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Abstract. We introduce a graphical model for the joint segmentation
and tracking of E. coli cells from time lapse videos. In our setup cells
are grown in narrow columns (growth channels) in a so-called “Mother
Machine” [1]. In these growth channels, cells are vertically aligned, grow
and divide over time, and eventually leave the channel at the top. The
model is built on a large set of cell segmentation hypotheses for each
video frame that we extract from data using a novel parametric max-flow
variation. Possible tracking assignments between segments across time,
including cell identity mapping, cell division, and cell exit events are
enumerated. Each such assignment is represented as a binary decision
variable with unary costs based on image and object features of the
involved segments. We find a cost-minimal and consistent solution by
solving an integer linear program. We introduce a new and important
type of constraint that ensures that cells exit the Mother Machine in
the correct order. Our method finds a globally optimal tracking solution
with an accuracy of > 95% (1.22 times the inter-observer error) and is on
average 2− 11 times faster than the microscope produces the raw data.

1 Introduction

The Mother Machine [1] is a microfluidic device designed to study live bacteria.
It allows the observation of growth and division of the progeny of single “mother”
cells over many generations using time lapse microscopy. Figure 1 illustrates the
Mother Machine and the respective image data. In such data, individual bac-
teria need to be tracked over time. Tracking consist of two equally important
tasks: (i) cells need to be segmented in each frame, and (ii) all segments of the
same cell need to be linked between frames. Tracking large numbers of cells un-
der different environmental conditions will allow biologists to better understand
the stochastic dynamics of gene expression within living cells. Respective high
throughput studies of cells in the Mother Machine would be greatly facilitated
if the tracking task would be automated.

Many existing automated tracking systems perform the tasks of segmentation
and linkage one after another to reduce overall model complexity and runtime [2].
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Fig. 1. (a) Illustration of the “Mother Machine”, a microfluidic device built to under-
stand dynamic processes in E. coli. Individual ‘growth channels’ (narrow tubes, just
wide enough for hosting a row of bacteria) are imaged every minute. (b) Raw im-
ages. (c) One growth channel in the first 25 frames of a time-lapse movie. A tracking
is shown between frames, with mapping assignments in blue, division assignments in
yellow, and exit assignments in red.

Model complexity is typically reduced even further by performing linkage in a
locally optimal, greedy fashion [2], i.e. frame by frame, never considering the
whole time series at once.

However, globally optimal joint segmentation and linkage can be achieved
by so-called Assignment Models [3,4,5,6,7]. Assignment models pose the link-
age problem as a global energy minimization task, where the energy is that
of a graphical model (factor graph). Binary variables represent possible links
(called assignments), with respective unary potentials capturing their plausibil-
ity. Higher order factors encode continuity constraints, that describe which link
sequences form structurally sound tracks. Assignment models can elegantly han-
dle an excess of non overlapping segment hypotheses1. The only extra ingredient
are additional unary factors assigning costs to all segment hypotheses. Energy
minimization in such a model yields globally optimal, joint segmentation and
tracking. The respective optimization task can be solved with existing discrete
optimization methods [5,6,7].

A good assignmentmodel should allow asmany different segmentation hypothe-
ses as possible to avoid missing segments (i.e. good recall). To this end, Kausler et
al. [5] and Schiegg et al. [7] allow for an over-segmentation per time-frame. To be
yet more robust againstmissed segments (false-negatives), Schiegg et al. propose a

1 Superfluous segments do not have to be linked between frames but can be filtered
by the tracking engine.
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method capable of dealingwith occasional under-segmentations.Funke et al. [6] in-
troduced amodel capable of dealing with a large pool of partially conflicting (over-
lapping) segment hypotheses per frame. Their model filters a conflict-free subset
by introducing adequate higher order factors, called tree constraints. The work we
presented here follows this “hypotheses-rich” approach of Funke et al. [6].

