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Abstract. An integral attack is one of the most powerful attacks against
block ciphers. We propose a new technique for the integral attack called
the Fast Fourier Transform (FFT) key recovery. When the integral dis-
tinguisher uses N chosen plaintexts and the guessed key is k bits, a
straightforward key recovery requires the time complexity of O(N2k).
However, the FFT key recovery method requires only the time com-
plexity of O(N + k2k). As a previous result using FFT, at ICISC 2007,
Collard et al. proposed that FFT can reduce the time complexity of
a linear attack. We show that FFT can also reduce the complexity of
the integral attack. Moreover, the estimation of the complexity is very
simple. We first show the complexity of the FFT key recovery against
three structures, the Even-Mansour scheme, a key-alternating cipher,
and the Feistel cipher. As examples of these structures, we show integral
attacks against Prøst, CLEFIA, and AES. As a result, 8-round Prøst
P̃128,K can be attacked with about an approximate time complexity of
280. Moreover, a 6-round AES and 12-round CLEFIA can be attacked
with approximate time complexities of 252.6 and 287.5, respectively.

Keywords: Block cipher, Integral attack, Fast Fourier Transform, Fast
Walsh-Hadamard Transform, Prøst, CLEFIA, AES.

1 Introduction

An integral attack is one of the most powerful attacks against block ciphers. The
integral attack was first proposed by Daemen et al. to evaluate the security of
Square [7], and then Knudsen and Wagner formalized this attack as an integral
attack [14]. This attack uses N chosen plaintexts (CPs) and the corresponding
ciphertexts. Generally, an integral attack consists of a distinguisher and key
recovery. In the distinguisher, plaintexts are prepared in which the XOR of the
R-th round output is 0. In the key recovery, R-th round outputs are recovered
from ciphertexts by guessing round keys used in the last several rounds. If the
guessed key is incorrect, the recovered texts are assumed to behave as random
texts. On the other hand, if the guessed key is correct, the XOR of the recovered
texts is 0.

We focus on the key recovery of the integral attack. Several techniques to im-
prove the key recovery were proposed, e.g., the partial-sum technique [11] and
the meet-in-the-middle (MITM) technique [21]. The partial-sum technique was
proposed by Ferguson et al. in 2000. When the integral attack uses N chosen

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 64–81, 2014.
c© Springer International Publishing Switzerland 2014



FFT Key Recovery for Integral Attack 65

Table 1. Summary of FFT key recovery, where k, k1, and k2 are defined in Sect. 1.1

Target cipher Time

Even-Mansour scheme O(k2k)

Key-alternating cipher O(k22
k)

Feistel cipher O(k12
k1 + k22

k2)

Table 2. Comparison of attack results.Time columnonly includes the time complexity of
the key recovery step, and it does not include the time complexity to count the frequency
of the partial bit-string of ciphertexts corresponding to the chosen plaintexts (CPs).

Target cipher #Round Data (CP) Time Technique Reference

Prøst P̃128,K 8 264 280 FFT Sect. 3

Prøst P̃256,K 9 2× 264 280.9 FFT Appendix D

AES 6 6× 232 6× 250 Partial-sum [11]

AES 6 6× 232 6× 250 FFT Sect. 4

CLEFIA 12 13× 2112 13× 2106 MITM, Partial-sum [21]

CLEFIA 12 5× 2112 287.5 MITM, FFT Sect. 5

plaintexts and guesses a k-bit round key, a straightforward key recovery ap-
proach requires the time complexity of O(N2k). Therefore, if enormous number
of chosen plaintexts is used, the complexity of the attack increases to a very high
level. The partial-sum technique can reduce the complexity, where we partially
compute the sum by guessing each key one after another and reuse the partial
sums. Ferguson et al. applied this technique to AES [17], and showed that a
6-round AES can be attacked with 6× 250 S-box lookups. The MITM technique
was proposed by Sasaki et al. in 2012. This technique can reduce the complexity
of the integral attack against several Feistel ciphers. In the key recovery against
several Feistel ciphers,

⊕
(x ⊕ y) = 0 is often evaluated, where x and y are cal-

culated from ciphertexts by guessing keys. The MITM technique first calculates⊕
x and

⊕
y independently, and then searches keys that satisfy

⊕
x =

⊕
y by

using analysis such as the MITM attack [8]. As a result, Sasaki et al. improved
integral attacks against LBlock [23], HIGHT [12], and CLEFIA [22].

