
Towards SQL Injection Attacks Detection

Mechanism Using Parse Tree

Tsu-Yang Wu1,2, Jeng-Shyang Pan1,2, Chien-Ming Chen1,2,
and Chun-Wei Lin1,2

1 Shenzhen Graduate School, Harbin Institute of Technology,
Shenzhen, 518055, China

2 Shenzhen Key Laboratory of Internet Information Collaboration,
Shenzhen, 518055, China

{wutsuyang,jengshyangpan,chienming.taiwan}@gmail.com,
jerrylin@ieee.org

Abstract. With thedevelopment of network technology, database-driven
web applications (apps) provide flexible, convenient, available, and vari-
ous services for users. User can send requests to these web apps by using
browser over the Internet to get services such as e-commerce services, en-
tertainments, and financial services. Though web environments have sev-
eral advantages, various security threats havebeen described.Among these
threats, SQL injection attack (SQLIA) is one of the most serious threats.
SQLIA is a code injection attack that exploits secure vulnerabilities con-
sisting in source codes to attack databases. SQLIA allows attackers to
bypass authentication, access private information, modify data, and even
destroy databases. Since many sensitive and confidential data stored in
database must be kept private and secure, a mechanism to detect SQLIAs
for web environments is necessary. In this paper, we define a framework
named DSD (Dynamic SQLIAs Detection) to counter SQLIAs in web en-
vironments. Then, a concrete detection mechanism based on DSD is pro-
posed to detect SQLIAs by using parse tree. The experimental results are
demonstrated that ourmechanism has higher accuracy, lower false positive
rate, and false negative rate.

Keywords: SQL injection attacks, parse tree, detection, web
environments.

1 Introduction

With the development of network technology, web app can be accessed by using
browser over the Internet. Database-driven web apps can supply more flexible,
convenient, available, and various services for users and they have become the
most important business model for companies in various fields. Especially, user
can send requests to these web apps for getting services such as e-commerce
services, entertainments, and financial services. In the past, some secure mech-
anisms for the Internet and database [6,11,17,23,24,28,29] had been published.

c© Springer International Publishing Switzerland 2015 371
H. Sun et al. (eds.), Genetic and Evolutionary Computing,
Advances in Intelligent Systems and Computing 329, DOI: 10.1007/978-3-319-12286-1_38

372 T.-Y. Wu et al.

Though web environments have several advantages, various security threats
have been described. Among these threats, SQL injection attack (SQLIA) is
one of the most serious threats for web apps [7,8,9,12]. An SQLIA which is an
attacker inserts new SQL keywords or operators into an SQL query. With the
altered query, an attacker can bypass authentication, obtain privacy information
of users, modify or even destroy database.

Up to now, various methods to address SQLIAs for web applications have been
proposed. Static analysis methods [4,10,21,25] attempt to prevent SQLIAs by
finding all vulnerabilities before applications are deployed. These methods have
no run time overhead. However, they analyze the source code of applications. It
means that this kind of methods have two constraints. First, these methods are
very host-language-specific; therefore, they cannot detect all kinds of SQLIAs.
Second, these methods require to access source codes.

The mechanism Sania [20] detects SQLIAs in web applications during the
development and debugging phases. The concepts of Sania are to capture an
SQL query and generate an attack based on the syntax of potentially vulnerable
spots in the captured SQL query. Then Sania can determine whether this query
contains SQLIA flaws by comparing the parse trees of the intended SQL query.

Static and dynamic analysis mechanisms [13,14,22] have two phases, static
analysis phase and dynamic analysis phase. It compares generated queries with
normally expected queries. In the static phase, it analyzes a web applications
source code to build models of legitimate queries. In the dynamic phase, queries
are intercepted at run time and checked for conformity to the expected queries.
Queries that do not match are rejected. Since this method requires to access
source codes, it has restrictions when the source codes cannot be achieved. More-
over, the performance of this method depends on the quality of models built in
static analysis phase.

Taint tracking mechanisms [2,3,5,16,26] attempt to solve the problem of
SQLIAs by tracking user input and verifying that the input does not mod-
ify queries. However, this kind of method normally has additional requirements.
The research [3,5]need to rewrite source codes to provide SQLIA detection. Other
methods [2,16] require extra libraries to implement their design.

Several researchers [18,19,27] utilize machine learning technologies to de-
tect SQLIAs. A detection method based on machine learning normally has two
phases, learning phase and classification phase. In the learning phase, it utilizes
a training set to build detection models. In classification phase, it judges if the
query is an SQLIA with the models. The quality of training set will influence
the performance of these methods.

