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Preface

BAMBI 2014 was the First International Workshop on Bayesian and grAphical
Models for Biomedical Imaging. It was held at the MIT/Harvard Medical School,
Cambridge, MA, USA, on September 18, 2014. This goal of this event was to
highlight the potential of using Bayesian or random field graphical models for
advancing scientific research in biomedical image analysis.

The BAMBI 2014 proceedings published in the Lecture Notes in Computer
Science series contain state-of-the-art original and highly methodological re-
search selected through a rigorous peer-review process. Every full paper (10
to 12 pages long in the proceedings format) went through a double-blind review
process by at least three members of the international Program Committee com-
posed of 21 renowned scientists in the field of Bayesian image analysis. The result
of this selection process was a set of 11 articles, nine of which were selected for
oral presentation, and all of which were presented as posters, in a single-track
single-day event.

The scientific program was augmented by our three invited speakers, Koen
Van Leemput (Athinoula A. Martinos Center for Biomedical Imaging Mas-
sachusetts General Hospital, Harvard Medical School, USA and the Depart-
ment of Applied Mathematics and Computer Science, Technical University of
Denmark), Mike Miller (Center for Imaging Science, John Hopkins University,
USA), and Ramin Zabih (Cornell University, USA). All three presented exciting
advances during their keynote lectures, covering a large scope of methodologies
and applications in Bayesian and graphical models.

We warmly thank the members of our Program Committee and all the par-
ticipants of the event who made this workshop an exciting venue to share the
latest methodological advances in this expanding research area.

September 2014 M. Jorge Cardoso
Ivor Simpson

Tal Arbel
Doina Precup

Annemie Ribbens
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Paulo Mendonca GE Global Research, Niskayuna, USA
Mert Sabuncu Harvard Medical School/MIT, USA
Pankaj Daga University College London, UK
Stefano Pedemonte Harvard Medical School/MIT, USA
Suyash Awate Indian Institute of Technology, India
Yipeng Hu University College London, UK



Table of Contents

N3 Bias Field Correction Explained as a Bayesian Modeling Method . . . 1
Christian Thode Larsen, J. Eugenio Iglesias, and Koen Van Leemput

A Bayesian Approach to Distinguishing Interdigitated Muscles
in the Tongue from Limited Diffusion Weighted Imaging . . . . . . . . . . . . . . 13

Chuyang Ye, Aaron Carass, Emi Murano, Maureen Stone,
and Jerry L. Prince

Optimal Joint Segmentation and Tracking of Escherichia Coli
in the Mother Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Florian Jug, Tobias Pietzsch, Dagmar Kainmüller, Jan Funke,
Matthias Kaiser, Erik van Nimwegen, Carsten Rother, and
Gene Myers

Physiologically Informed Bayesian Analysis of ASL fMRI Data . . . . . . . . 37
Aina Frau-Pascual, Thomas Vincent, Jennifer Sloboda,
Philippe Ciuciu, and Florence Forbes

Bone Reposition Planning for Corrective Surgery Using Statistical
Shape Model: Assessment of Differential Geometrical Features . . . . . . . . . 49

Neda Sepasian, Martijn Van de Giessen, Iwan Dobbe,
and Geert Streekstra

An Inference Language for Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Stefano Pedemonte, Ciprian Catana, and Koen Van Leemput

An MRF-Based Discrete Optimization Framework for Combined
DCE-MRI Motion Correction and Pharmacokinetic Parameter
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Monica Enescu, Mattias P. Heinrich, Esme Hill, Ricky Sharma,
Michael A. Chappell, and Julia A. Schnabel

Learning Imaging Biomarker Trajectories from Noisy Alzheimer’s
Disease Data Using a Bayesian Multilevel Model . . . . . . . . . . . . . . . . . . . . . 85

Neil P. Oxtoby, Alexandra L. Young, Nick C. Fox,
The Alzheimers Disease Neuroimaging Initiative, Pankaj
Daga, David M. Cash, Sebastien Ourselin, Jonathan M. Schott,
and Daniel C. Alexander

Four Neuroimaging Questions that P-Values Cannot Answer (and
Bayesian Analysis Can) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Maxime Taquet, Jurriaan M. Peters, and Simon K. Warfield



X Table of Contents

Spherical Topic Models for Imaging Phenotype Discovery in Genetic
Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Kayhan N. Batmanghelich, Michael Cho, Raul San Jose,
and Polina Golland

A Generative Model for Automatic Detection of Resolving Multiple
Sclerosis Lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Colm Elliott, Douglas L. Arnold, D. Louis Collins, and Tal Arbel

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



N3 Bias Field Correction Explained

as a Bayesian Modeling Method

Christian Thode Larsen1, J. Eugenio Iglesias2,3, and Koen Van Leemput1,2,4

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark

2 Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, USA
3 Basque Center on Cognition, Brain and Language, Spain

4 Departments of Information and Computer Science and of Biomedical Engineering
and Computational Science, Aalto University, Finland

Abstract. Although N3 is perhaps the most widely used method for
MRI bias field correction, its underlying mechanism is in fact not well
understood. Specifically, the method relies on a relatively heuristic recipe
of alternating iterative steps that does not optimize any particular objec-
tive function. In this paper we explain the successful bias field correction
properties of N3 by showing that it implicitly uses the same generative
models and computational strategies as expectation maximization (EM)
based bias field correction methods. We demonstrate experimentally that
purely EM-based methods are capable of producing bias field correction
results comparable to those of N3 in less computation time.

1 Introduction

Due to its superior image contrast in soft tissue without involving ionizing radia-
tion, magnetic resonance imaging (MRI) is the de facto modality in brain studies,
and it is widely used to examine other anatomical regions as well. MRI suffers
from an imaging artifact commonly referred to as “intensity inhomogeneity” or
“bias field”, which appears as low-frequency multiplicative noise in the images.
This artifact is present at all magnetic field strengths, but is more prominent
at the higher fields that see increasing use (e.g., 3T or 7T data). Since intensity
inhomogeneity negatively impacts any computerized analysis of the MRI data,
its correction is often one of the first steps in MRI analysis pipelines.

A number of works have proposed bias field correction methods that are inte-
grated into tissue classification algorithms, typically within the domain of brain
MRI analysis [1–7]. These methods often rely on generative probabilistic mod-
els, and combine Gaussian mixtures to model the image intensities with a spa-
tially smooth, multiplicative model of the bias field artifact. Cast as a Bayesian
inference problem, fitting these models to the MRI data employs expectation-
maximization (EM) [8] optimizers to estimate some [7] or all [1, 3, 4, 6] of the
model parameters. Specifically tailored for brain MRI analysis applications, these
methods encode strong prior knowledge about the number and spatial distribu-
tion of tissue types present in the images. As such, they cannot be used out of
the box to bias field correct imaging data from arbitrary anatomical regions.

M.J. Cardoso et al. (Eds.): BAMBI 2014, LNCS 8677, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014



2 C.T. Larsen, J.E. Iglesias, and K. Van Leemput

In contrast, the popular N3 [9] bias field correction algorithm does not require
any prior information about the MRI input. This allows N3 to correct images
of various locations and contrasts, and even automatically handle images that
contain pathology. However, despite excellent performance and widespread use,
its underlying bias field correction mechanism is not well understood. Specifically,
the original paper [9] presents N3 as a relatively heuristic recipe for increasing
the “frequency content” of the histogram of an image, by performing specific
iterative steps without optimization of any particular objective function.

This paper aims to demonstrate how N3 is in fact intimately linked to EM-
based bias field correction methods. In particular, N3 uses the same generative
models and bias field estimation computations; however, instead of using dedi-
cated Gaussian mixture models that encode specific prior anatomical knowledge,
N3 uses generic models with a very large number of components (200) that are
fitted to the histogram by a regularized least-squares method.

The contribution of this paper is twofold. First, to the best of our knowledge,
this is the first study offering theoretical insight into why the seemingly heuristic
N3 iterations yield such successful bias field estimations. Second, we demonstrate
experimentally on datasets of 3T and 7T brain scans that standard EM-based
methods, using far less components, are able to produce comparable bias field
estimation performance at reduced computational cost.

2 Methods

In this section, we first describe the N3 bias field correction method and its
practical implementation. We then present EM-based bias field correction and
the generative model it is based upon. Finally, we build an analogy between the
two methods, thereby pointing out their close similarities.

2.1 The N3 Method in Its Practical Implementation

The following description is based on version 1.121 of the N3 method. In order
to facilitate relating the method to a generative model in subsequent sections,
we deviate from the notational conventions used in the original paper [9]. Fur-
thermore, whereas the original paper only provides a high-level description of
the algorithm (including integrals in the continuous domain, etc.), here we de-
scribe the actual implementation in which various discretization, interpolation,
and other processing steps are performed.

Let d = (d1, . . . , dN )T be the intensities of the N voxels of a MRI scan, and let
b = (b1, . . . , bN)T be the corresponding gains due to the bias field. As commonly
done in the bias field correction literature [1, 3, 4, 6], N3 assumes that d and b
have been log-transformed, such that the effect of b is additive. The central idea
behind N3 is that the histogram of d is a blurred version of the histogram of the
true, underlying image due to convolution with the histogram of b, under the

1 Source code freely available from http://packages.bic.mni.mcgill.ca/tgz/.

http://packages.bic.mni.mcgill.ca/tgz/


N3 Bias Field Correction Explained as a Bayesian Modeling Method 3

assumption that b has the shape of a zero-mean Gaussian with known variance.
The algorithm aims to reverse this by means of Wiener deconvolution and to
estimate a smooth bias field model accordingly. This reversal process is repeated
iteratively, because it was found to improve the bias field estimates [9].

Deconvolution Step: The first step of the algorithm is to deconvolve the his-
togram. Given the current bias field estimate denoted b̃, a normalized histogram
with K = 200 bins of bias field corrected data d − b̃ is computed2. The bin
centers are given by

μ̃1 = min(d − b̃), μ̃K = max(d − b̃), μ̃k = μ̃1 + (k − 1)h, (1)

where h = (μ̃K − μ̃1)/(K − 1) is the bin width, and the histogram entries
{vk, k = 1, . . . ,K} are filled using the following interpolation model:

vk =
1

N

N∑
i=1

ϕ

[
di − b̃i − μ̃k

h

]
, ϕ[s] =

{
1− |s| if |s| < 1

0, otherwise.

Defining v̂ as a padded, 512-dimensional vector such that v̂ = (0T
156,v

T ,0T
156)

T ,
where v = (v1, . . . , vK)T and 0156 is an all-zero 156-dimensional vector, the
histogram is deconvolved by

π̂ ← F−1DFv̂. (2)

Here F denotes the 512× 512 Discrete Fourier Transform matrix with elements

Fn,k = e−2πj(k−1)(n−1)/512, n, k = 1, . . . , 512

and D is a 512× 512 diagonal matrix with elements

Dk =
f∗
k

|fk|2 + γ
, k = 1, . . . , 512

where γ is a constant value set to γ = 0.1, and f = (f1, . . . , f512)
T = Fg. Here

g denotes a 512-dimensional vector that contains a wrapped Gaussian kernel
with variance

σ̃2 =
f2

8 log 2
, (3)

such that

g = (g1, . . . , g512)
T , gl =

{
hN ((l − 1)h|0, σ̃2) if l = 1, . . . , 256

g512−l+1, otherwise,
(4)

where f denotes a user-specified full-width-at-half-maximum parameter (0.15
by default), and N (·|μ, σ2) denotes a Gaussian distribution with mean μ and
variance σ2.

After π̂ has been computed by means of Eq. (2), any negative weights are set
to zero, and the padding is removed in order to obtain the central deconvolved
200-entry histogram π̃.

2 A flat bias field: b̃ = 0 is assumed in the first iteration.
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Bias Correction Step: When the histogram π̃ has been deconvolved, the cor-
responding “corrected” intensity d̃μl

in the deconvolved histogram is estimated
at each bin center μ̃l, l = 1, . . . ,K by

d̃μl
=
∑
k

wl
kμ̃k with wl

k =
N (

μ̃l|μ̃k, σ̃
2
k

)
π̃k∑

k′ N (μ̃l|μ̃k′ , σ̃2
k′) π̃k′

,

and a “corrected” intensity d̃i is found in every voxel by linear interpolation:

d̃i =

K∑
l=1

d̃μl
ϕ

[
di − b̃i − μ̃l

h

]
, ϕ[s] =

{
1− |s| if |s| < 1

0, otherwise.

Finally, a residual r = d − d̃ is computed and smoothed in order to obtain a
bias field estimate:

b̃ = Φc̃ (5)

where

c̃ ← (
ΦTΦ+NβΨ

)−1
ΦTr. (6)

Here Φ is a N ×M matrix of M spatially smooth basis functions, where element
Φi,m evaluates the m-th basis function in voxel i; Ψ is a positive semi-definite
matrix that penalizes curvature of the bias field; and β is a user-determined
regularization constant (the default is β = 10−7).

Post-Processing: N3 alternates between the deconvolution step and the bias
field correction step until the standard deviation of the difference in bias esti-
mates between two iterations drops below a certain threshold (default: ς = 10−3).
By default, N3 operates on a subsampled volume (factor 4). After convergence,
the bias field estimate is exponentiated back into the original intensity domain,
where it is subsequently fitted with Eq. (6), i.e., with r = exp(b̃). The resulting
coefficients are then used to compute a final bias field estimate by evaluation of
Eq. (5) with Φ at full image resolution. The uncorrected data is finally divided
by the bias field estimate in order to obtain the corrected volume.

2.2 EM-Based Bias Field Estimation

In the following we describe the generative model and parameter optimization
strategy underlying EM-based bias field correction methods3.

3 Several well-known variants only estimate a subset of the parameters considered here
– e.g., in [1] the mixture model parameters are assumed to be known, while [3] uses
fixed, spatially varying prior probabilities of tissue types.
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Generative Model: Maintaining the notation d to denote a log-transformed
image and b = Φc to denote a parametric bias field model with parameters c, the
“true”, underlying image d−b is assumed to be a set of N independent samples
from a Gaussian mixture model withK components – each with its own mean μk,
variance σ2

k, and relative frequency πk (where πk ≥ 0, ∀k and
∑

k πk = 1). Given
the model parameters θ = (μ1, . . . , μk, σ

2
1 , . . . , σ

2
K , π1, . . . , πK , c1, . . . , cM )T , the

probability of an image is therefore

p(d|θ) =
N∏
i=1

[
K∑

k=1

N (di −
M∑

m=1

cmΦi,m|μk, σ
2
k)πk

]
. (7)

The generative model is completed by a prior distribution on its parameters,
which is typically of the form

p(θ) ∝ exp[−λcTΨc],

where λ is a user-specified regularization hyperparameter and Ψ is a positive
semi-definite regularization matrix. This model encompasses approaches where
bias field smoothness is imposed either solely through the choice of basis func-
tions (i.e., λ = 0, as in [3]), or through regularization only (i.e., Φ = I, as in [1]).
The prior is uniform with respect to the mixture model parameters.

Parameter Optimization: According to Bayes’s rule, the maximum a poste-
riori (MAP) parameters are given by

θ̂ = argmax
θ

log p(θ|d) = argmax
θ

[log p(d|θ) + log p(θ)] . (8)

By exploiting the specific structure of p(d|θ) given by Eq. (7), this optimization
can be performed conveniently using a generalized EM (GEM) algorithm [3, 8].
In particular, GEM iteratively builds a lower bound ϕ(θ|θ̃) of the objective
function that touches it at the current estimate θ̃ of the model parameters (E
step), and subsequently improves ϕ(θ|θ̃) with respect to the parameters (M
step) [8, 10]. This procedure automatically guarantees to increase the value of
the objective function at each iteration. Constructing the lower bound involves
computing soft assignments of each voxel i to each class k:

wi
k =

N (
di −

∑
m c̃mΦi,m|μ̃k, σ̃

2
k

)
π̃k∑

k′ N (di −
∑

m c̃mΦi,m|μ̃k′ , σ̃2
k′ ) π̃k′

, (9)

which yields the following lower bound:

ϕ(θ|θ̃) =
∑
i

[∑
k

wi
k log

(N (di −
∑

m cmΦi,m|μk, σ
2
k)πk

wi
k

)]
− λcTΨc. (10)

Optimizing Eq. (10) simultaneously for the Gaussian mixture model parameters
and bias field parameters is difficult. However, optimization with respect to the
mixture model parameters for a given set of bias field parameters is closed form:
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μ̃k ←
∑

iw
i
k(di −

∑
m c̃mΦi,m)∑

iw
i
k

, σ̃2
k ←

∑
iw

i
k (di −

∑
m c̃mΦi,m − μ̃k)

2∑
i w

i
k

(11)

π̃k ←
∑

iw
i
k

N
. (12)

Similarly, for a given set of mixture model parameters the optimal bias field
parameters are given by

c̃ ← (
ΦTSΦ+ 2λΨ

)−1
ΦTSr, (13)

with

sik =
wi

k

σ̃2
k

, si =
∑
k

sik, S = diag(si), d̃i =

∑
k s

i
kμ̃k∑

k s
i
k

, r = d− d̃.

Valid GEM algorithms solving Eq. (8) are now obtained by alternately updating
the voxels’ class assignments (Eq. (9)), the mixture model parameters (Eqns. (11)
and (12)), and the bias field parameters (Eq. (13)), in any order or arrangement.

2.3 N3 as an Approximate MAP Parameter Estimator

Having laid out the details of both N3 and EM-based bias field correction, we
are in a position to illustrate parallels between these two methods. In particu-
lar, as we describe below, N3 implicitly uses the same generative model as EM
methods and shares the exact same bias field parameter update (up to numer-
ical discretization aspects). The only difference is that, whereas EM methods
fit their Gaussian mixture models by maximum likelihood estimation, N3 does
so by regularized least-squares fitting of the mixture model to the histogram
entries. Thus, whereas N3 was conceived as iteratively deconvolving Gaussian
bias field histograms from the data without optimizing any particular objective
function, its successful performance can be readily understood from a standard
Bayesian modeling perspective.

Considering the generative model described in Section 2.2, we postulate that
N3 uses K = 200 Gaussian distributions that are equidistantly spaced be-
tween the minimum and maximum intensity, i.e., the parameters {μk} are fixed
(Eq. (1)). Furthermore, all Gaussians are forced to have an identical variance
that is also fixed: σ2

k = σ̃2, ∀k, where σ̃2 is given by Eq. (3). Thus, the only free
parameters in N3 are the relative class frequencies πk, k = 1, . . . ,K and the bias
field parameters c. We start by analyzing the update equations for c.

For the specific scenario where σ2
k = σ̃2, ∀k, the EM bias field update equation

(Eq. (13)) simplifies to

c̃ ← (
ΦTΦ+ 2σ̃2λΨ

)−1
ΦTr, with d̃i =

∑
k

wi
kμ̃k, r = d− d̃,
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where wi
k is given by Eq. (9). When the hyperparameter λ is set to the value

λ = Nβ/2/σ̃2 this corresponds directly to the N3 bias field update equation
Eq. (6), where the only difference is that N3 explicitly computes d̃μl

for just 200

discrete intensity values and interpolates to obtain d̃i, instead of computing d̃i
directly for each individual voxel.

For the remaining parameters π = (π1, . . . , πK)T , N3 implicitly uses a regu-
larized least-squares fit of the resulting mixture model to the zero-padded nor-
malized histogram v̂:

π̂ ← argmax
x

‖v̂ −Ax‖2 + γ‖x‖2, (14)

where A is a 512×512 matrix in which each column contains the same Gaussian-
shaped basis function, shifted by an offset identical to the column index:

A =

⎛
⎜⎜⎜⎝

g1 g512 . . . g2
g2 g1 . . . g3
...

...
. . .

...
g512 g511 . . . g1

⎞
⎟⎟⎟⎠ ,

i.e., the first column contains the vector g defined in Eq. (4), and the remaining
columns contain cyclic permutations of g. To see why Eq. (14) is equivalent to
Eq. (2), consider that because A is a circulant matrix, it can be decomposed as

A = F−1ΛF with Λ = diag(f),

where F and f were defined in Section 2.1. The solution of Eq. (14) is given by

π̂ ← (
ATA+ γI

)−1
AT v̂ =

(
F−1ΛHFF−1ΛF + γI

)−1
F−1ΛHF v̂

=
(
F−1ΛHΛF + γF−1F

)−1
F−1ΛHF v̂ = F−1

(
ΛHΛ+ γI

)−1
ΛH︸ ︷︷ ︸

D

F v̂,

where AH denotes the Hermitian transpose of A and where we have used the
properties that AT = AH and FH = 512 · F−1.

An example of N3’s mixture model fitted this way will be shown in Figure 1.
The periodic end conditions in A have no practical impact on the histogram fit,
as the support of the Gaussian-shaped basis functions is limited, and only the
parameters of the 200 central basis functions are retained after fitting. Although
this is clearly an ad hoc approach, the results are certainly not unreasonable, and
N3 thereby maintains a close similarity to purely EM-based bias field correction
methods.

3 Experiments

Implementation: In order to experimentally verify our theoretical analysis
and quantify the effect of replacing the N3 algorithm of Section 2.1 with the EM
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algorithm described in Section 2.2 and vice versa, we implemented both methods
in Matlab. For our implementation of N3, we took care to mimic the original
N3 implementation (a Perl script binding together a number of C++ binaries)
as faithfully as possible. Specifically, we used identically placed cubic B-spline
basis functions Φ, identical regularizerΨ , and the same sub-sampling scheme and
parameter settings as in the original method. Our EM implementation shares
the same characteristics and preprocessing steps where possible, so that any
experimental difference in performance between the two methods is explained
by algorithmic rather than technological aspects.

During the course of our experiments, we observed that N3’s final basis
function fitting operation in the original intensity domain (described in Sec-
tion 2.1, “Post-processing”) actually hurts the performance of the bias field cor-
rection. Also, we noticed that N3’s default threshold value to detect convergence
(ς = 10−3) tends to stop the iterations prematurely. To ensure a fair comparison
with the EM method, we henceforth report the performance of N3 (Matlab) with
the final fitting operation switched off, and with a more conservative threshold
value that guarantees full convergence of the method (ς = 10−5).

For our EM implementation, we report results for mixture models of K = 3,
K = 6, and K = 9 components. We initialize the algorithm with the bias
field coefficients set to zero: c = 0 (no bias field); with equal relative class
frequencies: πk = 1/K, ∀k; equidistantly placed means given by Eq. (1) and
equal variances given by σ2

k = ((max(d)−min(d))/K)2, ∀k. For a given bias field
estimate, the algorithm alternates between re-computing wi

k, ∀i, k (Eq. (9)) and
updating the mixture model parameters (Eqns. (11) and (12)), until convergence
in the objective function is detected (relative change between iterations < 10−6).
Subsequently, the bias field is updated (Eq. 13) and the whole process is repeated
until global convergence is detected (relative change in the objective function
< 10−5).

MRI Data and Brain Masking: We tested both bias field correction methods
on two separate datasets of T1-weighted brain MR scans. The first dataset was
acquired on several 3T Siemens Tim Trio scanners using a multi-echo MPRAGE
sequence with a voxel size of 1.2 × 1.2 × 1.2 mm3. It consists of 38 subjects
scanned twice with varying intervals for a total of 76 volumes. The second dataset
consists of 17 volumes acquired on a 7T Siemens whole-body MRI scanner using
a multi-echo MPRAGE sequence with a voxel size of 0.75 × 0.75 × 0.75 mm3.
Since N3 bias field correction of brain images is known to work well only on
scans in which all non-brain tissue has been removed [11], both datasets were
skull-stripped using FreeSurfer4.

Evaluation Metrics: Since the true bias field effect in our MR images is un-
known, we compare the two methods using a segmentation-based approach. In
particular, we use the coefficient of joint variation [12] in the white and gray mat-
ter as an evaluation metric, measured in the original (rather than logarithmic)

4 https://surfer.nmr.mgh.harvard.edu/

https://surfer.nmr.mgh.harvard.edu/
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domain of image intensities, after bias field correction. This metric is defined as
CJV = σ1+σ2

|μ1−μ2| , where (μ1, σ1) and (μ2, σ2) denote the mean and standard devi-

ation of intensities within the white and the gray matter, respectively. Compared
to the coefficient of variation defined as CV = σ1/μ1, which is also commonly
used in the literature [11, 13] and which measures only the intensity variation
within the white matter, the CJV additionally takes into account the remaining
separation between white and gray matter intensities.

In order to compute the CJV, we used FreeSurfer to obtain automatic white
and gray matter segmentations, which we then eroded once in order to limit
the influence of boundary voxels, which are typically affected by partial volume
effects. We observed that the segmentation performance of FreeSurfer was sub-
optimal in the 7T data because this software has problems with field strengths
above 3T. This problem was ameliorated by bias field correcting the 7T scans
with SPM85 prior to feeding them to FreeSurfer.

In addition to reporting CJV results for the two methods, we also report
their run time on a 64bit CentOS 6.5 Linux PC with 24 gigabytes of RAM,
an Intel(R) Xeon(R) E5430 2.66GHz CPU, and with Matlab version R2013b
installed. For the sake of completeness, we also include the CJV and run time
results for the original N3 software (default parameters, with the exception of
the spacing between the B-spline control points – see below).

Stiffness of the Bias Field Model: The stiffness of the B-spline bias field
model is determined both by the spacing between the B-spline control points
(affecting the number of basis functions in Φ) and the regularization parameter
of Ψ that penalizes curvature (β in N3, and λ in the EM method).

As recommended in [13], we used a spacing of 50 mm instead of the N3 de-
fault6, as it is known to be too large for images obtained at higher-field strengths.
Finding a common, matching value for the regularization parameter in both
methods proved difficult, since we observed that the methods perform best in
different ranges. Therefore, for the current study we computed average CJV
scores for both methods over a wide range of values. We report results for the
setting that worked best for each method and for each dataset separately7.

4 Results

Figure 1 shows the histogram fit and the bias field estimate of both our N3
implementation and the EM method with K = 6 Gaussian components on a
representative scan from the 7T dataset. In general, the histogram fit works well
for both methods; however for N3 a model mismatch can be seen around the
high-intensity tail. This is the result of zeroing negative weights after Wiener
filtering.

5 http://www.fil.ion.ucl.ac.uk/spm/
6 200 mm, appropriate for the 1.5T data the method was originally developed for.
7 A more elaborate validation study would determine the optimal values on a separate
training dataset; however, this is outside the scope of the current workshop paper.

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. Correction
of a 7T volume
(above) with N3
(top right) and
EM with K = 6
components (bot-
tom right). For
each method, the
estimated bias field,
the corrected data,
and the histogram
fit (green curves
represent individual
mixture compo-
nents, red curve
represent the full
mixture model) is
shown.
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Table 1. Average computation time for correcting a volume within each dataset

Dataset Average computation time (seconds)

EM (3G) EM (6G) EM (9G) N3 (Matlab) N3

3T 12.7 20.7 29.7 86.0 53.5
7T 50.6 79.2 102.0 415.5 170.8

Figure 2 shows the CJV in the two test datasets, before bias field correction as
well as after, using the EM method (for K = 3, K = 6, and K = 9 components),
our Matlab N3 implementation, and the original N3 software. Overall, the EM
and N3 (Matlab) methods perform comparably, except for EM with K = 3 com-
ponents which seems to have too few degrees of freedom in the 7T dataset. The
original N3 implementation is provided as a reference only; its underperformance
compared to our own implementation is to be expected since its settings were
not tuned the same way.

Table 1 shows the average computation time of each method. Due to the much
higher resolution of the 7T data, computation time increased for all methods
when correcting this dataset. In all cases, the EM correction ran three to six
times faster than the N3 Matlab implementation, depending on the number of
components in the mixture. As before, results for the original N3 method are
provided for reference only.
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Fig. 2. Scatter plots showing the CVJ between white and gray matter in the 3T (left)
and 7T (right) datasets. Lower CVJ equates to better performance. The red line rep-
resents the mean, while the blue box covers one standard deviation of the data and the
red box covers the 95% confidence interval of the mean.

5 Discussion

In this paper we have explained the successful bias field correction properties of
the N3 method by showing that it implicitly uses the same type of generative
models and computational strategies as EM-based bias field correction methods.
Experiments on MRI scans of healthy brains indicate that, at least in this ap-
plication, purely EM-based methods can achieve performance similar to N3 at a
reduced computational cost.

Future work should evaluate how replacing N3’s highly constrained 200-
component mixture model with more general mixture models affects bias field
correction performance in scans containing pathology. Conversely, while N3’s
idiosyncratic histogram fitting procedure was found to work well in our experi-
ments, it is worth noting that it precludes N3 from taking advantage of specific
prior domain knowledge when such is available. For instance, the skull stripping
required to make N3 work well in brain studies [11] typically involves registra-
tion of the images into a standard template space, which means that probabilistic
brain atlases are available at no additional cost. It is left as further work to eval-
uate whether this puts N3 at a potential disadvantage compared to EM-based
methods, which can easily take this form of extra information into account [3, 7].
Future validation studies should also include comparisons with the publicly avail-
able N4ITK implementation [14], which employs a more elaborate but heuristic
B-spline fitting procedure in the bias field computations.
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Abstract. Fiber tracking in crossing regions is a well known issue in
diffusion tensor imaging (DTI). Multi-tensor models have been proposed
to cope with the issue. However, in cases where only a limited number
of gradient directions can be acquired, for example in the tongue, the
multi-tensor models fail to resolve the crossing correctly due to insuf-
ficient information. In this work, we address this challenge by using a
fixed tensor basis and incorporating prior directional knowledge. Within
a maximum a posteriori (MAP) framework, sparsity of the basis and
prior directional knowledge are incorporated in the prior distribution,
and data fidelity is encoded in the likelihood term. An objective function
can then be obtained and solved using a noise-aware weighted �1-norm
minimization. Experiments on a digital phantom and in vivo tongue dif-
fusion data demonstrate that the proposed method is able to resolve
crossing fibers with limited gradient directions.

Keywords: Diffusion imaging, weighted �1-norm minimization, prior
directional knowledge.

1 Introduction

Diffusion tensor imaging (DTI) provides a noninvasive tool for investigating fiber
tracts by imaging the anisotropy of water diffusion [1]. A well known issue in
DTI is fiber tracking in crossing regions, where the tensor model is incorrect [2].
Multi-tensor models have been proposed to cope with this issue. For example, [3]
and [4] use two-tensor models to recover crossing directions, [5] deconvolves dif-
fusion signals using a set of diffusion basis functions, and [2] uses a sparse recon-
struction, where a fixed tensor basis is used to produce the crossing patterns.
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Using the number of gradient directions that is common in clinical research
(around 30), these methods are able to resolve crossing fibers.

However, in cases where limited gradient directions are used, current multi-
tensor models have insufficient information for successful resolution of crossing
fibers. For example, in the tongue, where involuntary swallowing limits the avail-
able time for in vivo acquisition, usually only a dozen (or so) gradient directions
are achievable, and the acquisition usually takes around two or three minutes.
Thus, distinguishing interdigitated tongue muscles, which constitute a large per-
centage of the tongue volume, is very challenging.

In this work, we present a multi-tensor method that incorporates prior direc-
tional information within a Bayesian framework to resolve crossing fibers with
limited gradient directions. We use a fixed tensor basis and estimate the con-
tribution of each tensor using a maximum a posteriori (MAP) framework. The
prior knowledge contains both directional information and a sparsity constraint,
and data fidelity is modeled in the likelihood. The resulting objective function
can be solved as a noise-aware version of a weighted 
1-norm minimization [6].
The method is evaluated on in vivo tongue diffusion images.

