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Abstract. Characterising the time course of a disease with a protracted
incubation period ultimately requires dense longitudinal studies, which
can be prohibitively long and expensive. Considering what can be learned
in the absence of such data, we estimate cohort-level biomarker trajecto-
ries by fitting cross-sectional data to a differential equation model, then
integrating the fit. These fits inform our new stochastic differential equa-
tion model for synthesising individual-level biomarker trajectories for
prognosis support. Our Bayesian multilevel regression model explicitly
includes measurement noise estimation to avoid regression dilution bias.
Applicable to any disease, here we perform experiments on Alzheimer’s
disease imaging biomarker data — volumes of regions of interest within
the brain. We find that Alzheimer’s disease imaging biomarkers are dy-
namic over timescales from a few years to a few decades.

1 Introduction

Dementia presents a significant societal and economic burden to an ageing pop-
ulation. Late-onset dementia is generally attributed to degenerative neurological
diseases such as Alzheimer’s disease (AD). Biomarkers (biological markers) are
indicators of disease-specific changes which can be used to inform the diagnosis
of AD [1]. While no single biomarker is dynamic over the entire disease progres-
sion, AD biomarker abnormality is hypothesised to occur in a disease-specific
sequence determined by the maximum gradient [2]. Most investigations of this
hypothesis have sought to correlate biomarker gradient/change with clinically-
determined subject cognition: cognitively normal (CN), mild cognitive impair-
ment (MCI), or diagnosed AD [3]. This approach provides a coarsely-graded
ordering of biomarker abnormality. More finely-graded sequencing of biomarker
abnormality events has been achieved using data-driven models of disease pro-
gression [4–6]. Such models can be useful for diagnosis/staging of a patient, but
accurate prognosis requires more complete knowledge of biomarker trajectories.
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Characterising biomarker dynamics ultimately requires long-term, dense, lon-
gitudinal studies. Such data is expensive and difficult to obtain, whereas cross-
sectional (or short-term longitudinal) data is relatively inexpensive, easy to ob-
tain, and already available. For example, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset. In this study we present a principled approach to
quantitative biomarker dynamics. We start by estimating cohort-level (average)
biomarker trajectories by integrating a parametric ordinary differential equa-
tion model which is fit to single-followup cross-sectional data, such as done in
similar previous work [7–10, 19]. We innovate on previous work in two ways: 1)
modelling (and estimating from the data) biomarker measurement noise using a
Bayesian multilevel model (BMM); and 2) introducing a stochastic differential
equation model for synthesising future biomarker trajectories of individuals, thus
providing predictive/prognostic information. We describe the data and methods
in Section 2, present results in Section 3, and discuss in Section 4.

2 Data and Methods

From ADNI-1∗ we consider a cross section of differential data (x, y ≡ dx/dt) for
each of five imaging biomarkers (see table 1). Here x is the baseline biomarker
value (volume of a region of interest) and y is the forward finite-difference ap-
proximation of the derivative from baseline to 12-months. The regional brain
volumes are normalised by intracranial volume [11] and presented as percent-
ages. We focus our experimental results on only one region of interest, choosing
the ventricles. Results for the other brain volumes are summarised. To main-
tain specificity to disease progression we included the entire cognitive spectrum
except for non-stable or non-progressing individuals (mixed or regressing diag-
noses). Excluding individuals with missing data left N = 651 individuals.

Illustrative Example of our Approach. Figure 1 illustrates the pipeline
of our approach using ventricles data. The single-followup data in figure 1a
produces a differential cross section, which is fit to a polynomial differential
equation in figure 1b. Integrating the differential equation produces the cohort-
level trajectory in figure 1c. The solid blue line shows the average, with dotted
and dashed red lines respectively showing short and long transitions from the
±1 standard error bounds on the model parameter estimates. Figure 1d shows
individual-level trajectories synthesised by a stochastic differential equation. We
proceed now to present details of our methodology.