Several key recovery techniques using the Fast Fourier Transform (FFT) have
recently been proposed. In 2007, Collard et al. first proposed a linear attack using
the FFT [6], and then Nguyen et al. extended it to a multi-dimensional linear
attack [18,19]. Moreover, Bogdanov et al. proposed a zero correlation attack
using the FFT in 2013 [4]. We now point out that the FFT can also be applied
to the integral attack.

1.1 Our Contribution

We propose a new improved technique for the integral attack called the FFT key
recovery. Table 1 shows results of the FFT key recovery, and Table 2 summarizes
results of integral attacks against specific ciphers.
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The FFT key recovery is useful for an integral attack with an enormous number
of chosen plaintexts because the time complexity of the FFT key recovery does not
depend on the number of chosen plaintexts. Therefore, the motivation to introduce
this technique is similar to the reason to introduce the partial-sumtechnique. How-
ever, the way that the two techniques are applied is a little different, and we discuss
the differences between them in Sect. 6. Another important reason to introduce the
FFT key recovery is that it enables easy estimation of the time complexity of the
integral attack. The partial-sum technique effectively reduces the complexity, but
the attack procedure is often complicated. On the other hand, the complexity of
the FFT key recovery only depends on k, where k denotes the bit length of the keys
that are required to call a distinguisher on the ciphertext side.

We focus on structures for block ciphers, and estimate the security against the
integral attack. Here, we focus on three structures, the Even-Mansour scheme [10]
in Sect. 3, the key-alternating cipher [5] in Sect. 4, and the (generalized) Feistel
cipher in Sect. 5.

The Even-Mansour scheme is a famous scheme used to construct a block cipher
from a permutation, and has recently been a popular discussion topic [9,5]. When
FFT key recovery is used, the time complexity of the integral attack is estimated
as O(k2k). As an example of the Even-Mansour scheme, we consider Prøst [13]
and show integral attacks of the scheme. Prøst is an authenticated encryption
scheme, which was submitted to the CAESAR competition. The core function
is called the Prøst permutation, which is extended to a block cipher by the
Even-Mansour scheme. Results show that 8-round Prøst P̃128,K and 9-round

Prøst P̃256,K can be attacked with the time complexity of approximately 280

and 280.9, respectively.
The key-alternating cipher is a common type of block cipher, and AES is

viewed as a 10-round key-alternating cipher [3]. The time complexity of the
integral attack is at least O(k2k), but we can optimize it slightly. We assume that
only k2 bits of ciphertexts are required for the distinguisher, where k2 is always
less than or equal to k. In this case, the complexity is reduced to O(k22

k). As
an example of the key-alternating cipher, we consider AES and show an integral
attack against it. Results show that a 6-round AES can be attacked with a time
complexity of approximately 6 × 250.

The Feistel cipher is also commonly used to construct a block cipher. The
MITM technique is useful in reducing the time complexity, and works well in
combination with the FFT key recovery. The MITM technique evaluates

⊕
x

and
⊕

y instead of
⊕

(x ⊕ y). We assume that k1 and k2 bits are required to
evaluate

⊕
x and

⊕
y, respectively. In this case, the complexity of the integral

attack is O(k12
k1 + k22

k2). As an example of the Feistel cipher, we show an
integral attack against CLEFIA, which is a 4-branch generalized Feistel cipher
and is adopted by the ISO/IEC standard [1]. Results show that a 12-round
CLEFIA can be attacked with the time complexity of approximately 287.5 1.

1 Since this attack uses 5×2112 chosen plaintexts, the dominant factor in determining
the time complexity is the number of chosen plaintexts. The FFT key recovery can
reduce the time complexity of the key recovery step.
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Fig. 1. Integral attack against 6-round AES

2 Related Work

2.1 Integral Attack

Integral Distinguisher. An integral distinguisher is constructed based on the
following integral properties.

– All (A) : All values appear and with exactly the same frequency in the
(multi-)set of texts.

– Balance (B) : The XOR of all texts in the set is 0.
– Constant (C) : The bit-strings in a set are fixed to the same value.

For instance, we show the 4-round integral distinguisher of AES in Appendix A.