2 Methods

2.1 Multi-tensor Model with a Fixed Tensor Basis

Suppose a fixed tensor basis comprises N prolate tensors Di, whose primary
eigenvectors (PEVs) are oriented over the sphere. In this work, N = 253, the
primary eigenvalue of each basis tensor is equal to 2 × 10−3 mm2/s, and the
second and third eigenvalues are equal to 0.5× 10−3 mm2/s. At each voxel, the
diffusion weighted signals are modeled as a mixture of the attenuated signals
from these tensors. Using the Stejskal-Tanner tensor formulation [7], we have [2]

Sk = S0

N∑
i=1

fie
−bgT

k Digk + nk, (1)

where b is the b-value, gk is the k-th gradient direction, S0 is the baseline signal
without diffusion weighting, fi is the (unknown) nonnegative mixture fraction for
Di, and nk is noise. Each Di represents a fiber direction given by its PEV. Note
that here we do not require

∑
i fi = 1 as in [2]. Assuming K gradient directions

are used, by defining yk = Sk/S0 and ηk = nk/S0, (1) can be written as

y = Gf + η, (2)

where y = (y1, y2, ..., yK)T , G is a K × N matrix comprising the attenuation

terms Gki = e−bgT
k Digk , f = (f1, f2, ..., fN )T , and η = (η1, η2, ..., ηK)T .
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2.2 Mixture Fraction Estimation with Prior Knowledge

We use MAP estimation to estimate the mixture fractions f . Accordingly, we
seek to maximize the posterior probability of f given the observations y:

p(f |y) = p(f )p(y|f )∫
p(f)p(y|f)df ∝ p(f )p(y|f ). (3)

Since at each voxel the number of fiber directions is expected to be small,
we first put a Laplace prior into the prior density p(f ) to promote sparseness:
p(f) ∝ e−λ||f ||1 . Sparsity alone is not sufficient prior information when the
observations do not include a large number of gradient directions (as in diffu-
sion imaging of the in vivo tongue). Therefore, we further supplement the prior
knowledge with directional information. For example, the muscles in the tongue
have fairly regular organization involving an anterior-posterior (A-P) fanning
of the genioglossus and vertical muscles, and a left-right (L-R) crossing of the
transverse muscle.

Suppose prior information about likely fiber directions, which we call prior
directions (PDs), were known at each voxel of the tongue. Let the PDs be rep-
resented by the collection of vectors {w1,w2, ...,wP }, where P is the number
of the PDs at the voxel. Note that the PDs can vary at different locations, and
such information could be provided, for example, by deformable registration of
a prior template into the tongue geometry. A similarity vector a can be con-
structed between the directions represented by the basis tensors and the PDs:

a = (max
m

|v1 ·wm|,max
m

|v2 ·wm|, ...,max
m

|vN ·wm|)T , (4)

where vi is the PEV of the basis tensor Di. We modify the prior density by
incorporating the similarity vector: p(f) ∝ e−λ||f ||1eγa·f . In this way, basis
tensors closer to the PDs are made to be more likely a priori. Note that wm and
vi are unit vectors and thus each entry in a is in the interval [0, 1]. Since f ≥ 0,

λ||f ||1 − γa · f = λ1 · f − γa · f = λ(1− γ

λ
a) · f = λ(1− αa) · f

= λ||Cf ||1, (5)

where α = γ
λ and C is a diagonal matrix with Cii = (1 − αai). Therefore, p(f)

has a truncated Laplace density given by

p(f ) =
1

Zp(α, λ)
e−λ||Cf ||1 , f ≥ 0, (6)

where Zp(α, λ) is a constant. We require 0 ≤ α < 1 to ensure that Cii > 0.
Suppose the noise η in (2) follows a Rician distribution; then it can be ap-

proximated by a Gaussian distribution when the signal to noise ratio is above
2:1 [8]. Therefore, we model the likelihood term as a Gaussian density: p(y|f ) ∝
e−||Gf−y||22/σ2

η , where ση is the noise level normalized by S0. Then, according to
(3), we have the posterior density

p(f |y) = 1

Z(α, λ, ση ,G)
e−(||Gf−y||22/σ2

η+λ||Cf ||1), (7)
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where Z(α, λ, ση ,G) is a normalization constant. The MAP estimate of f is
found by maximizing p(f |y) or ln p(f |y), which leads to

f̂ = argmin
f≥0

1

σ2
η

||Gf − y||22 + λ||Cf ||1 (8)

= argmin
f≥0

||Gf − y||22 + β||Cf ||1, (9)

where β = λσ2
η. The problem in (9) is a noise-aware version of a weighted 
1-norm

minimization as discussed in [6]. We note that this formulation is equivalent to
the CFARI objective function developed in [2] when α = 0 (i.e., C = I). Thus,
our approach, developed with an alternative Bayesian perspective, should be
considered as a generalization of CFARI.

To solve (9), we use a new variable g = Cf . Since C is diagonal and Cii > 0,
C is invertible and therefore f = C−1g. Letting G̃ = GC−1, we have

ĝ = argmin
g≥0

||G̃g − y||22 + β||g||1. (10)

We find ĝ using the optimization method in [9] and the mixture fractions f can
be estimated as:

f̂ = C−1ĝ. (11)

Directions associated with nonzero mixture fractions are interpreted as fiber
directions, and the value of fi indicates the contribution of the corresponding
direction in the diffusion signal. In practice, as in [2], we only keep the directions
with the largest 5 mixture fractions fni (i = 1, 2, 3, 4, 5) to save memory, which
is sufficient to represent all fiber directions. Finally, the mixture fractions are
normalized so that they sum to one: f̃ni = fni/

∑5
i=1 fni .

3 Experiments

3.1 Digital Phantom

A 3D crossing phantom with two tracts crossing at 90◦ was generated to validate
the proposed algorithm (see Fig. 1 for an axial view). Twelve gradient directions
were used. CFARI [2] and our proposed method were applied on the phantom.

First, we used horizontal and vertical directions as PDs for the horizontal
and vertical tracts, respectively. An example of reconstructed directions (for
α = 0.5 and β = 0.05) is shown in Fig. 1(b), and is compared with CFARI
results in Fig. 1(a). The standard color scheme in DTI is used. Directions with
small f̃ni ’s are interpreted as components of isotropic diffusion; therefore we only
show directions with f̃ni > 0.1. It can be seen that in crossing regions, CFARI
fails to produce the correct configuration while the proposed method successfully
generates the correct crossing pattern.

Next, we studied the effect of inaccurate PDs. To introduce errors in the PDs,
we rotated the true directions by θ = 15◦ to obtain PDs. We tested two cases
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(a) (b) (c) (d)

Fig. 1. Axial view of the FA of the crossing phantom. Reconstructed fiber directions
are shown for (a) CFARI and (b)–(d) the proposed method. The PDs are ground truth
directions in (b), ground truth directions with 15◦ in-plane rotation in (c), and ground
truth directions with 15◦ out-of-plane rotation in (d).

of rotations: in and out of the axial plane. Specifically, in the first case, the
horizontal and vertical directions are both clockwise rotated in the axial plane;
and in the second case, the horizontal directions are rotated around the vertical
line out of the axial plane and the vertical directions are rotated around the
horizontal line out of the axial plane. The results are shown in Figs. 1(c) and 1(d)
for the two cases, respectively. In both cases, the proposed method correctly
reconstructs noncrossing fiber directions. For the PDs with in-plane rotation,
the proposed method is still able to find the crossing directions, although it also
produces incorrect fiber directions. For the PDs with out-of-plane rotation, the
proposed method successfully reconstructs the crossing directions.

To make the simulation more realistic, besides the noise-free phantom test,
Rician noise (σ = 0.06) was also added to the digital phantom. And we tested
with different values of α and β. To quantitatively evaluate the results, we define
two error measures:

e1 =
1

N1

5∑
i=1

f̃ni
>t

min
j

arccos(vni · uj) · 180
◦

π
(12)

e2 =
1

N2

N2∑
j=1

min
i:f̃ni

>t
arccos(vni · uj) · 180

◦

π
. (13)

Here N1 is the number of directions with normalized mixture fractions f̃ni larger
than a threshold t (in this case t = 0.1), vni is the reconstructed fiber direction,
and N2 is the number of ground truth crossing directions uj . N2 can be 1 or
2, depending on whether fiber crossing exists at the location. e1 measures if the
reconstructed directions are away from the ground truth, and e2 measures if
each true direction is properly reconstructed. Note that using only e1 or e2 is
insufficient because the reconstructed directions can agree well with one of the
true crossing directions and ignore the other, or each true direction is properly
reconstructed but there are other incorrect reconstructed directions.

The average errors in the noncrossing and crossing regions are plotted in
Figs. 2 to 5. Here we used the true fiber directions and their 15◦ rotated versions
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(a) σ = 0, θ = 0◦ (b) σ = 0, θ = 15◦

(c) σ = 0.06, θ = 0◦ (d) σ = 0.06, θ = 15◦

Fig. 2. Average e1 errors in noncrossing regions with different noise level σ, PD inac-
curacy θ, and the parameters of α and β

as PDs. For the rotated directions, the results in the in-plane and out-of-plane
cases are averaged. Note that α = 0 is equivalent to CFARI results.

In noncrossing regions, from Figs. 2 and 3, it can be seen that when errors
are introduced in the PDs, the correct fiber directions can still be obtained with
proper weighting of prior knowledge. For example, as shown in Figs. 2(b) and
3(b), α = 0.3 and β = 0.6 give zero e1 and e2 errors. When noise is added,
the use of ground truth as PDs leads to more accurate estimation, as shown in
Figs. 2(c) and 3(c). When an error of 15◦ is introduced, the proposed method
can still reduce the effect of noise with proper α and β (see α = 0.5 and β = 0.6
in Figs. 2(d) and 3(d)).

In crossing regions, the use of ground truth as PDs produces correct crossing
directions in both the noise-free and the noisy cases (see Figs. 4(a), 4(c), 5(a)
and 5(c)). When errors are introduced in the PDs, in both the noise-free and
the noisy cases, it is still possible to obtain crossing directions that are close to
truth with proper α and β (for example, α = 0.6 and β = 0.05 in Figs. 4(b)
and 5(b), and α = 0.5 and β = 1.0 in Figs. 4(d) and 5(d)). Note that in the
crossing regions, CFARI, represented by α = 0, cannot find the correct crossing
directions. In these examples, the errors of the proposed method can be smaller
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(a) σ = 0, θ = 0◦ (b) σ = 0, θ = 15◦

(c) σ = 0.06, θ = 0◦ (d) σ = 0.06, θ = 15◦

Fig. 3. Average e2 errors in noncrossing regions with different noise level σ, PD inac-
curacy θ, and the parameters of α and β

than the errors introduced in the PDs, which indicates that the proposed result
is a better estimate than simply using the prior directions as the estimate.

3.2 In Vivo Tongue Diffusion Data

Next, we applied our method to in vivo tongue diffusion data of a control subject.
Diffusion weighted images were acquired on a 3T MR scanner (Magnetom Trio,
Siemens Medical Solutions, Erlangen, Germany) in about two minutes and 30
seconds. Each scan has 12 gradient directions and one b0 image. The b-value
is 500 s/mm2. The field of view (FOV) is 240 mm × 240 mm × 84 mm. The
resolution is 3 mm isotropic.

To obtain PDs, we built a template by manually identifying regions of interest
(ROIs) for the genioglossus (GG), the transverse muscle (T), and the vertical
muscle (V) on a high resolution structural image (0.8 mm isotropic) of a subject
according to [10]. T interdigitates with GG near the mid-sagittal planes and with
V on lateral parts of the tongue. The b0 image was also acquired for this template
subject in the space of the structural image. The ROIs were then subsampled to
have the same resolution with the b0 image. Using SyN registration [11] between
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(a) σ = 0, θ = 0◦ (b) σ = 0, θ = 15◦

(c) σ = 0.06, θ = 0◦ (d) σ = 0.06, θ = 15◦

Fig. 4. Average e1 errors in crossing regions with different noise level σ, PD inaccuracy
θ, and the parameters of α and β

b0 images with mutual information as the similarity metric, the template was
deformed to the test subject.

Based on the deformed ROIs of GG, T, and V, PDs can be determined. GG
and V are known to be fan-shaped; therefore, to calculate the PDs at each
voxel (xi, yi, zi) belonging to GG or V, we manually identified the origin point
(x0, y0, z0) of GG in the mid-sagittal slice only. Then the PD for GG or V is
wGG/V = (0, yi − y0, zi − z0). Since T propagates transversely, we use wT =
(1, 0, 0) as the PDs for T. An example of the PDs on the test subject is shown
in Fig. 6(a). Note that in the sagittal view, left-right directions are not shown.

The proposed method was then performed with the PDs. We fixed β = 1
and tested with different α’s. The result is compared with CFARI in Figs. 6(b)
and 6(c). We focus on the highlighted areas in Fig. 6(a). Only directions with
normalized mixture fractions f̃ni > 0.1 are shown. In Fig. 6(b), CFARI does
not generate a good fanning pattern for GG, while by tuning α our method is
able to reconstruct the fan-shaped directions. Also, in Fig. 6(c), CFARI does
not produce the transverse fiber directions while in the proposed method, as α
increases, transverse patterns become more obvious.
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(a) σ = 0, θ = 0◦ (b) σ = 0, θ = 15◦

(c) σ = 0.06, θ = 0◦ (d) σ = 0.06, θ = 15◦

Fig. 5. Average e2 errors in crossing regions with different noise level σ, PD inaccuracy
θ, and the parameters of α and β

We then applied fiber tracking with the CFARI results and the proposed re-
sults (for α = 0.5 and β = 1). We implemented a variation of INFACT tracking
from [2]. The difference is that in seeding a voxel, all the reconstructed directions
are used instead of only the one with the largest mixture. Seeding ROIs are placed
in parts of T and GG near the mid-sagittal plane, and the results are shown in
Fig. 7. Each fiber segment is color-coded by the local orientation using the stan-
dard DTI color scheme. Compared to CFARI, the proposed method reconstructs
many more transverse fibers and produces a smoother fan-shaped GG.

4 Discussion

To recover crossing fiber directions, more advanced diffusion imaging, such as
high angular resolution diffusion imaging (HARDI) [12] and diffusion spectrum
imaging [13] (DSI), have been developed. Since HARDI and DSI usually require
long acquisition time, which limits their use in clinical research, efforts have also
been made to accelerate the imaging process [14]. For example, [14] reduces the
scan time from 50 minutes to 17 minutes. However, in the application of tongue
diffusion imaging, even accelerated imaging currently may not satisfy the scan
time of around 2.5 minutes.
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(a) PDs on the Test Subject (b) Fiber Directions in GG

(c) Fiber Directions in the crossing of T and GG/V

Fig. 6. Fiber directions. Results are compared between the proposed method and
CFARI in (b) and (c) in the highlighted regions in (a).

(a) (b) (c) (d)

Fig. 7. Fiber tracking results: CFARI results seeded in (a) T and (b) GG; proposed
results seeded in (c) T and (d) GG. T is viewed from above and GG is viewed from
the left.

Like [5] and [2], we do not explicitly enforce the constraint of ||f ||1 = 1.
As discussed in [15], the general sparse reconstruction problem (without prior
knowledge) should be formulated as

f̂ = argmin
f≥0,||f ||1=1

||Gf − y||22 + β||f ||0. (14)

The CFARI algorithm [2] can be viewed as first relaxing the constraint ||f ||1 = 1,
then approximating the 
0-norm with the 
1-norm, and finally reprojecting f
onto the plane ||f ||1 = 1. As shown in [2], the approximation is able to resolve
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crossing fibers. The proposed work further generalizes the approximation with
weighted 
1-norm using a Bayesian framework, where prior directional infor-
mation is incorporated. As demonstrated in the results, the generalization can
better distinguish interdigitated tongue muscles with limited gradient directions.

We have assumed a Rician noise model and approximated it with a Gaussian
model. It should be noted that in the case of parallel imaging, the noise can follow
a noncentral χ distribution [16]. However, in our application, the Gaussian model
provides a reasonable approximation in practice.

The PDs are calculated based on the deformed muscle ROIs. An alternative
way of calculation is deforming the PDs drawn on the template to the target with
the deformation field. As well as the spatial position, the orientation of the PDs
should also be rotated according to the deformation field, as suggested in [17].
However, we discovered that although deformable registration can provide a
general location of the tracts, due to the low contrast of b0 images, the detailed
local deformation is not necessarily accurate, leading to distorted PDs. Therefore,
we choose to calculate the PDs as proposed.

The proposed method relies on the ability of specifying PDs. Because of the
well organized structures of the tongue muscles, the PDs are achievable for
normal subjects. When applied to patients with glossectomy, the current prior
knowledge in the lesion may be misleading. Thus, a criterion for using the PDs
should be decided or the PDs for patients can be determined in a different way.

Currently, the choice of α and β is empirically fixed for all the voxels. However,
the weight of sparsity and prior knowledge can depend on the signal-to-noise
ratio (SNR). An improvement could be to determine adaptive α and β based on
the estimation of SNR. For example, the SNR can be roughly estimated using
image intensities of background and foreground voxels.

5 Conclusion

We have introduced a Bayesian formulation to introduce prior knowledge into a
multi-tensor estimation framework. It is particularly suited for situations where
acquisitions must be fast such as in in vivo tongue imaging. We use a MAP
framework, where prior directional knowledge and sparsity are incorporated in
the prior distribution and data fidelity is ensured in the likelihood term. The
problem is solved as a noise-aware version of a weighted 
1-norm minimization.
Experiments on a digital phantom and in vivo tongue diffusion data demonstrate
that the proposed method can reconstruct crossing directions with limited dif-
fusion weighted imaging.
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Abstract. We introduce a graphical model for the joint segmentation
and tracking of E. coli cells from time lapse videos. In our setup cells
are grown in narrow columns (growth channels) in a so-called “Mother
Machine” [1]. In these growth channels, cells are vertically aligned, grow
and divide over time, and eventually leave the channel at the top. The
model is built on a large set of cell segmentation hypotheses for each
video frame that we extract from data using a novel parametric max-flow
variation. Possible tracking assignments between segments across time,
including cell identity mapping, cell division, and cell exit events are
enumerated. Each such assignment is represented as a binary decision
variable with unary costs based on image and object features of the
involved segments. We find a cost-minimal and consistent solution by
solving an integer linear program. We introduce a new and important
type of constraint that ensures that cells exit the Mother Machine in
the correct order. Our method finds a globally optimal tracking solution
with an accuracy of > 95% (1.22 times the inter-observer error) and is on
average 2− 11 times faster than the microscope produces the raw data.

1 Introduction

The Mother Machine [1] is a microfluidic device designed to study live bacteria.
It allows the observation of growth and division of the progeny of single “mother”
cells over many generations using time lapse microscopy. Figure 1 illustrates the
Mother Machine and the respective image data. In such data, individual bac-
teria need to be tracked over time. Tracking consist of two equally important
tasks: (i) cells need to be segmented in each frame, and (ii) all segments of the
same cell need to be linked between frames. Tracking large numbers of cells un-
der different environmental conditions will allow biologists to better understand
the stochastic dynamics of gene expression within living cells. Respective high
throughput studies of cells in the Mother Machine would be greatly facilitated
if the tracking task would be automated.

Many existing automated tracking systems perform the tasks of segmentation
and linkage one after another to reduce overall model complexity and runtime [2].

M.J. Cardoso et al. (Eds.): BAMBI 2014, LNCS 8677, pp. 25–36, 2014.
© Springer International Publishing Switzerland 2014
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Fig. 1. (a) Illustration of the “Mother Machine”, a microfluidic device built to under-
stand dynamic processes in E. coli. Individual ‘growth channels’ (narrow tubes, just
wide enough for hosting a row of bacteria) are imaged every minute. (b) Raw im-
ages. (c) One growth channel in the first 25 frames of a time-lapse movie. A tracking
is shown between frames, with mapping assignments in blue, division assignments in
yellow, and exit assignments in red.

Model complexity is typically reduced even further by performing linkage in a
locally optimal, greedy fashion [2], i.e. frame by frame, never considering the
whole time series at once.

However, globally optimal joint segmentation and linkage can be achieved
by so-called Assignment Models [3,4,5,6,7]. Assignment models pose the link-
age problem as a global energy minimization task, where the energy is that
of a graphical model (factor graph). Binary variables represent possible links
(called assignments), with respective unary potentials capturing their plausibil-
ity. Higher order factors encode continuity constraints, that describe which link
sequences form structurally sound tracks. Assignment models can elegantly han-
dle an excess of non overlapping segment hypotheses1. The only extra ingredient
are additional unary factors assigning costs to all segment hypotheses. Energy
minimization in such a model yields globally optimal, joint segmentation and
tracking. The respective optimization task can be solved with existing discrete
optimization methods [5,6,7].

A good assignmentmodel should allow asmany different segmentation hypothe-
ses as possible to avoid missing segments (i.e. good recall). To this end, Kausler et
al. [5] and Schiegg et al. [7] allow for an over-segmentation per time-frame. To be
yet more robust againstmissed segments (false-negatives), Schiegg et al. propose a

1 Superfluous segments do not have to be linked between frames but can be filtered
by the tracking engine.
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method capable of dealingwith occasional under-segmentations.Funke et al. [6] in-
troduced amodel capable of dealing with a large pool of partially conflicting (over-
lapping) segment hypotheses per frame. Their model filters a conflict-free subset
by introducing adequate higher order factors, called tree constraints. The work we
presented here follows this “hypotheses-rich” approach of Funke et al. [6].

But in order to be as specific as possible for a given task (i.e. good precision),
assignment models should be designed to restrict the space of possible solutions
as much as possible. So far, relatively generic prior knowledge on cell movement
and proliferation has been encoded into assignment models: Cells can be kept
from moving too far between time frames; They can be allowed to divide but
not merge; They can be kept from dividing into more than two, and kept from
appearing from nowhere. However, none of the previously published assignment
models captures a particular kind of prior knowledge that is important for cells
in the Mother Machine, namely the total order of cells within growth channels
which has to be maintained at any time.

The main technical contribution of this paper is a novel type of higher order
factors which are concerned with the order of cells within growth channels. We
call these factors exit constraints. We show that exit constraints considerably
improve tracking accuracy in the Mother Machine (see Section 4.2). Another
contribution is a new approach for generating nested segmentation hypotheses
which outperforms previous approaches. The idea is to combine the benefits of
parametric max flow [8] and random forest classifiers [9]. The random forest is
used to improve the separation of recently divided cells which are otherwise hard
to tell apart (see Section 3).

Our proposed assignment model can solve the problem of tracking cells in
the Mother Machine with an error rate of 4.8%, which is only 1.22 times the
inter-observer error (see Section 5). Hence our system renders high throughput
imaging and tracking of bacteria in the Mother Machine possible.

2 Microscopic Setup and Data Preprocessing

The Mother Machine consists of a main trench and dead end growth channels
that host the bacterial cells (see Figure 1). The width of the growth channels is
chosen such that each of them fits only a single bacterial cell, thereby forcing
the growing cells into a linear array. A constant flow in the main trench leads to
continuous diffusion of nutrients and removes cells that emerge from the growth
channels. Experiments are imaged by an inverted microscope equipped with an
incubator. Images are taken every minute using a 100x objective.

Raw data from the microscope undergoes a few simple preprocessing steps.
Two of those are of particular importance. First, movie frames are rotated into
an upright orientation, because growth channels are usually tilted by up to ±45◦,
see Figure 1(b). To determine the tilt angle, we smooth each image row, collect
local maxima, and fit straight lines through each growth channel.

In a second step we correct for uneven background, caused by uneven lighting
and different material thicknesses of the Mother Machine itself. For each growth
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Input
︷ ︸︸ ︷

(a)

parametric max-flow (PMF)
︷ ︸︸ ︷

(b) (c) (d) (e)

PMF+rand. forest (RF)
︷ ︸︸ ︷

(f) (g) (h)

Fig. 2. Parametric max-flow based generation of segmentation hypotheses with and
without using a random forest classifier (RF) to modulate unary and binary potentials.
(a) Image to be segmented. (b-e) Results obtained using parametric max-flow.
(f-h) Results when potentials are modified by a trained RF. (b,g) all graph-cut
segmentations given by parametric max-flow. The color of a pixel is determined by the
number of times this pixel is classified as foreground. (c,d,e) three graph cut solutions
(of 5176). (f) probability map given by RF, trained to over-emphasize gaps between
cells. (h) single graph-cut containing the correct segmentation and a false positive at
the very top.

line we evaluate the background intensity at each height by averaging the in-
tensities of automatically selected local image patches from within the “empty”
areas to either side. This intensity is subtracted from each growth-channel pixel
at the given height.

Images for each indivual growth-channel are then cropped from the prepro-
cessed image; an example is shown in Figure 2(a).

3 Segmentation Methods

Automated tracking approaches face the challenge that each segmentation error
directly translates to at least one tracking error. Assignment models tackle this
problem by not committing to a segment for as long as possible. Instead, an
excess of potentially conflicting (overlapping) segment hypotheses is created and
the model filters the best consistent subset [6]. Below we introduce 3 segmenta-
tion methods we use for this purpose.

3.1 Thresholding and Component Trees (CT)

The first segmentation methods we use is an intensity thresholding technique
similar to [10,11]. Any threshold yields a binary image from which connected
foreground components can be extracted. When the threshold level is gradually
raised foreground components grow until they eventually merge. This allows
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for grouping all components for all thresholds in a tree data structure, called a
component tree. Nodes in the component tree, i.e. individual segmented regions
rather than a global segmentation, correspond to segment hypotheses.

3.2 Parametric Max-Flow (PMF)

Parametric max-flow [8] is a graph-cut formulation with an additional, additive
parameter λ. This parameter linearly scales the unary costs, leading to different
segmentation results. The corresponding energy can be formalized as

Eλ(x) =
∑
u∈V

(au + λ)xu +
∑

(u,v)∈E

fuv(xu, xv), (1)

where x is a vector of binary variables xu ∈ {0, 1}, fuv’s are hand tuned and
submodular, λ ∈ I ⊆ R, and G = (V,E) is an undirected graph, in our case the
4-connected grid graph on the pixels of each frame. Values xu = 0 and xu = 1
represent pixel labels “foreground” (cell) and “background”, respectively. Unary
costs au for a pixel u depend on measured intensity distributions for foreground
and background pixels. Pairwise costs fuv(xu, xv) are inversely proportional to
the intensity gradient between pixels u and v. More details can e.g. be found
in [12]. The work by Kolmogorov et al. [8] offers an efficient way to compute
all solutions for Eλ(x) for all λ ∈ R, which is a finite and nested set, typically
counting between 10 and 10000 solutions.

Like components for increasing threshold values, also the components obtained
by increasing λ are monotonically growing. Hence, we can again store all segment
hypotheses in a tree. The benefit of PMF over thresholding alone is the additional
smoothing that comes with the graph-cut formulation.

3.3 Parametric Max-Flow and Random Forest (PMFRF)

Since missing segments immediately lead to bad tracking performance we com-
bine parametric max-flow and a trained random forest classifier (RFC). This
predictor for cell vs. background pixels P (xu) is trained using the Fiji plugin
“Trainable Weka-Segmentation” [13] and manually tuned to pick up even very
small clefts between, for example, freshly divided cells. This is done to avoid
undersegmentation in cases where the cleft between adjacent cells is not clearly
visible (false positives can always be filtered by the model later on, but false
negatives translate directly to tracking errors). For the data presented here we
trained the RFC on only 3 raw images that where taken from a different raw
dataset.

The probability map P for the ‘cell’-class is used to modify the costs au and
fuv(xu, xv) of Equation (1) as follows (see Figure 2 for an illustration ):

atrainedu = au · P (xu), and (2)

f trained
uv (xu, xv) = fuv(xu, xv) · (1− |P (xu)− P (xv)|) . (3)
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4 A Graphical Model for Segmentation and Tracking

We choose the language of factor graphs to describe a model for joint segmen-
tation and tracking in Mother Machine datasets. Here, segmentation consists of
selecting a consistent subset of the segment hypotheses H(t) for each time-point.
See Figure 3 for an illustration. We use a factor graph FG = (V ,F , E) with V
being a set of binary variables or variable nodes, F being a set of factors or factor
nodes, and E ⊂ V × F [14].

Variable Nodes. The variable nodes V = H ∪ A comprise segmentation vari-
ables H =

⋃T
t=1 H

(t) and assignment variables A =
⋃T−1

t=1 A(t).
Each binary segmentation variable h(t) ∈ H(t) indicates whether a particular

segment hypothesis at time-point t is choosen as part of the solution. Assignment
variables a(t) ∈ A(t) link segment hypotheses at time-point t to segment hypothe-
ses at time-point t+ 1. We distinguish three types of assignment variables.

Mapping assignments: A mapping assignment a
(t)
i�→j connects two segment hy-

potheses h
(t)
i and h

(t+1)
j . It indicates that these segments correspond to the same

segmented cell that is tracked between time-points t and t+ 1.

Division assignments: A division assignment a
(t)
i÷jk connects segment hypothesis

h
(t)
i to h

(t+1)
j and h

(t+1)
k . It indicates that these segments correspond to a cell

division event, where one segmented cell at time-point t divides into two daughter
cells at t+ 1.

Exit assignments: An exit assignment a
(t)
⊥i is only connected to one segment

hypothesis h
(t)
i . It indicates that this segment corresponds to a segmented cell

at time-point t that is spilled out on top of a growth line at time-point t+ 1.

Factor Nodes. Factor nodes connect to one or more variable nodes, assigning a
potential to each joint configuration of these variables. The factor nodes F com-
prise unary factors and higher order factors. Unary factors f(v) are connected
to each binary variable v ∈ V , capturing the plausibility that v is active given
the data. Formally we define

− ln f(v) =

{
0 if v = 0

cv if v = 1,
(4)

cv is the cost for including the respective segmentation or assignment variable in
the solution. These costs are derived from (image) features as described in the
next subsection. Structural constraints are expressed as n-ary factors for which
− ln f(var(E)) = 0 if E holds, and ∞ otherwise. where E are (in-)equalities on
the set of variables var(E) connected to the factor. The constraints formalized
by these (in-)equalities prohibit solutions involving conflicting segmentation hy-
potheses or assignments that are inconsistent with the selected segmentation.2

Constraints are described in Section 4.2.

2 Such inconsistent solutions correspond to events with infinite costs or 0 probability.
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Fig. 3. Overview of the proposed model. Possibly contradictory segmentation hypothe-
ses for two time frames are shown in gray. Between frames, binary assignments variables
of three types are enumerated: continuations (blue), divisions (orange), and exits (red).
Selecting an assignment variable jointly selects the involved segmentation hypotheses
and assigns them to each other.

4.1 Costs

All costs cv corresponding to activating a variables v are defined according to
the following considerations.

We define negative costs for segmentation variables in order to provide an in-
centive to activate segment hypotheses. Otherwise the trivial solution of ‘seeing’
only empty growth lines, corresponding to a total cost of 0, would be optimal.

We derive segmentation costs from the image intensities along the pixel row
at the center of the growth line with the following intuition in mind. A strong
gradient on the upper and lower border of a hypothesis increases the likelihood
of it being a correct segment and therefore lowers the cost. A strong gradient in
the interior of a hypothesis decreases the likelihood (increases the cost) because
it suggests that it might contain several cells. Finally, we scale the cost by the
size of the segment hypothesis. The rationale for this is that we want to favor
hypotheses that explain a larger part of the image in cases where equal support
is given by the previously mentioned gradient based measures.

The costs for assignment variables are derived from the positions and sizes of
segment hypotheses connected by this assignment. As time progresses from one
frame in a given time-lapse movie to the next, we expect an average change in
the size and position of a cell.

For mapping assignments we compare the segment sizes and centroids at time
points t and t + 1. The cost for a mapping assignment is given by a suitably
defined function that reflects how unlikely certain deviations from the expected
size change and the expected centroid shift really are. This is actually a very
natural way of utilizing the knowledge of biological experts.

