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Abstract We describe a numerical technique for discovering forward invariant sets
for discrete-time nonlinear dynamical systems. Given a region of interest in the state
space, our technique uses simulation traces originating at states within this region to
construct candidate Lyapunov functions, which are in turn used to obtain candidate
forward invariant sets. To vet a candidate invariant set, our technique samples a finite
number of states from the set and tests them. We derive sufficient conditions on
the sample density that formally guarantee that the candidate invariant set is indeed
forward invariant. Finally, we present a numerical example illustrating the efficacy
of the technique.

1 Introduction

Model-based design (MBD) is a mathematical and visual process for designing,
implementing, and testing embedded software designs for real-time control systems.
MBD is rapidly becoming the pervasive design paradigm in many sectors such as
automotive and avionics, but the problem of checking correctness of such designs
is a highly challenging task. Of particular interest is the problem of ensuring that
the system satisfies safety constraints, which are usually associated with a region of
the state space. Analysis techniques from dynamical systems theory can be applied
to such designs to verify system properties, such as those for checking stability or
estimating performance bounds (see, e.g., Chap. 4 of [3]); however, these are rarely
used in any but the earliest stages of the MBD process.

It is well known that a sublevel set of a Lyapunov function is a forward invari-
ant set. The existence of a forward invariant set that properly contains the set of
initial states, while excluding the unsafe region proves that the system is safe for
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all time. Thus, it is clear that identifying such invariant sets helps us to address the
safety verification problem. A significant obstacle to this approach is that Lyapunov
functions of arbitrary (nonlinear or hybrid) systems are notoriously hard to discover.
Further, industrial models are often in formats lacking an analytic representation of
the dynamics.

We now give a brief overview of our technique. We use an iterative procedure
to construct candidate Lyapunov functions using simulation traces. The candidate
Lyapunov functions are restricted to the class of polynomial functions, similar to
the sum of squares (SoS) techniques described in [5]. This restriction allows us to
compute a candidate forward invariant set by solving a linear program (LP). We then
verify the validity of the candidate invariant set by testing over a finite number of
system states. Note that, alternatively, if an analytic representation of the dynamics
is given, one could verify the validity of the candidate invariant set using arithmetic
solvers, as we describe in [2].

Our work builds largely on [6], where forward orbits (which are often called
simulations or simulation traces) are used to seed a procedure to estimate the region of
attraction (ROA) for a dynamical system. We provide the following extensions to that
work: (a) we provide a procedure that uses a global optimizer to iteratively improve
the quality of the candidate Lyapunov functions (by seeking initial conditions that
falsify each intermediate candidate) and (b) Our technique is not restricted to the
class of systems with polynomial dynamics.

2 Problem Statement

We consider autonomous nonlinear discrete-time dynamical systems of the form:

xk+1 = f (xk). (1)

Here x represents state variables that take values in R
n and f is a nonlinear, locally

Lipschitz-continuous vector field. We call x̂ the successor of x if x̂ = f (x). We
assume that the system has a stable equilibrium point, which is, without loss of
generality, at the origin. We address the following problem. Given the dynamical
system (1), and a closed and bounded domain of interest D ⊆ R

n, identify a forward
invariant set S ⊆ D such that for all x ∈ S, f (x) ∈ S. We present a procedure that
can identify such a set, without explicit knowledge of the vector field f ( · ). The
following section describes the procedure.

3 Algorithm for Computing Invariant Sets

The procedure consists of three steps: (1) identify a candidate Lyapunov function
for (1) within D; (2) use the candidate Lyapunov function to compute a candidate
invariant set; (3) certify that the candidate invariant set is a forward invariant set. We
now describe each step in the process.
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Identifying a Candidate Lyapunov Function Ideally, we want to discover a
differentiable function v that ∀x ∈ D satisfies:

v(x) ) 0 (2)

v(x) − v(x̂) > 0, ∀x ∈ D \ {0}, v(0) = 0. (3)

Here, v(x) ) 0 means that v is positive definite, i.e., ∀x �= 0, v(x) > 0, and v(0) = 0.
The problem of identifying such a function v for the general case is of infinite di-
mension. We relax the problem by restricting the form of v as v(x) = zTPz, where
z is some vector of m monomials in x (e.g., z = [x1 x

2
1x2 x

2
2 ]T ) and P ∈ R

m × R
m.

