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Abstract. Dynamic contrast-enhanced MRI (DCE-MRI) images are
increasingly used for assessing cancer treatment outcome. These time
sequences are typically affected by motion, which causes significant er-
rors in tracer kinetic model analysis. Current intra-sequence registration
methods for contrast enhanced data either assume restricted transforma-
tions (e.g. translation) or employ continuous optimization, which is prone
to local optima. In this work, we propose a new approach to DCE-MRI
intra-sequence registration and pharmacokinetic modelling, which is for-
mulated in an MRF optimization framework. The complete 4D graph
corresponding to a DCE-MRI sequence is reduced to a concatenation of
minimum spanning trees, which can be optimized more efficiently. To ad-
dress the changes due to contrast, a data cost function which incorporates
pharmacokinetic modelling information is formulated. The advantages of
this method are demonstrated on 8 DCE-MRI image sequences of pa-
tients with advanced rectal tumours, presenting mild to severe motion.

1 Introduction

DCE-MRI has become an important tool for assessing early phase clinical trials
of cancer therapy, as it can measure in vivo tumour vasculature changes that
occur due to treatment. The underlying tissue physiology is typically derived
from the DCE-MRI image signal by fitting a pharmacokinetic (PK) model to
the contrast enhancement-time curve on a voxel-by-voxel basis. Typically, tissue
perfusion, permeability and the volume occupied by tumour cells are obtained
in terms of PK model parameters. As a DCE-MRI acquisition takes several
minutes, with volumes being acquired every 5 — 10 seconds, the resulting time
sequence is inherently affected by patient and physiological motion. This motion
may introduce significant errors to the per-voxel PK model fitting, as anatom-
ical features of interest might move to different voxel locations in subsequent
volumes. To correct for this motion, image registration is needed. DCE-MRI
registration is a particularly challenging problem, as observed changes through-
out the time series can be either due to motion or due to contrast enhancement.
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Moreover, contrast arrival can give rise to image features that were not present
in the baseline image. In the literature, approaches for time series motion correc-
tion broadly fall into two categories: 1. strategies that try to alleviate the effects
of contrast enhancement i.e. by using a multi-modal similarity metric [1], or by
restricting the applied transformation [2]; 2. strategies that implicitly derive [3]
or explicitly assume [4,5,6] a model of contrast enhancement which is used in
the registration algorithm. Among the most prominent approaches, we note the
work of Buonaccorsi et al. [5], who are among the first to explore an explicit
kinetic model-based registration. In that work, PK parameter estimation and
registration to the model predicted sequence are performed iteratively. Their
work is mainly limited by allowing only 3D translation transforms. In a more re-
cent approach, Bhushan et al. [6] address this issue by proposing a simultaneous
non-rigid motion correction and PK parameter estimation method. However, as
their approach uses a Gauss-Newton optimization, this method is sensitive to
initialization and is likely to be trapped in local optima. A data-driven approach,
presented by Melbourne et al. [3], proposes modelling the time series data us-
ing principal component analysis. The underlying assumption is that the first
few principal components will contain information about contrast enhancement
trends and the remaining principal components contain noise related to motion.
This assumption is valid for small peristaltic motion, but does not hold in the
case of larger and periodic motion (e.g. breathing).

In this work, we propose a new framework for combined DCE-MRI intra-
sequence registration using discrete optimization and PK parameter estimation
(DireP). The problem is formulated using a Markov random field (MRF) which
involves the optimization on a 4D graph for each DCE-MRI sequence. This
method addresses the sensitivity to initialization of continuous approaches and
is less prone to local optima by offering increased flexibility over the space of
possible displacements L. To reduce the computational costs which are typically
associated with discrete optimization of a full 4D graph, the nodes are con-
nected as follows: The minimum spanning tree (MST) which best replicates the
underlying anatomy of the pre-contrast image is calculated [7]. This structure
is assumed to be identical in all the subsequent volumes, as they have the same
anatomy as the baseline. These structures are connected through time at every
node, to preserve the temporal continuity of each voxel (Fig. 1).

The paper is structured as follows. Section 2 describes the methodological
contributions of this paper: First, a DCE-MRI tailored similarity metric which
incorporates PK modelling information is formulated. Next, in order to reduce
computational costs, we construct a reduced 4D graph corresponding to the
DCE-MRI sequence, and optimize it using a message passing approach. To our
knowledge, this is the first work to perform combined DCE-MRI motion cor-
rection and PK analysis, where the registration is performed in a discrete opti-
mization framework. Section 3 describes the results of the proposed algorithm
(DireP), on both synthetic and real DCE-MRI images of rectal cancer. DireP
is compared to a recent DCE-MRI non-rigid registration algorithm (referred to
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Methodl) [6] which employs continuous optimization. We conclude this paper
with Section 4, and present future work plans in Section 5.