Although several countermeasures of SQLIAs for web apps have been discussed,
it still exist some drawbacks such as rewriting source codes of applications. In this
paper, we first define a framework named DSD (Dynamic SQLIAs detection) to
counter SQLIAs in web environments. Based on DSD, we propose an SQLIAs de-
tecting mechanism by using parse tree. The main advantage of proposed mecha-
nism is that it doesnt require to access the apps source code. Besides, DSD can be
directly and easily embedded to existing web environments. Experimental

SQL Injection Attacks Detection Mechanism 373

results are demonstrated that our mechanism has higher accuracy rate, lower false
positive rate, and lower false negative rate when detecting SQLIAs.

The rest of this paper is organized as follows. A framework DSD and a concrete
detection mechanism are proposed in Section 2. In Section 3, we demonstrate
the experimental results and conclusions are drawn in Section 4.

2 The Proposed Mechanism

In this section, we first define a framework named DSD (Dynamic SQLIAs de-
tection) to counter SQLIAs in web environments. Based on this framework, we
propose an SQLIAs detection mechanism. Notations used in this section are
listed in the following:

– Gr(·) : A function used for getting run-time stack, Gr(·) : q → Gr(q), where
Gr(q), where q is a query.

– Gt(·) : A function used for getting parse tree, Gt(·) : q → Gt(q).
– Hc : A one-way hash function, Hc : {0, 1}∗ → {0, 1}k.
– Hid : A one-way hash function, Hid : {0, 1}∗ → {0, 1, . . . , n− 1}, where n is

an integer and depends on the number of slots in repository.
– Ct : A compressed parse tree, Ct = Hc(Gt(q)).
– Cr : A compressed run-time stack, Cr = Hc(Gr(q)).

2.1 DSD

The DSD consists of five units: Collector1, Collector2, Repository1, Repository2,
and SQLIAs Agent and is depicted in Fig. 3.

Fig. 1. The proposed framework DSD

DSD deployed between app server S and database is responsible to detect
SQLIAs for a web app. The rough detecting process in DSD is described as
followings.

374 T.-Y. Wu et al.

1. User sends an HTTP request to a web application (app) within the server
S. Then, the app dynamically generates a query q for this request. In this
moment, Collector1 captures HTTP request and sends it to SQLIAs Agent.

2. S sends q to DSD. Collector2 captures some information which contains q
and its run-time stack. Then, SQLIAs Agent interacts with Repository1 and
Repository2 to verify q whether it is an SQLIA or not. If q is identified as an
SQLIA, the agent will discard it. Otherwise, the agent will sent the query to
the database.

3. The database executes q and sends back the result to the app.
4. The app generates a response to the user according to the result.

Note that Repository1 and Repository2 are two repositories. The structure
of two repositories is depicted in Fig. 4. It contains a hash function Hid and
an array A, where Hid is used to map a key key to the Hid(key)

th slot of A.
There are two operations called insertion and retrieve in the two repositories.
In Repository1, the insertion operation inserts 1 into Hid(address)

th slot of A,
i.e. key = address and value = 1, and the retrieve operation gets 1 from the
Hid(address)

th slot of A. In Repository2, the insertion operation inserts Ct into
Hid(Ct||Cr)

th slot of A, i.e. key = (Ct||Cr) and value = Ct, and the retrieve
operation gets Ct from the Hid(Ct||Cr)

th slot of A.

Fig. 2. The structure of repository

2.2 An Concrete SQLIAs Detection Mechanism

Based on DSD, we propose an SQLIAs detection mechanism. Our mechanism
consists of two phases, classification and detection phases. When a user sends
an HTTP request to an app, the classification phase is involved to identify the
request whether it is first time access or non-first time access. After that, the
detection phase provides SQLIA detection for this app in the above two cases.

ClassificationPhase.When a user sends an HTTP request to an app, Collector1
captures and sends this request to SQLIAsAgent. Then, the app generates a query
q corresponding to the request and sends q to Collector2. It computes the corre-
sponding run-time stackGr(q) of q and then sends q (original query) andGr(q) to

SQL Injection Attacks Detection Mechanism 375

SQLIAs Agent. Upon receiving the information from Collector1 and Collector2,
SQLIAs Agent obtains corresponding address and parameters from the request.
Meanwhile, the agent parses the query q into a parse tree Gt(q) and compresses it
into a compressed parse tree Ct = Hc(Gt(q)). Then, SQLIAs Agent computes an
index value index = Hid(address) and then retrieves A[index] in Repository1. If
the result equals to 1, the agent identifies the request as non-first time access and
then invokes the non-first time access (NFTA) algorithm in the detection phase.
Otherwise, the agent identifies the request as first time access and then invokes the
first time access (FTA) algorithm in the detection phase. The detailed procedures
of the classification phase are listed as follows.