We use a collection of state/successor pairs to automatically produce candidate
Lyapunov functions for the system. Given M pairs of points xi , x̂i , where i ∈
{1, 2, . . .,M} and xi �= 0 for all i, we formulate the following LP:

max
P,γ

γ (4)

s.t. γ > 0, and ∀i ∈ {1, . . .,M},
v(xi) > 0

v(xi) − v(x̂i) > γ ‖xi‖2.

Any feasible solution to (4) results in a candidate Lyapunov function v that satisfies
M necessary conditions for (2) and (3). We note that we could strictly enforce (2)
by requiring that P ) 0, but this would require that a more expensive semidefinite
program (SDP) be solved instead of an LP.

Once a candidate Lyapunov function is obtained from (4), we employ a falsifier
to select state/successor pairs that can be used to improve the candidate Lyapunov
function. The falsifier is a global optimizer that attempts to solve the following
optimization problem:

min
x∈D

v(x) − v(x̂) (5)

s.t. x̂ = f (x).

If the solution to (5) is less than zero, then the optimal x is a witness that falsifies the
Lyapunov condition (3). This witness is added to the collection of state/successor
pairs and (4) is solved again. This procedure continues until no falsifying witness
can be found by solving (5). For our experiments, we use a simulated annealing
algorithm to implement the falsifier. Figure 1 illustrates our iterative procedure.

We note that if both (a) the falsifier is capable of computing a global minimum and
(b) the procedure in Fig. 1 halts, then the resulting candidate Lyapunov function v(·) is
a Lyapunov function for (1). Practical falsifiers cannot reliably find a global minimum
in general. Hence, we still need to verify the soundness of the forward invariant set
computed using a candidate Lyapunov function obtained from this procedure, and
we present a technique to do so later in this section.
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Fig. 1 Procedure to create a candidate Lyapunov function for system (1)

Computing a Candidate Invariant Set Once we obtain a candidate Lyapunov
function for (1), we can use it to obtain a forward invariant set. We formulate a convex
optimization problem to maximize l such that the sublevel set S = {x|v(x) ≤ l} is
within D. If we assume that D is a sublevel set of a polynomial, then standard
numerical techniques can be used to obtain the optimal l, as in [1].

Verifying Soundness of the Candidate Invariant Set Below we show how to
verify the soundness of the candidate invariant set computed in the previous step.
The technique requires that a Lyapunov-like condition be satisfied at a finite sampling
of the points in the set. First, we define a notion of sampling for a set.

Definition 1 [Delta Sampling] Given a δ ∈ R>0, a δ-sampling of set S ⊂ R
n is

a finite set Sδ such that the following holds: Sδ ⊂ S; for any x ∈ S, there exists a
xδ ∈ Sδ such that ‖x − xδ‖ < δ.

The following theorem allows us to test whether a given set is forward invariant
by testing a finite subset of points within the set.

Theorem 1 [Invariant Soundness] Consider system (1), where f is locally Lipschitz
with constantKf over D. Let S = {x|g(x) ≤ l}, whereg : R

n → R≥0 is a C1 function
that is locally Lipschitz with constant Kg over S, and let Sδ be a δ-sampling of S. If
there exists a γ ∈ R>0 such that δ < γ

Kg ·Kf and ∀xδ ∈ Sδ , g(f (xδ)) ≤ l − γ , then S
is a forward invariant set.