Costs for division assignments are defined similarly. Here, a segment at time-
point t is linked to two (adjacent) segments at t+1. In addition we know that a
dividing cell usually distributes its volume equally to its daughters. We compute
size and centroid from the union of the two segment hypotheses at t + 1 and
compute the cost as described for mapping assignments, plus some additional
cost for unequally sized segments at t+ 1.
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Last but not least we have to define costs for exit assignments. With the
rationale in mind that an early exit assignment already leads to not segmenting
this cell in future time-points (thereby not ‘earning’ the corresponding negative
cost) we assign 0 cost to all exit assignments.

4.2 Constraints

Tree Constraints. It is important to note that sequential thresholding as well
as parametric max-flow respectively yield a monotonic sequence of solutions,
inducing a partial order on the segment hypotheses to form a tree (H(t),⊃).

We say that segment hypotheses h
(t)
i ⊃ h

(t)
j are conflicting because they offer

mutually exclusive interpretations of (parts of) the image data. Of all segment

hypotheses on a branch h
(t)
1 ⊃ · · · ⊃ h

(t)
n , only one can be simultaneously valid

because we seek an assignment of each image pixel to exactly one segment (or
background). Tree constraints enforce that conflicting segment variables cannot
be simultaneously active. This is formalized in the set of inequalities

∀t ∈ {1, . . . , T }, ∀π ∈ P(H(t)) :
∑

h(t)∈π

h(t) ≤ 1 (5)

where P(H(t)) is the set of all paths π from the root node in (H(t),⊃) to any of
its leaf nodes.

Continuity Constraints. Continuity constraints enforce consistency between
segmentation and assignment variables. If a segment hypothesis is selected, ex-
actly one of the assignments entering it from the previous time-point, and exactly
one of the assignments leaving it towards the next time-point must be selected
as well. If a segment hypothesis is not selected, neither must any of these assign-
ments be selected. This is formalized as the following sets of constraints. For the
entering assignments we have

∀t ∈ {2, . . . , T }, ∀h(t) ∈ H(t) :
∑

a(t−1)∈ΓL(h(t))

a(t−1) = h(t) (6)

where the left neighborhood ΓL (h) is the set of all assignments entering h from

the previous time-point. That is, ΓL

(
h
(t)
i

)
contains assignments a

(t−1)
j �→i , a

(t−1)
j÷ik ,

and a
(t−1)
j÷ki (for all j, k). Similarly, for the assignments leaving to the next time-

point we have

∀t ∈ {1, . . . , T − 1}, ∀h(t) ∈ H(t) :
∑

a(t)∈ΓR(h(t))

a(t) = h(t) (7)
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where the right neighborhood ΓR (h) is the set of all assignments leaving h. That

is, ΓR

(
h
(t)
i

)
contains assignments a

(t)
⊥i, a

(t)
i�→j , and a

(t)
i÷jk (for all j, k).

Exit Constraints. One of the main contributions of this article is the intro-
duction of this specific type of constraint. It is obvious that cells can only exit
the growth line at the very top. A cell in the middle of a growth line can im-
possibly be spilled out without all other cells above it being spilled out as well.
Let us denote by A↑(h(t)) ⊂ A(t) the set of mapping and division (but not exit)
assignments that are leaving hypotheses located strictly above h(t). If the exit
assignment is chosen for segment h, then none of the assignments in A↑(h) can
be active. (See Figure 3(c) for an illustration.) However, if the exit assignment
for h is not chosen, any number of these assignments might be active. We express
this as the set of inequalities

∀t ∈ {1, . . . , T − 1}, ∀h(t)
i ∈ H(t) : |H(t)| · a(t)⊥i +

∑
a∈A↑(h

(t)
i )

a ≤ |H(t)|. (8)

Note that, in combination with the continuity constraints (7), this forces all
active segments above an exiting hypothesis to exit as well, thereby maintaining
the linear order of cells in the mother machine also in our tracking results.

To quantify the importance of exit constraints we removed all exit contraints
from our model and tracked all available datasets. We then compared the results
to ground truth as explained in Section 5. Error rates increased to 225% (on
average to 123%), clearly hinting at the importance of these constraints.

4.3 Eliminating Segmentation Variables

Considering the costs and constraints defined above it can be seen that seg-
mentation variables are redundant in the formulation of the factor graph. The
continuity equality (7) provides a definition for each segmentation variable in
terms of a sum over a set of assignment variables. Plugging these definitions into
(5), and replacing (6) and (7) by

∀t ∈ {2, . . . , T − 1}, ∀h(t) ∈ H(t) :
∑

a(t−1)∈ΓL(h(t))

a(t−1) −
∑

a(t)∈ΓR(h(t))

a(t) = 0 (9)

we can eliminate segmentation variables from the constraints.3

Similarly, the costs ch can be dropped, and added to the cost of each exiting
assigment ca , where the constraints guarantee that at most one of these is active.4

3 One might fear that by replacing h by a sum over assignment variables might loose
the restriction that h is binary Note, however, that this is now effectively ensured
by the tree constraints (5) (with h(t) replaced).

4 The costs of segmentation hypotheses h(T ), which have no exiting assignments, are
added to each entering assignment instead.
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4.4 Finding The Globally Optimal Solution

A globally optimal segmentation and tracking is provided by a MAP (maximum
a posteriori probability) or, equivalently, minimum energy solution of the factor
graph. This amounts to finding a conflict-free variable assignment (not violating
any constraint) with minimal summed cost.

Similarly to [5,6,7] we formulate the problem as an integer linear program
(ILP) [15]: The cost of a conflict-free solution yields the linear objective we wish
to minimize5. The feasible space is restricted to conflict-free solutions by the
linear constraints discussed in Section 4.2 (and additional constraints 0 ≤ v ≤ 1
to ensure that all variables v ∈ Z are binary). This approach guarantees to find
a globally optimal solution, the worst-case complexity is though exponential. In
all our experiments we observe runtimes (for ILP solving alone) in the range is
a couple of seconds only. See also Figure 5.

We use the off-the-shelf ILP solver Gurobi™ to find the optimal solution.

5 Results

We tested our model on 2 movies containing a total of 21 datasets (growth
channels). In order to measure the error of our fully automated tracking pipeline
we have manually created ground truth (GT) for all given datasets.

We count (i) segmentation mismatch, and (ii) tracking errors. For both we
greedily match all segments in a given solution with the corresponding segments
in the GT. Segmentation mismatch is measured by adding offsets between up-
permost pixels and lowermost pixels in each matched segment pair.

The tracking error counts over- and undersegmentations, computed by com-
paring the number of active segments at any given time-point in solution and the
GT, and assignment-type mismatches. For those we count type-mismatches for
all right-assignments (assignments towards next time-point) associated to pairs
of matched segments. Note that this is a fairly pessimistic measure where errors
that would intuitively be counted as one mistake are counted multiple times6.

Figure 4 shows the results of the ground truth comparison. The first three
columns in each box-plot show how the fully automated solutions compare to
GT. Each column corresponds to one of the segmentation methods introduced
in Section 3. The last column shows an inter-observer reliability measure.

The inter-observer reliability tells us about how much homogeneity, or consen-
sus, there is to expect when different users create “ground truth” for the same
data. We gave the automatically generated PMFRF solution and a interactive
tool to 2 users, asking them to to fix all errors. We then compared their results to
GT in the same way we described above. See Figure 5 for a detailed comparison
of runtimes for the fully automated pipeline.

5 It is easily seen that the summed cost is a linear function by writing it as the inner
product of the vectors of all binary variables and costs, 〈(v1, . . . , vn), (cv1 , . . . , cvn )〉.

6 An early exit assignment is once counted as assignment-type mismatch and in all
future time-points still containing this cell as undersegmentations.
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Fig. 4. Error measures for all 21 datasets. (Abbr.: CT→’component tree’;
PMF→’parametrix max-flow’; PMFRF→PMF+trained random forest.) Left panel
shows how well the chosen segments match to ground truth. We compare the pixel
distance between the uppermost and lowermost segmented pixels between each seg-
ments and its corresponding ground truth segment. The right panel shows the fraction
of assignments that do not match to ground truth.
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Fig. 5. Runtime for segmentation, model instantiation, and model solving. Shown times
are in ’wall-time’ seconds per dataset. We used a quadcore MacBook Pro Retina (Fall
2012). An excessive filter bank is main reason for slow RFs.

6 Summary and Discussion

We showed how cell tracking in the Mother Machine can be addressed using an
adequately formulated assignment model. In order to achieve low error rates we
needed to extend existing models [5,6,7] by additional constraints concerned with
the linear order of cells in the Mother Machine and a specialized method to create
nested segment hypotheses using a parametric max-flow formulation and trained
random forests classifiers. Automated tracking and segmentation quality reaches
a level that lies within a factor of 1.1 compared to the inter-observer variability
we measured. Our system will be freely available open source software, enabling
groups around the world to analyze cell cultured in the Mother Machine.

With this paper we contribute to a recent trend of formulating tracking prob-
lems as global optimization problems in the spirit of graphical models. We predict
that the capabilities of assignment models is by far not reached yet.

Future extensions will focus on several important aspects such as (i) further
increasing the set of segment hypotheses, thereby generalizing the concept of
conflict trees to more general conflict graphs, (ii) development of more generic
and task specific higher order factors that will capture ever more expert domain
knowledge and therefore lead to better automated results, (iii) parametriza-
tion and parameter training of used cost functions, for example by means of
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structured learning, and (iv) alternative solving strategies, either by means of
divide-and-conquer like dual decomposition schemes or, means of approximate
inference methods, or suitable combinations.

The last mentioned point will become increasingly important with growing
problem instances and the need for interactive proofreading and data curation
interfaces.

Acknowledgments. This work was supported by the German Federal Ministry of
Research and Education (BMBF) under the funding code 031A099.
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Abstract. Arterial Spin Labelling (ASL) functional Magnetic Reso-
nance Imaging (fMRI) data provides a quantitative measure of blood
perfusion, that can be correlated to neuronal activation. In contrast to
BOLD measure, it is a direct measure of cerebral blood flow. However,
ASL data has a lower SNR and resolution so that the recovery of the per-
fusion response of interest suffers from the contamination by a stronger
hemodynamic component in the ASL signal. In this work we consider a
model of both hemodynamic and perfusion components within the ASL
signal. A physiological link between these two components is analyzed
and used for a more accurate estimation of the perfusion response func-
tion in particular in the usual ASL low SNR conditions.

1 Introduction

Arterial Spin Labelling (ASL) [1] provides a direct measure of cerebral blood
flow (CBF), overcoming one of the most important limitations of Blood Oxygen
Level Dependent (BOLD) signal [2]: BOLD contrast cannot quantify cerebral
perfusion. In contrast to BOLD, ASL is able to provide a measure of baseline
CBF as well as quantitative CBF signal changes in response to stimuli pre-
sented to any volunteer in the scanner during an experimental paradigm. Hence,
ASL enables the comparison of CBF changes between experiments and subjects
(healthy vs patients) making its application to clinics feasible. In addition, ASL
signal localization is closer to neural activity. ASL has already been used in clin-
ics in steady-state for instance for probing CBF discrepancy in pathologies like
Alzheimer’s disease and stroke, but its use in the functional MRI context has
been limited so far. Despite ASL advantages, its main limitation lies in its low
Signal-to-Noise Ratio (SNR), which, together with its low temporal and spatial
resolutions, makes the analysis of such data more challenging.

According to [3,4], ASL signal has been typically analyzed with a general lin-
ear model (GLM) approach, accounting for a BOLD component mixed with the
perfusion component. In such a setting both the hemodynamic response func-
tion (HRF or BRF for BOLD response function) and perfusion response func-
tion (PRF) are assumed to be the same and to fit the canonical BRF shape. In
contrast, an adaptation of the Joint-Detection estimation (JDE) framework [5]

M.J. Cardoso et al. (Eds.): BAMBI 2014, LNCS 8677, pp. 37–48, 2014.
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to ASL data has been proposed in [6,7] to separately estimate BRF and PRF
shapes, and implicitly consider the control/label effect which, as stated in [4],
increases the sensitivity of the analysis compared to differencing approaches. Al-
though this JDE extension provides a good estimate of the BRF, the PRF esti-
mation remains much more difficult because of the noisier nature of the perfusion
component within the ASL signal. In the past decade, physiological models have
been described to explain the physiological changes caused by neural activity.
In [8,9], neural coupling, which maps neural activity to ensuing CBF, and the
Balloon model, which relates CBF to BOLD signal, have been introduced. These
models describe the process from neural activation to the BOLD measure, and
the impact of neural activation on other physiological parameters.

Here, we propose to rely on these physiological models to derive a tractable
linear link between perfusion and BOLD components within the ASL signal and
to exploit this link as a prior knowledge for the accurate and reliable recovery of
the PRF shape in functional ASL data analysis. This way, we refine the separate
estimation of the response functions in [6,7] by taking physiological information
into consideration. The structure of this paper goes as follows: the physiological
model and its linearization to find the PRF/BRF link are presented in section 2.
Starting then from the ASL JDE model described in section 3, we extend the
estimation framework to account for the physiological link in section 4. Finally,
results on artificial and real data are presented and discussed in sections 5-7.

2 A Physiologically Informed ASL/BOLD Link

Our goal is to derive an approximate physiologically informed relationship be-
tween the perfusion and hemodynamic response functions so as to improve their
estimation in a JDE framework [6,7]. We show in this section that, although
this relationship is an imperfect link resulting from a linearization, it provides
a good approximation and allows to capture important features such as a shift
in time-to-peak from one response to another. For a physiologically validated
model, we use the extended balloon model described below.

2.1 The Extended Balloon Model

The Balloon model was first proposed in [10] to link neuronal and vascular pro-
cesses by considering the capillary as a balloon that dilates under the effect of
blood flow variations. More specifically, the model describes how, after some
stimulation, the local blood flow fin�t� increases and leads to the subsequent
augmentation of the local capillary volume ν�t�. This incoming blood is strongly
oxygenated but only part of the oxygen is consumed. It follows a local decrease of
the deoxyhemoglobin concentration ξ�t� and therefore a BOLD signal variation.
The Balloon model was then extended in [8] to include the effect of the neuronal
activity u�t� on the variation of some auto-regulated flow inducing signal ψ�t�
so as to eventually link neuronal to hemodynamic activity. The global physio-
logical model corresponds then to a non-linear system with four state variables
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Fig. 1. Effect of the physiological parameters on the BRF (left) and PRF (right) shapes.
The parameters values proposed in [8] are used except for one parameter whose identity
and value is modified as indicated in the plot.

�ψ,fin,ν, ξ� corresponding to normalized flow inducing signal, local blood flow,
local capillary volume, and deoxyhemoglobin concentration. Their interactions
over time are described by the following system of differential equations:�������������

dfin�t�
dt � ψ�t�

dψ�t�
dt � ηu�t� � ψ�t�

τψ
� fin�t��1

τf
dξ�t�
dt � 1

τm

�
fin�t�

1��1�E0�
1�fin�t�

E0
� ξ�t�ν�t�

1
w̃�1

�
dν�t�
dt � 1

τm

�
fin�t� � ν�t�

1
w̃

� (1)

with initial conditions ψ�0� � 0,fin�0� � ν�0� � ξ�0� � 1. Lower case notation
is used for normalized functions by convention. The system depends on 5 hemo-
dynamic parameters: τψ, τf and τm are time constants respectively for signal
decay/elimination, auto-regulatory feedback from blood flow and mean transit
time, w̃ reflects the ability of the vein to eject blood, and E0 is the oxygen ex-
traction fraction. Another parameter η is the neuronal efficacy weighting term
that models neuronal efficacy variability.

Once the solution of the previous system is found, Buxton et al [10] proposed
the following expression that links the BOLD response h�t� to the physiological
quantities considering intra-vascular and extra-vascular components:

h�t� � V0�k1�1� ξ�t�� � k2�1�
ξ�t�

ν�t�
� � k3�1� ν�t��	 (2)

where k1, k2 and k3 are scanner-dependent constants and V0 is the resting blood
volume fraction. According to [10],k1 
 7E0, k2 
 2 and k3 
 2E0 � 0.2 at a field
strength of 1.5T and echo time TE � 40ms.

The physiological parameters used are the ones proposed by Friston et al in
[8]: V0 � 0.02, τψ � 1.25, τf � 2.5, τm � 1, w̃ � 0.2, E0 � 0.8 and η � 0.5.
The BRF and PRF generated using these parameters with the physiological
model are shown in Fig. 1 under the label “Friston 00” (dashed line). The rest
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of the curves show the effect of changing the physiological parameters: η is a
scaling factor and causes non-linearities above a certain value; τψ controls the
signal decay, which is more or less smooth; the auto-regulatory feedback τf
regulates the undershoot; the transit time τm expands or contracts the signal
in time; the windkessel parameter w̃ models the initial dip and the response
magnitude; the oxygen extraction E0 impacts the response scale. After analysing
the behaviour of the model when varying the parameters values, the impact of
each parameter was investigated and we concluded that the values proposed in
[8] seemed reasonable.

2.2 Physiological Linear Relationship between Response Functions

From the system of equations previously defined, we derive an approximate
relationship between the PRF, namely g�t�, and the BRF, which is given by
h�t� when u�t� is an impulse function. Both BRF and PRF are percent signal
changes, and we consider g�t� � fin�t��1, as fin�t� is the normalized perfusion,
with initial value 1. Therefore the state variables are �ψ, g, 1� ν, 1� ξ�.

In the following we will drop the time index t and consider functions h,ψ, etc.
in their discretized vector form. We can obtain a simple relationship between h
and g by linearizing the system of equations. Equation (2) can first be linearized
into:

h � V0��k1 � k2��1� ξ� � �k3 � k2��1� ν�	 . (3)

We then linearize the system (1) around the resting point �ψ, g, 1� ν, 1� ξ� �
�0,0,0,0� as in [11]. From this linearization, denoting by D the first order dif-
ferential operator and I the identity matrix, we get:���������

D�g� � �ψ�
D � I

w̃τm

�
�1� ν� � � 1

τm
g�

D � I
τm

�
�1� ξ� � �

�
γI � 1�w̃

w̃τ2
m

�
D � I

w̃τm

��1
�
g

, (4)

where γ � 1
τm

�
1� �1�E0� ln�1�E0�

E0

�
. It follows a linear link between h and g

that we write as g � Ωh where:

Ω � V �1
0

�
��k1 � k2�γB � �k1 � k2�

1� w̃

w̃τ2m
BA�

k3 � k2
τm

A

��1

(5)

with A �

�
D �

I

w̃τm

��1

and B �

�
D �

I

τm

��1

(6)

Using values of physiological constants as proposed in [8], Fig. 2 shows the
BRF and PRF results that we get (hlin, glin) by applying the linear operator to
physiologically generated PRF (gphysio) or BRF (hphysio): hlin � Ω�1gphysio or
glin � Ωhphysio compared to these physiologically generated hphysio and gphysio
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Fig. 2. Physiological responses generated with the physiological model, using param-
eters proposed in [8]: neural activity ψ, physiological (hphysio or BRFphysio) and lin-
earized (hlin or BRFlin) BRFs, physiological (gphysio or PRFphysio) and linearized
(glin or PRFlin) PRFs.

functions, computed by using the physiological model differential equations. Note
that, although time-to-peak (TTP) values are not exact, the linear operator
maintains the shape of the functions and satisfyingly captures the main features
of the two responses. We considered a finer temporal resolution than TR for Ω
and, besides this, there is no direct dependence on the TR.

The derivation of this linear operator gives us a new tool for analyzing the
ASL signal, although this link is subject to caution as linearity assumption is
strong and this linearization induces approximation error.

3 Bayesian Hierarchical Model for ASL Data Analysis

The ASL JDE model described in [6,7] assumes a partitioned brain into several
functional homogeneous parcels each of which gathers signals which share the
same response shapes. In a given parcel P , the generative model for ASL time
series, measured at times �tn�n�1:N where tn � nTR, N is the number of scans
and TR the time of repetition, with M experimental conditions, reads � j � P ,
P  � J :

yj�
M	

m�1

amj Xmh
�������
�a�

� cmj WXmg
�����������
�b�

� P�j
�����
�c�

� αjw
�����
�d�

� bj
�����
�e�

(7)

The signal is decomposed into (a) task-related BOLD and (b) perfusion compo-
nents given by the first two terms respectively; (c) a drift component P�j already
considered in the BOLD JDE [5]; (d) a perfusion baseline term αjw which com-
pletes the modelling of the perfusion component; and (e) a noise term.

ASL fMRI data consists in the consecutive and alternated acquisitions of
control and magnetically tagged images. The tagged image embodies a perfusion
component besides the BOLD one, which is present in the control image too.
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The BOLD component is noisier compared to standard BOLD fMRI acquisition.
The control/tag effect is implicit in the ASL JDE model with the use of matrix
W . More specifically, we further describe each signal part below.

(a) The BOLD component: h � R
F�1 represents the unknown BRF shape,

with size F � 1 and constant within P . The magnitude of activation or BOLD
response levels are a �

�
amj , j � P ,m � 1 : M

�
.

(b) The perfusion component: It represents the variation of the perfusion
from the baseline when there is task-related activity. g � R

F�1 represents the
unknown PRF shape, with size F � 1 and constant within P . The magnitude of
activation or perfusion response levels are c �

�
cmj , j � P ,m � 1 : M

�
. W mod-

els the control/tag effect in the perfusion component, and it is further explained
below.
(a-b) Considering Δt � TR the sampling period of h and g, whose temporal
resolution is assumed to be the same,X � �xn�fΔt, n � 1 : N, f � 0 : F � is a bi-
nary matrix that encodes the lagged onset stimuli. In [6,7], BRF and PRF shapes
follow prior Gaussian distributions h ∼ N �0, vhΣh� and g ∼ N �0, vgΣg�, with
covariance matricesΣh andΣg encoding a constraint on the second order deriva-
tive so as to account for temporal smoothness. The BOLD (BRLs) and perfusion
(PRLs) response levels (resp. a and c) are assumed to follow different spatial
Gaussian mixture models but governed by common binary hidden Markov ran-
dom fields �qmj , j � P� encoding voxels’ activation (qmj � 1, 0 for activated, resp.
non-activated) states for each experimental condition m. This way, BRLs and
PRLs are independent conditionally to q: p�a, c  q�. An Ising model on q in-
troduces spatial correlation as in [6,7]. For further interest please refer to [5].
Univariate Gamma/Gaussian mixtures were used instead in [12] at the expense
of computational cost. The introduction of spatial modelling through hidden
Markov random fields gave an improved sensitivity/specificity compromise.
(c) The drift term: It allows to account for a potential drift and any other
nuisance effect (e.g. slow motion parameters). Matrix P �

�
p1, . . . ,pO

�
of size

N � O comprises the values of an orthonormal basis (i.e., P tP � IO). Vector
�j � �
o,j, o � 1 : O�t contains the corresponding unknown regression coefficients
for voxel j. The prior reads �j ∼ N �0, v�IO�.
(b-d) The control/tag vector w (N-dimensional): It encodes the difference
in magnetization signs between control and tagged ASL volumes. wtn � 1�2 if
tn is even (control volume) and wtn � �1�2 otherwise (tagged volume), and
W � diag�w� is the diagonal matrix with w as diagonal entries.
(d) The perfusion baseline: It is encoded by αj at voxel j. The prior reads
αj � N �0, vα�.
(e) The noise term: It is assumed white Gaussian with unknown variance vb,
bj�N �0, vbIN �.
Hyper-parameters Θ. Non-informative Jeffrey priors are adopted for

�
vb, v�,

vα
�
and proper conjugate priors are considered for the mixture parameters of

BRLs (θa) and PRLs (θc).
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4 A Physiologically Informed 2-steps Inference Procedure

The BOLD component is known to have a higher SNR than the perfusion com-
ponent in the ASL signal, and can be estimated with a higher confidence. The
link g � Ωh that we derived between both components can then be used to
inform the PRF from the BRF. Using this link the other way around may not
be satisfying as it may result in a contamination of h by a noisier g.

This effect has been noticed in the implementation of a physiologically in-
formed Bayesian procedure, considering the generative model (7), and the fol-
lowing priors for the BRF and PRF h � N �0, vhΣh� and gh � N �Ωh, vgΣg�,
with Σh � Σg � �Δt�4�Dt

2D2�
�1. D2 is the truncated second order finite differ-

ence matrix of size �F �1���F �1� that introduces temporal smoothness, as in
[6,7], and vh and vg are scalars that we set manually. As seen in Fig. 4[Middle],
this approach does not yield satisfying results, not only for the perfusion com-
ponent, but also for the BOLD one, compared to the model presented in [6,7].

We therefore propose to exploit the described physiological link in a two-
step procedure, in which we first identify hemodynamics properties (ĥ, âmj ),
and then use the linear operator Ω and the previously estimated hemodynamic
properties to recover the perfusion component (ĝ, ĉmj ). This way, we avoid an
arising contaminating effect of g on the estimation of h, as in the one-step
approach in Fig. 4[Middle]. Each step is based on a Gibbs sampling procedure
as in [6,7].

4.1 Hemodynamics Estimation Step M1

In a first step M1, our goal is to extract the hemodynamic components and the
drift term from the ASL data. In the JDE framework (7), it amounts to initially
considering the perfusion component as a generalized perfusion term, including
perfusion baseline and event-related perfusion response. The generative model
(7) for ASL time series can be equivalently written, by grouping the perfusion
terms involving W � diag�w�, as

yj�
M	

m�1

amj Xmh�P�j�W

�
M	

m�1

cmj Xmg�αj1

�
�bj (8)

where we consider αjw � Wαj1. Note that the hemodynamics components
BRF h and the drift term �j can be estimated first, by segregating them from a
general perfusion term and a noise term. However, the perfusion component is
considered in the residuals, so as to properly estimate its different contributions
in a second step M2.

Given the estimated �hM1 , ��M1

and �aM1 , we then compute residuals rM1

containing the remaining perfusion component:

rM1

j � yj �
M	

m�1

�am,M1

j Xm�hM1 �P��M1

j (9)
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4.2 Perfusion Response Estimation Step M2

From the residuals of the first step rM1 , we estimate the perfusion component.
The remaining signal is, according to (7), �j � 1 : J ,

yM2

j � rM1

j �
M	

m�1

cmj WXmg � αjw � bj (10)

In this step, we introduce a prior on g, to account for the already described
physiological relationship g � Ωh:

g�hM1 � N �Ω�hM1 , vgΣg�, with Σg � IF . (11)

The significance of the 2-step approach is to first preprocess the data to sub-
tract the hemodynamic component within the ASL signal, as well as the drift
effect, and to focus in a second step on the analysis of the smaller perfusion effect.
In [4], differencing methods were used to subtract components with no interest
in the perfusion analysis and directly analyse the perfusion effect in the time
series. In contrast to these methods, we expect to disentangle perfusion from
BOLD components by identifying all the components contained in the signal,
and to recover them more accurately.

5 Simulation Results

The generative model for ASL time series in section 3 has been used to gen-
erate artificial ASL data. A low SNR has been considered, with TR � 1 s,
mean ISI � 5.03 s, duration 25 s, N � 325 scans and two experimental con-
ditions (M � 2) represented with 20 � 20-voxel binary activation label maps
corresponding to BRL and PRL maps shown in Fig. 3. For both conditions:
�amj qj � 1� � N �2.2, 0.3� and �cmj qj � 1� � N �0.48, 0.1�. Parameters were cho-
sen to simulate a typical low SNR ASL scenario, in which the perfusion compo-
nent is much lower than the hemodynamics component. A drift �j � N �0, 10I4�
and noise variance vb � 7 were considered. BRF and PRF shapes were simulated
with the physiological model, using the physiological parameters used in [8].

In a low SNR context, the PRF estimate retrieved by the former approach
developed in [6,7] is no physilogically relevant as shown in Fig. 4[(c), Top]. In the
case of a physiologically informed Bayesian approach, considering a single-step
solution as in Fig. 4[Middle], the perfusion component estimation is worse than

Fig. 3. BRL and PRL ground truth for a noise variance vb � 7
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Fig. 4. Results on artificial data. Top row: non-physiological version. Middle row:
physiological 1-step version. Bottom row: physiological 2-steps version. (a,d): esti-
mated BRL and PRL effect size maps respectively. The ground-truth maps for the BRL
and PRL are depicted in Fig.3. (b,c): BRF and PRF estimates, respectively, with their
ground truth.

Fig. 5. Relative RMSE for the BRF and PRF and the two JDE versions, wrt noise
variance vb ranging from 0.5 to 30.

for the approach described in [6,7] and the BRF estimation is also degraded
owing to the influence of the noisier perfusion component during the sampling.
In contrast, the 2-steps method proposed here delivers a PRF estimate very close
to the simulated ground truth (see Fig. 4[(c), Bottom] with a BRF which is well
estimated too.
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In Fig. 5, the robustness of both approaches with respect to the noise variance
is studied, in terms of BRF and PRF recovery. The relative root-mean-square-
error (rRMSE) is computed for the PRF and BRF estimates, i.e. rRMSEφ �

��φ� φ�true����φ�true�� where φ � �h, g�. We observed that maintaining a good
performance in the BRF estimation, we achieved a much better recovery of the
PRF for noise variances larger than vb � 1. Therefore, with the introduction
of the physiological link between BRF and PRF, we have improved the PRF
estimation.

6 Real Data Results

Real ASL data were recorded during an experiment designed to map auditory
and visual brain functions, which consisted of N � 291 scans lasting TR � 3 s,
with TE � 18 ms, FoV 192 mm, each yielding a 3-D volume composed of
64 � 64 � 22 voxels (resolution of 3 � 3 � 3.5 mm3). The tagging scheme used
was PICORE Q2T, with TI1 � 700 ms, TI2 � 1700 ms. The paradigm was
a fast event-related design (mean ISI � 5.1 s) comprising sixty auditory and
visual stimuli. Two regions of interest in the right temporal lobe, for the auditory
cortex, and left occipital lobe, for the visual cortex, were defined manually.

Fig. 6(b-c) depicts the response estimates superimposed to the canonical shape
which is in accordance with the BRF estimates for both methods. Indeed, we
consider here an auditory region where the canonical version has been fitted. Ac-
cordingly, the BRL maps (Fig. 6(a)) also look alike for both methods. However,
PRF estimates significantly differ and the effect of the physiologically-inspired
regularization yields a more plausible PRF shape for the 2-steps approach com-
pared with the non-physiological JDE version. Results on PRL maps (Fig. 6(d))
confirm the improved sensitivity of detection for the proposed approach. In the
same way, in the visual cortex, Fig. 6(f-g) shows the BRF and PRF estimates,
giving a more plausible PRF shape for the 2-steps approach, too. For the de-
tection results (Fig. 6(h)), the 2-steps approach seems also to provide a much
better sensitivity of detection.

7 Discussion and Conclusion

Starting from non-linear systems of differential equations induced by physio-
logical models of the neuro-vascular coupling, we derived a tractable linear op-
erator linking the perfusion and BOLD responses. This operator showed good
approximation performance and demonstrated its ability to capture both real-
istic perfusion and BOLD components. In addition, this derived linear operator
was easily incorporated in a JDE framework at no additional cost and with a
significant improvement in PRF estimation, especially in critical low SNR sit-
uations. As shown on simulated data, the PRF estimation has been improved
while maintaining accurate BRF estimation. Real data results seem to confirm
the better performance of the proposed physiological approach compared to its
competing alternative. In terms of validation, future work will be devoted to
intensive validation on whole brain analysis and multiple subjects.



