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Abstract. Oblivious transfer (OT) is a fundamental two-party cryp-
tographic primitive that implies secure multiparty computation. In this
paper, we introduce the first OT based on the Learning Parity with Noise
(LPN) problem. More specifically, we use the LPN variant that was in-
troduced by Alekhnovich (FOCS 2003). We prove that our protocol is
secure against active static adversaries in the Universal Composability
framework in the common reference string model. Our constructions are
based solely on a LPN style assumption and thus represents a clear next
step from current code-based OT protocols, which require an additional
assumption related to the indistinguishability of public keys from ran-
dom matrices. Our constructions are inspired by the techniques used to
obtain OT based on the McEliece cryptosystem.

1 Introduction

Oblivious transfer (OT) [42,40,21] was introduced in the early days of public-key
cryptography and has thereafter played an essential role in modern cryptography.
They imply, among other things, the possibility of performing two-party secure
computation [24,31] and multi-party computation [13]. Initially many variants
of OT were considered, but they are equivalent [12] and therefore in this work
we will focus on the most common one: one-out-of-two bit oblivious transfer. In
this variant there is a sender who inputs two bits x0 and x1, and a receiver who
chooses which bit xc he wants to learn. On one hand, the receiver should learn
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xc, but should have no information about xc. On the other hand, the sender
should not learn the choice bit c.

Given the importance of OT protocols, constructions were extensively studied
and nowadays solutions are known based on both generic computational assump-
tions such as enhanced trapdoor permutations [21], and also based on specific
computational assumptions such as: the hardness of factoring [40,26], the Deci-
sional Diffie-Hellman (DDH) assumption [4,35,1,43], the Quadratic Residuosity
(QR) assumption [26], the N’th residuosity assumption [26], the hardness of the
Subgroup Decision Problem [33], and the McEliece assumptions [19]. Since Shor’s
algorithm [41] would make factoring and computing discrete logarithms easy in
the case that quantum computers become practical, an important question is
determining which post-quantum assumptions are sufficient to implement OT
protocols. LPN-based/code-based cryptography is one of the main alternatives
for a post-quantum world and thus our result improves the understanding in this
area.

As with most cryptographic primitives, the first OT protocols considered sim-
ple security models (in this case the stand alone model in which there is only
one execution of the protocol isolated from the rest of the world). Afterwards,
stronger models were considered, such as security in the Universal Composabil-
ity (UC) framework by Canetti [5], which allows arbitrary composition of the
protocols. This latter notion is the most desirable security goal for oblivious
transfer protocols, since it allows these protocols to be used as building blocks
of more complex primitives and protocols.

In this work we will present the first OT protocol based on a variant of the
Learning Parity with Noise (LPN) problem that was introduced by Alekhnovich
[2,3]. The protocol achieves UC security against active static adversaries follow-
ing ideas similar to the ones that Dowsley et al. [19,20,15] used to build OT
protocols based on the McEliece assumptions [34]. It is well-known that UC-
secure oblivious transfer is impossible in the plain model [6,7], so our solution is
in the common reference string (CRS) model.

1.1 Related Works

Cryptography Based on Codes and LPN: McEliece [34] proposed a cryp-
tosystem based on the hardness of the syndrome decoding problem. Later on,
Niederreiter [36] proposed a cryptosystem that is the dual of McEliece’s cryp-
tosystem. These cryptosystems can be modified to achieve stronger notions of
security such as IND-CPA [37,38] and IND-CCA2 [18,22,16]. Based on these
cryptosystems it is possible to implement both stand alone secure [19,20] and
UC-secure [15] OT protocols. The main drawback of these code-based schemes
is that, besides assuming the hardness of the decoding problem, they also as-
sume that the adversary is not able to recover the hidden structure of the keys,
which is formalized by assuming that the public-keys are indistinguishable from
random matrices. But this later problem is far less studied than the decoding
one.
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Building public-key encryption schemes from the original LPN problem is a
difficult task and so far the only schemes are based on a variant of the LPN prob-
lem introduced by Alekhnovich in [2,3], which yields semantically secure encryp-
tion [2,3,28] and IND-CCA2 secure encryption by Döttling et al. [17]. Moreover,
other cryptographic primitives were built based solely on the Alekhnovich variant
of the LPN problem, such as: pseudo random generators (PRG) [28], message au-
thentication codes (MAC) [28], pseudo random functions (PRFs) [28], signature
schemes with constant overhead [28], zero-knowledge [29], and commitments [29].

