S10(1, 0, 1, 0, at−1

9,0 ) = at−1
9,0 , with the two solutions at−1

9,0 = at−1
9,1 = 0 and

at−1
9,0 = at−1

9,1 = 1.
Once at−1

9,0 and at−1
9,1 have been determined, we consider Eqs. 6c and 6d for

at−1
9,2 and at−1

9,3 . For a particular solution to Eqs. 6a and 6b, the values of at−1
9,0

and at−1
9,1 determine the values of S3(. . . , at−1

9,1 ) and S4(. . . , at−1
9,0 ). These values

can be included in the constants C2 and C3; a similar argument and analysis
then shows that:

– If either S11 or S12 is even, the values of at−1
9,2 and at−1

9,3 are determined uniquely
from the related equations.

– If S11 and S12 are both odd, there is either no solution for at−1
9,2 and at−1

9,3 or
there are two complementary solution pairs for these variables.

Number of Solutions: Combining the above arguments, there are zero to four
solutions to Eqs. 6a–6d. In particular,

– If there is no solution for at−1
9,0 and at−1

9,1 , it is not possible to obtain a valid
solution set for at−1

9,0 to at−1
9,3 ; that is, no solution exists for At−1

9 .
– If there is a unique solution for at−1

9,0 and at−1
9,1 , there are either no, one or two

solutions for At−1
9 exactly when at−1

9,2 and at−1
9,3 have no, one or two solutions.

– When there are two valid solution pairs for at−1
9,0 and at−1

9,1 , then
(a) if either S11 or S12 is even, each of these pairs has a unique solution for

at−1
9,2 and at−1

9,3 , so there are exactly two solutions for At−1
9 ;

(b) if S11 and S12 are both odd, the equations for at−1
9,2 and at−1

9,3 have either
zero or two solutions for each solution pair (at−1

9,0 , at−1
9,1 ). In fact,

• If S3 and S4 are both even or both odd, there are either zero or four
solution sets for At−1

9 .
• If one of S3 and S4 is even and the other is odd, there are exactly two

solution sets for At−1
9 .

Based on this analysis, it is possible to find states with multiple pre-images.
Tables 2 and 3 show examples of states with two and four pre-images respectively.
Note that the pre-image states differ in bits a9,0 to a9,3 and b9,0 to b9,3 (shown
in bold). The probability that a randomly chosen state has a given number of
pre-images is discussed in Sect. 3.2 and summarised in Table 4.
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Table 2. Two pre-images for a given state when qt−1 = 0

A B E F c

State 1110010101010101000100001101010101010001 0010111001011110010101101110110101010011 0010 1100 1
1st pre-image 0101010101010001000011010101010100010100 1110010111100101011011101101010100110111 1100 0010 1
2nd pre-image 0101010101010001000011010101010100010111 1110010111100101011011101101010100110111 1100 0010 1

Table 3. Four pre-images for a given state when qt−1 = 0

A B E F c

State 0100010101010001000101010101010001110101 1001111001011110010101101110110101010011 0010 0001 1
1st pre-image 0101010100010001010101010100011101010000 1110010111100101011011101101010100110100 0001 0010 1
2nd pre-image 0101010100010001010101010100011101010011 1110010111100101011011101101010100111000 0001 0010 1
3rd pre-image 0101010100010001010101010100011101011110 1110010111100101011011101101010100110000 0001 0010 1
4th pre-image 0101010100010001010101010100011101011101 1110010111100101011011101101010100111100 0001 0010 1

3.2 Probabilities for Numbers of Pre-image States

The options discussed in the analysis above can be represented as a tree diagram,
as in Fig. 2 (“Cons.” and “Incons.” indicate consistent and inconsistent equation
pairs, respectively). Based on this, we determine the distribution of the number
of pre-image states at time t − 1 for a randomly chosen state at time t.

1/2

1/2

1/2

1 solution

0 solution

2 solutions

49/64

17/32

15/32

1/2

1/2

15/64

1/21/2

0 solution
17/32

2 solutions

15/32

1/8

3/8

1/2

1/2
0 solution

4 solutions

0 solution
4 solutions

2 solutions

Start

Fig. 2. Tree diagram for solution alternatives

The loading format (Sect. 2.1) dictates that A9 contains zeros during the first
two clocks of initialisation (t = −31,−30). Therefore, multiple valid pre-images
cannot occur at these clock steps. From t = −30 onwards, assume a uniform
distribution for the contents of register A; the probabilities of each branch in
Fig. 2 can be found from the truth tables for S3, S4, S9, S10, S11 and S12 (Table 7
in Appendix A) and by noting that the probability of consistent equations (where
relevant) is 1

2 (as the contents of A9 are uniformly distributed). From the branch
probabilities, we calculate the total probability of each leaf node and combine
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these according to the number of solutions for each node, giving the results in
Table 4. Note that the number of solutions is the number of pre-images for the
given state.

Table 4. Probabilities of various numbers of pre-images when qt−1 = 0

Number of pre-images 0 1 2 4

Probability 5085
16384

833
2048

2205
8192

225
16384

Probability (decimal) 0.31 0.407 0.269 0.014

3.3 Extent of Convergence

At t = −30, there are 272 possible states, as 64 key bits and 8 IV bits have been
loaded. Of these, 271 states have q−30 = 0. At the next clock step, these 271

states will clock to only (1 − 5085
16384 ) · 271 = 270.46 distinct states, a proportional

loss of 5085
16384 ≈ 0.31. The 271 states with q−30 = 1 will also clock to a smaller

number of distinct states, but we have not yet determined the size of this effect.
Ignoring the latter effect for the moment, the proportion of states lost overall is
at least 5085

32768 ≈ 0.155.
At t = −30, stages A2 to A9 of register A contain key bits and the first byte

of the IV has determined the contents of stages A0 and A1. Thus, all stages of
register A can take any possible value, and the above analysis of state space
reduction is exact. After t = −30, the results of subsequent clock steps may
depend on those of earlier steps, as the register contents and feedback bits clock
through the input locations for the various S-boxes. However, none of the S-
boxes has an input set which clocks directly onto the inputs of any other S-box,
so it seems reasonable to assume that the results at later clock steps are nearly
independent of those at earlier steps. On this basis, we obtain an approximate
upper bound on the effective state size at t = 0 (the end of initialisation) of
(1 − 0.155)30 ≈ (2−0.243)30 ≈ 2−7.30 of the state size without convergence; in
other words, the amount of accessible state space decreases by a minimum of
approximately 7 bits during initialisation.

4 Analysis of Slid Pairs

Slide attacks were first introduced against block ciphers [7,8] and later adapted
to stream ciphers [7,19]. These attacks depend on the existence of slid pairs
(defined below) and on whether the slid pairs lead to phase-shifted keystreams.
When a Key-IV pair (K ′, V ′) produces a loaded state that can also be obtained
from another Key-IV pair (K,V ) after a number of iterations α of initialisation,
we refer to these two states as a slid pair. Subject to certain conditions, the
keystream generated by (K ′, V ′) may then mimic the keystream generated by
(K,V ), but phase-shifted by a fixed multiple of α bits.
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In this section we look for pairs (K,V ) and (K ′, V ′) which produce phase-
shifted versions of the same keystream. For CSA-SC, loaded states correspond
to loaded keys only since the IV is loaded during the diffusion phase. Thus, the
second state of a slid pair depends only on K ′ and we only need to consider V ′

when determining whether the slid pair gives shifted keystream.
Firstly, suppose that a pair (K,V ) yields a loaded state after α iterations of

diffusion. This requires that Aα−31
8 , Aα−31

9 , Bα−31
8 , Bα−31

9 , Eα−31, Fα−31 and
cα−31 are all zeros. Equations 3a–3c show that the last three conditions require
Et, F t and ct to be zero for all t < α − 31; to ensure this, the outputs of either
S9 to S12 (Z) or S14 (q) must be zeros for −31 ≤ t < α − 31. Further, Stages
Aα

8 , Aα
9 , Bα

8 and Bα
9 can be zeros under the following conditions:

(1) If α = 1: the 8 key bits k28 . . . k31 and k60 . . . k63 must be zeros.
(2) For 2 ≤ α ≤ 8: key bytes k32−4α . . . k39−4α and k64−4α . . . k71−4α are zeros.
(3) For α = 9: key bits k0 . . . k3 and k32 . . . k35 must be zeros, and Eqs. 8a and 8b

(below) must be satisfied at t = −31.
(4) For α ≥ 10: Eqs. 8a and 8b must be satisfied for two successive iterations to

generate two consecutive stages of zeros in A and B.

At−1
9 ⊕ Xt−1 ⊕ Dt−1 ⊕ It

A = 0 (8a)

(Bt−1
6 ⊕ Bt−1

9 ⊕ Y t−1 ⊕ It
B) ≪ pt−1 = 0 (8b)

Now, if the second loaded state corresponds to (K ′, V ′), then K ′ is uniquely
determined by K and the first �α

4 � bytes of V , via Eqs. 1–4. As the registers are
not autonomous during diffusion, we must also consider the conditions on V and
V ′ in order for the states resulting from (K,V ) and (K ′, V ′) to remain in step
(clock identically) for the rest of the diffusion phase. These conditions depend
on the value of α.

Finally, to obtain shifted keystream from a slid pair that has remained in
step, we also require that the last α iterations with (K ′, V ′) satisfy

Dt−1 ⊕ It
A = 0 (9a)

It
B = 0 (9b)

Recall that the IV in CSA-SC is loaded during the diffusion phase and that
each IV byte is loaded into registers A and B for four successive iterations. If α
is not a multiple of 4, this operation imposes significant restrictions on the form
of V and V ′ if the states of a slid pair are to remain in step. For this reason, we
describe our analysis for α = 4 but report only the results for other values of α.

For α =4, the three steps required for slid pairs and shifted keystream are:

(i) To obtain a slid pair, k16 to k23 and k48 to k55 must be zeros (probability
2−16). Also, either q or z0 to z3 must be zeros for the 2nd, 3rd and 4th clocks
so that E, F and c are all zeros (probability (1732 )3 = 2−2.738).

(ii) Keeping the slid pair in step imposes no restrictions on V and requires only
that V ′ is a 1-byte shifted version of V .
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(iii) If the slid pairs remain in step, shifted keystream occurs if the last byte
of V ′ is zero and also Dt−1 = 0 for the last four iterations of diffusion
(probability 2−16).

Thus, the combined probability that a randomly chosen pair (K,V ) leads
(via a slid pair) to shifted keystream is 2−16 × 2−2.738 × 2−16 = 2−34.738. K ′ is
then determined by K and the first byte of V , V ′ is determined by the rest of
V (plus a final byte of zeros) and the keystreams are out of phase by 8 bits.

The analysis for α = 4 can be extended to α = 8, 12, . . . , 28. The probability
of a key-IV pair leading to slid pairs and shifted keystreams in these cases is
2−16 × ( 1732 )(α−1) × 2−4α = 2−15.087−4.913α. When α is not a multiple of 4, the
number of IVs, V , which allow a slid pair to generate shifted keystream are
extremely limited, so the overall probability of obtaining a slid pair and shifted
keystream is much smaller. The results for α = 1, 2, 3, 4 and 8 are shown in
Table 5, from which it is clear that the most favourable result occurs for α = 4.

Table 5. Probabilities of obtaining slid pairs and shifted keystreams for α clocks

α 1 2 3 4 8

(i) To obtain slid pairs 2−8 2−16.913 2−17.825 2−18.738 2−22.388

(ii) Proportion of valid IVs 2−60 2−64 2−64 20 20

(iii) To satisfy Eq. 9a 2−4 2−8 2−12 2−16 2−32

Total probabilities 2−72 2−88.913 2−93.825 2−34.738 2−54.388

5 Conclusion

State convergence clearly occurs during the initialisation of CSA-SC, with dis-
tinct key-IV inputs producing the same output keystream sequence. This is
clearly not desirable. Slid pairs leading to shifted key stream also occur; that is,
distinct key-IV inputs lead to output sequences which are phase-shifted versions
of one another. Both flaws may leave the cipher vulnerable to generic attacks.

In Sect. 3, state convergence was shown to occur during initialisation, begin-
ning at the third iteration of the diffusion phase. This convergence can occur
both when q = 0 and when q = 1; we investigated the case q = 0 in detail. At
the third iteration, states with q = 0 clock to only 0.69 as many states. The
convergence for states with q = 1 is undetermined but expected to be similar.
In any case, the effective state space is reduced by a proportion of at least 0.155
at this iteration. We argue that the size of this effect remains approximately
constant throughout diffusion, and hence that the effective state size is reduced
by at least 7 bits during initialisation (more if there is significant convergence
for q = 1).
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This reduction in state space may leave CSA-SC vulnerable to time-memory-
data trade-off attacks [5]. Previous attacks on the A5/1 stream cipher [10], e.g.
Biryukov et al. [6] and Golić [13], are based on the reduction of state space in
this cipher due to state convergence. For the case of 48-bit keys, CSA is already
vulnerable to specific attacks [17]; state convergence on the scale indicated by
our analysis would further compound this vulnerability.

In Sect. 4, we showed that slid pairs occur during the initialisation of CSA-
SC and may lead to a phase-shifted version of the same keystream. The best
probability of finding slid pairs leading to shifted keystream is for α = 4, where
a Key-IV pair generates a key loaded state after four iterations. This case has a
probability of 2−18.74 of obtaining slid pairs, with a further probability of 2−16

that a slid pair leads to shifted key stream.
The existence of slid pairs and shifted keystream may leave this cipher vulner-

able to slide attacks. A number of stream ciphers have previously been attacked
in this way, including LEX [19], WAKE-ROFB [7], Grain [11,20] and Triv-
ium [14]. More recently, Alhamdan et al. [1,2] showed that the existence of
slid pairs can be used to recover the secret key of A5/1 [10] and Sfinks [9] stream
ciphers using ciphertext-only attacks.

A CSA-SC S-Boxes

Table 6. Input and output bits of the 14 Boolean functions

X Y Z
Functions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Output bits xt
0 xt

1 xt
2 xt

3 yt0 yt1 yt2 yt3 zt0 zt1 zt2 zt3 pt qt

it0 a3,3 a1,3 a2,1 a4,0 a3,1 a5,2 a3,3 a1,3 a2,1 a4,0 a3,1 a5,2 a2,2 a2,2
Input it1 a1,1 a2,0 a3,2 a1,2 a4,1 a4,3 a1,1 a2,0 a3,2 a1,2 a4,1 a4,3 a3,0 a3,0
bits it2 a2,3 a5,1 a6,3 a6,1 a5,0 a6,0 a2,3 a5,1 a6,3 a6,1 a5,0 a6,0 a7,1 a7,1

it3 a4,2 a5,3 a7,0 a7,3 a7,2 a8,1 a4,2 a5,3 a7,0 a7,3 a7,2 a8,1 a8,2 a8,2
it4 a8,0 a6,2 a9,1 a9,0 a9,3 a9,2 a8,0 a6,2 a9,1 a9,0 a9,3 a9,2 a8,3 a8,3
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Table 7. The truth table of the 14 Boolean functions

it0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
it1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
it2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
it3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
it4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

S1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0
S2 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0
S3 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0
S4 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1
S5 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0
S6 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1
S7 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0
S8 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1
S9 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1
S10 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0
S11 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0
S12 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0
S13 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1
S14 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0
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Abstract. Speed is essential in stream cipher design. In 2011, Lee and
Park [5] proposed a software implementation for word-based FCSRs. The
sequences generated by the FCSRs using Lee and Park’s implementation
methods are half-�-sequences. In this paper, we investigate the imbalance
properties of half-�-sequences. Bounds on the numbers of occurrences of
one and two consecutive symbols are given. The experimental results
show how tight our bound is.

Keywords: FCSRs · Half-�-sequence · Stream cipher · Pseudo-random
sequence

1 Introduction

Classical stream ciphers are often based on linear feedback shift registers (LFSRs),
filtered or combined by non-linear functions. However, this type of stream cipher
is vulnerable to algebraic attacks [1–3]. In 1994, Klapper and Goresky proposed
a new type of feedback shift register called a feedback with carry shift register
(FCSR) [4, p. 69]. An FCSR is a feedback shift register with a small amount
of auxiliary memory. The critical reason that LFSR based stream ciphers are
vulnerable to algebraic attacks is that a degree d multinomial composed with a
linear state change gives a degree d multinomial. However, this fails for FCSRs
due to the nonlinearity. An FCSR is described by an associated integer q, the
connection integer. The analysis of FCSRs is based largely on the algebra of
N -adic numbers. If the output is the N -ary sequence a = a0, a1, ..., then the
associated N -adic number is α = a0 + a1N + a2N

2 + ... It can be seen that
α = −p/q where p ∈ Z. The period of a is the multiplicative order of N mod-
ulo q. Also, ai = q−1(pN−i mod q) mod N . An important characteristic of an
FCSR is that the elementary additions are not additions modulo 2, but addi-
tions with propagation of carries. This leads to proved results on period and
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non-degeneration of internal states. Also, the sequence that achieves this maxi-
mum period is called an �-sequence. The period of an �-sequence with connection
integer q is q − 1. An �-sequence has many good statistical properties, just as an
m-sequence does.

Speed is essential in stream cipher design. In 2011, Lee and Park [5] proposed
a software implementation for word-based FCSRs. They extended the size of
register cells from 1 bit to k bits where k is the size of words in the given
CPU (typically k = 32 or 64) to produce k bits at every clocking. Lee and
Park proposed two types of implementations. One uses full-size words (in this
case N = 232). The other one uses half-size words (in this case N = 216). The
two implementations were claimed to have better efficiency than methods using
conditional operators. However, there is an intrinsic problem with the choices
N = 232 and 216. We show that if N = 2k and connection integer q ≡ −1
mod N (as Lee and Park assumed), then the multiplicative order of N modulo q
is at most (q−1)/2. Thus there are no �-sequences with such connection integers.
The largest possible period is (q−1)/2, in which case we call the output sequence
a half-�-sequence. In this paper, we investigate the imbalance properties of half-
�-sequences. Bounds on the numbers of occurrences of one and two consecutive
symbols are given.

The paper is organized as follows. In Sect. 2, we give upper bounds on the
imbalance of half-�-sequences in the one symbol and two consecutive symbol
cases. In Sect. 3, we discuss an exceptional case for a binary half-�-sequence.
In Sect. 4, we show experimental results that give some sense of how tight our
bounds are.

2 Bounds on the Imbalance of a Half-�-Sequence

Lee and Park proposed software implementations for FCSRs over the N -adic
number where N = 2k with k = 32 or 16. The corresponding connection integer
q is expressed as q = −1 + Nr ≡ −1 mod 8 for some r. According to quadratic
reciprocity, if q ≡ −1 mod 8, then 2 is a quadratic residue (QR) modulo q.
Hence also N = 2k is a QR modulo q. So every power of N is a QR modulo
q. It follows from the exponential representation described in the introduction
that the period is at most (q − 1)/2. In this section we discuss the imbalance
properties of sequences associated with such qs. Note that we do not restrict our
discussion to N = 216 and 232 but reason in a general manner.

Let N = 2t for some t and q = q0 + mN for q0,m ∈ Z with 0 ≤ q0 < N
and gcd(q0, N) = 1. We consider an N -adic sequence a. I.e., a is generated by
an FCSR Γ whose connection integer is q.

Definition 1. A sequence a with prime connection integer q is called a half-�-
sequence if the period of a is (q − 1)/2.

Actually, if a has period (q − 1)/2, then it can be shown that q is prime.
Assume that the associated N -adic number for sequence a is the rational number
−h/q. Then a0 ≡ q−1h mod N . We want to obtain bounds on the imbalance of
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a. Let Q be the set of quadratic residues modulo q and Q
′
be the set of quadratic

non-residues modulo q. Under those conditions the set of integers of the form N i

mod q is precisely Q if N ∈ Q. For any nonzero z, we have zQ = Q if z ∈ Q, and
zQ = Q

′
if z ∈ Q

′
. Q corresponds to the states in one cycle of the state space.

Q
′
corresponds to the states in a second cycle.
Let ξ be a complex primitive qth root of unity. The Fourier transform of a

complex valued function f : Zq → C is given by

f̂(b) =
1
q

q−1∑

c=0

f(c)ξ−bc.

By the Fourier inversion formula we have

f(c) =
q−1∑

b=0

f̂(b)ξbc.

2.1 The One Symbol Case

Let Fv = {x|0 ≤ x < q, x = v mod N} and 0 ≤ v < N . Each consecutive pair
of elements of Fv differs by N . As a result, we have

Fv = {v, v + N, v + 2N, · · · , v + tvN} ⊂ {0, 1, · · · , q − 1}.

Then we have q − N ≤ v + tvN ≤ q − 1, so

1 + v

N
≤ q

N
− tv ≤ 1 +

v

N
.

Then tv ≈ q/N and |{v + eN : 0 ≤ v + eN < q}| ≈ q/N .