Physiologically informed Bayesian Analysis of ASL fMRI Data 47

Auditory cortex results
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Visual cortex results
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Fig. 6. Comparison of the two JDE versions on real data in the auditory and visual
cortex. (top row in auditory and visual cortex results): non-physiological version.
(bottom row in auditory and visual cortex results): physiological 2-steps version.
(a,e) and (d,h): estimated BRL and PRL effect size maps, respectively. (b,f) and
(c,g): BRF and PRF estimates, respectively. The canonical BRF is depicted as a black
dashed line, while PRF and BRF estimated are depicted in solid red and blue lines,
respectively.
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Abstract. We discuss a new planning method for corrective osteotomy
surgery without the need to make a CT scan of the contralateral bone.
We use a statistical shape model to estimate the most likely relative po-
sition of two bone segments of an osteotomized bone. To investigate the
added value of geometrical properties for planning, different geometri-
cal features of the bone surface are being incorporated. The feasibility
and accuracy of our proposed method are investigated using 10 virtually
deformed radii and a statistical shape model based on 35 healthy radii.

1 Introduction

Limb fractures are very common and sometimes result in malunion of the frac-
tured bone segments causing chronic pain, reduced function and finally os-
teoarthritis. For the distal radius, e.g., the annual incidence rate is approximately
0.3% of the population each year [1], while about 5% of these cases result in a
symptomatic malunion requiring secondary treatment by corrective osteotomy
surgery [2]. In this procedure the bone is cut in two segments which are reposi-
tioned and fixated, mostly using an anatomical plate and screws.

In state-of-the-art techniques for planning of such a surgical reconstruction
virtual 3-D bone models are created from CT volume data of the affected bone.
In this approach the CT data of the mirrored contralateral limb is used as
a reconstruction target in the planning procedure. [3–6]. A drawback of this
approach is that a healthy contralateral reference is not always available. Also,
this standard approach requires a CT scan of the healthy limb as well, which
increases the radiation dose by a factor of two.

To overcome these drawbacks a method is required that can provide the plan-
ning of the surgical reconstruction based on the affected bone only by using
shape information of the unaffected segments of the bone. For such a planning
method application of a statistical shape model (SSM) of the bone [7, 8] fitted to
the surface data of the unaffected bone parts seems a logical choice which allows
prediction of the optimal alignment of the bone segments after surgery. In this
context the SSM model describes the patterns that exist within the variation in
shape in a population [9].

M.J. Cardoso et al. (Eds.): BAMBI 2014, LNCS 8677, pp. 49–60, 2014.
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Recently SSM’s were reported to be advantageous in a large number of or-
thopedic applications such as robust and fast bone segmentation [10, 11], cre-
ation of bone geometries for finite element modeling [12, 13], implant design
optimization [14, 15] and several diagnostic applications [9, 16]. Related to our
problem SSM’s have been used to reconstruct bone surfaces from incomplete
bone geometry representations for surgical planning and navigation [17]. In this
paper we make an essential additional step by incorporating the alignment of
the bone segments in the fitting procedure of the SSM to the incomplete bone
surface data.

The general framework concerning the surface fitting problem use deviations
in surface geometry between a reference shape and a target shape to fit one single
shape to the other [18, 19]. The classic method for surface fitting is based on
the iterative closest point (ICP) algorithm. This method minimizes the distance
between points in one surface and the closest points in another surface [20, 21].
A surface matching algorithm was also developed for fitting a statistical shape
model (SSM) of a same type of surface to a target surface [22]. In these methods,
random point sets on a surface are being identified and these point clouds are
registered and matched to compute the corresponding points.

A common way to control surface fitting is to use distance information between
the reference and target during optimization, e.g., using Euclidean norms. This
choice however exploits only limited information about the surface geometry. It
is possible however, to add additional geometrical features such as different shape
related vector fields and curvature as ingredients in controlling the fit. To this
end, different approaches have been developed for matching source and target
surface invariants such as curvature maps [19, 23]. All these methods require
the iteratively updating of corresponding points during the fitting procedure
which is a time consuming step. Furthermore, it is known that including the
corresponding points results in a convergence to local minima due to the partial
alignment instead of the global minimum indicating the perfect alignment.

In this paper we propose a method for surface-fitting of a SSM to the geo-
metrical representation of an affected bone to plan realignment of two bone seg-
ments during corrective surgery. Moreover, we investigate the efficiency of using
different metrics for fitting the SSM to the segments of a target bone. To this end
we optimize the fitting of the model to the target bone using individual features
such as spatial distances, curvature and curvature vectors. Primarily, our goal
is to develop a method which does not require the availability of corresponding
points, nor the data set of the contralateral bone. However, this requirement
becomes essential in the presence of the curvature and curvature vectors. To
this end, we propose a cost function that can be customized for this purpose.
The residual positioning error for different optimization metrics is examined ex-
perimentally, using virtual malunions of radii outside those used for building
the SSM.
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Fig. 1. Sketch for illustrating the correction prototype, a) Initial bone segment posi-
tions, b) Initial bone position M c) Intermediate step where the model is deformed,
scaled and translated and bone segment A has been translated and rotated, d) the final
model where the most likely solution has been found

2 SSM Based Planning

The challenge is to find the correct relative position of the distal and proximal
bone segments from a single malunited bone. The surfaces A and B of both bone
segments are initially sub-optimally aligned due to the malunion; see Figure 1.a.
To find the correct alignment of these bone segments we propose to fit a sta-
tistical shape model M built from multiple segmentations of bones to patient
data containing the two segments A and B of the bone. For initialization we
use the statistical model M close to the two bone segments (Figure 1.b). Subse-
quently, an iterative optimization process is performed in which A is subject to
translations and rotations, B is considered fixed, and M is translated, rotated,
scaled and reshaped until A and B optimally fit with M. After convergence the
translation and rotation parameters of A with respect to B describe the repo-
sitioning parameters that needs to be applied to A during surgery (Figure 1.c).
The best-fitting shape M describes the most likely shape of the original bone
(Figure 1.d).

An extra-articular fracture resulting in a malunion often shows a deformed
region between a distal (A) and proximal (B) bone segment. In a malunion the
distal bone segment is malpositioned with respect to the proximal bone segment,
but apart from the location of malunion, the shapes of these bone segments are
unaffected. Since the deformed region is unlike normal bone geometry we exclude
it from the fitting procedure in our planning method.

2.1 Fitting of the SSM to Two Bone Segements

During the fitting process bone segment A and the model M are subject to
translation tA and tM and rotation rA and rM computed by three Rodrigues
rotation parameters. The model M is also allowed to scale indicated by the
parameter sM and to distort using the shape parameter b. The variables to be
optimized are R = [rA; tA; rM ; tM ; sM ; b] = [RA;RM ; b].
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The total likelihood to correct the two bone parts A and B orientation and
position with respect to each other using a model M consists of the shape simi-
larity, scaling and feature measures and reads

L(A,B,M,R) = Pf (B ∪ A(RA) | M(RM )) + Ps(sM ) + Pb(b). (1)

where P (b) is a probability density function representing the validity of a
shape with shape parameter b, P (sM ) is a probability function for scaling and
Pf (X | M) is a probability density function for measuring the similarity between
the statistical model M and bone surface X . For our particular application we
have X = B ∪ A(RA). The probability density function V includes the rep-
resentation of surfaces geometrical features, shape deformation and the closet
neighborhood distance measure.

The optimal composition of bone parts A and B can then be obtained by
maximizing L(A,B,M,R). However, due to very low likelihood values in Pf (B∪
A(RA) | M(RM )), this might lead to numerical problems. Therefore we mini-
mize the negative logarithm − logPf (B ∪ A(RA) | M(RM )) using a standard
gradient descent method. In the following, building of the SSM as well as each
of the probability density functions are described in detail.

2.2 Probability Distribution Functions for Shape Validity and
Scaling

In order to construct the SSMs in this paper the active shape modelling in-
troduced in [7] has been applied. We represent each bone by a 3n element
vector formed by concatenating the elements of the individual surface points
xi = [x1, y1, z1, · · · , xn, yn, zn], i = 1, 2, · · · , l where l is the number of indi-
vidual shapes. Formally, each shape can be described using the linear model

x = m+ Pb. (2)

Here, m consists of the coordinates of the mean shape, P is a matrix with
modes of variation and b is a vector with the weighting parameters for the
variations specified for each mode j. The non-rigid registration introduced in
[24] has been applied in order to estimate the corresponding points of all shapes
and consequently the mean m and the modes of variation P [7]. Using the
weighted summation of the different modes of variations, a new shape can be
computed.

The probability distribution function for scaling Ps(sM ) is modeled using a
1D normal distribution with mean 1 and standard deviation sM computed from
the volume estimation during the SSM construction.

2.3 Probability Distribution Model to Compare Shapes

We propose a probability distribution function inspired by the registration model
introduced in Granger et al. [25]. In this model the alignment of two point clouds
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is being treated as a probability density maximization problem, where one point
clouds is representing the centroid of a Gaussian Mixture Model (GMM) and the
other one represents the data points. Ideally, two point sets become aligned and
the correspondence is estimated using the Mahalanobis distance. Here, bone
segment A are described by points aj on the surface of A and points mk are
located on the surface of the deformed and transformed model M is described
by a GMM. We propose a probability distribution which combines the point-wise
distance (e.g. Euclidean) between the model and the patient data, the point-wise
angle between any vector data corresponding to the point cloud shapes, and the
differences in their curvature maps. Given the points aj ; j = 1; 2; · · · ;nA on A
with nA as the number of points in cloud A, then the likelihood that the point
mk in M is sampled as point on A is computed by

P (aj | mk) =
1

(2π)9/2 (| Σp || Υp || Γp |)3/2
(3)

exp(−1

2
(d�

jkΣ
−1
p djk)) + exp(−1

2
(c�jkΥ

−1
p cjk)) + exp(−1

2
(t�jkΓ

−1
p tjk))

Where the covariance matrix Σp = σpI is a diagonal 3× 3 matrix with the stan-
dard deviation σp and the identity matrix I. Respectively, Υp = εpI and Γp = γpI
describe the different Covariance matrices for curvature and the vectors. In this
work all nM points of mk; k = 1; 2; · · · ;nM in M are considered equally uncer-
tain and therefore standard deviations are the same for all mk. The Euclidean

distance is djk(aj ,mk) = djk =
√∑3

i=1(a
i
j −mi

k) and the vector match mea-

sure is tjk(aj ,mk) = tjk = 1 − w(aj ,mk). Where, w(aj ,mk) = vj .vk/|vj|.|vk|,
0 ≤ w ≤ 1 and vj is the vector at point aj where |.| denotes the norm of the
vector. The smaller is the angle between vectors at two points, the larger is the
similarity between two point data. The vectors denote the principal curvature
vectors. Later on in Section 5 we will clarify the principal curvature vector def-
inition. Here, cjk = c(aj ,mk) represents the difference between the curvature
at aj and mk. Our probability function is customized in order to include the
corresponding points. This setting possible as long as the nature of distribution
of all the features can be well defined.

Given the statistical model (3), the likelihood P (X | M) that all points in X
are sampled from M is estimated by

Pf (X | M) =

nA∑
j=1

P (aj | M) =

nA∑
j=1

1

nM

nM∑
k=1

P (aj | mk). (4)

Where X is one or more bone segments.

3 Experiments

3.1 Data

The proposed method was evaluated using CT scans of healthy radii. To this end
45 radii (26 women, 19 men, age [11, 56] years) were imaged with voxel size
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Fig. 2. a) Gaussian curvature map, the color bar indicates the maximum principal
curvature, b) Normal vector illustration, c) maximum curvature vector

(0.45× 0.45× 0.45)mm using a Brilliance 64-channel CT scanner with a regular-
dose, high-resolution protocol. In order to scan the complete radii individuals were
scanned in prone position with the forearm extended above the head. Right radii
polygons were created by image segmentation [4]. We mirror the cases where only
the left radius was scanned. This resulted in 45 healthy right radii polygons. Ten of
these were randomly selected as target bones, the remaining 35 bones were used
as training shapes for building SSMs. Knowing the corresponding points of the
bones inside the training set, enabled estimating σ, ε and γ using the standard de-
viation of the differences between the corresponding points distance-, curvature-
and curvature vector-wise. Subsequent experiments were done using these values.
In case more than one of these surface features was evaluated at the same time,
linear combinations of the distance djk, curvature cjk and tangent vector mea-
sure tjk applied (3). We sampled 5000 points per surface. In the above-described
experiment, optimization of the fitting procedure is based on the average nearest
neighbor distance between points of the SSM and a target bone.

3.2 Evaluating the SSM

To investigate how many shapes are required to build a SSM that sufficiently
represent a set of target bones, we randomly selected 10, 15, 20, 25 and 35 train-
ing shapes of complete bones to build the SSMs. This SSM was subsequently
fit to the 10 target bones and the closet nearest neighbor distance was deter-
mined for each target bone, resulting in a mean and a standard deviation of
this parameter. Figure 3.a shows the mean error and standard deviation values
for these experiments. It is clearly shown that the mean and standard deviation
reduce with the number of training shapes in the SSM. Our computations indi-
cate the SSM containing 35 training shapes is considered sufficiently accurate to
describe a target bone shape and is therefore used as SSM in the remainder of
this document.
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Fig. 3. a) Agreement between SSM and target bones as a function of the number of
training shapes inside the SSM. b) Agreement between SSM, containing 35 training
shapes, and target bones as a function of the number of modes of variation taken into
account.

3.3 Evaluating Modes of Variation

The fitting procedure can be accelerated by only considering relevant modes
of variation and disregarding higher modes of variation that merely represent
noise. To evaluate how many modes of variation are required to fit the SSM
with sufficient accuracy to a set of target bones, we performed fitting of the
SSM to the 10 target bones taking into account an increasing number of modes
of variation Fig. (3b). The nearest neighbor distance is again used to quantify
the agreement between SSM and target bones. Based on this computations for
the rest of the experiments we chose the first 25 modes of variations.

3.4 Including the Geometrical Features

We performed fitting of the SSM to the 10 target bones using different combina-
tions of the geometrical features, 35 training shapes and 25 modes of variations.
We estimating corresponding points based on minimum Euclidean distance. Fig-
ure 4 shows the computational result. Note that this figure only illustrates the
result for the combination with more obvious variations with respect to the
rest. We observe that including the geometrical features result in a more con-
sistent fitting and smaller distribution of the standard deviation. This is due to
the improvement of the local alignment. Using this computation for the repo-
sitioning experiment we choose the combination of distance and the curvature
vector measure.

3.5 Accuracy of Bone Repositioning

To evaluate the accuracy of bone repositioning using the proposed method we
simulated three virtual malunions for each of the 10 target bones, i.e., 30 sim-
ulated malunions. This enables comparing the reconstructed radius with its
ground truth, i.e., the radius before the malunion. A malunion was simulated by
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Fig. 4. Variation of the fitting using combination of different features using 35 training
shapes and 25 modes of variations, D stands for distance, N is for normal vectors, C
is for curvature, CV stands for curvature vectors.

Fig. 5. Boxplot showing the accuracy of repositioning the distal radius segment with
respect to the proximal segment, based on fitting a SSM to remaining bone segments
in a simulation experiment (10 target bones, 3 deformities per bone). dx,dy and dz are
translations between the centers of gravity of the reconstruction result and the ground
truth. drx, dry and drz are the rotations about the x, y and z axes. a)reconstruction
using bilateral asymmetry [26] b) reconstruction using distance measure. c) reconstruc-
tion using distance and curvature vectors.

removing a bone piece between a distal and proximal bone segment and by ran-
domly translating (range [2, 5]mm) and rotating (range [10, 60]◦) the distal part.
The height of the randomly removed piece (the defect) is called the defect height
(range [3, 7] mm). The simulated bone was subsequently reconstructed using the
proposed method. Figure 5 shows the residual rotation rr and translation tr er-
ror with respect to the ground truth as box plots. The box represents standard
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deviation , the horizontal line the mean value and the whiskers represent the
range. Figure 5.a indicates differences due to bilateral asymmetry reported by
Vroemen et al. [26] as determined for 20 individuals by left-to-right matching
and right-to-left matching of distal and proximal segments, explaining the dif-
ferent sign in their results. These dots enable comparing repositioning results of
the proposed method with generally accepted variations since the contralateral
side is normally considered the best reference available. Figure 5a shows the
estimated error when only the probability distance measure is used as metric
during the fitting procedure.

We observe the improvement of the error distribution level in comparison with
the fit using bilateral differences. The translation errors dx, dy and dz are smaller
than acceptable levels considering the bilateral differences. For rotation, also we
see an improvement in comparison with the bilateral differences particularly
about the z-axis, i.e., the longitudinal axis of the bone. In general, we observe
a slight improvement by adding curvature geometrical features; see Figure 5b
and 5c. Figure 6b is a typical example after reconstruction with only distance as
optimization metric. Figure 6c−d shows the common reconstruction error which
occurs by only using the distance measure. The experiments were performed for
different defect heights and we noticed the larger error occurs with larger heights.

Fig. 6. a) Axes defined within the radius and heights of removals, b) correctly recon-
structed bone, c) common translation and rotation error occurs using only the distance
d) poorly reconstructed bone with 10 degrees rotation error about the z-axis and 4 mm
translation error along the x-axis.

4 Discussion

We introduced a new technique for repositioning bone segments after a fracture
or malunion using a SSM of the radius and a set of differential geometry features
for surface-to-surface fitting. The method yields a set of transformation and rota-
tion parameters, which can be used in a device for the actual bone repositioning;
see [27]. We showed that residual positioning errors are very close to what can
be achieved compared to standard 3-D planning, which is limited as a result of
bilateral differences [26]. The use of only a distance measure as metric for the
optimization of fitting seemed slightly inferior to using a metric that includes
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the shapes curvature and/or curvature vectors, particularly, when a larger piece
of the bone is removed.

Our study aimed at modeling the radius although it can be easily extended
for other bone types as well. The presented method requires an initial segmen-
tation step. In future studies this can be avoided by performing the fitting and
obtaining the geometrical features directly using CT grayscale volumes. It re-
duces a possible observer bias and increases the degree of automation since no
user interaction is required for segmentation.

A big advantage of the proposed method is the fact that a contralateral bone
is not required. This allows bone repositioning when a contralateral bone is not
available. In addition, it reduces the radiation-absorbed dose, since the con-
tralateral arm does not need to be scanned. In this pilot study residual errors
in repositioning parameters already appeared to be very close to what can be
achieved compared to conventional 3-D planning based on bilateral symmetry,
we expect that the method will show valuable in the next generation of planning
applications.

5 Appendix

Let xi = xi(u, v), i = 1, 2, 3 be a regular parameterizations of a surface. The
Gaussian curvature of a surface in R3 is given by

k = κ1κ2 =
LN −M2

EG− F 2
,

where κ1 and κ2 are the principal curvature, E = xu · xu, F = xu · xv and
G = xv ·xv are coefficients of the first fundamental form and L = xuu·n,N = xvv ·
n,M = xuv ·ni, are coefficients of the second fundamental form. These coefficients
are computed at given point xi in the parametric plane by the projections of the
second partial derivatives of x at that point onto the normal vector n. In this
setting, it is easy to see why the Gaussian curvature is independent of the choice
of the unit normal n. Notice that if the sign of n is reversed, the signs of the
coefficients of L,M,N are reversed too. Further, while the signs of both principal
curvatures κ1 and κ2, the product K = κ1κ2 remains unaffected. Clearly, the

sign of mean curvature H = (κ1+κ2)
2 , depends on the choice of sign of n. In order

to compute the curvature vectors, we compute the terms of the first and second
fundamental forms and define the corresponding metric tensors [28],

F1 =

[
E F
F G

]
, F2 =

[
L M
M N

]
, (5)

and we introduce
O = inv(F1)F2.

The previously introduced principal curvatures κ1, κ2 are the eigenvalues of the
matrix O. The eigenvectors of the matrix O are corresponding to the vectors
pointing to the direction of κ1, κ2 respectively (Figure 6a − c). Therefore, a
shape can be described by the type of curvature and the type of the orientation.



Bone Reposition Planning for Corrective Surgery 59

References

1. Athwal, G.S., Ellis, R.E., Small, C.F., Pichora, D.R.: Computer-assisted distal
radius osteotomy. The Journal of Hand Surgery 28(6), 951–958 (2003)

2. Miyake, J., Murase, T., Moritomo, H., Sugamoto, K., Yoshikawa, H.: Distal radius
osteotomy with volar locking plates based on computer simulation. Clin. Ortho.
and Rel. Res. 469(6), 1766–1773 (2011)

3. Cronier, P., Pietu, G., Dujardin, C., Bigorre, N., Ducellier, F., Gerard, R.: The con-
cept of locking plates. Orthopaedics and Traumatology: Surgery and Research 96(4,
Suppl.), S17–S36 (2010)

4. Dobbe, J., Strackee, S.D., Schreurs, A.W., Jonges, R., Carelsen, B., Vroemen, J.,
Grimbergen, C.A., Streekstra, G.J.: Computer-assisted planning and navigation
for corrective distal radius osteotomy, based on pre- and intraoperative imaging.
IEEE Trans. Biomed. Eng. 58(1), 182–190 (2011)

5. Dobbe, J., Vroemen, J.C., Strackee, S., Streekstra, G.: Patient-tailored plate for
bone fixation and accurate 3d positioning in corrective osteotomy. Med. Biol. Eng.
Comput. (2012) (in press)

6. Murase, T., Oka, K., Moritomo, H., Goto, A., Yoshikawa, H., Sugamoto, K.:
Three-dimensional corrective osteotomy of malunited fractures of the upper ex-
tremity with use of a computer simulation system. The Journal of Bone and Joint
Surgery 90(11), 2375–2389 (2008)

7. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their
training and application. Comp. Vis. and Im. Und. 61(1), 38–59 (1995)

8. van de Giessen, M., Foumani, M., Vos, F.M., Strackee, S.D., Maas, M., Vliet, L.V.,
Grimbergen, C.A., Streekstra, G.J.: A 4d statistical model of wrist bone motion
patterns. IEEE Trans. Med. Imaging 31(3), 613–625 (2012)

9. Waarsing, J., Rozendaal, R., Verhaar, J., Bierma-Zeinstra, S., Weinans, H.: A sta-
tistical model of shape and density of the proximal femur in relation to radiological
and clinical OA of the hip. Osteoarthritis and Cartilage 18(6), 787–794 (2010)

10. Chung, F., Schmid, J., Magnenat-Thalmann, N., Delingette, H.: Comparison of
statistical models performance in case of segmentation using a small amount of
training datasets. The Visual Computer 27(2), 141–151 (2011)

11. Schmid, J., Kim, J., Magnenat-Thalmann, N.: Robust statistical shape models for
mri bone segmentation in presence of small field of view. Med. Im. Analys., 155–168
(2011)

12. Nicolella, D.P., Bredbenner, T.L.: Development of a parametric finite element
model of the proximal femur using statistical shape and density modelling. Com-
puter Methods in Biomechanics and Biomedical Engineering 15(2), 101–110 (2012)

13. Taylor, M., Bryan, R., Galloway, F.: Accounting for patient variability in finite
element analysis of the intact and implanted hip and knee: a review. Int. J. Numer.
Method Biomed. Eng. 29(2), 273–292 (2013)
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Abstract. We introduce iLang, a language and software framework for
probabilistic inference. The iLang framework enables the definition of
directed and undirected probabilistic graphical models and the auto-
mated synthesis of high performance inference algorithms for imaging
applications. The iLang framework is composed of a set of language
primitives and of an inference engine based on a message-passing system
that integrates cutting-edge computational tools, including proximal al-
gorithms and high performance Hamiltonian Markov Chain Monte Carlo
techniques. A set of domain-specific highly optimized GPU-accelerated
primitives specializes iLang to the spatial data-structures that arise in
imaging applications. We illustrate the framework through a challenging
application: spatio-temporal tomographic reconstruction with compres-
sive sensing.

1 Introduction

Probabilistic reasoning combines deductive logic with the capacity of probability
theory to handle uncertainty, providing an expressive formalism with a broad
range of applications in many areas of artificial intelligence and machine learn-
ing. Stochastic programming languages address the model-building process by
giving a formal language which provides simple, uniform, and re-usable descrip-
tions of a wide class of models, and supports generic inference techniques [1,2,3].
Probabilistic graphical models express explicitly the structure of probabilistic
models by means of a graph, constituting a natural data structure for the design
of stochastic programming languages.

The iLang framework is aimed at enabling the construction of models for
imaging applications, focusing in particular on volumetric biomedical imaging.
In this domain, probabilistic graphical models have been employed recently in a
number of applications including image segmentation, tomographic reconstruc-
tion and multi-modal image processing. The integrated modeling paradigm has
emerged in the work of K. Van Leemput [4], J. Ashburner [5], B. Fischl [6] and
others in the context of medical image classification and alignment, adopting
a model-based approach to devise algorithms for the joint estimation of multi-
ple model parameters. Other instances of the integrated probabilistic modeling
paradigm include the fusion of functional and structural information for the pur-
pose of inferring anatomical-functional networks of the brain [7], the fusion of
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information from MRI and PET [8] and the use of population-derived informa-
tion for intensity-based classification of image structures [9]. In the aforemen-
tioned publications, probabilistic graphical models are employed for the purpose
of describing the models and aiding the derivation of the symbolic expressions
that the models imply; ad-hoc algorithms for maximum-a-posteriori inference
are devised based on the resulting symbolic expressions. The iLang framework
aims at enabling, under the integrated modeling paradigm, the construction of
algorithms that incorporate image formation, motion correction, registration,
classification, de-noising and other basic imaging tasks. The iLang framework
addresses imaging as probabilistic reasoning; it includes a mechanism for the de-
scription of the model, i.e. a modeling language, a mechanism for the definition
of inference queries, i.e. an inference language, and an inference engine that uti-
lizes the data structures produced by the interpreter of the modeling language
to perform inference. By using a formal modeling language, the computer gains
the concept of a probabilistic model. Endowing the numerical representations of
the probabilistic models with graph structures, then, enables the automated syn-
thesis of efficient inference algorithms. The modeling language of iLang is based
on language primitives designed for the construction of directed and indirected
probabilistic graphical models. The inference engine of iLang addresses, with-
out lack of generality, maximum probability and posterior sampling inference
queries. The design of the language and of the data structures for the represen-
tation of the models yields a graph-based message-passing system that supports
algorithms for maximum probability and posterior sampling. We describe two al-
gorithms currently implemented in iLang: an algorithm for maximum probability
estimation based on the Alternating Direction Method of Multipliers (ADMM)
and an algorithm for posterior sampling of high dimensional models based on
Hamiltonian Markov Chain Monte Carlo.

2 Methods

Imaging problems are not different, at the abstract level of probabilistic reason-
ing, from other computational problems that arise in artificial intelligence and
machine learning, although imaging problems have two salient characteristics:

1. Imaging data is often very high dimensional;
2. An underlying structure, in computational problems related to imaging,

arises from the spatial organization of the imaging data.

The high dimensionality may prohibit the use of certain classes of algorithms
such as posterior sampling techniques. In imaging applications, the system ma-
trices are often too large to be explicitly evaluated and stored in memory. The
underlying structure, however, often can be exploited to evaluate efficiently
matrix-vector multiplications on the fly and to increase the performance of the
inference algorithms. A design challenge arises: abstracting imaging problems
into the framework of probabilistic reasoning, therefore enabling the use of gen-
eral purpose inference algorithms, while exploiting the underlying structure that
arises from the spatial organization of the imaging data.
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In iLang, the modeling language, the inference engine, and the inference query
language are implemented as modules for the Python programming language.
Language primitives constitute the units for the definition of probabilistic graph-
ical models. As explained in the next section, the language primitives are based
on a library of high performance geometric primitives which incapsulate the
computations that emerge from the spatial structure of the imaging data (see
Fig. 1).

INFERENCE QUERYMODEL SPECIFICATION

GRAPH PRIMITIVES
GRAPHICAL MODEL INFERENCE ENGINE ANSWER

Fig. 1.The iLang probabilistic reasoning framework. Themodeling language enables the
definition of probabilistic graphical models using simple graph primitives. The inference
engine infers the state of variables of a probabilistic graphical model. Imaging specific
graph primitives are based on a library of high performance geometric primitives.

2.1 The Modeling Language

Models in iLang are constructed by defining a set of variables and specifying their
interaction by means of a set of graph primitives. The following sections explain
the rationale of the design of the iLang modeling language (section 2.1), describe
the graph primitive construct (section 2.1), the model specification mechanism
(section 2.1) and the geometric primitives that underly the graph primitives
(section 2.1).

Set-Of-Rules on a Graph. A probabilistic model expresses the joint proba-
bility distribution associated to a set of variables. One question that arises when
designing a software framework for probabilistic reasoning is how to define a nu-
merical representation of a probabilistic model and whether such representation
enables the construction of efficient inference algorithms. Let us consider the
following approaches to the numerical representation of probabilistic models:

1. tabulation: A table expresses the probability of each possible state of the
variables (in case of discrete variables).

2. symbolic representation: The joint probability distribution of the variables
is expressed by a mathematical formula.

3. set-of-rules: A computer program returns the joint probability for a given
configuration of the variables.

Tabulation is only viable for small problems and for discrete variables. Symbolic
representation of probabilistic models is an active research topic [10], enabling
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low memory representations of models and the automated computation of the
derivatives of the probability functions via symbolic expression manipulation.
While the symbolic approaches yield efficient and flexible tools for probabilistic
reasoning [3], their use is currently limited to small problems where the system
matrices can be explicitly evaluated. The third approach consists in writing a
computer program that evaluates the probability associated to a given configura-
tion of the variables and eventually the log-conditional probability functions as-
sociated to subsets of the variables and the derivatives of the log-probability func-
tions. The most common approach to probabilistic modeling in medical imaging
is based on the set-of-rules representation. One describes the model in symbolic
form with pen-and-paper and manipulates the symbolic expressions to obtain
expressions of the required conditionals, marginals and derivatives. A computer
program that evaluates such expressions is then crafted. The conditional inde-
pendencies of a probabilistic model can be represented by means of a graph (i.e.
a probabilistic graphical model). The set of conditional independencies corre-
sponds to the factorization of the joint probability distribution associated to the
variables of the model. The explicit representation of the set of conditional inde-
pendencies via a graph provides insight of the probabilistic model. The graph is
often utilized, therefore, in order to aid the pen-and-paper symbolic expression
manipulation and crafting of the computer programs: through the properties of
the graph, one can tell which variables (Markov blanket) and factors contribute
to the conditional probability distribution of a subset of the variables. The iLang
framework adopts the model representation approach 3, in conjunction with a
data structure based on the graph of the probabilistic model. Informing the com-
puter software of the conditional independence structure of the model introduces
many advantages. The combination of the set-of-rules approach and the graph,
while allowing maximum flexibility, simplifies the model specification process,
provides a mechanism for code encapsulation and provides a data structure suit-
able for the automated synthesis of inference algorithms. The core data-structure
representing an iLang model is a graph, defined by a set of graph primitives. A
graph primitive defines the interaction between a set of variables in terms of sets
of rules for the computation of log-conditional probabilities and their deriva-
tives, as described in the next section. Pen-and-paper symbolic manipulation is
still part of the model definition process, however occurring only at the stage of
designing a graph primitive.

