
Computing Least Squares Condition Numbers
on Hybrid Multicore/GPU Systems

M. Baboulin, J. Dongarra and R. Lacroix

Abstract This chapter presents an efficient computation for least squares condition-
ing or estimates of it. We propose performance results using new routines on top
of the multicore-GPU library MAGMA. This set of routines is based on an efficient
computation of the variance–covariance matrix for which, to our knowledge, there
is no implementation in current public domain libraries LAPACK and ScaLAPACK.

1 Introduction

Linear least squares (LLS) is a classical linear algebra problem in scientific comput-
ing, arising for instance in many parameter estimation problems [5]. We consider
the overdetermined full rank linear least squares problem minx∈Rn‖Ax − b‖2, with
A ∈ R

m×n,m ≥ n and b ∈ R
m.

In addition to computing LLS solutions efficiently, an important issue is to assess
the numerical quality of the computed solution. The notion of conditioning provides
a theoretical framework that can be used to measure the numerical sensitivity of a
problem solution to perturbations. Similarly to [2, 3], we suppose that the perturba-
tions on data are measured using the Frobenius norms for matrices and the Euclidean
norm for vectors. Then we can derive simple formulas for the condition number of
the LLS solution x or its components using theR factor (from the QR decomposition
of A), the residual and x. We can also use the variance–covariance matrix.

M. Baboulin ()
Inria and University of Paris-Sud, Orsay, France
e-mail: marc.baboulin@inria.fr

J. Dongarra
University of Tennessee, Knoxville, TN, USA
e-mail: dongarra@eecs.utk.edu

R. Lacroix
Inria and University Pierre et Marie Curie, Paris, France
e-mail: remi.lacroix@inria.fr

© Springer International Publishing Switzerland 2015 35
M. G. Cojocaru et al. (eds.), Interdisciplinary Topics in Applied Mathematics, Modeling
and Computational Science, Springer Proceedings in Mathematics & Statistics 117,
DOI 10.1007/978-3-319-12307-3_6

36 M. Baboulin et al.

In this chapter, we propose algorithms to compute LLS condition numbers in a
computational time that is affordable for large-scale simulations, in particular using
the variance–covariance matrix. We also compute statistical condition estimates that
can be obtained cheaply (O(n2) operations) and with a satisfying accuracy using
an approach similar to [6, 8]. For these algorithms, we describe an implementa-
tion for LLS conditioning using the MAGMA library [4, 10], which is a dense
linear algebra library for heterogeneous multicore-GPU architectures with inter-
face similar to LAPACK. Our implementation takes advantage of current hybrid
multicore-GPU systems by splitting the computational work between the GPU and
the multicore host. We present performance results, and these results are compared
with the computational cost for computing the LLS solution itself.

2 Closed Formulas and Statistical Estimates

In this section, we recall some existing formulas to compute or estimate the condition
number of an LLS solution x or of its components. We suppose that the LLS problem
has already been solved using a QR factorization (the normal equations method is
also possible but the condition number is then proportional to cond(A)2). Then the
solution x, the residual r = b−Ax, and the factorR ∈ R

n×n of the QR factorization
of A are readily available.

From [3], we obtain a closed formula for the absolute condition number of the
LLS solution as

κLS = ‖R−1‖2
(‖R−1‖2

2‖r‖2
2 + ‖x‖2

2 + 1
) 1

2 , (1)

where x, r and R are exact quantities.
We can also compute κLS , statistical estimate of κLS that is obtained using the

condition numbers of zTi x where z1, z2, ..., zq are q random orthogonal vectors of
R
n, obtained for instance via a QR factorization of a random matrix Z∈R

n×q . The
condition number of zTi x can be computed using the expression given in [3] as

κi =
(‖R−1R−T zi‖2

2‖r‖2
2 + ‖R−T zi‖2

2(‖x‖2
2 + 1)

) 1
2 . (2)

Then κ̄LS is computed using the expression κ̄LS = ωq

ωn

√∑q

j=1 κ
2
j withωq =

√
2

π (q− 1
2)
.

As explained in [6], choosing q = 2 random vectors enables us to obtain a satisfying
accuracy.

