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Abstract. The appearance of new Multiple Sclerosis (MS) lesions on
MRI is usually followed by subsequent partial resolution, where por-
tions of the newly formed lesion return to isointensity. This resolution is
thought to be due mostly to reabsorption of edema, but may also reflect
other reparatory processes such as remyelination. Automatic identifica-
tion of resolving portions of new lesions can provide a marker of repair,
allow for automated analysis of MS lesion dynamics, and, when coupled
with a method for detection of new MS lesions, provide a tool for pre-
cisely measuring lesion change in serial MRI. We present a method for
automatic detection of resolving MS lesion voxels in serial MRI using a
Bayesian framework that incorporates models for MRI intensities, MRI
intensity differences across scans, lesion size, relative position of voxels
within a lesion, and time since lesion onset. We couple our method with
an existing method for automatic detection of new MS lesions to provide
an automated framework for measuring lesion change across serial scans
of the same subject. We validate our framework by comparing to lesion
volume change measurements derived from expert semi-manual lesion
segmentations on clinical trial data consisting of 292 scans from 73 (54
treated, 19 untreated) subjects. Our automated framework shows a) a
large improvement in segmentation consistency over time and b) an in-
creased effect size as calculated from measured change in lesion volume
for treated and untreated subjects.

1 Introduction

The appearance of new Multiple Sclerosis (MS) lesions visible on T2-weighted
MRI is generally followed by a period of repair or lesion resolution, during which
portions of the new lesion will return towards isointensity on MRI [1]. This
resolution is thought to be due mostly to reabsorption of edema, but may also
reflect other reparatory processes such as remyelination [1]. The percentage of
new lesion that resolves has been posited as a marker for tissue repair and for
staging disease [1]. Meier et al. have previously modeled the dynamics of new
lesion formation on T2-weighted MRI and have observed a transient phase of 3-4
months, with larger lesions exhibiting a proportional greater amount of lesion
resolution, and concentric patterns of resolution where voxels near the lesion
boundaries are much more likely to resolve than those in the lesion center [1,2].
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(a) screening (b) w24 (c) w36 (d) w24 (e) w36

Fig. 1. Example of new and resolving MS lesion on T2-weighted MRI over 3 timepoints.
(a)-(c) show T2w images at screening, week 24 and week 36, while (d) and (e) overlay
new and resolving lesion voxels at w24 and w36, where green denotes new, red denotes
stable portions of new lesion and blue denotes resolving portions of new lesion, with
respect to the previous timepoint.

An example of lesion formation and resolution over 3 serial scans is shown in
Fig. 1.

Manual segmentation of MS lesion on MRI is time-consuming and subject to
inter and intra-rater variability. Although many methods for automatic segmen-
tation have been proposed [3], they remain imperfect, generally require substan-
tive manual correction in real-world clinical environments, and still have relatively
high degree of variability. Additionally, most methods do not take advantage of
temporal relationships when considering multiple timepoints of the same subject,
leading to reduced sensitivity to change and higher temporal segmentation vari-
ability, thus confounding inconsistent segmentation with real biological change.
Several approaches have been proposed for the automatic segmentation of new
MS lesions in sequential MRI [4], but little has been proposed for automatic de-
tection of lesion resolution. While lesion resolution is implicitly modeled in [5],
spatial and temporal characteristics of the resolution process are not modeled and
the validation focuses exclusively on the detection of new lesions.

In this paper, we present a novel method for automatic detection of resolving
lesion. A generative Bayesian model is used to detect resolving portions of le-
sions, where we consider MRI intensities, MRI intensity differences across time
(difference images) and where we embed previously observed characteristics of
lesions formation such as lesion size, time from lesion onset, and relative positions
of voxels within a lesion [1].

Meaningful validation of any lesion segmentation algorithms is difficult due to
the absence of a real ground truth.While manual references are often used for com-
parisons [3], these are generally imperfect, highly variable, and time-consuming
to generate. The variability of lesion segmentations over timepoints of the same
subject also makes them impractical as a basis for generating a reference for re-
solving lesion as most of the apparent resolution from one timepoint to the next
would be attributable to inconsistent lesion boundaries rather than to veritable bi-
ological change. In the absence of an explicit reference segmentation for resolving
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lesion voxels, we have chosen to combine our method with a method for new le-
sion detection [6] to provide a method for detection of lesion change in serial MRI.
We compare lesion change measurements generated from our method to those de-
rived from semi-manual reference segmentations lesions generated independently
at each timepoint. We validate our method by comparing a) segmentation consis-
tency across time and b) apparent treatment benefit as determined by effect size
calculated from lesion volume changemeasurements from treated (N=54) and un-
treated (N=19) subjects in our test data.