1. Get address and parameters from an HTTP request. Note that address and
parameters can be obtained in servlet program.

2. Get run-time stack Gr(q) for query q. Note that the run-time stack can be
implemented using high level languages such as Java.

3. Get parse tree Gt(q) for query q. A parse tree can be implemented with open
source tools.

4. Compute Ct ← Hc(Gt(q)).
5. Compute an index value index, where index ← Hid(address).
6. Retrieve value ← A[index] in Repository1.
7. Compare value with 1. If value equals to 1, the NFTA algorithm is invoked.

Otherwise, the FTA algorithm is invoked.

Detection Phase. In this phase, there are two cases which are the first time
access and the non-first time access. The detail descriptions of the two cases are
proposed as follows.

[First Time Access]
When an HTTP request is identified as first time access, SQLIAs agent inserts
1 into Hid(address)

th slot of A in Repository1. Meanwhile, the agent replaces
all parameters of the query q with valid string such as ”valid value” and obtains
a transformed query q′. Note that q′ is abstract valid and cannot be led to
SQLIA. Then, SQLIAs agent parses the new query q′ into a parse tree Gt(q

′)
and compresses it into a compressed parse tree C′

t = Hc(Gt(q
′)). The agent

compares the two compressed parse trees Ct with C′
t. If the both trees are equal,

it means that the original query q is valid. In other words, the HTTP request
is not an SQLIA. The original query is sent to the database. In this moment,
SQLIAs agent compresses the run-time stack Gr(q) of q and inserts the parse
tree Ct into Hid(Ct||Cr)

th slot of A in Repository2. Otherwise, SQLIAs agent
identifies q as SQLIAs and records it. The details procedures of FTA algorithm
are listed as follows.

1. Insert 1 into slot A[Hid(address)] in the Repository1.
2. Get query q′ by removing parameters from q.
3. Get parse tree Gt(q

′) for query q′.
4. Compute C′

t ← Hc(Gt(q
′)).

5. Compare with Ct with C′
t.

376 T.-Y. Wu et al.

6. If Ct ⊕ C′
t equals to 0

(a) q is a valid query.
(b) Compute Cr ← Hc(Gr(q)).
(c) Compute an index value index, where index ← Hid(Ct||Cr).
(d) Insert Ct into slot A[index] in Repository2.

7. Otherwise, q is identified as an SQLIA.

[Non-first Time Access]
When an HTTP request is identified as non-first time access, SQLIAs agent
compresses the run-time stack Gr(q) for original query q, ie. Cr = Hc(Gr(q)).
Then, the agent retrieves old record C′

t in Repository2 and compares the two
compressed parse trees C′

t with Ct. If the both trees are equal, it means that the
original query q is valid. In other words, the HTTP request is not an SQLIA.
The original query is sent to the database. Otherwise, SQLIAs agent executes
the procedures 2 to 7 of the FTA algorithm. The details procedures of NFTA
algorithm are listed as follows.

1. Compute Cr ← Hc(Gr(q)).
2. Compute an index value index, where index ← Hid(Ct||Cr).
3. Retrieve C′

t ← A[index] in Repository2.
4. Compare Ct with C′

t.
5. If Ct ⊕ C′

t equals to 0, q is a valid query.
6. Otherwise

(a) Get query q′ by removing parameters from q.
(b) Get parse tree Gt(q

′) for query q′.
(c) Compute C′

t ← Hc(Gt(q
′)).

(d) Compare with Ct with C′
t.

(e) If Ct ⊕ C′
t equals to 0

i. q is a valid query.
ii. Compute an index value index, where index ← Hid(Ct||Cr).
iii. Insert Ct into slot A[index] in Repository2.

(f) Otherwise, q is identified as an SQLIA.

3 Experimental Results

In this section, we propose the experimental results for our mechanism. The
experiments run on two standard PCs, PCA and PCB. Both PCA and PCB

have same hardware, where the processor is Intel(R) Core(TM) i5-2400M with
3.10 GHz, the RAM is 8GB, the hard disk is 500 GB, and the operating system
is Windows 7. They are in the same local area network and can access each
other. The architecture of experimental environment is shown in Fig. 5. PCB

is used to simulate user (client) who can send accesses to related applications.
We deploy one Tomcat 6 as web server and application server and MySQL 5.5
as database into PCA. Then, the test application is deployed in the application
server and all components of DSD are deployed in PCB.

