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Preface

The 13th International Conference on Cryptology and Network Security (CANS)
took place on Heraklion, on the island of Crete, Greece, during October 20–22,
2014, and was organized by the Institute of Computer Science of the Foundation
for Research and Technology - Hellas (FORTH-ICS).

The conference received 86 submissions, four of which were withdrawn. The
Program Committee (PC) decided to accept 25 papers for presentation at the
conference. Most submitted papers were reviewed by at least three PC members,
while submissions co-authored by a PC member received at least one additional
review. In addition to the PC members, a number of external reviewers joined
the review process in their particular areas of expertise. The initial reviewing
period was followed by a lively discussion phase that enabled the committee
to converge on the final program. There were six papers that were condition-
ally accepted and shepherded by assigned PC members in a second round of
reviewing. All conditionally accepted papers were included in the program. The
paper submission, reviewing, discussion, and the preparation of proceedings were
facilitated by the Web-based system EasyChair.

The objective of the CANS conference is to support excellent research in cryp-
tology and network security and promote the interaction between researchers
working in these areas. The PC strived to broaden the program and include pa-
pers covering diverse areas such as encryption, cryptanalysis, malware analysis,
privacy and identification systems as well as various types of network protocol
design and analysis work. The program also featured three keynote speakers,
Sotiris Ioannidis from FORTH, Moni Naor from Weizmann Institute of Science,
and Dawn Song from the University of California, Berkeley, who gave lectures
on cutting-edge research on cryptology and network security. The titles and
abstracts of their talks can be found in this proceedings volume.

Finally, we would like to thank all the authors who submitted their research
work to the conference, the members of the Organizing Committee, who worked
very hard for the success and smooth operation of the event, and the members of
the Steering Committee and particularly Yvo Desmedt whose guidance during
various stages of the PC work was invaluable. Last but not least, we thank all
the attendees who participated and contributed to the stimulating discussions
after the talks and during the breaks and social events that took place as part
of the conference program.

October 2014 Dimitris Gritzalis
Aggelos Kiayias

Ioannis Askoxylakis
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Invited Talk 1: Primary-Secondary-Resolvers

Membership Proof Systems and their
Application to DNSSEC

Moni Naor

Weizmann Institute of Science
Rehovot, Israel

moni.naor@weizmann.ac.il

Abstract. We consider Primary-Secondary-Resolver Membership Proof
Systems (PSR for short) that enable a secondary to convince a resolver
whether or not a given a element is in a set defined by the primary
without revealing more information about the set.

The main motivation is studying the problem of zone enumeration in
DNSSEC. DNSSEC is designed to prevent network attackers from tam-
pering with domain name system (DNS) messages. The cryptographic
machinery used in DNSSEC, however, also creates a new vulnerability
- Zone Enumeration, where an adversary launches a small number of
online DNSSEC queries and then uses offline dictionary attacks to learn
which domain names are present or absent in a DNS zone.

We explain why current DNSSEC (NSEC3) suffers from the problem
of zone enumeration: we use cryptographic lower bounds to prove that
in a PSR system the secondary must perform non trivial online com-
putation and in particular under certain circumstances signatures. This
implies that the three design goals of DNSSEC — high performance, se-
curity against network attackers, and privacy against zone enumeration
— cannot be satisfied simultaneously.

We provide PSR constructions matching our lower bound and in par-
ticular suggest NSEC5, a protocol that solves the problem of DNSSEC
zone enumeration while remaining faithful to the operational realities of
DNSSEC. The scheme can be seen as a variant of NSEC3, where the
hash function is replaced with an RSA based hashing scheme. Other
constructions we have are based on the BonehLynnShacham signature
scheme, Verifiable Random and Unpredictable Functions and Hierarchi-
cal Identity Based Encryption.

The talk is based on the papers “NSEC5: Provably Preventing DNSSEC
Zone Enumeration” by Sharon Goldberg, Moni Naor, Dimitrios Papadopou-
los, Leonid Reyzin, Sachin Vasant and Asaf Ziv and “PSR Membership
Proof Systems” by Moni Naor and Asaf Ziv.



Invited Talk 2: Ask Us before you download:

Lessons from Analyzing 3 Million Android Apps

Dawn Song

University of California, Berkeley
Berekely, CA, USA

dawnsong@cs.berkeley.edu

Abstract. Android is the most popular mobile platform currently, with
over 1 billion devices activated. Millions of Android Apps have been
downloaded billions of times. What are the security and privacy issues
in these millions of apps? What lessons can we learn to ensure better
app security and mobile security? In this talk, I will share our insights
and lessons learned from analyzing over 3 million apps.



Invited Talk 3: Security applications of GPUs

Sotiris Ioannidis

Institute of Computer Science
Foundation for Research & Technology Hellas, Greece

sotiris@ics.forth.gr

Abstract. Modern graphics processors have been traditionally used for
gaming, but in the last few years they have been used more and more in
the area of high performance computing. In this talk we will explore al-
ternate uses of graphics processors, in the area of security. We will discuss
how a defender can use graphics hardware to bolster system defenses, and
how miscreants can exploit them to build better and stealthier malware.
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Bootstrappable Identity-Based Fully

Homomorphic Encryption

Michael Clear and Ciarán McGoldrick

School of Computer Science and Statistics,
Trinity College Dublin, Ireland

Abstract. It has been an open problem for a number of years to con-
struct an identity-based fully homomorphic encryption (IBFHE) scheme
(first mentioned by Naccache at CHES/CRYPTO 2010). At CRYPTO
2013, Gentry, Sahai and Waters largely settled the problem by present-
ing leveled IBFHE constructions based on the Learning With Errors
problem. However their constructions are not bootstrappable, and as a
result, are not “pure” IBFHE schemes. The major challenge with boot-
strapping in the identity-based setting is that it must be possible to non-
interactively derive from the public parameters an “encryption” of the
secret key for an arbitrary identity. All presently-known leveled IBFHE
schemes only allow bootstrapping if such an “encryption” of the secret
key is supplied out-of-band. In this work, we present a “pure” IBFHE
scheme from indistinguishability obfuscation, and extend the result to the
attribute-based setting. Our attribute-based scheme is the first to sup-
port homomorphic evaluation on ciphertexts with different attributes.
Finally, we characterize presently-known leveled IBFHE schemes with
a view to developing a “compiler” from a leveled IBFHE scheme to a
bootstrappable IBFHE scheme, and sufficient conditions are identified.

1 Introduction

Fully homomorphic encryption (FHE) is a cryptographic primitive that facil-
itates arbitrary computation on encrypted data. Since Gentry’s breakthrough
realization of FHE in 2009 [1], many improved variants have appeared in the
literature [2–6]. Leveled FHE is a relaxation that supports evaluation of circuits
of limited (multiplicative) depth. Such a limit L is specified in advance of gen-
erating the parameters of the scheme. The size of the parameters along with
the size of keys and ciphertexts are allowed to depend on L. In the public-key
setting, a leveled FHE scheme can be transformed into a “pure” FHE scheme
(i.e. a scheme supporting evaluation of circuits of unlimited depth) via Gentry’s
bootstrapping theorem [1].

In brief, the process of bootstrapping entails using the scheme to homomorphi-
cally evaluate its own decryption circuit. More precisely, ciphertexts in existing
FHE schemes contain a level of “noise”. As long as this “noise” remains below
a certain threshold, decryption can be performed correctly. The goal of boot-
strapping is to return the noise to a reduced level, so homomorphic operations

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 1–19, 2014.
c© Springer International Publishing Switzerland 2014



2 M. Clear and C. McGoldrick

can continue to be performed. This is achieved by publishing encryptions of the
secret key bits, and homomorphically evaluating the scheme’s decryption circuit
on a “noisy” ciphertext to produce a ciphertext with less noise.

Identity-Based Encryption (IBE) is centered around the notion that a user’s
public key can be efficiently derived from an identity string and system-wide
public parameters / master public key. The public parameters are chosen by
a trusted authority along with a secret trapdoor (master secret key), which is
used to extract secret keys for user identities. The first secure IBE schemes were
presented in 2001 by Boneh and Franklin [7] (based on bilinear pairings), and
Cocks [8] (based on the quadratic residuosity problem).

At his talk at CHES/Crypto 2010, Naccache [9] mentioned “identity-based
fully homomorphic encryption” as an open problem. At Crypto 2013, Gentry,
Sahai and Waters presented the first identity-based (leveled) fully homomorphic
encryption scheme [6], largely settling the problem raised by Naccache, which
had been further explored in [10, 11].

Achieving fully homomorphic encryption (FHE) in the identity-based setting
turned out to be quite a tricky problem, for a variety of reasons. Prior to [6],
there were two paradigms for constructing leveled FHE:

1. Gentry’s original paradigm based on ideals, which was introduced in [1]
(works which built on this include [2, 3]); and

2. Brakersi and Vaikuntanathan’s paradigm based on the learning with errors
(LWE) problem [4, 5] entailing techniques such as relinearization, modulus
switching and dimension reduction.

It appeared like there was limited potential for obtaining identity-based FHE
from the first paradigm because no secure IBE schemes had been constructed
with this structure; that is, roughly speaking no IBE scheme associated an iden-
tity with an ideal, and a secret key with a “short” generator for that ideal.

The second paradigm appeared more fruitful. Starting with the work of Gen-
try, Peikert and Vaikuntanathan (GPV) [12], constructions of IBE from LWE
had emerged [13–15]. But it was not straightforward to adapt Brakersi and
Vaikuntanathan’s (BV) ideas to the identity-based setting. The main reason for
this is that BV-type FHE relies on having “encryptions” of some secret key
information, termed an evaluation key. If a user directly supplies this informa-
tion to an evaluator out-of-band, then evaluation can be accomplished as in BV.
IBE schemes where the evaluation key can be generated by the key holder, but
cannot be derived non-interactively, have been termed “weak” [10, 11]. Due to
the difficulty of non-interactively deriving an “encryption” of secret key infor-
mation for a given identity (based on public information alone) meant that the
BV paradigm also seemed inhospitable to IBE.

Recently Gentry, Sahai and Waters (GSW) [6] developed a new paradigm
from LWE where the secret key is an approximate eigenvector of a cipher-
text. Their construction is both elegant and asymptotically faster than existing
FHE schemes. Furthermore, it does not rely on an evaluation key, which means
that it can be adapted to support IBE. In fact, a “compiler” was proposed
in [6] to transform an LWE-based IBE satisfying certain properties into an
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identity-based (leveled) fully homomorphic encryption (IBFHE) scheme, and
it was noted that several existing LWE-based IBE schemes satisfy the required
properties. The resulting IBFHE constructions are leveled i.e. they can evaluate
circuits of bounded multiplicative depth (polynomial in the security parameter,
and fixed prior to generation of the public parameters). However unlike their
public-key counterparts, these constructions are not bootstrappable, since boot-
strapping relies on “encryptions” of secret key information, akin to an evaluation
key. As such, to the best of our knowledge, there are no known “pure” IBFHE
schemes in the literature, since Gentry’s bootstrapping theorem from [1] is the
only known way of converting a leveled FHE scheme to a “pure” FHE scheme.

In this paper, we identify sufficient conditions for these leveled IBFHE con-
structions to be bootstrappable, and we construct the first “pure” IBFHE scheme,
which we believe finally resolves the question raised by Naccache [9].

1.1 Contributions

Construction of “Pure” IBFHE. we construct the first “pure” ibfhe scheme
using the technique of “punctured programming” [16], a powerful tool combin-
ing an indistinguishability obfuscator [17] with a puncturable pesudorandom
function (prf) [18–20],

A Compiler from leveled IBFHE to “Pure” IBFHE. We exploit indistin-
guishability obfuscation in constructing a compiler from a leveled IBFHE satisfy-
ing certain properties to a bootstrappable, and hence “pure”, IBFHE. Our main
idea is to include in the public parameters an obfuscation of a program (with the
master secret key embedded) so that the evaluator can non-interactively derive
an “evaluation key” for any identity. Although our compiler falls short of work-
ing with arbitrary leveled IBFHE schemes, we establish sufficient conditions for
a leveled IBFHE to satisfy in order for it to be bootstrappable. This leads us to
an interesting characterization of compatible schemes, which also encompasses
our positive result above.

Attribute-Based Fully Homomorphic Encryption (ABFHE) in the
Multi-Attribute Setting. Sahai and Waters [21] introduced a generalization
of IBE known as Attribute-Based Encryption (ABE). In a (key-policy)� ABE
scheme, a user Alice encrypts her message with a descriptive tag or attribute.
The trusted authority issues secret keys for access policies to users depending
on their credentials. Hence, if a user Bob is given a secret key for a policy f , he
can decrypt messages with attributes that satisfy f . More precisely, let ca be a
ciphertext that encrypts the message m with some attribute a. Then Bob can
recover the message m if and only if a satisfies his policy f ; that is, f(a) = 1
(note that policies can be viewed as predicates).

� There are other variants such as ciphertext-policy ABE [22], but we focus on key-
policy ABE here.



4 M. Clear and C. McGoldrick

Gentry, Sahai and Waters [6] constructed the first leveled Attribute-Based
Fully Homomorphic Encryption scheme (ABFHE). However, their scheme only
works in the single-attribute setting. In other words, homomorphic evaluation is
supported only for ciphertexts with the same attribute.

We present the first ABFHE that supports evaluation on ciphertexts with
different attributes. We formalize the notion of multi-attribute ABFHE, which
can be viewed as an attribute-based analog to the notion of multi-key FHE [23].

Example Scenario
To further illustrate the usefulness of multi-attribute ABFHE, we provide a
sketch of an application scenario. Consider a hospital H that avails of the com-
putational facilities of a cloud provider E. Data protection legislation requires
the hospital to encrypt all sensitive data stored on third party servers. The
hospital deploys attribute-based encryption to manage access to potentially sen-
sitive data. Therefore it manages a “trusted authority” that issues secret keys for
access policies to staff in accordance with their roles / credentials. Beyond de-
ploying standard attribute-based encryption, H elects to adopt multi-attribute
ABFHE because this allows computation to be performed on encrypted data
stored at a third party facility such as E.

Parties such as outside researchers, medical practitioners and internal staff
in H are able to encrypt sensitive data with appropriate attributes in order to
limit access to authorized staff. For example, a doctor in the maternity unit might
encrypt medical data with the attribute “MATERNITY” and a researcher in the
cardiology unit might encrypt her data with the attribute “CARDIOLOGY”.
Suppose both encrypted data sets are sent to the cloud provider E to carry
out computational processing on the data (while remaining encrypted). A multi-
attribute ABFHE allows E to perform the desired computation homomorphically
on both data sets irrespective of the fact that the data sets were encrypted with
different attributes.

Suppose a staff member at H has an access policy f defined by

f(x) � x = “MATERNITY” OR x = “CARDIOLOGY”.

Then this staff member is able to decrypt the result of the computation. This
matches our intuition because her policy permits her access to both the data
sets used in the computation. However, a member of staff whose access policy
permits access to either “MATERNITY” or “CARDIOLOGY” (but not both)
should not be able to decrypt the result.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter κ, writ-
ten negl(κ), if it is asymptotically bounded from above by the reciprocal of all
polynomials in κ.
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For a probability distribution D, we denote by x
$←− D the fact that x is

sampled according to D. We overload the notation for a set S i.e. y
$←− S denotes

that y is sampled uniformly from S. Let D0 and D1 be distributions. We denote
by D0 ≈

C
D1 and the D0 ≈

S
D1 the facts that D0 and D1 are computationally

indistinguishable and statistically indistinguishable respectively.
We use the notation [k] for an integer k to denote the set {1, . . . , k}.

2.2 Identity Based Encryption

An Identity Based Encryption (IBE) scheme is a tuple of probabilistic poly-
nomial time (PPT) algorithms (Setup,KeyGen,Encrypt,Decrypt) defined with
respect a message space M, an identity space I and a ciphertext space C as
follows:

• Setup(1κ):
On input (in unary) a security parameter κ, generate public parameters PP
and a master secret key MSK. Output (PP,MSK).

• KeyGen(MSK, id):
On input master secret key MSK and an identity id: derive and output a
secret key skid for identity id.

• Encrypt(PP, id, m):
On input public parameters PP, an identity id, and a message m ∈ M,
output a ciphertext c ∈ C that encrypts m under identity id.

• Decrypt(skid, c):
On input a secret key skid for identity id and a ciphertext c ∈ C, output m′

if c is a valid encryption under id; output a failure symbol ⊥ otherwise.

Indistinguishability under a chosen plaintext attack (IND-CPA) for IBE comes
in two flavors - selective (denoted by IND-sID-CPA) and full/adaptive (denoted
by IND-ID-CPA). In the former, the adversary has to choose an identity to attack
prior to receiving the public parameters, whereas in the latter, the adversary can
make arbitrary secret key queries before choosing a target identity. Formally, the
security notions are defined by an adversary A’s success in the following game(s).

• Set id∗ ← ⊥.
• (Selective-security only): A chooses an identity id∗ ← I to attack.
• The challenger generates (PP,MSK) ← Setup(1κ), and gives PP to A.
• Key Queries (1): A can make queries to an oracle O defined by

O(id) =

{
KeyGen(MSK, id) if id �= id∗

⊥ otherwise
.

• (Full-security only): A chooses its target identity id∗ ← I now.
• Challenge Phase: A chooses two messages m0, m1 ∈ M and sends them

to the challenger.
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• The challenger uniformly samples a bit b
$←− {0, 1}, and returns c∗ ←

Encrypt(PP, id∗, mb).
• Key Queries (2): A makes additional queries to O.
• Guess: A outputs a guess bit b′.

The adversary is said to win the above game if b = b′.

2.3 Identity-Based Fully Homomorphic Encryption (IBFHE)

We first define Leveled IBFHE. This definition is for the single-identity setting,
which we consider in this paper. This means that evaluation is supported only
for ciphertexts with the same identity.

Definition 1. A Leveled IBFHE scheme with message space M, identity space
I, a class of circuits C ⊆ M∗ → M and ciphertext space C is a tuple of PPT
algorithms (Setup,KeyGen,Encrypt,Decrypt,Eval) defined as follows:

• Setup(1κ, 1L):
On input (in unary) a security parameter κ, and a number of levels L (max-
imum circuit depth to support) generate public parameters PP and a master
secret key MSK. Output (PP,MSK).

• KeyGen, Encrypt and Decrypt are defined the same as IBE.
• Eval(PP, C, c1, . . . , c�): On input public parameters PP, a circuit C ∈ C and

ciphertexts c1, . . . , c� ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, the scheme is required to satisfy the following properties:

• Over all choices of (PP,MSK) ← Setup(1κ), id ∈ I, C : M� → M ∈ {C ∈
C : depth(C) ≤ L}, μ1, . . . , μ� ∈ M, ci ← Encrypt(PP, id, μi) for i ∈ [�], and
c′ ← Eval(PP, C, c1, . . . , c�):

• Correctness
Decrypt(sk, c′) = C(μ1, . . . , μ�) (2.1)

for any sk ← KeyGen(MSK, id).
• Compactness

|c′| = poly(κ) (2.2)

In a leveled fully homomorphic encryption scheme, the size of the public param-
eters along with the size of keys are allowed to depend on L.

There are different ways to define bootstrapping; the formulation here was
chosen to best fit with the results in this paper. We assume without loss of
generality that the class of circuits C supported by the scheme is built from a
set of binary operations e.g: {⊕, �} i.e. ⊕ : M×M → M and � : M×M → M.

Definition 2. A leveled IBFHE is said to be bootstrappable if there exists a pair
of PPT algorithms
(GenBootstrapKey,Bootstrap) defined as follows:
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• GenBootstrapKey(PP, id) : takes as input public parameters PP and an iden-
tity id, and outputs a bootstrapping key bkid.

• Bootstrap(PP, bkid, c) takes as input public parameters PP, a bootstrapping
key bkid for identity id, and a ciphertext c ∈ C, and outputs a ciphertext
c′ ∈ C.

Over all (PP,MSK): for every pair of ciphertexts c1, c2 ∈ C, all identities id and
all secret keys skid and for all ◦ ∈ {⊕, �}:

Decrypt(skid,Eval(◦,Bootstrap(PP, id, c1),Bootstrap(PP, id, c2))

= Decrypt(skid, c1) ◦ Decrypt(skid, c2).

Informally, what the above definition says is that at least one additional ho-
momorphic operation (either ⊕ or �) can be applied to a pair of “refreshed”
(i.e. bootstrapped) ciphertexts before bootstrapping is needed again. For a more
thorough discussion on bootstrapping, we refer the reader to [1].

2.4 Indistinguishability Obfuscation

Garg et al. [?] recently introduced a candidate construction of an indistinguisha-
bility obfuscator based on multi-linear maps. Many of our constructions in this
work depend on the notion of indistinguishability obfuscation. Here we give a
brief overview of its syntax and security definition.

Definition 3 (Indistinguishability Obfuscation (Based on Definition 7
from [24])). A uniform PPT machine iO is called an indistinguishability ob-
fuscator for every circuit class {Cκ} if the following two conditions are met:

• Correctness: For every κ ∈ N, for every C ∈ Cκ, for every x in the domain
of C, we have that

Pr[C′(x) = C(x) : C ′ ← iO(C)] = 1.

• Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ,
if C0(x) = C1(x) for all inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]| − |Pr[A(iO(C1)) = 1]| ≤ negl(κ).

2.5 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (PRF) is a constrained PRF (Key,Eval)
with an additional PPT algorithm Puncture. Let n(·) and m(·) be polynomials.
Our definition here is based on [24] (Definition 3.2). A PRF key K is generated
with the PPT algorithm Key which takes as input a security parameter κ. The
Eval algorithm is deterministic, and on input a key K and an input string x ∈
{0, 1}n(κ), outputs a string y ∈ {0, 1}m(κ).

A puncturable PRF allows one to obtain a “punctured” key K ′ ← Puncture
(K, S) with respect to a subset of input strings S ⊂ {0, 1}n(κ) with |S| = poly(κ).
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It is required that Eval(K, x) = Eval(K ′, x) ∀x ∈ {0, 1}n(κ)\S, and for any poly-
bounded adversary (A1, A2) with S ← A1(1

κ) ⊂ {0, 1}n(κ) and |S| = poly(κ),
any key K ← Key(1κ), any K ′ ← Puncture(K, S), and any x ∈ S, it holds that

Pr[A2(K
′, x,Eval(K, x)) = 1] − Pr[A2(K

′, x, u) = 1] ≤ negl(κ)

where u
$←− {0, 1}m(κ).

3 Construction of “Pure” IBFHE

We now construct a “pure” IBFHE from indistinguishability obfuscation. The
main idea is to use the technique of punctured programming, which involves us-
ing indistinguishability obfuscation together with a puncturable PRF. In our
case, we use the puncturable PRF for the derivation of a user’s public key
from her identity. Moreover, a unique key pair for a public-key encryption
(PKE) scheme can be associated with every identity. If the PKE scheme is
also “pure” fully-homomorphic, then we obtain a “pure” IBFHE scheme. Let
EFHE := (Gen,Encrypt,Decrypt,Eval) be a public-key FHE. We denote by PKFHE

and SKFHE its public-key and private-key space respectively. Consider the fol-
lowing function FMapPK : I → PKFHE that maps an identity id ∈ I to a public
key for EFHE:

Program FMapPK(id) :

1. Compute rid ← PRF.Eval(K, id).
2. Compute (pkid, skid) ← EFHE.Gen(1

κ; rid).
3. Output pkid

A formal description of a scheme Ê∗ that uses an obfuscation of FMapPK is as
follows.

• Ê∗.Setup(1κ): Compute K ← PRF.Key(1κ), compute obfuscation
H ← iO(FMapPK) of FMapPK with K embedded. Output (H, K) (note that H
constitutes the public parameters and K constitutes the master secret key).

• Ê∗.KeyGen(K, id): Compute rid ← PRF.Eval(K, id), compute (pkid, skid) ←
EFHE.Gen(1

κ; rid), and output skid.
• Ê∗.Encrypt(H, id, m): Compute pkid ← H(id) and output EFHE.Encrypt(pkid,

m).
• Ê∗.Decrypt(skid, c): Output EFHE.Decrypt(skid, c).
• Ê∗.Eval(H, C, c1, . . . , c�): Compute pkid ← H(id) and output EFHE.Eval(pkid,

C, c1, . . . , c�).

Lemma 1. Assuming indistinguishability obfuscation, a secure puncturable PRF
and an IND-CPA-secure public-key FHE scheme EFHE, the scheme Ê∗ is IND-sID-
CPA secure.

The proof of Lemma 1 is given in Appendix A.
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Theorem 1. Assuming indistinguishability obfuscation, one-way functions and
fully homomorphic encryption, there exists an IND-sID-CPA-secure “pure” IBFHE
scheme i.e. an identity-based scheme that can homomorphically evaluate all
circuits.

Proof. The construction Ê∗ is fully homomorphic if the underlying PKE scheme
EFHE is fully homomorphic. Lemma 1 shows that Ê∗ is IND-sID-CPA secure assum-
ing indistinguishability obfuscation, one-way functions and the IND-CPA security
of EFHE. The result follows. ��

Note that because our IBFHE relies on (public-key) “pure” FHE and because
all constructions of “pure” FHE that we know of require a circular security
assumption, it naturally follows that our IBFHE also requires a circular security
assumption. Furthermore, our IBFHE is only shown to be selectively secure.
While there is a generic transformation from a selectively-secure IBE to a fully-
secure IBE [25], this transformation incurs a degradation in security by a factor
of 2s where s = |I| is the size of the identity space. Obtaining a fully secure
“pure” IBFHE “directly” remains an open problem. These remarks also apply
to our attribute-based constructions, which are presented next.

3.1 Extension to Attribute Based Encryption

The scheme Ê∗ can be extended to an Attribute Based Encryption (ABE) scheme.
Recall that in a (key-policy) ABE scheme, an encryptor associates an attribute
a ∈ A with her message, whereas a decryptor can only successfully decrypt a
ciphertext with attribute a ∈ A if he holds a secret key for a policy (i.e. a pred-
icate) f : A → {0, 1} with f(a) = 1. We denote by F the class of supported
policies. Therefore, in an ABE scheme, the trusted authority issues secret keys
for policies instead of identities as in IBE. The fundamental difference is that
there is no longer a one-to-one correspondence between attributes and policies
(which is the case in IBE).