Proof We prove by contradiction. Assume that δ < γ

Kg ·Kf and for all xδ ∈ Sδ ,
g(f (xδ)) ≤ l − γ holds, but S is not forward invariant. Then it is true that for some
x ∈ S, f (x) /∈ S. Consider the point xδ in Sδ closest to x. The Lipschitz constant
for the function composition g ◦ f is Kg ·Kf . Applying the definition of Lipschitz
continuity, we have ‖g(f (x)) − g(f (xδ))‖ ≤ Kg · Kf · ‖x − xδ‖. By the definition
of δ-sampling, ‖x − xδ‖ < δ, thus we have

‖g(f (x)) − g(f (xδ))‖ < δ ·Kg ·Kf . (6)

Sincef (x) /∈ S, g(f (x)) > l, i.e., −g(f (x)) < −l. By assumption, g(f (xδ)) ≤ l−γ ;
adding the two inequalities, we get g(f (xδ)) − g(f (x)) < −γ . By the triangle
inequality, we have ‖g(f (xδ)) − g(f (x))‖ > γ . Combining with (6) we get:

γ < ‖g(f (xδ)) − g(f (x))‖ < δ ·Kg ·Kf . (7)
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This contradicts our assumption that δ < γ

Kg ·Kf . �
As both δ and γ cannot be selected simultaneously, we propose an iterative pro-

cedure to determine whether the γ thus computed satisfies the condition δ < γ

Kg ·Kf .
First, a δ value is selected randomly and used to create a δ-sampling of the candidate
forward invariant set S. Next, the minimum value of γ = l− v(f (xδ)) over the finite
set Sδ is computed:

γ ∗ = min
xδ∈Sδ

l − v(f (xδ)). (8)

If the γ ∗ < 0, then the candidate S is not a forward invariant set (since the xδ that
minimizes (8) is such that v(f (xδ)) > l). If γ ∗ > 0 and δ < γ ∗

K·Kf , then by Theorem

1 the candidate S is a forward invariant set. If γ ∗ > 0 but δ �< γ ∗
K·Kf , then we select

a smaller δ such that δ < γ ∗
K·Kf and repeat the process.

4 Example for Computing an Invariant Set

We now present an example demonstrating the technique in Sect. 3. The following
dynamical system was taken from LaSalle [4]:

f (x) =
⎡

⎢
⎣

α · x2

1 + x2
1

β · x1

1 + x2
2

⎤

⎥
⎦ .

For this exercise, we fix α = 1.0, β = 0.9. Fig. 2a shows the result of the procedure
illustrated in Fig. 1; for the selected quadratic Lyapunov function template (i.e.,
z = [x1 x2]T ), the procedure terminates in 5.59 s1, giving the following candidate
Lyapunov function:

vLaSalle(x) = [x1 x2]

⎡

⎣ 368.0 −36.0

−36.0 396.0

⎤

⎦

⎡

⎣ x1

x2

⎤

⎦ .

Next, the candidate Lyapunov function is used to candidate invariant S =
vLaSalle(x) ≤ 343.3 (as shown in Fig. 2a); the corresponding convex program takes
2.22 s. Finally, S is shown to be invariant using the iterative procedure from Sect. 3.
The procedure halts after two iterations (i.e., γ ∗ is computed twice), after 5.82 s and
a cumulative total of 57, 877 sample points. Fig. 2b shows the results of this step for
the example.

1 Runtime measured on an Intel Xeon E5606 2.13 GHz Dual Processor machine, with 24 GB RAM,
running Windows 7, SP1.
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Fig. 2 LaSalle example results

5 Conclusions

We describe a numerical technique for discovering forward invariant sets for nonlin-
ear dynamical systems using simulation traces, leveraging techniques from Lyapunov
analysis, global optimization, and convex programming. The set of samples from
the candidate invariant set required for verifying validity of the candidate can be
prohibitively large. In future work, we will investigate satisfiability modulo theories
(SMT) and interval constraint propagation solvers to symbolically test the validity
of candidate invariants.
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