Let a = a0, a1, · · · be a half-�-sequence with connection integer q. For j =
0, 1, · · · , let uj/q =

∑∞
i=0 ai+jN

i. Then uj and uj+1 are related by the equa-
tion uj = qaj + Nuj+1. Thus uj+1 ≡ N−1uj mod q and aj ≡ q−1uj mod N .
From the first congruence it follows that either all uj are quadratic residues, or
all are non-quadratic residues. Suppose they are quadratic residues. From the
second congruence it follows that for any a ∈ {0, 1, · · · , N − 1}, the number of
occurrences of a in one period of the sequence equals the number of quadratic
residues u with u ≡ qa mod N . Let μ(v) be the number of occurrences of q−1v
mod N in one period of a. We have μ(v) =| Q ∩ Fv |.

Define

fv(x) =
{

1 if x ∈ Fv

0 otherwise.
Thus

μ(v) =
∑

c∈Q

fv(c) =
∑

c∈Q

q−1∑

b=0

f̂v(b)ξbc =
q−1∑

b=0

f̂v(b)
∑

c∈Q

ξbc

=
q−1∑

b=0

f̂v(b)
(q−1)/2∑

d=1

ξbd
2

=
q−1∑

b=0

f̂v(b)σ(b).



Distribution Properties of Half-�-Sequence 237

First consider the term b = 0. Then σ(0) = (q − 1)/2 and

f̂v(0) =
1
q

q−1∑

c=0

fv(c) =
1
q
|{v + eN : 0 ≤ v + eN < q}|

≈ 1
q

q

N
=

1
N

.

Thus we want to bound

B =
q−1∑

b=1

f̂v(b)σ(b) ≤
(

q−1∑

b=1

|f̂v(b)|
)

max
b�=0

|σ(b)|.

By the preceding discussion, σ(b) depends only on whether b ∈ Q.

Theorem 1 (Weil’s Theorem [6, p. 223]). Let r be a power of a prime. Let
g ∈ Fr[x] be of degree 1 ≤ n < r with gcd(n, r) = 1 and let χ be a nontrivial
additive character of Fr. Then

∣
∣
∣
∣
∣

∑

c∈Fr

χ(g(c))

∣
∣
∣
∣
∣
≤ (n − 1)r1/2.

In our case r = q ∈ Z is prime, χ(x) = ξx, n = 2, and g(x) = bx2. Thus by
Weil’s theorem we have

|σ(b)| =
1
2

∣
∣
∣
∣
∣

q−1∑

c=1

ξbc
2

∣
∣
∣
∣
∣
=

1
2

∣
∣
∣
∣
∣

q−1∑

c=0

ξbc
2 − 1

∣
∣
∣
∣
∣
≤ 1

2

(
q1/2 + 1

)
.

Lemma 1. If 0 ≤ v ≤ N − 1, then the following inequality holds:

q−1∑

b=1

|f̂v(b)| ≤ 1 + ln
(

q − 1
2

)

.

Proof

|f̂v(b)| =
1
q

∣
∣
∣
∣
∣

q−1∑

c=0

fv(c)ξ−bc

∣
∣
∣
∣
∣
=

1
q

∣
∣
∣
∣
∣

tv∑

d=0

ξb(v+Nd)

∣
∣
∣
∣
∣
=

1
q

∣
∣
∣
∣
∣

tv∑

d=0

ξbNd

∣
∣
∣
∣
∣

=
1
q

∣
∣
∣
∣
ξbN(tv+1) − 1

ξbN − 1

∣
∣
∣
∣ =

1
q

∣
∣
∣
∣
ξbN(tv+1)/2 − ξ−bN(tv+1)/2

ξbN/2 − ξ−bN/2

∣
∣
∣
∣

=
1
q

∣
∣
∣
∣
sin(πbN(tv + 1)/q)

sin(πbN/q)

∣
∣
∣
∣ .

Thus

q−1∑

b=1

|f̂v(b)| ≤ 1
q

q−1∑

b=1

∣
∣
∣
∣

1
sin(πbN/q)

∣
∣
∣
∣ =

1
q

q−1∑

c=1

∣
∣
∣
∣

1
sin(πc/q)

∣
∣
∣
∣ =

2
q

(q−1)/2∑

c=1

∣
∣
∣
∣

1
sin(πc/q)

∣
∣
∣
∣ .
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For 0 ≤ x ≤ π/2 we have sin(x) ≥ 2x/π, so

q−1∑

b=1

|f̂v(b)| ≤ 2
q

(q−1)/2∑

c=1

q

2c
=

(q−1)/2∑

c=1

1
c

≤ 1 + ln
(

q − 1
2

)

.


�
Theorem 2. If 0 ≤ v ≤ N − 1, then

∣
∣
∣
∣μ(v) − q − 1

2N

∣
∣
∣
∣ ≤ 1

2

(

1 + ln
(

q − 1
2

)) (
q1/2 + 1

)
.

2.2 The Two Symbol Case

Let Gv = {x|0 ≤ x < q, (Nx mod q) ≡ v mod N} and 0 ≤ v < N . We want to
investigate the number of occurrences of two consecutive symbols. The number
of occurrences of (q−1v1 mod N), (q−1v2 mod N) in one period is μ(v1, v2) =
|Q ∩ Fv2 ∩ Gv1 |.

For 0 ≤ x < q/N , we have 0 ≤ Nx < q, so Nx mod q = Nx ≡ 0 mod N .
These xs are in G0. For q/N ≤ x < 2q/N , we have q ≤ Nx < 2q, so Nx
mod q = Nx − q ≡ −q mod N . These xs are in G−q mod N . For 2q/N ≤ x <
3q/N , we have 2q ≤ Nx < 3q, so Nx mod q = Nx − 2q ≡ −2q mod N . These
xs are in G−2q mod N . We continue in this way. In general G−iq mod N = {x :
iq/N ≤ x < (i + 1)q/N}. Thus Gv1 = {x : iq/N ≤ x < (i + 1)q/N} where
i = (−v1q

−1 mod N). Each Gv is an interval of length about q/N .
Assume that −iq mod N = v1 and q = q0 + mN for some m. We have −iq

mod N = v1, so iq = N −v1 +k1N for some k1. We also have (i+1)q = iq +q =
N − v1 + k1N + q0 + mN = (k1 + m)N + N − v1 + q0.

Then we have ⌈
iq

N

⌉

=
iq − N + v1

N
+ 1 =

iq + v1
N

and ⌊
(i + 1)q

N

⌋

=

{
(i+1)q−N+v1−q0

N if q0 < v1
(i+1)q+v1−q0

N otherwise.

Thus ⌊
(i + 1)q

N

⌋

−
⌈

iq

N

⌉

=
{

q−N−q0
N if q0 < v1

q−q0
N otherwise.

We have �(i + 1)q/N − �iq/N� ≈ q/N since |�(i + 1)q/N − �iq/N� − q/N | ≤
1 + q0/N < 2.

Define

gv(x) =
{

1 if x ∈ Gv

0 otherwise.
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Then gv1(x) = 1 when �iq/N� ≤ x ≤ �(i + 1)q/N and

ĝv1(d) =
1
q

q−1∑

c=0

gv1(c)ξ
−dc.

We have

μ(v1, v2) =
∑

x∈Q

fv2(x)gv1(x) =
∑

x∈Q

q−1∑

b=0

f̂v2(b)ξ
bx

q−1∑

d=0

ĝv1(d)ξdx

=
q−1∑

b=0

f̂v2(b)
q−1∑

d=0

ĝv1(d)
∑

x∈Q

ξ(b+d)x

=
q−1∑

b=0

f̂v2(b)
q−1∑

d=0

ĝv1(d)
(q−1)/2∑

k=1

ξ(b+d)k2

=
q−1∑

b=0

f̂v2(b)
q−1∑

d=0

ĝv1(d)σ(b + d).

First consider the term b + d ≡ 0 mod q. We have σ(b + d) = (q − 1)/2.

Case 1: If b = 0 (equivalently d = 0), let

B0 = f̂v2(0)ĝv1(0)
q − 1

2
=

1
q

q−1∑

c=0

fv2(c)
1
q

q−1∑

h=0

gv1(h)
q − 1

2

=
q − 1
2q2

(
q−1∑

c=0

fv2(c)

) (
q−1∑

h=0

gv1(h)

)

=
q − 1
2q2

| {v2 + eN : 0 ≤ v2 + eN < q} |
(⌊

(i + 1)q
N

⌋

−
⌈

iq

N

⌉)

≈ q − 1
2q2

q

N

q

N
=

q − 1
2N2

.

Note that this is the average number of occurrences of a pair of symbols.
Case 2: If b �= 0 (equivalently, d = q − b �= 0), let

B1 =
q − 1

2

q−1∑

b=1

f̂v2(b)ĝv1(q − b)

=
q − 1

2

q−1∑

b=1

1
q

tv2∑

d=0

ξb(v2+Nd) 1
q

�(i+1)q/N�∑

c=�iq/N	
ξ−(q−b)c

=
q − 1
2q2

tv2∑

d=0

�(i+1)q/N�∑

c=�iq/N	

q−1∑

b=1

ξb(c+v2+Nd).
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When c + v2 + Nd ≡ 0 mod q,

q−1∑

b=1

ξb(v2+Nd+c) =
q−1∑

b=1

1 = q − 1.

When c + v2 + Nd �= 0 mod q,

q−1∑

b=1

ξb(v2+Nd+c) =
ξv2+Nd+c(1 − ξ(q−1)(v2+Nd+c))

1 − ξv2+Nd+c
= −1.

Define a set

D = {d : 0 ≤ d ≤ tv2 ∧ �iq/N� ≤ −(v2 + Nd) mod q ≤ �(i + 1)q/N}.

Then, in the case when c+v2 +Nd ≡ 0, we can sum over d ∈ D and the number
of pairs of c, d in the given ranges which make c + v2 + Nd ≡ 0 mod q is |D|.
Let

W =
tv2∑

d=0

�(i+1)q/N�∑

c=�iq/N	

q−1∑

b=1

ξb(c+v2+Nd).

Then we have

W =
(

(q − 1)|D| − (tv2 + 1)
(⌊

(i + 1)q
N

⌋

−
⌈

iq

N

⌉

+ 1
)

+ x

)

=
(

q|D| − (tv2 + 1)
(⌊

(i + 1)q
N

⌋

−
⌈

iq

N

⌉

+ 1
))

,

and

B1 =
q − 1
2q2

W =
q − 1
2q2

(

q|D| − (tv2 + 1)
(⌊

(i + 1)q
N

⌋

−
⌈

iq

N

⌉

+ 1
))

.

where q/N − 1 − v2/N ≤ tv2 ≤ q/N − (1 + v2)/N and (q − N − q0)/N ≤
�(i + 1)q/N − �iq/N� ≤ (q − q0)/N .

Except in the case when c = 0 and v2 + Nd = 0, we have −(v2 + Nd)
mod q = q − v2 − Nd. So we have

⌊�(i + 1)q/N − �iq/N� + 1
N

⌋

≤ |D| ≤
⌈�(i + 1)q/N − �iq/N� + 1

N

⌉

.

Since

|D| ≤
⌈�(i + 1)q/N − �iq/N� + 1

N

⌉

tv2 ≥ q

N
− 1 − v2

N⌊
(i + 1)q

N

⌋

−
⌈

iq

N

⌉

≥ q − N − q0
N

,
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B1 is upper bounded by

(B1)max =
q − 1
2q2

(

q
q − q0 + N

N2
−

( q

N
− 1 − v2

N
+ 1

) (
q − q0 − N

N
+ 1

))

=
(q − 1)(qN + v2q − q0v2)

2q2N2

<
1
N

.

Since

|D| ≥
⌊�(i + 1)q/N − �iq/N� + 1

N

⌋

tv2 ≤ q

N
− 1 + v2

N⌊
(i + 1)q

N

⌋

−
⌈

iq

N

⌉

≤ q − q0
N

,

B1 is lower bounded by

(B1)min =
q − 1
2q2

(

q
q − q0
N2

−
(

q

N
− v2 + 1

N
+ 1

) (
q − q0

N
+ 1

))

=
(q − 1)(q(v2 + 1 − 2N) + (v2 + 1 − N)(N − q0))

2q2N2

> −
(

1
N

+
1
2q

)

.

So (B1)min ≤ B1 ≤ (B1)max and |B1| ≤ max{|(B1)min| , |(B1)max|} = 1/N +
1/2q.

Next consider the term b + d �= 0 mod q. For 0 ≤ z < q let μz(v1, v2) =
∑

x∈Q ξzx
∑q−1

b=0 f̂v2(b)ĝv1(z − b). Then we have

μ(v1, v2) = B0 + B1 +
q−1∑

z=1

μz(v1, v2).

We can bound μz(v1, v2) by

μz(v1, v2) =
∑

x∈Q

ξzx
q−1∑

b=0

f̂v2(b)ĝv1(z − b)

=
∑

x∈Q

ξzx
q−1∑

b=0

1
q

tv2∑

d=0

ξb(v2+Nd) 1
q

�(i+1)q/N�∑

c=�iq/N	
ξ−c(z−b)

=
σ(z)
q2

ξ−cz

tv2∑

d=0

�(i+1)q/N�∑

c=�iq/N	

q−1∑

b=0

ξb(v2+Nd+c).
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First,
q−1∑

b=0

ξb(v2+Nd+c) =
{

q if d ∈ D
0 otherwise.

Second, by applying Weil’s theorem, we can get |σ(z)| ≤ (q1/2 +1)/2. Notice
here if d ∈ D, then we can take c = q − v2 − Nd. Then

|μz(v1, v2)| =

∣
∣
∣
∣
∣
∣

σ(z)
q2

ξ−cz

tv2∑

d=0

�(i+1)q/N�∑

c=�iq/N	

q−1∑

b=0

ξb(v2+Nd+c)

∣
∣
∣
∣
∣
∣

≤ q1/2 + 1
2q

∣
∣
∣
∣
∣

∑

d∈D

ξz(−q+v2+Nd)

∣
∣
∣
∣
∣

=
q1/2 + 1

2q

∣
∣
∣
∣
∣

∑

d∈D

ξzNd

∣
∣
∣
∣
∣

≤ q1/2 + 1
2q

∣
∣
∣
∣
∣
∣

tv2∑

d=0

ξzNd

∣
∣
∣
∣
∣
∣

≤ q1/2 + 1
2q

∣
∣
∣
∣
sin(πzN(tv2 + 1)/q)

sin(πzN/q)

∣
∣
∣
∣ .

Using similar techniques to those in the proof of Lemma 1, we can get

|μ(v1, v2)| =

∣
∣
∣
∣
∣
B0 + B1 +

q−1∑

z=1

μz(v1, v2)

∣
∣
∣
∣
∣

<
q − 1
2N2

+
1
N

+
1
2q

+
q1/2 + 1

2q

q−1∑

z=1

∣
∣
∣
∣
sin(πzN(tv2 + 1)/q)

sin(πzN/q)

∣
∣
∣
∣

=
q − 1
2N2

+
1
N

+
1
2q

+
q1/2 + 1

2

(

1 + ln
(

q − 1
2

))

.

Theorem 3. If 0 ≤ v1, v2 ≤ N − 1, then
∣
∣
∣
∣μ(v1, v2) − q − 1

2N2

∣
∣
∣
∣ <

1
N

+
1
2q

+
q1/2 + 1

2

(

1 + ln
(

q − 1
2

))

.

3 A Sharper Bound When N = 2

Theorem 4. Let a = a0, a1, a2, ... be a binary half-�-sequence with q ≡ 1 mod 8
and q an odd prime. Then a is balanced.

Proof. Since q ≡ 1 mod 8 and q is an odd prime, the order of 2 is (q − 1)/2.
Then we have 2(q−1)/2 ≡ 1 mod q. As a result, 2(q−1)/4 ≡ ±1 mod q. Because
the order of 2 is (q − 1)/2, 2(q−1)/4 �≡ 1 mod q, we have 2(q−1)/4 ≡ −1 mod q.
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There is an integer h so that for all i ≥ 0 we have

ai ≡ 2−ih mod q mod 2.

Consider aj where j ∈ [0, (q − 1)/2). Then we have

aj ≡ 2−jh mod q mod 2.

and

a q−1
4 +j ≡ 2−( q−1

4 +j)h mod q mod 2

≡
(
2− q−1

4 2−j
)

h mod q mod 2

≡ −2−jh mod q mod 2
≡ (

q − 2−jh
)

mod q mod 2,

which is the complementary bit to aj . So the first half of half-�-sequence a is the
bit-wise complement of its second half. Then the numbers of 1’s and 0’s in a are
equal. So a is balanced. 
�

4 Experimental Results for the One Symbol Case

In this section we analyze the imbalance properties of half-�-sequences by exper-
iments. In other words, we investigate how tight the bound is in Theorem 2.
Let

varv = |μ(v) − (q − 1)/2N |, v ∈ {0, 1, · · · , N − 1}
bound = (1 + ln((q − 1)/2)(q1/2 + 1)/2.

The quantity varv is the difference between the number of occurrence of v in
one period of sequence a and the average occurrence. Let maxvar = max{varv :
0 ≤ v < N}. We define max ratio = maxvar/bound.

The smaller max ratio is, the more balanced the sequence is. Ideally, for a
pseudo-random sequence, we would like the max ratio to be close to zero. We
generated the sequences for corresponding q and calculated the max ratio for
these qs. It is impractical to calculate varv for half-�-sequences with big qs and
N = 232 or 216 as discussed in Lee and Park’s paper. As a result, we choose
half-�-sequences with smaller Ns and qs for investigation.

In the experiment, we generated some connection integers q of the form
q = 2p + 1 with p and q prime and q ≡ −1 mod 8. The sequences generated
by an FCSR with those connection integers are half-�-sequences or �-sequences.
Note that when N ≥ 23 the sequences generated are all half-�-sequences and
these may not be the only half-�-sequences, they are just the easiest to find. We
would like to see how max ratio changes as the connection integers increase for
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a particular N . We have done experiments for N = 23, 24 and 25. For each value
of N , we generate the max ratio with FCSR sizes 2, 3 and 4. Note that if the size
of an FCSR is m, then the corresponding connection integer q ∈ (Nm, Nm+1).
Figure 1 shows that the max ratio for N = 8 with FCSR size 2, 3 and 4 is
greater than 0.02. Figure 2 shows that the max ratio for N = 16 with FCSR
size 2, 3 and 4 is greater or equal to 0.02. Figure 3 shows that the max ratio
for N = 32 with FCSR size 2, 3 and 4 is greater than 0.01. As we can observe
from the three figures, there is no increase or decrease pattern as q increases.
It also shows that there are many qs with max ratio much higher. There is no
known way to find the best qs if the period is large enough to be useful. maxvar

is the product of max ratio and bound. As the connection integer q increases,
the bound will increase accordingly. For a specific max ratio, the maxvar will
increase accordingly, and the more imbalanced the sequence will be.

Fig. 1. Max ratio for N = 8 with FCSR size 2, 3 and 4

Fig. 2. Max ratio for N = 16 with FCSR size 2, 3 and 4



Distribution Properties of Half-�-Sequence 245

Fig. 3. Max ratio for N = 32 with FCSR size 2, 3 and 4

5 Conclusion and Open Questions

In this paper, we discuss the imbalance properties of half-�-sequences. We see
that this type of sequences is not uniformly distributed and their period is only
half of the connection integer. It is preferred to have uniformly distributed and
long period sequences such as �-sequences. However, there is a tradeoff between
speed and statistical properties, since the implementation of FCSRs with N
primitive modulo q gives rise to new challenges. We will investigate this area in
the future.
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Abstract. Let r be an arbitrary positive integer greater than 1 and
n = 3r. For the decimation d = 3r + 2 or 32r + 2, the cross-correlation
distribution between a ternary m-sequence and its d-decimated sequence
is completely determined. The result presented in this paper generalizes
the recent work of Zhang, Li, Feng and Ge, and settles a conjecture
proposed by them.

Keywords: m-Sequence · Cross-correlation distribution · Decimated
sequence · Exponential sum

1 Introduction

Throughout this paper, we always assume that p is an odd prime unless otherwise
stated. Let {s(t)}pn−2

t=0 be a p-ary m-sequence of period pn − 1, where n is a
positive integer. For a positive integer d satisfying gcd (d, pn − 1) = 1, the d-
decimated sequence of {s(t)}, denoted by {s(dt)}, is also a p-ary m-sequence.
Here d is said to be a decimation. The cross-correlation function between {s(t)}
and its d-decimated sequence {s(dt)} is defined by

Cd(τ) =
pn−2∑

t=0
ζ

s(t+τ)−s(dt)
p

where ζp = e
2π

√−1
p is a primitive complex p-th root of unity and 0 ≤ τ < pn − 1.

In the theory of sequences, one is interested in finding the cross-correlation
distribution between a p-ary m-sequence {s(t)} and its d-decimated sequence
{s(dt)}, i.e., determining the multiset

{Cd(τ) | 0 ≤ τ < pn − 1} .

c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 249–259, 2014.
DOI: 10.1007/978-3-319-12325-7 21
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This problem has been extensively studied during the past decades because of
its wide applications in sequence design [1,4,6,7,9–12]. For an overview on this
topic, the reader is referred to [1] and references therein.

In a recent paper [12], for an integer r ≥ 2, n = 3r and d = 3r + 2 or 32r + 2,
under the condition that gcd(r, 3) = 1, Zhang et. al. derived the cross-correlation
distribution between a ternary m-sequence of period 3n − 1 and its d-decimated
sequence. Based on numerical experiments, they conjectured that their result
also holds for gcd(r, 3) = 3.

