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Abstract In this chapter, we generalize our earlier model for the spread of ectopar-
asites and diseases transmitted by them by including disease-induced mortality. The
qualitative behavior of the system is similar to that of the original model: three
reproduction numbers determine which of the four possible equilibria is globally
asymptotically stable. We conclude that a moderate mortality decreases the size of
the population, while a high mortality leads to the eradication of the infection. The
main tools used for the proofs include persistence theory, Lyapunov–LaSalle theory
and Dulac’s criteria.

1 Introduction, Basic Properties of the Model

Ectoparasites are present in several regions of the world. Besides the problems caused
by the infestation, they are also responsible for the transmission of several diseases
like relapsing fever or murine typhus (for details see, e.g., [1]). The spread of these
diseases is different from other vector-borne diseases, as in this case, the vectors
themselves are transmitted like a disease through the human contact network. In [2],
we established a basic model for the spread of ectoparasites and diseases transmitted
by them and completely described the global dynamics of the model. Our basic
model does not include disease mortality, however, as several ectoparasite-borne
diseases are lethal (e.g., epidemic typhus or plague), it is a natural question to ask
what happens if we also incorporate disease-induced mortality. In this chapter, we
study the model with disease-induced mortality showing that the modified system has
a similar behavior as the original one. Some of the proofs in [2] can be applied in an
analogous way, however, several of them need some additional ideas or completely
different methods.
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The present model is for one ectoparasite species, which might be a vector for
a disease as well. The population is divided into three compartments: susceptibles
(i.e., those who are not infested, denoted by S(t)), those who are infested by nonin-
fectious parasites (T (t)) and those who are infested by infectious parasites (Q(t)).
In the following, we will call an individual from compartment S (resp. T , Q) an S-
(resp. T -,Q-) individual. A T -individual might infest an S-individual with noninfec-
tious parasites, while a Q-individual might infest an S-individual or a T -individual
with parasites which carry the disease. We assume that a person is infected by the
disease, if and only if, he is infested by infectious parasites. We denote the trans-
mission rate from Q to S and T by βQ, while βT stands for the transmission rate
from T to S. The disinfestation rate is denoted by θ for compartment T and by μ for
compartment Q. We denote by b the recruitment and removal rate, and d denotes
disease-induced mortality. With these assumptions we obtain the following system
of differential equations:

S ′(t) = −βT S(t)T (t) − βQS(t)Q(t) + θT (t) + μQ(t) + b − bS(t),

T ′(t) = βT S(t)T (t) − βQT (t)Q(t) − θT (t) − bT (t), (1)

Q′(t) = βQS(t)Q(t) + βQT (t)Q(t) − μQ(t) − bQ(t) − dQ(t).

It is easy to see that all solutions are bounded and solutions with nonnegative initial
values remain nonnegative.

Letting S∗ = (b+d)θ−bμ+bβQ
(b+d)βT

, the four equilibria can be calculated as:

ES = (1, 0, 0), EQT =
(
S∗, b+d+μ

βQ
− S∗,

b(βQ−(b+d+μ))
(b+d)βQ

)
,

ET =
(
b+θ
βT

, 1 − b+θ
βT

, 0
)

, EQ =
(
b+d+μ
βQ

, 0,
b(βQ−(b+d+μ))

(b+d)βQ

)
.

By introducing a single infested, respectively, infested and infected individual into
one of the equilibriaES ,ET , andEQ, we obtain three different reproduction numbers.
By introducing a T -, resp.Q-individual into ES , we get the reproduction numbers

R1 = βT

b + θ , resp.R2 = βQ

b + d + μ. (2)

If we introduce a Q-individual into ET , we get the same reproduction number R2

again. Finally, by introducing a T -individual into EQ, we obtain the reproduction
number

R3 = βT (b + d)(b + d + μ)

βQ(b(βQ + θ − μ) + dθ )
. (3)

The following proposition can easily be checked.

Proposition 1 Equilibrium ES always exists. Equilibrium ET exists if and only if
R1 > 1. Equilibrium EQ exists if and only if R2 > 1. Equilibrium EQT exists if and
only if R2 > 1 and R3 > 1.
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Proposition 2 Local stability of the four possible equilibria is determined by the
reproduction numbers in the following way.

(i) ES is locally asymptotically stable (LAS) if R1 < 1 and R2 < 1, and unstable
if R1 > 1 or R2 > 1.

(ii) ET is LAS if R1 > 1 and R2 < 1, and unstable if R2 > 1.
(iii) EQ is LAS if R2 > 1 and R3 < 1, and unstable if R3 > 1.
(iv) EQT is LAS if R2 > 1 and R3 > 1 (i.e., always when it exists).

Proof (i) Calculating the eigenvalues of the Jacobian of the linearized equation
around the equilibriumES we obtainλS1 = −b, λS2 = −b−θ+βT = (b+θ )(R1−1),
and λS3 = −b − d − μ + βQ = (b + d + μ)(R2 − 1). All of the eigenvalues are
negative if R1 < 1 and R2 < 1, while at least one of them is positive if R1 > 1 or
R2 > 1.