Key Recovery. In key recovery, the R-th round output is recovered from ci-
phertexts by guessing round keys used in the last several rounds. If the guessed
key is incorrect, the recovered texts are expected to behave as random texts. On
the other hand, if the guessed key is correct, the XOR of the recovered texts is
always 0.

For instance, Fig. 1 shows the key recovery of the integral attack against a
6-round AES. Here we now have 232 ciphertexts for the 6-round AES, and know
that value y satisfies B. Let c[i] be bytes in the ciphertexts as shown in Fig. 1,
and cn denotes the n-th ciphertext. In this case, the XOR of y is calculated from
232 ciphertexts as

232⊕

n=1

S5(S1(cn[1] ⊕ K1) ⊕ S2(cn[2] ⊕ K2) ⊕ S3(cn[3] ⊕ K3)

⊕S4(cn[4] ⊕ K4) ⊕ K5) = 0, (1)

where S1, S2, . . . , S5 are S-boxes, each of which consists of the inverse of the
AES S-box and a multiplication by a field element from the inverse of the AES
MDS matrix. Moreover, K1, K2, K3, and K4 are calculated from RK6, and K5 is
calculated from RK5. Therefore, the total bit length of the guessed keys is 40 bits.
Analysis using a straightforward method incurs the approximate time complexity
of 232+40 = 270. However, the partial-sum technique can reduce the complexity.
Ferguson et al. showed that this analysis takes only 250 S-box lookups [11].
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2.2 FFT Key Recovery

Collard et al. showed a linear attack using FFT in 2007. The key recovery of a
linear attack [16] uses N ciphertexts c1, c2 . . . , cN . Then, it guesses keys K and
calculates

N∑

n=1

f(cn ⊕ K). (2)

It finally recovers the correct K to evaluate Eq. (2) for several possible Ks. Here,
let f : {0, 1}k → {0, 1} be a Boolean function, which is generated from the linear
approximate equation. The evaluation of Eq. (2) requires the time complexity of
O(N2k) using a straightforward method, and the size of N is generally enormous,
e.g., N ≈ 2k. Collard et al. showed that the evaluation of Eq. (2) requires the
time complexity of approximately O(k2k). Nguyen et al. then noticed that the
Fast Walsh-Hadamard Transform (FWHT) can be used instead of the FFT [18].
Hereinafter, we show the calculation method using the FWHT.

Two k-dimensional vectors v and w are first created, where v is generated from
Boolean function f and w is generated from the set of ciphertexts as indicated
below.

vi = f(i),

wi = #{1 ≤ n ≤ N |cn = i}.

A k-dimensional vector, u, is calculated from v and w as
⎡

⎢
⎢
⎢
⎢
⎢
⎣

u0

u1

u2

...
u2k−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v0 v1 v2 · · · v2k−1

v1 v0 v3 · · · v2k−2

v2 v3 v0 · · · v2k−3
...

...
...

. . .
...

v2k−1 v2k−2 v2k−3 · · · v0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

w0

w1

w2

...
w2k−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3)

In this case, uK is equal to the results of Eq. (2). Therefore, if Eq. (3) can
be calculated quickly, the time complexity is reduced. Equation (3) is simply
expressed as u = V ×w. Here, matrix V consists of four 2k−1-dimensional block
matrices, V1 and V2, as

V =

[
V1 V2

V2 V1

]

.

From the diagonalization of V , we have

V =

[
V1 V2

V2 V1

]

=
1

2

[
I I
I −I

] [
V1 + V2 0

0 V1 − V2

] [
I I
I −I

]

,

where I is an identity matrix. Since V1+V2 and V1−V2 have the same structure
as V , we obtain

V =
1

2k
× H2k × diag(H2kv) × H2k ,
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where H2k is the 2k-dimensional Walsh matrix2, and diag(H2kv) is a diagonal
matrix whose element in the i-th row and i-th column is the i-th element of
H2kv. Therefore, Eq. (3) is expressed as

u = V × w =
1

2k
H2k × diag(H2kv) × H2kw.

The procedure to calculate u is given below.

1. Let us calculate v̂ = H2kv. Then, Eq. (3) is expressed as u = 1
2k
H2k ×

diag(v̂) × H2kw.
2. Let us calculate ŵ = H2kw. Then, Eq. (3) is expressed as u = 1

2k
H2k ×

diag(v̂)ŵ.
3. Let us calculate û whose ûi is calculated from v̂i × ŵi, and then calculate

u = 1
2kH2k û.