2 Methods

Discrete optimization is typically formulated as an MRF labelling problem [§].
For deformable image registration purposes, a graph is defined in which the nodes
p € 2 represent voxels or groups of voxels, and the edges connect voxels with
similar anatomical features and spatial proximity. For every node p, there is a
set of labels [, € £ which represent possible discrete displacements of the source
image volume with respect to the target image volume. Finding the optimum
displacement at each voxel equates to finding the labelling that minimizes the
MRF energy function:

E)=3 Colly)+v Y Crllyly) (1)

pes? (p,9)eN

The unary term represents the data cost Cp, which measures the similarity
of a voxel in the target image to the corresponding voxel in the source image
displaced with I,,. The pairwise term represents the regularization cost Cr(lp, ;)
and is used to smooth the displacements of directly connected voxels (p, q) € N.
Here, N represents the neighborhood of a voxel, as given by the MST. ~ weights
the amount of regularization.

Methods to solve the labelling problem can be roughly divided into two cat-
egories: graph-cuts and message passing approaches. Popular graph-cuts algo-
rithms include a-expansion [9]. Depending on the complexity of the graph to be
optimized, message passing can range from dynamic programming, over loopy
belief propagation (LBP) [10], to tree-reweighted message passing (TRW-S) [11].
For an overview of discrete methods for deformable registration, we refer the
reader to the work of Sotiras et al. [12].

In this work, each image volume of the DCE-MRI sequence is registered to
the pre-contrast volume by optimizing a reduced 4D graph corresponding to
the underlying anatomy. To address the intensity differences caused by contrast
inflow, a DCE-MRI tailored data cost function incorporating PK information is
proposed. The optimization is performed using belief propagation. An overview
of the entire algorithm for finding the optimal displacement and updating the
PK model can be found in Algorithm 1.

2.1 Data Cost Calculation Using Pharmacokinetic Model Prediction

As mentioned above, the DCE-MRI intensities of different volumes in the image
sequence are not comparable using standard similarity metrics such as the sum
of squared differences (SSD). To address this issue, we propose to compare the
similarity between the intensities at the volume to be registered I;,, and the PK
model predicted intensity at that volume PK (I;,, K" v, t;):

Cp(lp) = SSD(Iy,(p + 1p), PE (I, (p), K" (p), ve (p), t:)) (2)
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Here, t; is the current time point of the DCE-MRI sequence, tg is the first
time point, and K% and v, are parameters of the PK model. To predict the
appearance of the baseline I;, at t;, an initial estimate of the PK parameters
Ktrans g, is required. This initial estimate is obtained by least squares (Isq)
fitting of the model to the data.

PK parameter estimation was performed using the standard Tofts model [13]
with the Orton [14] bi-exponential arterial input function with population aver-
aged parameters. The Tofts model offers an estimate of tissue perfusion through
K'rans the transfer constant between blood plasma and the extravascular ex-
tracellular space (EES), which is defined as the product between ke, the rate
constant between the EES and plasma, and v,, the fractional volume of the EES.

2.2 Optimization on the Reduced 4D Graph

For the DCE-MRI motion correction problem, the graph to be optimized can
be reduced to temporal concatenation of identical spatial trees (Fig. 1). The
pre-contrast image anatomy is taken as a reference, against which all the sub-
sequent volumes are aligned. We assume that they obey the same anatomy and
differ only by contrast enhancement or motion. Under this assumption, we es-
timate the unique MST of the pre-contrast volume using Prim’s algorithm [7]
akin to the work of Heinrich et al. [15]. This structure is replicated for each
subsequent volume, and the temporally corresponding nodes are additionally
connected across time, as they represent the same anatomical landmark over
time. For each individual tree, the optimization is possible using belief propaga-

Time Time Time
point N

Temporal chain

Spatial MST

Fig.1. (a) An illustration of the graphical structure used in this algorithm. While
the spatial connectivity is captured by minimum spanning trees (MST), the temporal
continuity is captured by temporal chains. (b) An example of MST for a 2D slice
through the mesorectal area.