Motivated by their conjecture, in this paper we further investigate the cross-
correlation distribution between a ternary m-sequence of period 33r − 1 and its
d-decimated sequence with d = 3r + 2 or 32r + 2. For arbitrary positive integer
r ≥ 2, the corresponding cross-correlation distribution is determined by a unified
method. Hence, the result in [12] is generalized to any positive integer r ≥ 2 and
the conjecture proposed there is confirmed. Our proof uses the same basic idea
as that in [12] but some modifications are made. The key point of our method is
that we find a suitable irreducible polynomial over F3r of degree 3 to yield the
finite field F3n , and then we compute a direct representation of Trn

r (γx + xd)
as a function of three variables over F3r , where x ∈ F3n is a variable, γ is a
given element of F3n and Trn

r (·) is the trace function from F3n to F3r [8]. This
representation makes the evaluation of the cross-correlation function possible.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
some preliminaries. In Sect. 3, for r ≥ 2, n = 3r and d = 3r + 2 or 32r + 2, we
derive the cross-correlation distribution between a ternary m-sequence and its
d-decimated sequence. The concluding remarks are given in Sect. 4.

2 Preliminaries

For a positive integer n, let Fpn denote the finite field with pn elements and
F

∗
pn = Fpn \ {0}. The trace function from Fpn to its subfield Fpe is defined by [8]

Trn
e (x) =

n
e −1∑

i=0

xpei

,

where x ∈ Fpn and e is a divisor of n. For e > 1, it is well known that
Tre

1(Trn
e (x)) = Trn

1 (x) for all x ∈ Fpn . Let α be a primitive element of Fpn .
After a suitable cyclic shift, a p-ary m-sequence {s(t)} can be written in terms
of the trace function as

s(t) = Trn
1 (αt),

and its d-decimated sequence {s(dt)} is given by

s(dt) = Trn
1 (αdt).
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Then, the cross-correlation function between {s(t)} and {s(dt)} can be
expressed by

Cd(τ) =
pn−2∑

t=0
ζ
Trn

1 (αt+τ)−Trn
1 (αdt)

p

=
∑

x∈Fpn

ζ
Trn

1 (γx+xd)
p − 1,

where ζp = e
2π

√−1
p and γ = −ατ . When τ runs through {0, 1, · · · , pn − 2},

γ = −ατ runs through F
∗
pn . Thus, we usually investigate

Cd(γ) =
∑

x∈Fpn

ζ
Trn

1 (γx+xd)
p − 1, γ ∈ F

∗
pn (1)

instead of Cd(τ).
The following three lemmas are basic results about irreducible polynomials

over finite fields and will be employed in the sequel.

Lemma 1. ([8, Corollary 3.79]) Let p be a prime and n be a positive integer.
Let a ∈ Fpn . Then, the trinomial xp − x − a is irreducible in Fpn [x] if and only
if Trn

1 (a) �= 0.

The following result comes from Exercise 3.85 in [8]. We give the proof below
for the sake of completeness.

Lemma 2. Assume p is a prime and q is a power of p. If xp−x−a is irreducible
over Fq and β is a root of this trinomial in an extension field of Fq, then xp −
x − aβp−1 is irreducible over Fq(β), where Fq(β) denotes the extension field of
Fq obtained by adjoining the element β to Fq, and is exactly Fqp .

Proof. Assume q = pn. Since β is a root of xp − x − a, then all the roots of
xp −x−a are given by the p distinct elements β, βq,· · · , βqp−1

. For convenience,
let xi = βqi

, i = 0, 1, · · · , p − 1. By βp − β − a = 0, one has βp−1 = 1 + a
β . Thus,

Trnp
1 (aβp−1) = Trn

1

(
aTrnp

n

(
1 + a

β

))

= Trn
1

(
a2Trnp

n

(
1
β

))
.

(2)

Note that
Trnp

n ( 1
β ) = 1

β + 1
βq + · · · + 1

βqp−1

= 1
x0

+ 1
x1

+ · · · + 1
xp−1

=

p−1∑

i=0

∏

j �=i

xj

p−1∏

i=0
xi

= −1
a ,

(3)

where the last equality holds due to the relation between roots and coefficients
of the polynomial equation xp − x − a = 0. By (2) and (3), we have

Trnp
1 (aβp−1) = −Trn

1 (a),
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which is not equal to zero since xp − x − a is irreducible over Fq. Then, from
Lemma 1, the desired result follows. ��
Lemma 3. ([8, Corollary 3.47]) Let p be a prime and q be a power of p. An
irreducible polynomial over Fq of degree s remains irreducible over Fqk if and
only if gcd(s, k) = 1.

Let ψ be a multiplicative character and χ be an additive character of Fpn .
Then, the Gaussian sum G(ψ, χ) is defined by [8]

G(ψ, χ) =
∑

x∈F
∗
pn

ψ(x)χ(x).

Gaussian sums are important types of exponential sums for finite fields, and only
for certain special characters, the associated Gaussian sums can be evaluated
explicitly. Let

χ(n)(x) = e
2π

√−1
p Trn

1 (x), x ∈ Fpn

be the canonical additive character of Fpn , and η(n) be the quadratic character
of Fpn [8]. The following two results related to Gaussian sums will turn out to
be useful in the sequel.

Lemma 4. ([8, Theorem 5.15]) Let p be an odd prime and n be a positive inte-
ger. Let χ(n) be the canonical additive character of Fpn and η(n) be the quadratic
character of Fpn . Then, the associated Gaussian sum

G(η(n), χ(n)) =
{

(−1)n−1p
n
2 , if p ≡ 1 (mod 4),

(−1)n−1(
√−1)np

n
2 , if p ≡ 3 (mod 4).

Lemma 5. ([8, Theorem 5.33]) Let χ be a nontrivial additive character of Fpn

with p odd, and let f(x) = a2x
2 + a1x + a0 ∈ Fpn [x] with a2 �= 0. Then,

∑

x∈Fpn

χ(f(x)) = χ(a0 − a2
1(4a2)−1)η(n)(a2)G(η(n), χ),

where η(n) is the quadratic character of Fpn .

From the properties of the trace function, the following lemma can be
obtained, and it is useful in finding the cross-correlation distribution.

Lemma 6. ([9, Theorem 2.4] and [6, Theorem 3.4]) Let Cd(γ) be defined in (1)
with gcd (d, pn − 1) = 1. Then,

(i)
∑

γ∈F
∗
pn

(Cd(γ) + 1) = pn;

(ii)
∑

γ∈F
∗
pn

(Cd(γ) + 1)2 = p2n;

(iii)
∑

γ∈F
∗
pn

(Cd(γ) + 1)3 = p2nN, where N is the number of x ∈ Fpn such that

(x + 1)d = xd + 1.
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For convenience, let
Sd(γ) = Cd(γ) + 1, (4)

where Cd(γ) is given by (1). In the sequel, we will mainly deal with Sd(γ).

3 Main Result and Its Proof

From now on, we will focus on p = 3 and adopt the following notations:

• r is an arbitrary positive integer greater than 1;
• t is the maximal power of 3 that divides r. Then, r can be written as r = 3tk

with gcd(k, 3) = 1;
• n = 3r and d = 3r + 2 or 32r + 2. Then, gcd(d, 3n − 1) = 1;
• {s(t)} denotes a ternary m-sequence of period 3n − 1.

Our main theorem is stated as follows.

Theorem 1. Let r ≥ 2, n = 3r and d = 3r + 2 or 32r + 2. Then, the cross-
correlation distribution between a ternary m-sequence {s(t)} and its d-decimated
sequence {s(dt)} is given in Table 1 if r is even and in Table 2 if r is odd.

Compared with Theorem 2.5 in [12], our result presented in Theorem 1 gen-
eralizes their work and settles the conjecture proposed there. Note that when
r = 1, d = 3r + 2 or 32r + 2 gives a three-valued cross-correlation function.
Thus, we need r ≥ 2 here. In order to prove Theorem 1, we need to make some
preparations.

The following lemma is a consequence of Lemmas 1–3, and plays an important
role in this paper.

Lemma 7. For any nonnegative integer t, there exists a ∈ F33t such that x3 −
x−a is irreducible over F33t and also irreducible over F33tk , where gcd(k, 3) = 1.

Proof. By Lemma 1, we know that x3 − x − 2 is irreducible over F3. Applying
Lemma 2 to x3 −x− 2, we can obtain an element a1 ∈ F33 such that x3 −x−a1

is irreducible over F33 . Repeating this process t−1 times, we can find an element

Table 1. Cross-correlation distribution for d if r is even

Value Frequency

−1 33r+32r

2
− 3r − 1

32r − 1 3r

3
3r
2 − 1 33r−1−32r−1

2

−3
3r
2 − 1 33r−1−32r−1

2

2 · 3 3r
2 − 1 33r−1−32r−1

4

−2 · 3 3r
2 − 1 33r−1−32r−1

4
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Table 2. Cross-correlation distribution for d if r is odd

Value Frequency

−1 2 · 33r−1 + 32r−1 − 3r − 1

32r − 1 3r

3
3r+1

2 − 1 33r−1−32r−1

2

−3
3r+1

2 − 1 33r−1−32r−1

2

a ∈ F33t such that x3 − x − a is irreducible over F33t . Furthermore, note that
gcd(3, k) = 1. Then, by Lemma 3, x3 − x − a is also irreducible over F33tk . ��

For any given r ≥ 2, recall that r can be written as r = 3tk, where
gcd(k, 3) = 1. By Lemma 7, we can choose an element a ∈ F33t such that
g(x) = x3 − x − a is irreducible over F33t . Then, g(x) is also irreducible over
F3r . In the sequel, once r is given, we will fix such an irreducible polynomial
g(x). Let ω be a root of g(x). Then, adjoining ω to F3r yields the finite field F3n ,
i.e., F3n = F3r (ω), and thus {1, ω, ω2} is a basis of F3n over F3r . The following
properties about ω are very useful in the sequel.

Lemma 8. With the notation above, let g(x) = x3 − x − a be an irreducible
polynomial in F3r [x] and ω be a root of g(x). Then, ω has the following properties:

(i) Trn
r (1) = 0, Trn

r (ω) = 0 and Trn
r (ω2) �= 0 (the trace function of the basis

{1, ω, ω2});
(ii) Denote θ = Trn

r (ω2). Then, Trn
r (ω3) = 0, Trn

r (ω4) = θ, Trn
r (ω5) = aθ

and Trn
r (ω6) = θ;

(iii) ω3r

= ω + Trr
1(a) and ω32r

= ω + Tr2r
1 (a). Moreover, Trr

1(a) �= 0 and
Tr2r

1 (a) �= 0.

Proof. (i) The trace function Trn
r (x) from F3n to F3r is a linear transformation

and this mapping is onto. Note that {1, ω, ω2} is a basis of F3n over F3r . Thus,
at least one of Trn

r (1), Trn
r (ω) and Trn

r (ω2) is not equal to zero. It is easily seen
that Trn

r (1) = 0. If we can prove Trn
r (w) = 0, then the desired conclusion follows.

Below we show Trn
r (ω) = 0. Since g(x) = x3 − x − a is irreducible over F3r and

ω is a root of it, then all roots of g(x) are given by the three distinct elements
ω, ω3r

and ω32r

. By the relation between roots and coefficients of the equation
g(x) = 0, −

(
ω + ω3r

+ ω32r
)

is equal to the coefficient of x2 in g(x). The latter

is zero. Thus, ω + ω3r

+ ω32r

= Trn
r (ω) = 0.

(ii) By ω3 = ω + a and (i), the values of Trn
r (ωi), i = 3, 4, 5, 6, can be

computed.
(iii) For any positive integer i, by ω3 = ω + a, we have

ω3i

= ω3i−1
+ a3i−1

= ω + a + a3 + · · · + a3i−1
. (5)
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Note that a ∈ F3r ⊆ F32r . Thus,

a + a3 + · · · + a3r−1
= Trr

1(a) and a + a3 + · · · + a32r−1
= Tr2r

1 (a). (6)

Combining (5) and (6), we have

ω3r

= ω + Trr
1(a) and ω32r

= ω + Tr2r
1 (a).

Furthermore, note that x3−x−a is irreducible over F3r . By Lemma 1, Trr
1(a) �= 0.

Since Tr2r
1 (a) = −Trr

1(a), then Tr2r
1 (a) is not equal to zero either. ��

Corresponding to p = 3, recall from (1) and (4) that

Sd(γ) = Cd(γ) + 1 =
∑

x∈F3n

ζ
Trn

1 (γx+xd)
3 =

∑

x∈F3n

ζ
Trr

1(Trn
r (γx+xd))

3 . (7)

The basic technique for calculating Sd(γ) is to transform Sd(γ) into an expo-
nential sum over the subfield F3r . This technique originated from [2] and was
employed to compute the Walsh spectrum of some power functions over finite
fields of even characteristic [2,3,5]. Here, following the proof of Theorem 2.5 in
[12], we also calculate Sd(γ) by this technique.

Note that since F3n = F3r (ω). Then, each x ∈ F3n can be uniquely repre-
sented in the form

x = x0 + x1ω + x2ω
2, xi ∈ F3r , i = 0, 1, 2.

For a given γ = γ0+γ1ω+γ2ω
2 ∈ F3n with γi ∈ F3r , our first step is to compute

an expression of Trn
r

(
γx + xd

)
as a function of xi, i = 0, 1, 2.

Lemma 9. With the notation above, let β = Trr
1(a) if d = 3r + 2, and β =

Tr2r
1 (a) if d = 32r +2. Let θ = Trn

r

(
ω2

)
, and x = x0 +x1ω+x2ω

2 with xi ∈ F3r .
For a given γ = γ0 + γ1ω + γ2ω

2 ∈ F3n with γi ∈ F3r , we have

(i) Trn
r

(
xd

)
=

(−x0x
2
2 + 2βx1x

2
2 + x2

1x2 + βx3
1 − (1 + βa) x3

2

)
θ;

(ii) Trn
r (γx) = (γ0x2 + γ1x1 + γ2x0 + γ2x2) θ.

Proof. (i) We only give the proof for d = 3r + 2 and the case d = 32r + 2 can be
proved similarly. By Lemma 8 (iii), we have

xd =
(
x0 + x1ω + x2ω

2
)3r+2

=
(
x0 + x1ω

3r

+ x2ω
2·3r) (

x0 + x1ω + x2ω
2
)2

=
(
x0 + x1(ω + β) + x2(ω + β)2

) (
x0 + x1ω + x2ω

2
)2

.

Note that β ∈ F
∗
3 and thus β2 = 1. Expanding the right hand side of the above

equation, we will get a linear combination of 1, ω, ω2, · · · , ω6 with coefficients
lying in F3r . Then, with the help of Lemma 8 (i)–(ii), the desired conclusion
follows.

(ii) Similarly, by expanding
(
x0 + x1ω + x2ω

2
) (

γ0 + γ1ω + γ2ω
2
)

as a lin-
ear combination of ωi, i = 0, 1, · · · , 4, the expression for Trn

r (γx) can also be
calculated. ��
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Remark 1. For any given r ≥ 2, Lemma 9 gives a unified expression for Trn
r (γx+

xd), which depends on Trn
r (ω2), a and β (actually depends only on a). This

expression is crucial to the proof of Theorem 1, and it enables us to transform
Sd(γ) in (7) into an exponential sum over F3r .

The proof of the following lemma is the same as that of Lemma 2.4 in [12],
where the condition gcd(r, 3) = 1 on r turns out to be unnecessary.

Lemma 10. Let r ≥ 2, n = 3r and d = 3r + 2 or d = 32r + 2. Then, (x + 1)d =
xd + 1 has 3r solutions in F3n .

With the above preparations, now we can give the proof of Theorem 1.
The proof of Theorem 1: Due to (7), determining the cross-correlation dis-

tribution is equivalent to determining the value distribution of Sd(γ) as γ runs
through F

∗
3n . By (7) and Lemma 9, we have

Sd(γ)

=
∑

x0, x1, x2∈F3r

ζ
Trr

1(θ(−x0x2
2+2βx1x2

2+x2
1x2+βx3

1−(1+βa)x3
2+γ0x2+γ1x1+γ2x0+γ2x2))

3 .

(8)
Further, using the properties of the trace function, we have

Trr
1(θβx3

1) = Trr
1

(
θ3

r−1
βx1

)
, (9)

and
Trr

1

(−θ(1 + βa)x3
2

)
= Trr

1

(
−θ3

r−1
(
1 + βa3r−1

)
x2

)
. (10)

Substituting (9) and (10) into (8), we have

Sd(γ)

=
∑

x1, x2∈F3r

ζ
Trr

1

(
θx2x2

1+
(
2βθx2

2+θ3r−1
β+θγ1

)
x1+

(
θγ0+θγ2−θ3r−1(

1+βa3r−1))
x2

)

3

× ∑

x0∈F3r

ζ
Trr

1(x0θ(γ2−x2
2))

3 .

(11)
For a given γ = γ0 + γ1ω + γ2ω

2 ∈ F
∗
3n with γi ∈ F3r , i = 0, 1, 2, define

Mγ =
{
x2 ∈ F3r |x2

2 = γ2
}

.

We consider the following three cases.

Case 1: γ2 = 0. Then, Mγ = {0}. By (11), we have

Sd(γ) = 3r
∑

x1∈F3r

ζ
Trr

1

((
θ3r−1

β+θγ1

)
x1

)

3 ,

which implies that Sd(γ) = 32r if γ1 = −θ3
r−1−1β and otherwise, Sd(γ) = 0.

Once r, g(x) and d are given, θ and β are fixed and nonzero. Thus, when γ runs
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through F
∗
3n , there are 3r distinct γ such that γ2 = 0 and γ1 = −θ3

r−1−1β. This
means that in this case there are 3r distinct γ ∈ F

∗
3n such that Sd(γ) = 32r.

Furthermore, one can conclude that in this case there are 32r − 1 − 3r distinct
γ ∈ F

∗
3n such that Sd(γ) = 0.

Case 2: γ2 is a nonsquare in F
∗
3r . Then, Mγ is empty. Thus, by (11), we have

Sd(γ) = 0 in this case. Corresponding to this case, there are 3r−1
2 · 32r distinct

γ ∈ F
∗
3n .

Case 3: γ2 is a square in F
∗
3r . Assume γ2 = μ2 with μ ∈ F

∗
3r . Then, Mγ = {μ,−μ}.

By (11), we have

Sd(γ) = 3r

(
∑

x1∈F3r

ζ
Trr

1(θμx2
1+bx1+c)

3 +
∑

x1∈F3r

ζ
Trr

1(−θμx2
1+bx1−c)

3

)

, (12)

where

b =
(
2βθμ2 + θ3

r−1
β + θγ1

)
and c =

(
θγ0 + θγ2 − θ3

r−1
(
1 + βa3r−1

))
μ.

Then, by Lemmas 4 and 5, (12) can be rewritten as

Sd(γ)
= (−1)r−1(

√−1)r3
3r
2

(
χ(r)

(
c − b2

θμ

)
η(r)(θμ) + χ(r)

(
−c + b2

θμ

)
η(r)(−θμ)

)
,

where χ(r) is the canonical additive character of F3r and η(r) is the quadratic
character of F3r . Let

A = χ(r)

(

c − b2

θμ

)

η(r)(θμ) + χ(r)

(

−c +
b2

θμ

)

η(r)(−θμ).

Note that χ(r)
(
−c + b2

θμ

)
is the complex conjugate of χ(r)

(
c − b2

θμ

)
. If r is even,

η(r)(−1) = 1. Then,

A = η(r)(θμ)
(

χ(r)
(
c − b2

θμ

)
+ χ(r)

(
c − b2

θμ

))

=

{
±2, if c = b2

θμ ,

±1, if c �= b2

θμ ,

and thus Sd(γ) ∈
{

±3
3r
2 , ±2 · 3

3r
2

}
. If r is odd, η(r)(−1) = −1. Then,

A = η(r)(θμ)
(

χ(r)
(
c − b2

θμ

)
− χ(r)

(
c − b2

θμ

))

=

{
0, if c = b2

θμ ,

±√−3, if c �= b2

θμ ,

and Sd(γ) belongs to
{

0, ±3
3r+1

2

}
.

Combining Cases 1–3, we consider the following:
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• If r is even, the possible values of Sd(γ) are 0, 32r, 3
3r
2 , −3

3r
2 , 2·3 3r

2 , −2·3 3r
2 .

When γ runs through F
∗
3n , assume the numbers of occurrences of the above

values are N1, N2, · · · , N6, respectively. First, note that the values 0 and 32r

only appear in Case 1 and Case 2. By the analysis there, we have
{

N1 =
(
32r − 1 − 3r

)
+ 3r−1

2 · 32r = 33r+32r

2 − 3r − 1,
N2 = 3r.

(13)

Then, by Lemma 6, we have
⎧
⎨

⎩

32rN2 + 3
3r
2 (N3 − N4) + 2 · 3

3r
2 (N5 − N6) = 33r,

34rN2 + 3
6r
2 (N3 − N4) + 4 · 3

6r
2 (N5 − N6) = 36r,

36rN2 + 3
9r
2 (N3 − N4) + 8 · 3

9r
2 (N5 − N6) = 37r.