Beyond notationally replacing the set of identities I with a set of attributes A
in Ê∗, nothing changes for setup, encryption and evaluation. The primary change
takes place with respect to key generation. In KeyGen, given a punctured PRF
key K ′ and a policy f ∈ F, we return as the secret key for f an obfuscation
df ← iO(FMapSKf

), where FMapSKf
is defined as follows with respect to f :

Program FMapSKf
(a) :

1. If f(a) = 0, Output ⊥.
2. Compute ra ← PRF.Eval(K, a).
3. Compute (pka, ska) ← EFHE.Gen(1

κ; ra).
4. Output ska.

Decryption is straightforward: given a secret key for f , namely the obfuscation
df , a decryptor simply computes ska ← df (a) (she can store ska for future use
to avoid re-evaluating df ) where a is the attribute associated with ciphertext c,
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and then computes the plaintext m ← EFHE.Decrypt(ska, c). Hence, we obtain an
ABFHE for general-purpose policies f .

3.2 Multi-attribute ABFHE

One of the limitations of our ABFHE construction is that homomorphic evalu-
ation is restricted to the single-attribute setting. In other words, homomorphic
evaluation is only supported for ciphertexts with the same attribute. In fact, this
is the case for the only known leveled ABFHE in the literature [6].

A related notion to multi-attribute ABFHE was formalized in [26], although
we will use a simpler definition here. Recall our illustrated example from the
introduction, where a computation was performed on data encrypted under the
attribute “MATERNITY” along with data encrypted under the attribute “CAR-
DIOLOGY”. In this case, the number of distinct attributes was 2.

Let M be an upper bound on the number of distinct attributes supported
when homomorphically evaluating a circuit. In multi-attribute ABFHE, the main
syntactic change is that the size of an evaluated ciphertext is allowed to depend
on M . Also, M is a parameter that is specified in advance of generating the
public parameters.

To be more precise, consider ciphertexts c1, . . . , c� passed to the Eval algo-
rithm. Each of the � ciphertexts may have a different attribute. Thus there is
at most k ≤ � distinct attributes in this set. As long as k ≤ M , the scheme
can handle the evaluation of a circuit. Let c′ ← Eval(PP, C, c1, . . . , c�) be an
evaluated ciphertext, where PP is the public parameters and C is a circuit. It is
required that |c′| = poly(κ, M).

The main idea in [26] is to use multi-key FHE, as introduced by López-Alt,
Tromer and Vaikuntanathan [23], to construct a scheme with similar properties
to a multi-attribute ABFHE, but with a few limitations. One of these limitations
is that only a bounded number of ciphertexts N can be evaluated (where N is
fixed a priori), regardless of whether there are less than N distinct attributes.
So basically, the scheme from [26] places a limit on the number of independent
senders. In contrast, multi-attribute ABFHE permits an unbounded number
of independent senders provided the total number of distinct attributes is at
most M .

Multi-Attribute ABFHE can be viewed as an attribute-based analog to multi-
key FHE from [23]. In multi-key FHE, the size of evaluated ciphertexts depends
on an a priori fixed parameter M , which represents the number of independent
keys tolerated by the scheme. Hence data encrypted under at most M distinct
public keys pk1, . . . , pkM can be used together in an evaluation.

We exploit multi-key FHE to construct a multi-attribute ABFHE. Our scheme
is very similar to our (single-attribute) ABFHE scheme described above in Sec-
tion 3.1. The main change is that EFHE is replaced with a multi-key FHE scheme
EMKFHE (such as the NTRU-based scheme from [23]). The latter is instantiated
with parameter M supplied when generating the public parameters. Suppose
a collection of input ciphertexts c1, . . . , c� are associated with a set of k ≤ M
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distinct attributes a1, . . . , ak ∈ A. Hence, an evaluated ciphertext c′ is associated
with a set A = {a1, . . . , ak}.

Decryption depends on the intended semantics. One may wish that the de-
cryption process is collaborative i.e. there may not be a single f that satisfies
all k attributes, but users may share secret keys for a set of policies {f} that
“covers all” k attributes. Alternatively, and this is the approach taken in [26],
it may be desired that a user can only decrypt c′ if she has a secret key for a
policy f that satisfies all k attributes. We take the former approach here.

In our scheme, secret keys are the same as those in the single-attribute scheme
from the previous section; that is, a secret key for f is on obfuscation df ←
iO(FMapSKf

) of the program FMapSKf
. Let c′ be a ciphertext associated with k

distinct attributes a1, . . . , ak. To decrypt c′ with a secret key df for policy f ,
a decryptor does the following: if f(ai) = 1 for every i ∈ [k], compute skai ←
df (ai), and output m ← EMKFHE.Decrypt({ska1 , . . . , skak

}, c′); otherwise output
⊥. Suppose a user has secret keys for t different policies f1, . . . , ft. As long as
every attribute ai satisfies at least one of these policies, the user can obtain the
corresponding skai and decrypt the EMKFHE ciphertext c in the same manner as
above.

4 A Compiler to Transform a Leveled IBFHE
into a “Pure” IBFHE

So far we have obtained “pure” IBFHE, ABFHE and multi-attribute ABFHE
schemes. Although these constructions are impractical, they serve as possibility
results for these primitives. Next we turn our attention to obtaining a “compiler”
to transform an arbitrary leveled IBFHE into a bootstrappable IBFHE, and as a
consequence, a “pure” IBFHE. One of the primary reasons for this is efficiency.
One of the reasons our previous constructions are impractical is that they rely
on indistinguishability obfuscation for the frequently used process of deriving a
public-key for a user’s identity. With appropriate parameters, bootstrapping is
a process that might be carried out infrequently - or needed only in especially
rare occasions. Therefore, preserving the performance of existing leveled IBFHEs
for encryption, decryption and evaluation of “not-too-deep” circuits is desirable.
But having the capability to bootstrap, even if expensive, is useful in those
cases where evaluation of a deep circuit is needed. This is particularly true in
the identity-based setting because keys cannot be generated on a once-off basis
as they might be in many applications�� of public-key FHE, nor can they be
changed as frequently, since all users of the identity-based infrastructure are
affected.

Intuitively, the central idea to make a leveled IBFHE scheme bootstrappable is
as follows. Firstly, we include an obfuscation of a program in the public parame-
ters. This program “hides” the master secret key (trapdoor) of the scheme. Such

�� For many applications of public-key FHE, leveled FHE is usually adequate because
a new key pair can be generated on a once-off basis for a particular circuit, whose
depth is known, and a leveled FHE can be parameterized accordingly.
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a program can use the trapdoor to generate a secret key for an identity, and then
use that secret key to output a bootstrapping key that is derived from the secret
key. Hence, an evaluator can run the obfuscated program to non-interactively
accomplish bootstrapping.

However in order to prove selective security of such a scheme, we need to
remove all secret key information for the adversary’s target identity. The reason
for this is that our obfuscator is not a virtual black-box obfuscator i.e. we cannot
argue that the obfuscated program leaks no information about the trapdoor
to the adversary. Therefore, certain properties are needed of a leveled IBFHE
scheme E before it is admissible for our “compiler”.

4.1 Weakly-Bootstrappable IBFHE

Our starting point is leveled IBFHE schemes, such as those constructed via
the GSW compiler from [6], that support bootstrapping when given “encryp-
tions” of secret key bits. We refer to such “encryptions” of secret key bits as
a bootstrapping key. As mentioned in the introduction, there is no known way
(in current schemes) to non-interactively derive a bootstrapping key for a given
identity from the public parameters alone. The only way bootstrapping can be
achieved in such schemes is when a bootstrapping key is passed to the evaluator
out-of-band, which breaks an attractive property of IBE, namely that all keys
are derivable from the public parameters and a user’s identity alone.

We now give a formal definition for a leveled IBFHE that supports boot-
strapping when supplied with a bootstrapping key, and we say such a scheme
is weakly bootstrappable. The main difference between weakly bootstrappable and
bootstrappable (see Definition 2) is that the former requires a secret key for an
identity in order to generate a bootstrapping key, whereas the latter only needs
an identity. Note that the leveled IBFHEs from [6] are weakly bootstrappable.

Definition 4. A leveled IBFHE scheme E is said to be weakly bootstrappable
if there exists a pair of PPT algorithms (WGenBootstrapKey,Bootstrap) where
Bootstrap is defined as in Definition 2 and WGenBootstrapKey is defined as fol-
lows:

• WGenBootstrapKey(PP, skid) : takes as input public parameters PP and a
secret key skid for identity id, and outputs a bootstrapping key bkid.

Like a bootstrappable leveled IBFHE, a weakly-bootstrappable leveled IBFHE
requires a circular security assumption to be made to prove IND-sID-CPA secu-
rity. This is because an adversary is given bkid∗ for her target identity id∗, which
consists of encryptions of secret key bits.

4.2 Single-Point Trapdoor Puncturability

The next requirement we place on a leveled IBFHE to work with our compiler
is called single-point trapdoor puncturability. Intuitively, this means that there
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is a way to “puncture” the master secret key (aka trapdoor) T to yield a proper
subset T ′ ⊂ T that is missing information needed to derive a secret key for a
given identity id∗. Furthermore, for all other identities id �= id∗, the punctured
trapdoor contains enough information to efficiently derive the same secret key
for id as one would derive with the original trapdoor T , assuming we are given
the same randomness. A formal definition will help to elucidate this notion.

Definition 5. An IBE scheme E is single-point trapdoor-puncturable if there
exists PPT algorithms TrapPuncture and SimKeyGen with

• TrapPuncture(T, id∗): On input trapdoor T and identity id∗, output a “punc-
tured trapdoor” T ′ ⊂ T with respect to id∗.

• SimKeyGen(T ′, id): On input a “punctured trapdoor” T ′ with respect to some
identity id∗, and an identity id, output a secret key for id if id �= id∗, and ⊥
otherwise.

and these algorithms satisfy the following conditions for any (PP, T ) ←
E .Setup(1κ), id∗ ∈ I and T ′ ← TrapPuncture(T, id∗) ⊂ T :

E .KeyGen(T, id) = SimKeyGen(T ′, id) ∀id ∈ I \ {id∗}. (4.1)

4.3 Our Compiler

Let E be a leveled IBFHE scheme. The required properties that E must satisfy
for compatibility with our compiler are:

Property 1: (Weakly-Bootstrappable) E is weakly-bootstrappable i.e. there
exists a pair of PPT algorithms (WGenBootstrapKey,Bootstrap) satisfying
Definition 4.

Property 2: (Single-Point Trapdoor-Puncturable) E is single-point
trapdoor-puncturable i.e. there exists a pair of PPT algorithms
(TrapPuncture, SimKeyGen) satisfying Definition 5.

Property 3: (Indistinguishability given punctured trapdoor) For all
id ∈ I and m ∈ M: for every skid∗ ← E .KeyGen(T, id∗), and bkid∗ ←
WGenBootstrapKey(PP, skid∗), the distributions

{(PP, T ′
, bkid∗ , E.E.Encrypt(PP, id∗,m)} ≈

C
{(PP, T ′

, bkid∗ , E.E.Encrypt(PP, id∗,m′
)) : m

′ $←− M}

are computationally indistinguishable.

There are concrete schemes that almost meet all three properties. One such
example is the leveled IBFHE from Appendix A of [6]. This scheme admits al-
gorithms (TrapPuncture, SimKeyGen) that satisfy a relaxation of Equation 4.1 in
Definition 5, namely the requirement of equality is relaxed to statistical indis-
tinguishability; more precisely it holds that

E .KeyGen(T, id) ≈
S
SimKeyGen(T ′, id) ∀id ∈ I \ {id∗}

for any id ∈ I. However, we have been unable to find a leveled IBFHE scheme
(from the GSW compiler) that meets the stronger condition of Equation 4.1.
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Note that it is only necessary that SimKeyGen run in polynomial time - the
essential challenge is to derive some “canonical” secret key for an identity given
less trapdoor information (but the same randomness). A discussion of the fail-
ure of single-point trapdoor-punturability in current LWE-based leveled IBFHE
schemes can be found in the full version of this work [27].

Formal Description. We now proceed with a formal description of a bootstrap-
pable scheme Ê1 that is constructed using a scheme E satisfying the above prop-
erties. Let (WGenBootstrapKey,Bootstrap) be a pair of PPT algorithms meeting
Property 1.

Consider the following program FGenBK to generate a bootstrapping key:

Program FGenBK(id) :

1. Compute r1 ‖ r2 ← PRF.Eval(K, id).
2. Compute skid ← KeyGen(T, id; r1).
3. Output WGenBootstrapKey(PPE , skid; r2).

The scheme Ê1 includes an obfuscation of this program (with key K and trapdoor
T ) for the purpose of bootstrapping:

• Ê1.Setup(1κ): Set (PPE , T ) ← E .Setup(1κ). Compute K ← PRF.Key(1κ).
Compute β ← iO(FGenBK). Output (PP := (PPE , β),MSK := T ).

• Ê1.KeyGen = E .KeyGen; Ê1.Encrypt = E .Encrypt; Ê1.Decrypt = E .Decrypt.
• Ê1.Bootstrap(PP, id, c): Parse PP as (PPE , β). Set bkid ← β(id). Output
Bootstrap(PPE , bkid, c).

The main idea is that Ê1 includes an obfuscation β ← iO(FGenBK) in its pub-
lic parameters so an evaluator can derive a bootstrapping key bkid for a given
identity id and then invoke Bootstrap.

Theorem 2. Assuming indistinguishability obfuscation, one-way functions, Ê1

is IND-sID-CPA secure if E satisfies Property 1 - Property 3.

The theorem is proved in Appendix B.
Note that the construction Ê∗ from Section 3 satisfies Property 1 - Property 3.

We discuss this in more detail in the full version [27].

Alternative Approach. There is an alternative approach to constructing our
compiler which relies on a different requirement to single-point puncturability.
However, the bootstrappable schemes that are produced are less efficient. An
overview of this approach is given in the full version.
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A Proof of Lemma 1

Lemma 1. Assuming indistinguishability obfuscation, a secure puncturable PRF
and an IND-CPA-secure public-key FHE scheme EFHE, the scheme Ê∗ is IND-sID-
CPA secure.

Proof. We prove the lemma via a hybrid argument.
Game 0: This is the real system.
Game 1: This is the same as Game 0 except for the following changes. Sup-
pose the adversary chooses id∗ as the identity to attack. We compute K ′ ←
PRF.Puncture(K, id∗) and answer secret key requests using K ′ instead of K.

The adversary cannot detect any difference between the games since for all
id �= id∗, it holds that PRF.Eval(K, id) = PRF.Eval(k′, id).
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Game 2: This is the same as Game 1 except that we make the following changes
to FMapPK:

• Add before step 1: if id = id∗, then output pkid∗ (defined below). Else run
steps 1 - 3.

• Replace K with K ′.

where (pkid∗ , skid) ← EFHE.Gen(1
κ; rid∗) and rid∗ ← PRF.Eval(K, id∗).

Observe that the modified function is identical to FMapPK, and due to the
security of indistinguishability obfuscation, their respective obfuscations are thus
computationally indistinguishable.
Game 3: This is the same as Game 2 except that we change how pkid∗ is
computed. We do this indirectly by changing how rid∗ is computed instead. More

precisely, we choose a uniformly random string rid∗
$←− {0, 1}m where m is the

length of the pseudorandom outputs of PRF.Eval i.e. m = |PRF.Eval(K, id∗)|.
By the security of the puncturable PRF, we have that

{(K ′, id∗,PRF.Eval(K, id∗)} ≈
C

{(K ′, id∗, r) : r
$←− {0, 1}m)}.

It follows that Game 2 and Game 3 are computationally indistinguishable.
Game 4: This is the same as Game 3 except that we replace the challenge
ciphertext with an encryption of a random message. The adversary has a zero
advantage in this game.

If a PPT adversary A can distinguish between Game 3 and Game 4, then there
exists a PPT adversary B that can use A to attack the IND-sID-CPA security of
EFHE. When B receives the challenger’s public key pk, it sets pkid∗ ← pk where id∗

is the target identity chosen by A. Note that pkid∗ has the same distribution as
that from Game 3. Suppose m0 and m1 are the messages chosen by A. B samples

a random bit b, and also samples a random message m′ $←− M, and sends (mb, m
′)

to the IND-CPA challenger, who responds with a challenge ciphertext c∗. Then B
relays c∗ to A as the challenge ciphertext. Let b′ denote the random bit chosen
by the challenger. If b′ = 0, then the game is distributed identically to Game 3;
otherwise if b′ = 1 it is distributed identically to Game 4. It follows that any A
with a non-negligible advantage distinguishing between the games contradicts
the hypothesized IND-CPA security of EFHE. ��

B Proof of Theorem 2

Theorem 2. Assuming indistinguishability obfuscation, one-way functions, Ê1

is IND-sID-CPA secure if E satisfies Property 1 - Property 3.

Proof. We prove the theorem via a hybrid argument.
Game 0: This is the real system.
Game 1: This is the same as Game 0 except for the following changes. Sup-
pose the adversary chooses id∗ as the identity to attack. Compute r1 ‖ r2 ←
PRF.Eval(K, id∗) and compute bkid∗ ← WGenBootstrapKey(PPE , skid∗ ; r2) where
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skid∗ ← KeyGen(T, id∗; r1). Make the following changes to FGenBK, which we call
F ′
GenBK, and set β ← iO(F ′

GenBK)

1. if id = id∗, then output bkid∗ .
2. Else: Run Step 1 - 3 of FGenBK.

Observe that FGenBK is identical to F ′
GenBK since bkid∗ is computed above in

the same manner as FGenBK. The games are indistinguishable due to the security
of indistinguishability obfuscation.
Game 2: This is the same as Game 1 except with the following changes. Com-
pute a punctured PRF key K ′ ← PRF.Puncture(K, id∗) that is defined for all
strings except the input string id∗, where id∗ is the “target” identity chosen
by the adversary. Replace all occurrences of K in F ′

GenBK with K ′. We call the
modified function F ′′

GenBK.
Observe that F ′

GenBK = F ′′
GenBK because PRF.Eval(K, id) = PRF.Eval(k′, id) for

all id �= id∗. Therefore, the games are indistinguishable due to the security of
indistinguishability obfuscation.
Game 3: This is the same as Game 2 except that we change how bkid∗ is
computed. We do this indirectly by changing how r1 ‖ r2 ← PRF.Eval(K, id∗)
is computed instead. More precisely, we choose a uniformly random string r′1 ‖
r′2

$←− {0, 1}m where m is the length of the pseudorandom outputs of PRF.Eval
i.e. m = |PRF.Eval(K, id∗)|.

By the security of the puncturable PRF, we have that

{(K ′, id∗,PRF.Eval(K, id∗)} ≈
C

{(K ′, id∗, r) : r
$←− {0, 1}m)}.

It follows that Game 2 and Game 3 are computationally indistinguishable.
Game 4: This is the same as Game 3 except that we make the following changes.
We compute a punctured trapdoor T ′ ⊂ T using the TrapPuncture algorithm
(which exists by Property 2) i.e. T ′ ← TrapPuncture(T, id∗). We answer secret
key queries with SimKeyGen(T ′, ·). The games cannot be distinguished by an
adversary as a result of Equation 4.1 in Definition 5 (single-point trapdoor punc-
turability).
Game 5: The only change in this game is that we set β ← iO(F ′′′

GenBK) where
F ′′′
GenBK is the same as F ′′

GenBK except skid is computed as

skid ← SimKeyGen(T ′, id; r1).

As a result of Equation 4.1 in Definition 5 (single-point trapdoor punctura-
bility), we have that F ′′′

GenBK = F ′′
GenBK and hence their obfuscations are indistin-

guishable to a PPT adversary by the security of indistinguishability obfuscation.
Game 6: Note that Game 5 removes all references to T . In this game, we produce
the challenge ciphertext given to the adversary as an encryption of a uniformly

random message m′ $←− M. The adversary has a zero advantage in this game.
An efficient distinguisher D that can distinguish between Game 5 and Game

6 can be used to violate Property 3. Let b be the challenger’s random bit. Let
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m0 and m1 be the messages chosen by the adversary. Given a challenge instance
of Property 3 of the form (PP, T ′, bkid∗ , c∗) where id∗ is the adversary’s target
identity, and c∗ is an encryption of either mb or a uniformly random element
in M. Note that PP, T ′ and bkid∗ are distributed identically to both Game 5
and Game 6. Hence, we can construct an algorithm to perfectly simulate D’s
view, and give c∗ to D as the challenge ciphertext. If c∗ encrypts mb, Game
5 is perfectly simulated; otherwise if c∗ encrypts a random message, Game 6
is perfectly simulated. It follows that a non-negligible advantage distinguishing
between Game 5 and Game 6 implies a non-negligible advantage distinguishing
the LHS and RHS distributions of Property 3. ��
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Abstract. Proxy re-encryption (PRE) provides nice solutions to the delegation
of decryption rights. In proxy re-encryption, the delegator Alice generates re-
encryption keys for a semi-trusted proxy, with which the proxy can translate a
ciphertext intended for Alice into a ciphertext for the delegatee Bob of the same
plaintext. Existing PRE schemes have considered the security that the collusion
attacks among the proxy and the delegatees cannot expose the delegator’s secret
key. But almost all the schemes, as far as we know, failed to provide the security
that the proxy and the delegatees cannot collude to generate new re-encryption
keys from the delegator to any other user who has not been authorized by the
delegator. In this paper, we first define the notion of the unforgeability of re-
encryption keys to capture the above attacks. Then, we present a non-interactive
CPA secure PRE scheme, which is resistant to collusion attacks in forging re-
encryption keys. Both the size of the ciphertext and the re-encryption key are
constant. Finally, we extend the CPA construction to a CCA secure scheme.

1 Introduction

Proxy re-encryption was first proposed by Blaze, Bleumer and Strauss [3] in 1998,
which allows the proxy to transform a ciphertext for Alice into a ciphertext of the same
message for Bob. During the transformation, the proxy learns nothing about the under-
lying message. Proxy re-encryption has many applications, such as email forwarding
[6], distributed files systems [1] and revocation systems [22].

There are several desired properties for PRE schemes [1]:

1. Unidirectional, the proxy can only transform the ciphertext from Alice to Bob;
2. Non-interactive, Alice generates re-encryption keys using Bob’s public key; no

trusted third party or interaction is needed;
3. Proxy invisibility, both sender and recipient do not know whether the proxy is ac-

tive;
4. Key optimal, the size of Bob’s secret key is constant, no matter how many delega-

tions he accepts;
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5. Collusion-safe (or master secret secure), the proxy and a set of colluding delegatees
cannot recover Alice’s secret key;

6. Non-transferable, the proxy with a set of colluding delegatees cannot re-delegate
decryption rights.

Many PRE schemes [1][6][18][10][23] have achieved the first five properties. But, as
far as we know, there is no (non-interactive) schemes that achieved the sixth property. In
other words, if Bob and a malicious proxy collude, they might derive new re-encryption
keys without Alice’s authorization. Our work is making efforts to address this issue.

1.1 Related Work

Libert and Vergnaud [17] proposed traceable proxy re-encryption. A PRE scheme is
traceable if any set of proxies colluding with delegatees is unable to generate a new
re-encryption key that cannot be traced back to one of them. They also presented a
traceable PRE scheme of which the size of both the public/secret key and the cipher-
text depend on the number of the delegatees. Hayashi et al. [13] introduced the strong
unforgeability of re-encryption keys against collusion attacks (sUFReKey-CA) and pro-
posed PRE constructions aiming at achieving sUFReKey-CA under two variants of the
Diffie-Hellman inversion assumption. Unfortunately, Isshiki et al. [15] gave concrete
attacks to both the sUFReKey-CA property and the underlying assumptions of their
scheme. Moreover, the definition of sUFReKey-CA seems too strong to be satisfied. In
their definition, an adversary A colludes with proxies and delegatees, and obtains a set
of re-encryption keys and a set of secret keys. A is said to be successful if she outputs
a new “re-encryption key” in any form. In such a case, there exists an adversary who
simply outputs R†

∗→j = (R∗→β , skβ), where R∗→β denotes a re-encryption key and β
denotes a delegatee in collusion. A is a successful attacker since she could re-encrypt
the target user’s ciphertext to anyone as follows. A re-encrypts the ciphertext to dele-
gatee β and then decrypts it with skβ . Finally, A encrypts the message to anyone she
wants.

All the works mentioned above cannot prevent delegatees and proxies from pool-
ing their secrets to forge dummy re-encryption keys without the delegator’s consent.1

These special dummy re-encryption keys can be used to re-encrypt ciphertexts to a
dummy user whose secret key is known by everyone. To the best of our knowledge, all
the existing non-interactive PRE schemes are vulnerable to the above attack, including
certificate-based PRE [3][1][14][10][20][8][23], identity-based PRE [12][9][21][7] and
attribute-based PRE [19][16].

1.2 Our Contribution

First, we define unforgeability of re-encryption keys against collusion attack to capture
illegal transference of delegation. In our security model, an adversary adaptively cor-
rupts delegatees and delegations after she sees the target delegator, and is still infeasible

1 For an example, In [1], a proxy with rk = g
b
a and a delegatee with a secret exponent b are

able to derive a dummy re-encryption key g
1
a . This dummy re-encryption key could be used

to transform ciphertexts intended for the delegator to a dummy user with public key pk′ = g
that everyone has its “secret” exponent.
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to generate some “valid” re-encryption keys without the permission of the delegator. We
clarify that our security model only aims at capturing the illegal generations of new re-
encryption keys, which to some extent captures the most “direct” way of re-delegating
decryption rights. But due to the inherited feature of PRE schemes (i.e., delegation of
decryption rights), there might be other (trivial) ways of transferring decryption rights
that cannot be covered by our security model, which will be discussed later. Since un-
forgeability of re-encryption keys prevents the proxy colluding with delegatees to gen-
erate a new re-encryption key, we need not consider the traceablity proposed in [17].

Then, we present a CPA secure scheme with unforgeable re-encryption keys, which
is non-interactive and key optimal. Basically, we build upon the BBS+ signature [2],
and construct a PRE scheme with re-encryption keys performed as “a signature on the
delegatee’s public key”. Namely, the unforgeability against adaptively chosen message
attack of the underlying signature implies the unforgeability of re-encryption keys. The
security is proven under the q-SDH assumption in the standard model.