In the first and second steps, we calculate the multiplication of the Walsh matrix
using the FWHT, and time complexity for each is approximately the time of
k2k additions. In the third step, we first calculate 2k multiplications of the k-bit
integers, where we regard that the complexity of one multiplication is equal to
that for k additions. We next calculate the FWHT, and the time complexity
is approximately the time of k2k additions. We finally calculate the division by
2k, but the time complexity is negligible because it can be computed by a k-bit
shift. Therefore, the time complexity of the third step is approximately 2k2k.
Thus, the total time complexity is approximately the time of 4k2k additions.

3 Integral Attack against Even-Mansour Scheme and
Application to Prøst

3.1 Even-Mansour Scheme and FFT Key Recovery

The Even-Mansour scheme constructs an n-bit block cipher from an n-bit per-
mutation, P , using two n-bit keys K1 and K2 as

c = K2 ⊕ P (p ⊕ K1),

where p and c denote a plaintext and a ciphertext, respectively [10]. The Even-
Mansour scheme has recently been a popular topic of discussion [9,5]. When the
FFT key recovery is used, we can easily evaluate the time complexity of the
integral attack.

We first split permutation P into two permutations, P1 and P2, as P =
P2 ◦ P1 (see Fig. 2). We assume that P1 has an integral distinguisher with N

2 The Walsh matrix is defined as the following recursive formulae.

H21 =

[
1 1
1 −1

]
, H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
(k ≥ 2).
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P1 P2

k bitsDistinguisher

Fig. 2. Even-Mansour scheme and FFT key recovery

chosen plaintexts. Moreover, any one bit is diffused to k bits by P2 at most. Let
f be a Boolean function. Here, the input is k bits of the output of P2, and the
output is any one bit of the input of P2. In this case, the key recovery can be
expressed as

N⊕

i=1

f(c′i ⊕ K ′
2) = 0,

where c′i and K ′
2 are truncated to k bits from ci and K2, respectively. The FFT

key recovery calculates the summation on the ring of integers, and we have

N∑

i=1

f(c′i ⊕ K ′
2) = 0 mod 2.

We can efficiently evaluate this equation using the FWHT, and the time com-
plexity is O(k2k).

3.2 FFT Key Recovery against Prøst

Prøst is an authenticated encryption scheme, which was submitted to the CAE-
SAR competition. The core function of Prøst P̃n,K(x) is the block cipher based
on the single-key Even-Mansour scheme with key K, and it is defined as

P̃n,K(x) := K ⊕ Pn(x ⊕ K) in {0, 1}2n,

where x and Pn denote the input and the Prøst permutation, respectively. We
show the specification in Appendix B.

Prøst P̃128,K has a 6-round integral distinguisher with 264 chosen plaintexts.
We show the integral characteristics in Appendix C. Moreover, any one bit is dif-
fused to 64 bits in 2 rounds. Let c′i be the 64-bit truncation of ciphertexts ci. Let
f be a Boolean function that is generated from the last two-round permutation.
The input is the 64-bit truncation of the output of the last 2-round permutation.
The output is any one bit of the input of the last 2-round permutation. In this
case, the key recovery can be expressed as

264⊕

i=1

f(c′i ⊕ K ′) = 0,
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r1 rounds r2 rounds

k2 bitsDistinguisher

Kr-1Kr-r2
Kr

k1 bits k2 bits

Fig. 3. Key-alternating cipher and FFT key recovery

where K ′ is truncated to 64 bits from K. The FFT key recovery calculates the
summation on the ring of integers, and we calculate

264∑

i=1

f(c′i ⊕ K ′).

From the description in Sect. 2.2, we evaluate this equation for all possible K ′

with 4 × 64 × 264 = 272 additions. The probability that this value is even for
incorrect keys is expected to be 2−1, but this value is always even for the correct
key.

All the bits of the output of the 6-round integral characteristic satisfy B.
Therefore, we repeat this analysis for 256 bits. Since the probability that all 256
bits satisfy B for incorrect key K is 2−256, we can recover the 256-bit key K.
Thus, the total complexity is approximately 256 × 272 = 280 additions.

We show an integral attack on 9-round Prøst P̃256,K in Appendix D. The
time complexity is approximately 280.9 additions.

