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Abstract. We discuss a new planning method for corrective osteotomy
surgery without the need to make a CT scan of the contralateral bone.
We use a statistical shape model to estimate the most likely relative po-
sition of two bone segments of an osteotomized bone. To investigate the
added value of geometrical properties for planning, different geometri-
cal features of the bone surface are being incorporated. The feasibility
and accuracy of our proposed method are investigated using 10 virtually
deformed radii and a statistical shape model based on 35 healthy radii.

1 Introduction

Limb fractures are very common and sometimes result in malunion of the frac-
tured bone segments causing chronic pain, reduced function and finally os-
teoarthritis. For the distal radius, e.g., the annual incidence rate is approximately
0.3% of the population each year [1], while about 5% of these cases result in a
symptomatic malunion requiring secondary treatment by corrective osteotomy
surgery [2]. In this procedure the bone is cut in two segments which are reposi-
tioned and fixated, mostly using an anatomical plate and screws.

In state-of-the-art techniques for planning of such a surgical reconstruction
virtual 3-D bone models are created from CT volume data of the affected bone.
In this approach the CT data of the mirrored contralateral limb is used as
a reconstruction target in the planning procedure. [3–6]. A drawback of this
approach is that a healthy contralateral reference is not always available. Also,
this standard approach requires a CT scan of the healthy limb as well, which
increases the radiation dose by a factor of two.

To overcome these drawbacks a method is required that can provide the plan-
ning of the surgical reconstruction based on the affected bone only by using
shape information of the unaffected segments of the bone. For such a planning
method application of a statistical shape model (SSM) of the bone [7, 8] fitted to
the surface data of the unaffected bone parts seems a logical choice which allows
prediction of the optimal alignment of the bone segments after surgery. In this
context the SSM model describes the patterns that exist within the variation in
shape in a population [9].
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Recently SSM’s were reported to be advantageous in a large number of or-
thopedic applications such as robust and fast bone segmentation [10, 11], cre-
ation of bone geometries for finite element modeling [12, 13], implant design
optimization [14, 15] and several diagnostic applications [9, 16]. Related to our
problem SSM’s have been used to reconstruct bone surfaces from incomplete
bone geometry representations for surgical planning and navigation [17]. In this
paper we make an essential additional step by incorporating the alignment of
the bone segments in the fitting procedure of the SSM to the incomplete bone
surface data.

The general framework concerning the surface fitting problem use deviations
in surface geometry between a reference shape and a target shape to fit one single
shape to the other [18, 19]. The classic method for surface fitting is based on
the iterative closest point (ICP) algorithm. This method minimizes the distance
between points in one surface and the closest points in another surface [20, 21].
A surface matching algorithm was also developed for fitting a statistical shape
model (SSM) of a same type of surface to a target surface [22]. In these methods,
random point sets on a surface are being identified and these point clouds are
registered and matched to compute the corresponding points.

A common way to control surface fitting is to use distance information between
the reference and target during optimization, e.g., using Euclidean norms. This
choice however exploits only limited information about the surface geometry. It
is possible however, to add additional geometrical features such as different shape
related vector fields and curvature as ingredients in controlling the fit. To this
end, different approaches have been developed for matching source and target
surface invariants such as curvature maps [19, 23]. All these methods require
the iteratively updating of corresponding points during the fitting procedure
which is a time consuming step. Furthermore, it is known that including the
corresponding points results in a convergence to local minima due to the partial
alignment instead of the global minimum indicating the perfect alignment.