Regression Model. For each biomarker x(t) we performed model selection
using the sample-size-corrected Akaike information criterion. For this purpose
we used ordinary least squares (OLS) differential equation models y = f(x),
with polynomials f(x) of up to second-order, as well as linear dependence on
mean-centred covariates — age and education. We considered group differences
by sex, and performed a separate regression for the whole cohort and for the
apoE4+ subcohort of genetic risk factor carriers (apoE4 = apolipoprotein-E4).
Of the N = 651 stable or progressing individuals with suitable brain volumetry
data in ADNI-1, 321 were apoE4+ (had one or more apoE4 alleles). Distinct
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Fig. 1. Pipeline illustrated on ventricles: (a) single-followup cross-section; (b) differen-
tial equation fit; (c) cohort-level trajectory; (d) individual synthetic trajectories (see
also figure 3).

from previous work, we use a multilevel differential equation model that incor-
porates additive Gaussian noise on the biomarker observations x̃(t) = x(t)+η(t).
In general, the Gaussian random variable η ∼ N (0, σ2

z ) may exhibit longitudi-
nal correlation, but since cross-sectional data cannot support estimation of such
intra-subject variance, we assume the measurement noise autocorrelation coef-
ficient ρ(t − s) ≡ E [η(t)η(s)] /σ2

z to be ρ = 0. (We retain ρ in the covariance
matrix below for completeness.)

Ourmultilevel model has three levels: dynamics (one data point per individual),
one group level to capture sex differences (s[i]), and additive Gaussian measure-
ment noise:

yi ∼ N (
f(xi,µs[i]), σ

2
y

)(
x̃i

ỹi

)
∼ N

((
xi

yi

)
, Σ

)
(1)

where polynomial f(x,µ) is the dynamical model (see below) parametrised by
the vector µ of sex-specific fixed effects and σ2

y is residual model error (un-
explained variance). The finite-difference derivative yi ≈ (xi(Ti) − xi(0))/Ti is
correlated with xi = xi(0) giving the measurement covariance structure

Σi = σ2

[
1, − (1− ρ) /Ti

− (1− ρ) /Ti, 2 (1− ρ) /T 2
i

]
(2)

where we assume zero intra-subject autocorrelation as discussed above, so ρ = 0.
The precise value of Ti is used (nominally T = 1 year).

Our Bayesian multilevel models are fit numerically using Markov Chain Monte
Carlo (MCMC) techniques. For this purpose we used the Stan [12] software pack-
age. Full validation is a topic for future work, but it is reassuring to note that we
found similar results using the JAGS [13,14] software package. We contrast our
results with those obtained using OLS. To ensure that the estimation was driven
by the data, our Bayesian models used weakly-informative priors: broad Gaus-
sian priors (σ ≥ 100) for regression parameters and broad positive uniform priors
(upper bound 10x̃max) for the variance parameters. We tried different weakly-
informative priors (e.g., inverse gamma priors for variances) and the results were
unchanged, giving us confidence that the data was driving our inference.
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Cohort-level Biomarker Trajectories. Each cohort-level biomarker tra-
jectory is ultimately determined by the (unknown) disease stage for each subject,
and represented within our model by the regression parameter estimates. Linear
fits produce exponential trajectories, where f(x) = μ0,s[i] + μ1,s[i]x + μ3,s[i] ·
age+ μ4,s[i] · edu. This corresponds to acceleration or deceleration/saturation of
atrophy in the brain. Quadratic fits, where f(x) = μ0,s[i] + μ1,s[i]x + μ2,s[i]x

2 +
μ3,s[i] · age + μ4,s[i] · edu, are a parsimonious representation of sigmoidal trajec-
tories (acceleration followed by deceleration). We note the following convenient
analytical form for a sigmoidal trajectory

x(t) = x− +
Δ

1 + e−rt
(3)

where r is a biomarker progression rate, and Δ ≡ x+−x− separates the asymp-
totes x± ≡ x(t = ±∞) which bound the sigmoid. Time t is symmetric about the
primary inflection point x(t = 0) = x− + Δ/2, and is unrelated to study/visit
time (since baseline). The sigmoid parameters are straightforward functions of
the regression parameters µ. We will utilise equation (3) to define a timescale of
interest for the cohort (see equation (4) in section 3).