4 Integral Attack against Key-Alternating Cipher and
Application to AES

4.1 Key-Alternating Cipher and FFT Key Recovery

The key-alternating cipher [5] is one of the most popular block cipher structures.
Let Pi be an n-bit permutation, and the key-alternating cipher is expressed as

c = Kr ⊕ Pr(· · · ⊕ P3(K2 ⊕ P2(K1 ⊕ P1(K0 ⊕ p)))),

where K0, K1, . . . , Kr are round keys that are calculated from the master key.
Let p and c be a plaintext and a ciphertext, respectively. Similar to the case
with the Even-Mansour scheme, the FFT key recovery is useful in evaluating
the complexity on the integral attack.

We first split r rounds into r1 and r2 rounds as r = r1 + r2 (see Fig. 3). We
assume that a key-alternating cipher has an r1-round integral distinguisher with
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N chosen plaintexts. Moreover, we need to guess a k-bit key which is required for
this distinguisher for the ciphertext side, and any one bit of output from the r1
rounds is diffused to k2 bits by r2 rounds. Let F2,K′ be a function from k2 bits to
one bit, where K ′ is k1-bit key that is calculated from Kr−r2 , Kr−r2+1, . . . , Kr−1.
In this case, the key recovery can be expressed as

N⊕

i=1

F2,K′(c′i ⊕ K ′
r) = 0,

where c′i and K ′
r are truncated to k2 bits from ci and Kr, respectively. To apply

the FFT key recovery, we first guess correct K ′, and we have

N∑

i=1

F2,K′(c′i ⊕ K ′
r) = 0 mod 2.

We can efficiently evaluate this equation using the FWHT. Thus, the time com-
plexity is O(2k1 × k22

k2).

4.2 FFT Key Recovery against AES

We show the FFT key recovery for the integral attack against a 6-round AES (see
Fig. 1). Since the FFT key recovery only calculates the summation on the ring
of integers, we transform Eq. (1) to

232∑

n=1

S
(i)
5 (S1(cn[1] ⊕ K1) ⊕ S2(cn[2] ⊕ K2) ⊕ S3(cn[3] ⊕ K3)

⊕ S4(cn[4] ⊕ K4) ⊕ K5)

=
232∑

n=1

f
(i)
K5

(F (cn ⊕ (K1‖K2‖K3‖K4))), (4)

where F is a function from {0, 1}32 to {0, 1}32. Moreover, f
(i)
K5

is a Boolean
function whose output is the i-th bit of the output of S5. We first guess K5, and
then calculate this summation using the FWHT. According to the description
in Sect. 2.2, the time complexity is 4 × 32 × 232 = 239 additions for every K5.
Moreover, since K5 is 8 bits, the time complexity is 28 × 239 = 247 additions.
The probability that this value is even for incorrect keys is expected to be 2−1,
but this value is always even for the correct key.

We estimate the time complexity to recover 5 keys K1, K2, . . . , K5 because
Ferguson et al. estimated it in [11]. Since the output of S5 is 8 bits, we repeat this
analysis using the 8 bits. The probability that all 8 bits satisfy B for incorrect
key is 2−8. Since the total bit length of K1, K2, . . . , K5 is 40 bits, we repeat the
above attack using 6 different sets. Thus, the total complexity is approximately
the time of 6×8×247 = 6×250 additions. When we use the partial-sum technique,
the total time complexity is approximately the time of 6 × 250 S-box lookups.
We discuss the differences between them in Sect. 6.
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Fig. 4. Round function of Feistel cipher
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Fig. 5. Round function of CLEFIA

5 Integral Attack against Feistel Cipher and Application
to CLEFIA

5.1 Feistel Cipher and FFT Key Recovery with MITM Technique

The Feistel cipher is commonly used to construct block ciphers. State Xi is
separated into the left half, XL

i , and the right half, XR
i , and each half is updated

as shown in Fig. 4. In 2012, Sasaki et al. proposed the MITM technique for the
integral attack. Generally, the integral characteristics of the Feistel cipher satisfy
B in the right half, namely

⊕
z becomes 0. In the MITM technique, we evaluate⊕

x and
⊕

y independently instead of
⊕

z. Then, we search for keys satisfying⊕
x =

⊕
y through analysis such as the MITM attack [8]. In [21], the partial-

sum technique is used to evaluate
⊕

x and
⊕

y, but the FFT can also be used
to evaluate them.