Graph Primitives. A graph primitive of the iLang modeling language expresses
the interaction between a set of variables. Variables associated to a graph primi-
tive are objects with a name property and a value property. The graph primitive
object exposes, for each of the internal variables, one to four methods that return
1) the log conditional probability; 2) the gradient of the log conditional proba-
bility; 3) the Hessian of the log conditional probability; 4) the proximity map of
the log conditional probability. This is depicted in Fig. 2. A graph primitive is
defined by subclassing a base object of type GraphPrimitive; defining a dictio-
nary with the names of the variables; a dictionary that specifies the directed or
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LOG CONDITIONAL PROBABILITY

GRADIENT LOG CONDITIONAL PROBABILITY

HESSIAN LOG CONDITIONAL PROBABILITY (SPARSE)

PROXIMAL OPERATOR LOG CONDITIONAL PROBABILITY

Fig. 2. Interface of a graph primitive: a graph primitive encodes the dependence
amongst variables by specifying methods to compute the log conditional probabilities
of each variable. Optionally, the graph primitive exposes methods to compute the first
and second derivatives and the proximal operator of the log conditional probabilitties.

indirected graph structure; and by implementing interface methods according
to a simple predefined naming convention. The example that follows specifies
a graph primitive that encodes a multivariate Gaussian probability distribution
p(x|mu, cov) = N (x;mu, cov):

class MultivariateGaussian(GraphPrimitive):
variables = {’x’:’continuous’,’mu’:’continuous’,’cov’:’continuous’}
dependencies = [[’mu’,’x’,’directed ’],[’cov’,’x’,’directed ’]]
preferred_samplers = {’x’:[’HamiltonianMCMC’]}

# graph primitive interface
def log_conditional_probability_x(self ,x):

hessian = self._compute_hessian()
mu = self.get_value(’mu’)
return -.5*numpy.dot(numpy.dot((x-mu),hessian ),(x-mu).T)

def log_conditional_probability_gradient_x(self ,x):
hessian = self._compute_hessian()
mu = self.get_value(’mu’)
return -.5*numpy.dot((x-mu),hessian +hessian .T)

def log_conditional_probability_hessian_x(self ,x):
hessian = self._compute_hessian()
return hessian

# utility:
def _compute_hessian(self):

cov = self.get_value(’cov’)
self._hessian = numpy.linalg.inv(cov)
return self._hessian

Note, in the example, that variables are defined as discrete or continuous. Further
classes of the iLang variables will be added in future implementations, such as
symmetric, positive definite and chordal matrices. The graph primitives currently
implemented in iLang are reported in Fig. 3.

Model Specification. A model is specified by instantiating an object of type
GraphicalModel and naming the variables of the model. The dependence be-
tween the variables is specified by connecting the variables by means of graph
primitives, as in the example that follows.

graph = ilang.GraphicalModel()
graph.add_variables([’var1’,’var2’,’var3’])
graph.add_model(MultivariateGaussian,{’var1’:’x’,’var2’:’mu’,’var3’:’cov’})
graph.set_given({’var2’:numpy.zeros ([1,5]), ’var3’:numpy.eye(5)})



66 S. Pedemonte et al.
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Fig. 3. Graph primitives currently implemented in iLang

In this example, the object graph represents a probabilistic graphical model with
3 variables: var1, var2, var3; var2 and var3 have given values and var1 is a 5-
dimensional random variable with probability distribution p(var1|var2, var3) =
N (var1; var2, var3). Note that the correspondence between the variables of the
graph and the inner variables of the graph primitive has been specified in the
add model function call. The graph object exposes the methods that are required
to perform inference; the internal machinery of the graph object translates the
names of the variables, calling the methods of the graph primitives as required.

Geometric Primitives. The graph primitives for imaging make use, internally,
of efficient GPU-accelerated routines that perform common image processing
tasks. Currently:

– Rigid spatial transformations
– Ray-tracing
– Image re-sampling
– FFT-IFFT
– Finite difference operator

Such geometric primitives enable a wide range of models and algorithms. The
experiments section highlights how the spatial transformation, resampling and
finite difference geometric primitives come into play to define a graph primitive
that enables spatio-temporal tomography.

2.2 The Inference Engine

The probabilistic graph object provides all the methods required to perform
inference. These include (proxy) methods to compute the log conditional prob-
ability of each of the variables and their first and second derivatives; methods
to compute properties of the graph, such as the global Markov properties; and
methods for the manipulation of the graph. Currently, the iLang framework
implements an algorithm based on the Alternating Direction Method of Multi-
pliers (ADMM) for maximum probability inference and an algorithm based on
Hamiltonian Markov Chain Monte Carlo for posterior sampling.

Maximum Probability. The algorithm for maximum probability estimation
is based on a combination of the Iterated Conditional Modes (ICM) [11] algo-
rithm and the ADMM algorithm [12]. The value of the variables of the model
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that maximizes the joint probability is computed by maximizing, in turn, the
conditional probability distribution of each of the variables (ICM). The opti-
mization of each conditional probability is performed by means of the ADMM
algorithm. ADMM, developed in the context of convex optimization [12], has the
advantage of enabling the use of non-differentiable factors, such as the models
(B) and (C) in Fig. 3, using the proximity operators of the factors in place of the
first derivatives. In order to apply ADMM to optimize the log conditional prob-
ability for each of the variables, the inference engine performs a transformation
of the graph, consisting in extracting the Markov blanket of the variable and
transforming it into a Forney-style augmented factor graph [13], as exemplified
in Fig. 4 for variable x. The ADMM algorithm then consists in a message passing
algorithm over the factor graph. The Forney-style factor graph represents the
augmented Lagrangian of the local optimization problem expressed in consen-
sus form [12,13]. The Forney-style factor graph is a bipartite graph obtained by
placing on the right side one node for each factor of the cost function (3 nodes
in the example, corresponding to 3 graph primitives) and one node on the left
side, encoding an equality constraint. The factor graph in this form expresses
the augmentation of the optimization problem with variables x1, x2, x3 (see Fig.
4-right). The point of the augmentation is that edge variables attached to the
same equality constraint must ultimately equal each other, but they can tem-
porarily be unequal while they separately try to satisfy different cost functions
on the left. Finally, the problem is augmented with one variable for each edge
connecting the two sides of the bipartite factor graph: the Lagrangian multipli-
ers y1, y2, y3. The ADMM algorithm consists in the exchange of the following
messages (see [12] for the derivation of the messages):

xn+1
k := argmin

v
fk (v) +

ρ

2
‖v − ynk + xn‖22 (1)

xn+1 :=
1

N

N∑
k=1

xn+1
k +

1

ρN

N∑
k=1

ynk (2)

yn+1
k := ynk + xn+1

k − xn+1, (3)
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Fig. 4. Transformations of a probabilistic graphical model. Left: a directed probabilistic
graphical model; center: moralized undirected gaph; right: Forney-style factor graph
utilized by the inference engine of iLang.
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where fk is the k-th factor (with k = {1, 2, 3} in the example) and ρ is the
augmented Lagrangian regularization parameter (the default value is ρ = 0.1,
see [12] for a discussion on the selection and adaptation of ρ). The splitting
introduced by data augmentation enables the use of non-smooth factors. If fk
is smooth (the graph primitive corresponding to factor k exposes a method to
compute the gradient of the log conditional probability), the inference engine per-
forms the minimization using, by default, the L-BFGS Quasi-Newton algorithm,
or the Newton algorithm if the graph primitive exposes a method to compute
the Hessian of the log conditional probability. If the factor is non-smooth, the
inference engine sets xn+1

k by evaluating the proximity operator of fk, calling
the proximity operator method of the underlying graph primitive.

Posterior Sampling. The posterior sampling algorithm currently implemented
in iLang is based on Markov Chain Monte Carlo. Each of the variables of the
graph are sampled in turn by sampling from their conditional probability distri-
butions (Gibbs sampling). The samples from each of the conditional probability
distributions are obtained by means of various MCMC techniques, depending on
the methods exposed by the factors of each conditional probability distribution.
A local factor graph analogous to Fig. 4-right is constructed; if all the graph
primitives connected to variable x expose methods to compute the gradient of
the conditional probability of x, the MCMC algorithm uses Hamiltonian dy-
namics [14] with gradient equal to the sum of the gradients returned by each
primitive. The local set of variables is augmented with momentum variable q and
each new sample of x is obtained by sampling a candidate of q from a normal
probability distribution and then by sampling x conditionally to q as follows
(see [14]):

qn+1|xn ≈ p(qn+1|xn) = p(qn+1) = N (
qn+1|0,M) (4)

xn+1|qn+1 ≈ p(xn+1|qn+1), (5)

samples of xn+1 from p(xn+1|qn+1) are obtained by integrating the Hamilto-
nian dynamics over fictitious time τ from the initial values qn+1 and xn. The
integration is performed using the leapfrog method:

q(τ +
ε

2
) = q(τ) +

ε

2
∇xf (x(τ)) (6)

x(τ + ε) = x(τ) + εMq
(
τ +

ε

2

)
(7)

q(τ + ε) = q(τ +
ε

2
) +

ε

2
∇xf (x(τ + ε)) , (8)

with a certain number of steps, with step size ε, to give proposed moves x∗ and
q∗ and accepting or rejecting according to the Metropolis Hastings criterion, as
specified in [14]. Here ∇x denotes the gradient of factor f and M is a weight
matrix. The weight matrix, by default, it set to the identity, unless all the factors
expose methods to compute the Hessian, in which case it is set to the sum of the
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Hessian terms, producing a piecewise constant Riemannian Manifold Hamilto-
nian MCMC algorithm [14]. Although the choice of the parameter ε is in general
critical in order to obtain high acceptance ratios, especially in high dimensions,
setting M to the Hessian of the factor f , as discussed in [14], enabling the algo-
rithm to scale to high dimensions and relaxes the choice of ε. This is the default
mode of iLang if all the factors expose the Hessian method. The default value
of ε is 0.1.

3 Motion-aware Positron Emission Tomography

In PET imaging, the low number of photon counts per unit time imposes long
acquisition times (several minutes). During the acquisition, the subject moves,
determining blurring and ghosting effects in the reconstructed images. Although
attempts have been made to measure the motion of the subject during the ac-
quisition of the PET data by using motion detection devices, the problem is still
largely unsolved. The problem can be formulated in the probabilistic framework
as follows, in the case, applicable to brain imaging, of rigid motion. Although the
activity in the imaging volume changes over time due to motion, let us assume,
disregarding pharmacokinetics in this first instance of spatio-temporal model,
that the rate of emission in the frame of reference that moves rigidly with the
head of the patient is constant. Assuming that the only source of uncertainty
associated to the measurements is the inherent uncertainty due to photon count-
ing, the conditional probability distribution associated to the photon counts at
time t, given the motion parameters at time t and the activity in the reference

frame, is a Poisson distribution. Let us denote with q
[t]
d the photon counts along

line of response (LOR) d at time t; with z[t] = {z[t]1 , z
[t]
2 , . . . , z

[t]
d } the vector of

the photon counts at time t; with A = {abd} the matrix of the probabilities that
an event emitted in voxel b is detected in LOR d; with Rγ[t] the rigid trans-

formation at time t, parameterized by parameters γ[t] and with P the Poisson
distribution:

p(z[t]|λ,Rγ[t]) =
∏
d

P(
∑
b

abd[Rγ[t]λ]b, z
[t]
d ) (9)

Let us assume a sparsifying total-variation prior probability distribution for the
activity:

p(λ|β) ∝ e−β‖∇λ‖1 (10)

Denoting by 1̄ the vector of 1’s, the gradient of eq. (9) is given by (see [8]):

∂

∂λb
log p(λ|z[t], Rγ[t]) = −

∑
t

RT
γ[t]A

T 1̄ +
∑
t

RT
γ[t]A

T z[t]

ARγ[t]λ
(11)

Let us assume that the motion parameters γ[t] are unpredictable, i.e. that the
motion parameter γ[t] is a priori independent from the motion parameter γ[t′],
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t �= t′. By the chain rule of differentiation, the derivative of the log conditional
probability of the i-th motion parameter at time t is given by:

∂ log p(γ[t]|z[t], λ)
∂γ

[t]
i

=
∑
d

−
[
A

[
∂RT

γ[t]λ

∂γ
[t]
i

]]
d

+ z
[t]
d

[
A

[
∂RT

γ[t]λ

∂γ
[t]
i

]]
d[

ART
γ[t]λ

]
d

(12)

Optimization of the joint probability with respect to the model parameters is
not trivial due to the non-differentiability of the prior and to the non-negativity
constraint (here not expressed explicitly) of λ. In iLang, the calculations of eq.
(11) and (12) are encapsulated in the graph primitive (D) of Fig. 3 and the
graph primitive (C) of Fig. 3 implements the proximity operator for the total
variation prior (i.e. soft thresholding of the image gradient - see [12]). The model
is encoded in iLang as follows:

graph = ilang.GraphicalModel()
graph.add_variables(’lambda ’)
for t in range(Nt):

graph.add_variable(’z’+str(t))
graph.add_variables(’gamma’+str(t))
graph.add_model( ilang.Primitives.PET_rigid_motion , ..

{’lambda ’:’activity ’,’gamma ’+str(t):’motion ’,’z’+str(t):’counts ’})
graph.set_given(’z’+str(t))
graph.set_value(’z’+str(t), sinograms[t])

graph.add_variable{’beta’}
graph.add_model(ilang.Primitives.TotalVariation , ..

{’lambda ’:’x’,’beta’:’sparsity ’})
graph.set_given(’beta’)
graph.set_value(’beta’ ,0.1)

Fig. 5. Graph generated by iLang for motion-aware Positron Emission Tomography

where sinogram is a list of Nt sinogram arrays. This produces the graph of Fig.
5. Inference is performed as follows:

sampler = ilang.Sampler (graph)
sampler .maximum_probability(max_iterations=100)
activity_estimate = sampler .get_last_sample(’lambda ’)
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Fig. 6. Motion-Aware PET: Reconstructions obtained by imaging an FDG-filled cap-
illary source wrapped around a pineapple. From left to right: no motion correction;
motion estimation; motion estimation and total-varation prior. Top row: volume ren-
dering; bottom row: representative slice - overlay of PET and MR.

4 Conclusion

The iLang software framework enables probabilistic reasoning in volumetric
imaging, simplifying the definition of complex imaging models. Endowing the
numerical representation of probabilistic models with a graph enables the auto-
mated synthesis of efficient inference algorithms. The inference engine of iLang
enables the definition of non-smooth constraints such as non-negativity and spar-
sity. The iLang software constitutes a unified framework for multi-modal imag-
ing that enables the integration of image formation, registration, de-noising and
other image processing tasks. The application reported in section 3 constitutes a
novel powerful imaging paradigm, where motion is considered a nuisance variable
and estimated from the PET emission data under the assumption of sparsity.

5 Download

The iLang software is distributed with a permissive open source license at
http://ilang.github.io
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Abstract. Dynamic contrast-enhanced MRI (DCE-MRI) images are
increasingly used for assessing cancer treatment outcome. These time
sequences are typically affected by motion, which causes significant er-
rors in tracer kinetic model analysis. Current intra-sequence registration
methods for contrast enhanced data either assume restricted transforma-
tions (e.g. translation) or employ continuous optimization, which is prone
to local optima. In this work, we propose a new approach to DCE-MRI
intra-sequence registration and pharmacokinetic modelling, which is for-
mulated in an MRF optimization framework. The complete 4D graph
corresponding to a DCE-MRI sequence is reduced to a concatenation of
minimum spanning trees, which can be optimized more efficiently. To ad-
dress the changes due to contrast, a data cost function which incorporates
pharmacokinetic modelling information is formulated. The advantages of
this method are demonstrated on 8 DCE-MRI image sequences of pa-
tients with advanced rectal tumours, presenting mild to severe motion.

1 Introduction

DCE-MRI has become an important tool for assessing early phase clinical trials
of cancer therapy, as it can measure in vivo tumour vasculature changes that
occur due to treatment. The underlying tissue physiology is typically derived
from the DCE-MRI image signal by fitting a pharmacokinetic (PK) model to
the contrast enhancement-time curve on a voxel-by-voxel basis. Typically, tissue
perfusion, permeability and the volume occupied by tumour cells are obtained
in terms of PK model parameters. As a DCE-MRI acquisition takes several
minutes, with volumes being acquired every 5 − 10 seconds, the resulting time
sequence is inherently affected by patient and physiological motion. This motion
may introduce significant errors to the per-voxel PK model fitting, as anatom-
ical features of interest might move to different voxel locations in subsequent
volumes. To correct for this motion, image registration is needed. DCE-MRI
registration is a particularly challenging problem, as observed changes through-
out the time series can be either due to motion or due to contrast enhancement.

M.J. Cardoso et al. (Eds.): BAMBI 2014, LNCS 8677, pp. 73–84, 2014.
c© Springer International Publishing Switzerland 2014



74 M. Enescu et al.

Moreover, contrast arrival can give rise to image features that were not present
in the baseline image. In the literature, approaches for time series motion correc-
tion broadly fall into two categories: 1. strategies that try to alleviate the effects
of contrast enhancement i.e. by using a multi-modal similarity metric [1], or by
restricting the applied transformation [2]; 2. strategies that implicitly derive [3]
or explicitly assume [4,5,6] a model of contrast enhancement which is used in
the registration algorithm. Among the most prominent approaches, we note the
work of Buonaccorsi et al. [5], who are among the first to explore an explicit
kinetic model-based registration. In that work, PK parameter estimation and
registration to the model predicted sequence are performed iteratively. Their
work is mainly limited by allowing only 3D translation transforms. In a more re-
cent approach, Bhushan et al. [6] address this issue by proposing a simultaneous
non-rigid motion correction and PK parameter estimation method. However, as
their approach uses a Gauss-Newton optimization, this method is sensitive to
initialization and is likely to be trapped in local optima. A data-driven approach,
presented by Melbourne et al. [3], proposes modelling the time series data us-
ing principal component analysis. The underlying assumption is that the first
few principal components will contain information about contrast enhancement
trends and the remaining principal components contain noise related to motion.
This assumption is valid for small peristaltic motion, but does not hold in the
case of larger and periodic motion (e.g. breathing).

In this work, we propose a new framework for combined DCE-MRI intra-
sequence registration using discrete optimization and PK parameter estimation
(DireP). The problem is formulated using a Markov random field (MRF) which
involves the optimization on a 4D graph for each DCE-MRI sequence. This
method addresses the sensitivity to initialization of continuous approaches and
is less prone to local optima by offering increased flexibility over the space of
possible displacements L. To reduce the computational costs which are typically
associated with discrete optimization of a full 4D graph, the nodes are con-
nected as follows: The minimum spanning tree (MST) which best replicates the
underlying anatomy of the pre-contrast image is calculated [7]. This structure
is assumed to be identical in all the subsequent volumes, as they have the same
anatomy as the baseline. These structures are connected through time at every
node, to preserve the temporal continuity of each voxel (Fig. 1).

The paper is structured as follows. Section 2 describes the methodological
contributions of this paper: First, a DCE-MRI tailored similarity metric which
incorporates PK modelling information is formulated. Next, in order to reduce
computational costs, we construct a reduced 4D graph corresponding to the
DCE-MRI sequence, and optimize it using a message passing approach. To our
knowledge, this is the first work to perform combined DCE-MRI motion cor-
rection and PK analysis, where the registration is performed in a discrete opti-
mization framework. Section 3 describes the results of the proposed algorithm
(DireP), on both synthetic and real DCE-MRI images of rectal cancer. DireP
is compared to a recent DCE-MRI non-rigid registration algorithm (referred to
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Method1) [6] which employs continuous optimization. We conclude this paper
with Section 4, and present future work plans in Section 5.

2 Methods

Discrete optimization is typically formulated as an MRF labelling problem [8].
For deformable image registration purposes, a graph is defined in which the nodes
p ∈ Ω represent voxels or groups of voxels, and the edges connect voxels with
similar anatomical features and spatial proximity. For every node p, there is a
set of labels lp ∈ L which represent possible discrete displacements of the source
image volume with respect to the target image volume. Finding the optimum
displacement at each voxel equates to finding the labelling that minimizes the
MRF energy function:

E(l) =
∑
p∈Ω

CD(lp) + γ
∑

(p,q)∈N
CR(lp, lq) (1)

The unary term represents the data cost CD, which measures the similarity
of a voxel in the target image to the corresponding voxel in the source image
displaced with lp. The pairwise term represents the regularization cost CR(lp, lq)
and is used to smooth the displacements of directly connected voxels (p, q) ∈ N .
Here, N represents the neighborhood of a voxel, as given by the MST. γ weights
the amount of regularization.

Methods to solve the labelling problem can be roughly divided into two cat-
egories: graph-cuts and message passing approaches. Popular graph-cuts algo-
rithms include α-expansion [9]. Depending on the complexity of the graph to be
optimized, message passing can range from dynamic programming, over loopy
belief propagation (LBP) [10], to tree-reweighted message passing (TRW-S) [11].
For an overview of discrete methods for deformable registration, we refer the
reader to the work of Sotiras et al. [12].

In this work, each image volume of the DCE-MRI sequence is registered to
the pre-contrast volume by optimizing a reduced 4D graph corresponding to
the underlying anatomy. To address the intensity differences caused by contrast
inflow, a DCE-MRI tailored data cost function incorporating PK information is
proposed. The optimization is performed using belief propagation. An overview
of the entire algorithm for finding the optimal displacement and updating the
PK model can be found in Algorithm 1.

2.1 Data Cost Calculation Using Pharmacokinetic Model Prediction

As mentioned above, the DCE-MRI intensities of different volumes in the image
sequence are not comparable using standard similarity metrics such as the sum
of squared differences (SSD). To address this issue, we propose to compare the
similarity between the intensities at the volume to be registered Iti , and the PK
model predicted intensity at that volume PK(It0 ,K

trans, ve, ti):

CD(lp) = SSD(Iti(p+ lp), PK(It0(p),K
trans(p), ve(p), ti)) (2)
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Here, ti is the current time point of the DCE-MRI sequence, t0 is the first
time point, and Ktrans and ve are parameters of the PK model. To predict the
appearance of the baseline It0 at ti, an initial estimate of the PK parameters
Ktrans, ve is required. This initial estimate is obtained by least squares (lsq)
fitting of the model to the data.

PK parameter estimation was performed using the standard Tofts model [13]
with the Orton [14] bi-exponential arterial input function with population aver-
aged parameters. The Tofts model offers an estimate of tissue perfusion through
Ktrans, the transfer constant between blood plasma and the extravascular ex-
tracellular space (EES), which is defined as the product between kep, the rate
constant between the EES and plasma, and ve, the fractional volume of the EES.

2.2 Optimization on the Reduced 4D Graph

For the DCE-MRI motion correction problem, the graph to be optimized can
be reduced to temporal concatenation of identical spatial trees (Fig. 1). The
pre-contrast image anatomy is taken as a reference, against which all the sub-
sequent volumes are aligned. We assume that they obey the same anatomy and
differ only by contrast enhancement or motion. Under this assumption, we es-
timate the unique MST of the pre-contrast volume using Prim’s algorithm [7]
akin to the work of Heinrich et al. [15]. This structure is replicated for each
subsequent volume, and the temporally corresponding nodes are additionally
connected across time, as they represent the same anatomical landmark over
time. For each individual tree, the optimization is possible using belief propaga-

(a) (b)

Fig. 1. (a) An illustration of the graphical structure used in this algorithm. While
the spatial connectivity is captured by minimum spanning trees (MST), the temporal
continuity is captured by temporal chains. (b) An example of MST for a 2D slice
through the mesorectal area.

tion on the MST [16]. At each node p, a message vector mp containing the cost
of the best displacement lp can be found given the displacement of its parent q,
lq, and the messages from its children c, mc:

mtree
p (lq) = min

lp
(CD(lp) + γspCR(lp, lq) +

∑
c

mc(lp)) (3)
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For leaf nodes, Eq. 3 can be evaluated directly, as there are no incoming messages
from children. The messages are then forward-passed from the leaves to the
root node, and then backward-passed, from the root towards the leaves. For
each individual temporal chain, the optimization can be performed using belief
propagation on the chain [17]. The message of the current node p, mp, can be
found given the displacement of the previous node q, lq, and the message coming
from the subsequent node r, mr(lp):

mchain
p (lq) = min

lp
(CD(lp) + γtempCR(lp, lq) +mr(lp)) (4)

To optimize the reduced 4D structure, for each node we perform independent
optimization on each temporal chain and on each spatial tree, and average the
resulting marginals. This procedure is repeated for a number of iterations akin
LBP [10], where the messages towards a node in the previous iteration are added
to the marginal of that node in the current iteration. The best displacement can
then be found by calculating argmin based on the marginal distribution. Al-
though this approach is not guaranteed to converge to a global optimum, it is
physically motivated, and provides a good trade-off between optimality and ef-
ficiency. The averaging of marginals from multiple graph models has previously
been used in stereo processing using an approach called semi-global match-
ing [18], yielding excellent results. The entire DireP algorithm is presented in
Algorithm 1. In each optimization step (Algorithm 1, 2.2, 2.3), the full distri-
bution of pseudo-marginals for the space of displacements is estimated.

Naively calculating the pair-wise regularization cost in Eqs. 3, 4 would re-
quire |L|2 computations for every voxel. To reduce this cost, we employed the
min-convolution technique [10], which reduces the complexity to |L|. To further
reduce computational costs, a multi-resolution approach was employed. For each
resolution level, the image is divided into non-overlapping cubic groups of voxels
that are represented by a single node in the graph. The regularization term is
calculated only for each group of voxels. At finer levels, the previous solution is
upsampled and used as a prior for the optimization algorithm. The final (dense)
solution is also obtained by upsampling using a first order spline interpolation.

Additionally, if we treat the deformation field as a velocity field, it can be
transformed into a diffeomorphic mapping [15] by using the scaling and squar-
ing method [19]. Diffeomorphism is a desired property for the deformation field,
as it prevents transformations that are not physically feasible, i.e. folding. This
is particularly important for soft tissue images, as it agrees with the tissue in-
compressibility assumption.

3 Results

3.1 Algorithm Evaluation on Synthetic Data

The discrete registration and pharmacokinetic estimation (DireP) algorithm pro-
posed in this paper was first tested on synthetic data, where the ground truth
intra-sequence motion and PK parameters are known. To simulate a realistic



78 M. Enescu et al.

Algorithm 1.DireP:Discretemotion correctionandpharmacokinetic estimation

1. PK parameter estimation on uncorrected time series (lsq fitting)

while niterPK do

2. Groupwise registration of all volumes to the pre-contrast volume:

2.1 Initialize marginals and messages:
foreach node do marginal c[ node ]=CD(lp); marginal t[ node ]=CD(lp);
message[ node ]=0;

while niterMRF do

2.1 Re-initialize marginals with values from previous iteration
2.2 foreach timepoint pass messages on the corresponding spatial MST
Forward pass
for node=leaves to root-1 do

cost = marginal t[node];

message[ node ]=min-sum(cost); (see Eq. 3)

marginal t[ parent ] = marginal t[ parent ]+message[ node ];

end for

Backward pass
for node=root-1 to leaves do

cost=marginal t[ parent ] - message[ node ]+ message[ parent ];

message[ node ]=min-sum(cost);

end for

foreach node marginal t[ node ]=marginal t[ node ]+message[ node ];

2.3 foreach node of the spatial MST, pass messages on the temporal chain
Forward pass
for t=tdim-1 to 1 do

cost = marginal c[ nodet ];

message[ nodet ]=min-sum(cost); (see Eq. 4)

marginal c[ nodet−1 ] = marginal c[ nodet−1 ]+message[ nodet ];

end for

Backward pass
for t=1 to tdim-1 do

cost=marginal c[nodet−1 ] - message[ nodet ]+ message[ nodet−1 ];

message[ node ]=min-sum(cost);

end for

foreach node marginal c[ node ]=marginal c[ node ]+message[ node ];

2.4 Average the two marginals and use the result in the next iteration
end while

3. Re-estimate PK parameters on corrected time series (lsq fitting),

use in the next iteration

end while
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dataset, synthetic images were generated as follows: 8 real DCE-MRI sequences
were selected, and PK model fitting was performed on each of them. Using the
resulting parameter maps and the pre-contrast image volumes, 8 model pre-
dicted sequences of size 120× 120× 52× 29 each were generated. These images
constituted the ground truth motion free dataset. To simulate motion, a ran-
dom displacement field of size 6 × 6 × 4 was generated for each image volume
independently. This displacement was upsampled to the image volume size, and
smoothed with a Gaussian kernel. We also applied Gaussian smoothing on the
temporal dimension, as the motion of each voxel is expected to have some de-
gree of temporal smoothness due to periodic motion patterns i.e. breathing.
The parameters for the synthetic motion were chosen to obtain a diffeomorphic
deformation field in the interval ±7mm along each direction. The experiments
were run with niterPK = 2, niterMRF = 5 (see Algorithm 1), γsp = 0.01 and
γtemp = 0.1, which were empirically chosen. For both the synthetic and the real
data, the label space was chosen as L = {0,±q,±2q, ..,±u

2 q}3. 3 resolution levels
were used in the registration. Depending on the resolution level, u was 8, 6, 4,
with a quantization q of 2, 1, 0.5mm. We used groups of voxels of sizes 83, 63 and
43, with corresponding label spaces of size 93, 73 and 53.

Table 1. Registration results on synthetic data. The average target registration error
(TRE) and residual fitting errors in PK parameters are reported, together with the
corresponding standard deviations.

Measure Before Method1 DireP 3D DireP 4D

TRE (mm) 1.40± 0.72 1.02± 0.65 0.59± 0.38 0.62± 0.39
Error in kep 0.39± 0.03 0.15± 0.02 0.13± 0.01 0.13± 0.01
Error in ve 0.20± 0.01 0.18± 0.02 0.03± 0.002 0.03± 0.002

Quantitative results on the synthetic dataset are presented in Table 1. The
target registration error (TRE) is defined as the average difference between the
ground truth deformation field and the deformation field estimated by the al-
gorithms. DireP was compared to a recent non-rigid registration and PK esti-
mation approach using continuous optimization (Method1) [6]. DireP 3D is the
algorithm version without temporal regularization and DireP 4D is the variant
including temporal regularization. The results show that while both DireP 3D
and DireP 4D outperform Method1 and recover a good part of the synthetic
motion, DireP 3D has a slightly better performance in terms of TRE. This is
due to trading a solution that is globally optimal for each volume (DireP 3D)
for a sub-optimal solution on the entire 4D graph (DireP 4D). After applying
each method, the PK parameters on the corrected datasets were generated by
least-squares fitting. The errors in kep and ve are defined as the average abso-
lute difference between the ground truth PK parameters and the parameters
obtained on the corrected datasets. These values were calculated on a circular
region delineated around the tumour in the pre-contrast image volume (which
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Fig. 2. The TREs (mm) for the three different algorithms are shown in function of the
motion level. The performance of Method1 is represented with red error bars, DireP
3D is represented in blue, and DireP 3D is represented in green. The coloured error
bars are slightly displaced for better visualization, but they correspond to the same
level of motion.

was taken from a real dataset as explained above). The PK parameter errors
decrease considerably after DireP 3D and DireP 4D registration.

The relationship between the algorithms’ performance and the level of motion
in the synthetic data was also investigated, and the results are shown in Fig. 2.
It can be seen that DireP 3D and DireP 4D outperform Method1 regardless of
the motion level, and the difference is more pronounced for bigger motion.