SQL Injection Attacks Detection Mechanism 377

Fig. 3. Experimental environments

To demonstrate the precision and validity of our mechanism, we select four
types of typical applications as test applications which are vulnerable to SQLIAs.
The test applications consist of Employee Directory, Bookstore, Classifieds, and
Portal [1]. Then, we choose test accesses from AMNESIA testbed suite [13,15]
which is a static and dynamic analysis method to detect SQLIAs [14,15]. This
suit contains a broad range of potential SQLIAs and legitimate accesses. How-
ever, it also contains some invalid accesses which cannot be accessed to database
in our experimental environments. Hence, we need to remove these invalid ac-
cesses from this suit. After pre-processing the test applications, we have removed
those invalid accesses and then obtain a test set which has 14674 test access
including 13443 SQLIAs and 1231 legitimate accesses. The test set in our exper-
iment is shown in Table 1.

Table 1. Test set

Types of applications Legitimate Accesses SQLIAs Total

Employee Directory 124 3577 3701

Bookstore 124 3143 3267

Classifieds 348 3635 3983

Portal 635 3088 3723

Total 1231 13443 14674

Then, we demonstrate the detecting accuracy rate of our mechanism in Table
2. Obviously, the accuracy of our mechanism is over 99.9% for each type of
typical application.

Finally, we show the false positive rate and the false negative rate of our
mechanism in Tables 3 and 4. Obviously, the false positive rate of the proposed
mechanism is less than 2% for each type of applications. The reason that false
positives happened is that some queries cannot be parsed by DSD.

378 T.-Y. Wu et al.

Table 2. The detecting accuracy of our mechanism

Types of applications Total Faults Accuracy Rate

Employee Directory 3701 2 99.95%

Bookstore 3267 2 99.94%

Classifieds 3983 3 99.92%

Portal 3723 3 99.92%

Table 3. The false positive rate of our mechanism

Types of applications Legitimate Accesses False Positive False Positive Rate

Employee Directory 122 2 1.64%

Bookstore 122 2 1.64%

Classifieds 348 3 0.86%

Portal 635 3 0.47%

Table 4. The false negative rate of our mechanism

Types of applications SQLIAs Successful Detections False Negative Rate

Employee Directory 3577 3577 0%

Bookstore 3143 3143 0%

Classifieds 3635 3635 0%

Portal 3088 3088 0%

4 Conclusion

In this paper, we have proposed a framework DSD to counter SQLIAs for web
environments. Based on this framework, a concrete detection mechanism has
proposed to detect SQLIAs by using parse tree. Our mechanism does not require
any access to source codes of apps. It means that DSD can be applied to existing
web applications directly. Experimental results show that our mechanism has
high accuracy rate, low false positive rate, and low time consumption. Hence, it
is an efficient SQLIAs detection mechanism for web environments. In the future,
we will compare our mechanism with previously proposed mechanisms.

Acknowledgments. This work is supported by Shenzhen Peacock Project of
China (No. KQC201109020055A) and Shenzhen Strategic Emerging Industries
Program of China (No. ZDSY20120613125016389).

References

1. http://www.gotocode.com

2. Bisht, P., Madhusudan, P., Venkatakrishnan, V.: Candid: Dynamic candidate eval-
uations for automatic prevention of sql injection attacks. ACM Transactions on
Information and System Security (TISSEC) 13(2), 14 (2010)

http://www.gotocode.com

SQL Injection Attacks Detection Mechanism 379

3. Boyd, S.W., Keromytis, A.D.: Sqlrand: Preventing sql injection attacks. In: Jakob-
sson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–302.
Springer, Heidelberg (2004)

4. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax
embeddings. In: Proceedings of the 6th International Conference on Generative
Programming and Component Engineering, pp. 3–12. ACM (2007)

5. Buehrer, G., Weide, B.W., Sivilotti, P.A.: Using parse tree validation to prevent sql
injection attacks. In: Proceedings of the 5th International Workshop on Software
Engineering and Middleware, pp. 106–113. ACM (2005)

6. Chen, C.M., Zheng, X., Wu, T.Y.: A complete hierarchical key management scheme
for heterogeneous wireless sensor networks. The Scientific World Journal 2014,
Article ID 816549, 13 pages (2014)

7. Christey, S., Martin, R.A.: Vulnerability type distributions in cve (2007)

8. Clarke, J.: SQL injection attacks and defense. Elsevier (2012)

9. Dhamankar, R., Dausin, M., Eisenbarth, M., King, J., Kandek, W., Ullrich, J., Sk-
oudis, E., Lee, R.: The top cyber security risks. TippingPoint, Qualys, the Internet
Storm Center and the SANS Institute faculty. Tech. Rep. (2009)

10. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis frame-
work for detecting sql injection vulnerabilities. In: Proceedings of the 31st Annual
International Computer Software and Applications Conference (COMPSAC 2007),
vol. 1, pp. 87–96. IEEE (2007)

11. Guo, C., Chang, C.C., Sun, C.Y.: Chaotic maps-based mutual authentication and
key agreement using smart cards for wireless communications. Journal of Informa-
tion Hiding and Multimedia Signal Processing 4(2), 99–109 (2013)

12. Halfond, W., Viegas, J., Orso, A.: A classification of sql-injection attacks and
countermeasures. In: Proceedings of the IEEE International Symposium on Secure
Software Engineering, Arlington, VA, USA, pp. 13–15 (2006)

13. Halfond, W.G., Orso, A.: Amnesia: analysis and monitoring for neutralizing sql-
injection attacks. In: Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, pp. 174–183. ACM (2005)

14. Halfond,W.G., Orso,A.: Preventing sql injection attacks using amnesia. In: Proceed-
ingsof the28th InternationalConferenceonSoftwareEngineering,pp. 795–798.ACM
(2006)

15. Halfond, W.G., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter sql injection attacks. In: Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 175–185. ACM (2006)

16. Halfond, W.G., Orso, A., Manolios, P.: Wasp: Protecting web applications using
positive tainting and syntax-aware evaluation. IEEE Transactions on Software En-
gineering 34(1), 65–81 (2008)

17. He, B.Z., Chen, C.M., Su, Y.P., Sun, H.M.: A defence scheme against identity theft
attack based on multiple social networks. Expert Systems with Applications 41(5),
2345–2352 (2014)

18. Huang, Y.W., Huang, S.K., Lin, T.P., Tsai, C.H.: Web application security as-
sessment by fault injection and behavior monitoring. In: Proceedings of the 12th
International Conference on World Wide Web, pp. 148–159. ACM (2003)

19. Komiya, R., Paik, I., Hisada, M.: Classification of malicious web code by machine
learning. In: Proceedings of the 3rd International Conference on Awareness Science
and Technology (iCAST 2011), pp. 406–411. IEEE (2011)

380 T.-Y. Wu et al.

20. Kosuga, Y., Kernel, K., Hanaoka, M., Hishiyama, M., Takahama, Y.: Sania: Syn-
tactic and semantic analysis for automated testing against sql injection. In: 23th
Annual Computer Security Applications Conference (ACSAC 2007), pp. 107–117.
IEEE (2007)

21. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Un-
kel, C.: Context-sensitive program analysis as database queries. In: Proceedings of
the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 1–12. ACM (2005)

22. Lee, I., Jeong, S., Yeo, S., Moon, J.: A novel method for sql injection attack detec-
tion based on removing sql query attribute values. Mathematical and Computer
Modelling 55(1), 58–68 (2012)

23. Lin, C.W., Hong, T.P., Chang, C.C., Wang, S.L.: A greedy-based approach for
hiding sensitive itemsets by transaction insertion. Journal of Information Hiding
and Multimedia Signal Processing 4(4), 201–227 (2013)

24. Lin, C.W., Hong, T.P., Hsu, H.C.: Reducing side effects of hiding sensitive itemsets
in privacy preserving data mining. The Scientific World Journal 2014, Article ID
235837, 12 pages (2014)

25. McClure, R.A., Kruger, I.H.: Sql dom: compile time checking of dynamic sql state-
ments. In: Proceedings of the 27th International Conference on Software Engineer-
ing (ICSE 2005), pp. 88–96. IEEE (2005)

26. Mitropoulos, D., Spinellis, D.: Sdriver: Location-specific signatures prevent sql in-
jection attacks. Computers & Security 28(3), 121–129 (2009)

27. Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of
sql attacks. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp.
123–140. Springer, Heidelberg (2005)

28. Wu, T.Y., Tsai, T.T., Tseng, Y.M.: A revocable id-based signcryption scheme.
Journal of Information Hiding and Multimedia Signal Processing 3(3), 240–251
(2012)

29. Wu, T.Y., Tsai, T.T., Tseng, Y.M.: A provably secure revocable id-based authen-
ticated group key exchange protocol with identifying malicious participants. The
Scientific World Journal 2014, Article ID 367264, 10 pages (2014)

	Towards SQL Injection Attacks Detection
Mechanism Using Parse Tree
	1 Introduction
	2 The Proposed Mechanism
	3 Experimental Results
	4 Conclusion
	References