tion on the MST [16]. At each node p, a message vector m, containing the cost
of the best displacement I, can be found given the displacement of its parent g,
lq, and the messages from its children ¢, m.:

m;ree(lq) — HZIIH(CD(lp) + ’YspCR(lpv lq) + Z mc(lp)) (3)

p
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For leaf nodes, Eq. 3 can be evaluated directly, as there are no incoming messages
from children. The messages are then forward-passed from the leaves to the
root node, and then backward-passed, from the root towards the leaves. For
each individual temporal chain, the optimization can be performed using belief
propagation on the chain [17]. The message of the current node p, m,, can be
found given the displacement of the previous node ¢, {;, and the message coming
from the subsequent node r, m,.(l,):

m " (1y) = min(Cp (Ly) + YeempCr(lp: lg) +mi(1y)) @

To optimize the reduced 4D structure, for each node we perform independent
optimization on each temporal chain and on each spatial tree, and average the
resulting marginals. This procedure is repeated for a number of iterations akin
LBP [10], where the messages towards a node in the previous iteration are added
to the marginal of that node in the current iteration. The best displacement can
then be found by calculating argmin based on the marginal distribution. Al-
though this approach is not guaranteed to converge to a global optimum, it is
physically motivated, and provides a good trade-off between optimality and ef-
ficiency. The averaging of marginals from multiple graph models has previously
been used in stereo processing using an approach called semi-global match-
ing [18], yielding excellent results. The entire DireP algorithm is presented in
Algorithm 1. In each optimization step (Algorithm 1, 2.2, 2.3), the full distri-
bution of pseudo-marginals for the space of displacements is estimated.

Naively calculating the pair-wise regularization cost in Egs. 3, 4 would re-
quire |£|?> computations for every voxel. To reduce this cost, we employed the
min-convolution technique [10], which reduces the complexity to |£|. To further
reduce computational costs, a multi-resolution approach was employed. For each
resolution level, the image is divided into non-overlapping cubic groups of voxels
that are represented by a single node in the graph. The regularization term is
calculated only for each group of voxels. At finer levels, the previous solution is
upsampled and used as a prior for the optimization algorithm. The final (dense)
solution is also obtained by upsampling using a first order spline interpolation.

Additionally, if we treat the deformation field as a velocity field, it can be
transformed into a diffeomorphic mapping [15] by using the scaling and squar-
ing method [19]. Diffeomorphism is a desired property for the deformation field,
as it prevents transformations that are not physically feasible, i.e. folding. This
is particularly important for soft tissue images, as it agrees with the tissue in-
compressibility assumption.

3 Results

3.1 Algorithm Evaluation on Synthetic Data

The discrete registration and pharmacokinetic estimation (DireP) algorithm pro-
posed in this paper was first tested on synthetic data, where the ground truth
intra-sequence motion and PK parameters are known. To simulate a realistic
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Algorithm 1. DireP: Discrete motion correction and pharmacokinetic estimation

1. PK parameter estimation on uncorrected time series (1lsq fitting)
while Njterpx do
2. Groupwise registration of all volumes to the pre-contrast volume:
2.1 Initialize marginals and messages:
foreach node do marginal c[ node 1=Cp(l,); marginal t[ node 1=Cp(lp);
message[ node ]=0;
while nNiternmrr do
2.1 Re-initialize marginals with values from previous iteration
2.2 foreach timepoint pass messages on the corresponding spatial MST
Forward pass
for node=leaves to root-1 do
cost = marginal t[node];
message[ node ]J=min-sum(cost); (see Eq. 3)
marginal t[ parent ] = marginal t[ parent ]+messagel[ node ];
end for
Backward pass
for node=root-1 to leaves do
cost=marginal t[ parent ] - message[ node ]+ message[ parent ];
message[ node ]=min-sum(cost);
end for
foreach node marginal t[ node ]=marginal t[ node ]+message[ node ];
2.3 foreach node of the spatial MST, pass messages on the temporal chain
Forward pass
for t=tdim-1 to 1 do
cost = marginal c[ node; 1;
message[ node; ]=min-sum(cost); (see Eq. 4)
marginal c[ node¢—; ] = marginal c[ node;_; ]+message[ node; ];
end for
Backward pass
for t=1 to tdim-1 do
cost=marginal c[node;_; ] - messagel[ node; ]+ messagel node;—1 J;
message[ node ]=min-sum(cost);
end for
foreach node marginal c[ node ]=marginal c[ node ]+message[ node ];