Finally, we give some extensions and discussions on our construction. The CPA con-
struction could be easily extended into a CCA secure PRE scheme. We present the CCA
security model and its proof in the full version. Then, we give detailed comparisons of
some representative unidirectional PRE schemes in efficiency and security. The results
demonstrate that our scheme achieves better security at a slight efficiency loss.

2 Proxy Re-encryption with Unforgeable Re-encryption Keys

In this section, we first introduce the definitions of PRE. Then, we give the CPA security
definition and the security definition for the unforgeability of re-encryption keys against
collusion attacks.

2.1 Proxy Re-encryption

We describe the definition of unidirectional PRE scheme in [17]. A single hop unidi-
rectional PRE scheme is a tuple of algorithms [1][18][17]:

– Setup(λ) : On input the security parameter λ, this algorithm outputs the public
parameter param which specifies the plaintext space M, the ciphertext space C
and the randomness space R.

– KeyGen(param) : This algorithm outputs the user’s public key and secret key
(pki, ski). We omit param in the following algorithms’ inputs.

– ReKeyGen(ski, pkj) : This algorithm outputs a re-encryption key rki→j .

– CheckKey(pki, pkj , rki→j) : This algorithm outputs b ∈ {0, 1}, indicating
whether the re-encryption key rki→j from user i to user j is valid.

– Enc1(pkj , m) : This algorithm takes pkj and m ∈ M as inputs, and outputs a first
level ciphertext C′

j , which cannot be re-encrypted.

– Enc2(pki, m) : This algorithm takes pki and m ∈ M as inputs, and outputs a
second level ciphertext Ci, which can be re-encrypted.
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– ReEnc(rki→j , Ci) : Ci is a ciphertext under pki. This algorithm outputs a first
level ciphertext C′

j or an error symbol ⊥.

– Dec1(skj , C
′
j) : This algorithm outputs a message m ∈ M or an error symbol ⊥.

– Dec2(ski, Ci) : This algorithm outputs a message m ∈ M or an error symbol ⊥.

Correctness. For any key pairs (pki, ski), (pkj , skj) ← KeyGen(param), any re-
encryption key rki→j satisfying CheckKey(pki, pkj , rki→j) = 1 and any message
m ∈ M, the following conditions hold:

Dec1(skj , Enc1(pkj , m)) = m; Dec2(ski, Enc2(pki, m)) = m;

CheckKey(pki, pkj , ReKeyGen(ski, pkj)) = 1;

Dec1(skj , ReEnc(rki→j , Enc2(pki, m))) = m.

Similar to [17], we resort to an additional algorithm CheckKey, to define the un-
forgeability of re-encryption keys. However, unlike in [17] where the CheckKey al-
gorithm needs to take the secret key of user i as input, the CheckKey algorithm here
only needs the public key pki of user i. Therefore, the validity check is public. An-
other difference is that the CheckKey algorithm should satisfy two correctness require-
ments: First, re-encryption keys output by ReKeyGen should pass the the CheckKey
algorithm; Second, any re-encryption key that passes the CheckKey algorithm should
re-encrypt ciphertexts correctly with respect to the 1st level decryption algorithm.

2.2 Security Model

We adopt the Knowledge of Secret Key model, where all users should prove knowl-
edge of their secret keys before registering public keys. We also assume a static model
where adversaries are not allowed to adaptively corrupt users. We provide the following
oracles to a CPA adversary:

– Uncorrupted Key generation Ohkg(i): Compute (pki, ski) ← KeyGen(i), return
pki.

– Corrupted Key generation Ockg(i): Compute (pki, ski) ← KeyGen(i), return
(ski, pki).

– Re-encryption key generation Orkg(pki, pkj): On input of (pki, pkj), where pki, pkj
were generated before by KeyGen, return a re-encryption key rki→j ←
ReKeyGen(ski, pkj).

To capture the CPA security notion for single-hop unidirectional PRE schemes, we
associate a CPA adversary A with the following template security experiment:

Experiment Exppre
Π,A(λ)

param ← Setup(λ);

(pk∗, m0, m1) ← AO′
(param);

d∗ ← {0, 1};
C∗ = Encδ(pk∗, md∗);

d′ ← AO′
(param, C∗);

If d′ = d∗ return 1;
else return 0.
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In the above experiment, O′ = {Ohkg, Ockg, Orkg} and δ ∈ {1, 2} specifies which
level ciphertext that A attacks. The advantage of A is defined as

Advpre
Π,A(λ) = | Pr[Exppre

Π,A(λ) = 1] − 1

2
|.

Definition 1 (CPA Security at the 2nd Level Ciphertext). For any PRE scheme Πs,
we instantiate the experiment with a CPA adversary A and δ = 2. It is required that
pk∗ is uncorrupted and |m0| = |m1|. If C∗ denotes the challenge ciphertext, A can
never make re-encryption key generation Orkg(pk∗, pkj), where pkj is corrupted.

Πs is said to be secure against chosen plaintext attacks at the 2nd level ciphertext if
for any polynomial time adversary A, the advantage function Advpre

Πs,A(λ) is negligible
in λ.

Definition 2 (CPA Security at the 1st Level Ciphertext). For any PRE scheme Πs,
we instantiate the experiment with a CPA adversary A and δ = 1. It is required that
pk∗ is uncorrupted and |m0| = |m1|.

Πs is said to be secure against chosen plaintext attacks at the 1st level ciphertext if
for any polynomial time adversary A, the advantage function Advpre

Πs,A (λ) is negligible
in λ.

Now, let’s consider the unforgeability of re-encryption keys against collusion attacks.
To formulate this security definition, we define the experiment:

Experiment Exppre,uf
Π,A (λ)

(param, pk∗) ← Setup(λ);
(rk∗→j′ , (skj′ , pkj′)) ← AOckg,Orkg(param, pk∗);
If CheckKey(pk∗, pkj′ , rk∗→j′ ) = 1 ∧
A has not queried rk∗→j′ ← Orkg(pk∗, pkj′ ) ∧
(skj′ , pkj′) is a valid key pair in key space

return 1;
else return 0.

In the above experiment, the adversary is given the secret keys of all the users except
the target user, and aims at forging a new re-encryption key from the target user to any
other users without the permission of the target user (i.e., the forged re-encryption key is
not output by the re-encryption key generation oracle). Since the CheckKey algorithm
only needs the public key pki of user i, the validity check is public.

The advantage of A is defined as

Advpre,uf
Π,A (λ) = | Pr[Exppre,uf

Π,A (λ) = 1]|.

Definition 3 (Unforgeability of Re-Encryption Keys). A unidirectional PRE scheme
Πs satisfies the property of unforgeability of re-encryption keys if for any polynomial
time adversary A, the advantage function Advpre,uf

Πs,A (λ) is negligible in λ.
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In the security experiment, the adversary is required to output the secret key of the
delegatee (either a corrupted party or a fake user generated by adversary). Note that
if someone receives only the re-encryption key from the adversary and he does not
hold the related secret key, he wouldn’t threaten the security of the delegator. That is
guaranteed by the CPA security of the 2nd level ciphertext.

For a strong security notion, in the unforgeability experiment we provide the adver-
sary with an Ockg oracle such that it can obtain all the secret keys of other users. In
addition, we allow the adversary to choose any public key pkj′ as its target with only
a restriction that it must know the associated secret key skj′ . We note that the require-
ment of outputting skj′ is reasonable, which can usually help to check the validity of
the public key pkj′ such as in our case.

We remark that our definition cannot cover all the cases of transference of decryption
rights inherited from PRE schemes. Consider the following attack. An adversary obtains
the re-encryption key rkA→B and the secret key skB from the challenger, and aims at
re-delegating decryption rights to Charlie with the public key pkC . She simply outputs
an obfuscation of the following program: 1) Decrypt the input ciphertext by first re-
encrypting it using rkA→B ; 2) Encrypt the resulting message by using Charlies’s public
key, and outputs the ciphertext.

3 A CPA Secure PRE Scheme

In our paper, we use λ to denote the security parameter. We recall the definitions of the
bilinear groups [4,5]. We write G = 〈g〉 to denote that g generates the group G. Let G
and GT be two cyclic groups of prime order p, a map e: G × G → GT is said to be a
bilinear map if it satisfies the following conditions:

1. for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. e is non-degenerate (i.e. if G = 〈g〉, then GT = 〈e(g, g)〉).
3. e is efficiently computable.

We denote the following PRE scheme by SI.

Setup(λ) : Let λ be the security parameter, G and GT be groups of prime order p, and
e: G × G → GT be a bilinear map. Randomly choose g1, g2, h1, h2 ← G and
compute L = e(h1, h2). The system parameters are param = (g1, g2, h1, h2, L).

KeyGen(param) : User i uniformly picks xi, yi, zi ← Z∗
p at random, set ski =

(xi, yi, zi) as the secret key and compute the public key pki = (Xi, Yi, Zi) =
(hxi

1 , hyi

1 , gzi1 ). Return key pair (ski, pki).

ReKeyGen(ski, pkj) : Given ski = (xi, yi, zi) and pkj = (Xj , Yj , Zj) as inputs, user
i picks s, t ← Zp at random, computes the re-encryption key rki→j = (W, s, t) =
((gs2h2Zj)

1/(xi+tyi), s, t). Return rki→j .

CheckKey(pki, pkj, rki→j) : Given pki = (Xi, Yi, Zi), pkj = (Xj , Yj , Zj) and
rki→j = (W, s, t) as inputs, return 1 if e(XiY

t
i , W ) = e(h1, g

s
2) · e(h1, h2) ·

e(h1, Zj) and 0 otherwise.
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Enc1(pkj , m) : Given a public key pkj and a message m ∈ GT , pick r ← Zp ran-
domly, compute c′0 = Lr · m, c′1 = gr1 , c

′
2 = Lr · e(hr

1, Zj) and return a 1st level
ciphertext C′

j = (c′0, c′1, c′2).

Enc2(pki, m) : Given a public key pki and a message m ∈ GT , pick r ← Zp ran-
domly, compute c0 = Lr · m, c1 = gr1, c2 = gr2, c3 = Xr

i , c4 = Y r
i and return a

2nd level ciphertext Ci = (c0, c1, c2, c3, c4).

ReEnc(rki→j , Ci) : Given a re-encryption key rki→j = (W, s, t) and a 2nd level ci-
phertext Ci = (c0, c1, c2, c3, c4), compute c′0 = c0, c

′
1 = c1, c

′
2 = e(c3c

t
4, W )/

e(c2, h
s
1) and return a 1st level ciphertext C′

j = (c′0, c′1, c′2).

Dec1(skj , C
′
j) : Given secret key skj = (xj , yj, zj) and a 1st level ciphertext C′

j ,
compute m = c′0 · e(h1, c

′
1
zj )/c′2 and return m.

Dec2(ski, Ci) : Given secret key ski = (xi, yi, zi) and a 2nd level ciphertext Ci, com-

pute m = c0/e(c
1/xi

3 , h2) and return m.

The correctness of SI is not complicated and we omit it here.

Remark 1. It is easy to check that our scheme is unidirectional, non-interactive, proxy-
invisible, key optimal and master secret secure. Here, we only give a brief discussion
for proxy invisible property.

Let C′
j = (c′0, c

′
1, c

′
2) denote a re-encrypted ciphertext of Ci = (c0, c1, c2, c3, c4) and

rki→j = (W, s, t) denote a re-encryption key that passes the CheckKey algorithm, we
obtain c′0 = c0 = Lr · m, c′1 = c1 = gr1, c

′
2 = e(c3c

t
4, W )/e(c2, h

s
1) = Lr · e(hr

1, Zj).
C′

j = (c′0, c
′
1, c

′
2) is just in the same distribution as the 1st level ciphertext output by the

Enc1 algorithm. Therefore, SI is proxy-invisible.

3.1 Security

Let G, GT and e be bilinear groups defined before, we first recall the hardness assump-
tions required in our scheme:

DBDH Assumption. For an algorithm B, define its advantage as

AdvDBDH
B (λ) = | Pr[B(g, ga, gb, gc, e(g, g)abc) = 1]−

Pr[B(g, ga, gb, gc, e(g, g)z) = 1]|
where a, b, c, z ← Zp are randomly chosen. We say that the DBDH (Decisional Bilin-
ear Diffie-Hellman) assumption holds, if for any probabilistic polynomial time (PPT)
algorithm B, its advantage AdvDBDH

B (λ) is negligible in λ.

q-SDH Assumption. For an algorithm B, define its advantage as

Advq-SDH
B (λ) = Pr[B(g, ga, ga

2

. . . , ga
q

) = (g
1

a+c , c)]

where a ∈ Z∗
p . We say that the q-SDH (q-Strong Diffie-Hellman) assumption holds, if

for any PPT algorithm B, its advantage Advq-SDH
B (λ) is negligible in λ.

Now, let’s consider the security of scheme SI.
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Theorem 1. Scheme SI is CPA secure at both the 2nd level and the 1st level ciphertexts
under the DBDH assumption.

The theorem is obtained by combining Lemma 1 and Lemma 2 as follows.

Lemma 1. Scheme SI is CPA secure at the 2nd level ciphertexts under the DBDH as-
sumption.

Proof. Let A be a CPA adversary attacking our scheme at level 2 with advantage ε.
We construct an algorithm B to solve the DBDH problem by interacting with A. The
algorithm B takes a random challenge (g, A = ga, B = gb, C = gc, T ) as input. B’s
goal is to decide whether T = e(g, g)abc or random. The algorithm B proceeds as
follows.

Setup(λ): Randomly choose δ ← Z∗
p, set g1 = g, g2 = gδ, h1 = ga, h2 = gb, L =

e(ga, gb). The system parameter is param = (g1, g2, h1, h2, L).

Phase 1 : B answers A’s queries as follows.

– Ohkg(i) : Randomly choose xi, yi, zi ← Z∗
p. If it is the k-th key generation query

(that B guesses it will be the target user), let i∗ = i, compute pki∗ = (Xi =
gxi∗ , Yi = gyi∗ , Zi = gzi∗ ), implicitly setting ski∗ = (xi∗

a , yi∗
a , zi∗). Otherwise,

compute pki = (Xi = hxi

1 , Yi = hyi

1 , Zi = h−1
2 g

zi
), implicitly setting ski =

(xi, yi, zi − b). Return pki.

– Ockg(i) : Randomly choose xi, yi, zi ← Z∗
p, and set ski = (xi, yi, zi). Compute

pki = (Xi = hxi
1 , Yi = hyi

1 , Zi = gzi1 ). Return (ski, pki).

– Orkg(pki, pkj) : Given (pki, pkj) where pki and pkj were generated by Ohkg or
Ockg, B distinguishes the following cases:

• If pki �= pki∗ , run ReKeyGen(ski, pkj), and return whatever it outputs;
• If pki = pki∗ , pkj is uncorrupted, pick s, t ← Zp, compute

W = (gs2h2Zj)
(
xi∗
a +t· yi∗a )−1

= (ga)
s·δ+zj

xi∗+tyi∗ . Return rki→j = (W, s, t).
• If pki = pki∗ , pkj is corrupted, return ⊥.

Challenge : When A decides to finish Phase 1, it outputs m0, m1 and a target public
key pk∗. If pki∗ �= pk∗, B outputs a random bit and aborts. Otherwise, B picks a
random coin b ∈ {0, 1}, and computes c0 = T · mb, c1 = gr1 = gc, c2 = gr2 = (gc)δ,
c3 = Xr

i = (gc)xi∗ , c4 = Y r
i = (gc)yi∗ . Suppose A makes Ohkg queries at most qhkg

times. Then, the probability that B guesses right i∗ in Challenge phase is at least 1/qhkg.

Phase 2 : B answers A’s queries as Phase 1.

Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′, B outputs 1, else outputs 0. The
advantage that B solves the DBDH problem is at least 1/qhkg · ε, which completes the
proof. �
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Lemma 2. Scheme SI is CPA secure at the 1st level ciphertexts under the DBDH as-
sumption.

Proof. Let A be a CPA adversary attacking our scheme at level 1 with advantage ε.
We construct an algorithm B to solve the DBDH problem by interacting with A. The
algorithm B takes a random challenge (g, A = ga, B = gb, C = gc, T ) as input. B’s
goal is to decide whether T = e(g, g)abc or random. The algorithm B proceeds as
follows.

Setup(λ): Randomly choose δ ← Z∗
p, set g1 = g, g2 = gδ, h1 = ga, h2 = gb, L =

e(ga, gb). The system parameter is param = (g1, g2, h1, h2, L).

Phase 1 : B answers A’s queries as follows.

– Ohkg(i) : Randomly choose xi, yi, zi ← Z∗
p. If it is the k-th key generation query

(that B guesses it will be the target user), let i∗ = i, compute pki∗ = (Xi =
hxi∗
1 , Yi = hyi∗

1 , Zi = h−1
2 g

zi∗ ), implicitly setting ski∗ = (xi∗ , yi∗ , zi∗ − b).
Otherwise, compute pki = (Xi = hxi

1 , Yi = hyi

1 , Zi = g1
zi), implicitly setting

ski = (xi, yi, zi). Return pki.

– Ockg(i) : Randomly choose xi, yi, zi ← Z∗
p, and set ski = (xi, yi, zi). Compute

pki = (Xi = hxi
1 , Yi = hyi

1 , Zi = gzi1 ). Return (ski, pki).

– Orkg(pki, pkj) : Given (pki, pkj) where pki and pkj were generated by Ohkg or
Ockg, B runs ReKeyGen (ski, pkj), and return whatever it outputs.

Challenge : When A decides to finish Phase 1, it outputs m0, m1 and a target public
key pk∗. If pki∗ �= pk∗, B outputs a random bit and aborts. Otherwise, B picks a random
coin b ∈ {0, 1}, and computes c′0 = T · mb, c

′
1 = gr1 = gc, c′2 = Lr · e(hr

1, Zi∗) =
e(ga, gc)zi∗ . Suppose A makes Ohkg queries at most qhkg times. Then, the probability
that B guesses right i∗ in Challenge phase is at least 1/qhkg.

Phase 2 : B answers A’s queries as Phase 1.

Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′, B outputs 1, else outputs 0. The
advantage that B solves the DBDH problem is at least 1/qhkg · ε, which completes the
proof. �

Theorem 2. The re-encryption keys of our scheme are unforgeable under the q-SDH
assumption.

Proof. Assume an adversary A succeeds in generating fake re-encryption keys. Sup-
pose it makes at most q re-encryption key queries from the target user to others. We
construct an algorithm B which solves the q-SDH problem.

Given an instance of the q-SDH problem (g, A1 = ga, A2 = ga
2

. . . , Aq = ga
q

), B
obtains a generator ĝ, ĝa and q − 1 SDH pairs {(Bl, el)}ql=1 such that e(Bl, ĝ

aĝel) =
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e(ĝ, ĝ) for each i by applying the technique of Boneh and Boyen in the proof of The-
orem 2 in [4].2 Any new pairs (Bl∗ , el∗) besides these pairs lead to the solution of the
original q-SDH problem. B invokes A as follows.

Setup(λ) : Randomly choose δ, γ, k, τ ← Z∗
p, set g1 = ĝ, g2 = ĝδ, h1 = ĝγ , h2 =

ĝak · ĝτ , L = e(h1, h2). The system parameter is param = (g1, g2, h1, h2, L). For the
target user, randomly choose xi∗ , yi∗ , zi∗ ← Z∗

p, compute pk∗ = pki∗ = (Xi∗ =
haxi∗
1 , Yi∗ = hyi∗

1 , Zi∗ = gzi∗1 ), implicitly setting ski∗ = (axi∗ , yi∗ , zi∗). Return
(param, pki∗).

Ockg(i) : Randomly choose xi, yi, zi ← Z∗
p, set ski = (xi, yi, zi). B compute pki =

(Xi = hxi
1 , Yi = hyi

1 , Zi = gzi1 ). Return (ski, pki).

Orkg(i) : Queried by a pair of keys (pki, pkj) where pki and pkj were generated by
Ockg or in the Setup Phase, B distinguishes the following cases:

– pki �= pki∗ : Run ReKeyGen(ski, pkj), and return whatever it outputs.

– pki = pki∗ : In all the q queries, B randomly chooses l∗-th query (l∗ ∈ {1, · · · , q}).
If it is the l-th query and l = l∗, choose tl ∈ Zp at random and set sl =

(tlyi∗k − (τ + zj)xi∗)/(δxi∗), then we obtain Wl = (gsl2 h2Zj)
1

axi∗+tyi∗ =

(ĝδ(tlyi∗k−(τ+zj)xi∗)/(δxi∗ )(ĝakĝτ )ĝzj )
1

axi∗+tyi∗ = ĝk/xi∗ . Otherwise, choose
a fresh q-SDH pair (Bl, el) and sl ← Zp randomly, set tl = xi∗el/yi∗ ,

then we obtain Wl = (gsl2 h2Zj)
1

axi∗+tlyi∗ = (ĝδsl(ĝakĝτ )ĝzj )
1

axi∗+tlyi∗ =

ĝ
k

xi∗ ĝ
−elk+δsl+τ+zj

xi∗ (a+el) = ĝ
k

xi∗ B

−elk+δsl+τ+zj
xi∗

l .
Return (Wl, sl, tl).

Finally, A outputs (skj′ , pkj′) and rki∗→j′ = (W ′, s′, t′) such that CheckKey (pki∗ ,
pkj′ , rki∗→j′ ) = 1, where (skj′ , pkj′) belongs to key space and A has not queried
rki∗→j′ ← Orkg (pki∗ , pkj′). Distinguish the following three cases:

1. t′ /∈ {tl}, denote v = δs′ + τ + zj′ and e′ = t′yi∗/xi∗ , then e′ /∈ {el}. Ob-

serve that W ′ = (gs2h2Zj′)
1

axi∗+t′yi∗ = (ĝδ·s
′
(ĝak · ĝτ )ĝzj′ )

1
axi∗+t′yi∗ = ĝ

k
xi∗ ·

ĝ
−ke′+v

xi∗ (a+e′) , B′ = (W ′ĝ−
k

xi∗ )
xi∗

−ke′+v . Using this new SDH pair (B′, e′), B can solve
the original q-SDH problem.

2. t′ = tl, W
′ = Wl for some l ∈ [1, q]. This happens with negligible probability

unless A solves the relative discrete logarithm between g1 and g2.

3. t′ = tl, W
′ �= Wl for some l ∈ [1, q]. With probability 1/q, l = l∗. We obtain

W ′/Wl = (gs
′−sl

2 ĝzj′−zj )
1

axi+t′yi = (ĝδ·(s
′−sl)+zj′−zj)

1
xia+t′yi . Since (s′, zj′) �=

2 In brief, B generates a generator ĝ = g
∏q−1

k=1
(a+ek) ∈ G for random e1, . . . , eq−1 ∈ Z∗

p. Then,

it prepares q − 1 pairs {(Bl, el)}q−1
l=1 where Bl = ĝ

1
a+el = g

∏q−1
k=1,k �=l

(a+ek).
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(sj , zj), we compute Bl∗ = (W ′/W )
1

(s′−s)δ+zj′ −zj , el∗ = t′yi∗/xi∗ . B can solve
the original q-SDH problem with this new SDH pair (Bl∗ , el∗).

If the success probability of A is ε, success probability of B is ε/q at least, which
completes the proof. �

4 Discussion and Comparison

In this section, first we extend our scheme to a CCA secure construction. Then, we
compare our constructions with several single-hop unidirectional PRE schemes in the
literature.

4.1 A CCA Secure Extension

We extend the SI scheme to a CCA secure construction using the technique of Zhang et
al. [23]. We denote the following PRE scheme by SII.

Setup(λ) : Let λ be the security parameter, G and GT be groups of prime order p, and
e: G × G → GT be a bilinear map. Randomly choose g1, g2, h1, h2 ← G and
compute L = e(h1, h2). Let H0 : {0, 1}l × G → Z∗

p be a collision-resistant hash
function, H1 : GT → {0, 1}l1 be a collision-resistant and one-way hash function
and H2 : GT → {0, 1}l2 be a universal hash function, where l = l1 + l2 and
l < log p such that the generalized leftover hash lemma holds [11] in respect to
negl(λ) for security. For simplicity, we let the message space M = {0, 1}l2 . The
system parameters are param = (g1, g2, h1, h2, L, H0, H1, H2).

KeyGen(param), ReKeyGen(ski, pkj) and CheckKey(pki, pkj , rki→j) : The same
as in SI.

Enc1(pkj , m) : Given a public key pkj and a message m, pick r, γ ← Zp randomly,
compute c′0 = H1(L

r)||H2(L
r)⊕m, c′1 = gr1, c

′
2 = Lr ·e(hr

1, Zj), c
′
3 = (uψvγw)r

where ψ = H0(c
′
0, c

′
1). Return a 1st level ciphertext C′

j = (γ, c′0, c′1, c′2, c
′
3).

Enc2(pki, m) : Given a public key pki and a message m, pick r, γ ← Zp randomly,
compute c0 = H1(L

r)||H2(L
r) ⊕ m, c1 = gr1 , c2 = gr2, c3 = Xr

i , c4 = Y r
i , c5 =

(uψvγw)r where ψ = H0(c0, c1). Return a 2nd level ciphertext Ci = (γ, c0, c1, c2,
c3, c4, c5).

ReEnc(rki→j , Ci) : Given a re-encryption key rki→j = (W, s, t) and a 2nd level ci-
phertext Ci = (γ, c0, c1, c2, c3, c4, c5), compute ψ = H0(c0, c1) and check the
following relations:

e(c1, g2) = e(g1, c2), e(c1, Xi) = e(g1, c3),

e(c1, Yi) = e(g1, c4), e(c1, u
ψvγw) = e(g1, c5). (1)

If the above relations hold, compute c′0 = c0, c
′
1 = c1, c

′
2 = e(c3c

t
4, W )/e(c2, hs

1),
c′3 = c5 and return a 1st level ciphertext C′

j = (γ, c′0, c
′
1, c

′
2, c

′
3). Otherwise, return

“⊥′′.
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Dec1(skj , C
′
j) : Given a secret key skj and a 1st level ciphertext C′

j , compute ψ =
H0(c0, c1) and check the following relation

e(c′1, u
ψvγw) = e(g1, c

′
3). (2)

If the above relation does not hold, return “⊥′′. Otherwise, parse c′0 = τ1||τ2,
compute K = c′2/e(h1, c

′
1
zj ). If τ1 = H1(K), return m = τ2 ⊕ H2(K), else

return “⊥′′.