But in order to be as specific as possible for a given task (i.e. good precision),
assignment models should be designed to restrict the space of possible solutions
as much as possible. So far, relatively generic prior knowledge on cell movement
and proliferation has been encoded into assignment models: Cells can be kept
from moving too far between time frames; They can be allowed to divide but
not merge; They can be kept from dividing into more than two, and kept from
appearing from nowhere. However, none of the previously published assignment
models captures a particular kind of prior knowledge that is important for cells
in the Mother Machine, namely the total order of cells within growth channels
which has to be maintained at any time.

The main technical contribution of this paper is a novel type of higher order
factors which are concerned with the order of cells within growth channels. We
call these factors exit constraints. We show that exit constraints considerably
improve tracking accuracy in the Mother Machine (see Section 4.2). Another
contribution is a new approach for generating nested segmentation hypotheses
which outperforms previous approaches. The idea is to combine the benefits of
parametric max flow [8] and random forest classifiers [9]. The random forest is
used to improve the separation of recently divided cells which are otherwise hard
to tell apart (see Section 3).

Our proposed assignment model can solve the problem of tracking cells in
the Mother Machine with an error rate of 4.8%, which is only 1.22 times the
inter-observer error (see Section 5). Hence our system renders high throughput
imaging and tracking of bacteria in the Mother Machine possible.

2 Microscopic Setup and Data Preprocessing

The Mother Machine consists of a main trench and dead end growth channels
that host the bacterial cells (see Figure 1). The width of the growth channels is
chosen such that each of them fits only a single bacterial cell, thereby forcing
the growing cells into a linear array. A constant flow in the main trench leads to
continuous diffusion of nutrients and removes cells that emerge from the growth
channels. Experiments are imaged by an inverted microscope equipped with an
incubator. Images are taken every minute using a 100x objective.

Raw data from the microscope undergoes a few simple preprocessing steps.
Two of those are of particular importance. First, movie frames are rotated into
an upright orientation, because growth channels are usually tilted by up to ±45◦,
see Figure 1(b). To determine the tilt angle, we smooth each image row, collect
local maxima, and fit straight lines through each growth channel.

In a second step we correct for uneven background, caused by uneven lighting
and different material thicknesses of the Mother Machine itself. For each growth
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Fig. 2. Parametric max-flow based generation of segmentation hypotheses with and
without using a random forest classifier (RF) to modulate unary and binary potentials.
(a) Image to be segmented. (b-e) Results obtained using parametric max-flow.
(f-h) Results when potentials are modified by a trained RF. (b,g) all graph-cut
segmentations given by parametric max-flow. The color of a pixel is determined by the
number of times this pixel is classified as foreground. (c,d,e) three graph cut solutions
(of 5176). (f) probability map given by RF, trained to over-emphasize gaps between
cells. (h) single graph-cut containing the correct segmentation and a false positive at
the very top.

line we evaluate the background intensity at each height by averaging the in-
tensities of automatically selected local image patches from within the “empty”
areas to either side. This intensity is subtracted from each growth-channel pixel
at the given height.

Images for each indivual growth-channel are then cropped from the prepro-
cessed image; an example is shown in Figure 2(a).

3 Segmentation Methods

Automated tracking approaches face the challenge that each segmentation error
directly translates to at least one tracking error. Assignment models tackle this
problem by not committing to a segment for as long as possible. Instead, an
excess of potentially conflicting (overlapping) segment hypotheses is created and
the model filters the best consistent subset [6]. Below we introduce 3 segmenta-
tion methods we use for this purpose.

3.1 Thresholding and Component Trees (CT)

The first segmentation methods we use is an intensity thresholding technique
similar to [10,11]. Any threshold yields a binary image from which connected
foreground components can be extracted. When the threshold level is gradually
raised foreground components grow until they eventually merge. This allows
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for grouping all components for all thresholds in a tree data structure, called a
component tree. Nodes in the component tree, i.e. individual segmented regions
rather than a global segmentation, correspond to segment hypotheses.