2 Method

2.1 Bayesian Formulation

We present a Bayesian framework for automatic detection of resolving portions
of lesions in serial MRI. We use a generative model where, at each voxel i in a
lesion, we consider MRI intensities, It

i , at the current timepoint and intensity
differences, Dt

i , between coregistered current and previous timepoints. We ad-
ditionally consider the distance from lesion boundary, di, to model a concentric
pattern of resolution, and lesion size at onset, s, to model the increased relative
rates of resolution of larger new lesions. Finally we consider the time from lesion
onset, a, to model the fact that most resolution occurs soon after lesion onset [7].
We define lesion onset as the time of first observation of a new lesion.

Resolution of Recently New Lesion

We first consider the case where we are provided with a set of new MS lesions
that appear after our first available timepoint for a given subject, such that
we can determine time of onset. In practice, these recently new lesions will be
generated by an automated method as in [6]. We consider each lesion in the set
of recently new lesions in turn, inferring the probability of resolution at each
voxel i of the lesion, at all timepoints following lesion onset. Lesion size and
boundaries are determined at lesion onset.

We allow two states for resolution status, resti: a) resolved, corresponding to
lesion that returned to “healthy” tissue from lesion at time t (resti = 1), and b)
stable, lesion which remains lesion at time t (resti = 0). The distance from lesion
boundary, di, is normalized based on lesion size and takes on a value between 0
(closest to lesion edge) and 1 (furthest from lesion edge) to provide invariance
to lesion size.

For each voxel i in a given lesion, we wish to determine the probability of res-
olution at time t, based on observed MRI intensities at time t, It

i , MRI intensity
differences between times t and t − 1, Dt

i , as well as time since lesion onset, a,
lesion size at onset, s, and distance from the lesion boundary, di:
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We have invoked Bayes’ law multiple times, have treated the denominator as
a normalization constant, and have made several statistical conditional indepen-
dence assumptions:

– MRI intensity at time t is conditionally independent of Dt
i ,a,s, and di, given

resolution status (p(It
i |resti,Dt

i , s, di, a)) = p(It
i |resti)).

– MRI intensity differenceDt
i is conditionally independent of a,s, and di, given

resolution status (p(Dt
i |resti, s, di, a)) = p(Dt

i |resti)).
– The lesion size is independent of normalized distance from lesion boundary

and time from onset, given resolution status (p(s|resti, di, a) = p(s|resti)).
– The normalized distance from lesion boundary is conditionally independent

of time from onset, given resolution status (p(di|resti, a) = p(di|resti)).

Our posterior probability of resolution at voxel i at time t is thus a product
of 5 terms, each of which models the likelihood of resolution status based on one
of intensity, intensity difference, distance from lesion boundary, lesion size, and
time since lesion onset.

Lesion Resolution with Limited Scan History

In some instances, we may have no or insufficient scan history to determine
which set of existing lesions are new and which are not (e.g. at first timepoint).
In such cases, we assume that we are given a segmentation of all lesions at the
first timepoint and we attempt to jointly infer which lesions are recently new
at the first timepoint and resolution status at subsequent timepoints. We use
RN t

i to denote whether voxel i at time t corresponds to lesion that is recently
new (< 6 months old) or not. Lesion newness, RN t

i , is inferred by considering
MRI intensities at the current timepoint and intensity differences between the
current and ensuing timepoint, based on the observations that transient new
lesions exhibit greater hyperintensity than stable older lesions and that this
hyperintensity will decrease over time.

We can express the probability of being a recently new lesion at time t − 1
based on MRI intensities at t and intensity difference between time t and time
t− 1 as:

p(RN t−1
i |It−1

i ,Dt
i) =

1

K
p(It−1

i |RN t−1
i )p(Dt

i |RN t−1
i )p(RN t−1

i ), (2)
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where we have made conditional independence assumptions equivalent to
those made for Eq. 1.