Furthermore, Ishai et al. present a protocol for secure two-party and mul-
tiparty computation with constant computational overhead in the semi-honest
model and slightly superlinear computational overhead in the malicious model
based on Alekhnovich’s LPN [28]. However, their secure computation construc-
tions assume the existence of bit oblivious transfer, which wasn’t built from
Alekhnovich’s LPN until now (not even with stand-alone security).

Universally Composable OT: Peikert et al. developed a general framework
for obtaining efficient, round optimal UC-secure OT in the CRS model [39]
that provides instantiations based on the DDH, QR and Learning With Errors
(LWE) [39]. Constructions of OT protocols that achieve UC security against
different kinds of adversaries under various setup assumptions are also known
to be possible under the Decisional Linear (DLIN) assumption [14,30], the DDH
and the strong RSA assumptions [23] and the Decisional Composite Residuosity
(DCR) assumption [30,11].

Another approach to obtain UC-secure oblivious transfer protocols is to take
a stand alone secure OT protocol and use compilers [27,25,10] to achieve an
UC-secure protocol. However these compilers require access to UC-secure string
commitment schemes that were not yet built from the LPN assumption.

1.2 Our Contributions

In this work we address the open problem of constructing oblivious transfer
based on the assumption that LPN is hard. We focus on the LPN variant intro-
duced by Alekhnovich in [2,3]. Our main result is the first Oblivious Transfer
protocol based on LPN. Our protocol is Universally Composable and offers se-
curity against active static adversaries, i.e. adversaries that may deviate in any
arbitrary way from the protocol but are forced to corrupt their desired parties
before protocol execution starts. It is well-known that UC realizing any interest-
ing multiparty functionality (among them OT) is impossible in the plain model
(i.e. without a setup assumption) [6,7]. Hence, we build our protocol in the
Common Reference String (CRS) model, where the parties are assumed to have
access to a fixed string generated before protocol execution starts.

The protocol is based on the cut-and-choose approach of [15], although with a
different proof strategy. This approach basically requires a stand-alone passively
secure OT protocol and an extractable commitment scheme as building blocks.
We show that a stand alone OT protocol (with passive or active security) can
be obtained in a similar way as in [19,20]. We also observe that we can obtain an
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extractable commitment scheme from an IND-CPA secure public key encryption
scheme based on Alekhnovich’s LPN assumption introduced in [17].

Besides proving that it is possible to construct oblivious transfer from vari-
ants of the LPN assumption, our results greatly improve on previous code-based
OT protocols by relying on a weaker assumption. Moreover, together with the
CCA2 secure Alekhnovich cryptosystem [17] and the LPN based proofs of knowl-
edge and commitments [29], our results contribute towards obtaining more
complex cryptographic protocols based on coding based assumptions weaker
than McEliece. Unfortunately, the UC secure protocol we introduce is meant
to demonstrate the feasibility of obtaining OT based on LPN and lacks on ef-
ficiency, having high round communication complexity. Addressing efficiency is-
sues, as well as obtaining security against adaptive adversaries, is left as a future
work.

1.3 Outline

In Section 2 we introduce the notation, assumptions and definitions used through-
out the paper. In Section 3, we present the active secure universally composable
OT protocol based on cut-and-choose techniques.

2 Preliminaries

In this section we introduce our notation and also recall the relevant definitions.

2.1 Notation

If x is a string, then |x| denotes its length, while |X | represents the cardinality of a
set X . If n ∈ N then 1n denotes the string of n ones. s ← S denotes the operation
of choosing an element s of a set S uniformly at random. w ← AO(x, y, . . .)
represents the act of running the algorithm A with inputs x, y, . . ., oracle access
to O and producing output w. AO(x; r) denotes the execution with coins r.
We denote by Pr (E) the probability that the event E occurs. If a and b are
two strings of bits or two matrices, we denote by a|b their concatenation. The
transpose of a matrix M is MT . If a and b are two strings of bits, we denote
by 〈a, b〉 their dot product modulo 2 and by a ⊕ b their bitwise XOR. Un is an
oracle that returns an uniformly random element of {0, 1}n. If b is a bit, then
b denotes its inverse (i.e. 1 − b). Let F2 denote the finite field with 2 elements.
For a parameter ρ, χρ denotes the Bernoulli distribution that outputs 1 with
probability ρ.