Dec2(ski, Ci) : Given a secret key ski and a 2nd level ciphertext Ci, compute ψ =
H0(c0, c1) and check the relations (1). If the relations do not hold, return “⊥′′.
Otherwise, parse c0 = τ1||τ2 and compute K = e(c

1/xi

3 , h2). If τ1 = H1(K),
return m = τ2 ⊕ H2(K), else return “⊥′′.

We omit the correctness of SII due to the space limit.

Theorem 3. Assume H0 is a collision-resistant hash function, H1 is a collision-resistant
and one-way hash function and H2 is a universal hash function, scheme SII is CCA
secure at both the 2nd level and the 1st level ciphertexts under the DBDH assumption.

The CCA security definition and proof are in the full version.

4.2 Comparison

We compare our scheme with single-hop unidirectional PRE schemes in the literature.
These schemes are representative because of their better efficiency and security. In Table
1, tp, tm, t′e, te, ts and tv denote the time for computing a bilinear pairing, a multi-
exponentiation in group G, an exponentiation in group GT , an exponentiation in group
G, a signing algorithm and a verification algorithm, respectively. |svk|, |σ|, |Zp|, |G|
and |GT | denote the bit-length of a verification key, a signature for a ciphertext, an
integer in Zp, an element in G and an element in GT , respectively.

We use optimizations in our construction SII, which is also used in [23]. First, we
replace the relations check (1) with e(c1, g

r1
2 Xr2

i Y r3
i (uψvγw)r4 ) = e(g1, c

r1
2 cr23 cr34 cr45 )

by randomly choosing r1, r2, r3, r4 ∈ Z∗
p. Second, we pre-compute the value e(h1, Zj)

in algorithm Enc1 and hs
1 in ReEnc. Third, by the collision resistance of H1, we omit

checking the relation (2) and compute K =
c′2·e(c′3,gr1

1 )

e((uψvγw)r1h
zj
1 ,c′1)

by randomly choosing

r1 ∈ Z∗
p.

Table 1 and Table 2 are efficiency and security comparisons among the well-known
and relative schemes. Since both the schemes in [18] and [23] can be optimized by
using the same techniques as ours, we choose to compare these schemes after taking
similar optimizations.

In Table 1, as [18] and [23], the sizes of the public key and the ciphertexts of our
scheme SI and scheme SII are constant. The computational costs of decryption al-
gorithms of the scheme SII are as low as those in [23]. In Table 2, we see the con-
struction SII is the only scheme that has both CCA security and unforgeability of re-
encryption keys. The result indicates that our scheme SII achieves better security at a
slight efficiency loss.
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Table 1. Efficiency comparisons among unidirectional PRE schemes. O(n) = O(logN), where
N denotes the maximum number of delegatees for each delegator

Schemes
Public Key and Ciphertext Size Computational Cost

PK 1st level 2nd level
Enc

ReEnc
Dec

1st level 2nd level 1st level 2nd level
LV08a [18] |G| 4|G|+|GT |+

|svk|+ |σ|
2|G|+|GT |+
|svk|+ |σ|

tm + 4te +
ts

tm + 2te +
ts

2tp +
4te + tv

3tp +
3te + tv

3tp +
2te + tv

LV08b [17] (n+2)|G|+
|GT |

2|GT | |GT |+ (n+
2)|G|

2tp + te t′e + (n+
2)te

2tp t′e tp + te

ZZC14 [23] 2|G| |GT |+2|G|+
l + |Zp|

3|G|+l+|Zp| tp + tm +
t′e + 2te

tm + t′e +
2te

3tp + 2tm 2tp + tm +
te

3tp +
2tm + te

Scheme SI 3|G| 2|GT |+ |G| |GT |+ 4|G| t′e + te t′e + 4te 2tp + te tp + te tp + te
Scheme SII 3|G| |GT |+2|G|+

l + |Zp|
5|G|+l+|Zp| tp + tm +

t′e + 2te

tm + t′e +
4te

4tp +
2tm + te

2tp + tm +
te

3tp +
2tm + te

Table 2. Security comparisons among unidirectional schemes

Schemes Security of
Ciphertext

Security
Assumption

Unforgeability of
Re-Encryption Keys

Unforgeability of Re-Encryption
Keys Assumption

LV08a [18] RCCA 3-wDBDHI × -
LV08b [17] CPA Augmented DBDH × -
ZZC14[23] CCA DBDH × -
Scheme SI CPA DBDH

√
q-SDH

Scheme SII CCA DBDH
√

q-SDH

5 Conclusion

In this paper, the notion of unforgeable re-encryption keys against collusion attacks is
formulated. This definition could be seen as a definition of non-transferable property
to some extent. Then, a non-interactive CPA secure PRE scheme is presented and its
re-encryption keys are proven to be unforgeable against collusion attacks. The length of
the re-encryption key is constant. Finally, the CPA secure PRE scheme is extended to a
CCA secure one.

Acknowledgement. We would like to thank the anonymous CANS reviewers for their
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Abstract. Seurin (PKC 2014) proposed the 2-Φ/4-hiding assumption
which asserts the indistinguishability of Blum Numbers from pseudo
Blum Numbers. In this paper, we investigate the lossiness of 2k-th power
based on the 2k-Φ/4-hiding assumption, which is an extension of the 2-
Φ/4-hiding assumption. And we prove that 2k-th power function is a
lossy trapdoor permutation over Quadratic Residuosity group. This new
lossy trapdoor function has 2k-bits lossiness for k-bits exponent, while
the RSA lossy trapdoor function given by Kiltz et al. (Crypto 2010) has
k-bits lossiness for k-bits exponent under Φ-hiding assumption in lossy
mode. We modify the square function in Rabin-OAEP by 2k-th power
and show the instantiability of this Modified Rabin-OAEP by the tech-
nique of Kiltz et al. (Crypto 2010). The Modified Rabin-OAEP is more
efficient than the RSA-OAEP scheme for the same secure bits. With
the secure parameter being 80 bits and the modulus being 2048 bits,
Modified Rabin-OAEP can encrypt roughly 454 bits of message, while
RSA-OAEP can roughly encrypt 274 bits.

Keywords: Rabin, OAEP, Lossy trapdoor function, Φ-hiding.

1 Introduction

Lossy Trapdoor Function. Peikert and Waters [25] proposed the notion of
lossy trapdoor function (LTDF) in STOC 2008. LTDF implies cryptographic
primitives such as classic one-way trapdoor function [8], collision resistant hash
function [13], oblivious transfer protocol [14], chosen ciphertext secure public
key encryption scheme [25], deterministic public key encryption scheme [3], and
selective opening secure public key encryption scheme [17]. LTDFs can be con-
structed based on many assumptions, such as DDH[25], DCR[11], LWE[25], etc.
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Kiltz et al. [22] showed that the RSA function f : x → xe mod N is a
log e lossy trapdoor permutation (LTDP) under the Φ-hiding assumption. The
Φ-hiding assumption was firstly proposed by Cachin, Micali and Stadler [5].
Intuitively, this assumption states that given an RSA modulus N = pq, it is
hard to distinguish primes that divide φ(N) from those that do not, where φ is
the Euler function. Kiltz et al. [22] then showed that the lossiness of RSA implies
that the RSA-OAEP is indistinguishable against chosen plaintext attack (IND-
CPA) in the standard model by instantiating the hash with t-wise independent
hash. Subsequently, Kakvi and Kiltz [21] gave a tight proof of the security of
RSA-FDH using the lossiness of RSA function.

Recently, Seurin [26] extended the Φ-hiding assumption to the 2-Φ/4-hiding
assumption and showed that the Rabin function is lossy with two bits over the
Quadratic Residuosity subgroup and 1 bit over the integers 1 ≤ x ≤ (N − 1)/2
with Jacobi symbol 1. The 2-Φ/4-hiding assumption is the indistinguishability
of Blum Numbers, i.e. p, q ≡ 3 mod 4, from pseudo Blum Numbers i.e. p, q ≡ 1
mod 4.They also investigated the Rabin Williams signature and gave a tight
proof of the Rabin-FDH by following the steps of Kakvi and Kiltz [21].

On the other line, Joye and Libert [19] investigated the Extended pseudo
Blum Number and the Gap-2k-Res assumption. They proposed an efficient LTDF
based on the Gap-2k-Res assumption and DDH assumption over 2k-th Residu-
osity.

Optimal Asymmetric Encryption Padding. Bellare and Rogaway [2] in-
troduced Optimal asymmetric encryption padding (OAEP) as a replacement of
they widely used RSA PKCS #1 v1.5 [1]. And they proved that OAEP is secure
in the random oracle model. When implementing this scheme in practice, the
random oracle is replaced by a cryptographic hash function which is not ran-
dom. Canetti [6] et al. showed that there are schemes which are secure in the
random oracle model but not secure in the standard model. Two mostly studied
OAEP schemes are the RSA-OAEP and Rabin-OAEP. The first evidence that
RSA-OAEP could achieve a standard security notion in the standard model was
proposed by Kiltz et al. [22] stating that the RSA-OAEP is IND-CPA secure
under the Φ-hiding assumption. They proved that OAEP is a randomness ex-
tractor, that fools distinguishers with small range output. They also investigated
the Multi-prime Φ-hiding assumption in order to improve the lossiness of RSA
function. Some subsequent works [16][24] improved the security bound and in-
vestigated the regularity over subdomain. In terms of practice, the Rabin-OAEP
is a competent substitution of RSA-OAEP. But the security of Rabin-OAEP has
not been proven in the standard model under better-understood assumptions.
One research direction is using the technique of Kiltz et al. [22] with the combi-
nation of LTDF and OAEP. But this method requires that the LTDF has enough
lossiness. Seurin [26] noticed that one first step in this direction is to consider
the multi prime pseudo Blum Numbers, but in order to get m bits lossiness,
product of m/2 secure primes are required. This method reduces the security
level and the computational efficiency.
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The instantiability of Rabin-OAEP and concrete analysis of the security are
interesting questions. The problem is to find a well-understood assumption, con-
struct LTDF with enough lossiness and reduce the security to this assump-
tion in the standard model. As shown above, Seurin [26] investigated the 2-
Φ/4-hiding assumption and showed that Rabin fucntion loses 2 bits over QR
group. The 2-Φ/4-hiding assumption asserts that it is hard to tell if N =
(22s′ + 22 − 1)(22t′ + 22 − 1) or N = (22p′ + 1)(22q′ + 1) for some s′, t′, p′

and q′. Inspired by Joye and Libert’ scheme [19], a natural extension is the 2k-
Φ/4-hiding assumption and the 2k-th power function. The 2k-th power function
loses about 2k bits which is enough for the instantiability of OAEP given by
Kiltz et al.[22].

1.1 Our Contributions

In this paper, we consider the problem of reducing the security of Rabin-OAEP
to a well-understood assumption. Inspired by Joye and Libert’ scheme [19], we
first extend the 2-Φ/4-hiding assumption to 2k-Φ/4-hiding assumption. Then we
show that the 2k-th power is lossy over the Quadratic Residuosity (QR) group
under the 2k-Φ/4-hiding assumption. We also modify the classic Rabin-OAEP
with 2k-th power and prove that it is IND-CPA secure in the standard model
using the lossiness of 2k-th power. In the following, we explain our result with
more details.

Lossiness of 2k-th Power. In order to prove the lossiness of 2k-th power, we
firstly proposed the 2k-Φ/4-hiding assumption. Intuitively, this assumption is
that, given k, it is hard to distinguish RSA modulus N which is the product
of two primes with the least significant k + 1 bits being all 1 from those which
is the product of two primes with the least significant k + 1 bits being all 0
except the last one. The 2k-Φ/4-hiding assumption asserts that, given (N, k)
where N is product of two primes and k ≤ (14 − ε) log N , it is hard to tell if
N = (2k+1s′ + 2k+1 − 1)(2k+1t′ + 2k+1 − 1) or N = (2k+1p′ + 1)(2k+1q′ + 1) for
some s′, t′, p′ and q′. We call the numbers of the first kind the Extended Blum
Numbers and those of the second kind the Extended pseudo Blum Numbers. Note
that it is actually the 2-Φ/4-hiding assumption when k = 1. For an Extended
Blum Number N , the 2k-th power is a trapdoor permutation over QR group. For
Extended pseudo Blum Number N , the 2k-th power is a 22k-to-1 map over QR.
Thus we attain new efficient lossy trapdoor permutation. One problem of the
QR group is that it is not efficiently recognizable, but the Signed QR subgroup
can be recognized efficiently according to [10][26]. We also investigate the 2k-th
power over Signed QR group in the Appendix.

Modified Rabin-OAEP. We modify the Rabin-OAEP and call it Modified
Rabin-OAEP. The one way function after OAEP is the 2k+1-th power function.
The security proof of our Modified Rabin-OAEP follows by extending Kiltz et
al.’s proof of RSA-OAEP. Under the same security bits, the 2k-th power loses
about 2 times of the RSA function, and hence the Modified Rabin-OAEP can
encrypt longer message. Precisely, for 80 bits security, let n = 2048, then k = 432.
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Our Modified Rabin-OAEP can encrypt 454 bits at once while the RSA-OAEP
for the same security bits can encrypt 274 bits only. Assuming the regularity of
2k+1-th power on certain subdomains, message of 534 bits can be encrypted.

1.2 Outline

This paper is organized as follows. In Sect. 2, we introduce the notations and
recall the definition of lossy trapdoor function and OAEP. In Sect. 3, we present
2k-Φ/4-hiding assumption and analyse the lossiness of 2k-th power. In Sect. 4,
we present a construction of LTDF based on the 2k-Φ/4-hiding assumption and
compare it with previous LTDFs. In Sect. 5, we propose the Modified Rabin-
OAEP scheme and show the instantiability of this encryption scheme. In Sect.
6, we conclude this paper.

2 Preliminaries

2.1 Notations

If S is a set, we denote by |S| the cardinality of S, and denote by x ← S the
process of sampling x uniformly from S. If A is an algorithm, we denote by
z ← A(x, y, · · · ) the process of running A with input x, y, · · · and output z. For
an integer n, we denote by [n] the set of {0, 1, · · · , n−1}. A function is negligible
if for every c > 0 there exists a λc such that f(λ) < 1/λc for all λ > λc.

2.2 Definitions

Definition 1 (Lossy Trapdoor Functions). A collection of (m, l)-lossy trap-
door functions are 4-tuple of probabilistic polynomial time (PPT) algorithms
(Sinj , Sloss, Fltdf , F−1

ltdf ) such that:

1. Sample Lossy Function Sloss(1
n). Output a function index σ ∈ {0, 1}∗ with

implicitly understood domain D of size 2m.
2. Sample Injective Function Sinj(1

n). Output a pair (σ, τ) ∈ {0, 1}∗ × {0, 1}∗
where σ is a function index with domain D of size 2k and τ is a trapdoor.

3. Evaluation algorithm Fltdf . For every function index σ produced by either
Sloss or Sinj , the algorithm Fltdf (σ, ·) computes a function fσ : D → {0, 1}∗
with one of the two following properties:

– Lossy: If σ is produced by Sloss, then the image of fσ has size at most
2m−l.

– Injective: If σ is produced by Sinj, then the function fσ is injective.

4. Inversion algorithm F−1
ltdf . For every pair (σ, τ) produced by Sinj and every

x ∈ {0, 1}m, we have F−1
ltdf (τ, Fltdf (σ, x)) = x.

In the above algorithms, the two ensembles {σ, σ ← Sloss(1
n)} and {σ, (σ, τ) ←

Sinj(1
n)} are computationally indistinguishable.
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– We call this lossy trapdoor permutation (LTDP) if the functions in the
injective mode are permutations.

– We call the functions regular if the functions in the lossy mode are k to 1
for some k.

Definition 2 (t-wise independent hash function). Let H : K×D → R be a
hash function. We say that H is t-wise independent if for all distinct x1, · · · xt ∈
D and all y1, · · · yt ∈ R

Pr[H(k, x1) = y1 ∧ · · · ∧ H(k, xt) = yt : k ← K] =
1

|R|t .

In other words, H(k, x1), . . . , H(k, xt) are all uniformly and independently ran-
dom.

3 The 2k-Φ/4-Hiding Assumption and 2k-th Power

In this section, we first propose the 2k-Φ/4 assumption, then analyze the prop-
erties of 2k-th power function over QR.

3.1 The 2k-Φ/4-Hiding Assumption

Intuitively, the assumption is that, given secure parameters n and k < n/4 − 1
it is hard to distinguish RSA modulus N which are product of two primes with
the least significant k + 1 bits being all 1 from those which are product of two
primes with the least significant k + 1 bits being all 0 except the last one. In
both cases, the least significant k + 1 bits of the modulus N are all zero except
the last one. Formally, we define two distributions:

R = {N : N = pq with log p ≈ log q ≈ �n

2
� and p, q ≡ 2k+1 − 1 mod 2k+1},

L = {N : N = pq with log p ≈ log q ≈ �n

2
� and p, q ≡ 1 mod 2k+1}.

The 2k-Φ/4 assumption asserts that, for a probability polynomial time (PPT)
distinguisher D the following advantage is negligible:

AdvD(n) = Pr[D(R) = 1] − Pr[D(L) = 1].

In order to enhance the strength of this assumption, we add requirements
for p and q. In distribution R, we require that p = 2k+1s′ + 2k+1 − 1 (resp.
q = 2k+1t′+2k+1−1) for odd number s′ (resp. t′), we also require that 2ks′+2k−1
and 2kt′+2k−1 are primes (p, q are strong primes); in distribution L, we require
that p = 2k+1p′ + 1 (resp. q = 2k+1q′ + 1) for prime number p′ (resp. q′)

This assumption is an extension of the 2-Φ/4-hiding assumption [26] for k = 1.
We call the numbers in distribution R the Extended Blum Numbers and those
in L the Extended pseudo Blum Numbers. Joye and Libert [19] investigated the
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Extended pseudo Blum Number. In their paper, they generalized the Goldwasser-
Micali cryptosystem [15] to encrypt many bits at once by using the Extended
pseudo Blum Number. The underlying assumption is the Gap-2k-Res assumption
which is implied by the original QR assumption. There is an efficient algorithm
[20] for generating Extended pseudo Blum Numbers. We can modify this algo-
rithm to get an efficient algorithm for generating Extended Blum Numbers. The
distribution R and L can be chosen efficiently.

Analysis of the 2k-Φ/4-Hiding Assumption. It is easy to break the 2k-
Φ/4-hiding problem with the factorization of modulus N . However, it seems
that there is no known algorithm to break this problem without factoring the
modulus N . [27] and [28] investigated the RSA modulus with primes sharing
least significant bits. If given the modulus primes p and q sharing the least k +1
significant bits (denote it by l), at most 4 candidates l can be computed by
solving the equation x2 = N mod 2k+1. In our case, the equation is x2 = 1
mod 2k+1, and 1, 2k+1 − 1 are the two candidates of l. It is still difficult to
decide which distribution the modulus N belongs to. Joye and Libert [19] have
investigated the security parameters for the Extended pseudo Blum Numbers.
When k is too large, by Coppersmith’s method [7] with LLL algorithm [23], N
can be factored in time poly(n) with advantage O(Nε) if k = n/4 − εn − 1. We
have εn bits security here. We now consider Extended Blum Numbers. Pollard’s
p − 1 method dose not work. The powerful Coppersmith’s method bounds the
size of k to n/4 − εn − 1 for the Extended Blum Numbers too. So we end up
with the same upper bound:

k ≤ 1

4
n − εn − 1,

for εn bits security. For example, if n = 2048, we set ε = 0.04 (about 80 bits
security), k can be about 430.

3.2 2k-th Power over QR Group

Let N = pq be a product of two distinct n/2 bits primes. The group Z∗
N consists

of all elements of ZN that are invertible modulo N . Then Z∗
N has order φ(N) =

(p − 1)(q − 1). Denote QR the subgroup of Z∗
N of quadratic residues modulo

N . Note that QR has order φ(N)/4. We now consider the 2k-th power over the
subgroup QR.

Let N be an Extended Blum Number, then we have that the order of QR
is an odd number. In fact the Extended Blum Number is a special case of the
Blum Number. The Extended Blum Number has all the properties of the Blum
Numbers. The square map is a permutation over QR, thus the 2k-th power is a
permutation over QR.

We now consider the Extended pseudo Blum Number N = pq with p, q ≡ 1
mod 2k+1. We recall the definition of the m-th power residue symbol for a divisor
m of p − 1 presented in [19] and [31]. Here we consider the case for m = 2i for
1 ≤ i ≤ k + 1.
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Definition 3. Let p be an odd prime and p ≡ 1 mod 2k+1. For 1 ≤ i ≤ k + 1,
the symbol (

a

p

)
2i

:= a
p−1

2i mod p,

is the 2i-th power residue symbol modulo p, where a
p−1

2i mod p is in [−(p −
1)/2, (p − 1)/2].

Let a and b be two integers coprime to p,(
ab

p

)
2i

=

(
a

p

)
2i

(
b

p

)
2i

. (1)

Thus, we have (
a2

p

)
2i

=

[(
a

p

)
2i

]2
=

(
a

p

)
2i−1

. (2)

For any integer a and any Extended pseudo Blum Number N , we generalize the
Jacobi symbol as the product of the m-th power residue Legendre symbol( a

N

)
2i

=

(
a

p

)
2i

(
a

q

)
2i

. (3)

Lemma 1. Let N be the Extended pseudo Blum Number associated with k, then

the 2k-th power map g : x → x2k (x ∈ QR)is a 22k-to-1 map and the 2k+1-th

power map h : x → x2k (x ∈ Z∗
N ) is a 22(k+1)-to-1 map.

Proof. To prove this result, we investigate a sequence of subgroups and square
maps on them. Precisely, for 0 ≤ s ≤ k + 1, we consider the subgroups of Z∗

N

denoted by
Rs := {x2s |x ∈ Z∗

N},

and define the square map fi : y → y2 from Ri to Ri+1 for 0 ≤ i ≤ k. Note that
here R0 is Z∗

N itself. We also define here and in the followings that

Js
(+,+) := {x|x ∈ Rs,

(
x

p

)
2s+1

= 1,

(
x

q

)
2s+1

= 1},

Js
(−,−) := {x|x ∈ Rs,

(
x

p

)
2s+1

= −1,

(
x

q

)
2s+1

= −1},

Js
(+,−) := {x|x ∈ Rs,

(
x

p

)
2s+1

= 1,

(
x

q

)
2s+1

= −1},

Js
(−,+) := {x|x ∈ Rs,

(
x

p

)
2s+1

= −1,

(
x

q

)
2s+1

= 1}.

Note that the above sets divide Rs into four parts of the same size. And Js
(+,+)

is actually the subgroup Rs+1.
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We need only to prove that the map fi is a 4-to-1 map. The map g = fk ◦
fk−2 · · · ◦ f1 is 22k-to-1 naturally. For any element a ∈ Rs, by equation 2,(

fi(a)

p

)
2i+2

=

(
a

p

)
2i+1

≡ ±1 mod p.

It also holds for modulus q. The four preimages of fi(a) fall into one of J i
±1,±1.

We have that fi is a 4-to-1 map. Then we have that 2k-th power over QR is a
22k-to-1 map and 2k+1-th power over Z∗

N is a 22(k+1)-to-1 map. ��

We illustrate the result of Lemma 1 and Lemma 3 in Figure 1.

J+
N

= �� R0
+

|·2| �� R1
+

|·2| �� · · ·
|·2| �� Rk−1

+

|·2| �� Rk
+

|·2| �� Rk+1
+

JN
= �� J0

+
·2 ��

|·|

��

J1
+

·2 ��

|·|

��

· · · ·2 ��

|·|

��

Jk−1
+

·2 ��

|·|

��

Jk
+

·2 ��

|·|

��

Jk+1
+

|·|

��

Z∗
N

= �� R0 ·2 ��

��

R1 ·2 ��

��

· · · ·2 ��

��

Rk−1 ·2 ��

��

Rk ·2 ��

��

Rk+1

��

Here, Rs is the subgroup of Z∗
N with 2s-th residuocity. Js

+ is the subset of Rs with
Legendre symbal 1. J+

N is the subset of Js
+ greater than 0. ·2 represents the square map.

| · | represents the absolute value and | ·2 | is the square map over signed group. R0 is
actually Z∗

N and J0
+ is J+

N . It satisfies that R0 ⊃ R1 · · · ⊃ Rk+1, J0
+ ⊃ J1

+ · · · ⊃ Jk+1
+

and R0
+ ⊃ R1

+ · · · ⊃ Rk+1
+ . The 2k-th power over QR is the combination of square maps

from R1 to Rk+1. The 2k-th power over Signed QR is the combination of square maps
from R0

+ to Rk
+. See Appendix for more information about Signed QR group.

Fig. 1. Square map step by step for Extended Blum Number N with associated k

4 LTDP Based on the 2k-Φ/4-Hiding Assumption

We now give a constructions of 22k-to-1 lossy trapdoor permutation over the QR
group based on the 2k-Φ/4-hiding assumption. The modulus N is an Extended
Blum Number in the injective mode and is an Extended pseudo Blum Number
in the lossy mode.

4.1 LTDP over QR

We define LTDPQR = (Sinj , Sloss, fQR, f−1
QR) as follows:

1. Sample Injective Function Sinj. On input 1n, Sinj chooses a proper k and
random N in distribution R and the function index is σ = {N, k}. The
trapdoor is t = (p, q).
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2. Sample Lossy Function Sloss. On input 1n, Sloss chooses a proper k and
random N in distribution L and the function index is σ = {N, k}.

3. Evaluation algorithm fQR. Given a function index σ = {N, k} and input

x ∈ QR the algorithm outputs z = x2k mod N .
4. Inversion algorithm f−1

QR. Given z ∈ QR compute the 2k root over Signed
QR with the trapdoor p, q.

Remark 1. For Extended Blum Numbers, the order of the QR group is an odd
number, we can compute the square root over QR k times to get the root in the

injective mode. The trapdoor can be set as the inverse of 2k mod φ(N)
4 . Then,

given z ∈ QR, the 2k root is in fact zt mod N .