We assume that we need to guess k1 and k2 bits to evaluate
⊕

x and
⊕

y,
respectively. If the round key is XORed with input from function F , the FFT
key recovery can evaluate

⊕
x and

⊕
y with O(k12

k1) and O(k22
k2), respec-

tively. Since the matching step of MITM analysis requires the time complex-
ity of O(max{2k1 , 2k2}), the total time complexity of the integral attack is
O(k12

k1 + k22
k2).

5.2 CLEFIA

CLEFIA is a 128-bit block cipher, which was proposed by Shirai et al. in 2007.
It has a 4-branch generalized Feistel network, and is adopted as an ISO/IEC
standard. The round function is defined as in Fig. 5, and the i-th round output
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Fig. 6. Key recovery of 12-round CLEFIA

is calculated from the (i − 1)-th round output, RK2i−2 and RK2i−1. Moreover,
the whitening keys, WK 0 and WK 1, are used in the first round, and WK 2 and
WK 3 are used in the last round. For the 128-bit security version, the number of
rounds is 18.

Shirai et al. showed that CLEFIA has an 8-round integral distinguisher in
the proposal of CLEFIA [2], and then Li et al. showed that it has a 9-round
integral distinguisher with 2112 chosen plaintexts [15]. Moreover, Sasaki and
Wang showed that the complexity of the integral attack against a 12-round
CLEFIA is 13 × 2106 S-box lookups using the MITM technique.

5.3 FFT Key Recovery against CLEFIA

We show the FFT key recovery against a 12-round CLEFIA. We first define some
notations. Let C1, C2, C3, and C4 be ciphertexts and each value is 32 bits (see
Fig. 6). Let X be any 32-bit value, and X [i] denotes the i-th byte of X , namely
X = X [1]‖X [2]‖X [3]‖X [4]. We define function fi : {0, 1}32 → {0, 1}8 as

f1(X)‖f2(X)‖f3(X)‖f4(X) = F1(X).

We first use the same method as the MITM technique [21], which applies the
MITM attack [8] in the key recovery of the integral attack. It uses a 9-round
integral distinguisher [15], where the second branch of the ninth round output
satisfies B. To optimize the MITM technique, we equivalently move the position
of M0 in the tenth round as shown in Fig. 6. As a result, we have

⊕
Y =

⊕
Z.

Therefore, if
⊕

Y and
⊕

Z can be calculated with the guessed round keys, we
can recover the secret key from the MITM technique. Let

⊕
Y and

⊕
Z be
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calculated as
⊕

Y =
⊕

S(F1(F0(C0 ⊕ RK22) ⊕ C1 ⊕ RK21 ⊕ WK 2) ⊕ C2 ⊕ RK18),
⊕

Z =
⊕

M−1
0 (F1(C2 ⊕ RK23) ⊕ C3 ⊕ WK 3),

where S denotes the concatenation of 4 S-boxes S0, S1, S0, and S1. In [21], each
value is calculated using the partial-sum technique.

Hereinafter, we use the FFT key recovery. We need to guess 96 bits to evaluate⊕
Y . Since WK 3 does not affect

⊕
Z, we need to guess 32 bits to evaluate

⊕
Z.

Clearly, the time complexity to evaluate
⊕

Z is negligible compared to that to
evaluate

⊕
Y . Therefore, we show the complexity required to evaluate

⊕
Y . For

instance, the first byte of
⊕

Y is calculated as

⊕
Y [1]

=
⊕

S0(f1(F0(C0 ⊕ RK22) ⊕ C1 ⊕ RK21 ⊕ WK 2) ⊕ C2[1] ⊕ RK18[1]).

To execute the FFT key recovery, we transform the above equation to
∑

Y [1](i)

=
∑

S
(i)
0 (f1(F0(C0 ⊕ RK22) ⊕ C1 ⊕ RK21 ⊕ WK 2) ⊕ C2[1] ⊕ RK18[1]),

where Y [1](i) denotes the i-th bit of Y [1] and the output of S
(i)
0 is the i-th bit

of the output of S0. Moreover, this equation is transformed by defining function
f as

∑
Y [1](i) =

∑
f ((C0‖C1‖C2[1]) ⊕ (RK22‖(RK21 ⊕ WK 2)‖RK18[1])) .