2.2 Encryption Scheme

In this section we describe the LPN-based public-key encryption scheme that was
introduced by Döttling et al. [17] and that will be used in this paper. Note that
we use the simplest version of their cryptosystem, the one which only achieves
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IND-CPA security (which is already enough for our purposes) and does not allow
witness recovery.

Let n be the security parameter, ρ ∈ O(n−(1+2ε)/(1−2ε)), and n1, �1, �2 ∈
O(n2/(1−2ε)). Let G ∈ F

�2×n1
2 be the generator-matrix of a binary linear error-

correcting code C and DecodeC an efficient decoding procedure for C that corrects
up to α�2 errors for a constant α.

Key Generation: Sample a uniformly random matrix A ∈ F
�1×n1
2 , a matrix

T from χ�2×�1
ρ and a matrix X from χ�2×n1

ρ . Set B = TA+X . Set pk = (A,B,G)
and sk = T . Output (pk, sk).

Encryption Enc(pk,m): Given a message m ∈ F
n1
2 and the public key pk =

(A,B,G) as input, sample s from χn1
ρ , e1 from χ�1

ρ and e2 from χ�2
ρ . Then set

ct1 = As+ e1 and ct2 = Bs+ e2 +Gm. Output ct = (ct1, ct2).
Decryption Dec(sk, ct): Given a ciphertext ct = (ct1, ct2) and a secret key

sk = T as input, compute y = ct2 − T ct1 and m = DecodeC(y). Output m.
The IND-CPA security of this scheme was proved under the following assump-

tion which is equivalent to Alekhnovich’s hardness assumption [17].

Assumption 1 Let n1 ∈ N be the problem parameter, m = O(n1), ε > 0 and

ρ = ρ(n1) = O(n
−1/2−ε
1 ). Choose uniformly at random A ∈ F

m×n1
2 and x ∈ F

n1
2 .

Sample e according to χm
ρ . The problem is, given A and y ∈ F

m
2 , to decide

whether y is distributed according to Ax+ e or uniformly at random.

The current best algorithms to attack this problem require time of the order

2n
1/2−ε

and for this reason by setting n1 = O(n2/(1−2ε)) where n is the security
parameter of the encryption scheme the hardness is normalized to 2Θ(n).

2.3 Extractable Commitment Schemes

A string commitment scheme is said to be extractable if there exists a polynomial-
time simulator that is able to obtain the committed value m before the Open
phase. In the CRS model, we will build an extractable commitment scheme based
on the encryption scheme from the previous section in the following way. The
CRS contains a public key pk of the cryptosystem and the scheme works as
follows:

– Comcrs(m) The sender encrypts m under the public key pk with randomness
(s, e1, e2) and sends the corresponding ciphertext ct to the receiver as a
commitment.

– Opencrs(m) The sender sends the message m and the randomness (s, e1, e2)
used in the commitment phase. The receiver checks if the encryption of m
with the randomness (s, e1, e2) results in the ciphertext ct that he received
before. Additionally, for a fixed constant γ > 1 such that γρ < α/3, he
checks if the Hamming weights of s, e1 and e2 are respectively smaller than
γρn1, γρ�1 and γρ�2. If all tests are passed, the receiver accepts the opening
as correct.
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Note that in the case that both parties are honest, the Hamming weight tests
will be passed with overwhelming probability, as it was shown in the proof of the
cryptosystem [17] that larger Hamming weights only occur with negligible proba-
bility, so the correctness of the commitment scheme follows. The hiding property
follows trivially from the IND-CPA security of the encryption scheme. For the
binding property, first notice that the Hamming weight tests performed during
the opening phase ensure that the error termXs+e2−Te1 that would appear in a
decryption operation of Enc(pk,m; s, e1, e2) would be within the decoding limit of
C and so the decryption would have been successfully performed and m recovered
(see the proof of correctness of [17] for details). I.e., for any opening information
(m, s, e1, e2) that passes the tests, we have Dec(sk,Enc(pk,m; s, e1, e2)) = m and
Enc(pk,m; s, e1, e2) = ct. Thus, due to the uniqueness of the decryption, there is
only one m that can pass all the tests performed in the opening phase.

In order to extract the committed values, the simulator generates a key pair
(pk, sk) for the cryptosystem and sets the CRS to pk. With the knowledge of the
secret key sk, he can extract from any ct the only value m that can be successfully
opened in a later stage.