Theorem 1. If the 2k-Φ/4-hiding assumption holds, then LTDPQR is an 22k-
to-1 lossy trapdoor permutation.

Proof. The 2k-Φ/4-hiding assumption guarantees the indistinguishability of the
lossy and injective mode. The trapdoor permutation property is a straight for-
ward result. By Lemma 1, any element in fQR has exactly 22k preimages when
N is an Extended pseudo Blum Number. ��

4.2 Comparison

In Table 1, we compare the above two lossy trapdoor permutations with previous
LTDFs. The second column lists the basic number-theoretic assumptions used
for guaranteeing the security. The third and fourth columns show the size of
an input message in bits and that of the function index respectively. The fifth
column lists the size of lossiness. The sixth column shows the computational
complexity of the corresponding function. According to [29], the complexity of
multiplication is O(n) here. The last column is the computational complexity
for one bit lossiness.

5 Modified Rabin-OAEP

LTDF over Z∗
N can be used to instantiate the Rabin-OAEP. In [22], Kiltz et

al. gave a generic result of building IND-CPA secure padding based encryption
by combining a lossy TDP and a fooling extractor, and they proved that the
OAEP is an adaptive fooling extractor with well chosen parameters. Then, they
showed the instantitation of RSA-OAEP based on the Φ-hiding assumption.
By the technique of Kiltz et al., we prove that the Rabin-OAEP with a slight
modification over Z∗

N is IND-CPA in the standard model based on the 2k-Φ/4-
hiding assumption.

We recall a theorem in [22] here. For more details of padding based encryption
please refer to [22].

Theorem 2 (Theorem 1 in [22]). Let F be a lossy trapdoor permutation with
residual leakage s and the padding transform (π, π̂) is a (s, ε) adaptive fooling
extractor, The padding based encryption by combination of F and (π, π̂) is IND-
CPA secure.
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Table 1. Comparison with existing LTDFs

Assumption Input size Index size Lossiness Complexity Comp/Loss

[25] DDH n n2 log p n− log p n2 log p n log p
[11] d-linear n n2 log p n− d log p n2 log p n log p

[25] LWE n n(d+ w) log q cn n(d +w) log q (d+w) log q
c

[11] DCR 2 logN 2 logN logN 4 log2 N 4 logN
[11] QR logN logN 1 3 logN 3 logN

[19] DDH& QR n (n
k
)2 logN n− logN (n

2

k
) logN n2 logN

n−logN

[30] DCR& QR logN + k 2 logN 3k 2 logN(logN + k) 2 logN(log N+k)
3k

[22] Φ-hiding logN logN log e log e logN logN
[26] 2-Φ/4-hiding logN logN 2 logN (logN)/2

4.1 2k-Φ/4-hiding logN logN 2k k logN (logN)/2

In the first, second and sixth rows, n is the number of rows used in the matrix. In the
first and second rows, p is the order of the underlying group. In the third row, 0 < c < 1,
n is the rows used in the matrix, w = n

log p
with p2 ≥ q and d < w. In this table, k and

e are less than 1
4
logN − κ where κ is the security parameter.

We recall the description of OAEP for Rabin given by Boneh [4] with keyed
hash function and give a full version of the Modified Rabin-OAEP encryption
scheme. The OAEP for Rabin is different with the OAEP for RSA since that
x2 mod N is not a permutation on Z∗

N . Let N be an n + 1 bits Extended
Blum Number, μ, s0, ρ be security parameters such that n = μ + s0 + ρ. Let
G : KG ×{0, 1}ρ → {0, 1}μ+s0 and H : KH ×{0, 1}μ+s0 → {0, 1}ρ be keyed hash
functions.
OAEP for Rabin
The associated padding transform is (πKG,KH , π̂KG,KH ) defined by

Algorithm πKG,KH (m) Algorithm π̂KG,KH (x)
Step1 : r ← {0, 1}ρ Step1 : s ‖ t ← x
Step2 : s ← m ‖ 0s0 ⊕ GKG(r) Step2 : r ← t ⊕ HKH (s)
Step3 : t ← r ⊕ HKH (s) Step3 : m ‖ v ← s ⊕ GKG(r)
Step4 : x ← s ‖ t Step4 : If v = 0s0 return m
Step5 : Return x else return⊥.

Remark 2. Kiltz et al. [22] noted that their result also applies to Simplified
OAEP given by Boneh[4] since hash function HKH in OAEP can be anything in
their analysis. We remove the hash function HKH and use the Simplified OAEP
for Rabin in the following. This does not affect the secure proof and parameter
bound.

The Modified Rabin-OAEP

KeyGen: On input a security parameters n, choose a k and n+1 bits Extended
Blum Number N = pq associated with k. Choose a random t-wise indepen-
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dent hash function GKG and a hash function HKH . Compute the inversion

of 2k mod φ(N)
4 and denote it as d. Let A ≡ 1 mod p and A ≡ 0 mod q,

and B ≡ 0 mod p and B ≡ 1 mod q, set

pk = (N, k, GKG , HKH ), sk = (p, q, d, A, B).

Encryption: On input a massage m ∈ {0, 1}μ,
Step 1: Pick a random r ∈ {0, 1}ρ and compute πKG,KH (m).

Step 2: Set the ciphertext as c = y2k+1

mod N .
Decryption: On input a ciphertext c,

Step 1: Compute z = cd mod N .

Step 2: Compute zp = z
p+1
4 mod p and zq = z

q+1
4 mod q.

Step 3: Set y1 = Azp + Bzq and y2 = Azp − Bzq. Four square roots of z
mod N is ±y1, ±y2. Two of them are less than N/2 and denote them by
y1, y2.
Step 4: Compute π̂KG,KH (y1) and π̂KG,KH (y2). If one of them outputs a
message m and the other outputs ⊥, then return m.

Remark 3. Note that in Step 4, if both v = 0s0 for y1, y2, the decryption can not
choose between them. Boneh [4] showed that this happens with low probability,
namely 2s0 and s0 is typically chosen to be greater than 128.

Theorem 3. If GKG is a t-wise independent hash function and the 2k-Φ/4-
hiding assumption holds, then the Modified Rabin-OAEP is IND-CPA secure

1. with advantage ε = 2−u for u = t
3t+2 (ρ − s − log t) − 2(μ+s0+s)

3t+2 − 1.

2. with advantage ε = 2−u for u = t
2t+2 (ρ − s − log t) − μ+s0+s+2

t+1 − 1, if it is
regular on OAEP domain.

This is almost a direct result of the combination of Theorem 1 and Theorem
2 in [22]. We omit the proof here and just point out the different part. The
OAEP for Rabin is different with the OAEP for RSA since that x2 mod N is
not a permutation on Z∗

N . The least significant s0 bits of message is padded by
zero in order to choose the right plaintext from four square roots. There is 2μ

possible (μ + s0, ρ)-sources X = (m‖0s0 , R) here while there is 2μ+s0 possible
(μ + s0, ρ)-sources in RSA-OAEP. This just affects the security bound of ε.

5.1 Efficiency of the Modified Rabin-OAEP

Regularity. We have analyzed the regularity of 2k+1-th power over Z∗
N for Ex-

tended pseudo Blum Number. Unfortunately, in practice, the domain of Rabin-
OAEP is {0, 1}μ+s0+ρ (as integer) where μ + s0 + ρ = n − 16 (i.e. the most
significant two bytes of the output are zeroed out). The 2k+1-th power may not
be regular over the subdomain {0, 1, · · · , 2μ+s0+ρ − 1}. Lewko et al. [24] proved
the regularity of RSA function over this subdomain. We assume that the 2k+1-th
power over this subdomain is regular and leave it as an open problem.
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Concrete Parameters. If we do not assume the regularity of 2k-th power over
subdomain, from part 1 in Theorem 3, for u = 80 bits of security, messages of
roughly μ = n − s − s0 − 3 · 80 bits can be encrypted for sufficiently large t. For
n = 2048, then k = 432, s ≈ 1184, and the lossiness is 864 bits. Set s0 = 130, 454
bits message (t ≈ 2000) can be encrypted at once. Kiltz et al. [22] instantiated
the RSA-OAEP under the Φ-hiding assumption. 160 bits can be encrypted at
once in the RSA-OAEP (t ≈ 400). Under the investigation of Lewko et al. [24]
that the RSA function is regular over subdomain, 274 bits can be encrypted at
once (t ≈ 2000).

If we assume the regularity of 2k-th power over subdomain, from part 2 in
Theorem 3, for u = 80 bits of security, messages of roughly μ = n−s−s0−2 ·80
bits can be encrypted For n = 2048, then k = 432, 534 bits message (t ≈ 2000)
can be encrypted at once. But this conjecture is not proved.

In Table 2, we compare the efficiency of the Modified Rabin-OAEP above
with RSA-OAEP. The second column lists the basic number-theoretic assump-
tions used for guaranteeing the security. The following columns show the size of
modulus, k or length of e, length of lossiness and encrypted message in bits, re-
spectively. The first row is the RSA-OAEP. The second row is the Rabin-OAEP
without the regular assumption (t ≈ 2000). The last row is the Rabin-OAEP
with the regular assumption (t ≈ 2000).

Table 2. Comparison with RSA-OAEP

Scheme Assumption �logN� k or log e Lossiness Message

RSA-OAEP [22][24] Φ-hiding 2048 432 432 274

Rabin-OAEP 2k-Φ/4-hiding 2048 432 864 454

Rabin-OAEP 2k-Φ/4-hiding, Regular 2048 432 864 534

6 Conclusion

In this paper, we investigate the lossiness of 2k-th power based on the 2k-
Φ/4-hiding assumption, which is an extension of the 2-Φ/4-hiding assumption.
And we prove that 2k-th power function is a lossy trapdoor permutation over
Quadratic Residuosity group. We instantiate Modified Rabin-OAEP by the tech-
nique of Kiltz et al.. Our Modified Rabin-OAEP is more efficient than the RSA-
OAEP scheme for the same secure bits.
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Appendix: Signed QR Group

In this appendix, we investigate the 2k-th power over Signed QR group, and
propose another version of Rabin-OAEP. This version of OAEP is not used in
practice, but this is one solution of constructing OAEP-like CPA secure encryp-
tion.

2k-th Power over Signed QR Group

We first recall the definition of Signed QR group and the group operation. Let
N be an integer, we represent Z∗

N in [−(N −1)/2, (N −1)/2]. For x ∈ Z∗
N , define

|x| as the absolute value of x. we denote JN the subgroup of Z∗
N with Jacobi

symbol 1, and QR the group of quadratic residue. The signed quadratic residues
is defined as the group QR+

N = {|x| : x ∈ QRN}, and J+
N := {|x| : x ∈ JN}. For

elements g, h and the integer x, the group operation is defined by

g ◦ h = |g · h mod N |, gx = | g · g · · · g︸ ︷︷ ︸
x times

| = |gx mod N |.

In fact, the Extended Blum Number is over a subset of Blum Numbers N = pq,
(p ≡ q ≡ 3 mod 4). They have all the properties of Blum Numbers.

Lemma 2 (Lemma 1 in [18]). Let N be an Extended Blum Number, then

1. (QR+
N , ◦) is a group of order φ(N)/4.

2. QR+
N = J+

N , and QR+
N is efficiently recognizable.

3. The map QRN �→ QR+
N is a group isomorphism.
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The order of the Signed QR is odd, the 2k-th power is a permutation. If the
factorization of N or the inverse of 2k modulo φ(N)/4 is given, the preimage of
2k-th power is computable. The 2k-th power is a trapdoor permutation.

Lemma 3. Let N be an Extended pseudo Blum Number associated with k, then

1. (J+
N , ◦) is a group of order φ(N)/4.

2.
(

−1
p

)
2k

= 1,
(

−1
q

)
2k

= 1.

3. The 2k-th power map over J+
N is 22k or 22k−1-to-1.

Proof. The map | · | from JN to J+
N has kernel {±1}, so ord (J+

N ) = φ(N)/4. By
the definition of 2k residue symbol. Items 2 holds. Item 2 implies that -1 belongs
to

Jk−1
(−,−)

. We define Js
+ = Js

+,+∪Js−,− to be the subset of Rs with Legendre symbol 1. To
prove the third item, we investigate a sequence of subgroups and square maps
on them. Precisely, for 0 ≤ s ≤ k + 1, we consider the subgroups of Z∗

N denoted
by

Rs
+ := {x2s |x ∈ J+

N},

and for 0 ≤ i ≤ k define the square map fi : y → y2 from Ri−1
+ to Ri

+. Note
that R0

+ is J+
N itself. We first prove that the map fi is a regular 4-to-1 map

for 0 ≤ i ≤ k − 1. Then we show that the map fk is regularly 4-to-1 or 2-to-1
depending on whether −1 ∈ Jk

+ or not. The combination map g = fk◦fk−1 · · ·◦f1
is regularly 22k or 22k−1-to-1 naturally. We divide the map fi into two parts. The
first part is the square map and the second part is the absolute map. From part
two, −1 belongs to Jk−1

+ , the surjective map from subset Ri−1
+ to J i

+ is a 2-to-1

map (1 ≤ i ≤ k), and the map from Jj
+ to Rj

+ is a 2 tot 1 map (1 ≤ j ≤ k − 1).
The absolute value is a surjective homomorphism from Jk

+ to Rk
+ with kernel

{1} if −1 �∈ Jk
+ and with kernel {±1} if −1 ∈ Jk

+. ��

LTDP over Signed QR

We define LTDPSQR = (Sinj , Sloss, fSQR, f−1
SQR) as follows:

1. Sample Injective Function Sinj. On input 1n, Sinj chooses a proper k and
random N in distribution R and the function index is σ = {N, k}. The

trapdoor is t = (2k)−1 mod φ(N)
4 .

2. Sample Lossy Function Sloss. On input 1n, Sloss chooses a proper k and
random N in distribution L and the function index is σ = {N, k}.

3. Evaluation algorithm fSQR. Given a function index σ = {N, k} and input

x ∈ J+
N , the algorithm outputs z = x2k mod N .

4. Inversion algorithm f−1
SQR. Given z ∈ J+

N and trapdoor t, compute and out-

put zt mod N .

Theorem 4. If the 2k-Φ/4-hiding assumption holds, then LTDPSQR is an 22k

or 22k−1-to-1 lossy trapdoor permutation.
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Another Modified Rabin-OAEP

The following scheme is another modification of Rabin-OAEP. The 2k-th power
is computed over Signed QR group. In this scheme, one needs to resample the
output of OAEP until it falls into Signed QR group. The Leftover hash lemma
guarantees that OAEP falls into Signed QR with probability about 1

4 . However,
we have to admit that this is NOT done in practice.

KeyGen: On input a security parameters n, choose a k and n bits Extended
Blum Number N associated with k. Choose a random t-wise independent
hash function GKG and a hash function HKH . Compute the inversion of 2k

mod φ(N)
4 and denote it as d.

pk = (N, k, GKG , HKH ), sk = d.

Encryption: On input a massage m ∈ {0, 1}μ,
Step 1: Pick a random r ∈ {0, 1}ρ for ρ = n − μ.
Step 2: Set s = m ‖ GKG(r).
Step 3: set t = r ‖ HKH (s).
Step 4: Set y = s ‖ t and view y as an integer. If y �∈ J+

N goto step 1,

otherwise set the ciphertext as c = y2k mod N .
Decryption: On input a ciphertext c,

Step 1: If c �∈ J+
N output ⊥, otherwise y = cd mod N .

Step 2: For y = s ‖ t, set r = t ⊕ HKH (s).
Step 3: Compute and output m = s ⊕ GGK (r).



Breaking and Fixing

Cryptophia’s Short Combiner

Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. A combiner is a construction formed out of two hash func-
tions that is secure if one of the underlying functions is. Conventional
combiners are known not to support short outputs: if the hash func-
tions have n-bit outputs the combiner should have at least almost 2n
bits of output in order to be robust for collision resistance (Pietrzak,
CRYPTO 2008). Mittelbach (ACNS 2013) introduced a relaxed security
model for combiners and presented “Cryptophia’s short combiner,” a
rather delicate construction of an n-bit combiner that achieves optimal
collision, preimage, and second preimage security. We re-analyze Cryp-
tophia’s combiner and show that a collision can be found in two queries
and a second preimage in one query, invalidating the claimed results. We
additionally propose a way to fix the design in order to re-establish the
original security results.

Keywords: hash functions, combiner, short, attack, collision resistance,
preimage resistance.

1 Introduction

A hash function combiner is a construction with access to two or more hash
functions, and which achieves certain security properties as long as sufficiently
many underlying hash functions satisfy these security properties. The first to
formally consider the principle of combiners were Herzberg [18] and Harnik et

al. [17]. Two classical examples are the concatenation combiner CH1,H2

concat (M) =
H1(M) ‖ H2(M) and xor combiner CH1,H2

xor (M) = H1(M) ⊕ H2(M). Combiners
function as an extra security barrier, still offering the desired security even if one
of the hash functions gets badly broken. As such, combiners find a wide range of
applications, including TLS [6–8] and SSL [15] for which the combiner security
was analyzed by Fischlin et al. [14]. We refer to Lehmann’s PhD thesis [22] for
a comprehensive exposition of combiners.

A combiner is called robust for some security property if this property holds
as long as at least one of the underlying hash functions does. For instance, a
combiner CH1,H2 based on hash functions H1, H2 is called robust for collision
resistance if a collision attack on the combiner implies an attack on H1 and H2.
Note that CH1,H2

concat is clearly robust for collision resistance, but CH1,H2
xor is not.

On the other hand, CH1,H2
xor is robust for pseudorandomness [14], while CH1,H2

concat

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 50–63, 2014.
c© Springer International Publishing Switzerland 2014



Breaking and Fixing Cryptophia’s Short Combiner 51

is not. Similar results can be obtained for other security properties such as
(second) preimage resistance and MAC security [14,18]. Various multi-property
robust combiners have been designed by Fischlin et al. [11–13]. (Without going

into detail, we refer to interesting results on the security of CH1,H2

concat beyond
robustness, by Joux [21], Nandi and Stinson [27], Hoch and Shamir [19, 20],
Fischlin and Lehmann [10], and Mendel et al. [24].)

The concatenation combiner is robust for collision resistance, but its out-
put size is the sum of the output sizes of the underlying hash functions. At
CRYPTO 2006, Boneh and Boyen [3] analyzed the question of designing a
collision robust combiner with a shorter output size. This question got subse-
quently answered negatively by Canetti et al. [4] and Pietrzak [28,29]. In detail,
Pietrzak [29] demonstrated that no collision robust combiner from two n-bit hash
functions exists with output length shorter than 2n − Θ(log n). A similar obser-
vation was recently made for (second) preimage resistance by Rjaško [31] and
Mittelbach [25].

These negative results are in part credited to the rather stringent requirements
the model of robustness puts on the construction, being the explicit existence of
a reduction. At ACNS 2013, Mittelbach [26] introduced a relaxed model where
the combiner is based on ideal hash functions and no explicit reduction is needed.
Throughout, we will refer to this model as the ideal combiner model, as opposed
to the standard reduction-based robust combiner model. Intuitively, the model
captures the case of security of the combiner if one of the underlying hash func-
tions is ideal but the other one is under full control of the adversary. While the
ideal combiner model puts stronger requirements on the underlying primitives,
it allows to bypass the limitations of the robust combiner model. Particularly,
it enables analysis of more complex designs and combines well with the indiffer-
entiability framework of Maurer et al. [23] and its application to hash functions
by Coron et al. [5].

Yet, it turns out to still be highly non-trivial to construct a secure combiner in
the ideal combiner model. For instance, the above-mentioned xor combiner is not
secure: if H1 = R is an ideal hash function, the adversary can simply define H2 =
R. Also, ideal combiner security is not immediately achieved for straightforward
generalizations of this xor combiner. As expected, the concatenation combiner
is secure in the ideal combiner model, but recall that it has an output size of 2n
bits.

Mittelbach [26] also introduced an ingenious n-bit combiner CH1,H2

mit from n-
bit hash functions that – in the ideal combiner model – achieves optimal 2n/2

collision security and 2n preimage and second preimage security. Mittelbach’s
combiner is also known as “Cryptophia’s short combiner.” The design circum-
vents the impossibility results of [3,4,28,29] on the existence of short combiners

in the standard combiner model. CH1,H2

mit is additionally proven to be a secure
pseudorandom function and MAC in the robust combiner model. This result has
been awarded as the best student paper of ACNS 2013.

At a high level, Mittelbach’s combiner is a keyed combiner defined as

CH1,H2

mit (k, M) = H1(prep1(k1, k2, k3, M)) ⊕ H2(prep2(k4, k5, k6, M)) ,
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where k = (k1, . . . , k6) is a fixed key, and prep1 and prep2 are two well-thought
preprocessing functions discarded from this introduction (cf. Sect. 4).

Our Contribution

We re-analyze the short combiner of Mittelbach, and show the existence of an
adversary that generates collisions for CH1,H2

mit in 2 queries and second preimages
in 1 query. The adversary is in line with Mittelbach’s ideal combiner model,
where H1 is a random oracle R and H2 is pre-defined by the adversary. The
crux of the attack lies in the observation that the two preprocessing functions
may not be injective, depending on the adversarial choice of H2, an oversight in
the proof.

We additionally present a solution to fix Mittelbach’s combiner, which requires
a more balanced usage of the keys in each of the preprocessing functions. We
also prove that this fix does the job, i.e., restores the claimed security bounds
up to a constant factor.

Outline

The remainder of the paper is organized as follows. We introduce some pre-
liminaries in Sect. 2. The ideal combiner model as outlined by Mittelbach is
summarized in Sect. 3. Section 4 describes Mittelbach’s short combiner CH1,H2

mit

in detail. Our attacks on CH1,H2

mit are given in Sect. 5 and we discuss how it can
be fixed in Sect. 6.

2 Preliminaries

For n ∈ N, we denote by {0, 1}n the set of bit strings of size n. By {0, 1}∗ we
denote the set of bit strings of arbitrary length. For two bit strings x, y, their
concatenation is denoted x‖y and their bitwise exclusive or (xor) as x ⊕ y (for
which x and y are presumed to be equally long). The size of x is denoted |x|. For

b ∈ {1, 2}, we denote by b̄ = 3 − b ∈ {2, 1}. If X is a set, we denote by x
$←− X

the uniformly randomly sampling of an element from X . If X is, on the other
hand, a distribution, we use the same notation to say that x is chosen according
to the distribution.

A hash function family is defined as H : {0, 1}κ × {0, 1}∗ → {0, 1}n for
κ, n ∈ N, where for every k ∈ {0, 1}κ, Hk is a deterministic function that maps
messages M of arbitrary length to digests of fixed length n. In security games,
the key will conventionally be randomly drawn and disclosed at the beginning of
the security experiment; it is simply used to select a function Hk randomly from
the entire family of functions. The key input to Hk is left implicit if it is clear
from the context. A random oracle on n bits is a function R which provides a
random output of size n for each new query [2].

We model adversaries A as probabilistic algorithms with black-box access to
zero or more oracles O1, . . . , On, written as AO1,...,On . We assume the adversary
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always knows the security parameters (often the input and output sizes of the
combiner and underlying hash functions) and refrain from explicitly mentioning
these as input to A. We consider computationally unbounded adversaries whose
complexities are measured by the number of queries made to their oracles. We
assume that the adversary never makes queries to which it knows the answer in
advance.

If X is a random variable, the min-entropy of X is defined as

H∞(X) = − log(max
x

Pr (X = x)) .

Note that we can equivalently define H∞(X) in terms of a predictor A that aims
to guess X , denoted H∞(X) = − log(maxA Pr (X = A)) [1]. Following [1,9,26],
we define the (average) conditional min-entropy of X conditioned on random
variable Z as

H̃∞ (X | Z) = − log(max
A

Pr
(
X = AZ

)
) ,

where A is a predictor that participates in random experiment Z. It has been
demonstrated that H̃∞ (X | Z) ≥ H∞(X, Z) − b, where Z may take 2b values
[9, 30].

3 Ideal Combiner Model

A (k, l)-combiner for security property prop is a construction based on l hash
functions, that achieves prop security as long as k out of l hash functions satisfy
this property. Most combiners known in literature are (1, 2)-combiners, consid-
ering a construction CH1,H2 from two hash functions H1, H2. We focus on this
type of combiners. A robust black-box combiner for security property prop is
a combiner CH1,H2 for which an attack under prop can be reduced to an at-
tack on H1 and H2. Various results on robustness of combiners have been pre-
sented [11–14, 17, 18]. Pietrzak [29] proved that the output length of a collision
secure black-box combiner is at least the sum of the output lengths of H1 and H2

(minus a logarithmic term in the output size of H1, H2). A similar observation
was recently made for second preimage and preimage resistance by Rjaško [31]
and Mittelbach [25].

At ACNS 2013, Mittelbach elegantly lifted the security of combiners to the
ideal model. That is, the hash functions underpinning CH1,H2 are based on a
random oracle. The model discards the explicit need of a reduction, and com-
bines well with the indifferentiability framework of Maurer et al. [23] and its
application to hash functions by Coron et al. [5]. Nevertheless, this model, and
particularly capturing the fact that one of the hash functions may be non-ideal,
is not at all straightforward. We paraphrase the model in our own terminology.

The prop security of a combiner CH1,H2 : {0, 1}κ ×{0, 1}∗ → {0, 1}n based on
two hash functions H1, H2 : {0, 1}κh × {0, 1}∗ → {0, 1}n is captured as follows
(the model generalizes straightforwardly to other domains and ranges). Let R be
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a random oracle and k
$←− {0, 1}κ. Consider a two-stage adversary A = (A1, A2)

with unbounded computational power. A1 gets no input and outputs b ∈ {1, 2}
and a description of an efficient stateless function HR : {0, 1}κh × {0, 1}∗ →
{0, 1}n which may make calls to R. Then, A2, with oracle access to (R, HR)

and knowledge of the key k, aims to break security property prop for CHR,R (if

b = 1) or CR,HR
(if b = 2). Formally, the advantage of A is defined as follows:

Advprop
C (A) = PrR,k

(
(b, HR, st)

$←− A1 ,

(Hb, Hb̄) ← (HR, R)
:

AH1,H2

2 (k, st) breaks

prop for CH1,H2

)
,

where the randomness is taken over the choice of random oracle R, random key
k ∈ {0, 1}κ, and coins of A.