In this paper we propose a method for surface-fitting of a SSM to the geo-
metrical representation of an affected bone to plan realignment of two bone seg-
ments during corrective surgery. Moreover, we investigate the efficiency of using
different metrics for fitting the SSM to the segments of a target bone. To this end
we optimize the fitting of the model to the target bone using individual features
such as spatial distances, curvature and curvature vectors. Primarily, our goal
is to develop a method which does not require the availability of corresponding
points, nor the data set of the contralateral bone. However, this requirement
becomes essential in the presence of the curvature and curvature vectors. To
this end, we propose a cost function that can be customized for this purpose.
The residual positioning error for different optimization metrics is examined ex-
perimentally, using virtual malunions of radii outside those used for building
the SSM.
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Fig. 1. Sketch for illustrating the correction prototype, a) Initial bone segment posi-
tions, b) Initial bone position M c) Intermediate step where the model is deformed,
scaled and translated and bone segment A has been translated and rotated, d) the final
model where the most likely solution has been found

2 SSM Based Planning

The challenge is to find the correct relative position of the distal and proximal
bone segments from a single malunited bone. The surfaces A and B of both bone
segments are initially sub-optimally aligned due to the malunion; see Figure 1.a.
To find the correct alignment of these bone segments we propose to fit a sta-
tistical shape model M built from multiple segmentations of bones to patient
data containing the two segments A and B of the bone. For initialization we
use the statistical model M close to the two bone segments (Figure 1.b). Subse-
quently, an iterative optimization process is performed in which A is subject to
translations and rotations, B is considered fixed, and M is translated, rotated,
scaled and reshaped until A and B optimally fit with M. After convergence the
translation and rotation parameters of A with respect to B describe the repo-
sitioning parameters that needs to be applied to A during surgery (Figure 1.c).
The best-fitting shape M describes the most likely shape of the original bone
(Figure 1.d).

An extra-articular fracture resulting in a malunion often shows a deformed
region between a distal (A) and proximal (B) bone segment. In a malunion the
distal bone segment is malpositioned with respect to the proximal bone segment,
but apart from the location of malunion, the shapes of these bone segments are
unaffected. Since the deformed region is unlike normal bone geometry we exclude
it from the fitting procedure in our planning method.

2.1 Fitting of the SSM to Two Bone Segements

During the fitting process bone segment A and the model M are subject to
translation tA and tM and rotation rA and rM computed by three Rodrigues
rotation parameters. The model M is also allowed to scale indicated by the
parameter sM and to distort using the shape parameter b. The variables to be
optimized are R = [rA; tA; rM ; tM ; sM ; b] = [RA;RM ; b].
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The total likelihood to correct the two bone parts A and B orientation and
position with respect to each other using a model M consists of the shape simi-
larity, scaling and feature measures and reads

L(A,B,M,R) = Pf (B ∪ A(RA) | M(RM )) + Ps(sM ) + Pb(b). (1)

where P (b) is a probability density function representing the validity of a
shape with shape parameter b, P (sM ) is a probability function for scaling and
Pf (X | M) is a probability density function for measuring the similarity between
the statistical model M and bone surface X . For our particular application we
have X = B ∪ A(RA). The probability density function V includes the rep-
resentation of surfaces geometrical features, shape deformation and the closet
neighborhood distance measure.

The optimal composition of bone parts A and B can then be obtained by
maximizing L(A,B,M,R). However, due to very low likelihood values in Pf (B∪
A(RA) | M(RM )), this might lead to numerical problems. Therefore we mini-
mize the negative logarithm − logPf (B ∪ A(RA) | M(RM )) using a standard
gradient descent method. In the following, building of the SSM as well as each
of the probability density functions are described in detail.

2.2 Probability Distribution Functions for Shape Validity and
Scaling

In order to construct the SSMs in this paper the active shape modelling in-
troduced in [7] has been applied. We represent each bone by a 3n element
vector formed by concatenating the elements of the individual surface points
xi = [x1, y1, z1, · · · , xn, yn, zn], i = 1, 2, · · · , l where l is the number of indi-
vidual shapes. Formally, each shape can be described using the linear model

x = m+ Pb. (2)

Here, m consists of the coordinates of the mean shape, P is a matrix with
modes of variation and b is a vector with the weighting parameters for the
variations specified for each mode j. The non-rigid registration introduced in
[24] has been applied in order to estimate the corresponding points of all shapes
and consequently the mean m and the modes of variation P [7]. Using the
weighted summation of the different modes of variations, a new shape can be
computed.