By considering in Eq. (2) the special case where zi = ei where ei is a canonical
vector of R

n, we can express the condition number of the component xi = eTi x in
Eq. (3). Then we can calculate a vector κCW ∈ R

n with components κi being the
exact condition number of xi and expressed by

κi =
(‖R−1R−T ei‖2

2‖r‖2
2 + ‖R−T ei‖2

2(‖x‖2
2 + 1)

) 1
2 . (3)

We can also find in [6, 8] a statistical estimate for each κi .

Computing Least Squares Condition Numbers on Hybrid Multicore/GPU Systems 37

3 Variance–Covariance Matrix

In many physical applications, LLS problems are expressed using a statistical model
often referred to as linear statistical model where we have to solve

b = Ax + ε, A ∈ R
m×n, b ∈ R

m,

with ε being a vector of random errors having expected value 0 and variance-
covariance σ 2

b I . The matrixA is called the regression matrix and the unknown vector
x is called the vector of regression coefficients. Following the Gauss–Markov theo-
rem [11], the least squares estimate x̂ is the linear unbiased estimator of x satisfying
x̂ = argminx∈Rn‖Ax − b‖2,

with minimum variance–covariance equal to
C = σ 2

b (ATA)−1.
The diagonal elements cii of C give the variance of each component x̂i . The

off-diagonal elements cij , i �=j give the covariance between x̂i and x̂j . Then in-
stead of computing condition numbers (which are notions more commonly handled
by numerical linear algebra practitioners) physicists often compute the variance-
covariance matrix whose entries are intimately correlated with condition numbers κi
and κLS mentioned previously.

When the variance–covariance matrix has been computed, the condition numbers
can be easily obtained. Indeed, we can use the fact that

∥∥R−1
∥∥2

2 = ‖C‖2
σ 2
b

, ‖R−T ei‖2
2 =

cii
σ 2
b

, and ‖R−1R−T ei‖2 = ‖Ci‖2
σ 2
b

where Ci and cii are respectively the ith column and

the ith diagonal element of the matrix C. Then by replacing respectively in Eqs. (1)
and (3), we get the formulas

κLS = ‖C‖1/2
2

σ b
((m− n)‖C‖2 + ‖x‖2

2 + 1)1/2, (4)

and

κi = 1

σ b
((m− n)‖Ci‖2

2 + cii(‖x‖2
2 + 1))1/2. (5)

Note that, when m > n, 1
m−n ‖r‖2

2 is an unbiased estimate of σ 2
b [7, p. 4].

4 Implementation Details

We developed a set of routines that compute the following quantities using the
MAGMA library (release 1.2.1):

• Variance–covariance matrix C
• κLS , condition number of x
• κCW , vector of the κi , condition numbers of the solution components

38 M. Baboulin et al.

• κ̄LS , statistical estimate of κLS
• κ̄CW , vector of the statistical estimates κi

The variance–covariance computation requires inverting a triangular matrix and mul-
tiplying this triangular matrix by its transpose (similarly to the LAPACK routine
DPOTRI [1, p. 26] that computes the inverse of a matrix from its Cholesky factor-
ization). These operations use a block algorithm, which, for the diagonal blocks,
is performed recursively. The recursive part is performed by the CPU for sake of
performance while the rest of the algorithm is executed on the GPU.

The computation of the exact condition number κLS from the variance–covariance
using Eq. (4) involves the computation of the spectral norm of C which is generally
computed via an SVD. However, since A is a full-rank matrix, C is symmetric
positive definite and its singular values coincide with its eigenvalues. Then we use
an eigenvalue decomposition of C which is faster than an SVD because it takes into
account the symmetry of C. The tridiagonalization phase is performed on the GPU
while the subsequent eigenvalue computation is performed on the CPU host.

The statistical estimates require the generation and orthonormalization of random
vectors followed by two triangular solves. The random generation and the triangular
solves are performed on the GPU. The orthonormalization is performed on the CPU
because it is applied to small matrices (small number of samples).

5 Performance Results

Our experiments have been achieved on a multicore processor Intel Xeon E5645
(2 sockets × 6 cores) running at 2.4 GHz (the cache size per core is 12 MB and
the size of the main memory is 48 GB). This system hosts two GPU NVIDIA Tesla
C2075 running at 1.15 GHz with 6 GB memory each. MAGMA was linked with
the libraries MKL 10.3.8 and CUDA 4.1, respectively, for multicore and GPU. We
consider random LLS problems obtained using the method given in [9] for generating
LLS test problems with known solution x and residual norm.