The formal descriptions of the security advantages slightly differ for various
types of security properties. In general, for collision, preimage, and second preim-
age resistance the definitions show resemblances with, but are more complex
than, the formalization of Rogaway and Shrimpton [32]. For collision security of
CH1,H2 , the advantage of A is defined as

Advcoll
C (A) = PrR,k

⎛⎜⎝ (b, HR, st)
$←− A1 ,

(Hb, Hb̄) ← (HR, R) ,

(M, M ′) $←− AH1,H2

2 (k, st)

:

M �= M ′ ∧
CH1,H2(M) =

CH1,H2(M ′)

⎞⎟⎠ .

For (second) preimage resistance, we focus on everywhere (second) preimage
resistance. In everywhere preimage resistance, A1 selects an image Y ∈ {0, 1}n
at the start of the experiment. In everywhere second preimage resistance, A1

selects a first preimage M ∈ {0, 1}λ at the start of the experiment, for some
λ < ∞. The advantages of A are as follows:

Advepre
C (A) = PrR,k

⎛⎜⎝ (b, HR, Y, st)
$←− A1 ,

(Hb, Hb̄) ← (HR, R) ,

M
$←− AH1,H2

2 (k, st)

: CH1,H2(M) = Y

⎞⎟⎠ ,

Adv
esec[λ]
C (A) = PrR,k

⎛⎜⎝ (b, HR, M, st)
$←− A1 ,

(Hb, Hb̄) ← (HR, R) ,

M ′ $←− AH1,H2

2 (k, st)

:

M �= M ′ ∧
CH1,H2(M) =

CH1,H2(M ′)

⎞⎟⎠ .

The notion of everywhere second preimage resistance is also known as target col-
lision resistance [16] and implies conventional second preimage resistance where
M is randomly drawn. (We note that Mittelbach [26] considered target collision
resistance and conventional second preimage resistance separately. Additionally,
we slightly simplified the notion of preimage resistance, considering the case A1

selects the image rather than a set X from which the first preimage is secretly
and randomly drawn.)
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4 Mittelbach’s Combiner

We consider Cryptophia’s combiner CH1,H2

mit : {0, 1}κ × {0, 1}∗ → {0, 1}n from
Mittelbach [26], where κ = 6n. Let ki ∈ {0, 1}n for i = 1, . . . , 6 be independently
chosen keys, and write k = (k1, . . . , k6). Let H1, H2 : {0, 1}∗ → {0, 1}n be two
hash functions. The combiner is given by

CH1,H2

mit (k, M) = H1

(
m̃1

1‖ · · · ‖m̃1
�

)
⊕ H2

(
m̃2

1‖ · · · ‖m̃2
�

)
,

where the message M ∈ {0, 1}∗ is first injectively padded into n-bit message
blocks m1‖ · · · ‖m� = M‖pad(M) using some padding function pad, which are
subsequently preprocessed as

m̃1
j = H1(1 ‖ mj ⊕ k1) ⊕ mj ⊕ k2 ⊕ H2(1 ‖ mj ⊕ k3) ,

m̃2
j = H2(0 ‖ mj ⊕ k4) ⊕ mj ⊕ k5 ⊕ H1(0 ‖ mj ⊕ k6) ,

(1)

for j = 1, . . . , �. We remark that we swapped k1 with k3 and k4 with k6 compared
to the original specification [26].

5 Attack

In the security model we recaptured in Sect. 3, Mittelbach proved that CH1,H2

mit

achieves collision security up to 2(n+1)/2 queries and preimage and second preim-
age security up to 2n queries.1 In the next proposition, we show that the collision
result is incorrect. After the result, we also explain why the attack directly im-
plies a second preimage attack. The work of [26] as well as its full version do not
state any properties of the padding function pad(M). We assume a 10∗-padding
concatenated with length strengthening. For simplicity and without loss of gen-
erality, we assume that |pad(M)| ≤ n, which is the case if the message length is
encoded with at most n − 1 bits.

Proposition 1. There exists an adversary A making 2 queries, such that
Advcoll

Cmit
(A) = 1.

Proof. Let R be a random oracle and k1, . . . , k6
$←− {0, 1}n. We focus on an

adversary A = (A1, A2) that finds a collision for CR,HR
mit , where HR is the hash

function defined by A1. Our adversary proceeds as follows. A1 outputs b = 2
and the following hash function HR:

HR(x) =

{
R(x) ⊕ y, if x = 1‖y for some y ∈ {0, 1}n,

0, otherwise.

1 The formal preimage result is slightly different, claiming security up to 2H∞(X)

queries, where the first preimage is secretly and randomly drawn from an adversar-
ially chosen set X .
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This simplifies the combiner to CR,HR
mit (k, M) = R

(
m̃1

1‖ · · · ‖m̃1
�

)
, where

m̃1
j = R(1 ‖ mj ⊕ k1) ⊕ k2 ⊕ k3 ⊕ R(1 ‖ mj ⊕ k3) ,

for j = 1, . . . , �. Next, the adversary A2 gets as input (k1, . . . , k6) and outputs
colliding pair M and M ′ = M ⊕ k1 ⊕ k3 for some M ∈ {0, 1}n.

We proceed with showing that the colliding pair is valid. As |M | = |M ′| = n,
the messages are padded as m1‖m2 = M‖pad(M) and m′

1‖m′
2 = M ′‖pad(M ′),

where m1 = M , m′
1 = M ′, and m2 = m′

2. The latter implies m̃1
2 = m̃′ 1

2 . The
preprocessed m̃1

1 and m̃′ 1
1 satisfy

m̃1
1 = R(1 ‖ M ⊕ k1) ⊕ k2 ⊕ k3 ⊕ R(1 ‖ M ⊕ k3)

= R(1 ‖ M ⊕ k3) ⊕ k2 ⊕ k3 ⊕ R(1 ‖ M ⊕ k1) = m̃′ 1
1 .

Concluding, m̃1
1‖m̃1

2 = m̃′ 1
1 ‖m̃′ 1

2 and thus

CR,HR
mit (k, M) = R

(
m̃1

1‖m̃1
2

)
= R

(
m̃′ 1

1 ‖m̃′ 1
2

)
= CR,HR

mit (k, M ′) . ��

Proposition 2. Let λ < ∞. There exists an adversary A making 1 query, such

that Adv
esec[λ]
Cmit

(A) = 1.

Proof. In the attack of Prop. 1 the choice of M is independent of (k1, . . . , k6).
Therefore, the attack also works if M is chosen by A1 at the beginning of the
game. ��

The flaw in the security analysis of [26] lies in the fact that it only considers
distributions of m̃c

j computed from mj , k3c−2, k3c−1, k3c via (1) for c ∈ {1, 2},
but never joint distributions of m̃c

j , m̃
′ c
j given two messages m, m′. In more

detail, Prop. 4.5 of the full version of [26] inadvertently assumes that m̃c and
m̃′ c are mutually distinct whenever m �= m′. The preimage bound derived in [26]

is nevertheless correct, and so are the analyses of CH1,H2

mit as a pseudorandom
function and MAC.

6 Fix

To fix Mittelbach’s combiner CH1,H2

mit , we suggest to use an additional set of keys
l1, l2 ∈ {0, 1}n as separate input to H1, H2 in the preprocessing functions of (1).
Consequently, we can leave out mj ⊕ k2 and mj ⊕ k5 from these functions as
they have become redundant, and we can simply set (k4, k6) = (k1, k2). (For

the original CH1,H2

mit these keys k2, k4, k5, k6 are necessary to guarantee preimage
resistance.)

More formally, we suggest combiner CH1,H2 : {0, 1}κ × {0, 1}∗ → {0, 1}n,
where κ = 4n. Let k1, k2, l1, l2 ∈ {0, 1}n be independently chosen keys, and
write kl = (k1, k2, l1, l2). Let H1, H2 : {0, 1}∗ → {0, 1}n be two hash functions.
The combiner is given by

CH1,H2(kl, M) = H1

(
m̃1

1‖ · · · ‖m̃1
�

)
⊕ H2

(
m̃2

1‖ · · · ‖m̃2
�

)
,
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where the message M ∈ {0, 1}∗ is first injectively padded into n-bit message
blocks m1‖ · · · ‖m� = M‖pad(M) using some padding function pad, which are
subsequently preprocessed as

m̃1
j = H1(0 ‖ l1 ‖ mj ⊕ k1) ⊕ H2(0 ‖ l2 ‖ mj ⊕ k2) ,

m̃2
j = H1(1 ‖ l1 ‖ mj ⊕ k1) ⊕ H2(1 ‖ l2 ‖ mj ⊕ k2) ,

(2)

for j = 1, . . . , �.
This fix, indeed, guarantees that m̃c and m̃′ c are mutually different whenever

m, m′ are, except with small probability. In the remainder of this section, we
will prove that CH1,H2 indeed achieves the originally claimed security bounds for
collision, preimage, and second preimage resistance up to an inevitable constant
factor. For a proof on the robustness for pseudorandomness and MAC security
we refer to [26].

Before we proceed, we remark explicitly that we require HR to be a stateless
hash function. In the artificial case in which HR is allowed to hold state, CH1,H2

is insecure. An attack is given in App. A.

Security Proofs

For c ∈ {1, 2} we define preprocessing function m̃c(kl, m) on input of kl =
(k1, k2, l1, l2) ∈ {0, 1}4n and m ∈ {0, 1}n as

m̃c(kl, m) = H1(c − 1 ‖ l1 ‖ m ⊕ k1) ⊕ H2(c − 1 ‖ l2 ‖ m ⊕ k2) .

These preprocessing functions correspond to the two equations of (2) for c = 1, 2.
The remainder of the proof is as follows. In Lem. 1 we compute the (conditioned)
min-entropies of the values m̃c. This lemma is a direct generalization of Lems. 1
and 2 of [26]. Then, preimage security is proven in Thm. 1, collision security in
Thm. 2, and second preimage security in Thm. 3.

Lemma 1. Let R be an n-bit random oracle and let kl
$←− {0, 1}4n. Let HR be

a hash function with access to R (but not using kl). Then, for all c ∈ {1, 2} and
distinct m, m′ ∈ {0, 1}n,

H̃∞ (m̃c(kl, m) | kl, m) ≥ n − log(qH) , (3)

H̃∞ (m̃c(kl, m) | m̃c(kl, m′), kl, m, m′) ≥ n − 2 log(qH) , (4)

H̃∞
(
m̃c(kl, m) | m̃c̄(kl, m′), kl, m, m′) ≥ n − 2 log(qH) , (5)

H̃∞
(
m̃c(kl, m) | m̃c̄(kl, m), kl, m

)
≥ n − 2 log(qH) , (6)

where qH is the number of calls to R in one evaluation to HR. (We note that
conditioning in (5-6) is done on m̃c̄, as opposed to m̃c in (4).)

Proof. The combiner C is symmetric, and without loss of generality we assume
b = 2, hence (H1, H2) = (R, HR), where R is an n-bit random oracle and HR

is defined by adversary A1. Also, c = 1 without loss of generality.
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The min-entropy of (3) reads

H̃∞
(
m̃1(kl, m) | kl, m

)
= H̃∞

(
R(0 ‖ l1 ‖ m ⊕ k1) ⊕ HR(0 ‖ l2 ‖ m ⊕ k2)

∣∣∣ kl, m
)

= H̃∞
(
R(0 ‖ l1 ‖ m̂ ⊕ k̂1) ⊕ HR(0 ‖ l2 ‖ m̂)

∣∣∣ k̂1, l1, l2, m̂
)

,

where the second step is by substitution of (k̂1, m̂) = (k1 ⊕ k2, m ⊕ k2) and
by leaving out the redundant k2 in the condition. Note that the evaluation of
R is independent of the evaluation of HR, unless HR(0 ‖ l2 ‖ m̂) evaluates

R(0 ‖ l1 ‖ m̂ ⊕ k̂1). Here, we recall that k̂1, l1, l2 are mutually independently

and randomly drawn, but m̂ is chosen by A2 and may depend on (k̂1, l1, l2). The
hash function HR chosen by A1 makes qH evaluations of R, which can decrease
the entropy by at most log(qH) bits in any experiment. Thus, we find:

H̃∞
(
m̃1(kl, m) | kl, m

)
≥ H̃∞

(
l1, m̂(k̂1, l1, l2) ⊕ k̂1

∣∣∣ l2, m̂(k̂1, l1, l2)
)

− log(qH)

≥ n − log(qH) .

We proceed with the min-entropy of (4):

H̃∞
(
m̃1(kl, m) | m̃1(kl, m′), kl, m, m′)

= H̃∞

(R(0 ‖ l1 ‖ m ⊕ k1) ⊕ HR(0 ‖ l2 ‖ m ⊕ k2)
∣∣

R(0 ‖ l1 ‖ m′ ⊕ k1) ⊕ HR(0 ‖ l2 ‖ m′ ⊕ k2), kl, m, m′

)
≥ H̃∞

(
R(0 ‖ l1 ‖ m̂ ⊕ k̂1) ⊕ HR(0 ‖ l2 ‖ m̂),

R(0 ‖ l1 ‖ m̂′ ⊕ k̂1) ⊕ HR(0 ‖ l2 ‖ m̂′)

∣∣∣∣∣ k̂1, l1, l2, m̂, m̂′
)

− n , (7)

where we substituted (k̂1, m̂, m̂′) = (k1 ⊕k2, m⊕k2, m
′ ⊕k2) and left out redun-

dant k2. Here, we recall that m̂ �= m̂′, but both message blocks may depend on
k̂1, l1, l2. Before proceeding, we pause to see what happens if we were considering

the original combiner CR,HR
mit of Sect. 4. In this case, l1 and l2 are absent. The

entropy term in (7) then equals at most n if m̂′ = m̂ ⊕ k̂1 (in case HR = R),
leading to a lower bound ≥ 0. Note that the attack of Sect. 5 takes the message
blocks this way.

Returning to (7), as k̂1, l1, l2 are independently and randomly drawn and
m̂ �= m̂′, the two terms in the min-entropy are independent, both achieve a
min-entropy of at least n − log(qH) (by (3)), and hence

H̃∞
(
m̃1(kl, m) | m̃1(kl, m′), kl, m, m′) ≥ 2(n − log(qH)) − n ≥ n − 2 log(qH) .

The same reasoning applies to the min-entropies of (5) and (6), where for the
latter we particularly use that the two evaluations of R are mutually independent
due to the domain separation 1/0. ��
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Theorem 1. For any adversary A, where A2 makes qA queries and where every
evaluation of HR makes at most qH calls to R, we have Advepre

C (A) ≤ (q3H +
1)qA/2n.

Proof. Let (Hb, Hb̄) = (HR, R), where R is an n-bit random oracle and b and
HR are defined by adversary A1. Let Y be the target image. Consider an eval-
uation CH1,H2(kl, M), where M has not been evaluated so far. The evaluation
constitutes a preimage if

CH1,H2(kl, M) = R(U b̄(M)) ⊕ HR(U b(M)) = Y , (8)

for some random distributions U b̄, U b corresponding to (2). If this happens, at
least one of the following two events occurred:

E1 : HR(U b(M)) evaluates R(U b̄(M)) ,

E2 : ¬E1 ∧ (8) .

By Lem. 1 equation (6) (or in fact a slight variation to � blocks, which gives the
same lower bound), U b̄(M) given U b(M) has min-entropy at least n− 2 log(qH).
In other words, any call to R by HR evaluates U b̄(M) with probability at most
2−(n−2 log(qH )) = q2H/2n. As HR makes qH evaluations, E1 happens with prob-
ability at most q3H/2n. Regarding E2, by ¬E1 the call to R is independent of
HR(U b(M)) and (8) holds with probability 1/2n.

As A has qA attempts, it finds a preimage with probability at most (q3H +
1)qA/2n. ��

Theorem 2. For any adversary A, where A2 makes qA queries and where every
evaluation of HR makes at most qH calls to R, we have Advcoll

C (A) ≤ (3q3H +
1)q2A/2n+1.

Proof. Let (Hb, Hb̄) = (HR, R), where R is an n-bit random oracle and b and
HR are defined by adversary A1. Consider two evaluations CH1,H2 of two distinct
M, M ′. The two evaluations constitute a collision if

R(U b̄(M)) ⊕ R(U b̄(M ′)) = HR(U b(M)) ⊕ HR(U b(M ′)) , (9)

for some random distributions U b̄, U b corresponding to (2). If this happens, at
least one of the following four events occurred:

E1 : U b̄(M) = U b̄(M ′) ,

E2 : HR(U b(M)) evaluates R(U b̄(M)) ,

E3 : HR(U b(M ′)) evaluates R(U b̄(M)) ,

E4 : ¬(E1 ∨ E2 ∨ E3) ∧ (9) .

By Lem. 1 equation (4), E1 holds with probability at most q2H/2n. Similar to the
proof of Thm. 1, E2 and E3 happen with probability at most q3H/2n (by Lem. 1
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equations (5) and (6)). Regarding E4, by ¬(E1 ∨ E2 ∨ E3) the call to R(U b̄(M))
is independent of the other terms and (9) holds with probability 1/2n.

As A has qA attempts, it finds a collision with probability at most (2q3H +
q2H + 1)

(
qA
2

)
/2n ≤ (3q3H + 1)q2A/2n+1. ��

Theorem 3. For any adversary A, where A2 makes qA queries and where every

evaluation of HR makes at most qH calls to R, we have Adv
esec[λ]
C (A) ≤ (3q3H +

1)qA/2n.

Proof. The proof follows from the proof of Thm. 2 with the difference that the
first message M is fixed in advance. ��

Remark 1. We remark that the terms q3H in fact also appear in the bounds
of Mittelbach [26], though accidentally dropped out. (Lem. 2 of [26] considers
q = max{qH , qA}, while Prop. 2 treats q as being qA.) That said, as HR should
be an efficient hash function, it is fair to assume that it makes a limited amount
of evaluations of R. Particularly, if qH = O(1), we retain the original security
bounds.

Remark 2. The results hold with the same bounds if the messages were padded
into n′-bit message blocks for n′ < n, and if k1, k2 ∈ {0, 1}n′

. Changing the size
of l1, l2 would, on the other hand, directly affect the security bounds.

Acknowledgments. This work was supported in part by the Research Fund
KU Leuven, OT/13/071, and in part by the Research Council KU Leuven: GOA
TENSE (GOA/11/007). Bart Mennink is a Postdoctoral Fellow of the Research
Foundation – Flanders (FWO). The authors would like to sincerely thank the
anonymous reviewers of CANS 2014, as well as Atul Luykx, Gregory Maxwell,
and Arno Mittelbach, for their comments and suggestions.

References

1. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73. ACM, New York (1993)

3. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision re-
sistant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 570–583. Springer, Heidelberg (2006)

4. Canetti, R., Rivest, R., Sudan, M., Trevisan, L., Vadhan, S.P., Wee, H.M.: Ampli-
fying collision resistance: A complexity-theoretic treatment. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 264–283. Springer, Heidelberg (2007)

5. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)



Breaking and Fixing Cryptophia’s Short Combiner 61

6. Dierks, T., Allen, C.: The TLS protocol version 1.0. Request for Comments (RFC)
2246 (January 1999), http://tools.ietf.org/html/rfc2246

7. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.1.
Request for Comments (RFC) 4346 (April 2006),
http://tools.ietf.org/html/rfc4346

8. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
Request for Comments (RFC) 5246 (August 2008),
http://tools.ietf.org/html/rfc5246

9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. SIAM Journal of Comput-
ing 38(1), 97–139 (2008)

10. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 224–243. Springer, Heidelberg (2007)

11. Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg
(2008)

12. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions revisited. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
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31. Rjaško, M.: On existence of robust combiners for cryptographic hash functions.
In: Conference on Theory and Practice of Information Technologies - ITAT 2009.
CEUR Workshop Proceedings, vol. 584, pp. 71–76 (2009)

32. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

A Breaking the Fix with Stateful HR

We present an attack on CH1,H2 of Sect. 6 in the artificial case that HR is allowed
to maintain state. We note that this attack does not invalidate the security proofs
of Sect. 6, and it is solely presented for theoretical interest. In more detail, in
the next proposition we show how to extend the attack of Prop. 1. The attack is
more advanced, as A2 (who knows the li’s) needs to pass those on to HR (which
does not know these). Note that HR is, indeed, defined by A1 without a priori
knowledge of the keys, but we assume HR can hold state.

Proposition 3. There exists an adversary A making 3 queries, such that
Advcoll

C (A) = 1.

Proof. Let R be a random oracle and k1, k2, l1, l2
$←− {0, 1}n. We focus on an

adversary A = (A1, A2) that finds a collision for CR,HR
, where HR is the hash
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function defined by A1. Our adversary proceeds as follows. A1 outputs b = 2 and
the following hash function HR. The function simply outputs HR(x) = R(x)
until and including the first time it gets evaluated on HR(x) for x = 1‖y‖z
for some y, z ∈ {0, 1}n. At this point, define (l�2 , l

�
1) = (y, z), and respond all

subsequent queries as follows:

HR(x) =

{
R(1‖l�1‖z), if x = 1‖l�2‖z for some z ∈ {0, 1}n,

0, otherwise.
(10)

Next, A2 gets as input (k1, k2, l1, l2). The first query A2 makes is M = l1, which

gets padded to l1‖pad(l1). Note that in this evaluation of CR,HR
, the first query

to HR is on input of 1‖l2‖l1. The adversarial hash function is programmed in
such a way that it defines l�2 = l2 and l�1 = l1. The adversary A2 ignores the
outcome of the combiner evaluation.

For the remaining evaluations HR operates as (10), and we can simplify the

combiner to CR,HR
(kl, M) = R

(
m̃1

1‖ · · · ‖m̃1
�

)
, where

m̃1
j = R(1 ‖ l1 ‖ mj ⊕ k1) ⊕ R(1 ‖ l�1 ‖ mj ⊕ k2) ,

for j = 1, . . . , �. Next, the adversary A2 outputs colliding pair M and M ′ =
M ⊕ k1 ⊕ k2 for some M ∈ {0, 1}n. The remainder of the proof follows Prop. 1,
using l�1 = l1. ��

The second preimage attack of Prop. 2 generalizes similarly. A technicality occurs
in the above attack as we assume the HR’s are evaluated in a sequential order.
In other words, the attack may fail if HR gets first evaluated for message block
pad(l1). A way to address this is to create a buffer. I.e., to make the first combiner
evaluation on a concatenation of α l1’s, hence M = l1‖ · · · ‖l1, and program HR

to define l�1 as soon as it is “seen” α times.
We remark that the attacks suggest that there does not exist any combiner

that achieves security against adversaries with state-maintaining HR: A2 can
always pass on the secret keys to HR, be it in more complicated and elaborated
ways than described in Prop. 3.
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Abstract. An integral attack is one of the most powerful attacks against
block ciphers. We propose a new technique for the integral attack called
the Fast Fourier Transform (FFT) key recovery. When the integral dis-
tinguisher uses N chosen plaintexts and the guessed key is k bits, a
straightforward key recovery requires the time complexity of O(N2k).
However, the FFT key recovery method requires only the time com-
plexity of O(N + k2k). As a previous result using FFT, at ICISC 2007,
Collard et al. proposed that FFT can reduce the time complexity of
a linear attack. We show that FFT can also reduce the complexity of
the integral attack. Moreover, the estimation of the complexity is very
simple. We first show the complexity of the FFT key recovery against
three structures, the Even-Mansour scheme, a key-alternating cipher,
and the Feistel cipher. As examples of these structures, we show integral
attacks against Prøst, CLEFIA, and AES. As a result, 8-round Prøst
P̃128,K can be attacked with about an approximate time complexity of
280. Moreover, a 6-round AES and 12-round CLEFIA can be attacked
with approximate time complexities of 252.6 and 287.5, respectively.

Keywords: Block cipher, Integral attack, Fast Fourier Transform, Fast
Walsh-Hadamard Transform, Prøst, CLEFIA, AES.

1 Introduction

An integral attack is one of the most powerful attacks against block ciphers. The
integral attack was first proposed by Daemen et al. to evaluate the security of
Square [7], and then Knudsen and Wagner formalized this attack as an integral
attack [14]. This attack uses N chosen plaintexts (CPs) and the corresponding
ciphertexts. Generally, an integral attack consists of a distinguisher and key
recovery. In the distinguisher, plaintexts are prepared in which the XOR of the
R-th round output is 0. In the key recovery, R-th round outputs are recovered
from ciphertexts by guessing round keys used in the last several rounds. If the
guessed key is incorrect, the recovered texts are assumed to behave as random
texts. On the other hand, if the guessed key is correct, the XOR of the recovered
texts is 0.

We focus on the key recovery of the integral attack. Several techniques to im-
prove the key recovery were proposed, e.g., the partial-sum technique [11] and
the meet-in-the-middle (MITM) technique [21]. The partial-sum technique was
proposed by Ferguson et al. in 2000. When the integral attack uses N chosen

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 64–81, 2014.
c© Springer International Publishing Switzerland 2014
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Table 1. Summary of FFT key recovery, where k, k1, and k2 are defined in Sect. 1.1

Target cipher Time

Even-Mansour scheme O(k2k)

Key-alternating cipher O(k22
k)

Feistel cipher O(k12
k1 + k22

k2)

Table 2. Comparison of attack results.Time columnonly includes the time complexity of
the key recovery step, and it does not include the time complexity to count the frequency
of the partial bit-string of ciphertexts corresponding to the chosen plaintexts (CPs).