(ii) If we linearize around the equilibrium ET , we find the eigenvalues λT1 = λS1 ,
λT2 = −λS2 , and λT3 = λS3 , thus we can argue similarly as in case (i).

(iii) Linearization around the equilibrium EQ yields the three eigenvalues λQ1 =
B(μ− βQ)/(b + d) + (b + d + μ)βT /βQ − θ and

λQ2,3 =
b(μ− βQ) ±

√
b(4μ(b + d)2 + βQ

(−4(b + d)2 − 2bμ+ bβQ
)+ 4(b + d)3 + bμ2)

2(b + d)
.

R2 > 1 is needed for the existence of EQ. If we add the terms in λQ1 , it is easy
to see that the numerator of the fraction is the difference of the numerator and the
denominator of the reproduction number R3, which means that it is negative if and
only ifR3 < 1. The absolute value of the term under the square root in the nominator
of λQ2 , resp. λQ3 is less than that of the first term which itself is negative as βQ > μ
follows from R2 > 1. Thus, the last two eigenvalues always have negative real parts
if R2 > 1.

(iv) Linearizing aroundEQT , we get the eigenvalues λQT 1 = −λQ1 , λQT 2 = λQ2 ,
and λQT 3 = λQ3 , from which the assertion follows. �

2 Persistence and Global Stability

We shall use some notions and theorems from [3].

Definition 1 LetX be a nonempty set and ρ : X→ R+. A semiflow φ : R+×X→
X is called uniformly weakly ρ-persistent, if there exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t , x)) > ε ∀x ∈ X, ρ(x) > 0.

Φ is called uniformly (strongly) ρ-persistent if there exists some ε > 0 such that

lim inf
t→∞ ρ(Φ(t , x)) > ε ∀x ∈ X, ρ(x) > 0.

A set M ⊆ X is called weakly ρ-repelling if there is no x ∈ X such that ρ(x) > 0
and Φ(t , x) → M as t → ∞.
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System (1) generates a continuous flow on the state spaceX := {(S, T ,Q) ∈ R
3+}.

Theorem 1 S(t) is always uniformly persistent. T (t) is uniformly persistent ifR1 >

1 andR2 < 1 as well as ifR2 > 1 andR3 > 1.Q(t) is uniformly persistent ifR2 > 1.

Proof The proof of the first assertion can be performed similarly as in [2, Theorem
4.3]. To prove the assertions about the persistence of T (t) and Q(t), we need some
further theory from [3].

For the state of the system, we will use the notation x = (S, T ,Q) ∈ X. We define
the ω-limit set of a point x ∈ X as usual by

ω(x) := {y ∈ X : ∃{tn}n≥1 such that tn → ∞,Φ(tn, x) → y as n→ ∞}.
Let ρ(x) = T . Consider the invariant extinction spaceXT := {x ∈ X : ρ(x) = 0} =
{(S, 0,Q) ∈ R

3+}. The case R1 > 1 and R2 < 1 can be handled exactly as in [2,
Theorem 4.3].

Let us now suppose that R2 > 1 and R3 > 1 hold. Following [3, Chap. 8], we
examine the set Ω := ∪x∈XT ω(x) for which in this case we have Ω = {ES ,EQ

}
.

First we show weak ρ-persistence. To apply Theorem 8.17 of [3], we letM1 = {ES}
and M2 = {EQ

}
. We have Ω ⊂ M1 ∪M2 and {M1,M2} is acyclic and M1 and M2

are isolated, invariant and compact. We have to show that M1 and M2 are weakly
ρ-repelling, then by [3, Chap. 8], the weak persistence follows.

Let us first assume thatM1 is not weakly ρ-repelling, i.e., there exists a solution
with limt→∞ (S(t), T (t),Q(t)) = (1, 0, 0) such that T (t) > 0. By R2 > 1 and
R3 > 1,

R2R3 = (b + d)βT
dθ + b(βQ + θ − μ)

> 1,

i.e., βT > θ + (βQ − μ)b/(b + d). For t large enough we have S(t) > 1 − ε and
Q(t) < ε, so we can give the following estimation for T (t):

T ′(t) = T (t)(βT S(t) − βQQ(t) − θ − b) > T (t)(βT − βT ε − βQε − θ − b)

> T (t)

(
b

b + d (βQ − μ) − ε(βT + βQ) − b
)

= T (t)

(
b

b + d (βQ − μ− b − d) − ε(βT + βQ)

)
,

which is positive for ε small enough, since R2 > 1 implies βQ > μ + b + d, thus
T (t) → 0 cannot hold.