The boundaries of new lesions for which onset can be observed (i.e. at sec-
ond or later timepoints) can be reliably determined even if they are confluent
with existing lesion. However, for lesions where onset is not observed (i.e. lesions
present at baseline), we cannot always reliably determine boundaries of individ-
ual lesions based on connectedness, especially for subjects with relatively high
lesion load. As such, we choose not to consider lesion size and relative position
of voxels in a lesion when determining probability of resolution in cases with
insufficient scan history, as was done in Eq. 1. Incorporating our inference of
lesion newness, we then infer resolution status for cases with insufficient scan
history as:

p(resti, RN t−1
i |It

i ,D
t
i , I

t−1
i , a) = p(resti|RN t−1

i , It
i ,D

t
i , a)p(RN t−1

i |It−1
i ,Dt

i)

= p(resti|It
i ,D

t
i , a)p(RN t−1

i |It−1
i ,Dt

i), (3)

where the right side of Eq. 3 is our inference of newness at time t−1 as determined
by Eq. 2, and the left side is our inference on resolution determined as in Eq. 1
but without using size and distance from lesion boundary. Here we assume a
time since lesion onset equal to the difference between time t and time t− 1 and
also assume that only lesion voxels inferred as new at time t− 1 are candidates
for subsequent resolution.

3 Experiments

3.1 Data Sets

We use a proprietary clinical trial data set in our experiments, consisting of 639
scans from 73 subjects with relapsing-remitting MS, where each subject consid-
ered minimally had scans at screening (s), week 24 (w24), week 36 (w36), and
week 48 (w48). Most subjects had additional intermediate scans at some or all of
w04, w12, w16 and w20. T1-weighted with (T1c) and without (T1w) gadolinium
injection, T2-weighted (T2w), proton-density weighted (PDw), and T2w Fluid-
Attenuated Inversion Recovery (T2w-FLAIR) scans were available at each time-
point. All scans were acquired axially with an in-plane resolution of 1mm and
slice thickness of 3mm, underwent non-uniformity correction [8], brain mask-
ing [9] and were rigidly registered across MRI modalities and timepoints [10].
Additionally, all scans underwent a decile-based piecewise linear intensity nor-
malization to a global intensity space [11]. Semi-manual lesion segmentations
of all MS lesions were performed at some timepoints by trained experts prior
to and independently of this study, where an initial segmentation of MS lesion
was generated using [12] and then manually corrected following a strict proto-
col. Semi-manual segmentations were available for all 73 patients but only for
timepoints screening, w24, w36, and w48. As such only these 4 timepoints were
used for validation (292 scans total). Any additional intermediate timepoints
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were included in the unsupervised training process. Treatment codes were made
available for our data set, which identify subjects as either receiving treatment
(N=54), or placebo (N=19). The availability of treatment codes allowed for vali-
dation based on effect size calculations, where we measure the statistical power of
different measurements to differentiate treated and untreated (placebo) subjects.

Model Generation

Because we do not have ground truth for resolving lesion in our data set, we
use an unsupervised approach to model learning. We first make use of existing
software [6] to automatically identify new lesions in the entirety of our data set.
This set of MS lesions, Lnew , then become candidates for resolution at timepoints
following their appearance. We will consider model learning for inferring lesion
resolution and inferring lesion newness separately, as different procedures are
used for each.

Lesion Resolution Models
We use a hybrid unsupervised learning method where we first identify a set of
representative samples of stable and resolving lesion voxels in our data, which
we use to generate distributions for our intensity models, p(It

i |resti), and inten-
sity difference models, p(Dt

i |resti). We then use these intensity based models to
initialize our inference of resolution status at all voxels in Lnew at timepoints
following lesion onset, and use a generalized EM framework to learn parame-
ters of our models for lesion size, normalized distance from lesion boundary, and
lesion resolution conditioned on time since lesion onset.

Representative samples for stable and resolving lesions used for model initial-
ization are generated using an approach based on difference of new lesions over 3
consecutive timepoints, as illustrated in Fig. 2. While such an approach is useful

(a) t1 (b) t2 (c) t3 (d) new t2 (e) new t3 (f) stable /
res

Fig. 2. Generating resolving and stable lesion samples using difference of new lesions.
(a)-(c) show T2-weighted MRI of the same subject for 3 consecutive timepoints. (d)-(e)
show new lesion (green) at t2 and t3 respectively, both with reference to t1. (f) shows
resolving (blue) and stable (red) lesions samples at t3, where stable are those voxels
that are identified as new in both (d) and (e), and resolving are those identified in (d)
but not in (e).
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for generating a set of samples, it is not a practical approach to detection of le-
sion resolution in the general case when considering additional (>3) timepoints,
as it does not enforce temporal segmentation consistency and is not well suited
to considering resolution occuring over multiple sequential timepoints.