3.2 Pharmacokinetic Modelling and Motion Correction on
DCE-MRI Images of Rectal Cancer

The presented algorithm was also applied to a dataset of DCE-MRI images
from 8 patients with advanced rectal tumours. T1-weighted dynamic images of
the pelvis were acquired using the spoiled gradient echo LAVA protocol. Con-
trast agent (ProHance) was injected at a rate of 3ml/sec, 0.1 mmol/kg body
weight. An image volume was acquired every 9.5 seconds for approximately
5 minutes, yielding a sequence of 512 × 512 × 52 × 29 with a resolution of
0.7813× 0.7813× 2mm. The algorithms were applied to a 120× 120× 52 × 29
ROI which contained the tumour volume. The tumours were manually delin-
eated by our clinical collaborators. The experiments were run using niterPK = 3,
niterMRF = 5, γsp = 0.01 and γtemp = 0.1, which were empirically chosen. For
the registration, 4 resolution levels were used. Depending on the resolution level,
u was 8, 6, 4, 4, with a quantization q of 2, 1, 0.5, 0.5mm. We used groups of vox-
els of sizes 83, 63, 43 and 23, with corresponding label spaces of size 93, 73,
53 and 53. The results for the entire clinical dataset are shown in Fig. 3. The
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Fig. 3. The DCE-MRI images were blindly graded before and after registration by a
clinical expert. A score of ’1’ represents no motion, ’2’ is mild or minimal motion, ’3’ is
moderate motion, ’4’ is significant motion and ’5’ is severe motion. Both DireP 3D and
DireP 4D reduce the amount of motion in all the images of the rectal cancer dataset.

(a) (b) (c)

Fig. 4.Ktrans maps for one slice of the image volume. Images before (a) and after DireP
3D (b) motion correction are shown, together with the corresponding anatomical image
(c). The top row corresponds to a patient exhibiting severe motion, and the bottom
row corresponds to a patient exhibiting moderate motion.

motion level in each time series was blindly graded before and after registration
by a clinical expert. It can be seen that the observed motion level decreases in
all the patients after applying our discrete registration framework in 3D and 4D,
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respectively. We also note that the differences between DireP 3D and DireP 4D
were not detectable on a visual evaluation. Figure 4 presents the effect of motion
correction on Ktrans. Images before and after DireP 3D are shown, for a patient
exhibiting severe motion, and for a patient exhibiting moderate motion. It can be
seen that in both cases theKtrans maps become sharper after registration, with a
clearer separation between individual voxels, and motion artefacts at the tumour
boundary are reduced. This effect is particularly visible for the severemotion case,
where the non-registered sequence yields a heavily blurred Ktrans map.

On a 2.93GHz CPU, using C++ code, runtimes are: Method1 14.29min, Di-
reP 3D 3.15min, DireP 4D 7.02min. For both the 3D and the 4D algorithm, the
Jacobian determinant of the deformation field is positive. The Jacobian deter-
minants were calculated for the real dataset, as well as for the synthetic images.

4 Discussion and Conclusion

We have proposed a new algorithm for DCE-MRI time series motion correction
and PK estimation (DireP), which is formulated on an MRF and uses discrete
optimization. The PK estimation is performed iteratively with the deformable
registration. Two variants of the algorithm, one without temporal regularization
(DireP 3D) and one with temporal regularization (DireP 4D) were tested on a
synthetic dataset and a dataset comprising 8 DCE-MRI sequences of rectal can-
cer patients. Both DireP 3D and DireP 4D reduce the amount of motion in all
the images of the rectal cancer dataset, especially in challenging sequences ex-
hibiting severe motion. When tested on synthetic data, both the variants show an
improvement over a state-of-the art algorithm using continuous optimization [6].
Although DireP 3D slightly outperforms DireP 4D in terms of TRE (0.59mm vs.
0.62mm), the key advantage of DireP 4D lies in its ability to impose a degree of
temporal smoothness, which in itself is desirable to avoid unrealistic fitting of the
PK model. At the same time, motions such as peristalsis with a high frequency
cannot be captured by a transformation that enforces temporal smoothness. We
expect the positive effect of the 4D regularization to be much more visible for
applications where lower frequency motion, i.e. breathing, is predominant. Ex-
amples include liver DCE-MRI, or rectal data where peristalsis is controlled by
drug administration.

The pre-contrast image was chosen as a reference for registration as it more
closely represents the true appearance of the anatomy, where features are not
distorted by contrast arrival. This also avoids registration error propagation. For
the PK modelling part, the standard Tofts model is assumed, as it is widely used
in clinical practice. Our algorithm is expected to give comparable if not better
results using a more complex model.

5 Future Work

In this work, the 4D optimization problem was solved by alternating between
spatial MST and temporal chain minimization, and averaging the resulting
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marginals. This procedure was repeated a couple of times akin LBP [10]. Al-
though this approach has the advantage of reduced complexity, as it involves
optimizing loop-free graphs, convergence might be slow and is not guaranteed.
In future work, algorithms for joint minimization of the spatial and temporal
problem will be investigated. A possible approach is employing a 4D generaliza-
tion of the TRW-S algorithm [11].

Acknowledgements. Monica Enescu is funded from an EPSRCDoctoral Train-
ing Award, an Oxford Department of Engineering Science Scholarship and the
Alberto Del Vicario Scholarship. Julia Schnabel and Esme Hill gratefully ac-
knowledge funding from CRUK/EPSRC Centre for Cancer Imaging at Oxford.
Esme Hill was also funded by the Oxfordshire Health Services (OHSRC). Ricky
Sharma acknowledges funding from NIHR BRC Oxford.

References

1. Zoellner, F.G., Sancee, R., Rogelj, P., Ledesma-Carbayo, M.J., Rorvik, J., Santos,
A., Lundervold, A.: Assessment of 3D DCE-MRI of the kidneys using non-rigid
image registration and segmentation of voxel time courses. Comput. Med. Imag.
Graphics 33(3) (2009)

2. Tanner, C., Schnabel, J.A., Chung, D., Clarkson, M.J., Rueckert, D., Hill, D.L.G.,
Hawkes, D.J.: Volume and shape preservation of enhancing lesions when applying
non-rigid registration to a time series of contrast enhancing MR breast images. In:
Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp.
327–337. Springer, Heidelberg (2000)

3. Melbourne, A., Atkinson, D., White, M.J., Collins, D., Leach, M., Hawkes, D.:
Registration of dynamic contrast-enhanced MRI using a progressive principal com-
ponent registration (PPCR). Phys. Med. Biology 52(17) (2007)

4. Hayton, P., Brady, M., Tarassenko, L., Moore, N.: Analysis of dynamic MR breast
images using a model of contrast enhancement. Medical image analysis 1(3) (1997)

5. Buonaccorsi, G.A., O’Connor, J.P.B., Caunce, A., Roberts, C., Cheung, S., Watson,
Y., Davies, K., Hope, L., Jackson, A., Jayson, G.C., Parker, G.J.M.: Tracer kinetic
model-driven registration for dynamic contrast-enhanced MRI time-series data.
Magnetic Resonance in Medicine 58(5) (2007)

6. Bhushan, M., Schnabel, J.A., Risser, L., Heinrich, M.P., Brady, J.M., Jenkinson,
M.: Motion correction and parameter estimation in dceMRI sequences: Application
to colorectal cancer. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011,
Part I. LNCS, vol. 6891, pp. 476–483. Springer, Heidelberg (2011)

7. Prim, R.: Shortest connection networks and some generalizations. Bell System
Technical Journal (36) (1957)

8. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image
registration through MRFs and efficient linear programming. Medical Image Anal-
ysis 12(6) (2008)

9. Boykov, V., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Tran. PAMI 23, 1222–1239 (2001)

10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision.
Intl. J. Computer Vision 70(1) (2006)



84 M. Enescu et al.

11. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Tran. PAMI 28(10) (2006)

12. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration:
A survey. IEEE Tran. Medical Imaging 32(7) (2013)

13. Tofts, P.S.: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Mag-
netic Resonance Imaging 7(1) (1997)

14. Orton, M.R., d’Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins,
D.J., Leach, M.O.: Computationally efficient vascular input function models for
quantitative kinetic modelling using DCE-MRI. Phys. Med. Biology 53(5) (2008)

15. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable
registration and ventilation estimation of lung CT. IEEE Tran. Medical Imag-
ing 32(7) (2013)

16. Heinrich, M.P., Simpson, I., Jenkinson, M., Brady, M., Schnabel, J.A.: Uncertainty
estimates for improved accuracy of registration-based segmentation propagation
using discrete optimization. In: MICCAI SATA Workshop (2013)

17. Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in
computer vision. IEEE Tran. PAMI 33(4), 721–740 (2011)

18. Hirschmueller, H.: Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Tran. PAMI 30(2), 328–341 (2008)

19. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework
for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.)
MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)



Learning Imaging Biomarker Trajectories

from Noisy Alzheimer’s Disease Data
Using a Bayesian Multilevel Model

Neil P. Oxtoby1, Alexandra L. Young1, Nick C. Fox2, The Alzheimer’s Disease
Neuroimaging Initiative∗, Pankaj Daga1, David M. Cash2,1,

Sebastien Ourselin1, Jonathan M. Schott2, and Daniel C. Alexander1

1 Progression Of Neurodegenerative Disease Initiative, Centre for Medical Image
Computing, Department of Computer Science, University College London,

Malet Place, London, WC1E 6BT, UK
2 Dementia Research Centre, Institute of Neurology, University College London,

8-11 Queen Square, London, WC1N 3AR, UK

Abstract. Characterising the time course of a disease with a protracted
incubation period ultimately requires dense longitudinal studies, which
can be prohibitively long and expensive. Considering what can be learned
in the absence of such data, we estimate cohort-level biomarker trajecto-
ries by fitting cross-sectional data to a differential equation model, then
integrating the fit. These fits inform our new stochastic differential equa-
tion model for synthesising individual-level biomarker trajectories for
prognosis support. Our Bayesian multilevel regression model explicitly
includes measurement noise estimation to avoid regression dilution bias.
Applicable to any disease, here we perform experiments on Alzheimer’s
disease imaging biomarker data — volumes of regions of interest within
the brain. We find that Alzheimer’s disease imaging biomarkers are dy-
namic over timescales from a few years to a few decades.

1 Introduction

Dementia presents a significant societal and economic burden to an ageing pop-
ulation. Late-onset dementia is generally attributed to degenerative neurological
diseases such as Alzheimer’s disease (AD). Biomarkers (biological markers) are
indicators of disease-specific changes which can be used to inform the diagnosis
of AD [1]. While no single biomarker is dynamic over the entire disease progres-
sion, AD biomarker abnormality is hypothesised to occur in a disease-specific
sequence determined by the maximum gradient [2]. Most investigations of this
hypothesis have sought to correlate biomarker gradient/change with clinically-
determined subject cognition: cognitively normal (CN), mild cognitive impair-
ment (MCI), or diagnosed AD [3]. This approach provides a coarsely-graded
ordering of biomarker abnormality. More finely-graded sequencing of biomarker
abnormality events has been achieved using data-driven models of disease pro-
gression [4–6]. Such models can be useful for diagnosis/staging of a patient, but
accurate prognosis requires more complete knowledge of biomarker trajectories.

� ADNI See p. 93.
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Characterising biomarker dynamics ultimately requires long-term, dense, lon-
gitudinal studies. Such data is expensive and difficult to obtain, whereas cross-
sectional (or short-term longitudinal) data is relatively inexpensive, easy to ob-
tain, and already available. For example, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset. In this study we present a principled approach to
quantitative biomarker dynamics. We start by estimating cohort-level (average)
biomarker trajectories by integrating a parametric ordinary differential equa-
tion model which is fit to single-followup cross-sectional data, such as done in
similar previous work [7–10, 19]. We innovate on previous work in two ways: 1)
modelling (and estimating from the data) biomarker measurement noise using a
Bayesian multilevel model (BMM); and 2) introducing a stochastic differential
equation model for synthesising future biomarker trajectories of individuals, thus
providing predictive/prognostic information. We describe the data and methods
in Section 2, present results in Section 3, and discuss in Section 4.

2 Data and Methods

From ADNI-1∗ we consider a cross section of differential data (x, y ≡ dx/dt) for
each of five imaging biomarkers (see table 1). Here x is the baseline biomarker
value (volume of a region of interest) and y is the forward finite-difference ap-
proximation of the derivative from baseline to 12-months. The regional brain
volumes are normalised by intracranial volume [11] and presented as percent-
ages. We focus our experimental results on only one region of interest, choosing
the ventricles. Results for the other brain volumes are summarised. To main-
tain specificity to disease progression we included the entire cognitive spectrum
except for non-stable or non-progressing individuals (mixed or regressing diag-
noses). Excluding individuals with missing data left N = 651 individuals.

Illustrative Example of our Approach. Figure 1 illustrates the pipeline
of our approach using ventricles data. The single-followup data in figure 1a
produces a differential cross section, which is fit to a polynomial differential
equation in figure 1b. Integrating the differential equation produces the cohort-
level trajectory in figure 1c. The solid blue line shows the average, with dotted
and dashed red lines respectively showing short and long transitions from the
±1 standard error bounds on the model parameter estimates. Figure 1d shows
individual-level trajectories synthesised by a stochastic differential equation. We
proceed now to present details of our methodology.

Regression Model. For each biomarker x(t) we performed model selection
using the sample-size-corrected Akaike information criterion. For this purpose
we used ordinary least squares (OLS) differential equation models y = f(x),
with polynomials f(x) of up to second-order, as well as linear dependence on
mean-centred covariates — age and education. We considered group differences
by sex, and performed a separate regression for the whole cohort and for the
apoE4+ subcohort of genetic risk factor carriers (apoE4 = apolipoprotein-E4).
Of the N = 651 stable or progressing individuals with suitable brain volumetry
data in ADNI-1, 321 were apoE4+ (had one or more apoE4 alleles). Distinct
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Fig. 1. Pipeline illustrated on ventricles: (a) single-followup cross-section; (b) differen-
tial equation fit; (c) cohort-level trajectory; (d) individual synthetic trajectories (see
also figure 3).

from previous work, we use a multilevel differential equation model that incor-
porates additive Gaussian noise on the biomarker observations x̃(t) = x(t)+η(t).
In general, the Gaussian random variable η ∼ N (0, σ2

z ) may exhibit longitudi-
nal correlation, but since cross-sectional data cannot support estimation of such
intra-subject variance, we assume the measurement noise autocorrelation coef-
ficient ρ(t − s) ≡ E [η(t)η(s)] /σ2

z to be ρ = 0. (We retain ρ in the covariance
matrix below for completeness.)

Ourmultilevel model has three levels: dynamics (one data point per individual),
one group level to capture sex differences (s[i]), and additive Gaussian measure-
ment noise:

yi ∼ N (
f(xi,μs[i]), σ

2
y

)(
x̃i

ỹi

)
∼ N

((
xi

yi

)
, Σ

)
(1)

where polynomial f(x,μ) is the dynamical model (see below) parametrised by
the vector μ of sex-specific fixed effects and σ2

y is residual model error (un-
explained variance). The finite-difference derivative yi ≈ (xi(Ti) − xi(0))/Ti is
correlated with xi = xi(0) giving the measurement covariance structure

Σi = σ2

[
1, − (1− ρ) /Ti

− (1− ρ) /Ti, 2 (1− ρ) /T 2
i

]
(2)

where we assume zero intra-subject autocorrelation as discussed above, so ρ = 0.
The precise value of Ti is used (nominally T = 1 year).

Our Bayesian multilevel models are fit numerically using Markov Chain Monte
Carlo (MCMC) techniques. For this purpose we used the Stan [12] software pack-
age. Full validation is a topic for future work, but it is reassuring to note that we
found similar results using the JAGS [13,14] software package. We contrast our
results with those obtained using OLS. To ensure that the estimation was driven
by the data, our Bayesian models used weakly-informative priors: broad Gaus-
sian priors (σ ≥ 100) for regression parameters and broad positive uniform priors
(upper bound 10x̃max) for the variance parameters. We tried different weakly-
informative priors (e.g., inverse gamma priors for variances) and the results were
unchanged, giving us confidence that the data was driving our inference.
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Cohort-level Biomarker Trajectories. Each cohort-level biomarker tra-
jectory is ultimately determined by the (unknown) disease stage for each subject,
and represented within our model by the regression parameter estimates. Linear
fits produce exponential trajectories, where f(x) = μ0,s[i] + μ1,s[i]x + μ3,s[i] ·
age+ μ4,s[i] · edu. This corresponds to acceleration or deceleration/saturation of
atrophy in the brain. Quadratic fits, where f(x) = μ0,s[i] + μ1,s[i]x + μ2,s[i]x

2 +
μ3,s[i] · age + μ4,s[i] · edu, are a parsimonious representation of sigmoidal trajec-
tories (acceleration followed by deceleration). We note the following convenient
analytical form for a sigmoidal trajectory

x(t) = x− +
Δ

1 + e−rt
(3)

where r is a biomarker progression rate, and Δ ≡ x+−x− separates the asymp-
totes x± ≡ x(t = ±∞) which bound the sigmoid. Time t is symmetric about the
primary inflection point x(t = 0) = x− + Δ/2, and is unrelated to study/visit
time (since baseline). The sigmoid parameters are straightforward functions of
the regression parameters μ. We will utilise equation (3) to define a timescale of
interest for the cohort (see equation (4) in section 3).

Individual-level Biomarker Trajectories. The ordinary differential equa-
tion reflects biomarker dynamics at the cohort level. We model individual-level
biomarker dynamics as deviations about this average using a corresponding
stochastic differential equation driven by a zero-mean Gaussian process dκ ∼
GP (0, σ2

κ). We propose a prognostic utility for this below.
Biomarker Abnormality Timescales. Model fitting is followed by estima-

tion of a biomarker abnormality timescale for the cohort, and one for individu-
als. The first is a cohort-level estimate of the duration over which the biomarker
is dynamic: between two extremal thresholds xs(ts) (effective saturation) and
xa(ta) (initial signs of abnormality). Choosing these thresholds is an open prob-
lem. For sigmoidal trajectories we choose analytical thresholds: the points of
maximum biomarker acceleration and deceleration. For exponential trajectories
(biomarker timescales not presented here) we propose using thresholds of clin-
ical relevance. The second timescale uses our stochastic model to estimate an
analogous result for an individual j. Starting at the individual’s initial measure-
ments (x̃j , ỹj), many stochastic trajectories are synthesised using the deviation
from the cohort fit as the Gaussian process scale σκ,j = |ỹj(x̃j)− ŷfit(x̃j)|, and
sampling model parameters μj from the posterior distributions of the cohort-
level multilevel regression parameters. The average of these synthetic trajectories
for an individual gives a density of first-passage times (see [15]) taken to reach
some maximal threshold, e.g., the effective saturation threshold in the case of
biomarker saturation. This is an interval estimate of time remaining until an in-
dividual’s biomarker becomes fully abnormal, which can inform prognosis either
on it’s own, or as part of a panel of such times for multiple biomarkers.
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3 Results

MCMC. The Bayesian Multilevel Model (BMM) fitting converged using 2
chains, 2000 burn-in samples, and 8000 MCMC samples, thinned by 2. That is,
we observed Gelman’s potential scale reduction factor [16] to be PSRF < 1.1
for all parameters and hyperparameters, as well as observing all Monte Carlo
standard errors to be lower than the posterior standard deviations.

Regression. As expected, our BMM produces different results to OLS — for
example, the different quadratic regression fits shown for ventricles in figure 2a
(males and females were pooled together in this figure). Multilevel regression
parameter estimates for μ are in table 1. The only data supporting a sigmoidal

Table 1. Multilevel regression fit results: mean (±std) ×10−3. ADNI-1 data at baseline
and 12 months were available for N = 651 (370 male) stable or progressing subjects –
of these, 321 (185 male) were apoe4+ subjects. Sex-specific regression parameters are
μk,s with k = 0, 1, 2 (polynomial coefficients) and s = m, f (male,female).

Biomarker, x μ0,m μ0,f μ1,m μ1,f μ2,m μ2,f σ

Ventricles – all −126 (52) −81 (58) 166 (31) 122 (44) −17 (4) −6 (8) 9 (4)
– apoE4+ −174 (75) −76 (94) 214 (42) 123 (73) −23 (5) −3 (13)

Hippocampus – all −19 (5) −20 (6) 29 (14) 21 (15) n/a n/a 6 (2)
– apoE4+ −17 (8) −17 (9) −19 (23) 11 (24) n/a n/a

Entorhinal cortex – all −0.4 (4) −10 (4) −26 (16) 8 (20) n/a n/a 2 (1)
– apoE4+ 4.9 (5.1) −13 (7) −59 (24) 25 (32) n/a n/a

Fusiform – all −28 (21) −47 (23) 2 (20) 21 (21) n/a n/a 8 (3)
– apoE4+ −13 (30) −55 (31) −21 (29) 24 (29) n/a n/a

Mid. temp. gyrus – all −39 (24) −56 (28) 7 (20) 22 (23) n/a n/a 10 (3)
– apoE4+ −48 (34) −39 (40) 5 (29) 4 (34) n/a n/a

Table 2. Ordinary least squares fit results: mean (±std) ×10−3. Compare with mul-
tilevel regression results in Table 1.

Biomarker, x μ0 μ1 μ2

Ventricles – all −41 (62) 72 (46) −3 (8)
– apoE4+ −92 (96) 130 (72) −7 (12)

Hippocampus – all −16 (7) 21 (17) n/a
– apoE4+ −19 (10) 20 (26) n/a

Entorhinal cortex – all −10 (5) 16 (22) n/a
– apoE4+ −19 (7) 52 (33) n/a

Fusiform – all −50 (29) 33 (26) n/a
– apoE4+ −64 (37) 38 (35) n/a

Mid. temp. gyrus – all −16 (33) 0 (27) n/a
– apoE4+ −22 (45) −5 (37) n/a
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trajectory was the ventricles of males. The corresponding parameters for equa-
tion (3) are shown in Table 3. In both tables, estimates (posterior means) ex-
ceeded in magnitude by their standard errors (posterior standard deviations) are
effectively zero. From this we can infer the biomarkers for which this combination
of data and model implies undetectable change. Acceleration in hippocampal at-
rophy was detected for the stables/progressors, but not for the apoE4+ subset.
Deceleration of atrophy was detectable in the entorhinal cortex of males, but not
in females. And for the other regions of interest (fusiform and middle temporal
gyrus), this combination of data and model implied undetectable change.

Focussing on ventricles, figure 2b overlays the OLS parameter estimates (ver-
tical lines) upon histograms of the MCMC samples from the BMM. The OLS re-
sults differ considerably from the BMM results in value and confidence (spread),
resulting in considerably different estimates of the dynamic duration for the
biomarker: τ = 19 ± 6 years (BMM) versus τ = 33 ± 26 years (OLS). We
hypothesize that the BMM has removed a bias present in the OLS regression
estimate due to ignoring the measurement noise present in x. The lower right of
figure 2b shows a histogram for the measurement noise scale σ from equation (2),
compared to the offline estimate from stable controls (red line), which appears
to be an overestimate.

We note that there were differences between males and females. The most
impressive were for the entorhinal cortex, where the linear differential equation
gradients had different signs. Further investigation would require more data and
perhaps modelling, so we relegate it to future work.

Our estimates of the Gaussian measurement noise “size” (standard deviation)
were all of the order of σ ∼ 10−3 ≈ 0.1% of intracranial volume. This represented
between one-third and one-half of the model residual size σy.
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Fig. 2. Regression results for ventricles. Histograms for the multilevel fit parameter
MCMC samples are shown with overlays (red lines) of the complete pooling regression
results for μk±3 standard error. The measurement noise histogram (lower right; green)
is compared with the variance in ADNI-1 stable control ventricles measurements, av-
eraged across individuals.
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Table 3. Sigmoid parameters and biomarker dynamic duration results for the ventricles
of males

Biomarker, x r, per year x− x+ xa xs τ , years

Ventricles (males) – BMM 0.14 (0.04) 0.8 (0.9) 8.9 (1.4) 2.5 7.2 19 (6)
Ventricles (males) – OLS 0.081 (0.065) 0.7 (2.6) 8.8 (4.0) 2.4 7.1 33 (26)
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Fig. 3. Prognostic utility of our approach: stochastic model. See text for details.

Cohort-level Biomarker Abnormality Timescale. For sigmoidal dy-
namics, our analytical thresholds for initial abnormality and effective saturation
(points of maximal acceleration and deceleration) are found by using equation
(3) and solving dx3/dt3 = 0. The time interval between these thresholds is

τ =
1

r
ln

(
2 +

√
3

2−√
3

)
. (4)

We found τ = 19 ± 6 years for ventricles in males (the only data to support
a sigmoidal trajectory). For exponential biomarker trajectories (not presented
here), clinically-relevant thresholds would be appropriate for estimating τ .

Individual-level Biomarker Abnormality Timescale. We calculated
the biomarker effective saturation time for the ventricle volume of a randomly-
selected individual (RID=1384; diagnosed MCI) at visits not included in the
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original fit (to avoid circularity): 24 and 36 months. This data point and the
resulting residual are shown with the pre-existing cohort fit in Figure 3a. The
model parameters sampled from the BMM posterior distributions shown in Fig-
ure 3b were used to synthesise the 1000 trajectories in Figure 3c. The corre-
sponding first-passage times are shown in Figure 3d. Due to the long tail of the
distribution, we used robust statistics (median ± median absolute deviation) to
calculate the biomarker effective saturation time as τFP = 12.2± 6.6 years from
a ventricular volume of xj = 4.1% to the saturation threshold of xs = 8.9%
(percentage of intracranial volume).

4 Discussion

Neurodegeneration causes the ventricles to expand and all other brain volumes
to decline. Measurement noise and intra-subject variability confound this, e.g.,
some progressing individuals display y > 0 even for brain volumes which should
be in decline. Indeed, the apparent bias in OLS results suggests that measure-
ment noise should be modelled in a differential equation approach. Quantitatively
we found that ventricles saturated after an expansion lasting approximately two
decades. This timescale is consistent with current knowledge of Alzheimer’s dis-
ease, and related work on biomarker trajectories [10, 17, 19].

We found low coefficients of determination R2 ≤ 0.33, as in related work [10],
implying that a small proportion of the variance in the data was explained by the
model. This is not particularly surprising for two reasons: 1) cross-sectional data
cannot be used to distinguish between inter-subject and intra-subject variance;
and 2) the simplicity of the model compared with the unknown complexity of
Alzheimer’s disease. For example, the observations in ADNI-1 of hippocampal
growth (or ventricular contraction) in diseased subjects could be a consequence
of intra-subject variation on the relatively short timescale used to calculate
biomarker change (∼ 1 year compared to the decades-long incubation period). A
first step to reduce the influence of such intra-subject variance (not considered
here) would be to use the entire set of followup data from ADNI. Given enough
data points per individual, inter-subject variance and heteroscedasticity could be
explicitly modelled and estimated. There is hope that dense longitudinal data,
as it becomes available, will allow fitting of more complex models that explain
the data better.

This study addressed an important problem: how to infer information about
disease biomarker trajectories from noisy cross-sectional data, which is readily-
available and relatively inexpensive. Cohort-level trajectories were estimated by
fitting an ordinary differential equation model, and integrating the fit. Individual-
level trajectories were modelled as Gaussian deviations from the cohort using a
stochastic differential equation model, allowing trajectory synthesis to inform
prognosis. We innovated over previous differential equation models in two ways.
First by using a Bayesian multilevel regression model to separately identify
measurement noise and population variance. Our second innovation was the
stochastic model. The Bayesian multilevel model avoids biassed parameter esti-
mates, which can arise due to regression dilution. Experiments were performed
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on Alzheimer’s disease imaging data from the ADNI. We presented full results
only for ventricle volume (a quadratic differential equation with sigmoidal time
course), but our framework is not limited to a particular dynamical model.

In conclusion, clinicians focussing on patient outcomes ultimately desire im-
proved diagnosis and prognosis — informed by biomarkers, including those de-
rived from medical image computing. Prognostic uncertainty can be as impor-
tant to the patient as the prognosis itself [18], so it is crucial to provide interval
estimates of relevant time scales where possible. Our stochastic model allows
interval estimation of the time remaining until a biomarker approaches maximal
abnormality. A panel of such estimates for multiple biomarkers could be used to
inform prognosis, e.g., estimation of time until onset of dementia. In the future
we envisage developing such a prognostic tool using our approach in concert
with disease progression models and/or longitudinal quantitative tools such as
recurring-event survival analysis.
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Four Neuroimaging Questions that P-Values

Cannot Answer (and Bayesian Analysis Can)

Maxime Taquet, Jurriaan M. Peters, and Simon K. Warfield
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Harvard Medical School, USA

Abstract. Null Hypothesis Significance Testing (NHST) is used per-
vasively in neuroimaging studies, despite its known limitations. Recent
critiques to these tests have mostly focused on technical issues with mul-
tiple comparisons and difficulties in interpreting p-values. While these
critiques are valuable, we believe that they overlook the fundamental
flaws of NHST in answering research questions. In this paper, we re-
view major limitations inherent to NHST that we formulate as four re-
search questions insoluble with p-values. We demonstrate how, in theory,
Bayesian approaches can provide answers to such questions. We discuss
the implications of these questions as well as the practicalities of such
approaches in neuroimaging.

1 Introduction

The finding that statistically significant fMRI signal change can be mistakingly
observed in a dead salmon performing a mentalizing task [1] and the account of
too-high-to-be-true correlations between self-reported behavioral measures and
brain activations [2] sparked an heated debate in the brain imaging community
about the statistical practice employed in such studies [3,4]. Up to very few
exceptions (e.g., [5]), this debate has focused on publication bias, appropriate
corrections for multiple comparisons, and reporting of findings in good faith,
thereby joining the broader discussion on flawed scientific standards [6]. While
defining and advocating good scientific practice is of paramount importance,
we feel that this discussion has often diverted the attention from the inappro-
priateness of null-hypothesis significance testing (NHST) in answering research
questions —no matter how meticulously applied. There are indeed important
neuroimaging research questions to which NHST provides misleading, if any, an-
swers. In this paper, we review four such questions and we describe how Bayesian
methods alleviate the fallacies of NHST. Section 2 recalls the rationale behind
NHST and p-values. Section 3-6 review four questions insoluble with p-values.
Section 7 discusses the implications of these questions for the neuroimaging
community.

2 Brain Imaging Is Free of Type I and Type II Errors

NHST proceeds as a proof by contradiction. If our data are incompatible with
some hypothesis, then the hypothesis must be wrong. In empirical science, such

M.J. Cardoso et al. (Eds.): BAMBI 2014, LNCS 8677, pp. 95–106, 2014.
c© Springer International Publishing Switzerland 2014



96 M. Taquet, J.M. Peters, and S.K. Warfield

as neuroimaging, a definite claim of incompatibility cannot be achieved and we
therefore compute the probability to observe the data (or something even less
compatible with the hypothesis), should the hypothesis be true. This probability
is called the p-value and the hypothesis is called the null hypothesis. If the p-
value is small enough, then the null hypothesis is rejected with confidence. If,
notwithstanding the small p-value, the null hypothesis was actually true, then
one makes a Type I error (rejecting a true null hypothesis).

Imagine that we are interested in the interaction between cinephilia (a pas-
sionate interest in cinema) and hippocampal volume. We define a null hypothesis
(that cinephiles have on average exactly the same hippocampal volume as con-
trol subjects), collect MRI data, compute the tissue volume and attempt to
refute the null hypothesis. Now, before we endeavor to do so, we may ponder
the odds that the null hypothesis is actually true. This probability most likely
equals 0%. Cinephiles tend to enjoy more esoteric movies typically played in
smaller theaters for which signs are not displayed in the city. This may require
cinephiles to develop better spatial navigation skills, which are associated with
larger hippocampi [7]. Whether this line of reasoning prevails in the global as-
sociation between cinephilia and the volume of hippocampi or other opposite
effects play a more important role, the probability that there is absolutely no
effect of cinephilia on hippocampal volume is essentially null. The upside of this
fact is that most researchers in neuroimaging make no Type I errors nor Type
II errors (since null hypotheses are always wrong). The downside of it, however,
is that the conclusions of NHST in this context are fairly useless, since the null
hypothesis can be rejected prior to acquiring any data. Making no Type I nor
Type II errors in brain imaging does not imply that we do not make any error.
Our errors pertain to the sign and the magnitude of our conclusions, coined Type
S and Type M errors by Gelman et al. [8,9].

