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Abstract The generalized dispersion model is used to study the dispersion process
in unsteady flow in a tube with wall absorption by modeling the flowing fluid as
Casson fluid. According to this model, the entire dispersion process is expressed in
terms of three transport coefficients viz., the absorption, convection, and dispersion
coefficients. This study brings out the effects of pulsatility, yield stress and wall
absorption on these three transport coefficients. It is observed that the convection
and the dispersion coefficients are dependent on absorption parameter, yield stress,
pressure fluctuating component, and frequency parameter whereas the absorption
coefficient depends only on wall absorption parameter. This study can be used to
understand dispersion process in blood flows.

1 Introduction

The longitudinal dispersion of a tracer in a tube has many applications in the fields of
chemical engineering, environmental dynamics, and biomedical engineering. Taylor
[6] was first to initiate the study on contaminant dispersion in a circular tube flow and
showed that when a soluble substance is introduced into a fluid moving slowly and
steadily through a circular tube it spreads out due to the combined action of molecular
diffusion and the variation of velocity over the cross section. Aris [1] extended this
by the method of moments including the effect of axial molecular diffusion. These
theories are applicable only for large time after the introduction of solute and did not
provide any idea about variation of the dispersion coefficient immediately after the
injection of solute. Gill and Sankarasubramanian [3] developed a method to study
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the dispersion of a solute in a tube and this model is widely called as a generalized
dispersion model, which holds for all times after the solute injection. Later this model
is extended in the case of wall absorption by Sankarasubramanian and Gill [4]. They
showed that the three effective transport coefficients namely absorption, convection,
and dispersion coefficient are affected by interphase mass transfer. Dash et al. [2]
gave a model to understand the dispersion process in a Casson fluid by considering
the flowing fluid as steady and showed that the dispersion coefficient in the case of
Cason fluid depends not only on time but also on yield stress. They also discussed the
applications of their study in understanding the dispersion process in blood flows.

The existed models in the literature explain the effects of non-Newtonian rheology
on dispersion of solute but not the other properties of blood flow. Blood flow in
arteries and veins exhibits not only the non-Newtonian nature but also many other
fluid dynamic complexities such as pulsatility, curvature, branching, and elasticity of
the walls. The dispersion of any solute in blood flow is affected by these phenomena
as well as the wall reaction mechanisms and the multiphase character of the blood.
Hence, in this chapter, an attempt is made to study the dispersion process in a tube
with wall absorption by considering the flow as unsteady and flowing fluid as Casson
fluid. The purpose of this study is to explore the combined effects of yield stress,
Womersley parameter, fluctuating pressure component, and absorption parameter on
dispersion coefficient in a Casson fluid flowing through a tube.

2 Mathematical Formulation

we considered axisymmetric, fully developed, pulsatile flow in a pipe of radius “a” by
modeling the flow as a Casson fluid flow. We assumed that the rate of disappearance
of solute at the tube wall is due to an irreversible first-order reaction catalyzed by
the wall and is proportional to the solute concentration of the wall. The unsteady
convective diffusion equation that describes the local concentration C of a solute as
a function of axial distance z, radial distance r , and time t in the nondimensional
form can be written as follows:
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with the nondimensional variables as follows:
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, r = r
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a2
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where w is the nondimensional axial velocity of the fluid, Dm is the coefficient of
molecular diffusion (molecular diffusivity) which is assumed to be constant, C0 is
the reference concentration, w0 is the characteristic velocity and Pe is the Peclet
number. The variables with bar indicate the corresponding variables in dimensional
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form. For the slug input of solute length zs under consideration, the initial and
boundary conditions in dimensionless form for the given model will be of the form:

C(0, z, r) =
⎧
⎨

⎩
1 if |z| ≤ zs

2

0 |z| > zs
2 ,

(3)

∂C

∂r
(t , z, 0) = 0, (4)

∂C

∂r
(t , z, 1) = −βC, (5)

C (t ,∞, r) = 0, (6)

where β is the wall absorption parameter.
The constitutive equation for a Casson fluid relating the stress (τ) and shear rate(

∂w
∂r

)
in nondimensional form is given by
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where τy = τ y