Target cipher #Round Data (CP) Time Technique Reference

Prøst P̃128,K 8 264 280 FFT Sect. 3

Prøst P̃256,K 9 2× 264 280.9 FFT Appendix D

AES 6 6× 232 6× 250 Partial-sum [11]

AES 6 6× 232 6× 250 FFT Sect. 4

CLEFIA 12 13× 2112 13× 2106 MITM, Partial-sum [21]

CLEFIA 12 5× 2112 287.5 MITM, FFT Sect. 5

plaintexts and guesses a k-bit round key, a straightforward key recovery ap-
proach requires the time complexity of O(N2k). Therefore, if enormous number
of chosen plaintexts is used, the complexity of the attack increases to a very high
level. The partial-sum technique can reduce the complexity, where we partially
compute the sum by guessing each key one after another and reuse the partial
sums. Ferguson et al. applied this technique to AES [17], and showed that a
6-round AES can be attacked with 6× 250 S-box lookups. The MITM technique
was proposed by Sasaki et al. in 2012. This technique can reduce the complexity
of the integral attack against several Feistel ciphers. In the key recovery against
several Feistel ciphers,

⊕
(x ⊕ y) = 0 is often evaluated, where x and y are cal-

culated from ciphertexts by guessing keys. The MITM technique first calculates⊕
x and

⊕
y independently, and then searches keys that satisfy

⊕
x =

⊕
y by

using analysis such as the MITM attack [8]. As a result, Sasaki et al. improved
integral attacks against LBlock [23], HIGHT [12], and CLEFIA [22].

Several key recovery techniques using the Fast Fourier Transform (FFT) have
recently been proposed. In 2007, Collard et al. first proposed a linear attack using
the FFT [6], and then Nguyen et al. extended it to a multi-dimensional linear
attack [18,19]. Moreover, Bogdanov et al. proposed a zero correlation attack
using the FFT in 2013 [4]. We now point out that the FFT can also be applied
to the integral attack.

1.1 Our Contribution

We propose a new improved technique for the integral attack called the FFT key
recovery. Table 1 shows results of the FFT key recovery, and Table 2 summarizes
results of integral attacks against specific ciphers.
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The FFT key recovery is useful for an integral attack with an enormous number
of chosen plaintexts because the time complexity of the FFT key recovery does not
depend on the number of chosen plaintexts. Therefore, the motivation to introduce
this technique is similar to the reason to introduce the partial-sumtechnique. How-
ever, the way that the two techniques are applied is a little different, and we discuss
the differences between them in Sect. 6. Another important reason to introduce the
FFT key recovery is that it enables easy estimation of the time complexity of the
integral attack. The partial-sum technique effectively reduces the complexity, but
the attack procedure is often complicated. On the other hand, the complexity of
the FFT key recovery only depends on k, where k denotes the bit length of the keys
that are required to call a distinguisher on the ciphertext side.

We focus on structures for block ciphers, and estimate the security against the
integral attack. Here, we focus on three structures, the Even-Mansour scheme [10]
in Sect. 3, the key-alternating cipher [5] in Sect. 4, and the (generalized) Feistel
cipher in Sect. 5.

The Even-Mansour scheme is a famous scheme used to construct a block cipher
from a permutation, and has recently been a popular discussion topic [9,5]. When
FFT key recovery is used, the time complexity of the integral attack is estimated
as O(k2k). As an example of the Even-Mansour scheme, we consider Prøst [13]
and show integral attacks of the scheme. Prøst is an authenticated encryption
scheme, which was submitted to the CAESAR competition. The core function
is called the Prøst permutation, which is extended to a block cipher by the
Even-Mansour scheme. Results show that 8-round Prøst P̃128,K and 9-round

Prøst P̃256,K can be attacked with the time complexity of approximately 280

and 280.9, respectively.
The key-alternating cipher is a common type of block cipher, and AES is

viewed as a 10-round key-alternating cipher [3]. The time complexity of the
integral attack is at least O(k2k), but we can optimize it slightly. We assume that
only k2 bits of ciphertexts are required for the distinguisher, where k2 is always
less than or equal to k. In this case, the complexity is reduced to O(k22

k). As
an example of the key-alternating cipher, we consider AES and show an integral
attack against it. Results show that a 6-round AES can be attacked with a time
complexity of approximately 6 × 250.

The Feistel cipher is also commonly used to construct a block cipher. The
MITM technique is useful in reducing the time complexity, and works well in
combination with the FFT key recovery. The MITM technique evaluates

⊕
x

and
⊕

y instead of
⊕

(x ⊕ y). We assume that k1 and k2 bits are required to
evaluate

⊕
x and

⊕
y, respectively. In this case, the complexity of the integral

attack is O(k12
k1 + k22

k2). As an example of the Feistel cipher, we show an
integral attack against CLEFIA, which is a 4-branch generalized Feistel cipher
and is adopted by the ISO/IEC standard [1]. Results show that a 12-round
CLEFIA can be attacked with the time complexity of approximately 287.5 1.

1 Since this attack uses 5×2112 chosen plaintexts, the dominant factor in determining
the time complexity is the number of chosen plaintexts. The FFT key recovery can
reduce the time complexity of the key recovery step.



FFT Key Recovery for Integral Attack 67

MCSB SR
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Fig. 1. Integral attack against 6-round AES

2 Related Work

2.1 Integral Attack

Integral Distinguisher. An integral distinguisher is constructed based on the
following integral properties.

– All (A) : All values appear and with exactly the same frequency in the
(multi-)set of texts.

– Balance (B) : The XOR of all texts in the set is 0.
– Constant (C) : The bit-strings in a set are fixed to the same value.

For instance, we show the 4-round integral distinguisher of AES in Appendix A.

Key Recovery. In key recovery, the R-th round output is recovered from ci-
phertexts by guessing round keys used in the last several rounds. If the guessed
key is incorrect, the recovered texts are expected to behave as random texts. On
the other hand, if the guessed key is correct, the XOR of the recovered texts is
always 0.

For instance, Fig. 1 shows the key recovery of the integral attack against a
6-round AES. Here we now have 232 ciphertexts for the 6-round AES, and know
that value y satisfies B. Let c[i] be bytes in the ciphertexts as shown in Fig. 1,
and cn denotes the n-th ciphertext. In this case, the XOR of y is calculated from
232 ciphertexts as

232⊕
n=1

S5(S1(cn[1] ⊕ K1) ⊕ S2(cn[2] ⊕ K2) ⊕ S3(cn[3] ⊕ K3)

⊕S4(cn[4] ⊕ K4) ⊕ K5) = 0, (1)

where S1, S2, . . . , S5 are S-boxes, each of which consists of the inverse of the
AES S-box and a multiplication by a field element from the inverse of the AES
MDS matrix. Moreover, K1, K2, K3, and K4 are calculated from RK6, and K5 is
calculated from RK5. Therefore, the total bit length of the guessed keys is 40 bits.
Analysis using a straightforward method incurs the approximate time complexity
of 232+40 = 270. However, the partial-sum technique can reduce the complexity.
Ferguson et al. showed that this analysis takes only 250 S-box lookups [11].
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2.2 FFT Key Recovery

Collard et al. showed a linear attack using FFT in 2007. The key recovery of a
linear attack [16] uses N ciphertexts c1, c2 . . . , cN . Then, it guesses keys K and
calculates

N∑
n=1

f(cn ⊕ K). (2)

It finally recovers the correct K to evaluate Eq. (2) for several possible Ks. Here,
let f : {0, 1}k → {0, 1} be a Boolean function, which is generated from the linear
approximate equation. The evaluation of Eq. (2) requires the time complexity of
O(N2k) using a straightforward method, and the size of N is generally enormous,
e.g., N ≈ 2k. Collard et al. showed that the evaluation of Eq. (2) requires the
time complexity of approximately O(k2k). Nguyen et al. then noticed that the
Fast Walsh-Hadamard Transform (FWHT) can be used instead of the FFT [18].
Hereinafter, we show the calculation method using the FWHT.

Two k-dimensional vectors v and w are first created, where v is generated from
Boolean function f and w is generated from the set of ciphertexts as indicated
below.

vi = f(i),

wi = #{1 ≤ n ≤ N |cn = i}.

A k-dimensional vector, u, is calculated from v and w as⎡⎢⎢⎢⎢⎢⎣
u0

u1

u2

...
u2k−1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
v0 v1 v2 · · · v2k−1

v1 v0 v3 · · · v2k−2

v2 v3 v0 · · · v2k−3
...

...
...

. . .
...

v2k−1 v2k−2 v2k−3 · · · v0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
w0

w1

w2

...
w2k−1

⎤⎥⎥⎥⎥⎥⎦ . (3)

In this case, uK is equal to the results of Eq. (2). Therefore, if Eq. (3) can
be calculated quickly, the time complexity is reduced. Equation (3) is simply
expressed as u = V ×w. Here, matrix V consists of four 2k−1-dimensional block
matrices, V1 and V2, as

V =

[
V1 V2

V2 V1

]
.

From the diagonalization of V , we have

V =

[
V1 V2

V2 V1

]
=

1

2

[
I I
I −I

] [
V1 + V2 0

0 V1 − V2

] [
I I
I −I

]
,

where I is an identity matrix. Since V1+V2 and V1−V2 have the same structure
as V , we obtain

V =
1

2k
× H2k × diag(H2kv) × H2k ,
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where H2k is the 2k-dimensional Walsh matrix2, and diag(H2kv) is a diagonal
matrix whose element in the i-th row and i-th column is the i-th element of
H2kv. Therefore, Eq. (3) is expressed as

u = V × w =
1

2k
H2k × diag(H2kv) × H2kw.

The procedure to calculate u is given below.

1. Let us calculate v̂ = H2kv. Then, Eq. (3) is expressed as u = 1
2k
H2k ×

diag(v̂) × H2kw.
2. Let us calculate ŵ = H2kw. Then, Eq. (3) is expressed as u = 1

2k
H2k ×

diag(v̂)ŵ.
3. Let us calculate û whose ûi is calculated from v̂i × ŵi, and then calculate

u = 1
2kH2k û.

In the first and second steps, we calculate the multiplication of the Walsh matrix
using the FWHT, and time complexity for each is approximately the time of
k2k additions. In the third step, we first calculate 2k multiplications of the k-bit
integers, where we regard that the complexity of one multiplication is equal to
that for k additions. We next calculate the FWHT, and the time complexity
is approximately the time of k2k additions. We finally calculate the division by
2k, but the time complexity is negligible because it can be computed by a k-bit
shift. Therefore, the time complexity of the third step is approximately 2k2k.
Thus, the total time complexity is approximately the time of 4k2k additions.

3 Integral Attack against Even-Mansour Scheme and
Application to Prøst

3.1 Even-Mansour Scheme and FFT Key Recovery

The Even-Mansour scheme constructs an n-bit block cipher from an n-bit per-
mutation, P , using two n-bit keys K1 and K2 as

c = K2 ⊕ P (p ⊕ K1),

where p and c denote a plaintext and a ciphertext, respectively [10]. The Even-
Mansour scheme has recently been a popular topic of discussion [9,5]. When the
FFT key recovery is used, we can easily evaluate the time complexity of the
integral attack.

We first split permutation P into two permutations, P1 and P2, as P =
P2 ◦ P1 (see Fig. 2). We assume that P1 has an integral distinguisher with N

2 The Walsh matrix is defined as the following recursive formulae.

H21 =

[
1 1
1 −1

]
, H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
(k ≥ 2).
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P1 P2

k bitsDistinguisher

Fig. 2. Even-Mansour scheme and FFT key recovery

chosen plaintexts. Moreover, any one bit is diffused to k bits by P2 at most. Let
f be a Boolean function. Here, the input is k bits of the output of P2, and the
output is any one bit of the input of P2. In this case, the key recovery can be
expressed as

N⊕
i=1

f(c′i ⊕ K ′
2) = 0,

where c′i and K ′
2 are truncated to k bits from ci and K2, respectively. The FFT

key recovery calculates the summation on the ring of integers, and we have

N∑
i=1

f(c′i ⊕ K ′
2) = 0 mod 2.

We can efficiently evaluate this equation using the FWHT, and the time com-
plexity is O(k2k).

3.2 FFT Key Recovery against Prøst

Prøst is an authenticated encryption scheme, which was submitted to the CAE-
SAR competition. The core function of Prøst P̃n,K(x) is the block cipher based
on the single-key Even-Mansour scheme with key K, and it is defined as

P̃n,K(x) := K ⊕ Pn(x ⊕ K) in {0, 1}2n,

where x and Pn denote the input and the Prøst permutation, respectively. We
show the specification in Appendix B.

Prøst P̃128,K has a 6-round integral distinguisher with 264 chosen plaintexts.
We show the integral characteristics in Appendix C. Moreover, any one bit is dif-
fused to 64 bits in 2 rounds. Let c′i be the 64-bit truncation of ciphertexts ci. Let
f be a Boolean function that is generated from the last two-round permutation.
The input is the 64-bit truncation of the output of the last 2-round permutation.
The output is any one bit of the input of the last 2-round permutation. In this
case, the key recovery can be expressed as

264⊕
i=1

f(c′i ⊕ K ′) = 0,
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Fig. 3. Key-alternating cipher and FFT key recovery

where K ′ is truncated to 64 bits from K. The FFT key recovery calculates the
summation on the ring of integers, and we calculate

264∑
i=1

f(c′i ⊕ K ′).

From the description in Sect. 2.2, we evaluate this equation for all possible K ′

with 4 × 64 × 264 = 272 additions. The probability that this value is even for
incorrect keys is expected to be 2−1, but this value is always even for the correct
key.

All the bits of the output of the 6-round integral characteristic satisfy B.
Therefore, we repeat this analysis for 256 bits. Since the probability that all 256
bits satisfy B for incorrect key K is 2−256, we can recover the 256-bit key K.
Thus, the total complexity is approximately 256 × 272 = 280 additions.

We show an integral attack on 9-round Prøst P̃256,K in Appendix D. The
time complexity is approximately 280.9 additions.

4 Integral Attack against Key-Alternating Cipher and
Application to AES

4.1 Key-Alternating Cipher and FFT Key Recovery

The key-alternating cipher [5] is one of the most popular block cipher structures.
Let Pi be an n-bit permutation, and the key-alternating cipher is expressed as

c = Kr ⊕ Pr(· · · ⊕ P3(K2 ⊕ P2(K1 ⊕ P1(K0 ⊕ p)))),

where K0, K1, . . . , Kr are round keys that are calculated from the master key.
Let p and c be a plaintext and a ciphertext, respectively. Similar to the case
with the Even-Mansour scheme, the FFT key recovery is useful in evaluating
the complexity on the integral attack.

We first split r rounds into r1 and r2 rounds as r = r1 + r2 (see Fig. 3). We
assume that a key-alternating cipher has an r1-round integral distinguisher with
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N chosen plaintexts. Moreover, we need to guess a k-bit key which is required for
this distinguisher for the ciphertext side, and any one bit of output from the r1
rounds is diffused to k2 bits by r2 rounds. Let F2,K′ be a function from k2 bits to
one bit, where K ′ is k1-bit key that is calculated from Kr−r2 , Kr−r2+1, . . . , Kr−1.
In this case, the key recovery can be expressed as

N⊕
i=1

F2,K′(c′i ⊕ K ′
r) = 0,

where c′i and K ′
r are truncated to k2 bits from ci and Kr, respectively. To apply

the FFT key recovery, we first guess correct K ′, and we have

N∑
i=1

F2,K′(c′i ⊕ K ′
r) = 0 mod 2.

We can efficiently evaluate this equation using the FWHT. Thus, the time com-
plexity is O(2k1 × k22

k2).

4.2 FFT Key Recovery against AES

We show the FFT key recovery for the integral attack against a 6-round AES (see
Fig. 1). Since the FFT key recovery only calculates the summation on the ring
of integers, we transform Eq. (1) to

232∑
n=1

S
(i)
5 (S1(cn[1] ⊕ K1) ⊕ S2(cn[2] ⊕ K2) ⊕ S3(cn[3] ⊕ K3)

⊕ S4(cn[4] ⊕ K4) ⊕ K5)

=
232∑
n=1

f
(i)
K5

(F (cn ⊕ (K1‖K2‖K3‖K4))), (4)

where F is a function from {0, 1}32 to {0, 1}32. Moreover, f
(i)
K5

is a Boolean
function whose output is the i-th bit of the output of S5. We first guess K5, and
then calculate this summation using the FWHT. According to the description
in Sect. 2.2, the time complexity is 4 × 32 × 232 = 239 additions for every K5.
Moreover, since K5 is 8 bits, the time complexity is 28 × 239 = 247 additions.
The probability that this value is even for incorrect keys is expected to be 2−1,
but this value is always even for the correct key.

We estimate the time complexity to recover 5 keys K1, K2, . . . , K5 because
Ferguson et al. estimated it in [11]. Since the output of S5 is 8 bits, we repeat this
analysis using the 8 bits. The probability that all 8 bits satisfy B for incorrect
key is 2−8. Since the total bit length of K1, K2, . . . , K5 is 40 bits, we repeat the
above attack using 6 different sets. Thus, the total complexity is approximately
the time of 6×8×247 = 6×250 additions. When we use the partial-sum technique,
the total time complexity is approximately the time of 6 × 250 S-box lookups.
We discuss the differences between them in Sect. 6.
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5 Integral Attack against Feistel Cipher and Application
to CLEFIA

5.1 Feistel Cipher and FFT Key Recovery with MITM Technique

The Feistel cipher is commonly used to construct block ciphers. State Xi is
separated into the left half, XL

i , and the right half, XR
i , and each half is updated

as shown in Fig. 4. In 2012, Sasaki et al. proposed the MITM technique for the
integral attack. Generally, the integral characteristics of the Feistel cipher satisfy
B in the right half, namely

⊕
z becomes 0. In the MITM technique, we evaluate⊕

x and
⊕

y independently instead of
⊕

z. Then, we search for keys satisfying⊕
x =

⊕
y through analysis such as the MITM attack [8]. In [21], the partial-

sum technique is used to evaluate
⊕

x and
⊕

y, but the FFT can also be used
to evaluate them.

We assume that we need to guess k1 and k2 bits to evaluate
⊕

x and
⊕

y,
respectively. If the round key is XORed with input from function F , the FFT
key recovery can evaluate

⊕
x and

⊕
y with O(k12

k1) and O(k22
k2), respec-

tively. Since the matching step of MITM analysis requires the time complex-
ity of O(max{2k1 , 2k2}), the total time complexity of the integral attack is
O(k12

k1 + k22
k2).

5.2 CLEFIA

CLEFIA is a 128-bit block cipher, which was proposed by Shirai et al. in 2007.
It has a 4-branch generalized Feistel network, and is adopted as an ISO/IEC
standard. The round function is defined as in Fig. 5, and the i-th round output
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Fig. 6. Key recovery of 12-round CLEFIA

is calculated from the (i − 1)-th round output, RK2i−2 and RK2i−1. Moreover,
the whitening keys, WK 0 and WK 1, are used in the first round, and WK 2 and
WK 3 are used in the last round. For the 128-bit security version, the number of
rounds is 18.

Shirai et al. showed that CLEFIA has an 8-round integral distinguisher in
the proposal of CLEFIA [2], and then Li et al. showed that it has a 9-round
integral distinguisher with 2112 chosen plaintexts [15]. Moreover, Sasaki and
Wang showed that the complexity of the integral attack against a 12-round
CLEFIA is 13 × 2106 S-box lookups using the MITM technique.

5.3 FFT Key Recovery against CLEFIA

We show the FFT key recovery against a 12-round CLEFIA. We first define some
notations. Let C1, C2, C3, and C4 be ciphertexts and each value is 32 bits (see
Fig. 6). Let X be any 32-bit value, and X [i] denotes the i-th byte of X , namely
X = X [1]‖X [2]‖X [3]‖X [4]. We define function fi : {0, 1}32 → {0, 1}8 as

f1(X)‖f2(X)‖f3(X)‖f4(X) = F1(X).

We first use the same method as the MITM technique [21], which applies the
MITM attack [8] in the key recovery of the integral attack. It uses a 9-round
integral distinguisher [15], where the second branch of the ninth round output
satisfies B. To optimize the MITM technique, we equivalently move the position
of M0 in the tenth round as shown in Fig. 6. As a result, we have

⊕
Y =

⊕
Z.

Therefore, if
⊕

Y and
⊕

Z can be calculated with the guessed round keys, we
can recover the secret key from the MITM technique. Let

⊕
Y and

⊕
Z be
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calculated as⊕
Y =

⊕
S(F1(F0(C0 ⊕ RK22) ⊕ C1 ⊕ RK21 ⊕ WK 2) ⊕ C2 ⊕ RK18),⊕

Z =
⊕

M−1
0 (F1(C2 ⊕ RK23) ⊕ C3 ⊕ WK 3),

where S denotes the concatenation of 4 S-boxes S0, S1, S0, and S1. In [21], each
value is calculated using the partial-sum technique.

Hereinafter, we use the FFT key recovery. We need to guess 96 bits to evaluate⊕
Y . Since WK 3 does not affect

⊕
Z, we need to guess 32 bits to evaluate

⊕
Z.

Clearly, the time complexity to evaluate
⊕

Z is negligible compared to that to
evaluate

⊕
Y . Therefore, we show the complexity required to evaluate

⊕
Y . For

instance, the first byte of
⊕

Y is calculated as⊕
Y [1]

=
⊕

S0(f1(F0(C0 ⊕ RK22) ⊕ C1 ⊕ RK21 ⊕ WK 2) ⊕ C2[1] ⊕ RK18[1]).

To execute the FFT key recovery, we transform the above equation to∑
Y [1](i)

=
∑

S
(i)
0 (f1(F0(C0 ⊕ RK22) ⊕ C1 ⊕ RK21 ⊕ WK 2) ⊕ C2[1] ⊕ RK18[1]),

where Y [1](i) denotes the i-th bit of Y [1] and the output of S
(i)
0 is the i-th bit

of the output of S0. Moreover, this equation is transformed by defining function
f as∑

Y [1](i) =
∑

f ((C0‖C1‖C2[1]) ⊕ (RK22‖(RK21 ⊕ WK 2)‖RK18[1])) .

From the description in Sect. 2.2, we can evaluate this equation for all possible
(RK22‖(RK21⊕WK 2)‖RK18[1]) with 4×72×272 ≈ 280.2 additions. Similarly, we
evaluate

∑
Z[1](i) using the FFT key recovery, but the time complexity is neg-

ligible. Finally, we search for round keys satisfying
∑

Y [1](i) =
∑

Z[1](i) mod 2
using analysis such as the MITM attack. Since the complexity is approximately
272, it is also negligible.

Since the output of S0 is 8 bits, we repeat this analysis for the eight bits. More-
over, we similarly calculate the second, third, and fourth bytes of

⊕
Y and

⊕
Z.

Therefore, the time complexity is approximately 4 × 8 × 280.2 = 285.2 additions.
The probability that all 32 bits satisfy B for incorrect keys is expected to be
2−32. Since the total bit length of RK18, RK21 ⊕WK 2, RK22, and RK23 is 128
bits, we repeat above analysis using 5 different sets. Thus, the total complexity
is approximately 5 × 285.2 = 287.5 additions.

6 Discussion

We compare the FFT key recovery and the partial-sum technique. We first com-
pare them based on their units of complexity. The complexity of the partial-sum
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technique is estimated from the number of S-box lookups. On the other hand,
that of the FFT key recovery is estimated from the number of additions. Since the
two processing speeds depend on the environment, we cannot directly compare
them. However, we can roughly compare them. In the partial-sum technique, we
need at least the time complexity of O(2k+�), where � denotes the bit length of
guessed key when we partially compute the sum, e.g., � = 8 for AES and � = 32
for CLEFIA. We expect that the FFT key recovery is superior to the partial-sum
technique when � is greater than 8. Second, we compare them based on another
aspect. We compare them based on memory access. The partial-sum technique
randomly accesses memories. On the other hand, the FFT key recovery sequen-
tially accesses memories. Generally, sequential access is more efficient than the
random access.

We can further optimize the FFT key recovery against specific block ciphers.
For instance, if we repeat the attack for different chosen plaintext sets, we do not
need to calculate v̂ every time. We can use the same v̂ several times. Moreover,
if we use the same set of ciphertexts, we do not need to calculate ŵ every time.
Namely, we can use the same ŵ several times. Thus, the complexity of the FFT
key recovery can be reduced using these properties.

We have an open problem regarding the FFT key recovery. Since round keys
of block ciphers are calculated from the secret key, some bits of round keys are
automatically recovered if some bits of the secret key are recovered. The partial-
sum technique can utilize this property and efficiently reduce the complexity. For
instance, the integral attack against a 22-round LBlock utilizes this property [20].
However, in the FFT key recovery, we do not yet know how to utilize this property.

7 Conclusion

We proposed a new technique for the integral attack called the FFT key recovery.
This technique is useful in an integral attack with an enormous number of chosen
texts. Moreover, the time complexity only depends on the bit length of keys that
are required for a distinguisher from the ciphertext side. Therefore, we can easily
estimate the time complexity. We focus on three structures, the Even-Mansour
scheme where the block size is k bits; the key-alternating cipher where the block
size is k bits, and k2 bits are required to evaluate the integral distinguisher;
and the Feistel cipher where k1 and k2 bits are used to evaluate the MITM
integral key recovery. The time complexity is O(k2k), O(k22

k), and O(k12
k1 +

k22
k2), respectively. As applications of the three structures, we show that 8-

round Prøst P̃128,K , a 6-round AES, and a 12-round CLEFIA can be attacked
with 280, 252.6, and 287.5 additions, respectively.
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Appendix A: 4-round Integral Distinguisher of AES
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Fig. 7. 4-round integral distinguisher of AES

Figure 7 shows the 4-round integral distinguisher of AES. In the first round,
4 values satisfy A1, where the concatenation of their values also satisfies A. This
distinguisher uses 232 chosen plaintexts, and each byte after encrypting 4 rounds
satisfies B.
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Appendix B: Specification of Prøst

Prøst is an authenticated encryption scheme, which was submitted to the CAE-
SAR competition. Refer to the original specification [13] and the reference im-
plementation3 for details.

Prøst permutation Pn (n = 128 or 256) adopts a substitution-permutation
network, and inputs 2n bits and outputs 2n bits. We call a 2n-bit string a state,
and a 4-bit string a nibble. A state is represented as 4× d nibbles, where d = 16
and 32 for n = 128 and 256, respectively. We also refer to a four-nibble column
as a slice. Figure 8 shows the state of Prøst, where the figure on the left shows
the state of Prøst in [13] and the figure on the right shows our 2-dimensional
representation, whose top-left square marked in light-gray is the origin of the
columns and rows.

Prøst permutation consists of T rounds, where T = 16 and 18 for n = 128
and 256, respectively. The i-th round function is defined as

Ri := AddConstant ◦ ShiftPlanes ◦ SubSlices for i = 1, 2, . . . , T

SubSlices substitutes each slice using a super S-box. A super S-box replaces 16
bits, and it consists of 4 S-boxes and a multiplication by 16 × 16-bit matrix M .
ShiftPlanes cyclically shifts the j-th row by π2−(i mod 2)(j) nibbles to the left
for the i-th round, where πi is defined in Table 3.