3.2 Parametric Max-Flow (PMF)

Parametric max-flow [8] is a graph-cut formulation with an additional, additive
parameter λ. This parameter linearly scales the unary costs, leading to different
segmentation results. The corresponding energy can be formalized as

Eλ(x) =
∑

u∈V

(au + λ)xu +
∑

(u,v)∈E

fuv(xu, xv), (1)

where x is a vector of binary variables xu ∈ {0, 1}, fuv’s are hand tuned and
submodular, λ ∈ I ⊆ R, and G = (V,E) is an undirected graph, in our case the
4-connected grid graph on the pixels of each frame. Values xu = 0 and xu = 1
represent pixel labels “foreground” (cell) and “background”, respectively. Unary
costs au for a pixel u depend on measured intensity distributions for foreground
and background pixels. Pairwise costs fuv(xu, xv) are inversely proportional to
the intensity gradient between pixels u and v. More details can e.g. be found
in [12]. The work by Kolmogorov et al. [8] offers an efficient way to compute
all solutions for Eλ(x) for all λ ∈ R, which is a finite and nested set, typically
counting between 10 and 10000 solutions.

Like components for increasing threshold values, also the components obtained
by increasing λ are monotonically growing. Hence, we can again store all segment
hypotheses in a tree. The benefit of PMF over thresholding alone is the additional
smoothing that comes with the graph-cut formulation.

3.3 Parametric Max-Flow and Random Forest (PMFRF)

Since missing segments immediately lead to bad tracking performance we com-
bine parametric max-flow and a trained random forest classifier (RFC). This
predictor for cell vs. background pixels P (xu) is trained using the Fiji plugin
“Trainable Weka-Segmentation” [13] and manually tuned to pick up even very
small clefts between, for example, freshly divided cells. This is done to avoid
undersegmentation in cases where the cleft between adjacent cells is not clearly
visible (false positives can always be filtered by the model later on, but false
negatives translate directly to tracking errors). For the data presented here we
trained the RFC on only 3 raw images that where taken from a different raw
dataset.

The probability map P for the ‘cell’-class is used to modify the costs au and
fuv(xu, xv) of Equation (1) as follows (see Figure 2 for an illustration ):

atrainedu = au · P (xu), and (2)

f trained
uv (xu, xv) = fuv(xu, xv) · (1− |P (xu)− P (xv)|) . (3)
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4 A Graphical Model for Segmentation and Tracking

We choose the language of factor graphs to describe a model for joint segmen-
tation and tracking in Mother Machine datasets. Here, segmentation consists of
selecting a consistent subset of the segment hypotheses H(t) for each time-point.
See Figure 3 for an illustration. We use a factor graph FG = (V ,F , E) with V
being a set of binary variables or variable nodes, F being a set of factors or factor
nodes, and E ⊂ V × F [14].

Variable Nodes. The variable nodes V = H ∪ A comprise segmentation vari-
ables H =

⋃T
t=1 H

(t) and assignment variables A =
⋃T−1

t=1 A(t).
Each binary segmentation variable h(t) ∈ H(t) indicates whether a particular

segment hypothesis at time-point t is choosen as part of the solution. Assignment
variables a(t) ∈ A(t) link segment hypotheses at time-point t to segment hypothe-
ses at time-point t+ 1. We distinguish three types of assignment variables.

Mapping assignments: A mapping assignment a
(t)
i�→j connects two segment hy-

potheses h
(t)
i and h

(t+1)
j . It indicates that these segments correspond to the same

segmented cell that is tracked between time-points t and t+ 1.

Division assignments: A division assignment a
(t)
i÷jk connects segment hypothesis

h
(t)
i to h

(t+1)
j and h

(t+1)
k . It indicates that these segments correspond to a cell

division event, where one segmented cell at time-point t divides into two daughter
cells at t+ 1.

Exit assignments: An exit assignment a
(t)
⊥i is only connected to one segment

hypothesis h
(t)
i . It indicates that this segment corresponds to a segmented cell

at time-point t that is spilled out on top of a growth line at time-point t+ 1.