Individual-level Biomarker Trajectories. The ordinary differential equa-
tion reflects biomarker dynamics at the cohort level. We model individual-level
biomarker dynamics as deviations about this average using a corresponding
stochastic differential equation driven by a zero-mean Gaussian process dκ ∼
GP (0, σ2

κ). We propose a prognostic utility for this below.
Biomarker Abnormality Timescales. Model fitting is followed by estima-

tion of a biomarker abnormality timescale for the cohort, and one for individu-
als. The first is a cohort-level estimate of the duration over which the biomarker
is dynamic: between two extremal thresholds xs(ts) (effective saturation) and
xa(ta) (initial signs of abnormality). Choosing these thresholds is an open prob-
lem. For sigmoidal trajectories we choose analytical thresholds: the points of
maximum biomarker acceleration and deceleration. For exponential trajectories
(biomarker timescales not presented here) we propose using thresholds of clin-
ical relevance. The second timescale uses our stochastic model to estimate an
analogous result for an individual j. Starting at the individual’s initial measure-
ments (x̃j , ỹj), many stochastic trajectories are synthesised using the deviation
from the cohort fit as the Gaussian process scale σκ,j = |ỹj(x̃j)− ŷfit(x̃j)|, and
sampling model parameters µj from the posterior distributions of the cohort-
level multilevel regression parameters. The average of these synthetic trajectories
for an individual gives a density of first-passage times (see [15]) taken to reach
some maximal threshold, e.g., the effective saturation threshold in the case of
biomarker saturation. This is an interval estimate of time remaining until an in-
dividual’s biomarker becomes fully abnormal, which can inform prognosis either
on it’s own, or as part of a panel of such times for multiple biomarkers.
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3 Results

MCMC. The Bayesian Multilevel Model (BMM) fitting converged using 2
chains, 2000 burn-in samples, and 8000 MCMC samples, thinned by 2. That is,
we observed Gelman’s potential scale reduction factor [16] to be PSRF < 1.1
for all parameters and hyperparameters, as well as observing all Monte Carlo
standard errors to be lower than the posterior standard deviations.

Regression. As expected, our BMM produces different results to OLS — for
example, the different quadratic regression fits shown for ventricles in figure 2a
(males and females were pooled together in this figure). Multilevel regression
parameter estimates for µ are in table 1. The only data supporting a sigmoidal

Table 1. Multilevel regression fit results: mean (±std) ×10−3. ADNI-1 data at baseline
and 12 months were available for N = 651 (370 male) stable or progressing subjects –
of these, 321 (185 male) were apoe4+ subjects. Sex-specific regression parameters are
μk,s with k = 0, 1, 2 (polynomial coefficients) and s = m, f (male,female).

Biomarker, x μ0,m μ0,f μ1,m μ1,f μ2,m μ2,f σ

Ventricles – all −126 (52) −81 (58) 166 (31) 122 (44) −17 (4) −6 (8) 9 (4)
– apoE4+ −174 (75) −76 (94) 214 (42) 123 (73) −23 (5) −3 (13)

Hippocampus – all −19 (5) −20 (6) 29 (14) 21 (15) n/a n/a 6 (2)
– apoE4+ −17 (8) −17 (9) −19 (23) 11 (24) n/a n/a

Entorhinal cortex – all −0.4 (4) −10 (4) −26 (16) 8 (20) n/a n/a 2 (1)
– apoE4+ 4.9 (5.1) −13 (7) −59 (24) 25 (32) n/a n/a

Fusiform – all −28 (21) −47 (23) 2 (20) 21 (21) n/a n/a 8 (3)
– apoE4+ −13 (30) −55 (31) −21 (29) 24 (29) n/a n/a

Mid. temp. gyrus – all −39 (24) −56 (28) 7 (20) 22 (23) n/a n/a 10 (3)
– apoE4+ −48 (34) −39 (40) 5 (29) 4 (34) n/a n/a

Table 2. Ordinary least squares fit results: mean (±std) ×10−3. Compare with mul-
tilevel regression results in Table 1.