2.4 Average the two marginals and use the result in the next iteration
end while
3. Re-estimate PK parameters on corrected time series (lsq fitting),
use in the next iteration
end while
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dataset, synthetic images were generated as follows: 8 real DCE-MRI sequences
were selected, and PK model fitting was performed on each of them. Using the
resulting parameter maps and the pre-contrast image volumes, 8 model pre-
dicted sequences of size 120 x 120 x 52 x 29 each were generated. These images
constituted the ground truth motion free dataset. To simulate motion, a ran-
dom displacement field of size 6 x 6 x 4 was generated for each image volume
independently. This displacement was upsampled to the image volume size, and
smoothed with a Gaussian kernel. We also applied Gaussian smoothing on the
temporal dimension, as the motion of each voxel is expected to have some de-
gree of temporal smoothness due to periodic motion patterns i.e. breathing.
The parameters for the synthetic motion were chosen to obtain a diffeomorphic
deformation field in the interval £7mm along each direction. The experiments
were run with nierpx = 2, Nitermrrr = 5 (see Algorithm 1), 7., = 0.01 and
Ytemp = 0.1, which were empirically chosen. For both the synthetic and the real
data, the label space was chosen as L = {0, ¢, +2q¢, .., :I:’Z‘q}g. 3 resolution levels
were used in the registration. Depending on the resolution level, u was 8,6,4,
with a quantization ¢ of 2, 1,0.5mm. We used groups of voxels of sizes 83, 63 and
43, with corresponding label spaces of size 92, 7% and 53.

Table 1. Registration results on synthetic data. The average target registration error
(TRE) and residual fitting errors in PK parameters are reported, together with the
corresponding standard deviations.

Measure Before Method1 DireP 3D DireP 4D
TRE (mm) 1.40+0.72 1.02+0.65 0.59 £0.38 0.62+0.39
Error in kep 0.39 £0.03 0.15+0.02 0.13 +0.01 0.13 £0.01
Error in ve 0.20 £0.01 0.18 +0.02 0.03 + 0.002 0.03 £+ 0.002

Quantitative results on the synthetic dataset are presented in Table 1. The
target registration error (TRE) is defined as the average difference between the
ground truth deformation field and the deformation field estimated by the al-
gorithms. DireP was compared to a recent non-rigid registration and PK esti-
mation approach using continuous optimization (Methodl) [6]. DireP 3D is the
algorithm version without temporal regularization and DireP 4D is the variant
including temporal regularization. The results show that while both DireP 3D
and DireP 4D outperform Methodl and recover a good part of the synthetic
motion, DireP 3D has a slightly better performance in terms of TRE. This is
due to trading a solution that is globally optimal for each volume (DireP 3D)
for a sub-optimal solution on the entire 4D graph (DireP 4D). After applying
each method, the PK parameters on the corrected datasets were generated by
least-squares fitting. The errors in k., and v, are defined as the average abso-
lute difference between the ground truth PK parameters and the parameters
obtained on the corrected datasets. These values were calculated on a circular
region delineated around the tumour in the pre-contrast image volume (which
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Algorithm performance (TRE) as a function of motion
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Fig. 2. The TREs (mm) for the three different algorithms are shown in function of the
motion level. The performance of Method1 is represented with red error bars, DireP
3D is represented in blue, and DireP 3D is represented in green. The coloured error
bars are slightly displaced for better visualization, but they correspond to the same
level of motion.

was taken from a real dataset as explained above). The PK parameter errors
decrease considerably after DireP 3D and DireP 4D registration.

The relationship between the algorithms’ performance and the level of motion
in the synthetic data was also investigated, and the results are shown in Fig. 2.
It can be seen that DireP 3D and DireP 4D outperform Method1 regardless of
the motion level, and the difference is more pronounced for bigger motion.

3.2 Pharmacokinetic Modelling and Motion Correction on
DCE-MRI Images of Rectal Cancer

The presented algorithm was also applied to a dataset of DCE-MRI images
from 8 patients with advanced rectal tumours. T1-weighted dynamic images of
the pelvis were acquired using the spoiled gradient echo LAVA protocol. Con-
trast agent (ProHance) was injected at a rate of 3ml/sec, 0.1 mmol/kg body
weight. An image volume was acquired every 9.5 seconds for approximately
5 minutes, yielding a sequence of 512 x 512 x 52 x 29 with a resolution of
0.7813 x 0.7813 x 2mm. The algorithms were applied to a 120 x 120 x 52 x 29
ROI which contained the tumour volume. The tumours were manually delin-
eated by our clinical collaborators. The experiments were run using n;terpx = 3,
Niter MRF = 9, Ysp = 0.01 and 7yemp = 0.1, which were empirically chosen. For
the registration, 4 resolution levels were used. Depending on the resolution level,
u was 8, 6,4, 4, with a quantization g of 2,1,0.5,0.5mm. We used groups of vox-
els of sizes 82, 62, 4% and 23, with corresponding label spaces of size 92, 73,
53 and 53. The results for the entire clinical dataset are shown in Fig. 3. The
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Intra—sequence motion before and after registration