μ(w0/a)
and τ = τ

μ(w0/a)
are the nondimensional yield stress and shear

stress, respectively. The above relations correspond to vanishing of velocity gradient
in the region where the shear stress is less than the yield stress which implies a plug
flow for τ ≤ τy . The nondimensional velocity distribution for axisymmetric, fully
developed, unsteady flow of a Casson fluid in tube is given by [5] as follows:
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if 0 ≤ r ≤ rp, (9)
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if rp ≤ r ≤ 1, (10)

where rp = τy

p(t)
is the dimensionless plug radius and p(t) = 1 + e cosα2Sct . Also

the subscripts “−” and “+” corresponds the values for plug flow and shear flow, re-

spectively and α =
√
ωa2

ν
represents the Womersley parameter, Sc = ν

Dm
represents

the Schmidt number, e is the amplitude of the pressure fluctuating component.
The solution of the convective diffusion Eq. (1) along with the given set of initial

and boundary conditions (3–6) by following the analysis of [3] can be assumed as
follows:

∞∑

i=0

fi(t , r)
∂iCm

∂zi
, (11)

where the dimensionless mean concentration Cm is defined as follows:

Cm = 2
∫ 1

0
Cr dr. (12)

Multiplying Eq. (1) by 2r and integrating with respect to r from 0 to 1, we get
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with transport coefficients Ki’s as function of time t and
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where δij denotes Kronecker delta and K0(t),K1(t), and K2(t) are called as the ab-
sorption coefficient, convection coefficient, and dispersion coefficient, respectively.
Also the following set of differential equations for fn is obtained as follows:
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The initial and boundary conditions are obtained from Eqs. (3–6) as follows:

fn(0, r) =
⎧
⎨

⎩
1 for n = 0

0 for n = 1, 2, 3 . . . ,
(16)

∂fn

∂r
(t , 0) = 0, (17)

∂fn

∂r
(t , 1) = −βfn(t , 1). (18)

In order to solve the transport coefficient one has to solve fns simultaneously. These
coupled equations are not conformable to an analytic solution, so a finite difference
scheme is used to study the dispersion phenomena and is explained in Sect. 3. By ne-
glecting terms involvedK3,K4, etc., in Eq. (13) and solving we can get the expression
for Cm.

3 Numerical Scheme

Equation (15) for n = 0, 1, 2 for fn’s are discretized in radial direction r and time
t . The Crank–Nicolson method is applied for each time step. The finite difference
scheme for derivatives and other terms are written at the mesh (i, j ), where 0 ≤ j ≤ m
and 0 ≤ i ≤ n. The resultant finite difference equations become linear simultaneous
equations with a tridiagonal matrix in the formAifn(i+1, j +1)+Bifn(i, j +1)+
Cifn(i − 1, j + 1) = Di , where Ai ,Bi ,Ci , and Di are the matrix elements. This
tridiagonal matrices can be solved by using the Gauss Seidel method with the help
of initial and boundary conditions.

4 Results and Discussion

The effect of yield stress, Womersley parameter, fluctuating pressure component, and
absorption parameter on dispersion coefficient is analyzed. From Fig. 1a–d, it can be
seen that due to the oscillatory flow the dispersion coefficient changes cyclically and
initially increase with time. From Fig. 1b, c one can observe that fluctuations and the
magnitude of K2 increase with e and also as β increases the dispersion coefficient
K2 decreases. We also observed that as the yield stress increases the amplitude of
the fluctuations of K2 decreases.
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Fig. 1 Variation of dispersion coefficient K2with t when Pe = Sc = 1000 for different a τy for
e = 0.1, β = 1, andα = 0.1 b e for τy = 0.02, β = 1, and α = 0.1 cβ for τy = 0.05, e = 0.2, and
α = 0.1 d α for τy = 0.05, e = 0.2, and β = 1

5 Conclusions

The expression for dispersion coefficient is obtained for dispersion of a solute in
Casson fluid flow with wall absorption by using the generalized dispersion model.
The dispersion coefficient has been found to depend on yield stress, absorption
parameter, frequency parameter, and the fluctuating component.
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