We plot in Fig. 1, the CPU time to compute LLS solution and condition numbers
using 12 threads and 1 GPU. We observe that the computation of the variance–
covariance matrix and of the components conditioning κi are significantly faster than
the cost for solving the problem with respectively a time factor larger than 3 and 2,
this factor increasing with the problem size. The κi are computed using the variance-
covariance matrix via Eq. (5). The time overhead between the computation of the κi
and the variance–covariance computation comes from the computation of the norms
of the columns (routine cublasDnrm2) which has a nonoptimal implementation.

As expected, the routines SCE_LLS and SCE_LLS_CW that compute statistical
condition estimates for the solution and all solution components, respectively, outper-
form the other routines. Note that we did not mention on this graph the performance
for computing κLS using Eq. (4). Indeed this involves an eigenvalue decomposi-
tion of the variance–covariance matrix (MAGMA routine magma_dsyevd_gpu),
which turns out to be much slower than the LLS solution (MAGMA routine

Computing Least Squares Condition Numbers on Hybrid Multicore/GPU Systems 39

Fig. 1 Performance for computing LLS condition numbers with MAGMA

magma_dgels3_gpu) in spite of a smaller number of flops (O(n3) vs O(mn2)) which
shows that having an efficient implementation on the targeted architecture is essential
to take advantage of the gain in flops.

We can illustrate this by comparing in Fig. 2 the time for computing an LLS solu-
tion and its conditioning using LAPACK and MAGMA. We observe that MAGMA
provides faster solution and condition number but, contrary to LAPACK, the com-
putation of the condition number is slower than the time for the solution, in spite of
a smaller flop count. This shows the need for improving the Gflop/s performance of
eigensolvers or SVD solvers for GPUs, but it also confirms the interest of considering
statistical estimates on multicore-GPU architectures to get fast computations.

6 Conclusion

We proposed new implementations for computing LLS condition numbers using
the software libraries LAPACK and MAGMA. The performance results that we
obtained on a current multicore-GPU system confirmed the interest of using statistical

40 M. Baboulin et al.

Fig. 2 Time for LLS solution and condition number

condition estimates. New routines will be integrated in the next releases of LAPACK
and MAGMA to compute the variance–covariance matrix after a linear regression.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd
edn. SIAM, Philadelphia (1999)

2. Arioli, M., Baboulin, M., Gratton, S.: A partial condition number for linear least-squares
problems. SIAM J. Matrix Anal. Appl. 29(2), 413–433 (2007)

3. Baboulin, M., Dongarra, J., Gratton, S., Langou, J.: Computing the conditioning of the
components of a linear least squares solution. Numer. Linear Algebra Appl. 16(7), 517–533
(2009)

4. Baboulin, M., Dongarra, J., Tomov, S.: Some issues in dense linear algebra for multicore and
special purpose architectures. In: 9th International Workshop on State-of-the-Art in Scientific
and Parallel Computing (PARA’08), Lecture Notes in Computer Science, vol. 6126–6127.
Springer-Verlag (2008)

5. Baboulin, M., Giraud, L., Gratton, S., Langou, J.: Parallel tools for solving incremental dense
least squares problems. Application to space geodesy. J Algorithms Comput. Technol. 3(1),
117–133 (2009)

Computing Least Squares Condition Numbers on Hybrid Multicore/GPU Systems 41

6. Baboulin, M., Gratton, S., Lacroix, R., Laub, A.J.: Statistical estimates for the conditioning
of linear least squares problems. In: Proceedings of 10th International Conference on Parallel
Processing and Applied Mathematics (PPAM 2013) (2013)

7. Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
8. Kenney, C.S., Laub, A.J., Reese, M.S.: Statistical condition estimation for linear least squares.

SIAM J. Matrix Anal. Appl. 19(4), 906–923 (1998)
9. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least

squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)
10. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU

accelerated manycore systems. Parallel Comput. 36(5&6), 232–240 (2010)
11. Zelen, M.: Linear estimation and related topics. In: Todd, J. (ed.) Survey of NumericalAnalysis,

pp. 558–584. McGraw-Hill, New York (1962)

	Computing Least Squares Condition Numbers
on Hybrid Multicore/GPU Systems
	1 Introduction
	2 Closed Formulas and Statistical Estimates
	3 Variance--Covariance Matrix
	4 Implementation Details
	5 Performance Results
	6 Conclusion
	References