3 Type S Errors: How Confident Are We That Our
Finding Is not Opposite to the Truth?

Let us assume that we want to compare the brain connectivity between patients
with autism and controls. After comparing the groups, we find out that patients
with autism have, on average, significantly weaker connections in the language
system (p < 0.05). Given this statistically significant result, what are the chances
that patients with autism actually have stronger connections in the language sys-
tem (i.e., what are the odds that my finding is opposite to the truth)? The answer
is “we really don’t know”. To understand why, let us formalize the problem1. Let
θ1 and θ2 be the true mean connectivity in the language system of patients with
autism and controls respectively. We assume that θ1, θ2 ∈ [−∞,∞]. Let y1 and
y2 be the observed mean connectivity in patients with autism and in controls.
Assuming normality and equal variance (σ2) in both groups, we have:

1 This formalization is greatly inspired from the formalism in [8] that we adapt to
better reflect the situation of image-based population studies of the brain, in which
more information is available a priori for control subjects than for patients.
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Fig. 1. (Left) NHST makes up to 40% Type S errors for small values of the ratio
ω/σ. By contrast, Bayesian analysis controls the Type S error rate to remain below
2.5%. (Middle) Both NHST and Bayesian approaches can make up to 100% Type M
errors for small values of ω/σ. (Right) However, for such small values of the ratio,
Bayesian approaches are much more prudent than NHST, making very few claims with
confidence and showing adaptability to the data as ω/σ increases.

yi|θi, σ ∼ N (θi, σ
2), i = 1, 2. (1)

Type S errors occur whenever y1 − y2 reaches a specific threshold T to make a
claim with confidence (e.g., |y1−y2| > 1.96

√
2σ corresponding to p < 0.05) while

having a sign that is opposite to the true difference θ1 − θ2. The probability of
making a Type S error is therefore given by [8]:

P
(
Type S error

)
= P

(
sign(y1 − y2) �= sign(θ1 − θ2)

∣∣∣|y1 − y2| > T
)
. (2)

This probability involves computing the posterior probability over the latent
variables θi and can therefore only be estimated in a Bayesian approach. Now,
although this probability cannot be directly estimated in NHST, is the p-value
returned by the test a good enough proxy to the Type S error rate? The answer,
as we describe below, is “No”.

To estimate the probability in (2), let us define a simple hierarchical model
as in [8]. We assume that σ can reliably be estimated from the data. The prior
on θ1 and θ2, p(θ1, θ2), can be expressed conditionally: p(θ1)p(θ2|θ1). The prior
p(θ1) encodes any prior knowledge that we have about the mean connectivity
in controls, as gained, for example, from past experience with such connectivity
measures. We may, for instance, assign a normal prior to θ1 centered at some
reasonable μ and some standard deviation τ (our conclusions, as we will see,
depend neither on the value μ nor on that of τ):

θ1|μ, τ ∼ N (μ, τ2). (3)

If we knew the true value of the mean connectivity in controls, θ1, and we had
no data from patients, our best guess about the value in patients, θ2, would be
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θ1. We can therefore model the conditional prior on θ2 as a distribution centered
on θ1, for example a normal with unknown variance ω2 (we will come back to
estimations of the value of ω):

θ2|θ1, ω ∼ N (θ1, ω
2). (4)

From the hierarchical model described by (1),(3) and (4), we can derive the
posterior probability of δ � θ1 − θ2 given d � y1 − y2 and the joint probability
of δ and d:

δ|d, ω, σ ∼ N
(

d

1 + 2σ2

ω2

,
1

1
2σ2 + 1

ω2

)
(5)

[d, δ]|ω, σ ∼ N
(
0, ω2

(
1 + 2σ2

ω2 1
1 1

))
. (6)

Equation (5) allows us to define a 95% posterior interval on δ and therefore
define a threshold TB to make a claim with confidence about the sign of the
difference:

TB = 1.96
√
2σ

√
1 +

2σ2

ω2
. (7)

Equation (6) then allows us to estimate the Type S error rate for a given thresh-
old T by conditioning on the fact that |d| > T [8]:

P
(
Type S error

)
=

∫ 0

−∞

∫ ∞

T

p([d, δ]|ω, σ)dd dδ +
∫ ∞

0

∫ −T

−∞
p([d, δ]|ω, σ)dd dδ

∫ +∞

−∞

∫ ∞

T

p([d, δ]|ω, σ)dd dδ +
∫ ∞

−∞

∫ −T

−∞
p([d, δ]|ω, σ)dd dδ

.

The conditioning on |d| > T means that we consider a Type S error only if we
make an incorrect claim with confidence. This error rate only depends on ω/σ
and is depicted in Fig. 1 for TF = 1.96

√
2σ corresponding to p < 0.05 in NHST

and for TB given in Equation (7). For values of ω � σ, TB ≈ TF so that both
inferences lead to similar Type S errors. However, for ω � σ, the Type S error
rate with NHST grows quickly and reaches 40% for ω = 0.15σ, demonstrating
that we really don’t know the odds of making a Type S error given some p-value.
By contrast, Type S error rates with the Bayesian approach remain below 5%
for all values of ω and is therefore under control.

The ratio ω/σ encodes how far apart we expect, a priori, the variables θ1 and
θ2 to be with respect to the variance of observations y1 and y2. In other words,
this ratio encodes our prior on the true underlying effect size and we have:

E

[(
δ

σ

)2
]
=
(ω
σ

)2
.

NHST can therefore be interpreted as a Bayesian approach which assumes that,
a priori, effect sizes are infinite on average. This assumption seems unreasonable
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and would lead to the observation of extreme group differences in almost all cases.
This explains why the actual Bayesian approach performs better for all finite
values of ω/σ (and equivalently to NHST for infinite values of ω/σ) as shown
on Fig. 1. The actual value of ω could be estimated by pooling all comparisons
(all connections) made between the brain of controls and patients. This first
example illustrates that NHST cannot resolve important aspects of inference
in population studies whereas Bayesian inference enables more adaptive and
reliable analyses of the data at hand.

4 Type M Errors: Can the True Effect Be Much Smaller
than What We Observed?

Suppose that we are confident (for some ad-hoc reason) that our finding is not
a Type S error. Since we never make any Type I and Type II error in brain
imaging, what else can invalidate our finding? We may have observed too strong
an effect compared to the true effect. This would be a Type M error [9]: the sign
of the observed effect may be correct but its magnitude is not.

Again, the question of the prevalence of such errors in practice cannot be
answered using NHST alone but can be answered in a Bayesian fashion. Using
the same hierarchal model as in the previous section (Equations (1), (3) and (4)),
and the resulting posterior and joint distributions (Equations (5) and (6)), we
can estimate the Type M error rate. If we define a Type M error as misestimating
the effect by a factor 10 (|d| < |δ|/10 or |d| > 10|δ|) while claiming this effect
with confidence (i.e., conditionally on |d| > T ), then the Type M error rate is
given by:

P
(
Type M error

)
=

∫ ∞

T

∫

[−∞, d
10

]

∪[10d,∞]

p([d, δ]|ω, σ)dδ dd+

∫ −T

−∞

∫

[−∞,10d]

∪[ d
10

,∞]

p([d, δ]|ω, σ)dδ dd

∫ +∞

−∞

∫ ∞

T

p([d, δ]|ω, σ)dd dδ +
∫ ∞

−∞

∫ −T

−∞
p([d, δ]|ω, σ)dddδ

.

The threshold T used in this equation depends on the inference approach be-
ing used. For NHST, the conventional 95% confidence interval gives rise to
TF = 1.96

√
2σ, whereas the Bayesian approach leads to a 95% posterior interval

governed by the threshold TB of Equation (7). For these thresholds, the Type
M error rates are illustrated in Fig. 1. Interestingly, unlike Type S error rates,
Type M error rates reach high levels for both NHST and Bayesian approaches
for small values of ω/σ. When this ratio falls under 0.45, Type M error rates for
both Bayesian and NHST are above 50%, implying that every other finding has
an effect that is at least an order of magnitude off compared to the true effect.
Not surprisingly, overestimation errors (that is |d| > 10|δ|) are overwhelmingly
more present than underestimations in this range (for ω/σ < 0.5, approximately
all Type M errors consists of overestimations).

Given that Type M errors can reach dramatically high effects with both
NHST and Bayesian approaches, one may question what we have gained from



100 M. Taquet, J.M. Peters, and S.K. Warfield

the Bayesian approach. There are three reasons for which the Bayesian approach
remains beneficial in this case. First, without a Bayesian approach, we would not
have been aware of the prevalence of Type M errors, the estimation of which re-
quires the introduction of a prior over latent variables θi. Second, for ω/σ > 0.5,
Type M error rates are consistently smaller with the Bayesian approach than
with NHST. Third, and most importantly, we have defined Type M error rates
conditionally on making a claim with confidence. Since the threshold for confi-
dence differs between NHST and the Bayesian approach, so will the number of
claims being made with confidence. Fig. 1 depicts the rate of claims. Strikingly,
the Bayesian approach makes almost no claim with confidence for small values
of ω/σ whereas NHST makes at least 5% in all cases (as a consequence of the
definition of the p-value). As the ratio ω/σ increases, the number of claims made
with the Bayesian approach increases to become closer to the number of claims
made with NHST. In other words, the Bayesian approach is always more conser-
vative than NHST (since TB > TF ) and is even more conservative –and rightly
so– when the claims will likely lead to a Type M error. This finding shows that,
by zealously controlling for hypothetical Type I errors, NHST makes substan-
tially more actual Type M errors. On the other hand, by properly modeling the
uncertainty of observations and priors on effect sizes, Bayesian approaches adopt
an adaptive behavior in which fewer claims are made with confidence when the
data does not justify them.

5 Do Patients and Controls Have Similar Brains?

The probability that two groups of individuals have exactly the same average
brain is most often zero. That is because statistics with a continuous domain (for
example, the hippocampal volume) often have no mass at zero. In other words,
this is because the integral between zero and zero of a finite function is zero.
Yet, we do not expect the brains of all patients in all diseases to be affected in
all its properties and in all its locations. We expect to observe some similarities
between brains. But what does similar mean in a world where null hypotheses
are intrinsically impossible? As we shall see, the answer to this question is not
so much statistical as it is biomedical.

First, let us recall why large p-values are no evidence that brains are similar
despite its occasional use as such in population studies. Take a somehow well-
established neurological finding, for example that patients with agenesis of the
corpus callosum (AgCC, the complete or partial absence of a corpus callosum)
have disrupted functional inter-hemispheric connections. Now, recruit patients
with AgCC and healthy controls, disregard their gender, age and ethnicity, ac-
quire fMRI images, align images to an atlas based on rigid registration only and
perform subsequent processing using a version of SPM99 in which a grad student
of your lab mistakingly introduced some bugs. In that scenario, the odds of get-
ting a p-value larger than 0.05 are approximately 95% despite the fact that there
actually is a true substantial difference between the groups. Furthermore, very
large p-values (e.g., p > 0.9) occur randomly if the difference between groups
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p = 0.3

p = 0.7

p = 1.0

p = 0.0

Fig. 2. Example of a map of the posterior probability that the feature of interest (here,
the radial diffusivity from [10]) is out of the ROPE: large values are evidence that
there is an important difference between the groups (red areas) whereas small values
are evidence that the groups are similar (blue areas). The latter cannot be observed in
NHST since p-values in those areas are uniformly distributed (and not specially high).

is very little (under the extreme case of zero effect, p-values are uniformly dis-
tributed). We therefore cannot increase the threshold on p in a hope to better
detect similarities: setting a threshold at p > 0.95 would result in at least 95%
missed detections of similarities.

If similarities do not imply zero effect, what do they imply? We submit that
brains are similar if the difference between them falls within a region of practical
equivalence (ROPE) [11] as defined in a Bayesian context in [12]. We therefore
want to estimate the probability that the group difference θ1 − θ2 is within the
ROPE:

P ((θ1 − θ2) ∈ ROPE|Data)

This probability is computed from the posterior distribution over the latent
variables and is therefore only computed in a Bayesian framework. Large values
of this posterior are evidence that brains are similar between the groups up-to a
difference that is within the ROPE (Fig. 2). The definition of the ROPE is not,
however, informed by any statistical argument and should rather be answered in
a biomedical context. We propose two avenues to define the ROPE: a literature-
based based and an introspection-based approach.

Literature-based ROPE. We can establish the ROPE based on other existing
studies. For instance, if we want to compare the volume of the hippocampus of
patients suffering Alzheimer’s disease, we may want to consider that, training for
a year as a taxi driver already changes the hippocampal volume by approximately
1% [7]. Since we expect more dramatic changes to occur in the brain of patients
with Alzheimer’s disease than in the brain of taxi drivers, we may consider
brains that differ in their hippocampal volume by up to 1% to be practically
equivalent. For studies in pediatrics, one particularly interesting condition to
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establish relevant orders of magnitude is age. If we have curves for the evolution
of different brain properties as children develop, we may consider a difference
corresponding to one week, one month or one year of maturation as being within
the ROPE.

Introspection-based ROPE. In the absence of previous relevant studies, one
may ponder the embarrassment involved should the actual magnitude of a statis-
tically significant difference be reported in addition to the p-value. In neuroimag-
ing, p-values are sometimes reported without the actual magnitude of the effect.
Imagine that, while measuring the volume of the hippocampus, we observe a
difference between controls and patients that is tiny (e.g., 0.06mm3) yet statis-
tically significant. Would we feel comfortable reporting such a tiny effect? If the
answer is “No”, then we must probably consider such a difference as belonging
to the ROPE. This strategy was used in [10] to set ROPE to microstructural dif-
ferences in the brain (difference in fascicle directions, diffusivities and volumetric
fractions).

6 What Is the Probability That the Patient Has the
Disease?

One goal of the definition of biomarkers through population studies is to assist
physicians in the decision-making process. In this process, brain images only
constitute part of the available information. When making a diagnosis, physi-
cians start off with such information as the patient’s age, gender, history and
clinical assessment. For instance, the same observed abnormality of a patient’s
hippocampus is not as strong a sign of Alzheimer’s disease in a patient who is
55 years old as it is in a patient who is 68 years old. The odds for the patient to
have the disorder also increase if the hippocampal abnormality co-occurs with a
clinical presentation of memory impairment or with the presence of a first-degree
relative with the disorder. How can all this information be used to estimate the
probability that the patient has the disease?

NHST would proceed by eliminating all possible null hypotheses (the null
hypothesis that the patient has no disease, then all other null hypotheses that the
patient has any other kinds of dementia). After contradicting all null hypotheses,
we may believe that Alzheimer’s disease is the only possible hypothesis that
holds, and yet we would not have any idea of the probability of it being true.
This is akin to a diagnosis of exclusion, used in medical practice when no direct
conclusive diagnosis can be made.

In the Bayesian formalism, the probability of the disease (D) given all pieces
of information can be computed as a posterior probability from the likelihood of
the brain imaging data (B) and the prior of the disease given clinical (C) and
other individual data (I):
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P (D|B,C, I) =
P (B|D,C, I)P (D|C, I)

P (B|C, I)
=

P (B|D,C, I)P (C|D, I)P (D|I)
P (B|C, I)P (C|I)

∝ P (B|D,C, I)P (C|D, I)P (D|I) (8)

Since the denominator does not depend on D and since D is a binary variable,
it is sufficient to compute the numerator for both D = 1 (has the disease) and
D = 0 (does not have the disease) and to infer the denominator from the fact
that P (D = 1|B,C, I) + P (D = 0|B,C, I) = 1. The factor P (B|D,C, I) can be
inferred from a model of some kind (for example a generalized linear model),
P (C|D, I) can be inferred by calibrating the clinical assessments protocols (for
example, those of DSM-V) and P (D|I) is the prevalence of the disease and can
usually be obtained from large public health surveys.

Equation (8) stands as a theoretical framework to infer the probability of a
patient having the disease given her brain images, her personal and historical
information and her clinical assessment. This framework relies on a hierarchical
Bayesian model in which prior information can naturally be integrated.

7 Discussion

Throughout the last four sections, we demonstrated that p-values are not appro-
priate to answer some important brain imaging questions. They fail to predict
Type S and Type M error rates (which depend on the prior over effect sizes
that is assumed infinite in NHST), they fail to provide evidence for similarities
between brains and they cannot be used to estimate the probability that a pa-
tient has a disease. We have shown how Bayesian hierarchical models naturally
answer those questions. In this section, we discuss the practical implications of
these considerations for the neuroimaging research community.

What does Bayesian analysis tell us about the appropriate sample
size?. Intuitively, most researchers would probably agree that the more data
we have the better the inference. Yet this idea was challenged by Friston in his
Ten Ironic Rules for Non-Statistical Reviewers [13] on the ground that, for a
constant p-value, a significant finding based on fewer samples implies a larger
effect size. In t-tests for instance, the p-value is a strictly decreasing function
of d/σ =

√
nd/σ′ where σ′ =

√
nσ is the standard deviation of the individual

samples whereas σ is the standard deviation of their mean in each group (denoted
y1 and y2 in Section 3 and 4). Increasing n while keeping the p-value constant
thus implies decreasing d and therefore decreasing the effect size d/σ′.

However, lower n implies higher σ (since σ =
√
nσ′ and σ′ is determined by

the measurement noise and inter-subject variability) which implies lower ω/σ
ratios. At lower ω/σ ratios, the Type S and Type M error rates are dramatically
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higher so that the inference is less reliable as described in Sections 3 and 4. What
Friston describes as larger effect sizes should be understood as larger observed
effect sizes which may actually correspond to a smaller true effect size likely
affected by a Type M error (or even a Type S error), an effect known as p-value
filter bias [9] or inflated early-effect sizes [14].

Acknowledging this fallacy of classical inference, Friston further argues that
there ought to be a compromise in the choice of a sample size [13]. Too small
a sample size would likely lead to inflated early effect-sizes, whereas too high
a sample size would result in the detection of trivial effects (i.e., statistically
significant effects that are too small to be interesting). Such effects can naturally
be accounted for in a Bayesian framework by considering them as practically
equivalent to no effect (as described in Section 5). The more data we acquire,
the more confident we are that the effect is within or out-of the ROPE and the
more accurate our estimate of its sign (fewer Type S errors) and its magnitude
(fewer Type M errors). Our Bayesian account of this question therefore indicates
that indeed the more data we have, the better.

Bayesian or frequentist inference?. This paper should not be understood
as a critique of frequentist inference as a whole. We rather question the appro-
priateness of NHST in a non-dichotomous context such as brain imaging, much
like other researchers have questioned it before in other contexts such as political
science [15]. When zero-effects never actually occur, we believe that there is no
reason to try hard to control for Type I error rates. Our disagreement with the
rationale of NHST can equally be expressed for Bayesian dichotomous analyses
such as Bayesian t−tests [16] that provide mechanisms to “accept or reject the
null hypothesis”. In contrast, we believe that there may be some purely frequen-
tist approaches (such as a classifier learned and validated by bootstrapping)
that may be appropriate to draw interesting conclusions from brain imaging
data, including, for example, to answer the question in Section 6.

Bayesian analysis of neuroimaging data. We believe that the natural an-
swers brought by Bayesian approaches to the four research questions presented
above should encourage the neuroimaging community to develop novel Bayesian
inference methods. The development of such methods comes with their share
of hurdles to overcome. These difficulties pertain to the need for a balance be-
tween accurate representation of the data and computational tractability [17].
The challenges in representing brain imaging data as a tractable hierarchical
model arises from the within-voxel complexity of variables and between-voxel
dependencies between them.

The increasing complexity of the information contained within each voxel leads
variables that often belong to non-trivial spaces and with non-trivial dependen-
cies between them. For example, in microstructure imaging, each voxel contains
a complete model of the brain microstructure that may present with ten or more
variables. These variables belong to the sphere (for directions), the space of strictly
positive numbers (for diffusivities and dispersion coefficients) and the simplex (for
signal fractions) [10]. A Bayesian hierarchical model should account for these
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particular spaces. Other examples include the time series contained in fMRI voxels
in which contiguous time points are dependent in a non-trivial manner.

Brain imaging variables are also statistically dependent between neighbor-
ing voxels. In theory, this dependency can be captured by a graphical model,
such as a discrete Markov random field [18]. However, graphical models substan-
tially increase the computational complexity when estimating posterior prob-
abilities since the inference needs to be done globally instead of voxel-wise.
Typically, in those cases, approximations such as Variational Bayes (VB) meth-
ods are employed instead of sampling strategies such as Markov Chain Monte
Carlo (MCMC) [18]. These approximations have been shown to outperform non-
Bayesian introductions of spatial information in problems such as image regis-
tration [19]. However, they are known to introduce biases in the estimations
of posterior probabilities [20]. These biases may be of little concern when the
inference results of interest are specific values of some variables (e.g., the prior
components and the deformation field in [19]) because these values may be exact
even when the posterior probability estimate is not. Biases in estimates of the
posterior may be more concerning when the goal of inference is to obtain the
actual value of the posterior probability, as when assessing the probability that a
patient has some disease. In those cases, MCMC sampling and its computational
burden may be unavoidable or the bias caused by VB methods should be proved
negligible. We believe that these are important avenues for future research.

8 Conclusion

Null hypothesis significance testing (NHST) is a well-defined concept that, if
properly conducted, results in a mathematically correct p-value. This p-value,
in neuroimaging, is however often useless since all null hypotheses can readily
be refuted on the basis that any condition affects our brain in some way. There
are therefore many important research questions in neuroimaging that NHST
cannot answer. This paper has reviewed these questions and proposed Bayesian
alternatives to answer them. Bayesian approaches reduce inference errors (Type
S and Type M), enable the building of evidence for the presence of similarities
between brains and the incorporation of prior information in the diagnosis, as
gleaned from clinical history and examinations. To leverage Bayesian approaches
in neuroimaging analyses, technical difficulties related to the complexity of the
information within and between voxels must be overcome. Important method-
ological developments in this area are being made and should be sustained and
expanded to move the neuroimaging community away from the inappropriate-
ness of NHST.
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Abstract. In this paper, we use Spherical Topic Models to discover
the latent structure of lung disease. This method can be widely em-
ployed when a measurement for each subject is provided as a normalized
histogram of relevant features. In this paper, the resulting descriptors
are used as phenotypes to identify genetic markers associated with the
Chronic Obstructive Pulmonary Disease (COPD). Features extracted
from images capture the heterogeneity of the disease and therefore
promise to improve detection of relevant genetic variants in Genome
Wide Association Studies (GWAS). Our generative model is based on
normalized histograms of image intensity of each subject and it can be
readily extended to other forms of features as long as they are provided as
normalized histograms. The resulting algorithm represents the intensity
distribution as a combination of meaningful latent factors and mixing co-
efficients that can be used for genetic association analysis. This approach
is motivated by a clinical hypothesis that COPD symptoms are caused
by multiple coexisting disease processes. Our experiments show that the
new features enhance the previously detected signal on chromosome 15
with respect to standard respiratory and imaging measurements.

1 Introduction

In this paper, we employ the Spherical Topic Model[1] (which is one of the
variants of the latent topic models) to extract imaging features for genetic as-
sociation studies. It is common in classical Genome-Wide Association Studies
(GWAS) to perform statistical association between genetic measurements and
a few quantities such as diagnosis. Imaging features provide rich information
about the disease phenotype and promise to enhance the sensitivity of the ge-
netic studies. Using individual voxels as a phenotype is not informative and due
to the noisy nature of imaging measurements induces high false positive rate.
Therefore, summarizing imaging features into meaningful quantities (i.e., di-
mensionality reduction) improves the association and facilitate interpretation of
the results. In this work, we build on a variant of topic models to perform this
step of dimensionality reduction.

COPD is characterized by chronic and progressive difficulty in breathing, and
is one of the leading causes of death in the United States [2]. The disorder is
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believed to be a mixture of multiple disease processes including the destruction
of the air sacs (emphysema) and inflammation of the airways (airway disease).
Each process consists of multiple subtypes [3]. In this paper, we focus on em-
physema which manifests itself as changes in intensity of the lung in Computed
Tomography (CT) images [3]. Therefore, we use image intensity of the lung as a
unit of measurements for each subject. The goal is to summarize this information
into meaningful features. Similar to the idea of bag of words in natural language
processing, later also adopted in computer vision [4], we view a histograms as a
document and subtypes of the disease as different topics. This approach assumes
that every patient (document) contains multiple portions of the disease subtypes
(topics) and those disease subtypes, i.e., topics, are shared across subjects. The
goal of this paper is not to diagnose COPD since a test of lung function via
forced exhalation has been the gold standard of COPD diagnosis for decades
[5]. Our aim is to use imaging features to characterize the phenotype and the
underlying genetic causes of the disease.

The search for genetic variants that increase the risk of a disorder is one of
the central challenges in medical research, and has been traditionally performed
via GWAS. Standard GWAS identifies correlations between genetic variants and
a single phenotype (e.g., mostly disease vs. control). Although such analysis
identified several variants relevant to COPD (e.g., IREB2 on chromosome 15
[6]), such studies are likely incomplete. First, COPD is a mixture of diseases and
therefore is unlikely to be explained by a single factor. Second, the effect of the
genetic variants may be scattered across the lung volume but their cumulative
effect is manifested in the respiratory signal [7]. Imaging can help to address
both challenges. Image features that capture the amount of emphysema have
been previously demonstrated to reflect disease pathology and predict outcomes
in COPD [7]. We seek to extract features from images that capture heterogeneous
manifestations of the disease and enrich detection of genetic markers associated
with COPD.

The standard approach to quantify emphysema is to apply an intensity thresh-
old within the volume of the lung to compute a surrogate measure for the volume
of emphysema [7]. Clinical studies suggest that lungs of COPD patients present
symptoms of different subtypes of emphysema [7, 5]. Recent work exploits spa-
tial patterns of intensity to classify emphysema into subtypes. Examples include
the use of Kernel density estimation [8], combination of Local Binary Pattern
(LBP) and intensity histogram [9], and Multi-coordinate Histogram of Oriented
Gradient (MHOG) descriptors [10] for subtype classification of image patches in
CT. Importantly, none of the method above characterizes how the underlying
biological processes overlap with radiologic categorization.

Imaging genetics associates image phenotype with genetic markers relevant for
the disease of interest. The objective is to characterize clinical heterogeneity of
the disease and to detect novel genetic markers associated with COPD [11]. Most
methodological innovations in imaging genetics to date have been demonstrated
in the context of neuro-degenerative diseases [12, 13, 14], where image features
are typically computed in a common coordinate system and are assumed to be
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spatially consistent across subjects. Unfortunately, such coordinate system does
not exist for the lung, presenting an additional challenge for creating image-based
descriptors that can be compared across subjects.

In this paper, we build a generative model that encodes the clinical assumption
that COPD symptoms are caused by multiple coexisting biological processes. We
assume that every subject is a mixture of latent disease factors, that are shared
across the population. This approach is referred to as topic modeling in machine
learning (e.g., LDA [15]). The contribution of each latent factor for a particular
subject becomes a new feature that can be used as an intermediate phenotype
for detecting genetic associations. To integrate the resulting features into genetic
analysis, we employ a method that views the genotype as the dependent variable
and uses all the latent features simultaneously to find the genetic association.
We demonstrate that the new features enhance the signal on chromosome 15 by
improving the sensitivity of detection.

2 Topic Modeling for Feature Extraction

Previous studies have shown the intensity of lung to be highly informative for
characterization of COPD [8, 9]. Therefore, we use global histogram of image
intensity of the lung as a unit of measurement for each subject. The goal is to
reduce a set of histograms to a set of meaningful features that enhance subse-
quent statistical analysis. Histogram data can in general encode richer features
such as sophisticated localized descriptors (e.g., Histogram of Oriented Gradi-
ents (HOG)), but to focus on the model, we limit ourselves to image histograms
which have been shown to be informative for COPD [8, 9]. Here, we adopt the
Spherical Admixture Model [1] that views each histogram as a point on a hyper-
sphere. The advantage of this model is that it can handle unit-less (normalized)
representations of the histograms. This property allows us to normalize the fea-
tures by the volume of the lung.

We assume an image of subject n in a study is represented by a distribution
yn ∈ R

D (
∑D

d=1 ynd = 1). With a change of the variables ynd := z2nd, we map the
intensity distribution to a unit hypersphere, zn ∈ S

D−1. Motivated by the clinical
hypothesis that COPD is a mixture of diseases, we assume that each data point
(subject) is a normalized sum of K disease factors Φ = [φ1 · · ·φK ] ∈ R

D×K . The
factors are shared across the population and each factor is also a distribution,
φk ∈ S

D−1 (1 ≤ k ≤ K). The generative model can be summarized as follows[1]:

μ ∼ vMF(m, κ0),

φk ∼ vMF(μ, ξ),

xn ∼ Dirichlet(α),

zn ∼ vMF

(
Φxn

‖Φxn‖2 , κ
)

(1)

where vMF(·) and Dirichlet(·) denote the von Mises-Fisher (vMF) [16] and
Dirichlet distributions respectively. vMF distribution is a natural distribution,
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akin to a multivariate Normal distribution, for directions on a sphere. μ is a la-
tent variable that controls the mean of the disease factors (topics), m and κ0 are
hyper-parameters that define the mean and concentration of μ respectively. xn

is a normalized latent distribution that defines a portion of each disease factor
(topic) represented in subject n. Since xn is normalized (sums to one), Dirichlet
distribution is a reasonable prior choice; α is the multivariate shape parameter
of the Dirichlet distribution. Φxn

‖Φxn‖2
maps the weighted sum of the topics back

to the sphere and serves as a noiseless representation of the observation zn. To
accommodate possible noise, the observation is modeled as a von Mises-Fisher
perturbation of the noiseless representation, parameter κ controls the concen-
tration of the noise. For notational convenience, we define Ω = {μ,Φ,X} to
be the set of the latent variables and Υ = {α, ξ, κ, κ0} to represent the set of
hyper-parameters. The generative model is illustrated in Fig.1a.

The join probability p(Z, Ω;Υ ) can be written as follows:

p(Z, Ω;Υ ) =

N∏
n=1

p(zn|Φ,xn;Υ )p(xn;Υ )

K∏
k=1

p(φk|μ;Υ )p(μ;Υ ) (2)

Reisinger et al. [1] proposed to use variational mean-field method to approxi-
mate the posterior distribution of the latent variables in this model with a fully
factorized function as follows:

q(μ,Φ,X|μ̃, Φ̃, m̃;Υ ) = q(Φ|μ̃, ξ)q(X|α̃)q(μ|m̃, κ0), (3)

where Σ = {μ̃, Φ̃, m̃} are the parameters of the approximate posterior distri-
bution q(·). Note that Σ and Ω are not identical since the former is the set
containing parameters of the approximate posterior distribution while the latter
is the set of latent variables in the original model. The variational method min-
imizes the KL-divergence between the approximating distribution and the join
probability distribution to find the optimal setting of the parameters:

(Σ∗, Υ ∗) = argmin
Σ,Υ

Eq [log p(Z, Ω;Υ )− log q(Ω;Υ )] . (4)

Computing the derivatives with respect to Σ and Υ and setting them to zero,
the mean field method reduces to a set of fixed-point update equations (see [1]
for detail).

We seek to estimate the posterior means of the latent features x̂n := Eq [xn],
which serve as a low-dimensional representation of subject n, and are used to infer
associated genetic markers of the disease as described in Section 3. Estimates x̂n

can be viewed as aK-dimensional histogramdefined overK latent factors. Indeed,
we reduce the original D-dimensional histograms of image intensities to the K-
dimensional histograms of the latent factors. Other quantities of interest are the
latent factors, φ̃k, which are D-dimensional histograms that describe each latent
factor in the intensity space. The hyper-parameters, Υ , and the parameters of the
approximate posterior distribution, Σ, are estimated during learning (i.e., Eq.
4). The main parameter of the method is number of topics K.
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(a) (b)

Fig. 1. (a) Schematic visualization of the generative model. Each data point (blue)
is a noisy mixture of latent disease factors (red arrows). (b) Graphical model for the
spherical topic model in [1]. The open gray and white circles are the observed and the
latent random variables respectively. The full circles are the hyper-parameters.