The probability distribution function for scaling Ps(sM ) is modeled using a
1D normal distribution with mean 1 and standard deviation sM computed from
the volume estimation during the SSM construction.

2.3 Probability Distribution Model to Compare Shapes

We propose a probability distribution function inspired by the registration model
introduced in Granger et al. [25]. In this model the alignment of two point clouds
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is being treated as a probability density maximization problem, where one point
clouds is representing the centroid of a Gaussian Mixture Model (GMM) and the
other one represents the data points. Ideally, two point sets become aligned and
the correspondence is estimated using the Mahalanobis distance. Here, bone
segment A are described by points aj on the surface of A and points mk are
located on the surface of the deformed and transformed model M is described
by a GMM. We propose a probability distribution which combines the point-wise
distance (e.g. Euclidean) between the model and the patient data, the point-wise
angle between any vector data corresponding to the point cloud shapes, and the
differences in their curvature maps. Given the points aj ; j = 1; 2; · · · ;nA on A
with nA as the number of points in cloud A, then the likelihood that the point
mk in M is sampled as point on A is computed by

P (aj | mk) =
1

(2π)9/2 (| Σp || Υp || Γp |)3/2
(3)
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Where the covariance matrix Σp = σpI is a diagonal 3× 3 matrix with the stan-
dard deviation σp and the identity matrix I. Respectively, Υp = εpI and Γp = γpI
describe the different Covariance matrices for curvature and the vectors. In this
work all nM points of mk; k = 1; 2; · · · ;nM in M are considered equally uncer-
tain and therefore standard deviations are the same for all mk. The Euclidean

distance is djk(aj ,mk) = djk =
√∑3

i=1(a
i
j −mi

k) and the vector match mea-

sure is tjk(aj ,mk) = tjk = 1 − w(aj ,mk). Where, w(aj ,mk) = vj .vk/|vj|.|vk|,
0 ≤ w ≤ 1 and vj is the vector at point aj where |.| denotes the norm of the
vector. The smaller is the angle between vectors at two points, the larger is the
similarity between two point data. The vectors denote the principal curvature
vectors. Later on in Section 5 we will clarify the principal curvature vector def-
inition. Here, cjk = c(aj ,mk) represents the difference between the curvature
at aj and mk. Our probability function is customized in order to include the
corresponding points. This setting possible as long as the nature of distribution
of all the features can be well defined.

Given the statistical model (3), the likelihood P (X | M) that all points in X
are sampled from M is estimated by

Pf (X | M) =

nA∑
j=1

P (aj | M) =

nA∑
j=1

1

nM

nM∑
k=1

P (aj | mk). (4)

Where X is one or more bone segments.

3 Experiments

3.1 Data

The proposed method was evaluated using CT scans of healthy radii. To this end
45 radii (26 women, 19 men, age [11, 56] years) were imaged with voxel size
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Fig. 2. a) Gaussian curvature map, the color bar indicates the maximum principal
curvature, b) Normal vector illustration, c) maximum curvature vector

(0.45× 0.45× 0.45)mm using a Brilliance 64-channel CT scanner with a regular-
dose, high-resolution protocol. In order to scan the complete radii individuals were
scanned in prone position with the forearm extended above the head. Right radii
polygons were created by image segmentation [4]. We mirror the cases where only
the left radius was scanned. This resulted in 45 healthy right radii polygons. Ten of
these were randomly selected as target bones, the remaining 35 bones were used
as training shapes for building SSMs. Knowing the corresponding points of the
bones inside the training set, enabled estimating σ, ε and γ using the standard de-
viation of the differences between the corresponding points distance-, curvature-
and curvature vector-wise. Subsequent experiments were done using these values.
In case more than one of these surface features was evaluated at the same time,
linear combinations of the distance djk, curvature cjk and tangent vector mea-
sure tjk applied (3). We sampled 5000 points per surface. In the above-described
experiment, optimization of the fitting procedure is based on the average nearest
neighbor distance between points of the SSM and a target bone.