2.4 Universal Composability

The Universal Composability framework was introduced by Canetti in [5] to
analyze the security of cryptographic protocols and primitives under arbitrary
composition. In this framework, protocol security is analyzed by comparing an
ideal world execution and a real world execution. The comparison is performed
by an environment Z, which is represented by a PPT machine and has direct
access to all inputs and outputs of the individual parties and to the adversaryA.
In the ideal world execution, dummy parties (possibly controlled by a PPT sim-
ulator S) interact directly with the ideal functionality F , which works as trusted
third party that computes the desired function or primitive. In the real world
execution, several PPT parties (possibly corrupted by a real world adversary A)
interact with each other by means of a protocol π that realizes the ideal func-
tionality. The real world execution is represented by the ensemble EXECπ,A,Z ,
while the ideal execution is represented by the IDEALF ,S,Z . The rationale be-
hind this framework lies in showing that the environment Z (that represents all
the things that happen outside of the protocol execution) is not able to efficiently
distinguish between EXECπ,A,Z and IDEALF ,S,Z , thus implying that the real
world protocol is as secure as the ideal functionality.1

Adversarial Model. In this work we consider security against static adver-
saries, i.e. the adversary corrupts parties before the protocol execution and cor-
rupted parties remain so during the whole execution. Moreover, we consider
active adversaries, which may arbitrarily deviate from the protocol in order to
perform an attack.

1 For the sake of brevity, we refer the reader to Canetti’s work [5] for further details
and definitions regarding the UC framework.
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Setup Assumptions. The security of our protocol is proved in the Common
Reference String (CRS) model (referred to as the FCRS − hybrid model in [5]),
where protocol parties are assumed to have access to a fixed string generated
according to a specific distribution before protocol execution starts, in a so called
setup phase. The CRS ideal functionality FCRS is formally presented below.

Common Reference String Ideal Functionality. The formal definition of
the CRS ideal functionality FD

CRS is taken from [9].

Functionality FD
CRS

FD
CRS runs with parties (P1, ..., Pn) and is parametrized by an algo-

rithm D.

• When receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n),
send (sid, crs) to Pi and send (crs, Pi, Pj) to the adversary. Next, when
receiving (sid, Pi, Pj) from Pj (and only Pj ), send (sid, crs) to Pj and
to the adversary, and halt.

Oblivious Transfer Ideal Functionality. The basic 1-out-of-2 oblivious trans-
fer functionality FOT as defined in [8] is presented bellow.

Functionality FOT

FOT interacts with a sender S and a receiver R.

• Upon receiving a message (sid, sender, x0, x1) from S, where each
xi ∈ {0, 1}� , store (x0, x1) (the length of the strings is fixed and known
to all parties).

• Upon receiving a message (sid, receiver, c) from R, check if a
(sid, sender, · · ·) message was previously sent. If yes, send (sid, xc)
to R, sid to the adversary S and halt. If not, send nothing to R (but
continue running).

Similarly to the framework of [39], our protocols reuse the same CRS for
multiple oblivious transfer invocations. In order to achieve this, we employ the
same techniques of UC with joint state (JUC) [9].

3 Universally Composable Active Secure OT

In this section, we construct an universally composable OT protocol secure
against active static adversaries in the Common Reference String model. Us-
ing cut-and-choose techniques similar to [15] we depart from a stand alone OT
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protocol. The stand alone protocol can be constructed from a IND-CPA secure
cryptosystem following the paradigm of [4], previously employed in [19] to obtain
OT based on the McEliece assumptions. Basically, the receiver R generates a
valid public key, scrambles it with random matrices of the same size and sends
both valid and scrambled keys to the sender S. S encrypts each of its messages
under one of the public keys provided by R and sends the ciphertexts back. R
is able to decrypt only the ciphertext created with the valid public key, obtain-
ing only one of the messages. On the other hand, S cannot distinguish between
the valid and scrambled public keys generated by R, thus not knowing which
message R obtains.

In the universally composable protocol, R generates a number of valid public
keys Ki,di for random di’s and commits to them. Next, both players run a
coin tossing protocol to generate the random paddings Ri that are used by
R to scramble each valid public key as Ki,di

= Ki,di + Ri. R sends all Ki,1

keys to S, who retrieves keys Ki,0 = Ki,1 + Ri. Next, another coin tossing
protocol is run between S and R to obtain a random string Ω. For each bit
equal to 1 in Ω, R opens the corresponding commitments to valid public keys
for verification. For each bit equal to 0 in Ω, R sends to S information that
derandomizes the corresponding public key pairs such that the valid public key
corresponds to his choice bit. S uses the corresponding public key pairs to encrypt
an additive share of its messages such that R can only retrieve a message if it’s
able to decrypt all ciphertexts. An extractable commitment scheme is employed,
allowing the simulator to cheat and obtain the information necessary to carry
out the simulation.