Unlike traditional Factor Analysis methods such as PCA, this approach yields
normalized factors and coefficients (i.e., both can be interpreted as histograms).
This is advantageous for interpretation of the results because theΦ can be viewed
the same way as the input histograms and mixing weights xn can be viewed as
the proportions of each factor in subject n.

3 From Image Features to Genetic Markers

In addition to the image features x̂n, each subject is characterized by a vector
of S genetic markers (gns ∈ {0, 1, 2}, 1 ≤ s ≤ S). gns represents the allele count
in the locus s of the genetic measurement for subject n. Standard GWAS builds a
regression model x̂nk = bs,k+wskgns+ εnsk for each Single Nucleotide Polymor-
phism (SNP) gns and the phenotype x̂nk separately. The detection procedure
aims to reject the null hypothesis of no association (wsk = 0) by performing
t-test. Contrary to the standard GWAS that models phenotype as a dependent
variable, we use a previously proposed method that considers the genotype as
the dependent variable and uses all phenotypes features simultaneously [17]. The
algorithm employs proportional odds (ordinal) logistic regression to model the
allele count. Unlike multi-class logistic regression, ordinal logistic regression as-
sumes the classes (i.e., gns = 0, 1, 2) are ordered, the hyperplanes separating
the classes are parallel, and the difference between classes is captured by the in-
tercepts as illustrated in Fig.2b,2a. Ordinal logistic regression is more restrictive
than a more general multi-class logistic regression and exhibits fewer degrees
of freedom. The ordinal method is more appropriate when a natural ordering
can be imposed on class labels. This is certainly the case here since gns counts
the number of minor alleles and we assume an additive effect. The cumulative
probability is modeled as the logistic function:

P(gns ≤ j) = ψ(wT
s x̂n − bs,j) =

1

1 + exp(wT
s x̂n − bs,j)

, (5)
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(a) (b)

Fig. 2. (a) Ordinal vs. (b) Multi-class logistic regression. In the ordinal regression, the
separating hyperplanes are parallel (same w) and classes differ by intercepts.

where j ∈ {0, 1, 2}. For the allele j in locus s, we estimate one weight ws and
two intercepts bs,1 and bs,2. Fitting the model reduces to maximizing the log-
likelihood of data to find the best parameters (ws, bs,1, bs,2) for each SNP gns:

L(ws, bs,1, bs,2; x̂) =

N∑
n=1

log (ψ(wT
s x̂n − bs,(gn+1))− ψ(wT

s x̂n − bs,gn)), (6)

where bs,0 = −∞ and bs,3 = +∞.
We compute the likelihood ratio of the model with combination of covariates

and x̂ (H1) versus only the covariates (H0). χ2 distribution with degrees of
freedom equal to the difference in dimensionality is used to compute the p-
value [17]. Covariates are defined in the next section.

4 Experiments

Experiments in this section are organized as follows. We first qualitatively eval-
uate the new features x̂n and the estimated latent factors φ̃k (Fig.3). Next, we
select a few important SNPs to study the sensitivity of the algorithm with re-
spect to the model size K (Fig.4). Finally, we study how much the new features
enrich our genetic findings versus the traditional measurements such as airflow
(Fig.5 and Fig.6).

Data: We demonstrate the method on a large COPD study of 6,670 subjects.
The respiratory measurements include: percent predicted, forced expiratory vol-
ume in one second (FEV1) that is used as an indicator of COPD severity, and
the ratio of FEV1 over forced vital capacity (FEV1/FV C), used as a measure
of airflow obstruction for COPD diagnosis. We will refer to the respiratory mea-
sures as Resp. We also evaluate summary measurements computed from lung
CT. These include percent emphysema, defined as the percentage of lung tis-
sue below -950 Hounsfield units; percent gas trapping, defined as the percentage
of lung tissue below -910 Hounsfield units after exhalation, and the wall thick-
ness of an airway with an internal perimeter of 10mm (Pi10). We will refer to
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Fig. 3. Estimated latent model estimated. (a),(b) Examples of latent factors forK = 6.
(c). Scatter plot of latent features colored by FEV1/FVC (severity of COPD). Hotter
colors represent higher values (healthier subjects). The scatter plots show that new
features successfully delineate the severity of the disease.

these measures as sumImg. The subjects were genotyped by Illumina on the Hu-
manOmniExpress array. We employ standard quality control for genetic data,
including missing-ness, excess heterozygous, gender mismatch, cryptic related-
ness, population outliers, marker concordance, and Hardy-Weinberg equilibrium.
We computed 6 principal components from the genotype to correct for popula-
tion heterogeneity, and included them in the covariate set along with age, Body
Mass Index (BMI) and number of aggregate packs smoked per year.

Qualitative Evaluation: Fig. 3 shows examples of the derived latent disease
factors (φ̃k) and the corresponding latent features (x̂) in the patient cohort. As
shown in Fig.3a and Fig.3b, every factor is a proper distribution. In effect, the
classical method is based on a single threshold that divides a histogram into two
bins: lower or higher bins. There is a debate in the COPD community on what
the optimal threshold should be. In contrast to the traditional approach, one
can view the proposed method as an adaptive way of histogram binning with
no need to specify the threshold explicitly. Nevertheless, it is interesting to see
that the latent factors are located at the values that are close to -950 Hounsfield
units ( -950 is commonly used to define percentage of emphysema in the COPD
community).

Fig.3c presents a scatter plot of pairs of new features (x̂) in the cohort. The
color in the scatter plot indicates the value of FEV1/FV C. Higher values cor-
respond to subjects without COPD. The scatter plot suggests that the new
features successfully characterize the severity of the disease. Notice the smooth
variation across the population. We also performed linear regression between new
features (K = 6) and respiratory measurement FEV1 (R2 = 0.67), FEV1/FV C
(R2 = 0.74), and the percent of emphysema (R2 = 0.96).

Sensitivity Analysis: We chose around 500 SNPs with the lowest p-values
identified in previous studies. Many of these SNPs are from regions that have
been frequently reported in the genetic and respiratory literature in connection
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Fig. 4. Prediction accuracy (F1-measure) for 5-fold cross validation and quality-of-
fit (− log (p)) as a function of the model size K for three important genetic markers.
F1 is defined as 2(precision × recall)/(precision + recall). We note the improvements
in prediction accuracy in (a). As the model becomes more complex (higher K), the
number of degrees of freedom in χ2 distribution increases, which explains the initial
increases and decreases in the p-value in (b).

to lung cancer genes or nicotine receptors areas. We first examine the behavior
of the algorithm on the smaller set of 2,441 subjects. In order to study the
sensitivity of the method with respect to the main parameter (the number of
the latent factors K), we choose three SNPs associated with COPD (rs578776
[18]), nicotine dependence (rs17483721 [19]), and lung cancer (rs2568494 [6]),
and evaluate the significance of the model fit for different values of K.

The cross-validation accuracy of the model saturates very fast (Fig.4a) imply-
ing that few topics summarize the dataset successfully. As K grows, so does the
number of degrees of freedom in the χ2 distribution that is used to evaluate the
significance of the fit in Fig.4b. Unless the fit improves substantially, we expect
the significance (− log(p)) to increase at first and then to decline. The plots in
Fig.4b spike down at K = 20, 24, 34 because the features become so collinear
that the optimization of the cost function of the ordinal logistic in Eq. (5) does
not converge (Hessian in Eq. (6) become ill-conditioned). An alternative way to
choose K is to use the variational lower bound which is not explored in this
paper.

Association Study: To test if the new features enrich the association, we exam-
ined different combinations of topic features, summary image features (sumImg)
and the respirometry measurement (Resp) for the set of selected SNPs. Fig.
5 reports the pair-wise comparison of different feature sets. A > B indicates
how many more SNPs are detected in one setting (A) versus the other (B)
and how they were distributed across different chromosomes. Almost every com-
bination with latFtr improves with respect to the second row (sumImg). We
conclude that the extracted features are correlated with previously identified
clinical image-based measures, but also offer complementary detections for ge-
netic studies. Another important message from Fig. 5 is that adding the most
important clinical measurement (Resp) improves the results.
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Fig. 5. Comparison of different feature sets. For K = 4 and for different combination
of features, A > B indicates how many more SNPs are detected in one setting (A)
versus the other (B) and how they were distributed in the different chromosomes.

Fig. 6. Fine-scale regional maps for the region of significance on chromosome 15. Blue,
purple and green lines represent latFtr, sumImg, and Resp respectively.

Fig. 7. Fine-scale regional maps for the region of significance on chromosome 4. Blue,
purple and green lines represent latFtr, sumImg, and Resp respectively. There is signal
that is only detected effectively by the respiratory features but not by sumImg or latFtr.

We also extracted features for the whole set of 6,670 subjects and applied re-
gression on the genome-wide scale. Fig.6 shows the regional maps on the chromo-
somes 15. Blue, purple and green lines represent new features (latFtr), sumImg,
and Resp features. On the chromosomes 15, the new features (latFtr) enhanced
the detection with respect to the other two feature sets by about 4 orders of mag-
nitude in the corresponding p-values. On the chromosome 4, there is signal that
is only detected effectively by the respiratory features but not by sumImg or
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latFtr (see Fig.7). This suggests there is some information in the respiratory
signal that is not reflected in the images.

5 Conclusion

Traditional approaches to CT analysis in lung disease often rely on a single
threshold or set of thresholds, and ignore the effects of genetic variants. We
present a method to extract image features using topic modeling from lung CT
images. Bins of the histogram are viewed as words in a dictionary or codebook.
Our experiments show that new features correlate well with clinical measures
of physiology (spirometry) and generalize commonly used measures for emphy-
sema. The new features promise to improve the power of genetic associations for
genetic causes of COPD. The proposed method is general and can be applied to
any distribution. Including texture and lobe information to better characterize
different subtypes of emphysema is a clear important and promising direction of
future research.
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Abstract. The appearance of new Multiple Sclerosis (MS) lesions on
MRI is usually followed by subsequent partial resolution, where por-
tions of the newly formed lesion return to isointensity. This resolution is
thought to be due mostly to reabsorption of edema, but may also reflect
other reparatory processes such as remyelination. Automatic identifica-
tion of resolving portions of new lesions can provide a marker of repair,
allow for automated analysis of MS lesion dynamics, and, when coupled
with a method for detection of new MS lesions, provide a tool for pre-
cisely measuring lesion change in serial MRI. We present a method for
automatic detection of resolving MS lesion voxels in serial MRI using a
Bayesian framework that incorporates models for MRI intensities, MRI
intensity differences across scans, lesion size, relative position of voxels
within a lesion, and time since lesion onset. We couple our method with
an existing method for automatic detection of new MS lesions to provide
an automated framework for measuring lesion change across serial scans
of the same subject. We validate our framework by comparing to lesion
volume change measurements derived from expert semi-manual lesion
segmentations on clinical trial data consisting of 292 scans from 73 (54
treated, 19 untreated) subjects. Our automated framework shows a) a
large improvement in segmentation consistency over time and b) an in-
creased effect size as calculated from measured change in lesion volume
for treated and untreated subjects.

1 Introduction

The appearance of new Multiple Sclerosis (MS) lesions visible on T2-weighted
MRI is generally followed by a period of repair or lesion resolution, during which
portions of the new lesion will return towards isointensity on MRI [1]. This
resolution is thought to be due mostly to reabsorption of edema, but may also
reflect other reparatory processes such as remyelination [1]. The percentage of
new lesion that resolves has been posited as a marker for tissue repair and for
staging disease [1]. Meier et al. have previously modeled the dynamics of new
lesion formation on T2-weighted MRI and have observed a transient phase of 3-4
months, with larger lesions exhibiting a proportional greater amount of lesion
resolution, and concentric patterns of resolution where voxels near the lesion
boundaries are much more likely to resolve than those in the lesion center [1,2].

M.J. Cardoso et al. (Eds.): BAMBI 2014, LNCS 8677, pp. 118–129, 2014.
c© Springer International Publishing Switzerland 2014
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(a) screening (b) w24 (c) w36 (d) w24 (e) w36

Fig. 1. Example of new and resolving MS lesion on T2-weighted MRI over 3 timepoints.
(a)-(c) show T2w images at screening, week 24 and week 36, while (d) and (e) overlay
new and resolving lesion voxels at w24 and w36, where green denotes new, red denotes
stable portions of new lesion and blue denotes resolving portions of new lesion, with
respect to the previous timepoint.

An example of lesion formation and resolution over 3 serial scans is shown in
Fig. 1.

Manual segmentation of MS lesion on MRI is time-consuming and subject to
inter and intra-rater variability. Although many methods for automatic segmen-
tation have been proposed [3], they remain imperfect, generally require substan-
tive manual correction in real-world clinical environments, and still have relatively
high degree of variability. Additionally, most methods do not take advantage of
temporal relationships when considering multiple timepoints of the same subject,
leading to reduced sensitivity to change and higher temporal segmentation vari-
ability, thus confounding inconsistent segmentation with real biological change.
Several approaches have been proposed for the automatic segmentation of new
MS lesions in sequential MRI [4], but little has been proposed for automatic de-
tection of lesion resolution. While lesion resolution is implicitly modeled in [5],
spatial and temporal characteristics of the resolution process are not modeled and
the validation focuses exclusively on the detection of new lesions.

In this paper, we present a novel method for automatic detection of resolving
lesion. A generative Bayesian model is used to detect resolving portions of le-
sions, where we consider MRI intensities, MRI intensity differences across time
(difference images) and where we embed previously observed characteristics of
lesions formation such as lesion size, time from lesion onset, and relative positions
of voxels within a lesion [1].

Meaningful validation of any lesion segmentation algorithms is difficult due to
the absence of a real ground truth.While manual references are often used for com-
parisons [3], these are generally imperfect, highly variable, and time-consuming
to generate. The variability of lesion segmentations over timepoints of the same
subject also makes them impractical as a basis for generating a reference for re-
solving lesion as most of the apparent resolution from one timepoint to the next
would be attributable to inconsistent lesion boundaries rather than to veritable bi-
ological change. In the absence of an explicit reference segmentation for resolving
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lesion voxels, we have chosen to combine our method with a method for new le-
sion detection [6] to provide a method for detection of lesion change in serial MRI.
We compare lesion change measurements generated from our method to those de-
rived from semi-manual reference segmentations lesions generated independently
at each timepoint. We validate our method by comparing a) segmentation consis-
tency across time and b) apparent treatment benefit as determined by effect size
calculated from lesion volume changemeasurements from treated (N=54) and un-
treated (N=19) subjects in our test data.

2 Method

2.1 Bayesian Formulation

We present a Bayesian framework for automatic detection of resolving portions
of lesions in serial MRI. We use a generative model where, at each voxel i in a
lesion, we consider MRI intensities, It

i , at the current timepoint and intensity
differences, Dt

i , between coregistered current and previous timepoints. We ad-
ditionally consider the distance from lesion boundary, di, to model a concentric
pattern of resolution, and lesion size at onset, s, to model the increased relative
rates of resolution of larger new lesions. Finally we consider the time from lesion
onset, a, to model the fact that most resolution occurs soon after lesion onset [7].
We define lesion onset as the time of first observation of a new lesion.

Resolution of Recently New Lesion

We first consider the case where we are provided with a set of new MS lesions
that appear after our first available timepoint for a given subject, such that
we can determine time of onset. In practice, these recently new lesions will be
generated by an automated method as in [6]. We consider each lesion in the set
of recently new lesions in turn, inferring the probability of resolution at each
voxel i of the lesion, at all timepoints following lesion onset. Lesion size and
boundaries are determined at lesion onset.

We allow two states for resolution status, resti: a) resolved, corresponding to
lesion that returned to “healthy” tissue from lesion at time t (resti = 1), and b)
stable, lesion which remains lesion at time t (resti = 0). The distance from lesion
boundary, di, is normalized based on lesion size and takes on a value between 0
(closest to lesion edge) and 1 (furthest from lesion edge) to provide invariance
to lesion size.

For each voxel i in a given lesion, we wish to determine the probability of res-
olution at time t, based on observed MRI intensities at time t, It

i , MRI intensity
differences between times t and t − 1, Dt

i , as well as time since lesion onset, a,
lesion size at onset, s, and distance from the lesion boundary, di:
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We have invoked Bayes’ law multiple times, have treated the denominator as
a normalization constant, and have made several statistical conditional indepen-
dence assumptions:

– MRI intensity at time t is conditionally independent of Dt
i ,a,s, and di, given

resolution status (p(It
i |resti,Dt

i , s, di, a)) = p(It
i |resti)).

– MRI intensity differenceDt
i is conditionally independent of a,s, and di, given

resolution status (p(Dt
i |resti, s, di, a)) = p(Dt

i |resti)).
– The lesion size is independent of normalized distance from lesion boundary

and time from onset, given resolution status (p(s|resti, di, a) = p(s|resti)).
– The normalized distance from lesion boundary is conditionally independent

of time from onset, given resolution status (p(di|resti, a) = p(di|resti)).

Our posterior probability of resolution at voxel i at time t is thus a product
of 5 terms, each of which models the likelihood of resolution status based on one
of intensity, intensity difference, distance from lesion boundary, lesion size, and
time since lesion onset.

Lesion Resolution with Limited Scan History

In some instances, we may have no or insufficient scan history to determine
which set of existing lesions are new and which are not (e.g. at first timepoint).
In such cases, we assume that we are given a segmentation of all lesions at the
first timepoint and we attempt to jointly infer which lesions are recently new
at the first timepoint and resolution status at subsequent timepoints. We use
RN t

i to denote whether voxel i at time t corresponds to lesion that is recently
new (< 6 months old) or not. Lesion newness, RN t

i , is inferred by considering
MRI intensities at the current timepoint and intensity differences between the
current and ensuing timepoint, based on the observations that transient new
lesions exhibit greater hyperintensity than stable older lesions and that this
hyperintensity will decrease over time.

We can express the probability of being a recently new lesion at time t − 1
based on MRI intensities at t and intensity difference between time t and time
t− 1 as:

p(RN t−1
i |It−1

i ,Dt
i) =

1

K
p(It−1

i |RN t−1
i )p(Dt

i |RN t−1
i )p(RN t−1

i ), (2)
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where we have made conditional independence assumptions equivalent to
those made for Eq. 1.

The boundaries of new lesions for which onset can be observed (i.e. at sec-
ond or later timepoints) can be reliably determined even if they are confluent
with existing lesion. However, for lesions where onset is not observed (i.e. lesions
present at baseline), we cannot always reliably determine boundaries of individ-
ual lesions based on connectedness, especially for subjects with relatively high
lesion load. As such, we choose not to consider lesion size and relative position
of voxels in a lesion when determining probability of resolution in cases with
insufficient scan history, as was done in Eq. 1. Incorporating our inference of
lesion newness, we then infer resolution status for cases with insufficient scan
history as:

p(resti, RN t−1
i |It

i ,D
t
i , I

t−1
i , a) = p(resti|RN t−1

i , It
i ,D

t
i , a)p(RN t−1

i |It−1
i ,Dt

i)

= p(resti|It
i ,D

t
i , a)p(RN t−1

i |It−1
i ,Dt

i), (3)

where the right side of Eq. 3 is our inference of newness at time t−1 as determined
by Eq. 2, and the left side is our inference on resolution determined as in Eq. 1
but without using size and distance from lesion boundary. Here we assume a
time since lesion onset equal to the difference between time t and time t− 1 and
also assume that only lesion voxels inferred as new at time t− 1 are candidates
for subsequent resolution.

3 Experiments

3.1 Data Sets

We use a proprietary clinical trial data set in our experiments, consisting of 639
scans from 73 subjects with relapsing-remitting MS, where each subject consid-
ered minimally had scans at screening (s), week 24 (w24), week 36 (w36), and
week 48 (w48). Most subjects had additional intermediate scans at some or all of
w04, w12, w16 and w20. T1-weighted with (T1c) and without (T1w) gadolinium
injection, T2-weighted (T2w), proton-density weighted (PDw), and T2w Fluid-
Attenuated Inversion Recovery (T2w-FLAIR) scans were available at each time-
point. All scans were acquired axially with an in-plane resolution of 1mm and
slice thickness of 3mm, underwent non-uniformity correction [8], brain mask-
ing [9] and were rigidly registered across MRI modalities and timepoints [10].
Additionally, all scans underwent a decile-based piecewise linear intensity nor-
malization to a global intensity space [11]. Semi-manual lesion segmentations
of all MS lesions were performed at some timepoints by trained experts prior
to and independently of this study, where an initial segmentation of MS lesion
was generated using [12] and then manually corrected following a strict proto-
col. Semi-manual segmentations were available for all 73 patients but only for
timepoints screening, w24, w36, and w48. As such only these 4 timepoints were
used for validation (292 scans total). Any additional intermediate timepoints
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were included in the unsupervised training process. Treatment codes were made
available for our data set, which identify subjects as either receiving treatment
(N=54), or placebo (N=19). The availability of treatment codes allowed for vali-
dation based on effect size calculations, where we measure the statistical power of
different measurements to differentiate treated and untreated (placebo) subjects.

Model Generation

Because we do not have ground truth for resolving lesion in our data set, we
use an unsupervised approach to model learning. We first make use of existing
software [6] to automatically identify new lesions in the entirety of our data set.
This set of MS lesions, Lnew , then become candidates for resolution at timepoints
following their appearance. We will consider model learning for inferring lesion
resolution and inferring lesion newness separately, as different procedures are
used for each.

Lesion Resolution Models
We use a hybrid unsupervised learning method where we first identify a set of
representative samples of stable and resolving lesion voxels in our data, which
we use to generate distributions for our intensity models, p(It

i |resti), and inten-
sity difference models, p(Dt

i |resti). We then use these intensity based models to
initialize our inference of resolution status at all voxels in Lnew at timepoints
following lesion onset, and use a generalized EM framework to learn parame-
ters of our models for lesion size, normalized distance from lesion boundary, and
lesion resolution conditioned on time since lesion onset.

Representative samples for stable and resolving lesions used for model initial-
ization are generated using an approach based on difference of new lesions over 3
consecutive timepoints, as illustrated in Fig. 2. While such an approach is useful

(a) t1 (b) t2 (c) t3 (d) new t2 (e) new t3 (f) stable /
res

Fig. 2. Generating resolving and stable lesion samples using difference of new lesions.
(a)-(c) show T2-weighted MRI of the same subject for 3 consecutive timepoints. (d)-(e)
show new lesion (green) at t2 and t3 respectively, both with reference to t1. (f) shows
resolving (blue) and stable (red) lesions samples at t3, where stable are those voxels
that are identified as new in both (d) and (e), and resolving are those identified in (d)
but not in (e).



124 C. Elliott et al.

for generating a set of samples, it is not a practical approach to detection of le-
sion resolution in the general case when considering additional (>3) timepoints,
as it does not enforce temporal segmentation consistency and is not well suited
to considering resolution occuring over multiple sequential timepoints.

Intensity based models are represented by 5 dimensional (corresponding to 5
modalities), 6-component Gaussian Mixture Models (GMMs), where the number
of GMM components was chosen heuristically. Figure 3 shows learned probability
densities for intensity and instensity differences, for resolving and stable (non-
resolving) lesion voxels, marginalized over T2-weighted intensities.
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Fig. 3. (a) Intensity and (b) Intensity Difference densities for resolving and stable
lesion voxels, shown marginalized over t2w for visulation purposes. In practice, models
5-dimensional densities corresponding to the 5 modalities used (T1w, T1c, T2w, PDw
and T2w-FLAIR).

We use our intensity and intensity difference models to initialize resolution
status of all voxels in Lnew at timepoints following lesion onset. These initial esti-
mates of resolution status will then act as hidden parameters in our EM learning
framework. Model parameters for all our other models are then iteratively up-
dated using generalized EM. The model learning process can be summarized as
follows:

1. Generate a set of samples for resolving and stable lesion voxels using differ-
ence of new lesion.

2. Use samples generated in step 1 to generate models for intensity and intensity
difference, for stable and resolved lesion voxels.

3. Generate a set of new MS lesions over all timepoints as candidates for reso-
lution.

4. Initialize resolution status of new lesions generated in step 3 at all timepoints
following onset, using only intensity and intensity difference models.

5. Initialize lesion size, normalized distance from lesion boundary, and resolu-
tion given time from onset models based on resolution status generated in
step 4.
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6. Use EM to iteratively update models, using models generated in step 5 as
initializations. The E-step recalculates the probabilistic resolution status of
new lesions based on the latest models and the M-step determines maximum
likelihood models based on the updated resolution status.

We use a histogram based representation for our lesion size model, with 7
size ranges considered. We use exponential distributions to model both our nor-
malized distance from boundary model and our resolution prior conditioned on
lesion age.

Our EM framework jointly infers resolution status and model parameters. In
our experiments, we have considered samples from the entirety of our data set
(639 scans) for unsupervised model learning, but have only validated inference of
resolution status in the subset of our data for which semi-manual lesion segmen-
tations were available for comparison. Applying our learned models to a subset
of the data from which they were learned can be considered as an additional
E-step in our unsupervised learning framework.

Models for determining recently new lesion without scan history
We generate models for inferring lesion newness by generating intensity and

intensity difference distributions for new and old (not recently new) lesions.
We identify old lesions by considering voxels from a reference baseline lesion
mask that remain lesion at least 6 months after baseline, or voxels from Lnew

that have not resolved 6 months after lesion onset. To identify new lesions we
consider samples from Lnew only at lesion onset and the subsequent timepoint.
We again use 6 component GMMs to model our densities over the 5 modalities
under consideration. Intensity and intensity difference models for new and old
lesions are shown in Figure 4.
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Fig. 4. (a) intensity and (b) intensity difference densities for new and old lesions,
marginalized over t2w for visualization purposes. In practice, models 5-dimensional
densities corresponding to the 5 modalities used (T1w, T1c, T2w, PDw and T2w-
FLAIR).
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3.2 Validation

Evaluating lesion resolution accuracy directly is not feasible due to the tempo-
ral variability in the available semi-manual reference lesion segmentations: most
voxels identified as non-lesion at a given timepoint but as lesion in the previous
timepoint would not actually correspond to resolving lesion but rather be due to
temporal segmentation variability. As such, our validation focuses on measure-
ments of lesion volume change over time, where we have coupled our method for
detection of lesion resolution with an existing method for new lesion detection [6]
to create a pipeline for lesion change detection in serial MRI based on change
detection. We use the semi-manual reference segmentation as an initial lesion
mask at our first timepoint, and lesion segmentation at subsequent timepoints
is driven by detection of new, resolving and non-resolving (i.e. stable) lesion.
Both lesion present at baseline and subsequently detected new lesions become
candidates for resolution as determined by the proposed method. We compare
the longitudinal segmentation of lesions as generated by our proposed pipeline
based on change detection to the pre-existing semi-manual reference lesion seg-
mentations. We validate based on a) segmentation consistency over time, and b)
statistical power to differentiate treated from untreated subjects based on lesion
volume change measurements.

Lesion Segmentation Consistency

Segmentation consistency is important as increased temporal variability will lead
to less precise measurements of change over sequential scans. Segmenting lesions
independently at each timepoint will lead to inconsistencies in lesion boundaries
and in lesion detection, while modeling temporal dependencies via a change de-
tection paradigm will provide a more consistent segmentation over time. We
define new lesion volume between co-registered timepoints t1 and t2 as the vol-
ume of voxels that were not labelled as lesion at time t1 but were labelled as
lesion at time t2. Similarily, we define resolving lesion volume as the volume of
voxels that were labelled as lesion at time t1 but not at time t2. Table 1 shows
new and resolving lesion volumes at w24, w36 and w48 using our method and
using semi-manual lesion segmentations.

The proposed pipeline provides a much more temporally consistent segmen-
tation of MS lesions, with the mean number of new and resolving lesion voxels
detected over sequential timepoints both reduced by more than 90% as com-
pared to semi-manual segmentations. Fig. 5 shows an example of a temporally
consistent segmentation as generated by our method.

Effect Size Based on Measurements of Lesion Volume Change

Improved consistency of MS lesion segmentation is only useful if we can still de-
tect veritable change. We demonstrate our sensitivity to change in lesion volume
by calculating the effect size based on measurements of lesion volume change
from screening to w48, as determined by our method and as determined from
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Table 1. Lesion segmentation consistency as determined by mean volume of a) new
lesion voxels (NV), and b) resolving lesion voxels (RV). Values represent mean volume
in mm3 ± 1 standard deviation, evaluated over all 73 subjects. Values are shown for
change over subsequent timepoints (s-w24, w24-w36, w36-w48). SM = semi-manual
lesion segmentations, CD = Proposed method based on change detection.

s-w24 w24-w36 w36-w48
NV RV NV RV NV RV

CD 301±1036 243±892 102±505 68±293 55±208 55±288
SM 2364±2223 2427±2534 2158±2104 2171±2053 2159±2017 2203±2092

(a) SM screening (b) SM w24 (c) SM w36 (d) SM w48

(e) screening (f) w24 (g) w36 (h) w48

Fig. 5. Example lesion segmentations over 4 timepoints. (a)-(d) shows the semi-manual
(SM) reference and (e)-(h) shows our proposed pipeline based on change detection. The
SM segmentation is used as a baseline segmentation for both methods. Stable portions
of lesion are shown in red, new lesion voxels are shown in green and resolving in
blue, all with respect to the previous timepoint. The proposed method shows increased
segmentation consistency across time while remaining sensitive to real change.

the semi-manual lesion segmentations. For our method, volume change is de-
termined for each subject by taking the difference between cumulative new le-
sion volume and cumulative resolving lesion volume over the four timepoints.
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For reference semi-manual segmentations, volume change is determined by tak-
ing the volume derived from the reference segmentation at w48 and subtracting
from the volume derived from the reference segmentation at screening.

The effect size is estimated by Cohen’s d with a pooled standard deviation [13],
and represents a normalized measure of difference between the treated and un-
treated groups. While both methods show a positive treatment effect (i.e. treated
subjects are shown to have a smaller change in lesion volume than untreated),
the calculated effect size is larger (ES=0.77) when based on lesion volume change
measurements generated by our proposed method, as compared to semi-manual
segmentations (ES=0.44). This suggests that our method remains sensitive to
lesion change and provides greater statistical power to differentiate treated and
untreated subjects, as shown graphically in Fig. 6.

CD SM
−2000

−1000

0

1000

2000

3000
ES=0.77

ES=0.44

V
o

lu
m

e 
(m

L
)

 

 

TREATED
UNTREATED

Fig. 6. Mean and standard deviation of lesion volume change from screening to w48 for
treated (N=54) and untreated (N=19) subjects as measured from semi-manual lesion
segmentations (SM) and the proposed method based on change detection (CD), along
with corresponding effect size (ES) using Cohen’s d.

4 Discussion

We have presented a novel method for detection of resolving MS lesion vox-
els in sequential brain MRI. By coupling our method with an existing method
for detection of new MS lesions, we can provide a fully automated pipeline for
determination of MS lesion volume change over serial scans based on change
detection. Results demonstrate greater lesion segmentation consistency and im-
proved statistical power to discriminate treatment arms using real clinical trial
data, as compared to existing semi-manual segmentations. In addition, the abil-
ity to automatically detect resolving portions of MS lesions provides a potential
measure of tissue repair, and as an aid for the analysis of MS lesion dynamics.
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