3.2 Evaluating the SSM

To investigate how many shapes are required to build a SSM that sufficiently
represent a set of target bones, we randomly selected 10, 15, 20, 25 and 35 train-
ing shapes of complete bones to build the SSMs. This SSM was subsequently
fit to the 10 target bones and the closet nearest neighbor distance was deter-
mined for each target bone, resulting in a mean and a standard deviation of
this parameter. Figure 3.a shows the mean error and standard deviation values
for these experiments. It is clearly shown that the mean and standard deviation
reduce with the number of training shapes in the SSM. Our computations indi-
cate the SSM containing 35 training shapes is considered sufficiently accurate to
describe a target bone shape and is therefore used as SSM in the remainder of
this document.
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Fig. 3. a) Agreement between SSM and target bones as a function of the number of
training shapes inside the SSM. b) Agreement between SSM, containing 35 training
shapes, and target bones as a function of the number of modes of variation taken into
account.

3.3 Evaluating Modes of Variation

The fitting procedure can be accelerated by only considering relevant modes
of variation and disregarding higher modes of variation that merely represent
noise. To evaluate how many modes of variation are required to fit the SSM
with sufficient accuracy to a set of target bones, we performed fitting of the
SSM to the 10 target bones taking into account an increasing number of modes
of variation Fig. (3b). The nearest neighbor distance is again used to quantify
the agreement between SSM and target bones. Based on this computations for
the rest of the experiments we chose the first 25 modes of variations.

3.4 Including the Geometrical Features

We performed fitting of the SSM to the 10 target bones using different combina-
tions of the geometrical features, 35 training shapes and 25 modes of variations.
We estimating corresponding points based on minimum Euclidean distance. Fig-
ure 4 shows the computational result. Note that this figure only illustrates the
result for the combination with more obvious variations with respect to the
rest. We observe that including the geometrical features result in a more con-
sistent fitting and smaller distribution of the standard deviation. This is due to
the improvement of the local alignment. Using this computation for the repo-
sitioning experiment we choose the combination of distance and the curvature
vector measure.

3.5 Accuracy of Bone Repositioning

To evaluate the accuracy of bone repositioning using the proposed method we
simulated three virtual malunions for each of the 10 target bones, i.e., 30 sim-
ulated malunions. This enables comparing the reconstructed radius with its
ground truth, i.e., the radius before the malunion. A malunion was simulated by
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Fig. 4. Variation of the fitting using combination of different features using 35 training
shapes and 25 modes of variations, D stands for distance, N is for normal vectors, C
is for curvature, CV stands for curvature vectors.

Fig. 5. Boxplot showing the accuracy of repositioning the distal radius segment with
respect to the proximal segment, based on fitting a SSM to remaining bone segments
in a simulation experiment (10 target bones, 3 deformities per bone). dx,dy and dz are
translations between the centers of gravity of the reconstruction result and the ground
truth. drx, dry and drz are the rotations about the x, y and z axes. a)reconstruction
using bilateral asymmetry [26] b) reconstruction using distance measure. c) reconstruc-
tion using distance and curvature vectors.

removing a bone piece between a distal and proximal bone segment and by ran-
domly translating (range [2, 5]mm) and rotating (range [10, 60]◦) the distal part.
The height of the randomly removed piece (the defect) is called the defect height
(range [3, 7] mm). The simulated bone was subsequently reconstructed using the
proposed method. Figure 5 shows the residual rotation rr and translation tr er-
ror with respect to the ground truth as box plots. The box represents standard
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deviation , the horizontal line the mean value and the whiskers represent the
range. Figure 5.a indicates differences due to bilateral asymmetry reported by
Vroemen et al. [26] as determined for 20 individuals by left-to-right matching
and right-to-left matching of distal and proximal segments, explaining the dif-
ferent sign in their results. These dots enable comparing repositioning results of
the proposed method with generally accepted variations since the contralateral
side is normally considered the best reference available. Figure 5a shows the
estimated error when only the probability distance measure is used as metric
during the fitting procedure.