We use the LPN-based IND-CPA secure public key cryptosystem from [17]
(described in Section 2.2) as a building block for encryption and extractable
commitments (described in Section 2.3). In the following protocol, parameter ω
controls the number of parallel executions of randomized OTs. The protocol’s
security parameter is composed of ω and the underlying cryptosystem’s security
parameter n. The protocol has 10 rounds and communication complexity in the
order of O(ωn). The exact communication complexity depends on the relation
between ω and n, which in turn depends on the desired security level and the
hardness of solving Alekhnovich’s LPN problem with the currently best attack.

Protocol 1
Inputs: The sender S takes as input two bits x0 and x1, while the receiver R
takes as input a choice bit c.
Common reference string: A random public key ck used for the commitment
scheme.

1. Upon being activated with their inputs, the parties query FCRS with (sid,
S,R) and receive (sid, crs) as answer.

2. R initiates the first round by performing the following actions:
(a) R initially samples a random bit string d ← {0, 1}ω, where, di denotes

each bit in d for i = 1, . . . , ω.
(b) For i = 1, . . . , ω, R generates a public-key pki and a secret-key ski, and

sets Ki,di = pki = (Ai, Bi, Gi).
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(c) R commits to all public keys Ki,di by sending to S the message
(sid,Comck(K1,d1), . . . ,Comck(Kω,dω)).

3. Both parties run a coin tossing protocol in order to obtain random matrices:

(a) S samples uniformly random matrices of the same size as the public
key matrices A′

i ∈ F
�1×n1
2 , B′

i ∈ F
�2×n1
2 , G′

i ∈ F
�2×n1
2 , assigns R′

i =
(A′

i, B
′
i, G

′
i) and sends a commitment (sid,Comck(R

′
1), . . . ,Comck(R

′
ω))

to R.
(b) For i = 1, . . . , ω, R samples uniformly random A′′

i ∈ F
�1×n1
2 , B′′

i ∈
F
�2×n1
2 , G′′

i ∈ F
�2×n1
2 , assigns R′′

i = (A′′
i , B

′′
i , G

′′
i ) and sends (sid, R′′

1 , . . . ,
R′′

ω) to S.
(c) S opens its commitments and both parties compute

Ri =
(
Āi = A′

i +A′′
i , B̄i = B′

i +B′′
i , C̄i = C′

i + C′′
i

)
for i = 1, . . . , ω.

4. R computes the remaining keys as follows:

(a) For i = 1, . . . , ω, R sets Ki,di
= Ki,di +Ri = (Ai+ Āi, Bi+ B̄i, Gi+ Ḡi),

scrambling the valid keys related to the random choice bit using the
random matrices obtained in the coin tossing.

(b) R sends all the resulting keys Ki,1 = (Ãi, B̃i, G̃i) to S as (sid,K1,1, . . . ,
Kω,1).

5. S computes Ki,0 = Ki,1 + Ri = (Ãi + Āi, B̃i + B̄i, G̃i + Ḡi) obtaining the
public key pairs Ki,0,Ki,1, for i = 1, . . . , ω.

6. Both parties run a coin tossing protocol in order to obtain a random bit
string Ω:

(a) S samples a random bit string v ← {0, 1}ω and sends a commitment
(sid,Comck(v)) to R.

(b) R chooses a random bit string v′ and sends (sid, v′) to S.
(c) S opens its commitment and both parties compute Ω = v ⊕ v′.

7. Let I be the set of indexes i ∈ {1, . . . , ω} such that Ωi = 1 and let J be the
set of indexes j ∈ {1, . . . , ω} such that Ωj = 0. R performs the following
actions:

– Verification: For each i ∈ I, R opens the commitments to Ki,di by
sending (sid,Openck(Ki,di)).