Intensity based models are represented by 5 dimensional (corresponding to 5
modalities), 6-component Gaussian Mixture Models (GMMs), where the number
of GMM components was chosen heuristically. Figure 3 shows learned probability
densities for intensity and instensity differences, for resolving and stable (non-
resolving) lesion voxels, marginalized over T2-weighted intensities.
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Fig. 3. (a) Intensity and (b) Intensity Difference densities for resolving and stable
lesion voxels, shown marginalized over t2w for visulation purposes. In practice, models
5-dimensional densities corresponding to the 5 modalities used (T1w, T1c, T2w, PDw
and T2w-FLAIR).

We use our intensity and intensity difference models to initialize resolution
status of all voxels in Lnew at timepoints following lesion onset. These initial esti-
mates of resolution status will then act as hidden parameters in our EM learning
framework. Model parameters for all our other models are then iteratively up-
dated using generalized EM. The model learning process can be summarized as
follows:

1. Generate a set of samples for resolving and stable lesion voxels using differ-
ence of new lesion.

2. Use samples generated in step 1 to generate models for intensity and intensity
difference, for stable and resolved lesion voxels.

3. Generate a set of new MS lesions over all timepoints as candidates for reso-
lution.

4. Initialize resolution status of new lesions generated in step 3 at all timepoints
following onset, using only intensity and intensity difference models.

5. Initialize lesion size, normalized distance from lesion boundary, and resolu-
tion given time from onset models based on resolution status generated in
step 4.
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6. Use EM to iteratively update models, using models generated in step 5 as
initializations. The E-step recalculates the probabilistic resolution status of
new lesions based on the latest models and the M-step determines maximum
likelihood models based on the updated resolution status.

We use a histogram based representation for our lesion size model, with 7
size ranges considered. We use exponential distributions to model both our nor-
malized distance from boundary model and our resolution prior conditioned on
lesion age.

Our EM framework jointly infers resolution status and model parameters. In
our experiments, we have considered samples from the entirety of our data set
(639 scans) for unsupervised model learning, but have only validated inference of
resolution status in the subset of our data for which semi-manual lesion segmen-
tations were available for comparison. Applying our learned models to a subset
of the data from which they were learned can be considered as an additional
E-step in our unsupervised learning framework.

Models for determining recently new lesion without scan history
We generate models for inferring lesion newness by generating intensity and

intensity difference distributions for new and old (not recently new) lesions.
We identify old lesions by considering voxels from a reference baseline lesion
mask that remain lesion at least 6 months after baseline, or voxels from Lnew

that have not resolved 6 months after lesion onset. To identify new lesions we
consider samples from Lnew only at lesion onset and the subsequent timepoint.
We again use 6 component GMMs to model our densities over the 5 modalities
under consideration. Intensity and intensity difference models for new and old
lesions are shown in Figure 4.
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Fig. 4. (a) intensity and (b) intensity difference densities for new and old lesions,
marginalized over t2w for visualization purposes. In practice, models 5-dimensional
densities corresponding to the 5 modalities used (T1w, T1c, T2w, PDw and T2w-
FLAIR).
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3.2 Validation

Evaluating lesion resolution accuracy directly is not feasible due to the tempo-
ral variability in the available semi-manual reference lesion segmentations: most
voxels identified as non-lesion at a given timepoint but as lesion in the previous
timepoint would not actually correspond to resolving lesion but rather be due to
temporal segmentation variability. As such, our validation focuses on measure-
ments of lesion volume change over time, where we have coupled our method for
detection of lesion resolution with an existing method for new lesion detection [6]
to create a pipeline for lesion change detection in serial MRI based on change
detection. We use the semi-manual reference segmentation as an initial lesion
mask at our first timepoint, and lesion segmentation at subsequent timepoints
is driven by detection of new, resolving and non-resolving (i.e. stable) lesion.
Both lesion present at baseline and subsequently detected new lesions become
candidates for resolution as determined by the proposed method. We compare
the longitudinal segmentation of lesions as generated by our proposed pipeline
based on change detection to the pre-existing semi-manual reference lesion seg-
mentations. We validate based on a) segmentation consistency over time, and b)
statistical power to differentiate treated from untreated subjects based on lesion
volume change measurements.