Factor Nodes. Factor nodes connect to one or more variable nodes, assigning a
potential to each joint configuration of these variables. The factor nodes F com-
prise unary factors and higher order factors. Unary factors f(v) are connected
to each binary variable v ∈ V , capturing the plausibility that v is active given
the data. Formally we define

− ln f(v) =

{
0 if v = 0

cv if v = 1,
(4)

cv is the cost for including the respective segmentation or assignment variable in
the solution. These costs are derived from (image) features as described in the
next subsection. Structural constraints are expressed as n-ary factors for which
− ln f(var(E)) = 0 if E holds, and ∞ otherwise. where E are (in-)equalities on
the set of variables var(E) connected to the factor. The constraints formalized
by these (in-)equalities prohibit solutions involving conflicting segmentation hy-
potheses or assignments that are inconsistent with the selected segmentation.2

Constraints are described in Section 4.2.

2 Such inconsistent solutions correspond to events with infinite costs or 0 probability.
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Fig. 3. Overview of the proposed model. Possibly contradictory segmentation hypothe-
ses for two time frames are shown in gray. Between frames, binary assignments variables
of three types are enumerated: continuations (blue), divisions (orange), and exits (red).
Selecting an assignment variable jointly selects the involved segmentation hypotheses
and assigns them to each other.

4.1 Costs

All costs cv corresponding to activating a variables v are defined according to
the following considerations.

We define negative costs for segmentation variables in order to provide an in-
centive to activate segment hypotheses. Otherwise the trivial solution of ‘seeing’
only empty growth lines, corresponding to a total cost of 0, would be optimal.

We derive segmentation costs from the image intensities along the pixel row
at the center of the growth line with the following intuition in mind. A strong
gradient on the upper and lower border of a hypothesis increases the likelihood
of it being a correct segment and therefore lowers the cost. A strong gradient in
the interior of a hypothesis decreases the likelihood (increases the cost) because
it suggests that it might contain several cells. Finally, we scale the cost by the
size of the segment hypothesis. The rationale for this is that we want to favor
hypotheses that explain a larger part of the image in cases where equal support
is given by the previously mentioned gradient based measures.

The costs for assignment variables are derived from the positions and sizes of
segment hypotheses connected by this assignment. As time progresses from one
frame in a given time-lapse movie to the next, we expect an average change in
the size and position of a cell.

For mapping assignments we compare the segment sizes and centroids at time
points t and t + 1. The cost for a mapping assignment is given by a suitably
defined function that reflects how unlikely certain deviations from the expected
size change and the expected centroid shift really are. This is actually a very
natural way of utilizing the knowledge of biological experts.

Costs for division assignments are defined similarly. Here, a segment at time-
point t is linked to two (adjacent) segments at t+1. In addition we know that a
dividing cell usually distributes its volume equally to its daughters. We compute
size and centroid from the union of the two segment hypotheses at t + 1 and
compute the cost as described for mapping assignments, plus some additional
cost for unequally sized segments at t+ 1.
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Last but not least we have to define costs for exit assignments. With the
rationale in mind that an early exit assignment already leads to not segmenting
this cell in future time-points (thereby not ‘earning’ the corresponding negative
cost) we assign 0 cost to all exit assignments.

4.2 Constraints

Tree Constraints. It is important to note that sequential thresholding as well
as parametric max-flow respectively yield a monotonic sequence of solutions,
inducing a partial order on the segment hypotheses to form a tree (H(t),⊃).

We say that segment hypotheses h
(t)
i ⊃ h

(t)
j are conflicting because they offer

mutually exclusive interpretations of (parts of) the image data. Of all segment

hypotheses on a branch h
(t)
1 ⊃ · · · ⊃ h

(t)
n , only one can be simultaneously valid

because we seek an assignment of each image pixel to exactly one segment (or
background). Tree constraints enforce that conflicting segment variables cannot
be simultaneously active. This is formalized in the set of inequalities

∀t ∈ {1, . . . , T }, ∀π ∈ P(H(t)) :
∑

h(t)∈π

h(t) ≤ 1 (5)

where P(H(t)) is the set of all paths π from the root node in (H(t),⊃) to any of
its leaf nodes.