(14)

Moreover, we also have

N1 + N2 + N3 + N4 + N5 + N6 = 33r − 1. (15)

From (13)–(15), the value distribution of Cd(γ) = Sd(γ) − 1 in Table 1 is
obtained.

• If r is odd, the possible values of Sd(γ) are 0, 32r, 3
3r+1

2 , −3
3r+1

2 . By similar
analysis as the case where r is even, Table 2 can be obtained. ��

4 Conclusion

For any given r ≥ 2, n = 3r and the decimation d = 3r + 2 or 32r + 2, the cross-
correlation distribution between a ternary m-sequence of period 3n − 1 and its
d-decimated sequence is completely determined. The result generalizes previous
work in [12], and settles a conjecture proposed there. The proof in this paper
uses the same basic idea as that of Theorem 2.5 in [12], but some modifications
are made. The key point of our proof is that for any given r ≥ 2, we can find an
irreducible polynomial in F3r [x] of the form x3 − x − a to yield the finite field
F3n . This allows us to express Trn

r

(
γx + xd

)
as a function of three variables over

F3r with a simple form, and makes the calculation of Cd(γ) possible.
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Abstract. A 1992 conjecture of Golomb asserts the existence of an
infinite increasing sequence A = {an} of positive integers for which
each translate Ak = {an + k} of A = Ao contains no more than B
primes, for some finite bound B. This conjecture is inconsistent with
the “Prime k-tuples Conjecture”, which asserts that for infinitely many
positive integers n, all k numbers {n, n + a1, n + a2, ..., n + ak−1} are
prime, provided that there is no prime number q for which the k inte-
gers {0, a1, a2, ..., ak−1} occupy all q residue classes modulo q. This paper
discusses reasons for believing or disbelieving each of these conjectures.

1 Introduction

In 1992, I asked (in [1]) the following two-part question. a. Is there an infinite
sequence A = {an} of positive integers such that Ak = {an + k} contain only
a finite number of prime numbers, for every kεZ, that is, for every integer k,
positive, negative, and zero? b. Is there such a sequence A = {an} for which the
number of primes in Ak is less than some finite bound B, for every kεZ?

The answer to question(a) is “yes”. It is easy to exhibit such a sequence A =
{an}. Specifically let an = ((2n)!)3. Then every term in A = Ao is composite.
At k = 1, A1 = {an + 1} = {(2n!)3 + 1} is composite for all n because x3 + 1 =
(x + 1)(x2 − x + 1), and both factors exceed 1 for all n ≥ 1. Similarly, A−1 =
{an−1} = {(2n!)3−1} is composite for all n > 1, since x3−1 = (x−1)(x2+x+1).
Finally, for all k with |k| > 1, Ak = {an + k} = ((2n!)3 + k) is composite for all
n ≥ |k|, since |k| > 1 will be a common factor of (2n)! and k.

The answer to question (b) remains unknown. It is not hard to show [5]
that if the answer to question (b) is “yes”, then the famous “Prime k-tuples
Conjecture” is false.

The “Prime k-tuples Conjecture” asserts that for infinitely many values of
n, all k of the numbers {n, n + a1, n + a2, ..., n + ak−1} are prime, provided only
that there is no prime numbers q such that the k numbers {0, a1, a2, ..., ak−1}
occupy all q residue classes modulo q.

In [5], the existence of a sequence A satisfying (b) is called “Golomb’s Con-
jecture.” This paper explores the plausibility of that conjecture.

c© Springer International Publishing Switzerland 2014
K.-U. Schmidt and A. Winterhof (Eds.): SETA 2014, LNCS 8865, pp. 263–266, 2014.
DOI: 10.1007/978-3-319-12325-7 22
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2 The Number of Candidate Sequences

Let sn be any infinite increasing sequence of positive integers. The number
of such sequence is well-known to be uncountably infinite. Then, with an =
((2s(n))!)3, the sequence A = {an} satisfies the condition that each of its trans-
lates, Ak = {an + k}, for all kεZ, contains only finitely many primes. If, for any
one of the uncountably many such sequence A = {an} the number of primes
in Ak is less than some finite bound B (where B can be arbitrarily large), then
Golomb’s Conjecture is true.

The famous “Prime Number Theorem” (PNT) states that, with π(x) =number
of primes ≤ x, π(x) ∼ x/lnx as x → ∞, which is equivalent to the statement
lim

x→∞ π(x)/(x/lnx) = 1. (Here lnx is the logarithm of x to the base e.) The Prime
Number Theorem justifies the statement that “the probability that an integer in
the vicinity of x is prime is 1/ln x.” From this, the expected number of primes in

an infinite increasing sequence g(n) of positive integers is given by
∞∑

n=1
1/lng(n). If

g(n) ≥ e2
n

for all n ≥ 1, then this expected number of primes is <
∞∑

n=1
1/2n = 1.

Among the uncountably infinite number of sequence A = {((2s(n))!)3}, an
uncountably infinite subset of them have terms growing much faster than e2

n

,
and this will be true of the terms in the translates Ak of A = Ao. Hence, it
should be extremely likely that there is at least one such sequence A for which
each of its translates Ak contains no more than B primes, for some finite bound
B, where B is allowed to be extremely large.

3 The k-tuples of Prime Numbers

The simplest instance of the Prime k-tuples Conjecture is for k = 2, and asserts
that infinitely often both n and n + 2 are prime. While no one seriously doubts
that this “twin prime conjecture” is true, it remains unproved.

In 2012, Jiteng Zhang proved the remarkable theorem that there is a finite
bound J such that, infinitely often, there are two prime numbers p and q such
that |p − q| < J . While Zhang’s original proof had J = 70 Million, a world-wide
collaboration for the past year has improved J to below 200, though still far
above the conjectured value of “2”. Zhang’s result is the first to show that the
Prime k-tuples Conjecture is sometimes true, in some very simple special cases.
This is a far cry from proving, or even suggesting, that it is always true.

From the fact, which follows from the PNT, that the sequence of primes
“thins out”, and from looking at tables of primes, Hardy and Littlewood con-
jectured [4] that π(x + y) ≤ π(x) + π(y) for all x > 2, y > 2. However, if this
conjecture is true, then the Prime k-tuples Conjecture is false [5].

Thus, if either the Hardy-Littlewood Conjecture or Golomb’s Conjecture is
true, then the Prime k-Tuples Conjecture is false. It is even logically possible
that all three of these conjectures are false.
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4 Crosscorrelation of Sequences

Let S = {sn} and T = {tn} be any two sequences of increasing non-negative
integers, defined for each nεZ+. With S we associate the sequence S̄ = {σn},
and with T the sequence T̄ = {τn}, where σn = 1 whenever n is a value of
sn, but σn = 0 otherwise; and τn = 1 whenever n is a value of tn, but tn = 0
otherwise. We define the (infinite) crosscorrelation (function) CST (θ) between
the two sequences S and T to be CST (θ) =

∑∞
n=−∞ σnτn+θ, where σn = 0 for

n ≤ 0 and τn = 0 for n ≤ 0.
Our interest is in pairs of sequences S and T for which CST (θ) is finite for all

θεZ. Among such pairs of sequences, we may also consider stronger restrictions
on CST (θ). A very strong restriction would be 0 ≤ CST (θ) ≤ 1 for all θεZ. This
condition is satisfied if and only if S and T form a “Sidon Sequences Pair;” that
is, all differences |si = sj | of two elements in S are distinct from all differences
|ti = tj | of two elements in T . In my two previous SETA papers [2,3], I considered
questions about and constructions for such sequence pairs. However, it appears
that the sequence of the prime numbers, P = {2, 3, 5, 7, 11 . . .}, is too dense to
be a member of a Sidon Sequences Pair. Fortunately, that is far more than is
required of the sequence P for Golomb’s Conjecture to be true.

Specifically, Golomb’s Conjecture is true if and only if there is an infinite
increasing sequence of positive integers S = {Sn} such that CSP (θ) is bounded,
0 ≤ CSP (θ) < B, for a specific bound B, and all θεZ, where B is allowed to be
huge but finite.

One may visualize CSP (θ) as the process of sliding the characteristic function
S̄= {σi} past the characteristic function P̄= {πi} of the prime numbers, and
observing the number of “hits” for each shift amount θ. We have already seen
that sequences S exist for which this number of hits is finite for every shift θ. The
challenge is to construct, or merely to prove the existence of, such a sequence S
where the number of hits will be bounded for every shift θ.

5 Conclusions

A plausible conjecture of Golomb is inconsistent with the “Prime k-tuples Con-
jecture.” It may be possible to prove Golomb’s Conjecture by exhibiting a specific
infinite increasing sequence of positve integers, A = {an}, such that none of the
“translates” Ak of A, where Ak = {an +k}, for each kεZ, contains no more than
B primes, where B is allowed to be huge, but finite. There is a (non-rigorous)
probability argument that suggests, if the terms of A = {an} grow fast enough,
then A is increasingly likely to have this property. The challenge is to find such
a sequence A for which the fact that each of its translates contains no more than
B primes can actually be proved.
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Abstract. The timing synchronization method proposed by Schmidl
and Cox for orthogonal frequency division multiplexing (OFDM) systems
uses a reference block consisting of two identical parts, while the one
proposed by Shi and Serpedin uses a reference block consisting of four
parts with a sign pattern (+1, +1, −1, +1). The accuracy of estimated
delays of the latter method is higher than the former. In this paper,
the number of partitions is generalized as an integer number M . Two
criteria for optimization are proposed. Optimal codes with code length
5 ≤ M ≤ 30 are investigated.

1 Introduction

Time and frequency synchronization is an important issue in Orthogonal Fre-
quency Division Multiple Access (OFDMA) systems with a large Doppler shift
[1]. A transmitted signal in an OFDMA system consists of a reference block and
a data block; the former is a control signal and can be used for synchronization,
while the latter is a payload.

The Schmidl-Cox (S&C) method [2] in which a reference block consists of two
identical parts is used as a coarse synchronization method in OFDMA systems
and in ultrawide band (UWB) communications [5]. A receiver establishes its
synchronization by finding the peak value of the auto-correlation between the
received signal and the half-block delayed signal. Minn et al. [3] proposed an
improved version of S&C method, where a reference block consists of multiple
repetitive parts with a specific sign pattern. Then, Shi and Serpedin (S&S) [4]
proposed training symbols consisting of four identical parts, with a sign pattern
(+1,+1,−1,+1). At the receiver, the sum of auto-correlation values for every
pair of four parts is calculated. Other synchronization methods for OFDM using
similar training sequences have been proposed [6–8]. Most of them are designed
to have low computational complexity, hence the number of partitions, M , is
not so large, because it should be implemented in a low-power receiver. On the
other hand, we consider a fundamental question about which sign pattern is the
best choice for a given M .
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We review the definition of a timing metric Γ (θ) for a reference block con-
sisting of M parts [9]. We introduce a slightly modified timing metric, denoted
by Γ̃ (θ) to simplify the analysis. Barker sequences would seem to be good can-
didates for such sign patterns. We will show that the shape of the timing metric
of a Barker sequence of M = 4 is very sharp and that the peak is steep. How-
ever, those of M = 5 and M = 7 are not sharp and have sidelobes, and those
of M = 11 and M = 13 have very large sidelobes. In this paper, two criteria
for determining the optimal sign pattern are defined. Their associated optimal
patterns are shown for 5 ≤ M ≤ 30.

2 Generalized Schmidl-Cox method

2.1 Channel model

A multi-path fading channel with a time delay and a Doppler shift can be
modeled as follows: Consider a discrete-time and time-invariant system with
impulse response (h0, h1, . . . hLT −1), where LT denotes the maximum delay. Let
ε0 = NfDTs ∈ {0, 1, . . . , N − 1} be a normalized frequency offset, where fD is
a Doppler frequency, Ts is a sampling interval, and N is the size of a Discrete
Fourier Transform (DFT) for an OFDMA that is equal to the length of a refer-
ence block. Then, the discrete-time received signal of the m-th time instance is
expressed by

rm = ej2πε0m/N
LT −1∑

�=0

h�sm−θ0−� + wm, (1)

where sm is a transmitted signal, θ0 is a timing offset, and wm is a proper1

complex Gaussian noise with zero mean and variance σ2.
In a Spread Spectrum (SS) system, multiple paths are resolved by a rake

receiver. The channel coefficients {h�} are estimated and the received signals
through each path are combined. Such a rake receiver consists of several fin-
gers that are correlators or matched filters, where the cross-correlation value
between the received signal and the locally generated spreading signal is cal-
culated. On the other hand, OFDM systems are sensitive to carrier frequency
offset, which causes inter-channel interference. Hence, carrier frequency offset
should be compensated for. The S&C approach is a non-coherent method for
OFDM systems that uses the autocorrelation value of the received signal and
that can detect the timing offset as well as the frequency offset.

For simplicity, the multi-path effect is ignored, i.e., the received signal (1) is
replaced by

rm = ej2πε0m/Nsm−θ0 + wm. (2)

1 If Z is a proper complex Gaussian random variable, its real and imaginary parts are
independent.
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data block

Fig. 1. Transmitted signals for the Schmidl-Cox (upper) and Shi-Serpedin (lower)
methods

2.2 Timing Metric and Synchronization Method

A transmitted signal consists of a reference block and data block in an OFDMA
system (See Fig. 1). A reference block, also known as a preamble, is utilized
to establish time and frequency synchronization. In the S&C method [2], a
reference block consists of two identical parts, denoted by (B,B). The auto-
correlation value between the received signal and its half-block delayed version
is calculated. If the receiver finds a peak of auto-correlations, synchronization
is declared. Otherwise, the auto-correlation value of the next timing is calcu-
lated. The S&C method has a drawback in that the peak value exhibits a large
plateau that greatly reduces the accuracy of the estimated delay [1]. In order
to overcome this drawback, Shi-Serpedin used a reference block composed of
four identical parts, with the third part being multiplied by −1. Then, the S&S
method exhibits a smaller plateau than does the S&C method. This result shows
that the synchronization performance of M = 4 is better than that of M = 2.
Then, it is natural to ask: Can we get better performance by increasing the num-
ber of repetitive parts to more than four? We will show in a separate paper [16]
that an optimal number of partitions for a multi-path fading channel with a
Doppler environment is approximately given by M =

√
N/2 for 60 ≤ N ≤ 240,

where N is the length of the reference block.
In this paper, we consider a general case where the number of repetitive parts

is M . Each part is called a sub-block and is multiplied by +1 or −1. We denote
the sequence of these ±1 by d = (d0, d1, . . . , dM−1), while the repetitive part B
consists of X0,X1, . . . , XL−1, where L = N/M . Then, the transmitted signal of
a reference block is expressed by

sn+iL = di · Xn (3)

for 0 ≤ i ≤ M − 1, 0 ≤ n ≤ L − 1.
A timing metric is introduced by Shi and Serpedin for the case M = 4, which

can be generalized as follows [9] (See also Fig. 2): Define an autocorrelation of
the received signal between the i-th and j-th sub-block with timing offset θ as

Zi,j(θ) =
L−1∑

n=0

r̄n+θ+iLrn+θ+jL, (4)
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Received
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absolute values

Fig. 2. How to calculate the timing metric for the S&S method.

where r̄m denotes the complex conjugate of rm. Note that if θ = θ0 the desired
signal component of Zi,j(θ0) has a sign didj with a phase shift of 2πε0(j−i)L/N .
Define

Λp(θ) =
M−p−1∑

i=0

didi+pZi,i+p(θ). (5)

This quantity is the sum of the autocorrelations and its desired signal component
has a phase shift 2πε0pL/N . The effect of a phase shift with a signal component
of Λp(θ) is eliminated by taking the absolute value. Then, a timing metric is
defined by

Γ (θ) =

(
M
2

)−1 ∑M−1
p=1 |Λp(θ)|

1
M |Λ0(θ)|

, (6)

where
(
M
2

)
= M(M−1)

2 is a binomial coefficient, θ is a controlled parameter for
estimating θ0, and |z| is the absolute value of a complex number z. It is expected
that Γ (θ) will have its peak value when θ = θ0 and will have a small value for
any θ �= θ0. Hence, we would like to find the sign pattern d to minimize Γ (θ)
for all θ �= θ0. Note that Λ0(θ) is equal to the energy of the received signal, i.e.,
∑N−1

n=0 |rn+θ|2.
In order to simplify the analysis, we introduce a modified timing metric as

Γ̃ (θ) =
M−1∑

p=1

|Λp(θ)|. (7)

The parameter θ that attains the maximum value of Γ (θ) is selected as an
estimate of θ0, i.e.,

θ̂0 = arg max
θ

Γ̃ (θ). (8)

Note that using a threshold is more practical than finding the θ that takes the
maximum value. A normalization process is needed if we compare a timing metric
with a fixed threshold (e.g. [10]).

We refer to the part of the timing metric for θ < L as a mainlobe and that
for θ ≥ L as a sidelobe. Fig. 3 shows four examples of the modified timing metric
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Fig. 3. An example of timing metric Γ̃ (θ) for M = 6 and L = 10, where (a) d =
(1, −1, 1, −1, 1, −1), (b) d = (1, −1, −1, 1, 1, −1), (c) d = (1, −1, 1, 1, 1, −1), (d) d =
(1, 1, 1, −1, −1, 1) are used.

Γ̃ (θ) for M = 6. Solid lines show the modified timing metric and dashed lines
are upper bounds of them, which will be defined later. These examples show that
the shape of Γ̃ (θ) largely depends on d. Case (d) is the most desirable among
the four cases, since the modified timing metric does not have large sidelobes
and its peak is sharp. We will define two criteria for determining the optimal
timing metric.

Remark: The timing metric Eq. (6) is based on an auto-correlation of the
received signal. On the other hand, Rick and Milstein [11] derived their optimal
decision statistics based on a it cross-correlation function between the received
signal and a replica of the transmitted signal for spread-spectrum (SS) commu-
nications in Rayleigh and Rician fading channels. Doppler shift was not taken
into account in [11]. Timing estimation methods combining auto-correlation and
cross-correlation functions for OFDM systems with Doppler shift have been pro-
posed in [12,13]. A comparison of several preamble designs were given in [14]

It may be worth noting that this estimate has bias for a multi-path channel,
that is, the estimate is likely to be larger than the true timing offset because of
the channel distortion. This topic will be discussed in [16].
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3 Analysis of the timing metric in the absence of noise

In this section, the shape of Γ̃ (θ) against θ is analyzed. For simplicity, a noiseless
case is considered. The effect of noise will be discussed in [16]. Let θ = θ0+	+pL,
where 0 ≤ 	 ≤ L − 1 and p = 0, 1, . . . M − 1. Then,

Lemma 1: The modified timing metric Γ̃ (θ) in the absence of noise is upper
bounded by

Γ̃ (θ0 + 	 + pL) =
M−p−1∑

q=1

|Λq(θ0 + 	 + pL)|

=
M−p−1∑

q=1

|(L − 	)Bp,q(d) + 	Bp+1,q(d)| (9)

≤ (L − 	)Ap(d) + 	Ap+1(d) (10)

where

Bp,q(d) =
M−p−q−1∑

i=0

didi+pdi+qdi+p+q, (11)

Ap(d) =
M−p−1∑

q=1

|Bp,q(d)|. (12)

Define Bp,q(d) = 0 if p+ q ≥ M . Note that Ap(d) = 0 for p ≥ M − 1, B0,q(d) =
M − q, and A0(d) =

(
M
2

)
.

Proof. Substituting Eqs. (2) and (3) into (4) under the noiseless assumption,
i.e., wm = 0 for every m, gives

Zij(θ0 + 	 + pL)

=
L−1∑

n=0

r̄n+θ0+�+(p+i)Lrn+θ0+�+(p+j)L

= ej2πε0(j−i)L
L−1∑

n=0

sn+�+(p+i)Lsn+�+(p+j)L

= ej2πε0(j−i)L

{
L−�−1∑

n=0

di+pdj+pX
2
n+� +

L−1∑

n=L−�

di+p+1dj+p+1X
2
n+�−N

}

= ej2πε0(j−i)L{(L − 	)di+pdj+p + 	di+p+1dj+p+1}.
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Then,

M−q−1∑

i=0

didi+qZi,i+q(θ0 + 	 + pL)

= ej2πε0(j−i)L

{

(L − 	)
M−q−1∑

i=0

di+pdj+p +
M−q−1∑

i=0

	di+p+1dj+p+1

}

= ej2πε0(j−i)L{(L − 	)Bp,q(d) + Bp+1,q(d)}
Using (7) and (5) together with the triangular inequality |X + Y | ≤ |X| + |Y |
gives

Γ̃ (θ0 + 	 + pL) =
M−1∑

q=1

|(L − 	)Bp,q(d) + 	Bp+1,q(d)|

≤ (L − 	)
M−1∑

q=1

|Bp,q(d)| + 	

M−1∑

q=1

|Bp+1,q(d)|,

which completes the proof.