– Derandomization: For each j ∈ J , let ρj be a reordering bit such that
if ρj = 1 the keys Kj,0,Kj,1 are swapped and if ρj = 0 they are left as
they are. For each j ∈ J , R sends (sid, ρj) to S in such a way that, after
the reordering, all the keys Kj,c are valid.2

8. For each opening (sid,Openck(Ki,di)) that it receives, S checks that the
public key pair Ki,0,Ki,1 is honestly generated (i.e. that there exists b ∈
{0, 1} s.t. Ki,b = Ki,di and Ki,b = Ki,di ⊕Ri). If this check fails for at least
one public key pair S aborts, otherwise it continues as follows:

2 If the operation performed with ρ is seen as computing (K̂j,0, K̂j,1) = Kj,0⊕ρ,Kj,1⊕ρ,
the choice of ρ can be seen as ρ = dj ⊕ c. Here R makes sure that the public keys
in the unopened commitments that will be used to encrypt the bit xc (related to its
choice bit) are valid public keys.
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– For each reordering bit ρj received by S, it derandomizes the correspond-

ing public key pair by computing (K̂j,0, K̂j,1) = Kj,0⊕ρ,Kj,1⊕ρ.
– Let μ be the number of indexes in J , and let j1, ..., jμ denote each of

these indexes. For j = j1, ..., jμ, S generates μ bits xj,0 such that xj1,0⊕
· · · ⊕ xjμ,0 = x0 and μ bits xj,1 such that xj1,1 ⊕ · · · ⊕ xjμ,1 = x1.

– For j = j1, ..., jμ, S encrypts xj,0 under public key K̂j,0 and encrypts

xj,1 under public key K̂j,1 by computing ctj,0 = Enc(K̂j,0, xj,0) and

ctj,1 = Enc(K̂j,1, xj,1).
– S sends all ciphertexts to R as (sid, (ctj1,0, ctj1,1), . . . , (ctjμ,0, ctjμ,1)).

9. For j = j1, ..., jμ, R decrypts the ciphertexts related to xc by computing
xj,c = Dec(skj , ctj,c). If any of the decryption attempts fail, R outputs a
random xc ← {0, 1}. Otherwise, R outputs xc = xj1,c ⊕ . . .⊕ xjμ,c.

Correctness. It is clear that the protocol runs in polynomial time. The classical
coin tossing protocol ensures that the string Ω and matrices Ri are uniformly
distributed and the commitment hiding property ensures that S cannot obtain
any information about the keys in the unopened commitments.

Notice that, after the reordering, all the public key pairs (K̂j,0, K̂j,1) are such

that K̂j,c is a valid public key and K̂j,c is a scrambled public key (i.e. summed
with the random matrices in Rj). Thus, R is able to decrypt all of the cipher-
texts ctj,c for j = j1, ..., jμ, obtaining all bits xj,c that are necessary to compute
the bit xc = xj1,c ⊕ . . .⊕ xjμ,c. On the other hand, R cannot obtain xc through
decrypting the ciphertexts cti,c, since they were generated under the scrambled
keys. S cannot obtain the choice bit c by distinguishing the valid public keys
from randomized keys, since the public-key of the cryptosystem is pseudoran-
dom [29,17].

Theorem 1. Protocol 1 securely realizes the functionality FOT in the FCRS-
hybrid model under Assumption 1. Let π denote Protocol 1. For every PPT
static malicious adversary A there is a PPT simulator S such that for all PPT
environment Z, the following holds:

EXECπ,A,Z
c≈ IDEALFOT ,S,Z

3.1 Security Proof

In this section we analyse the security of Protocol 1 by constructing a simulator
S that interacts with FOT such that no environment Z can distinguish between
interactions with a static adversary A in the real world and interactions with
S in the ideal world. The formal description of the simulator and the full proof
of Theorem 1 showing that execution with S is indeed indistinguishable from
execution with A are left for the full version of this paper. We first present trivial
simulation cases (where both parties are honest or corrupted) and then consider
the cases where only S or only R is corrupted separately. The simulators are
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based on techniques introduced in [32] and [15]. For each corruption scenario, S
works as follows:

Simulating Communication with Z. S writes all the messages received from
Z in A’s input tape, simulating A’s environment. Also, S writes all messages
from A’s output tape to its own output tape, forwarding them to Z.

Simulating Trivial Cases. If both S and R are corrupted, S simply runs A
internally. Notice that A will generate the messages from both corrupted S and
R. If neither S and R are corrupted, S runs the protocol between honest S and
R internally on the inputs provided by Z. All messages are delivered to A.

Simulator for a Corrupted S. If only S is corrupted, the simulator S has to
extract the bits x0 and x1 (the adversary’s input) by interacting with adversary
A through Protocol 1. The main trick for doing this lies in cheating the coin
tossing phase by means of the underlying commitment scheme’s extractability.
The simulator will use this ability to construct public key pairs where both keys
are valid (allowing it to obtain both bits) and pass the corrupted S’s verification
without getting caught. S sends the x0 and x1 obtained after decryption to FOT

and terminates. The simulator S is formally described in Appendix A.