Continuity Constraints. Continuity constraints enforce consistency between
segmentation and assignment variables. If a segment hypothesis is selected, ex-
actly one of the assignments entering it from the previous time-point, and exactly
one of the assignments leaving it towards the next time-point must be selected
as well. If a segment hypothesis is not selected, neither must any of these assign-
ments be selected. This is formalized as the following sets of constraints. For the
entering assignments we have

∀t ∈ {2, . . . , T }, ∀h(t) ∈ H(t) :
∑

a(t−1)∈ΓL(h(t))

a(t−1) = h(t) (6)

where the left neighborhood ΓL (h) is the set of all assignments entering h from

the previous time-point. That is, ΓL

(
h
(t)
i

)
contains assignments a

(t−1)
j �→i , a

(t−1)
j÷ik ,

and a
(t−1)
j÷ki (for all j, k). Similarly, for the assignments leaving to the next time-

point we have

∀t ∈ {1, . . . , T − 1}, ∀h(t) ∈ H(t) :
∑

a(t)∈ΓR(h(t))

a(t) = h(t) (7)
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where the right neighborhood ΓR (h) is the set of all assignments leaving h. That

is, ΓR

(
h
(t)
i

)
contains assignments a

(t)
⊥i, a

(t)
i�→j , and a

(t)
i÷jk (for all j, k).

Exit Constraints. One of the main contributions of this article is the intro-
duction of this specific type of constraint. It is obvious that cells can only exit
the growth line at the very top. A cell in the middle of a growth line can im-
possibly be spilled out without all other cells above it being spilled out as well.
Let us denote by A↑(h(t)) ⊂ A(t) the set of mapping and division (but not exit)
assignments that are leaving hypotheses located strictly above h(t). If the exit
assignment is chosen for segment h, then none of the assignments in A↑(h) can
be active. (See Figure 3(c) for an illustration.) However, if the exit assignment
for h is not chosen, any number of these assignments might be active. We express
this as the set of inequalities

∀t ∈ {1, . . . , T − 1}, ∀h(t)
i ∈ H(t) : |H(t)| · a(t)⊥i +

∑

a∈A↑(h
(t)
i )

a ≤ |H(t)|. (8)

Note that, in combination with the continuity constraints (7), this forces all
active segments above an exiting hypothesis to exit as well, thereby maintaining
the linear order of cells in the mother machine also in our tracking results.

To quantify the importance of exit constraints we removed all exit contraints
from our model and tracked all available datasets. We then compared the results
to ground truth as explained in Section 5. Error rates increased to 225% (on
average to 123%), clearly hinting at the importance of these constraints.

4.3 Eliminating Segmentation Variables

Considering the costs and constraints defined above it can be seen that seg-
mentation variables are redundant in the formulation of the factor graph. The
continuity equality (7) provides a definition for each segmentation variable in
terms of a sum over a set of assignment variables. Plugging these definitions into
(5), and replacing (6) and (7) by

∀t ∈ {2, . . . , T − 1}, ∀h(t) ∈ H(t) :
∑

a(t−1)∈ΓL(h(t))

a(t−1) −
∑

a(t)∈ΓR(h(t))

a(t) = 0 (9)

we can eliminate segmentation variables from the constraints.3

Similarly, the costs ch can be dropped, and added to the cost of each exiting
assigment ca , where the constraints guarantee that at most one of these is active.4

3 One might fear that by replacing h by a sum over assignment variables might loose
the restriction that h is binary Note, however, that this is now effectively ensured
by the tree constraints (5) (with h(t) replaced).

4 The costs of segmentation hypotheses h(T ), which have no exiting assignments, are
added to each entering assignment instead.
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4.4 Finding The Globally Optimal Solution

A globally optimal segmentation and tracking is provided by a MAP (maximum
a posteriori probability) or, equivalently, minimum energy solution of the factor
graph. This amounts to finding a conflict-free variable assignment (not violating
any constraint) with minimal summed cost.

Similarly to [5,6,7] we formulate the problem as an integer linear program
(ILP) [15]: The cost of a conflict-free solution yields the linear objective we wish
to minimize5. The feasible space is restricted to conflict-free solutions by the
linear constraints discussed in Section 4.2 (and additional constraints 0 ≤ v ≤ 1
to ensure that all variables v ∈ Z are binary). This approach guarantees to find
a globally optimal solution, the worst-case complexity is though exponential. In
all our experiments we observe runtimes (for ILP solving alone) in the range is
a couple of seconds only. See also Figure 5.