We observe the improvement of the error distribution level in comparison with
the fit using bilateral differences. The translation errors dx, dy and dz are smaller
than acceptable levels considering the bilateral differences. For rotation, also we
see an improvement in comparison with the bilateral differences particularly
about the z-axis, i.e., the longitudinal axis of the bone. In general, we observe
a slight improvement by adding curvature geometrical features; see Figure 5b
and 5c. Figure 6b is a typical example after reconstruction with only distance as
optimization metric. Figure 6c−d shows the common reconstruction error which
occurs by only using the distance measure. The experiments were performed for
different defect heights and we noticed the larger error occurs with larger heights.

Fig. 6. a) Axes defined within the radius and heights of removals, b) correctly recon-
structed bone, c) common translation and rotation error occurs using only the distance
d) poorly reconstructed bone with 10 degrees rotation error about the z-axis and 4 mm
translation error along the x-axis.

4 Discussion

We introduced a new technique for repositioning bone segments after a fracture
or malunion using a SSM of the radius and a set of differential geometry features
for surface-to-surface fitting. The method yields a set of transformation and rota-
tion parameters, which can be used in a device for the actual bone repositioning;
see [27]. We showed that residual positioning errors are very close to what can
be achieved compared to standard 3-D planning, which is limited as a result of
bilateral differences [26]. The use of only a distance measure as metric for the
optimization of fitting seemed slightly inferior to using a metric that includes
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the shapes curvature and/or curvature vectors, particularly, when a larger piece
of the bone is removed.

Our study aimed at modeling the radius although it can be easily extended
for other bone types as well. The presented method requires an initial segmen-
tation step. In future studies this can be avoided by performing the fitting and
obtaining the geometrical features directly using CT grayscale volumes. It re-
duces a possible observer bias and increases the degree of automation since no
user interaction is required for segmentation.

A big advantage of the proposed method is the fact that a contralateral bone
is not required. This allows bone repositioning when a contralateral bone is not
available. In addition, it reduces the radiation-absorbed dose, since the con-
tralateral arm does not need to be scanned. In this pilot study residual errors
in repositioning parameters already appeared to be very close to what can be
achieved compared to conventional 3-D planning based on bilateral symmetry,
we expect that the method will show valuable in the next generation of planning
applications.

5 Appendix

Let xi = xi(u, v), i = 1, 2, 3 be a regular parameterizations of a surface. The
Gaussian curvature of a surface in R3 is given by

k = κ1κ2 =
LN −M2

EG− F 2
,

where κ1 and κ2 are the principal curvature, E = xu · xu, F = xu · xv and
G = xv ·xv are coefficients of the first fundamental form and L = xuu·n,N = xvv ·
n,M = xuv ·ni, are coefficients of the second fundamental form. These coefficients
are computed at given point xi in the parametric plane by the projections of the
second partial derivatives of x at that point onto the normal vector n. In this
setting, it is easy to see why the Gaussian curvature is independent of the choice
of the unit normal n. Notice that if the sign of n is reversed, the signs of the
coefficients of L,M,N are reversed too. Further, while the signs of both principal
curvatures κ1 and κ2, the product K = κ1κ2 remains unaffected. Clearly, the

sign of mean curvature H = (κ1+κ2)
2 , depends on the choice of sign of n. In order

to compute the curvature vectors, we compute the terms of the first and second
fundamental forms and define the corresponding metric tensors [28],

F1 =

[
E F
F G

]
, F2 =

[
L M
M N

]
, (5)

and we introduce
O = inv(F1)F2.

The previously introduced principal curvatures κ1, κ2 are the eigenvalues of the
matrix O. The eigenvectors of the matrix O are corresponding to the vectors
pointing to the direction of κ1, κ2 respectively (Figure 6a − c). Therefore, a
shape can be described by the type of curvature and the type of the orientation.
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