Simulator for a Corrupted R. In this case where only R is corrupted, the
simulator has to extract the choice bit c (the adversary’s input) by interacting
with the adversaryA through Protocol 1. First, simulator S sets the CRS in such
a way that it can extract the commitments sent by A in the first step. S runs the
protocol as an honest S, only deviating to extract the commitments containing
the valid public key sent by A. After the public key pairs are reordered, S
verifies which key K̂j,0 or K̂j,1 corresponds to the valid public key K̂j,dj in the
extracted (but unopened) commitment. The choice bit is determined as the bit
c such that K̂j,c = K̂j,dj . S sends c to FOT , obtaining xc in return. S then
encrypts xc and a dummy x1−c using the procedure of a honest sender, sends
the corresponding message to A and terminates. The simulator S is formally
described in Appendix B.
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16. Döttling, N., Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A cca2 secure
variant of the mceliece cryptossystem. IEEE Transactions on Information Theory
(to appear)
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A Simulator for a Corrupted S

Simulating FCRS: S generates a commitment key ck ← Gen(1n) for which he
knows the secret key tk and sets crs = (ck). Later on, the secret key will be used
as a trapdoor to extract unopened commitments. When the parties query FCRS ,
S hands them (sid, crs).

When the dummy S is activated, S proceeds as follows:

1. S initiates the first round by performing the following actions:

(a) S initially samples a random bit string d ← {0, 1}ω, where di denotes
each bit in d for i = 1, . . . , ω.

(b) For i = 1, . . . , ω, S generates a public-key pki and a secret-key ski, and
sets Ki,di = pki = (Ai, Bi, Gi).

(c) S commits to all public keys Ki,di by sending to A the message
(sid,Comck(K1,di), . . . ,Comck(Kω,di)).

2. S performs the coin tossing to generate the random matrices as follows:

(a) Upon receiving (sid,Comck(R
′
1), . . . ,Comck(R

′
ω)) from A, S extracts the

R′
i = (A′

i, B
′
i, G

′
i).

(b) S chooses public-keys pki,di
= (Ai, Bi, Gi) with the respective secret-

key, sets Ki,di
= pki,di

and computes R′′
i = R′

i ⊕ pki,di
= (Ai +A′

i, Bi +

B′
i, Gi +G′

i) for i = 1, . . . , ω. S sends (sid, R′′
1 , . . . , R

′′
ω) to A.

3. Upon receiving the openings from A, S sends pk1,1, . . . , pkω,1 to A.
4. S simulates the coin tossing:

– Upon receiving (sid,Comck(v)) from A, S chooses a random bit string
v′ ← {0, 1}ω and sends to A.

– Upon receiving an opening (sid,Openck(v)) from A, S computes Ω =
v ⊕ v′ and stores (sid, Ω). However, If A does not correctly open its
commitment (sid,Comck(v)), then S sends ⊥ to FOT , simulating an
invalid opening and halts.
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5. After the coin tossing, S opens the commitments needed for verification and
simulates reordering. Recall that i represents the indexes for which Ωi = 1
and j represents the indexes for which Ωj = 0.
– Verification: For each i, S opens the commitments to Ki,di by sending

(sid,Openck(Ki,di)).
– Derandomization: For every j, S samples a random reordering bit

ρj ← {0, 1}. For each j, S sends (sid, ρj) to A. 3

6. Upon receiving (sid, (ctj1,0, ctj1,1), . . . , (ctjμ,0, ctjμ,1)), S uses the instruc-
tions of an honest receiver to decrypt and reconstruct both bits x0 and x1.
For j = j1, ..., jμ, S decrypts the ciphertexts related to xdi by computing
xj,di = Dec(skj,di , ctj,di) and the ciphertexts related to xdi

by computing
xj,di

= Dec(skj,di
, ctj,di

) (notice that S knows all secret keys skj,di , skj,di

since it cheated in the random padding generation). S obtains xdi = xj1,di ⊕
. . .⊕ xjμ,di and xdi

= xj1,di
⊕ . . .⊕ xjμ,di

. However, if A does not reply with

a valid message or any of the decryption attempts fail, then S samples two
random bits x0, x1 ← {0, 1}.