The inequality (10) shows that, in order to reduce the modified timing met-
ric for θ �= θ0, it is sufficient to reduce Ap(d) for every 1 ≤ p ≤ M − 2.
The right hand side of (10) is shown in a dashed line in Fig. 3. Note that
Γ̃ (θ0 + pL) = LAp(d). The Ap(d) values for the examples in Fig. 3 are (a)
(A0, A1, A2, A3, A4) = (15, 10, 6, 3, 1), (b) (15, 10, 6, 3, 1), (c) (15, 4, 6, 1, 1), and
(d) (15, 4, 2, 1, 1). Note that the shapes of Γ̃ (θ) are completely different, although
the Aq(d) values for (a) and (b) are the same.

For the generalized Schmidl-Cox method, binary sequences with a low Ap(d)
(p = 1, 2, . . . ,M − 1) are desirable. We call binary sequences that minimize
maxp≥1 Ap(d) and

∑M−1
p=1 Ap(X) minimum maximum sidelobe (MMS) sequences

and minimum total sidelobe (MTS) sequences, respectively.
Next, consider the slope of Γ̃ (θ) at θ being very close to θ0. Let θ = θ0 + 	

with 	 � L, then the first terms in the absolute operations in the summation in
Eq. (9) are larger than the second terms. We have

Lemma 2: For a noiseless case, the slope of the timing metric Γ̃ (θ) at θ = θ0+	

with 	 � L only depends on |∑M−2
i=0 didi+1|.

Proof: Since
∑M−1

q=1 B0,q(d) =
(
M
2

)
holds, we obtain

Γ̃ (θ0 + 	) = (L − 	)
(

M

2

)

+ 	
M−2∑

q=1

B1,q(d)

=
(

M

2

)

L − 	

{(
M

2

)

−
M−2∑

q=1

B1,q(d)

}

(	 � L). (13)
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This equation shows that the modified timing metric is steeper if

−A′
1 = −

M−2∑

q=1

B1,q(d)

is large. It is easily shown that
(∑M−2

i=0 didi+1

)2

= 2A′
1 + M − 1. Hence,

−
M−2∑

q=1

B1,q(d) =
M − 1

2
− 1

2

(
M−2∑

i=0

didi+1

)2

, (14)

which completes the proof.

Numerical results. The values Ap(d) are calculated for every possible d for
finding MTS and MMS sequences. In Table 1, for 4 ≤ M ≤ 15, MTS sequences,
i.e., sequences that attain minimum

∑
p Ap, are listed, where the code number

implies
∑M

j=1 d′
j2

j with d′
j = 1−dj

2 . For example, code number 6 for M = 6
implies

d = (+1,+1,+1,−1,−1,+1).

For M ≥ 7, the code number is expressed as an octal number. The number of
minimum

∑
p Ap sequences is not one. The earliest code number is shown in

Table 1. By definition, we have AM−1(d) = 1 for any d.
In Table 2, MMS sequences, i.e., sequences that attain the minimum maxp Ap,

are listed for 10 ≤ M ≤ 15. The sequences for 4 ≤ M ≤ 9 are the same as in
Table 1. It is observed that maxp Ap in Table 2 is almost the same as M and
that

∑
p Ap in Table 1 is approximately M2/2 for M < 15. This is not the case

for a larger M . In Table 3,
∑

p Ap and maxp Ap for 16 ≤ M ≤ 30 are listed. It is
shown that max Ap increases more than M and that

∑
Ap is much larger than

M2/2. Analysis of the behavior of
∑

p Ap and maxp Ap remains to be solved.

Table 1. The list of minimum total sidelobe (MTS) sequences for 4 ≤ M ≤ 15

M Code
∑

p Ap maxAp A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

number

4 1 2 1 1 1

5 1 4 2 2 1 1

6 6 8 4 4 2 1 1

7 (11)8 13 5 5 4 2 1 1

8 (11)8 16 5 3 5 2 4 1 1

9 (46)8 24 6 6 5 5 4 2 1 1

10 (43)8 32 10 6 10 3 5 2 4 1 1

11 (144)8 43 11 11 8 6 5 5 4 2 1 1

12 (316)8 58 15 15 11 8 6 5 5 4 2 1 1

13 (1564)8 76 15 14 15 13 8 6 5 5 2 6 1 1

14 (1444)8 92 16 16 14 13 11 8 8 9 5 4 2 1 1

15 (5626)8 103 17 17 16 14 9 9 10 10 5 5 4 2 1 1
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Table 2. The list of minimum maximum sidelobe (MMS) sequences for 10 ≤ M ≤ 15

M Code
∑

p Ap maxAp A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

number

10 (243)8 36 8 8 6 5 7 4 2 3 1

11 (142)8 53 10 9 8 10 9 5 6 2 3 1

12 (726)8 64 11 11 11 10 10 3 5 10 2 1 1

13 (1114)8 78 13 12 13 13 8 10 9 5 4 2 1 1

14 (544)8 96 15 12 12 15 13 10 10 9 7 4 2 1 1

15 (1564)8 111 16 15 16 16 11 13 8 8 9 7 4 2 1 1

Table 3. A list of MTS (left) and MMS sequences (right) for 16 ≤ M ≤ 30

MTS sequences MMS sequences

M Code number
∑

p Ap max Ap Code number
∑

p Ap max Ap

16 (20474)8 120 21 (3110)8 132 18

17 (30055)8 144 21 (3321)8 148 18

18 (103453)8 164 22 (13347)8 172 20

19 (30457)8 195 23 (123107)8 215 23

20 (353063)8 224 27 (133476)8 230 25

21 (1137166)8 254 32 (64266)8 266 27

22 (1137166)8 288 30 (644721)8 312 29

23 (3410324)8 329 36 (4101511)8 339 32

24 (4101511)8 370 37 (322350)8 392 34

25 (6113716)8 410 45 (6167645)8 430 37

26 (4663611)8 460 42 (11145047)8 492 40

27 (145660343)8 501 45 (126401071)8 553 42

28 (103153070)8 554 41 (103153070)8 554 41

29 (47323061)8 626 58 (122676334)8 670 48

30 (1262607143)8 680 58 (1653275474)8 700 49

Table 4. The sidelobe values of the modified timing metric for the Barker sequences

M Code number
∑

p Ap maxAp A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

4 (2)8 2 1 1 1

5 (2)8 8 4 4 3 1

7 (15)8 17 5 5 4 4 3 1

11 (355)8 97 21 21 18 18 13 15 4 4 3 1

13 (312)8 140 31 22 31 17 16 16 13 5 10 6 3 1

The absolute value of the aperiodic autocorrelation function of Barker
sequences of nonzero delay is at most one, and hence Barker sequences are
used for the synchronization process using cross-correlation between the received
signal and a locally generated replica of the transmitted signal [15]. One may
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consider that Barker sequences are suitable for the generalized Schmidl-Cox
method, as well. The values of Ap for Barker sequences are listed in Table 4,
which indicates that a Barker sequence is optimal when M = 4 and nearly
optimal when M = 5 and M = 7. However,

∑M−1
p=1 Ap and maxp≥1 Ap are sig-

nificantly large when M = 11 and M = 13. Thus, Barker sequences with M = 11
and M = 13 cannot be recommended for the generalized Schmidl-Cox method.

4 Conclusion

In this paper, we consider the optimization of the performance of a timing syn-
chronization method [9] that is a generalization of [2–4]. A reference block is
divided into M repetitive parts, where each part is multiplied by a {+1,−1}-
valued sequence. The original timing metric, Γ (θ), is slightly modified to make
the analysis easy. An upper bound for the modified timing metric in the absence
of noise is provided. Such an upper bound leads us to define two criteria for
optimizing the sign patterns. Examples of optimal codes for 5 ≤ M ≤ 30 are
obtained by an exhaustive search. The slight modification of the timing metric
is independent of the optimality of the sign patterns, as long as the decision rule
θ̂0 = arg maxθ Γ̃ (θ) is used.
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Abstract. An asymmetric zero-correlation zone (A-ZCZ) sequence pairs
set is a zero-correlation zone (ZCZ) pairs set consisting of multiple ZCZ
sequence pairs subsets, where two arbitrary sequence pairs which belong
to different subsets should have a large zero cross-correlation zone
(ZCCZ). Additionally, each subset is a typical ZCZ sequence pairs set.
The new proposed A-ZCZ sequence pairs sets can be generated based
on interleaved technique and perfect sequence pairs of length P = Nmk
with N > 1, m ≥ 1, k > 1. The proposed A-ZCZ sequence pairs sets are
applied to quasi-synchronous code-division multiple-access (QS-CDMA)
systems and it can hypothetically achieve larger ZCCZ than typical ZCZ
sequence pairs set, as well as eliminating both multiple access and mul-
tipath interference in the QS-CDMA system.

Keywords: ZCZ sequence pairs · QS-CDMA · Perfect sequence pairs ·
Interleaved sequences

1 Introduction

In quasi-synchronous code-division multiple-access (QS-CDMA) systems, syn-
chronization condition is generally not very strict, and synchronization deviation
of a few chips is allowed. It demands that the address code used for distinguish-
ing different users has a realistic correlation characteristic in the synchronization
deviation range. The concept of general orthogonal (GO) or ZCZ has been pre-
sented and a number of ZCZ sequence sets and ZCZ sequence pairs sets have been
constructed [1,2]. The ZCZ sequence and sequence pairs set are used as address
code which can eliminate both multiple access and multipath interference in the
QS-CDMA system.

The concept of interleaved sequences was introduced by Gong [3], which can
be used for the construction of ZCZ sequences and ZCZ sequence pairs. In recent
years, the designs of ZCZ sequence set and ZCZ sequence pairs set have been
researched based on interleaved technique and perfect sequences or sequence
pairs [4–12]. Recently, the ZCZ sequence sets were composed of multiple sequence
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subsets, which also be said as A-ZCZ sequence sets, have been proposed and
obtained [13–18]. Tang et al. presented several types of binary A-ZCZ sequence
sets [13], and Hayashi et al. constructed several types of binary and ternary A-
ZCZ sequence sets [14,15]. In addition, Zhang et al. got complementary A-ZCZ
sequence sets [16]. Moreover, Torri et al. designed several types of polyphase
A-ZCZ sequence sets [17,18].

However, the published construction of A-ZCZ sequence set is rare. Para-
meters in some construction methods based on interleaving perfect sequence
must satisfy the rigorous requirements [17,18]. At the same time, the p−ary or
p−phase perfect sequence is limited for a fixed length P of sequence. Therefore,
only a few types of A-ZCZ sequence sets can be obtained by the previous method
[17,18]. But the p−ary or p−phase perfect sequence pairs are richer than perfect
sequences for a fixed length P .

In this paper, in order to enrich scope of spreading sequences, the concept
of A-ZCZ sequence sets is extended to A-ZCZ sequence pair set. In addition,
we propose a construction of A-ZCZ sequence pair set based on interleaved
technique. The ZCCZ length between different sequence subsets of proposed
A-ZCZ sequence pairs sets is larger than the mathematical upper bound of typ-
ical ZCZ sequence pairs sets [19].

The rest of this paper is organized as follows. Section 2 introduces the nota-
tion and the preliminaries required for the subsequent sections. The A-ZCZ
sequence pairs sets from interleaved perfect sequence pairs are presented in
Section 3. In Sect. 4, the construction method of A-ZCZ sequence set is illus-
trated through an example. Finally, Sect. 5 contains the concluding remarks.

2 Preliminaries

Let x = (x0, x1, · · · , xL−1) and y = (y0, y1, · · · , yL−1) be two complex-valued
sequences of length L, they are called cyclically equivalent if there exists an
integer k such that xj = yj+k for all j ≥ 0. Additionally, x and y are defined
as a sequence pair (x,y) of length L. Then, the periodic autocorrelation func-
tion (ACF) of sequence pair (x,y) at a shift of τ is defined by R(x,y)(τ) =
∑L−1

i=0 xiy
∗
i+τ , where the subscript i + τ = (i + τ)mod L and the symbol y∗

denotes the complex conjugate of the y. Further, if x = y, then R(x,y)(τ) is
simplified as Rx(τ).

Additionally, if R(x,y)(τ) = 0 for 0 < |τ | < L, then sequence pair (x,y) is
called a perfect sequence pair.

Similarly, any two complex-valued sequence pairs (x,y) and (u,v) of length
L, their periodic cross-correlation function (CCF) is defined by:

R(x,y)(u,v)(τ) = R(x,v)(τ) =
L−1∑

i=0

xiv
∗
i+τ (1)

Further, if (x,y) = (u,v), then R(x,y)(u,v)(τ) is simplified as R(x,y)(τ).
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Definition 1. Suppose that A is a set of sequence pairs with M sequence pairs of
length L, which can be written as A =

{
(x(i),y(i))

}
, where x(i) = (x(i)

0 , x
(i)
1 , · · · ,

x
(i)
L−1) and y(i) = (y(i)

0 , y
(i)
1 , · · · , y

(i)
L−1), i = 0, 1, 2, · · · ,M − 1. If all of the

sequence pairs in A satisfy the following periodic correlation property,

R(x(i1),y(i1))(x(i2),y(i2))(τ) =

{
0, for i1 = i2 and 0 < |τ | < z,

0, for i1 �= i2 and 0 ≤ |τ | < z.
(2)

then A is called a (typical) Z(L,M, z) sequence pairs set and z is the ZCZ length
of A.

It has been proved that the parameters L, M and z of a Z(L,M, z) sequence set
satisfy the following condition [19]:

Mz ≤ L. (3)

If the three parameters L, M and z of any Z(L,M, z) sequence pairs set satisfy
Eq. (3) with equality, then the Z(L,M, z) is called an optimal ZCZ sequence
pairs set.

Definition 2. Suppose that A =
{
A(0),A(1), ...,A(n), ...,A(N−1)

}
is a set which

consists of N sequence pairs subsets, and each subset A(n) is a ZCZ sequence
pairs set Z(P,Q, z). Here, A(n) can be represented as

A(n) =
{
A(n,0),A(n,1), ...,A(n,q), ...,A(n,Q−1)

}
, (4a)

A(n,q) = (X(n,q),Y(n,q)), (4b)

X(n,q) = (x(n,q)
0 , x

(n,q)
1 , ..., x(n,q)

p , ..., x
(n,q)
P−1 ), (4c)

Y(n,q) = (y(n,q)
0 , y

(n,q)
1 , ..., y(n,q)

p , ..., y
(n,q)
P−1 ). (4d)

If all of the sequence pairs in A(n) and A(n′) (n �= n′) satisfy the following
cross-correlation property,

RA(n,q)A(n′,q′)(τ) = 0 forn �= n′ and 0 ≤ |τ | < zA, (5)

then A is called an A-ZCZ sequence pairs set ZA(P, [Q, N ], [z, zA]) and zA is
the ZCCZ length of A.

Definition 3. Let a complex-valued sequence a = (a0, a1, · · · , aL−1) and a
sequence e = (e0, e1, · · · , eT−1) over ZL = {0, 1, ..., L − 1}. Then an L by T
matrix U can be obtained as follows.

U = (Ui,j)L×T =

⎛

⎜
⎜
⎜
⎝

a0+e0 a0+e1 · · · a0+eT−1

a1+e0 a1+e1 · · · a1+eT−1

...
...

. . .
...

aL−1+e0 aL−1+e1 · · · aL−1+eT−1

⎞

⎟
⎟
⎟
⎠

, (6)
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where the additions in subscripts are computed modulo L. By concatenating
the successive rows of matrix U in Eq. (6), an interleaved sequence u can be
obtained as

uiT+j = Ui,j , 0 ≤ i < L, 0 ≤ j < T. (7)

For convenience, we rewrite the matrix U in Eq. (6) as

U =
(
Le0(a) Le1(a) · · · LeT−1(a)

)
, (8)

and denote the interleaved sequence u by

u = I (Le0(a), Le1(a), · · · , LeT−1(a)) , (9)

where I(·) and Le(·) denote the interleaved operator and left cyclical shift
operator, i.e., Li(a) = (ai, ai+1, · · · , aL−1, a0, · · · , ai−1) respectively, and the
sequences a and e are called component and shift sequence of u respectively.

Similarly, let (x,y) be a sequence pairs and e = (e0, e1, · · · , eT−1) be a
shift sequence, we define an interleaved sequence pairs (v,w) with component
sequence pairs (x,y) and shift sequence e,

v = I(Le0(x), Le1(x), · · · , LeT−1(x)) and w = I(Le0(y), Le1(y), · · · , LeT−1(y)).

Furthermore, another interleaved sequence pairs (v′,w′) is defined by component
sequence pairs (x,y) and shift sequence f = (f0, f1, · · · , fT−1). Then, the CCF
at shift τ (where τ = Tτ1 + τ2, 0 ≤ τ2 < T ) between (v,w) and (v′,w′) is given
by [3,5],

R(v,w)(v′,w′)(τ) =
T−τ2−1∑

t=0

R(x,y)(ft+τ2 − et + τ1)

+
T−1∑

t=T−τ2

R(x,y)(ft+τ2−T − et + τ1 + 1). (10)

Definition 4. Let A = (ai,j)L×T be an L×T matrix and H be a T ×T matrix,
here h(i) = (h(i)

0 , h
(i)
1 , · · · , h

(i)
T−1) be the i-th row vector of H, then H � A is

defined as the set of T matrices
{
h(0) � A,h(1) � A, ...,h(T−1) � A

}
, where

h(i) � A =

⎛

⎜
⎜
⎜
⎜
⎝

h
(i)
0 a0,0 h

(i)
1 a0,1 · · · h

(i)
T−1a0,T−1

h
(i)
0 a1,0 h

(i)
1 a1,1 · · · h

(i)
T−1a1,T−1

...
...

. . .
...

h
(i)
0 aL−1,0 h

(i)
1 aL−1,1 · · · h

(i)
T−1aL−1,T−1

⎞

⎟
⎟
⎟
⎟
⎠

. (11)

Furthermore, we shall refer to the operation � as the orthogonality-preserving
transformation of A if H is an orthogonal matrix.
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3 Construction of A-ZCZ Sequence Set Based
on Interleaved Perfect Sequence

In this section, we present a procedure for the construction of A-ZCZ sequence
pairs set with subsets from interleaved perfect sequence pairs.

Given a perfect sequence pairs (x,y) of length P = Nmk with N > 1, m ≥
1, k > 1, where N , m and k be integers. Let H(n) be orthogonal matrices of
order T with 0 ≤ n < N and T ≤ k, then a procedure of constructing A-ZCZ
sequence pairs set is introduced as follows.

Construction 1: Construction of A-ZCZ sequence pairs set by interleaving
perfect sequence pairs

(I) Generate an appropriate shift sequence e = (e0, e1, · · · , eT−1) of length T .
(II) Construct sequences pairs set B =

{
b(0), b(1), · · · , b(N−1)

}
from the per-

fect sequence pairs (x,y), where b(n) = (v(n),w(n)) =
(
Lnmk(x), Lnmk(y)

)

and 0 ≤ n < N .
(III) Perform the interleaved operation on each sequence pairs b(n) to get a

sequence pairs set (C(n),D(n)) =
(
I(v(n),e), I(w(n),e)

)
, where

I(v(n),e) = I
(
Le0(v(n)) Le1(v(n)) · · · LeT−1(v(n))

)
.

The expression of I(w(n),e) is similar with I(v(n),e). In addition, e =
(e0, e1, · · · , eT−1) is shift sequence which is defined as follows:
– If gcd(T, k) = 1, and et = st(mod k), where s = T−1(mod k).
– If T |k, and et = st(mod k), where s = k

T (mod k).
(IV) Perform the orthogonal transformation on each (C(n),D(n)) to get a new

set
(
U (n),V (n)

)
=

(
H(n) � C(n), H(n) � D(n)

)

=
{

(U (n,0),V (n,0)), · · · , (U (n,T−1),V (n,T−1))
}

,

where H(n) are orthogonal matrices.
(V) Concatenate the successive rows of U (n,t) ∈ U (n) and V (n,t) ∈ V (n) respec-

tively, where (0 ≤ n < N, 0 ≤ t < T ). Then we produce the interleaved
sequence pairs (u(n,t),v(n,t)) leading to ZCZ sequence pairs sets

(
U (n),V(n)

)
=

{
(u(n,t),v(n,t)) |0 ≤ n < N, 0 ≤ t < T

}
,

where
(
u(n,t),v(n,t)

)
=

(
(u(n,t)

0 , · · · ,u
(n,t)
TP−1), (v

(n,t)
0 , · · · ,v

(n,t)
TP−1)

)
.

(VI) Join all sequence pairs subsets (U (n),V(n))(0 ≤ n < N) , and then we
obtain union sequence pairs set (U ,V) =

⋃N−1
n=0

(U (n),V(n)
)

leading to the
desired A-ZCZ sequence pairs sets (U ,V).
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Lemma 1. Let (C(n),D(n)) be sequence pairs obtained from step (III) of Con-
struction 1,

(i) If gcd(T, k) = 1, and et = st(mod k), where s = T−1(mod k), then each
sequence pairs (C(n),D(n)) is a Z(TP, 1, k) sequence pairs.

(ii) If T |k, and et = st(mod k), where s = k
T (mod k), then each sequence pairs

(C(n),D(n)) is a Z(TP, 1, k − 1) sequence pairs.