From the description in Sect. 2.2, we can evaluate this equation for all possible
(RK22‖(RK21⊕WK 2)‖RK18[1]) with 4×72×272 ≈ 280.2 additions. Similarly, we
evaluate

∑
Z[1](i) using the FFT key recovery, but the time complexity is neg-

ligible. Finally, we search for round keys satisfying
∑

Y [1](i) =
∑

Z[1](i) mod 2
using analysis such as the MITM attack. Since the complexity is approximately
272, it is also negligible.

Since the output of S0 is 8 bits, we repeat this analysis for the eight bits. More-
over, we similarly calculate the second, third, and fourth bytes of

⊕
Y and

⊕
Z.

Therefore, the time complexity is approximately 4 × 8 × 280.2 = 285.2 additions.
The probability that all 32 bits satisfy B for incorrect keys is expected to be
2−32. Since the total bit length of RK18, RK21 ⊕WK 2, RK22, and RK23 is 128
bits, we repeat above analysis using 5 different sets. Thus, the total complexity
is approximately 5 × 285.2 = 287.5 additions.

6 Discussion

We compare the FFT key recovery and the partial-sum technique. We first com-
pare them based on their units of complexity. The complexity of the partial-sum
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technique is estimated from the number of S-box lookups. On the other hand,
that of the FFT key recovery is estimated from the number of additions. Since the
two processing speeds depend on the environment, we cannot directly compare
them. However, we can roughly compare them. In the partial-sum technique, we
need at least the time complexity of O(2k+�), where � denotes the bit length of
guessed key when we partially compute the sum, e.g., � = 8 for AES and � = 32
for CLEFIA. We expect that the FFT key recovery is superior to the partial-sum
technique when � is greater than 8. Second, we compare them based on another
aspect. We compare them based on memory access. The partial-sum technique
randomly accesses memories. On the other hand, the FFT key recovery sequen-
tially accesses memories. Generally, sequential access is more efficient than the
random access.

We can further optimize the FFT key recovery against specific block ciphers.
For instance, if we repeat the attack for different chosen plaintext sets, we do not
need to calculate v̂ every time. We can use the same v̂ several times. Moreover,
if we use the same set of ciphertexts, we do not need to calculate ŵ every time.
Namely, we can use the same ŵ several times. Thus, the complexity of the FFT
key recovery can be reduced using these properties.

We have an open problem regarding the FFT key recovery. Since round keys
of block ciphers are calculated from the secret key, some bits of round keys are
automatically recovered if some bits of the secret key are recovered. The partial-
sum technique can utilize this property and efficiently reduce the complexity. For
instance, the integral attack against a 22-round LBlock utilizes this property [20].
However, in the FFT key recovery, we do not yet know how to utilize this property.

7 Conclusion

We proposed a new technique for the integral attack called the FFT key recovery.
This technique is useful in an integral attack with an enormous number of chosen
texts. Moreover, the time complexity only depends on the bit length of keys that
are required for a distinguisher from the ciphertext side. Therefore, we can easily
estimate the time complexity. We focus on three structures, the Even-Mansour
scheme where the block size is k bits; the key-alternating cipher where the block
size is k bits, and k2 bits are required to evaluate the integral distinguisher;
and the Feistel cipher where k1 and k2 bits are used to evaluate the MITM
integral key recovery. The time complexity is O(k2k), O(k22

k), and O(k12
k1 +

k22
k2), respectively. As applications of the three structures, we show that 8-

round Prøst P̃128,K , a 6-round AES, and a 12-round CLEFIA can be attacked
with 280, 252.6, and 287.5 additions, respectively.
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Appendix A: 4-round Integral Distinguisher of AES
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Fig. 7. 4-round integral distinguisher of AES

Figure 7 shows the 4-round integral distinguisher of AES. In the first round,
4 values satisfy A1, where the concatenation of their values also satisfies A. This
distinguisher uses 232 chosen plaintexts, and each byte after encrypting 4 rounds
satisfies B.
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Appendix B: Specification of Prøst

Prøst is an authenticated encryption scheme, which was submitted to the CAE-
SAR competition. Refer to the original specification [13] and the reference im-
plementation3 for details.