7. S completes the simulation by sending (sid, sender, x0, x1) to FOT as S’s
input and halts.

B Simulator for a Corrupted R

Simulating FCRS: S generates a commitment key ck ← Gen(1n) for which he
knows the secret key tk and sets crs = (ck). Later on, the secret key will be used
as a trapdoor to extract unopened commitments. When the parties query FCRS ,
S hands them (sid, crs).

When the dummy R is activated, S proceeds as follows:

1. Upon receiving (sid,Comck(K1,di , . . . ,Comck(Kω,di))) from A, S extract the
commitments and stores (sid,K1,di, . . . ,Kω,di).

2. S simulates the coin tossing to obtain random matrices as follows:

(a) S samples uniformly random matrices of the same size as the public
key matrices A′

i ∈ F
�1×n1
2 , B′

i ∈ F
�2×n1
2 , G′

i ∈ F
�2×n1
2 , assigns R′

i =
(A′

i, B
′
i, G

′
i) and sends a commitment (sid,Comck(R

′
1), . . . ,Comck(R

′
ω))

to to A.
(b) Upon receiving (sid, R′′

1 , . . . , R
′′
ω) from A, S opens its commitments and

both parties computeRi =
(
Āi = A′

i +A′′
i , B̄i = B′

i +B′′
i , C̄i = C′

i + C′′
i

)

for i = 1, . . . , ω.
(c) Upon receiving (sid,K1,1, . . . ,Kω,1) from A where Ki,1 = (Ãi, B̃i, G̃i),

S computes Ki,0 = Ki,1 + Ri = (Ãi + Āi, B̃i + B̄i, G̃i + Ḡi) obtaining
the public key pairs Ki,0,Ki,1, for i = 1, . . . , ω. .

3. Simulating the coin tossing phase:

3 The reordering bit performs the same function described in the protocol for a honest
receiver.
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– S samples a random bit string v ← {0, 1}ω and sends a commitment
(sid,Comck(v)) to A.

– Upon receiving A’s string (sid, v′), S opens its commitment sending
(sid,Openck(v)) to A and receives.

– S computes Ω = v ⊕ v′.
4. Let i represent the indexes for which Ωi = 1 and j represent the indexes

for which Ωj = 0. Upon receiving the openings (sid,Openck(pki|ski)) and
reordering bits (sid, ρj) from A, S performs the following actions. However,

if A send invalid openings, then S sends ⊥ to F̂OT , simulating an abortion
and halts.

– For each opening (sid,Openck(Ki,di)), s uses the key Ki,di and the in-
structions of an honest sender to check whether the public key pairs are
valid (i.e. one of the keys is equal to Ki,di and the other is equal to

Ki,di ⊕Ri). If this check fails, S sends ⊥ to F̂OT , simulating an abortion
and halts. Otherwise it continues to the next step.

– For each reordering bit ρj received by S, it derandomizes the correspond-

ing public key pair by computing (K̂j,0, K̂j,1) = Kj,0⊕ρ,Kj,1⊕ρ.
– S uses the keys Kj,dj obtained from the extracted commitments to find

at least one valid reordered pair (K̂j,0, K̂j,1). If no such pair is found,

S aborts, sending ⊥ to F̂OT and halting. Otherwise, S obtains c by
checking which key in the pair is equal to Kj,dj , i.e. if Kj,0 = Kj,dj then
c = 0 and if Kj,1 = Kj,dj then c = 1.

– S sends (sid, receiver, c) to F̂OT , receiving (sid, xc) in response.

5. S samples a random bit xc ← {0, 1}, obtaining a pair (x0, x1) since it already
learned xc from F̂OT . S completes the protocol by performing the following
actions:

– Let μ be the number of indexes j, and let j1, ..., jμ denote each of these
indexes. For j = j1, ..., jμ, S generates μ bits xj,0 such that xj1,0 ⊕ · · · ⊕
xjμ,0 = x0 and μ bits xj,1 such that xj1,1 ⊕ · · · ⊕ xjμ,1 = x1.

– For j = j1, ..., jμ, S encrypts xj,0 under public key K̂j,0 and encrypts

xj,1 under public key K̂j,1 by computing ctj,0 = Enc(K̂j,0, xj,0; rj,0) and

ctj,1 = Enc(K̂j,1, xj,1; rj,1), respectively.
– S sends all ciphertexts to A as (sid, (ctj1,0, ctj1,1), . . . , (ctjμ,0, ctjμ,1)).
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