Biomarker, x μ0 μ1 μ2

Ventricles – all −41 (62) 72 (46) −3 (8)
– apoE4+ −92 (96) 130 (72) −7 (12)

Hippocampus – all −16 (7) 21 (17) n/a
– apoE4+ −19 (10) 20 (26) n/a

Entorhinal cortex – all −10 (5) 16 (22) n/a
– apoE4+ −19 (7) 52 (33) n/a

Fusiform – all −50 (29) 33 (26) n/a
– apoE4+ −64 (37) 38 (35) n/a

Mid. temp. gyrus – all −16 (33) 0 (27) n/a
– apoE4+ −22 (45) −5 (37) n/a
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trajectory was the ventricles of males. The corresponding parameters for equa-
tion (3) are shown in Table 3. In both tables, estimates (posterior means) ex-
ceeded in magnitude by their standard errors (posterior standard deviations) are
effectively zero. From this we can infer the biomarkers for which this combination
of data and model implies undetectable change. Acceleration in hippocampal at-
rophy was detected for the stables/progressors, but not for the apoE4+ subset.
Deceleration of atrophy was detectable in the entorhinal cortex of males, but not
in females. And for the other regions of interest (fusiform and middle temporal
gyrus), this combination of data and model implied undetectable change.

Focussing on ventricles, figure 2b overlays the OLS parameter estimates (ver-
tical lines) upon histograms of the MCMC samples from the BMM. The OLS re-
sults differ considerably from the BMM results in value and confidence (spread),
resulting in considerably different estimates of the dynamic duration for the
biomarker: τ = 19 ± 6 years (BMM) versus τ = 33 ± 26 years (OLS). We
hypothesize that the BMM has removed a bias present in the OLS regression
estimate due to ignoring the measurement noise present in x. The lower right of
figure 2b shows a histogram for the measurement noise scale σ from equation (2),
compared to the offline estimate from stable controls (red line), which appears
to be an overestimate.

We note that there were differences between males and females. The most
impressive were for the entorhinal cortex, where the linear differential equation
gradients had different signs. Further investigation would require more data and
perhaps modelling, so we relegate it to future work.

Our estimates of the Gaussian measurement noise “size” (standard deviation)
were all of the order of σ ∼ 10−3 ≈ 0.1% of intracranial volume. This represented
between one-third and one-half of the model residual size σy.
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Fig. 2. Regression results for ventricles. Histograms for the multilevel fit parameter
MCMC samples are shown with overlays (red lines) of the complete pooling regression
results for μk±3 standard error. The measurement noise histogram (lower right; green)
is compared with the variance in ADNI-1 stable control ventricles measurements, av-
eraged across individuals.
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Table 3. Sigmoid parameters and biomarker dynamic duration results for the ventricles
of males

Biomarker, x r, per year x− x+ xa xs τ , years

Ventricles (males) – BMM 0.14 (0.04) 0.8 (0.9) 8.9 (1.4) 2.5 7.2 19 (6)
Ventricles (males) – OLS 0.081 (0.065) 0.7 (2.6) 8.8 (4.0) 2.4 7.1 33 (26)
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Fig. 3. Prognostic utility of our approach: stochastic model. See text for details.

Cohort-level Biomarker Abnormality Timescale. For sigmoidal dy-
namics, our analytical thresholds for initial abnormality and effective saturation
(points of maximal acceleration and deceleration) are found by using equation
(3) and solving dx3/dt3 = 0. The time interval between these thresholds is

τ =
1

r
ln

(
2 +

√
3

2−√
3

)
. (4)

We found τ = 19 ± 6 years for ventricles in males (the only data to support
a sigmoidal trajectory). For exponential biomarker trajectories (not presented
here), clinically-relevant thresholds would be appropriate for estimating τ .