We use the off-the-shelf ILP solver Gurobi™ to find the optimal solution.

5 Results

We tested our model on 2 movies containing a total of 21 datasets (growth
channels). In order to measure the error of our fully automated tracking pipeline
we have manually created ground truth (GT) for all given datasets.

We count (i) segmentation mismatch, and (ii) tracking errors. For both we
greedily match all segments in a given solution with the corresponding segments
in the GT. Segmentation mismatch is measured by adding offsets between up-
permost pixels and lowermost pixels in each matched segment pair.

The tracking error counts over- and undersegmentations, computed by com-
paring the number of active segments at any given time-point in solution and the
GT, and assignment-type mismatches. For those we count type-mismatches for
all right-assignments (assignments towards next time-point) associated to pairs
of matched segments. Note that this is a fairly pessimistic measure where errors
that would intuitively be counted as one mistake are counted multiple times6.

Figure 4 shows the results of the ground truth comparison. The first three
columns in each box-plot show how the fully automated solutions compare to
GT. Each column corresponds to one of the segmentation methods introduced
in Section 3. The last column shows an inter-observer reliability measure.

The inter-observer reliability tells us about how much homogeneity, or consen-
sus, there is to expect when different users create “ground truth” for the same
data. We gave the automatically generated PMFRF solution and a interactive
tool to 2 users, asking them to to fix all errors. We then compared their results to
GT in the same way we described above. See Figure 5 for a detailed comparison
of runtimes for the fully automated pipeline.

5 It is easily seen that the summed cost is a linear function by writing it as the inner
product of the vectors of all binary variables and costs, 〈(v1, . . . , vn), (cv1 , . . . , cvn )〉.

6 An early exit assignment is once counted as assignment-type mismatch and in all
future time-points still containing this cell as undersegmentations.
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Fig. 4. Error measures for all 21 datasets. (Abbr.: CT→’component tree’;
PMF→’parametrix max-flow’; PMFRF→PMF+trained random forest.) Left panel
shows how well the chosen segments match to ground truth. We compare the pixel
distance between the uppermost and lowermost segmented pixels between each seg-
ments and its corresponding ground truth segment. The right panel shows the fraction
of assignments that do not match to ground truth.
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Fig. 5. Runtime for segmentation, model instantiation, and model solving. Shown times
are in ’wall-time’ seconds per dataset. We used a quadcore MacBook Pro Retina (Fall
2012). An excessive filter bank is main reason for slow RFs.

6 Summary and Discussion

We showed how cell tracking in the Mother Machine can be addressed using an
adequately formulated assignment model. In order to achieve low error rates we
needed to extend existing models [5,6,7] by additional constraints concerned with
the linear order of cells in the Mother Machine and a specialized method to create
nested segment hypotheses using a parametric max-flow formulation and trained
random forests classifiers. Automated tracking and segmentation quality reaches
a level that lies within a factor of 1.1 compared to the inter-observer variability
we measured. Our system will be freely available open source software, enabling
groups around the world to analyze cell cultured in the Mother Machine.

With this paper we contribute to a recent trend of formulating tracking prob-
lems as global optimization problems in the spirit of graphical models. We predict
that the capabilities of assignment models is by far not reached yet.

Future extensions will focus on several important aspects such as (i) further
increasing the set of segment hypotheses, thereby generalizing the concept of
conflict trees to more general conflict graphs, (ii) development of more generic
and task specific higher order factors that will capture ever more expert domain
knowledge and therefore lead to better automated results, (iii) parametriza-
tion and parameter training of used cost functions, for example by means of
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structured learning, and (iv) alternative solving strategies, either by means of
divide-and-conquer like dual decomposition schemes or, means of approximate
inference methods, or suitable combinations.

The last mentioned point will become increasingly important with growing
problem instances and the need for interactive proofreading and data curation
interfaces.
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