Proof. (i) According to Eq. (10), let τ = Tτ1 + τ2 and 0 ≤ τ2 < T − 1, when
et = st (mod k), the ACF of sequence pairs (C(n),D(n)) for fixed n can be
calculated as follows.

R(C(n),D(n))(τ) =
T−1∑

t=0

R(x,y)(sτ2 (mod k) + τ1) (12)

When τ2 = 0, then R(C(n),D(n))(τ) = TR(x,y)(0) �= 0 for τ1 = 0 and

R(C(n),D(n))(τ) =
∑T−1

t=0 R(x,y)(τ1) = 0 for τ1 �= 0mod P .
When τ2 �= 0, let τ = Tτ1 + τ2 = k, then τ2 = k + Tτ1, which lead

to (sτ2 (mod k) + τ1)(mod P ) = (s(k − Tτ1) (mod k) + τ1)(mod P ) = (−τ1 +
τ1)(mod P ) = 0 or (sτ2 (mod k)+ τ1)(mod P ) = (k − τ1 + τ1)(mod P ) = k, thus
Eq. (12) is not equivalent to 0 when τ = Tτ1+τ2 = k. While, if τ = Tτ1+τ2 < k,
then 0 �= (Tτ1 + τ2) (mod k) = (τ1 + sτ2) (mod k) �= 0, such that (τ1 + sτ2) �=
0mod P , since k|P . It is said that Eq. (12) = 0 when 0 < τ = Tτ1 + τ2 < k.

Therefore, if gcd(T, k) = 1 and 0 < |τ | < k, then R(C(n),D(n))(τ) = 0.
Namely, the Lemma 1(i) is correct.

(ii) By using the same principle with the proof of Lemma 1(i), we can prove
Lemma 1(ii) is correct. In other words, the Lemma 1 is correct.

Lemma 2. When 0 ≤ i �= j < N , let (C(i),D(i)) and (C(j),D(j)) be two
sequence pairs obtained from step (III) of Construction 1, then the CCF
between the (C(i),D(i)) and (C(j),D(j)) satisfy the following property.

(i) If gcd(T, k) = 1 and |τ | < [mk− t′s]T + t′, then R(C(i),D(i))(C(j),D(j))(τ) = 0,
where t′ satisfies condition et′ = max

0≤t<T
et.

(ii) If T |k and |τ | < [mk−(T −1)s]T +(T −1), then R(C(i),D(i))(C(j),D(j))(τ) = 0.

Proof. (i) According to step (II) and step (III) of Construction 1, the pairs
(C(i),D(i)) and (C(j),D(j)) can be simplified to the following form respectively.

(C(i),D(i)) = (I(x,e′), I(y,e′)) and (C(j),D(j)) = (I(x,f ′), I(y,f ′)) .

Where
e′ = (e0 + imk, e1 + imk, · · · , eT−1 + imk)

and
f ′ = (e0 + jmk, e1 + jmk, · · · , eT−1 + jmk).
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Therefore, according to formula (10), let τ = Tτ1 + τ2 and 0 ≤ τ2 < T − 1, then
the CCF of sequence pairs (C(i),D(i)) and (C(j),D(j)) for 0 ≤ i �= j < N can
be calculated by

R(C(i),D(i))(C(j),D(j))(τ) =
T−1∑

t=0

R(x,y) ((sτ2 mod k) + τ1 + (j − i)mk) (13)

When τ2 = 0. R(C(i),D(i))(C(j),D(j))(τ) = TR(x,y)((j − i)mk) for τ1 = 0.
Hence, mk ≤ (j − i)mk ≤ (N − 1)mk for 0 ≤ i �= j < N , conclude (j − i)mk �=
0mod P and R(C(i),D(i))(C(j),D(j))(0) = 0. If τ1 �= 0, then τ = Tτ1. When
τ = Tτ1 < (mk−t′s)T +t′ < (mk−t′s)T +T , then τ1 < mk−t′s+1 < mk. Thus,
mk ≤ (j−i)mk+τ1 < mk+(j−i)mk ≤ Nmk. Namely, (j−i)mk+τ1 �= 0mod P
and R(C(i),D(i))(C(j),D(j))(τ) = 0 for 0 < τ < (mk − t′s)T + t′.

When τ2 �= 0. There exists integer v with −m ≤ v ≤ m, s.t., τ1 = vk + τ ′
1 for

0 ≤ τ ′
1 < k. If τ = Tτ1+τ2 < (mk−t′s)T +t′, because τ2 < (mk−t′s)T +t′−Tτ1,

(sτ2 mod k) + τ1 + (j − i)mk < vk + (N − 1)mk = [v + (N − 1)m]k ≤ Nmk for
v ≤ m, which lead to sτ2 mod (2k+1)+τ1 +(j − i)m(2k+1) �= 0mod P , namely
Eq. (13) = 0.

From the above analysis, the conclusion is obtained as follows:

R(C(i),D(i))(C(j),D(j))(τ) = 0, if |τ | < (mk − t′s)T + t′. (14)

(ii) By using the same principle with the proof of Lemma 2(i), we can prove
that Lemma 2(ii) is correct.

As a result, the Lemma 2 is correct.

Theorem 1. Let sequence pairs set (U ,V) =
⋃N−1

n=0 (U (n),V(n)) be obtained by
Construction 1, then which is the A-ZCZ sequence pairs set that are composed
of N sequence pairs subsets. And

(i) If gcd(T, k) = 1, let δ = [mk − t′s]T + t′, then the parameters of (U ,V) are
represented (TP, [T,N ], [k, δ]).

(ii) If T |k, let δ = [mk − (T − 1)s]T +(T − 1), then the parameters of (U ,V) are
represented (TP, [T,N ], [k − 1, δ]).

Proof. (i) Let (U (n),V (n))(0 ≤ n < N) be sequence pairs obtained by step
(IV) of the Construction 1. When τ = 0(i.e., τ1 = τ2 = 0), it is easy to
see that the orthogonality between the sequence pairs (U (n,t1),V (n,t1)) and
(U (n,t2),V (n,t2)) is guaranteed by the orthogonality between h(n,t1) and h(n,t2),
namely R(U(n,t1),V (n,t1))(U(n,t2),V (n,t2))(0) = 0, whenever 0 ≤ t1 �= t2 < T . Here

h(n,t1) and h(n,t2) are the t1-th and the t2-th rows of the orthogonal matrix
pair H(n) respectively. When 0 < |τ | < k, the perfect sequence pairs (x,y)
and the Lemma 1(1) guarantee that R(U(n,t1),V (n,t1))(U(n,t2),V (n,t2))(τ) = 0 with
0 ≤ t1 �= t2 < T , as in the ACF case. When |τ | < δ, the Lemma 2 guarantees
that R(U(n1,t1),V (n1,t1))(U(n2,t2),V (n2,t2))(τ) = 0, whenever 0 ≤ t1, t2 < T and
0 ≤ n1 �= n2 < N .

(ii) The proof of Theorem 1(ii) and Theorem 1(i) are the same, so we omit it.
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Table 1. The A-ZCZ sequence pairs set
{(

U (0),V(0)
)
,
(
U (1),V(1)

)}

(
U (0),V(0)

) (
u(0,0), v(0,0)

)
(+ + + − + − − − − − − − − + −+, ++

− − + − − + − − + − − + −−)(
u(0,1), v(0,1)

)
(+ − + + + + − + − + − + − − −−, +−
− + + + − − − + + + − − −+)(

U (1), V(1)
) (

u(1,0), v(1,0)
)

(+ + + + + − + − − − − + − + ++, ++

− + + + − + + − − + + − + + −)(
u(1,1), v(1,1)

)
(+ − + − + + + + − + − − − − +−, +

− − − + + + − − + + − − − + +)

Obviously, if all sequences of (U ,V) are regarded as a sequence pairs set, then
it is an optimal typical ZCZ sequence pairs set with parameters Z(TP,NT, k)
when gcd(T, k) = 1 and q = 1. In addition, (U ,V) is a quasi-optimal typical ZCZ
sequence pairs set with parameters Z(TP,NT, k − 1) if T |k and q = 1. If N = 1
and q = 1, in particular, the proposed method corresponding to part of method
in [10,11].

4 Example

In this section, we give an example.
Given a binary sequences (x,y) = (+ + + − − − −,+ − + − − + −−) of

length 8, where the symbol “+”and “−” represents “+1”and “−1” respectively.
When N = 2, m = 1 and k = 4, then P = 8 = 2 × 1 × 4. Let H(0) and H(1) be
Hadamard matrices of order T = 2, where

H(0) =
(

1 1
1 −1

)

and H(1) =
(−1 −1

−1 1

)

.

Then a binary A-ZCZ sequence pairs set (U ,V) =
{(U (0),V(0)

)
,
(U (1),V(1)

)}

can be obtained from Construction 1. All sequence pairs of this A-ZCZ
sequence set (U ,V) are given in Table 1.

For example, the absolute value of the ACF of (u(n,i),v(n,i)) can be obtained
by calculating

∣
∣
∣R(u(0,0),v(0,0))(τ)

∣
∣
∣ = (8, 0, 0,X, 0, 0, 0, 0, 0, 0, 0, 0, 0,X, 0, 0)

On the other hand, the absolute value of the CCF between (u(n,i),v(n,i)) and
(u(n,j),v(n,j)) can be obtained by calculating

∣
∣
∣R(u(0,0),v(0,0))(u(0,1),v(0,1))(τ)

∣
∣
∣ = (0, 0, 0,X, 0, 0, 0, 0, 0, 0, 0, 0, 0,X, 0, 0)
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Additionally, the absolute value of the CCF between (u(n1,i),v(n1,i)) and
(u(n2,j),v(n2,j)) can be obtained by calculating

∣
∣
∣R(u(0,0),v(0,0))(u(1,0),v(1,0))(τ)

∣
∣
∣ = (0, 0, 0, 0, 0,X,X,X,X,X,X,X,0, 0, 0, 0)

Therefore, the sequence set (U ,V) =
{
(U (0),V(0)), (U (1),V(1))

}
is an A-ZCZ

sequence pairs set ZA(16, [2, 2], [3, 5]).

5 Conclusion

In this paper, the authors presented a new construction of A-ZCZ sequence pairs
set, which is based on interleaved any perfect sequence pairs of length P = Nmk
with N > 1, m ≥ 1, k > 1, according to an orthogonal matrix of order T . In addi-
tion, if sequence pairs subsets of an A-ZCZ sequence set are assigned to adjacent
cells, the asymmetric property can be useful in reducing or avoiding inter-cell
interference because of the larger ZCCZ length between different sequence pairs
subsets. The proposed A-ZCZ sequence pairs set is expected to be useful for
designing spreading sequences for QS-CDMA systems.

Acknowledgments. The authors gratefully acknowledgments very valuable comments
given by anonymous reviewers. This work was supported by China Nation Natural Sci-
ence Foundation of China (NSFC) under Grant No.61261021, 61032003, 61271172,
Research Fund for the Doctoral Program of Higher Education of China(RFDP) under
Grant No.20120185110030, 20130185130002, SRF for ROCS, SEM and Sichuan Inter-
national Corporation Project under Grant No. 2013HH0005.

References

1. Fan, P.Z., Hao, L.: Generalized orthogonal sequences and their applications in
synchronous CDMA systems. IEICE Trans. Fundam. E83–A(11), 1–16 (2000)

2. Deng, X.M., Fan, P.Z.: Spreading sequence sets with zero correlation zone. Elec-
tron. Lett. 36(11), 982–983 (2000)

3. Gong, G.: New designs for signal sets with low cross correlation, balance property,
and large linear span: GF(p) case. IEEE Trans. Inf. Theory 48(11), 2847–2867
(2002)

4. Hayashi, T.: Zero-correlation zone sequence set constructed from a perfect
sequence. IEICE Trans. Fundam. E90–A(5), 1–5 (2007)

5. Tang, X.H., Mow, W.H.: A new systematic construction of zero correlation zone
sequences based on interleaved perfect sequences. IEEE Trans. Inf. Theory 54(12),
5729–5734 (2008)

6. Matsufuji, S.: Two types polyphase sequence sets for approximately synchronized
CDMA systems. IEICE Trans. Fundam. E86–A(1), 229–234 (2003)

7. Torii, H., Nakamura, M., Suehiro, N.: A new class of polyphase sequence sets
with optimal zero-correlation zones. IEICE Trans. Fundam. E88–A(7), 1987–1994
(2005)



A Novel Construction of Asymmetric Sequence Pairs Set with ZCZ 289

8. Zhou, Z.C., Pan, Z., Tang, X.H.: New families of optimal zero correlation zone
sequences based on interleaved technique and perfect sequences. IEICE Trans.
Fundam. E91–A(12), 3691–3697 (2008)

9. Wang, L.Y., Zeng, X.L.: A new class of sequences with zero correlation zone based
on interleaving perfect sequence. In: 5th International Workshop on Signal Design
and Its Applications in Communications, pp. 29–31. IEEE Press, New York (2011)

10. Gao, J.P., Li, Q., Dai, J.F.: A new construction technique of ZCZ sequence pairs
set. In: 2nd IET International Communication Conference on Wireless, Mobile and
Sensor Networks, pp. 970–973. IET, Stevenage (2007)

11. Shi, R.H., Zhao, X.Q., Li, L.Z.: Research on construction method of ZCZ sequence
pairs set. J. Converg. Inf. Technol. 6(1), 15–23 (2011)

12. Tang, X.H., Mow, W.H.: Design of spreading codes for quasi-synchronous CDMA
with intercell interference. IEEE J. Sel. Areas Commun. 24(1), 84–93 (2006)

13. Tang, X.H., Fan, P.Z., Lindner, J.: Multiple binary ZCZ sequence sets with good
cross-correlation property based on complementary sequence sets. IEEE Trans. Inf.
Theory 56(8), 4038–4045 (2010)

14. Hayashi, T., Maeda, T., Matsufuji, S., Okawa, S.: A ternary zero-correlation zone
sequence set having wide inter-subset zero-correlation zone. IEICE Trans. Fundam.
E94–A(11), 2230–2235 (2011)

15. Hayashi, T., Maeda, T., Okawa, S.: A generalized construction of zero-correlation
zone sequence set with sequence subsets. IEICE Trans. Fundam. E94–A(7), 1597–
1602 (2011)

16. Zhang, Z.Y., Zeng, F.X., Xuan, G.X.: A class of complementary sequences with
multi-width zero cross-correlation zone. IEICE Trans. Fundam. E93–A(8), 1508–
1517 (2010)

17. Torii, H., Nakamura, M.: A study of asymmetric ZCZ sequence sets. In: 11th
WSEAS International Conference on Multimedia Systems and Signal Processing,
pp. 79–86, WSEAS, Athens (2011)

18. Torii, H., Matsumoto, T., Nakamura, M.: A new method for constructing asym-
metric ZCZ sequence sets. IEICE Trans. Fundam. E95–A(9), 1577–1586 (2012)

19. Li, G., Xu, C.Q., Liu, K., Liang, Q.M.: Some novel results on 1-dimension and
2-dimension sequence pairs with zero correlation zone. In: Proceedings of Global
Mobile Congress, pp. 551–552. Delson Group Inc., Cupertino (2007)



Frequency-Hopping Sequences



On Low-Hit-Zone Frequency-Hopping
Sequence Sets with Optimal Partial

Hamming Correlation

Hongyu Han(B), Daiyuan Peng, and Xing Liu

Key Laboratory of Information Coding and Transmission,
Southwest Jiaotong University, Chengdu 610031, Sichuan, People’s Republic of China

hyhan@my.swjtu.edu.cn, dypeng@swjtu.edu.cn, liuxing4@126.com

Abstract. In quasi-synchronous frequency-hopping code division
multiple-access systems, frequency-hopping sequences (FHSs) with low-
hit-zone (LHZ) are commonly employed to minimize multiple-access inter-
ferences. Usually, the length of correlation window is shorter than the
period of the chosen FHSs due to the limited synchronization time or
hardware complexity. Therefore, the study of the partial Hamming cor-
relation properties of an FHS set with LHZ is particularly important. In
this paper, we prove the nonexistence of an LHZ-FHS set with strictly
optimal maximum partial Hamming correlation in some conditions.
A sufficient condition for an LHZ-FHS set with strictly optimal average
partial Hamming correlation is also given. In addition, a concatenated
construction method is presented. The LHZ-FHS sets with optimal max-
imum partial Hamming correlation and the LHZ-FHS sets with strictly
optimal average partial Hamming correlation whose sequence length can
be infinite are constructed by the new construction, respectively.

Keywords: Frequency-hopping sequences · Low-hit-zone · Partial ham-
ming correlation · Quasi-synchronous frequency-hopping communication

1 Introduction

Frequency-hopping code-division multiple-access (FH-CDMA) techniques have
been widely employed in modern communication systems such as ultra-wideband
(UWB), military, and radar applications [7]. In such systems, it is required to
design frequency-hopping sequences (FHSs) with good Hamming correlation in
order to reduce the MA interference caused by hits of frequencies. There are
two kinds of measurement on the Hamming correlation of an FHS set: one is
the maximum Hamming correlation which represents its worst-case performance
and the other is the average Hamming correlation among FHSs which measures
its average performance.
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Traditionally the periodic Hamming correlation of FHSs has received most
attention. There are several known constructions [3–5,8,9,22] for FHS sets hav-
ing optimal maximum periodic Hamming correlation with respect to the Peng-
Fan bound [18]. While the average periodic Hamming correlation indicates the
average interference performance of the FH-CDMA systems, the design of opti-
mal FHSs with respect to the average periodic Hamming correlation property
is meaningful as well. There exist several constructions of FHS sets with opti-
mal average periodic Hamming correlation [1,11,20] with respect to the Peng-
Niu-Tang bound [20].

Compared with the traditional periodic Hamming correlation, the partial
Hamming correlation of FHSs (where correlation is computed over only subse-
quences of FHSs) is much less studied. However, FHSs with good partial Ham-
ming correlation properties are important for certain application scenarios where
an appropriate window length shorter than the period of the chosen sequences
is employed to minimize the synchronization time or to reduce the hardware
complexity of the FH-CDMA receivers [6]. In 2004, Eun et al. [6] generalized
the Lempel-Greenberger bound [10] to the case of partial correlation. In 2012,
Zhou et al. [23] obtained a bound on the maximum partial Hamming correlation
of an FHS set. Subsequently, both individual FHSs with (strictly) optimal max-
imum partial autocorrelation and FHS sets with (strictly) optimal maximum
partial correlation were constructed [17,23]. In 2013, Ren et al. [21] discussed
the average partial Hamming correlation of FHSs.

Different from the conventional FHSs design, the FHSs design with low-hit-
zone (LHZ) aims at making Hamming correlation values equal to a very low
value within a correlation zone [19]. The significance of an LHZ sequence set is
that the number of hits between difference sequences will always be very small
as long as the relative delay does not exceed certain zone, thus reducing the
mutual interference. In recent years, several optimal LHZ-FHS sets meeting the
Peng-Fan-Lee bound [19] were constructed [2,13,16].

The bounds on the maximum partial Hamming correlation and the average
partial Hamming correlation of an LHZ-FHS set were established in [14,15],
respectively. Recently, Liu et al. [12] gave a construction of the LHZ-FHS sets
with strictly optimal maximum partial Hamming correlation. In this paper, we
will pay attention to the LHZ-FHS sets with optimal maximum/average partial
Hamming correlation.

The outline of this paper is as follows. In Sect. 2, some preliminaries on
FHSs are presented. We prove the nonexistence of an LHZ-FHS set with strictly
optimal maximum partial Hamming correlation in some conditions, and give a
sufficient condition for an LHZ-FHS set with strictly optimal average partial
Hamming correlation. In Sect. 3, a concatenated construction method is pre-
sented. The LHZ-FHS sets with optimal maximum partial Hamming correlation
and the LHZ-FHS sets with strictly optimal average partial Hamming correlation
whose sequence length can be infinite are constructed by the new construction,
respectively. Finally, we give some concluding remarks in Sect. 4.
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2 Preliminaries

Let F = {f1, f2, · · · , fq} be a set of q available frequencies, also called the
alphabet. A sequence X = {xj}N−1

j=0 is called an FHS of length N over F if
xj ∈ F for all 0 ≤ j ≤ N − 1. For any two FHSs X = {xj}N−1

j=0 , Y = {yj}N−1
j=0 of

length N over F , their periodic Hamming correlation HX,Y (τ) at time delay τ
is defined by

HX,Y (τ)=
N−1∑

j=0

h(xj , yj+τ ), 0 ≤ τ < N

where h(xj , yj+τ ) = 1 if xj = yj+τ , and 0 otherwise, and all operations among
the position indices are performed modulo N . When X = Y , HX,X(τ) is called
periodic Hamming autocorrelation of X, and denoted by HX(τ) for short. When
X �= Y , HX,Y (τ) is called the periodic Hamming cross-correlation of X and Y .

Let S be an (N,M, q) FHS set, that is, an FHS set consisting of M FHSs
of length N over an alphabet F of size q. The maximum periodic Hamming
correlation H(S) of the sequence set S is defined by

H(S) = max
{

max
X∈S,1≤τ<N

{HX(τ)}, max
X,Y ∈S,X �=Y,0≤τ<N

{HX,Y (τ)}
}

.