Now we assume that M2 is not weakly ρ-repelling, thus, there exists a solution
with limt→∞ (S(t), T (t),Q(t)) = (b+d+μ)/βQ, 0, b(βQ−b−d−μ)/(βQ(b+d))
and T (t) > 0. For any ε, for t large enough we can give the following estimations
for T ′(t):

T ′(t) = T (t)(βT S(t) − βQQ(t) − θ − b)

> T (t)

(
βT

(
b + d + μ
βQ

− ε
)

− βQ
(
b(βQ − b − d − μ)

(b + d)βQ
+ ε
)

− θ − b
)
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= T (t)

(
βT (b + d + μ)

βQ
− b(βQ − b − d − μ)

b + d − θ − b − ε(βT + βQ)

)
,

which is positive for ε small enough, since R3 > 1.
The persistence of Q(t) for R2 > 1 can be proved using the same methods. The

steps are analogous to those of the corresponding part of [2, Theorem 4.3] with only
a slight modification needed. �

Using our theorem about persistence, in this section, we show that our LAS results
extend to global asymptotic stability (GAS) results.

Theorem 2 Equilibrium ES is GAS if R1 ≤ 1 and R2 ≤ 1.

Proof The proof is analogous to that of [2, Theorem 5.1] �

Theorem 3 Equilibrium ET is GAS stable on X \ XT if R1 > 1 and R2 ≤ 1. On
XT , ES is globally asymptotically stable.

Proof The proof is analogous to that of [2, Theorem 5.2] �

Theorem 4 Let us suppose R2 > 1. Then the following statements hold:

(i) If R3 ≤ 1 and R1 ≤ 1, then EQ is GAS onX \XQ and ES is GAS onXQ where
XQ := {x ∈ X : {(S, T , 0) ∈ R

3+}, i.e., the extinction space ofQ.
(ii) If R3 ≤ 1 and R1 > 1, then EQ is GAS on X \XQ and ET is GAS on XQ.

(iii) If R3 > 1, then EQT is GAS on X \ (XQ ∪XT ), ET is GAS on XQ, EQ is GAS
on XT .

Proof Let us introduce the notation F (t) := S(t)+T (t). With this notation, we can
transcribe system (1) to the two-dimensional system

F ′(t) = −βQF (t)Q(t) + μQ(t) + b − bF (t),

Q′(t) = βQF (t)Q(t) − μQ(t) − bQ(t) − dQ(t). (4)

This system has the two positive equilibria (1, 0) and

(F ∗,Q∗) :=
(
b + d + μ
βQ

,
b(βQ − b − d − μ)

βQ(b + d)

)
.

To show that the limit of each solution of this system is one of these two equilibria,
according to the Poincaré–Bendixson theorem, all we have to prove is that system
(4) does not have any periodic solutions. To show this, we apply Dulac’s criterion
using the Dulac function D(Q, J ) = 1/Q. We have

∂

∂F

−βQQF + μQ+ b − bF
Q

+ ∂

∂Q

−bQ− dQ+ βQFQ − μQ
Q

= −b +QβQ
Q

< 0.

From the previous section, we know that Q(t) is persistent for R2 > 1; thus, the
limit of each solution started in X \XQ is a subset of the set {x ∈ X : {(S, T ,Q∗) ∈
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R
3+ : S + T = F ∗}. Thus, on the limit set the equation for T (t) takes the form

T ′(t) = βT (F ∗ − T (t))T (t) − βQT (t)Q∗ − θT (t) − bT (t) = −βT T 2(t) + γ T (t),

where γ = βT F
∗ − βQQ∗ − θ − b. The solution started from T (0) = 0 is the

function T (t) ≡ 0. The nontrivial solutions of this logistic equation are T (t) =
γCeγ t/βT Ce

γ t + 1 for C ∈ R+. It is easy to see that γ > 0 if and only if R3 > 1.
Thus, for R3 ≤ 1, limt→∞ T (t) = 0 and the limit of solutions started in X \ XQ is
EQ.

In the case R3 > 1, we have

lim
t→∞ T (t) = γ

βT
= b + d + μ

βQ
− θ (b + d) − bμ+ bβQ

(b + d)βT
,

thus we obtain that the limit of solutions started inX \ (XT ∪XQ) is EQT . Solutions
started in XT tend to EQ.

The limit set of solutions of Eq. (4) started inXQ is the equilibrium (1, 0). Thus, in
this case, the equation forT (t) on the limit set has the formT ′(t) = −βT T 2(t)+δT (t)
with δ = βT − (θ + b). Similarly to the previous case, the nontrivial solutions of
this equation have the form T (t) = δCeδt/βT Ceδt + 1 for C ∈ R+. We have δ > 0
if and only if R1 > 1. Thus, for R1 ≤ 1, T (t) → 0 (t → ∞) and the limit of
solutions started in XQ is ES , while for R1 > 1 we obtain limt→∞ T (t) = δ/βT =
1 − (θ + b)/βT , i.e., solutions started in XQ tend to ET . To complete the proof of
the theorem, we notice that R2 > 1 and R3 > 1 imply R1 > 1:

1 < R2R3 = βT

b + θ
(b + d)(b + θ )

dθ + b(βQ + θ − μ)
= R1

b2 + db + bθ + dθ
dθ + bθ + bβQ − bμ < R1.

�

Finally, we comment on the impact of the disease-induced mortality d. For d = 0
we retrieve the results of [2]. Increasing d first decreases the total population without
changing the qualitative dynamics. Sufficiently large d drives R2 below 1. In this
case, the disease dies out and the persistence of the parasites is determined by R1.
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