[ Original |4
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Fig. 3. The DCE-MRI images were blindly graded before and after registration by a
clinical expert. A score of '1’ represents no motion, ’2’ is mild or minimal motion, ’3’ is
moderate motion, ’4’ is significant motion and ’5’ is severe motion. Both DireP 3D and
DireP 4D reduce the amount of motion in all the images of the rectal cancer dataset.

Fig. 4. K{rqns maps for one slice of the image volume. Images before (a) and after DireP
3D (b) motion correction are shown, together with the corresponding anatomical image
(c). The top row corresponds to a patient exhibiting severe motion, and the bottom
row corresponds to a patient exhibiting moderate motion.

motion level in each time series was blindly graded before and after registration
by a clinical expert. It can be seen that the observed motion level decreases in
all the patients after applying our discrete registration framework in 3D and 4D,
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respectively. We also note that the differences between DireP 3D and DireP 4D
were not detectable on a visual evaluation. Figure 4 presents the effect of motion
correction on Kyyqps. Images before and after DireP 3D are shown, for a patient
exhibiting severe motion, and for a patient exhibiting moderate motion. It can be
seen that in both cases the K},.qns maps become sharper after registration, with a
clearer separation between individual voxels, and motion artefacts at the tumour
boundary are reduced. This effect is particularly visible for the severe motion case,
where the non-registered sequence yields a heavily blurred K455 map.

On a 2.93GHz CPU, using C++ code, runtimes are: Method1 14.29min, Di-
reP 3D 3.15min, DireP 4D 7.02min. For both the 3D and the 4D algorithm, the
Jacobian determinant of the deformation field is positive. The Jacobian deter-
minants were calculated for the real dataset, as well as for the synthetic images.

4 Discussion and Conclusion

We have proposed a new algorithm for DCE-MRI time series motion correction
and PK estimation (DireP), which is formulated on an MRF and uses discrete
optimization. The PK estimation is performed iteratively with the deformable
registration. Two variants of the algorithm, one without temporal regularization
(DireP 3D) and one with temporal regularization (DireP 4D) were tested on a
synthetic dataset and a dataset comprising 8 DCE-MRI sequences of rectal can-
cer patients. Both DireP 3D and DireP 4D reduce the amount of motion in all
the images of the rectal cancer dataset, especially in challenging sequences ex-
hibiting severe motion. When tested on synthetic data, both the variants show an
improvement over a state-of-the art algorithm using continuous optimization [6].
Although DireP 3D slightly outperforms DireP 4D in terms of TRE (0.59mm vs.
0.62mm), the key advantage of DireP 4D lies in its ability to impose a degree of
temporal smoothness, which in itself is desirable to avoid unrealistic fitting of the
PK model. At the same time, motions such as peristalsis with a high frequency
cannot be captured by a transformation that enforces temporal smoothness. We
expect the positive effect of the 4D regularization to be much more visible for
applications where lower frequency motion, i.e. breathing, is predominant. Ex-
amples include liver DCE-MRI, or rectal data where peristalsis is controlled by
drug administration.

The pre-contrast image was chosen as a reference for registration as it more
closely represents the true appearance of the anatomy, where features are not
distorted by contrast arrival. This also avoids registration error propagation. For
the PK modelling part, the standard Tofts model is assumed, as it is widely used
in clinical practice. Our algorithm is expected to give comparable if not better
results using a more complex model.

5 Future Work

In this work, the 4D optimization problem was solved by alternating between
spatial MST and temporal chain minimization, and averaging the resulting
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marginals. This procedure was repeated a couple of times akin LBP [10]. Al-
though this approach has the advantage of reduced complexity, as it involves
optimizing loop-free graphs, convergence might be slow and is not guaranteed.
In future work, algorithms for joint minimization of the spatial and temporal
problem will be investigated. A possible approach is employing a 4D generaliza-
tion of the TRW-S algorithm [11].
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