Throughout this paper, let (N,M, q, α) denote an FHS set of M FHSs of
length N over an alphabet of size q, with the maximum periodic Hamming
correlation α = H(S).

The following lower bound on the maximum periodic Hamming correlation
of an FHS set was derived by Peng and Fan [18].

Lemma 1 [18]. Let S be an (N,M, q, α) FHS set. Then we have

α ≥
⌈

(MN − q)N
(MN − 1)q

⌉

. (1)

Definition 1. It is said that an FHS set S is optimal with respect to the bound
(1), if the equality in (1) is achieved. In this case, S is called an FHS set with
optimal maximum periodic Hamming correlation.

The FHS set S is called an LHZ-FHS set with respect to the LHZ LH , if
there is a nonnegative integer β such that

HX,Y (τ) ≤ β,

for any X,Y ∈ S, 0 < τ ≤ LH when X = Y , and 0 ≤ τ ≤ LH when X �= Y .
Throughout this paper, we use (N,M, q, LH , β) to denote an LHZ-FHS set

of M FHSs of length N over an alphabet of size q, with the maximum periodic
Hamming correlation β within the LHZ LH .

Peng et al. [19] established the following lower bound on the maximum peri-
odic Hamming correlation of an LHZ-FHS set.
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Lemma 2 [19]. Let S be an (N,M, q, LH , β) LHZ-FHS set. Then we have

β ≥
⌈

(MLH + M − q)N
(MLH + M − 1)q

⌉

. (2)

Definition 2. It is said that an FHS set S is optimal with respect to the bound
(2), if the equality in (2) is achieved. In this case, S is called an LHZ-FHS set
with optimal maximum periodic Hamming correlation.

The partial Hamming correlation of two FHSs X,Y ∈ S, for the correlation
window length L starting at k is defined by

HX,Y (k|L; τ) =
k+L−1∑

j=k

h(xj , yj+τ ), 0≤τ, k<N, 1≤L≤N (3)

where all operations among the position indices are performed modulo N . When
X = Y , HX,X(k|L; τ) is called the partial Hamming autocorrelation of X, and
denoted by HX(k|L; τ) for short. When X �= Y , HX,Y (k|L; τ) is called the partial
Hamming cross-correlation of X and Y . In particular, when L = N , the partial
Hamming correlation in (3) becomes the periodic Hamming correlation HX,Y (τ).

For the FHS set S, the maximum partial Hamming correlation H(S;L) of S
for the correlation window length L is defined by

H(S;L) = max

{

max
X∈S,1≤τ<N,

0≤k<N

{HX(k|L; τ)}, max
X,Y ∈S,X �=Y,

0≤τ,k<N

{HX,Y (k|L; τ)}
}

.

Throughout this paper, let (N,M, q, L, δ) denote an FHS set of M FHSs
of length N over an alphabet of size q, with the maximum partial Hamming
correlation δ = H(S;L) with respect to the correlation window length L.

A lower bound on the maximum partial Hamming correlation of an FHS set
was established by Zhou et al. [23] as follows.

Lemma 3 [23]. Let S be an (N,M, q, L, δ) FHS set. Then we have

δ ≥
⌈

(MN − q)L
(MN − 1)q

⌉

. (4)

Definition 3. It is said that an FHS set S is optimal with respect to the bound
(4) and the given correlation window length L, if the equality in (4) is achieved
for the given correlation window length L. In this case, the FHS set S is called
an FHS set with optimal maximum partial Hamming correlation. If the equality
in (4) is achieved for all correlation window length 1≤L≤N , then the FHS set
S is said to be strictly optimal with respect to the bound (4). In this case, the
FHS set S is called an FHS set with strictly optimal maximum partial Hamming
correlation.
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The FHS set S is called an LHZ-FHS set with respect to the LHZ LPH and
correlation window length L, if there is a nonnegative integer ε such that

HX,Y (k|L; τ) ≤ ε,

for any X,Y ∈ S, 0 ≤ k < N , 0 < τ ≤ LPH when X = Y , and 0 ≤ τ ≤ LPH

when X �= Y .
Throughout this paper, we use (N,M, q, LPH , L, ε) to denote an LHZ-FHS

set of M FHSs of length N over an alphabet of size q, with the maximum partial
Hamming correlation ε with respect to the correlation window length L within
the LHZ LPH .

Niu et al. [15] obtained the following lower bound on the maximum partial
Hamming correlation of an LHZ-FHS set.

Lemma 4 [15]. Let S be an (N,M, q, LPH , L, ε) LHZ-FHS set. Then we have

ε ≥
⌈

(MLPH + M − q)L
(MLPH + M − 1)q

⌉

. (5)

Definition 4. It is said that an FHS set S is optimal with respect to the bound
(5) and the given correlation window length L, if the equality in (5) is achieved
for the given correlation window length L. In this case, the FHS set S is called
an LHZ-FHS set with optimal maximum partial Hamming correlation. If the
equality in (5) is achieved for all correlation window length 1≤L≤N , then the
FHS set S is said to be strictly optimal with respect to the bound (5). In this
case, the FHS set S is called an LHZ-FHS set with strictly optimal maximum
partial Hamming correlation.

Theorem 1. There does not exist an LHZ-FHS set of family size M , length N ,
and LHZ LPH over an alphabet of size q which is strictly optimal with respect
to the bound (5), provided that M(LPH + 1) > q2 and q ≥ 2.

Proof: For the correlation window length L = 2, it is not difficult to get that the
right-hand side term in inequality (5)

⌈
2(MLPH + M − q)
(MLPH + M − 1)q

⌉

≤ 1 (6)

because of q ≥ 2.
Suppose that there exists an LHZ-FHS set U ={U i =(U i

0, U
i
1, · · · , U i

N−1)|0 ≤
i < M} of family size M , length N , and LHZ LPH over an alphabet of size q with
strictly optimal maximum partial Hamming correlation, where M(LPH +1) > q2

and q ≥ 2. From the Definition 4 and inequality (6), we get that

ε =
⌈

2(MLPH + M − q)
(MLPH + M − 1)q

⌉

≤ 1.

It indicates that among the set

T =
{(

U i
j , U

i
j+1

) | 0 ≤ i < M, k ≤ j ≤ k+LPH

}
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where 0 ≤ k < N and all operations among the position indices are performed
modulo N , they are different from each other. The size of the sequence set T
is M(LPH + 1). There are at most q2 different vectors in the 2-dimensional
vector space over an alphabet of size q. Thus, we have M(LPH + 1) ≤ q2 which
contradicts the condition M(LPH + 1) > q2. �

Let S be an (N,M, q, LPH , L, ε) LHZ-FHS set. For the correlation window
length L, the overall number of partial Hamming autocorrelation and partial
Hamming cross-correlation of S within the LHZ LPH are defined as follows,
respectively:

Sa(L) =
∑

X∈S

LP H∑

τ=1

N−1∑

k=0

HX(k|L; τ), (7)

Sc(L) =
1
2

∑

X,Y ∈S,X �=Y

LP H∑

τ=0

N−1∑

k=0

HX,Y (k|L; τ). (8)

For the correlation window length L, the average partial Hamming autocorre-
lation Pa(L) (0 ≤ Pa(L) ≤ ε) and the average partial Hamming cross-correlation
Pc(L) (0 ≤ Pc(L) ≤ ε) of S within the LHZ LPH are defined as follows, respec-
tively:

Pa(L) =
Sa(L)

MNLPH
, (9)

Pc(L) =
2Sc(L)

MN(M − 1)(LPH + 1)
. (10)

Throughout this paper, we use (N,M, q, LPH , L, Pa(L), Pc(L)) to denote an
LHZ-FHS set of M FHSs of length N over an alphabet of size q, with the average
partial Hamming autocorrelation Pa(L) and the average partial Hamming cross-
correlation Pc(L) of S with respect to the correlation window length L within
the LHZ LPH .

Niu et al. [14] stated the following bound on the average partial Hamming
autocorrelation and average partial Hamming cross-correlation of an LHZ-FHS
set.

Lemma 5 [14]. Let S be an (N,M, q, LPH , L, Pa(L), Pc(L)) LHZ-FHS set. Then
we have

qLPHPa(L) + q(M − 1)(LPH + 1)Pc(L) ≥ (LPH + 1)LM − Lq. (11)

Definition 5. It is said that an FHS set S is optimal with respect to the bound
(11) and the given correlation window length L, if the equality in (11) is achieved
for the given correlation window length L. In this case, the FHS set S is called an
LHZ-FHS set with optimal average partial Hamming correlation. If the equality
in (11) is achieved for all correlation window length 1 ≤ L ≤ N , then the FHS
set S is said to be strictly optimal with respect to the bound (11). In this case,
the FHS set S is called an LHZ-FHS set with strictly optimal average partial
Hamming correlation.
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Let F = {f1, f2, · · · , fq}, S = {Si = (Si
0, S

i
1, · · · , Si

N−1)| 0 ≤ i ≤ M − 1},
and W k = (S0

k, S1
k, · · · , SM−1

k ), 0 ≤ k ≤ N − 1. For any frequency f ∈ F , let

n(W k, f) =
M−1∑

i=0

h(Si
k, f)

be the number of occurrences of frequency f in W k.

Theorem 2. Let S be an (N,M, q, LPH , L, Pa(L), Pc(L)) LHZ-FHS set. If
n(W k, fi) = M

q for any i = 1, 2, · · · , q, k = 0, 1, · · · , N − 1, then S is an
LHZ-FHS set with strictly optimal average partial Hamming correlation.

Proof: For arbitrary correlation window length 1≤L≤N , from Eqs. (7), (8), (9),
and (10), we get

∑

Si,Sj∈S

LP H∑

τ=0

HSi,Sj (τ) = MN +
∑

Si∈S

LP H∑

τ=1

HSi(τ) +
∑

Si,Sj∈S,i �=j

LP H∑

τ=0

HSi,Sj (τ)

= MN +
∑

Si∈S

LP H∑

τ=1

HSi(0|N ; τ) +
∑

Si,Sj∈S,i �=j

LP H∑

τ=0

HSi,Sj (0|N ; τ)

= MN +
1
L

∑

Si∈S

LP H∑

τ=1

N−1∑

k=0

HSi(k|L; τ) +
1
L

∑

Si,Sj∈S,i �=j

LP H∑

τ=0

N−1∑

k=0

HSi,Sj (k|L; τ)

= MN +
1
L

Sa(L) +
2
L

Sc(L)

= MN +
1
L

MNLPHPa(L) +
1
L

MN(M − 1)(LPH + 1)Pc(L). (12)

On the other hand, we have

∑

Si,Sj∈S

LP H∑

τ=0

HSi,Sj (τ)=
∑

Si,Sj∈S

LP H∑

τ=0

N−1∑

k=0

h(Si
k, Sj

k+τ )=
M−1∑

i,j=0

N−1∑

k=0

LP H∑

τ=0

h(Si
k, Sj

k+τ )

=
N−1∑

k=0

LP H∑

τ=0

M−1∑

i=0

n(W k+τ , Si
k)=

N−1∑

k=0

LP H∑

τ=0

q∑

i=1

n(W k, fi) × n(W k+τ , fi).

Because n(W k, fi) = M
q for any i = 1, 2, · · · , q, k = 0, 1, · · · , N − 1. Then we

get that

∑

Si,Sj∈S

LP H∑

τ=0

HSi,Sj (τ) =
N−1∑

k=0

LP H∑

τ=0

q∑

i=1

n(W k, fi) × n(W k+τ , fi)

=
N−1∑

k=0

LP H∑

τ=0

q∑

i=1

(
M

q

)2

=
M2N(LPH + 1)

q
. (13)
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From Eqs. (12) and (13), it is easy to get

qLPHPa(L) + q(M − 1)(LPH + 1)Pc(L) = (LPH + 1)LM − Lq.

According to the Definition 5, S is strictly optimal with respect to the bound (11).
�

3 Constructions of LHZ-FHS Sets with Optimal Partial
Hamming Correlation

In this section, a concatenated construction method is presented. The LHZ-FHS
sets with optimal maximum partial Hamming correlation and the LHZ-FHS sets
with strictly optimal average partial Hamming correlation whose sequence length
can be infinite are constructed by the new construction, respectively.

Construction 1 Step 1. Choose an (N,M, q) FHS set

A = {Ai = (Ai
0, A

i
1, · · · , Ai

N−1)| 0 ≤ i < M}
Step 2. For a positive integer l, define an FHS set

B = {Bi = (Bi
0, B

i
1, · · · , Bi

lN−1)| 0 ≤ i < M}
where Bi

j = Ai
(j)N

, 0 ≤ j ≤ lN − 1, 0 ≤ i < M . Here (j)N = j mod N .

Theorem 3. Assume that A is an (N,M, q, α) FHS set with optimal maximum
periodic Hamming correlation. Then the FHS set B constructed by Construc-
tion 1 is an (lN,M, q,N − 1, N, α) LHZ-FHS set with optimal maximum partial
Hamming correlation.

Proof: Let Bi1 , Bi2 ∈ B, 0 ≤ i1, i2 < M . The partial Hamming correlation
HBi1Bi2 (k|N ; τ) between Bi1 and Bi2 for the correlation window length N start-
ing at k within the LHZ N − 1 is given by

HBi1Bi2 (k|N ; τ)=
k+N−1∑

j=k

h(Bi1
j , Bi2

j+τ )=
N−1∑

j=0

h(Ai1
j , Ai2

j+τ )=HAi1Ai2 (τ)

where 0 ≤ k ≤ lN − 1, 0 < τ ≤ N − 1 when i1 = i2, and 0 ≤ τ ≤ N − 1 when
i1 �= i2. Because A is an (N,M, q, α) FHS set. Then we have

HBi1Bi2 (k|N ; τ) = HAi1Ai2 (τ) ≤ α.

Since the FHS set A is optimal with respect to the bound (1), then we have

α =
⌈

(MN − q)N
(MN − 1)q

⌉

=
⌈

(M(N − 1) + M − q)N
(M(N − 1) + M − 1)q

⌉

.

From the Definition 4, the (lN,M, q,N −1, N, α) LHZ-FHS set B constructed
by Construction 1 is optimal with respect to the bound (5). �
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Theorem 4. Assume that A is an (N,M, q, LH , β) LHZ-FHS set with optimal
maximum periodic Hamming correlation. Then the FHS set B constructed by
Construction 1 is an (lN,M, q, LH , N, β) LHZ-FHS set with optimal maximum
partial Hamming correlation.

Proof: Let Bi1 , Bi2 ∈ B, 0 ≤ i1, i2 < M . The partial Hamming correlation
HBi1Bi2 (k|N ; τ) between Bi1 and Bi2 for the correlation window length N start-
ing at k within the LHZ LH is given by

HBi1Bi2 (k|N ; τ)=
k+N−1∑

j=k

h(Bi1
j , Bi2

j+τ )=
N−1∑

j=0

h(Ai1
j , Ai2

j+τ )=HAi1Ai2 (τ)

where 0 ≤ k ≤ lN − 1, 0 < τ ≤ LH when i1 = i2, and 0 ≤ τ ≤ LH when i1 �= i2.
Because A is an (N,M, q, LH , β) LHZ-FHS set. Then we have

HBi1Bi2 (k|N ; τ) = HAi1Ai2 (τ) ≤ β.

Since the FHS set A is optimal with respect to the bound (2), then we have

β =
⌈

(MLH + M − q)N
(MLH + M − 1)q

⌉

.

From the Definition 4, the (lN,M, q, LH , N, β) LHZ-FHS set B constructed
by Construction 1 is optimal with respect to the bound (5). �

Theorem 5. Assume that A is an (N,M, q, L, δ) FHS set with optimal max-
imum partial Hamming correlation. Then the FHS set B constructed by Con-
struction 1 is an (lN,M, q,N − 1, L, δ) LHZ-FHS set with optimal maximum
partial Hamming correlation.

Proof: Let Bi1 , Bi2 ∈ B, 0 ≤ i1, i2 < M . The partial Hamming correlation
HBi1Bi2 (k|L; τ) between Bi1 and Bi2 for the correlation window length L start-
ing at k within the LHZ N − 1 is given by

HBi1Bi2 (k|L; τ) =
k+L−1∑

j=k

h(Bi1
j , Bi2

j+τ )

=
(k)N+L−1∑

j=(k)N

h(Ai1
j , Ai2

j+τ )

= HAi1Ai2 ((k)N |L; τ),

where 0 ≤ k ≤ lN − 1, 0 < τ ≤ N − 1 when i1 = i2, and 0 ≤ τ ≤ N − 1 when
i1 �= i2. Because A is an (N,M, q, L, δ) FHS set. Then we have

HBi1Bi2 (k|L; τ) = HAi1Ai2 ((k)N |L; τ) ≤ δ.
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Since the FHS set A is optimal with respect to the bound (4), then we have

δ =
⌈

(MN − q)L
(MN − 1)q

⌉

=
⌈

(M(N − 1) + M − q)L
(M(N − 1) + M − 1)q

⌉

.

From the Definition 4, the (lN,M, q,N −1, L, δ) LHZ-FHS set B constructed
by Construction 1 is optimal with respect to the bound (5). �

Theorem 6. Assume that A is an (N,M, q, LPH , L, ε) LHZ-FHS set with opti-
mal maximum partial Hamming correlation. Then the FHS set B constructed by
Construction 1 is an (lN,M, q, LPH , L, ε) LHZ-FHS set with optimal maximum
partial Hamming correlation.

Proof: Let Bi1 , Bi2 ∈ B, 0 ≤ i1, i2 < M . The partial Hamming correlation
HBi1Bi2 (k|L; τ) between Bi1 and Bi2 for the correlation window length L start-
ing at k within the LHZ LPH is given by

HBi1Bi2 (k|L; τ) =
k+L−1∑

j=k

h(Bi1
j , Bi2

j+τ )

=
(k)N+L−1∑

j=(k)N

h(Ai1
j , Ai2

j+τ )

= HAi1Ai2 ((k)N |L; τ),

where 0 ≤ k ≤ lN − 1, 0 < τ ≤ LPH when i1 = i2, and 0 ≤ τ ≤ LPH when
i1 �= i2. Because A is an (N,M, q, LPH , L, ε) LHZ-FHS set. Then we have

HBi1Bi2 (k|L; τ) = HAi1Ai2 ((k)N |L; τ) ≤ ε.

Since the FHS set A is optimal with respect to the bound (5), then we have

ε =
⌈

(MLPH + M − q)L
(MLPH + M − 1)q

⌉

.

From the Definition 4, the (lN,M, q, LPH , L, ε) LHZ-FHS set B constructed
by Construction 1 is optimal with respect to the bound (5). �

Theorem 7. Assume that A is an LHZ-FHS set of family size M , length N ,
and LHZ LPH over an alphabet of size q with strictly optimal average partial
Hamming correlation. Then the FHS set B constructed by Construction 1 is an
LHZ-FHS set of family size M , length lN , and LHZ LPH over an alphabet of
size q with strictly optimal average partial Hamming correlation.

Proof: For the FHS set B, it is easy to get n(W k, fi) = M
q for any i = 1, 2, · · · , q,

k = 0, 1, · · · , lN − 1. Then B is an LHZ-FHS set with strictly optimal average
partial Hamming correlation according to the Theorem 2. �

Remark 1. It should be noted that both the bound (5) and bound (11) are inde-
pendent of the sequence length. Thus, the sequence length of the FHS set B in
Theorems 3–7 can be infinite.
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4 Conclusion Remarks

In this paper, we prove the nonexistence of an LHZ-FHS set of family size
M , length N , and LHZ LPH over an alphabet of size q with strictly optimal
maximum partial Hamming correlation, provided that M(LPH + 1) > q2 and
q ≥ 2. A sufficient condition for an LHZ-FHS set with strictly optimal aver-
age partial Hamming correlation is also given. In addition, a simple and useful
concatenated construction method is presented. The LHZ-FHS sets with optimal
maximum partial Hamming correlation and the LHZ-FHS sets with strictly opti-
mal average partial Hamming correlation whose sequence length can be infinite
are constructed by the new construction, respectively. Some new LHZ-FHS sets
with optimal maximum partial Hamming correlation are listed in Table 1. It is
expected that the proposed LHZ-FHS sets will be helpful in quasi-synchronous
FH-CDMA systems to eliminate MA interference.