Prøst permutation Pn (n = 128 or 256) adopts a substitution-permutation
network, and inputs 2n bits and outputs 2n bits. We call a 2n-bit string a state,
and a 4-bit string a nibble. A state is represented as 4× d nibbles, where d = 16
and 32 for n = 128 and 256, respectively. We also refer to a four-nibble column
as a slice. Figure 8 shows the state of Prøst, where the figure on the left shows
the state of Prøst in [13] and the figure on the right shows our 2-dimensional
representation, whose top-left square marked in light-gray is the origin of the
columns and rows.

Prøst permutation consists of T rounds, where T = 16 and 18 for n = 128
and 256, respectively. The i-th round function is defined as

Ri := AddConstant ◦ ShiftPlanes ◦ SubSlices for i = 1, 2, . . . , T

SubSlices substitutes each slice using a super S-box. A super S-box replaces 16
bits, and it consists of 4 S-boxes and a multiplication by 16 × 16-bit matrix M .
ShiftPlanes cyclically shifts the j-th row by π2−(i mod 2)(j) nibbles to the left
for the i-th round, where πi is defined in Table 3.

AddConstant XORs a round constant.

4

d

d

MSB

LSB

MSB LSB

Fig. 8. Two different representations for the state of Prøst

Table 3. Definition of π1 and π2

n = 128 n = 256
1 2 3 4 1 2 3 4

π1 0 2 4 6 0 4 12 26
π2 0 1 8 9 1 24 26 31

3 The reference implementation can be obtained from the crypto_aead/proest*

directory in the SUPERCOP package which is available at
http://bench.cr.yp.to/supercop.html.

crypto_aead/proest*
http://bench.cr.yp.to/supercop.html
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Appendix C: Integral Distinguisher of Prøst

We experimentally search for integral distinguishers of Prøst. We set a slice of
the second round input as A and observe the sixth round output. The XOR of the
output depends on the value of the constant nibbles of the second round input.
However, we can expect that bit positions whose XOR values are always zero
are B by changing the value of the constant nibbles of the second round input.
We try 1024 randomly chosen values for the constant nibbles, and the number of
trials is sufficient to determine that the output bits satisfy B by assuming that
the non-B bits uniformly take 0 and 1.

Through the experiment, we obtain the 5-round integral distinguisher of
P̃128,K(x) with 216 chosen plaintexts (see Fig. 9). This distinguisher is extended
to the 6-round distinguisher as shown in Fig. 9, and it uses 264 chosen plaintexts.

Similarly, we show the integral distinguisher of P̃256,K(x). We first prepare
chosen plaintexts where each slice satisfies A, and this distinguisher is extended
to the 7-round distinguisher with 264 chosen plaintexts. When the first slice (16
bits) satisfies A, the seventh round output satisfy the following integral
characteristic.
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Fig. 9. 6-round integral distinguisher of P̃128,K
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0x30f0c00d3dc930cd090f0d0000d09000

0xd00c9fd390dc030d0f0000c0300090d0

0xd0930c0f0d000030c000d0d09003df9c

0x90d000c0f03009cd3dc0390d0d0f0000

Here, if the hexadecimal value in the i-th row and j-th slice is 0x3, the upper
two bits satisfy B and the lower two bits do not satisfy B. As another example,
when the seventeenth slice (16 bits) satisfies A, the seventh round output satisfy
the following integral characteristic.

0x090f0d0000d0900030f0c00d3dc930cd

0x0f0000c0300090d0d00c9fd390dc030d

0xc000d0d09003df9cd0930c0f0d000030

0x3dc0390d0d0f000090d000c0f03009cd

In both integral characteristics, 348 bits of the seventh round output satisfy B.

Appendix D: FFT Key Recovery against Prøst P̃256,K

In Appendix C, we show two 7-round integral distinguishers with 264 chosen
plaintexts. In each distinguisher, only 348 bits of the seventh round output satisfy
B. We show the FFT key recovery using these two distinguishers. The sum
of the number of bits that the two distinguishers do not satisfy B is 24 bits.
Therefore, 488 bits of the output of the 7-round integral characteristic satisfy B.
We repeat the FFT key recovery 488 times. The time complexity is the time of
488 × 272 = 280.9 additions. Since the probability that all 488 bits satisfy B for
incorrect key K is 2−488 at most, and 224 incorrect keys are expected to remain.
Therefore, we exhaustively search for the remaining keys. The time complexity
is 224, and it is negligible compared to the time complexity for the two FFT key
recoveries.
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