Individual-level Biomarker Abnormality Timescale. We calculated
the biomarker effective saturation time for the ventricle volume of a randomly-
selected individual (RID=1384; diagnosed MCI) at visits not included in the
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original fit (to avoid circularity): 24 and 36 months. This data point and the
resulting residual are shown with the pre-existing cohort fit in Figure 3a. The
model parameters sampled from the BMM posterior distributions shown in Fig-
ure 3b were used to synthesise the 1000 trajectories in Figure 3c. The corre-
sponding first-passage times are shown in Figure 3d. Due to the long tail of the
distribution, we used robust statistics (median ± median absolute deviation) to
calculate the biomarker effective saturation time as τFP = 12.2± 6.6 years from
a ventricular volume of xj = 4.1% to the saturation threshold of xs = 8.9%
(percentage of intracranial volume).

4 Discussion

Neurodegeneration causes the ventricles to expand and all other brain volumes
to decline. Measurement noise and intra-subject variability confound this, e.g.,
some progressing individuals display y > 0 even for brain volumes which should
be in decline. Indeed, the apparent bias in OLS results suggests that measure-
ment noise should be modelled in a differential equation approach. Quantitatively
we found that ventricles saturated after an expansion lasting approximately two
decades. This timescale is consistent with current knowledge of Alzheimer’s dis-
ease, and related work on biomarker trajectories [10, 17, 19].

We found low coefficients of determination R2 ≤ 0.33, as in related work [10],
implying that a small proportion of the variance in the data was explained by the
model. This is not particularly surprising for two reasons: 1) cross-sectional data
cannot be used to distinguish between inter-subject and intra-subject variance;
and 2) the simplicity of the model compared with the unknown complexity of
Alzheimer’s disease. For example, the observations in ADNI-1 of hippocampal
growth (or ventricular contraction) in diseased subjects could be a consequence
of intra-subject variation on the relatively short timescale used to calculate
biomarker change (∼ 1 year compared to the decades-long incubation period). A
first step to reduce the influence of such intra-subject variance (not considered
here) would be to use the entire set of followup data from ADNI. Given enough
data points per individual, inter-subject variance and heteroscedasticity could be
explicitly modelled and estimated. There is hope that dense longitudinal data,
as it becomes available, will allow fitting of more complex models that explain
the data better.

This study addressed an important problem: how to infer information about
disease biomarker trajectories from noisy cross-sectional data, which is readily-
available and relatively inexpensive. Cohort-level trajectories were estimated by
fitting an ordinary differential equation model, and integrating the fit. Individual-
level trajectories were modelled as Gaussian deviations from the cohort using a
stochastic differential equation model, allowing trajectory synthesis to inform
prognosis. We innovated over previous differential equation models in two ways.
First by using a Bayesian multilevel regression model to separately identify
measurement noise and population variance. Our second innovation was the
stochastic model. The Bayesian multilevel model avoids biassed parameter esti-
mates, which can arise due to regression dilution. Experiments were performed
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on Alzheimer’s disease imaging data from the ADNI. We presented full results
only for ventricle volume (a quadratic differential equation with sigmoidal time
course), but our framework is not limited to a particular dynamical model.

In conclusion, clinicians focussing on patient outcomes ultimately desire im-
proved diagnosis and prognosis — informed by biomarkers, including those de-
rived from medical image computing. Prognostic uncertainty can be as impor-
tant to the patient as the prognosis itself [18], so it is crucial to provide interval
estimates of relevant time scales where possible. Our stochastic model allows
interval estimation of the time remaining until a biomarker approaches maximal
abnormality. A panel of such estimates for multiple biomarkers could be used to
inform prognosis, e.g., estimation of time until onset of dementia. In the future
we envisage developing such a prognostic tool using our approach in concert
with disease progression models and/or longitudinal quantitative tools such as
recurring-event survival analysis.
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