Lesion Segmentation Consistency

Segmentation consistency is important as increased temporal variability will lead
to less precise measurements of change over sequential scans. Segmenting lesions
independently at each timepoint will lead to inconsistencies in lesion boundaries
and in lesion detection, while modeling temporal dependencies via a change de-
tection paradigm will provide a more consistent segmentation over time. We
define new lesion volume between co-registered timepoints t1 and t2 as the vol-
ume of voxels that were not labelled as lesion at time t1 but were labelled as
lesion at time t2. Similarily, we define resolving lesion volume as the volume of
voxels that were labelled as lesion at time t1 but not at time t2. Table 1 shows
new and resolving lesion volumes at w24, w36 and w48 using our method and
using semi-manual lesion segmentations.

The proposed pipeline provides a much more temporally consistent segmen-
tation of MS lesions, with the mean number of new and resolving lesion voxels
detected over sequential timepoints both reduced by more than 90% as com-
pared to semi-manual segmentations. Fig. 5 shows an example of a temporally
consistent segmentation as generated by our method.

Effect Size Based on Measurements of Lesion Volume Change

Improved consistency of MS lesion segmentation is only useful if we can still de-
tect veritable change. We demonstrate our sensitivity to change in lesion volume
by calculating the effect size based on measurements of lesion volume change
from screening to w48, as determined by our method and as determined from
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Table 1. Lesion segmentation consistency as determined by mean volume of a) new
lesion voxels (NV), and b) resolving lesion voxels (RV). Values represent mean volume
in mm3 ± 1 standard deviation, evaluated over all 73 subjects. Values are shown for
change over subsequent timepoints (s-w24, w24-w36, w36-w48). SM = semi-manual
lesion segmentations, CD = Proposed method based on change detection.

s-w24 w24-w36 w36-w48
NV RV NV RV NV RV

CD 301±1036 243±892 102±505 68±293 55±208 55±288
SM 2364±2223 2427±2534 2158±2104 2171±2053 2159±2017 2203±2092

(a) SM screening (b) SM w24 (c) SM w36 (d) SM w48

(e) screening (f) w24 (g) w36 (h) w48

Fig. 5. Example lesion segmentations over 4 timepoints. (a)-(d) shows the semi-manual
(SM) reference and (e)-(h) shows our proposed pipeline based on change detection. The
SM segmentation is used as a baseline segmentation for both methods. Stable portions
of lesion are shown in red, new lesion voxels are shown in green and resolving in
blue, all with respect to the previous timepoint. The proposed method shows increased
segmentation consistency across time while remaining sensitive to real change.

the semi-manual lesion segmentations. For our method, volume change is de-
termined for each subject by taking the difference between cumulative new le-
sion volume and cumulative resolving lesion volume over the four timepoints.
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For reference semi-manual segmentations, volume change is determined by tak-
ing the volume derived from the reference segmentation at w48 and subtracting
from the volume derived from the reference segmentation at screening.

The effect size is estimated by Cohen’s d with a pooled standard deviation [13],
and represents a normalized measure of difference between the treated and un-
treated groups. While both methods show a positive treatment effect (i.e. treated
subjects are shown to have a smaller change in lesion volume than untreated),
the calculated effect size is larger (ES=0.77) when based on lesion volume change
measurements generated by our proposed method, as compared to semi-manual
segmentations (ES=0.44). This suggests that our method remains sensitive to
lesion change and provides greater statistical power to differentiate treated and
untreated subjects, as shown graphically in Fig. 6.
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Fig. 6. Mean and standard deviation of lesion volume change from screening to w48 for
treated (N=54) and untreated (N=19) subjects as measured from semi-manual lesion
segmentations (SM) and the proposed method based on change detection (CD), along
with corresponding effect size (ES) using Cohen’s d.

4 Discussion

We have presented a novel method for detection of resolving MS lesion vox-
els in sequential brain MRI. By coupling our method with an existing method
for detection of new MS lesions, we can provide a fully automated pipeline for
determination of MS lesion volume change over serial scans based on change
detection. Results demonstrate greater lesion segmentation consistency and im-
proved statistical power to discriminate treatment arms using real clinical trial
data, as compared to existing semi-manual segmentations. In addition, the abil-
ity to automatically detect resolving portions of MS lesions provides a potential
measure of tissue repair, and as an aid for the analysis of MS lesion dynamics.

References

1. Meier, D.S., Weiner, H.L., Guttmann, C.R.: Time-series modeling of multiple scle-
rosis disease activity: a promising window on disease progression and repair poten-
tial? Neurotherapeutics 4(3), 485–498 (2007)



Automatic Detection of Resolving MS Lesions 129

2. Meier, D.S., Guttmann, C.R.: MRI time series modeling of ms lesion development.
Neuroimage 32(2), 531–537 (2006)
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