Table 1. Some new LHZ-FHS sets with optimal maximum partial Hamming correlation
(p: a prime, q: a prime power)

Parameters (N, M, q, LP H , L, ε) Constraints Based on optimal Remarks

FHS sets
(

l( qr−1
s

), s, q, qr−1
s

−1, qr−1
s

, qr−1−1
s

)

s = 2, q and r are odd [3] Theorem 3

s = q − 1, gcd(r, s) = 1 [4] Theorem 3

gcd(r, s) = 1, s|(q − 1) [8] Theorem 3
(

l(q2+1), q2−1, q, q2, q2+1, q+1
)

q is even [5] Theorem 3
(

l(q − 1), r, r + 1, q − 2, q − 1, q−1
r

)
r|(q − 1), r + 1 > q−1

r
[9] Theorem 3

(
l(qr −1), qs, qs, qr −2, qr −1, qr−s

)
1 ≤ s ≤ r [22] Theorem 3

(
lp2(q−1), pq, pq, min{p2−1, q−2},

p2(q−1), p
)

gcd(p, q−1)=1, 2p≤q−1 [2] Theorem 4

(
ls(qn−1), m, q, Z, s(qn−1), s(qn−1−1)

)
qn −1=m(Z+1),

gcd(s, qn −1)=1, s<m

[13] Theorem 4

(
lsr(qn−1)

k
, m� k

r
�, q, Z,

sr(qn−1)
k

,

sr(qn−1−1)
k

)
1≤r ≤k, qn−1

k
=m(Z + 1),

gcd(k, n)=1,

s≡1 mod (Z+1),

s<
kq(qn−2)

q−1

[16] Theorem 4

(
l
(

qr−1
m

)
, m, qk, qr−1

m
− 1, aT + b,

⌈

(aT + b) qr−k−1
qr−1

⌉)
T = qr−1

qk−1
, 0≤a≤ qk−1

m
,

1≤b ≤T , b=1 or⌈
qr−k−1

qk−1

⌉

=

⌈

b qr−k−1
qr−1

⌉

[17] Theorem 5
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Abstract. In this paper, a new bound on the frequency hopping (FH)
sequences with respect to the size of the frequency slot set, the sequence
length, the family size, and the maximum periodic Hamming correlation
is established. The new bound is tighter than the Singleton bounds on
the FH sequences derived by Ding et al. (2009) and Yang et al. (2011)
and the bound derived by Liu and Peng (2013).

Keywords: Frequency hopping sequences · Frequency hopping spread
spectrum · Hamming correlation · The Peng-Fan bound · The Singleton
bound

1 Introduction

In wireless communication systems, frequency hopping (FH) spread spectrum
and direct sequence spread spectrum are two main spread coding technologies.
FH multiple access spread spectrum systems, with anti-jamming, secure, and
multiple access properties, have found many applications in Bluetooth, mil-
itary radio communications, mobile communications, and modern radar and
sonar echolocation systems [1–3]. In such systems each user is represented by
a sequence of hopping frequencies. Simultaneous transmission by any two users
over the same frequency band results in collisions of signals, and hence, it is very
desirable that such collisions over the same frequency band are minimized. The
degree of such collisions is clearly related to the Hamming correlation proper-
ties of the FH sequence [2–4]. In order to evaluate the goodness of FH sequence
design, the periodic Hamming correlation function is used as an important mea-
sure and the periodic Hamming correlation is considered in almost all papers
[5–12].

FH sequence design normally involves five parameters: the size of the fre-
quency slot set, the sequence length, the family size, the maximum periodic
Hamming autocorrelation and the maximum periodic Hamming crosscorrela-
tion. Generally speaking, the five parameters are bounded by certain theoretical
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limits. In order to evaluate the performance of the FH sequence, it is impor-
tant to find the theoretical limits which set a bounded relation among these
parameters.

Let F = {f1, f2, · · · , fq} be a frequency slot set with size q, S a set of M
FH sequences of length N . For any two FH sequences x = {x0, x1, · · · , xN−1},
y = {y0, y1, · · · , yN−1} ∈ S, any positive integer τ, 0 ≤ τ < N , the periodic
Hamming correlation function Hxy(τ) of x and y at time delay τ is defined as
follow:

Hxy(τ) =
N−1∑

k=0

h(xk, yk+τ ), (τ = 0, 1, · · · , N − 1), (1)

where h(a, b) = 1 if a = b, and 0 otherwise. The subscript addition k + τ is
performed modulo N .

For any given FH sequence set S, the maximum Hamming autocorrelation
Ha(S), the maximum Hamming crosscorrelation Hc(S) and the maximum Ham-
ming correlation are defined as follows, respectively:

Ha(S) = max{Hxx(τ)|x ∈ S, τ=1, 2, · · ·, N − 1},

Hc(S) = max{Hxy(τ)|x, y ∈ S, x �=y, τ=0, 1, · · ·, N − 1},

Hm(S) = max{Ha(S),Hc(S)}.

For simplicity and convenience, let Ha = Ha(S), Hc = Hc(S), Hm = Hm(S).
Generally speaking, we need varieties of sequence designs with various size

and frequency set. However, there exist different bounds involving various para-
meters of the FH sequence design. For different FH sequences, the different
bounds can be used to evaluate the performance of the FH sequences.

As early as 1974, Lempel and Greenberger [4] established the following bound
on the maximum Hamming autocorrelation of an FH sequence.

Lemma 1. (The Lempel-Greenberger bound) For any FH sequence of length N
over a frequency slot set F of size q, we have

Ha ≥ (N − r)(N + r − q)
(N − 1)q

(2)

where r is the least nonnegative residue of N modulo q.

In 2004, Peng and Fan [13] obtained lower bounds on the maximum Hamming
autocorrelation and the maximum Hamming crosscorrelation of an FH sequence
set. The bounds are given by the following lemma.

Lemma 2. (The Peng-Fan bounds) For a set of M FH sequences of length N
over a given frequency slot set F with size q, we have

(N − 1)qHa + (M − 1)NqHc ≥ (MN − q)N (3)
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and

(N − 1)MHa + (M − 1)MNHc ≥ 2IMN − (I + 1)Iq (4)

where I =
⌊

MN
q

⌋
.

The Peng-Fan bound (4) includes the Lempel-Greenberger bound as a special
case.

In 2009, Ding et al. [5] derived the following upper bound on the number of
the FH sequences from the Singleton bound on error correcting code [14].

Lemma 3. (The Singleton bound on the family size of FH sequence set) For a
set of M FH sequences of length N over a given frequency slot set F with size
q, we have

M ≤
⌊

qHm+1

N

⌋

. (5)

In 2011, Yang et al. [8] derived the following lower bound on the maximum
Hamming correlation of the FH sequences from the Singleton bound on error
correcting code [14].

Lemma 4. (The Singleton bound on the maximum Hamming correlation of FH
sequences) For a set of M FH sequences of length N over a given frequency slot
set F with size q, we have

Hm ≥ ⌈
logq MN

⌉ − 1. (6)

In [8], the authors pointed out that if the bound (6) is met, then the bound
(5) may not be met.

In 2013, Liu et al. [15] improved the Singleton bound on FH sequences. The
bound is given by the following lemma.

Lemma 5. For a set of M FH sequences of length N over a given frequency
slot set F with size q, we have

{
qHm+1 ≥ MN, if gcd(Hm + 1, N) = 1
qHm+1 − q

Hm+1
gcd(Hm+1,N) ≥ MN, otherwise .

(7)

By the above bounds, an FH sequence set is said to be optimal if one of the
bounds is met with equality.

The rest of this paper is organized as follows. In Sect. 2, a new bound on
the FH sequences is derived. In Sect. 3, the new bound is compared with the
previous bounds. Finally, some concluding remarks are given in Sect. 4.

2 New Bound on FH Sequences

We are now ready to state the main theorem on the new bound on an FH
sequence set.
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Theorem 1. For a set of M FH sequences of length N over a given frequency
slot set F with size q, we have

∑

d| gcd(Hm+1,N)

μ(d)q
Hm+1

d ≥ MN (8)

where μ(d) is the Möbius function defined as follows:

μ(d) =

⎧
⎨

⎩

1, d = 1
(−1)r, d is a product of r different primes
0, otherwise.

Proof. Without loss of the fairness, let F = {0, 1, · · · , q − 1} be a frequency slot
set with size q, S = {S0, S1, · · · , SM−1} a set of M FH sequences of length N ,
where Sk = (sk(0), sk(1), · · · , sk(N − 1)), k = 0, 1, · · · ,M − 1. For simplicity
and convenience, let λ = gcd(Hm(S) + 1, N), η = Hm(S)+1

λ , ζ = N
λ .

We now construct an FH sequence set Q where Q = {Qk,j |k = 0, 1, · · · ,M −
1, j = 0, 1, · · · , ζ − 1} and Qk,j = (Qk,j(0), Qk,j(1), · · · , Qk,j(λ − 1)). Let

Qk,j(i) = sk(iζ + j) + q × sk(iζ + j + 1) + · · · + qη−1 × sk(iζ + j + η − 1),
i = 0, 1, · · · , λ − 1.(9)

Note that all operations among the brackets are performed modulo N . It is clear
that Q is a set of FH sequences of family size ζM and length λ over a frequency
slot set with size qη.

For any two FH sequences Qk1,j1 , Qk2,j2 ∈ Q, k1 �= k2 or j1 �= j2, we have

H(Qk1,j1 , Qk1,j1 ; τ) =

λ−1∑

i=0

h(Qk1,j1(i), Qk1,j1(i + τ)) (τ = 1, 2, · · · , λ − 1) (10)

and

H(Qk1,j1 , Qk2,j2 ; τ) =

λ−1∑

i=0

h(Qk1,j1(i), Qk2,j2(i + τ)) (τ = 0, 1, · · · , λ − 1). (11)

If H(Qk1,j1 , Qk1,j1 ; τ) = λ or H(Qk1,j1 , Qk2,j2 ; τ) = λ, then based on the defini-
tion of Qk,j in (9) we have

sk1(iζ + j1 + m) = sk1(iζ + j1 + m + ζτ)
(i = 0, 1, · · · , λ − 1,m = 0, 1, · · · , η − 1) (12)

or

sk1(iζ + j1 + m) = sk2(iζ + j2 + m + ζτ)
(i = 0, 1, · · · , λ − 1,m = 0, 1, · · · , η − 1). (13)
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Thus, we have

H(Sk1 , Sk1 ; ζτ)

=
N−1∑

i=0

h(sk1(i + j1), sk1(i + j1 + ζτ))

≥
η−1∑

i=0

h(sk1(i + j1), sk1(i + j1 + ζτ)) +
ζ+η−1∑

i=ζ

h(sk1(i + j1), sk1(i + j1 + ζτ))

+
2ζ+η−1∑

i=2ζ

h(sk1(i + j1), sk1(i + j1 + ζτ))

+ · · · +
(λ−1)ζ+η−1∑

i=(λ−1)ζ

h(sk1(i + j1), sk1(i + j1 + ζτ))

=
η−1∑

i=0

λ−1∑

m=0

h(sk1(mζ + i + j1), sk1(mζ + i + j1 + ζτ))

(12)
=

η−1∑

i=0

λ−1∑

m=0

1 = λη = Hm(S) + 1 (14)

and

H(Sk1 , Sk2 ; j2 − j1 + ζτ)

=
N−1∑

i=0

h(sk1(i + j1), sk2(i + j2 + ζτ))

≥
η−1∑

i=0

h(sk1(i + j1), sk2(i + j2 + ζτ)) +
ζ+η−1∑

i=ζ

h(sk1(i + j1), sk2(i + j2 + ζτ))

+
2ζ+η−1∑

i=2ζ

h(sk1(i + j1), sk2(i + j2 + ζτ))

+ · · · +
(λ−1)ζ+η−1∑

i=(λ−1)ζ

h(sk1(i + j1), sk2(i + j2 + ζτ))

=
η−1∑

i=0

λ−1∑

m=0

h(sk1(mζ + i + j1), sk2(mζ + i + j2 + ζτ))

(13)
=

η−1∑

i=0

λ−1∑

m=0

1 = λη = Hm(S) + 1. (15)

Since Hm(S) is the maximum periodic Hamming correlation of S, the inequalities
(14) and (15) contradict the definition of S. Therefore, we have

Hm(Q) ≤ λ − 1. (16)
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Define

Lτ (Qk,j) = (Qk,j(τ), Qk,j(τ + 1), · · · , Qk,j(τ + λ − 1)) (τ = 0, 1, · · · , λ − 1)

where all operations among the brackets are performed modulo λ. The inequality
(16) indicates that among the sequence set

R = {Lτ (Qk,j)|k = 0, 1, · · · ,M − 1, j = 0, 1, · · · , ζ − 1, τ = 0, 1, · · · , λ − 1}
they are different from each other. The size of the sequence set is λζM .

In the λ-dimensional vector space over a finite alphabet qη, there are at most
qλη different vectors defined by V . But the sequence (f0, f1, · · · , fd−1, f0, f1, · · · ,
fd−1, · · · , f0, f1, · · · , fd−1) ∈ V do not belong to R, where 1 ≤ d < λ, d|λ and
f0, f1, · · ·, fd−1 = 0, 1, · · · , qη − 1. If Lτ (Qk,j) = (f0, f1, · · ·, fd−1, f0, f1, · · ·, fd−1,
· · · , f0, f1, · · · , fd−1), then Lτ (Qk,j) = Lτ+id(Qk,j) where i = 1, 2, · · · , λ

d − 1
and the addition in the superscript is performed modulo λ, which contradicts
the definition of R. d is called the cycle length of the sequence. Two sequences
are said to be equivalent if one is a cyclic left shift of another. By means of this
equivalent relation, all the sequences in V can be classified into equivalent classes.
In each equivalent class, all the sequences are pairwise equivalent and have same
minimum cycle length d. Obviously, the number of elements in equivalent class
is equal to cycle length d. Let Sd be the number of equivalent classes which have
cycle length d, where 1 ≤ d ≤ λ and d|λ. Then the family size of V can be
represented by

|V | =
∑

d|λ
dSd = qλη (17)

Thus the maximum number of elements in R can be calculated by λSλ. By the
Möbius Inversion Formulas [16,17], (17) becomes

λSλ =
∑

d|λ
μ(

λ

d
)qdη =

∑

d|λ
μ(d)q

λη
d

where μ(d) is the Möbius function. Then we have
∑

d|λ
μ(d)q

λη
d ≥ λζM

which indicates that
∑

d| gcd(Hm(S)+1,N)

μ(d)q
Hm(S)+1

d ≥ MN.

�
It is easily seen that the new bound (8) is tighter than the Singleton bounds

on the FH sequences (5) and (6), since
∑

d| gcd(Hm+1,N)

μ(d)q
Hm+1

d ≤ qHm+1.
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The new bound (8) is tighter than the bound (7), since
∑

d| gcd(Hm+1,N)

μ(d)q
Hm+1

d ≤ qHm+1 − q
Hm+1

gcd(Hm+1,N) .

3 Comparison of New Bound and Previous Bounds

In order to compare the new bound with previous bounds, let q be a prime
power, and let k be an integer with 1 ≤ k ≤ q − 1. Define

GF(q)[x]k =

{
k∑

i=1

gix
i : gi ∈ GF(q), i = 1, 2, · · · , k

}

. (18)

Define n = q − 1 and

CRS =
{
(g(1), g(α), · · · , g(αn−1)) : g(x) ∈ GF(q)[x]k

}

where α is a generator of GF(q)∗. Let F = {f0, f1, · · · , fq−1} be an abelian group
of size q. Define

Fn = {(c0, c1, · · · , cn−1) : ci ∈ F for all i}.

The Hamming distance between two vectors in Fn is the total number of coor-
dinate positions in which they differ. An (n,M, q, d′) code is an M subset of the
space Fn with the minimum Hamming distance d′. A code is called equidistant if
the distance between every pair of distinct codewords is the same. An [n, k, q, d′]
code is a linear subspace of Fn with dimension k such that the minimum Ham-
ming distance between all pairs of distinct codewords is d′. It is well known that
the code CRS has parameters [n, k, q, d′ = n − k + 1] and is cyclic.

Define the following cyclic permutation ρ of an element x = (x0, x1, · · · , xn−1)
as ρx = (x1, · · · , xn−1, x0). For any x, y in CRS , if x = ρmy for some integer m,
the x and y are said to be ρ-equivalent. ρ-equivalent gives a partition of CRS

into disjoint subsets, called cyclic equivalence classes. The number of codewords
in an equivalent class is the cycle length of the equivalent class. Thus picking
up one element from each equivalence class gives a subcode of CRS , say CRS ,
which has the property that the cyclic shifts of two distinct codewords of CRS

do not overlap in more than n − d′ places.
Next, define a subset SRS of CRS as follows.

Definition 1. SRS consists of those codewords x ∈ CRS such that ρjx �= x for
j = 1, 2, · · · , n − 1.

Thus, each codeword of SRS has the cycle length n. Then SRS is called the
full-cycle equivalent class. Let SRS be an FH sequence set, we know the sequence
length is n = q − 1 and the maximum periodic Hamming correlation of SRS is
k − 1. From Lemma 19 in [8], the size of SRS is

|SRS | =
1
n

∑

d|n
μ(d)q� k

d �,
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where μ(d) is the Möbius function. Let n = q − 1 = pe1
1 × pe2

2 × · · · × per
r , where

pi’s are distinct primes and ej ’s are positive integers, j = 1, 2, · · · , r. We know
p1, p2, · · · , pr are all the prime factors of n. If k = λp1p2 · · · pr, where λ is a
positive integer, i.e., k includes all the prime factors of n, then we have

gcd(k, n) = pu1
1 × pu2

2 × · · · × pur
r

where 1 ≤ uj ≤ ej , j = 1, 2, · · · , r. It can be seen that gcd(k, n) includes all
the prime factors of n and does not include other prime factors. Based on the
definition of the Möbius function, we have

1
n

∑

d|n
μ(d)q� k

d � =
1
n

∑

d| gcd(k,n)

μ(d)q� k
d �.

Hence, when k = λp1p2 · · · pr, where λ is a positive integer, the size of SRS is

|SRS | =
1
n

∑

d| gcd(k,n)

μ(d)q� k
d �.

According to the new bound (8), when k = λp1p2 · · · pr, SRS is an optimal FH
sequence set with respect to the family size.

Without loss of the fairness, we choose the Singleton bound (5), the bound
(7) and the new bound (8) for comparison, as shown in Table 1.

Example 1. Let q = 17, n = q − 1 = 16, k = 4. In this case, one can obtain
a set SRS of 5202 FH sequences, as shown below (only 20 sequences are shown
for simplicity):

SRS =

{(10,15,14,4,6,9,5,16,7,2,3,13,11,8,12,1), (6,14,1,5,2,8,9,0,3,1,7,14,7,7,16,2),
(2,13,5,6,15,7,13,1,16,0,11,15,3,6,3,3), (15,12,9,7,11,6,0,2,12,16,15,16,16,5,7,4),

(11,11,13,8,7,5,4,3,8,15,2,0,12,4,11,5), (7,10,0,9,3,4,8,4,4,14,6,1,8,3,15,6),

(3,9,4,10,16,3,12,5,0,13,10,2,4,2,2,7), (16,8,8,11,12,2,16,6,13,12,14,3,0,1,6,8),

(12,7,12,12,8,1,3,7,9,11,1,4,13,0,10,9), (8,6,16,13,4,0,7,8,5,10,5,5,9,16,14,10),

(4,5,3,14,0,16,11,9,1,9,9,6,5,15,1,11), (0,4,7,15,13,15,15,10,14,8,13,7,1,14,5,12),

(13,3,11,16,9,14,2,11,10,7,0,8,14,13,9,13), (9,2,15,0,5,13,6,12,6,6,4,9,10,12,13,14),

(5,1,2,1,1,12,10,13,2,5,8,10,6,11,0,15), (1,0,6,2,14,11,14,14,15,4,12,11,2,10,4,16),

(14,16,10,3,10,10,1,15,11,3,16,12,15,9,8,0), (3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1),

(13,10,11,7,1,5,12,6,12,1,9,13,3,4,7,5), (9,9,15,8,14,4,16,7,8,0,13,14,16,3,11,6),

· · · }

By the Singleton bound (5), we have

M ′ ≤ 5220.0625
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Table 1. Parameters of the FH sequence sets SRS

Sequence k Family size Hamming q Singleton Bound (7) New

length n correlation bound (5) bound (8)

4 2 5 1 5 not optimal optimal optimal

8 2 9 1 9 not optimal optimal optimal

8 4 810 3 9 not optimal not optimal optimal

8 6 66339 5 9 not optimal optimal optimal

12 6 402038 5 13 not optimal not optimal optimal

16 2 17 1 17 not optimal optimal optimal

16 4 5202 3 17 not optimal not optimal optimal

16 6 1508291 5 17 not optimal optimal optimal

16 8 435979620 7 17 not optimal not optimal optimal

18 6 2613260 5 19 not optimal not optimal optimal

24 6 10171850 5 25 not optimal not optimal optimal

36 6 71268734 5 37 not optimal not optimal optimal

48 6 288357650 5 49 not optimal not optimal optimal

72 6 2101858778 5 73 not optimal not optimal optimal

96 6 8676782114 5 97 not optimal not optimal optimal

By the bound (7), we have

M ′ ≤ 5219

By the new bound (8), we have

M ′ ≤ 5202

Thus SRS is an optimal FH sequence set with respect to the family size according
to the new bound (8). But according to the Singleton bound (5) and the bound
(7), SRS is not an optimal FH sequence set with respect to the family size.

4 Conclusions

In this paper, a new bound on the FH sequences with respect to the size of
the frequency slot set, the sequence length, the family size, and the maximum
periodic Hamming correlation is established. The new bound is tighter than the
Singleton bounds on the FH sequences derived by Ding et al. and Yang et al.
and the bound derived by Liu and Peng. It is expected that the new bound will
be useful in designing and evaluating new FH sequence designs.
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