AddConstant XORs a round constant.

4

d

d

MSB

LSB

MSB LSB

Fig. 8. Two different representations for the state of Prøst

Table 3. Definition of π1 and π2

n = 128 n = 256
1 2 3 4 1 2 3 4

π1 0 2 4 6 0 4 12 26
π2 0 1 8 9 1 24 26 31

3 The reference implementation can be obtained from the crypto_aead/proest*

directory in the SUPERCOP package which is available at
http://bench.cr.yp.to/supercop.html.

crypto_aead/proest*
http://bench.cr.yp.to/supercop.html
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Appendix C: Integral Distinguisher of Prøst

We experimentally search for integral distinguishers of Prøst. We set a slice of
the second round input as A and observe the sixth round output. The XOR of the
output depends on the value of the constant nibbles of the second round input.
However, we can expect that bit positions whose XOR values are always zero
are B by changing the value of the constant nibbles of the second round input.
We try 1024 randomly chosen values for the constant nibbles, and the number of
trials is sufficient to determine that the output bits satisfy B by assuming that
the non-B bits uniformly take 0 and 1.

Through the experiment, we obtain the 5-round integral distinguisher of
P̃128,K(x) with 216 chosen plaintexts (see Fig. 9). This distinguisher is extended
to the 6-round distinguisher as shown in Fig. 9, and it uses 264 chosen plaintexts.

Similarly, we show the integral distinguisher of P̃256,K(x). We first prepare
chosen plaintexts where each slice satisfies A, and this distinguisher is extended
to the 7-round distinguisher with 264 chosen plaintexts. When the first slice (16
bits) satisfies A, the seventh round output satisfy the following integral
characteristic.
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Fig. 9. 6-round integral distinguisher of P̃128,K
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0x30f0c00d3dc930cd090f0d0000d09000

0xd00c9fd390dc030d0f0000c0300090d0

0xd0930c0f0d000030c000d0d09003df9c

0x90d000c0f03009cd3dc0390d0d0f0000

Here, if the hexadecimal value in the i-th row and j-th slice is 0x3, the upper
two bits satisfy B and the lower two bits do not satisfy B. As another example,
when the seventeenth slice (16 bits) satisfies A, the seventh round output satisfy
the following integral characteristic.

0x090f0d0000d0900030f0c00d3dc930cd

0x0f0000c0300090d0d00c9fd390dc030d

0xc000d0d09003df9cd0930c0f0d000030

0x3dc0390d0d0f000090d000c0f03009cd

In both integral characteristics, 348 bits of the seventh round output satisfy B.

Appendix D: FFT Key Recovery against Prøst P̃256,K

In Appendix C, we show two 7-round integral distinguishers with 264 chosen
plaintexts. In each distinguisher, only 348 bits of the seventh round output satisfy
B. We show the FFT key recovery using these two distinguishers. The sum
of the number of bits that the two distinguishers do not satisfy B is 24 bits.
Therefore, 488 bits of the output of the 7-round integral characteristic satisfy B.
We repeat the FFT key recovery 488 times. The time complexity is the time of
488 × 272 = 280.9 additions. Since the probability that all 488 bits satisfy B for
incorrect key K is 2−488 at most, and 224 incorrect keys are expected to remain.
Therefore, we exhaustively search for the remaining keys. The time complexity
is 224, and it is negligible compared to the time complexity for the two FFT key
recoveries.
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Abstract. In this paper, a new cryptanalysis approach for a class of
authenticated encryption schemes is presented, which is inspired by the
previous length extension attack against hash function based MACs.
The approach is called message extension attack. The target class is the
schemes that initialize the internal state with nonce and key, update the
state by associated data and message, extract key stream from the state,
and finally generate a tag from the updated state. A forgery attack can be
mounted in the nonce-repeating model in the chosen-plaintext scenario
when a function to update the internal state is shared for processing the
message and generating the tag. The message extension attack is then
applied to PANDA, which is a dedicated authenticated encryption design
submitted to CAESAR. An existential forgery attack is mounted with
25 chosen plaintexts, 264 computations, and a negligible memory, which
breaks the claimed 128-bit security for the nonce-repeating model. This
is the first result that breaks the security claim of PANDA.1

Keywords: message extension attack, internal state recovery, existen-
tial forgery, nonce misuse, CAESAR, PANDA.

1 Introduction

Authenticated encryption is a symmetric-key primitive which provides both of
the confidentiality and the integrity of a message at the same time. The all-in-one
approach of the authenticated encryption has several advantages compared to
the previous one that combines independently designed encryption schemes and
authentication schemes. For example, 1) the security discussion can be closed
inside one scheme, which also simplifies the proper implementation of the scheme
and 2) the better performance can be achieved by sharing a part of computations
for encryption and authentication. Due to its generic purpose and complicated
security goal, there are various methods to design authenticated encryptions.

Currently, the competition to determine new portfolio of the authenticated
encryption, CAESAR, is conducted [1]. 58 algorithms were submitted in March

1 Recent updates about the research on PANDA are summarized in Introduction.

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 82–97, 2014.
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Fig. 1. Generic Computation Class of Our Target

2014, and the final portfolio will be selected in about 4 years through elaborative
discussion from various points of view.

Security is one of the most important aspects of authenticated encryptions.
While some of the designs submitted to CAESAR especially of mode-of-operation
proposals have the security proof, others of the designs especially of dedicated
construction proposals do not have the proof, and claim a certain number of bits
of security based on the designers’ intuition. Such claims might be later proved
to be correct or broken with cryptanalysis. At the present time, cryptanalytic
techniques and proving techniques for authenticated encryptions do not seem to
be sophisticated enough. More generic approaches need to be discussed.

Another important security issue is the misuse resistance, which provides a
fail safe mechanism for incorrect implementations. Many authenticated encryp-
tions require that the same nonce value must not be repeated under the same
key. Nonce-misuse resistant schemes provide a certain level of security even if
the nonce value is incorrectly repeated. Considering the recent incidents such
as Lucky Thirteen [2], cryptographers cannot always expect the perfect imple-
mentation with very careful security analysis, and thus providing the fail safe
mechanism from the primitive level is important.

One popular design approach for authenticated encryptions is having a large
state and extracting several bits from the state as a key stream. Then, the
ciphertext is generated by XORing the key stream and the message, and the
tag value is generated from the updated state value. The design approach is
depicted in Fig. 1. The encryption method of this approach is similar to stream
ciphers. The state is firstly initialized by the key K and nonce N . After updating
the state by associated data A, the key stream generation will start. The tag
generation function processes the length of the associated data, Alen, and the
length of the message, Mlen. Additionally, it may take as input some values
computed from A and M denoted by A∗ and M∗, e.g. the checksum of A or M .
Using the empty message or a pre-specified fixed message to update the state
can be regarded as M∗. In order to optimize the implementation cost, a function
to update the state can be shared among the associated data processing part,
the message processing part, and the tag generation part.
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The class in Fig. 1 reuses the updated state value by the encryption for the
authentication, and is thus very efficient. Besides, the class can achieve the length
optimality, i.e. the ciphertext length can be exactly the same as the input message
length. This class is useful and deserves careful analysis. Indeed, many designs
presented so far belong to this class. The duplex sponge mode [3] is an example,
and thus all the designs following the duplex sponge mode also belong to this
class. Several dedicated designs submitted to CAESAR also belong to this class,
e.g. AEGIS [4,5], LAC [6], PAES [7] and PANDA[8]. Besides, several designs outside
CAESAR belong to it as well, e.g. ASC-1 [9], ALE [10], and FIDES [11].2

Let us consider the nonce-misuse resistance of this class. On one hand, the con-
fidentiality of the ciphertext is trivially broken by repeating the same K, N, A.
Because the first key stream stays unchanged for the same K, N, A, the plain-
text recovery attack will be mounted easily. On the other hand, the internal state
value still remains secret. Thus, the integrity may be ensured even for the repe-
tition of the same nonce value. The CAESAR candidate PANDA aims to achieve
this goal. PANDA-s, which is one of the members of the PANDA-family, is claimed
to be nonce-misuse resistant with respect to the integrity.

Our Contributions. In this paper, we present a new cryptanalytic approach
to recover the internal state value or to break the integrity of authenticated
encryptions belonging to the class in Fig. 1 in the nonce-repeating model. The
overall idea is inspired by the length extension attack for hash function based
MACs specified in [12], thus we call it the message extension attack.

The message extension attack firstly aims to recover the internal state value
between the message processing part and the tag generation part. Let s and n be
the size of the internal state and the tag, respectively. The attacker first observes
an n-bit tag T for any pair of (A, M). The attacker can obtain n bits out of s bits
of the state after the tag generation function from T . Here, we have two observa-
tions: 1) input values to the tag generation function, i.e. Alen, Mlen, A∗, M∗, are
usually derived only from (A, M), and 2) functions to update the internal state
are usually identical in the message processing part and in the tag generation
part in order to optimize the implementation cost. Whenever these observations
apply, the attacker can extend the message M so that the input to the tag gen-
eration function is appended to the end of M . For this new message under the
same (K, N, A), the attacker can obtain n bits of the target state. Once the
internal state is fully recovered, the tag generation function can be simulated
offline and thus the existential forgery, which produces a valid pair of (N, A, M)
and (C, T ), can be performed only by accessing the encryption oracle.

Note that several cryptanalytic results have already been proposed for ALE

[13,14], FIDES [15] and PAES [16,17,18,19] that belong to the same class. We
stress that the message extension attack is different from those attacks that are
differential based approach mainly accessing to the decryption oracle.

2 In Section 4, we identify features of some of these designs that make the attack
presented in this paper in applicable.
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We then apply the message extension attack to PANDA-s, which belongs to
the class in Fig. 1 and claims 128-bit security in the nonce-repeating model. The
internal state size for PANDA-s is 448 bits. A unique design feature of PANDA-s is
that 192 bits of the state are not simply affected from the message input, and
thus cannot be recovered. This prevents the simple application of the message
extension attack. We then analyze the details of the round function of PANDA-s.
By exploiting the key stream information, we show that the existential forgery
attack is mounted with 25 chosen plaintexts, 264 computations, and a negligible
memory. This is the first result that breaks the security claim of PANDA.

Current Status of PANDA. Between the preprint version (25 March 2014) [20]
and the formal publication of this paper, Feng et al. uploaded unreviewed work
of the cryptanalysis on PANDA-s which requires 264 computational cost but can
work in the nonce-respecting model under the known-plaintext scenario [21] (06
May 2014). In a few days later (10 May 2014), Feng et al. improved their attack
complexity to 241 and claimed a practical forgery attack against PANDA-s [22].

PANDA was withdrawn from the CAESAR competition on 13 May 2014.

Paper Outline. The organization of this paper is as follows. We describe mes-
sage extension attack in a generic form in Section 2. We then apply it to mount a
forgery attack on PANDA-s in Section 3. Possible countermeasures are discussed
in Section 4. Finally, we conclude the paper in Section 5.

2 Generic Approach with Message Extension Attack

In this section we introduce our approach for recovering the internal state value
and forging the tag value against the computation structure in Fig. 1. More
precisely, our goal is finding a valid pair of (N, A, M) and (C, T ) which has not
been queried before, i.e. the existential forgery attack in the nonce-repeating
model in the chosen-plaintext scenario. Note that the attacker only needs to
interact with the encryption oracle. The decryption oracle is never accessed.

We denote the lengths of the associated data A and the message M as Alen

and Mlen, respectively. We also denote four parts of the class as follows.

Fini: generates an s-bit state from the initial value IV , key K, and nonce N .
FAD: updates the s-bit state depending on the associated data A.
FM: updates the s-bit state depending on the message M , and generates the

key stream of Mlen bits. In practice, Mlen bits of the key stream are not
generated at once. A small function generating a certain bit size, say b bits,
of the key stream is iteratively performed until Mlen bits are generated.

FT: computes an n-bit tag value depending on the s-bit state, Alen, and Mlen. It
can also take as input some values computed from A or M , e.g. the checksum
of A or M . The class in Fig. 1 assumes that the input value to FT can be
determined easily when A and M are fixed. We denote its value by I(A, M).
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With the message extension attack, we aim to recover n bits of internal state
value which is input to the tag generation function FT by exploiting the tag value
obtained by queries of different messages. One natural approach is utilizing the
last key stream value, which can be recovered by taking XOR of the last b bits
of the message and the ciphertext. Because the key stream is generated from
the state, it may derive at most b-bit information about the internal state value.
The difficulty of this attempt is that the size of b is usually much smaller than
the state size s and thus is not enough to recover the entire state. For instance,
the sizes of b and s are 10 bits and 160 bits for FIDES respectively, and 64 bits
and 448 bits for PANDA-s respectively. By using the key stream for multi-blocks,
the amount of known bits increases. However, this also increases the amount of
unknown bits. Thus, even with multi-blocks, the ratio of the number of known
bits to the number of unknown bits does not increase.

Our observation is that when the computations to update the state are identi-
cal between FM and FT, we can utilize the n-bit tag value to recover the internal
state, in which n is often larger than b, and thus the attacker can obtain more
information. For instance, the tag size n of FIDES and PANDA-s are 80 bits and
128 bits, respectively.

Intuitively the attack works as follows. We first choose the associated data
A and the message M , and then compute the corresponding input value to
FT, i.e. I(A, M). Then, the input value for updating the state in FM and FT

is represented as M‖I(A, M). We then choose another message M ′ such that
M ′ ← M‖I(A, M). That is, M is extended to M ′ by appending its input value
to FT. This is illustrated in Fig. 2. n bits of the state after the FM function

       

 

 

 

 
 

 

 

 

 

       

 

 

 

 
 

 

 

 

 
  

 

Fig. 2. Generic Approach with Message Extension Attack

for M ′ is already known to the attacker as the tag value T for M . This gives
significant information to the attacker about the internal state value.
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How many internal state bits are directly recovered from the obtained n-bit
information is dependent on the specification. If the tag is generated by the
truncation of the state, it immediately derives n bits of the state. If the tag is
generated by some function of the state, it does not reveal the state bits directly.
For example, PANDA generates the tag by taking the XOR of internal state bits.
Thus, the attacker can know the result of the XOR, but cannot know the state
bits directly. However, in any case, n-bit information is derived.

The security of the class shown in Figure 1 tends to be proved up to O(2s/2)
queries. Hence, the parameter s = 2n is very natural. With the recovered n bits,
the remaining unknown bit size is n bits. To recover those n bits efficiently3,
we need more information. Let M ′′ be a message in which another message
block is appended to M ′, i.e. M ′′ = M ′‖X . Then, besides the obtained n-bit
information, another b-bit key stream generated by the target state is obtained.
How the b-bit key stream relates to the s-bit state depends on the specification.
Here we suppose that the size of the exhaustive search is reduced from n bits
to n − b bits. For example, when b-bit key stream is unknown state bits of the
state or the XOR of the several unknown state bits, the assumption can hold.

The correctness of the exhaustive guess on n − b bits can be verified by com-
puting FT offline, and by checking the n-bit match of the result and T ′ (the
tag value for M ′). Moreover, by appending longer X , the key stream can also
be used for the verification. Thus, false positives can be eliminated. Once the
internal state value is recovered, the attacker can forge the tag value for any
message starting from M ′, namely any message of the form M ′‖Y , where Y can
be an arbitrary string but for already queried X .

The attack also needs to obtain the ciphertext of the message to be forged.
This is easily obtained by querying a message in which at least 1 random block
is appended to the end. The ciphertext for the extended message contains the
ciphertext for the message to be forged. The attacker can copy it.

The detailed attack procedure is described in Algorithm 1.
As shown in Algorithm 1, the attack requires to repeat the same nonce three
times. Hence, the attack can work only in the nonce-repeating model. The at-
tacker needs to specify the queried message. Therefore, the attack only works
in the chosen-plaintext scenario. In the end, the attacker can find a valid pair
of (N, A, M ′′) and (C′′, T ′′) which have not been queried before. Thus, the at-
tack breaks the notion of the existential forgery attack only by accessing the
encryption oracle.

The data complexity is 2 chosen-plaintext queries. Note that the data com-
plexity is usually measured by the number of queried message blocks, which
cannot be determined without giving the detailed specification of FT. Thus, we
only count the number of queries here, and later will discuss the details in the
application to a specific design. The time complexity is 2s−n computations of
FT. The memory requirement is negligible.

3 A forgery attack may be able to be performed without recovering all the internal
state value. For generality, the attack goal is set to recovering the 2n-bit state value.
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Algorithm 1. Existential Forgery with Message Extension Attack

Output: a valid pair of (N,A,M) and (C, T )

1: Choose values of N , A, and M at random.
2: Query (N,A,M) to the encryption oracle to obtain the corresponding C and T .
3: Compute the corresponding I(A,M) offline and set M ′ ← M‖I(A,M).
4: Query (N,A,M ′) to the encryption oracle to obtain the corresponding C′ and T ′.
5: Compute the corresponding I(A,M ′) offline.
6: Query M ′‖X for a random message block X to obtain b-bit key stream.
7: for the remaining s− n− b bits of the state after FM for processing M ′ do
8: With the knowledge of the state and I(A,M ′), compute FT offline.
9: if the result of FT and received T ′ match then
10: Choose the value of message Y ( 
= X) to be appended at random.
11: Set M ′′ ← M ′‖Y , and compute the corresponding I(A,M ′′) offline.
12: With the knowledge of the state and I(A,M ′′), compute FT offline. Let T ′′

be the resulted output from FT.
13: Choose 1-block sting Z and query M ′′‖Z to obtain the ciphertext C′′‖CZ .
14: return (N,A,M ′′) and (C′′, T ′′).
15: end if
16: end for

3 Application: Existential Forgery Attack on PANDA-s

In this section, we apply the message extension attack for PANDA-s, which is
claimed to be nonce-misuse resistant with respect to integrity. In Section 3.1, we
briefly introduce the specification of PANDA-s. Its computation structure belongs
to the class in Fig. 1, with the state size s = 448 and the tag size n = 128.
Because n is not big enough, we cannot attack PANDA-s with the straight-forward
application of the generic approach. In Section 3.2, we improve the attack by
looking inside the round function of PANDA-s. By further exploiting the key
stream value, we can successfully mount the existential forgery attack.

3.1 Specification of PANDA-s

PANDA-s is a member of the PANDA-family [8] designed by Ye et al. which was
submitted to CAESAR. The PANDA-s encryption function takes a 128-bit key
K, a 128-bit nonce N , variable length associated data A, and variable length
plaintext M as input, and outputs the ciphertext C and a 128-bit tag T .

The encryption function consists of 4 parts: initialization, processing asso-
ciated data, processing plaintext, and finalization, which are computed in this
order. The computation structure is illustrated in Fig. 3, where the bit size of
each arrow line is 64 bits. 64-bit values are called “blocks” in PANDA-s.

Initialization. A 128-bit key K and a 128-bit nonce N are mixed and expanded
to 448-bit internal state. We omit the details due to the irrelevance to our attack.
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Fig. 3. Computation Structure of PANDA-s

Processing Associated Data. The associated data A is first padded to a
multiple of 64 bits (A0, A1, . . . , Aa−1), and then processed block by block with
the round function RF . The round function RF of PANDA-s generally takes an
8-block (or 512-bit) value as input, of which 448 bits are for the previous internal
state value and 64 bits are for mixing new input data to the state. The output of
RF is either a 7-block value (updated internal state) or a 8-block value (updated
internal state and 1-block key stream). We denote the round function by RF7

when the output size is 7 blocks, and by RF8 when the output size is 8 blocks.
In RF7, a 7-block internal state value is split into seven 1-block variables

w, x, y, z, S(0), S(1), S(2). Let m be another 1-block input value. Then, the up-
dated state value w′, x′, y′, z′, S′(0), S′(1), S′(2) are computed as follows:

w′ ← SubNibbles(w ⊕ x ⊕ m),
x′ ← SubNibbles(x ⊕ y),
y′ ← SubNibbles(y ⊕ z),
z′ ← SubNibbles(S(0)),
(S′(0), S′(1), S′(2)) ← LinearTrans(S(0) ⊕ w, S(1), S(2)),

where SubNibbles is a parallel application of a 4-bit S-box and LinearTrans

applies a linear transformation. We omit their full specifications due to the irrel-
evance to our attack. RF7 is illustrated in Fig. 4. Finally, by taking the 7-block
state value after the initialization, state, as input, the associated data is pro-
cessed by computing state ← RF7(state, Ai) for i = 0, 1, . . . , a − 1.

Processing Plaintext. The plaintext M is first padded to a multiple of 64 bits
(M0, M1, . . . , Mm−1), and then processed block by block with the round function
RF8. RF8 is almost the same as RF7. The only difference is that it produces
another 1-block output value r by r ← x ⊕ x′ as illustrated in Fig. 5.

The additional 1-block output value ri in round i is used as a key stream.
Namely, the ciphertext block Ci for the plaintext block Mi is computed by



90 Y. Sasaki and L. Wang

Fig. 4. Round Function for 7-block Output Fig. 5. Round Function for 8-block Output

SN and LT stand for SubNibbles and LinearTrans, respectively.

Ci ← Mi ⊕ ri. Finally, by taking the 7-block state value after the associated
data processing, state, as input, the plaintext is processed as follows:

(state, r0) ← RF8(state, 0),
for i = 0 to m − 1 do

Ci ← Mi ⊕ ri,
(state, ri+1) ← RF8(state, Mi).

end for

The extra key stream rm after the last message block Mm−1 is discarded.

Finalization. In the finalization, the state is updated by using the bit length of
the associated data Alen and the bit length of the plaintext Mlen. Let Leni be
Alen when i is even and Mlen when i is odd. The finalization consists of 14-round
state update by using Leni and the tag generation to produce a 128-bit tag T .
In details, the finalization computes the following operations.

for i = 0 to 13 do
state ← RF7(state, Leni).

end for
T ← (w ⊕ y)‖(x ⊕ z).

Claimed Security. The claimed security of PANDA-s is given in Table 1. In
particular, 128-bit security is claimed for integrity in the nonce-repeating model.

3.2 Existential Forgery Attack against PANDA-s

We first observe that the following properties of PANDA-s enable the application
of the message extension attack.

1. The computations for updating the state by RF7 and RF8 are exactly the
same, i.e. RF7(state, m) and RF8(state, m) produce the same state value.

2. The 1-block input values in the finalization, Alen and Mlen, can be computed
by the attacker only from A and M .
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Table 1. Bits of Security for PANDA-s in Two Models [8, Table 3.1]

Goal Model
Nonce-respect Nonce-repeat

confidentiality for the plaintext 128 /

integrity for the plaintext 128 128

integrity for the associated data 128 128

integrity for the public message number 128 128

Overall Strategy and Message Choices. We start by applying the message
extension attack to PANDA-s. The attack requires only two encryption oracle calls
under the same key and nonce. The associated data can be fixed to any value.
Hereafter, we always set A to Null for simplicity. We set the first query Q1 as
Q1 ← α, where α can be any string. Let �(α) be the 14-block value that will be
processed in the finalization part for α, i.e. �(α) = Alen‖Mlen‖ . . . ‖Alen‖Mlen.

By following the generic approach in Section 2, we should set the second query
Q2 as Q2 ← α‖�(α). However, the 128-bit tag for Q1 only reveals 128 bits of
the 448-bit state after the processing plaintext part for Q2. As later explained,
we aim to recover 256 bits of the state. Hence, we need more information, at
least additional 128 bits, of the state. Here, our strategy is appending 2 more
message blocks after α‖�(α), and obtaining 2-block (128-bit) key stream value,
which allows us to recover 256 bits of the state. Hence, we set Q2 ← α‖�(α)‖β,
where β can be any string as long as its length is at least 2 blocks. Then, only
with 2 queries of Q1 and Q2, 256 bits of the state after α‖�(α) is processed are
recovered.

We then choose a target message M to be forged. By following the generic
approach, we should append some string X to α‖�(α). Namely, M ← α‖�(α)‖X .
Then �

(
α‖�(α)‖X

)
is processed during the finalization. The generic approach in

Section 2 computes the state while X and �
(
α‖�(α)‖X

)
are processed. How-

ever, because we only partially recover the state (256 bits out of 448 bits), the
generic approach cannot work for PANDA-s. As later explained, to recover the
internal state, we need the corresponding key stream value. While �

(
α‖�(α)‖X

)
is processed in the finalization, the key stream is never generated, and thus
the internal state cannot be recovered. Here, our strategy is using a query Q3

in which α‖�(α)‖X‖�
(
α‖�(α)‖X

)
is included inside. Then, the key stream is

obtained while �
(
α‖�(α)‖X

)
is processed, and thus the corresponding internal

state can be recovered. Finally, by setting M ← α‖�(α)‖X , the tag for M can
be computed offline. Note that, precisely speaking, we need at least 1 block after
α‖�(α)‖X‖�

(
α‖�(α)‖X

)
in Q3 by a similar reason to append 2 blocks in Q2.

The purpose of Q2 and Q3 can be achieved by 1 query. Namely, we set Q2 ←
α‖�(α)‖β‖�

(
α‖�(α)‖β

)
‖γ, where β is any string and γ is any string as long as its

length is at least 1 block. Finally, the tag for M ← α‖�(α)‖β can be computed
offline. In summary, we choose the queries of the following forms:

Q1 ← α, Q2 ← α‖�(α)‖β‖�
(
α‖�(α)‖β

)
‖γ, M ← α‖�(α)‖β.
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Because M is included inside Q2, the ciphertext of M can be directly copied
from a part of the ciphertext of Q2.

As you can see, except for 14 blocks (112 bytes) of �(α), any message can be
the target of our forgery attack. Therefore, though this attack is the existential
forgery attack, it can forge the tag for a huge variety of messages.

Recovering 256-bit Internal State After Processing α‖�(α). The at-
tacker first queries the message Q1 = α and obtains the corresponding tag T1.
This reveals some information about the internal state x, y, z, w after processing
α‖�(α). The attacker then appends the message block β = β0‖β1‖ · · · . Let the

internal state value after processing α‖�(α) be (wβ0 , xβ0 , yβ0 , zβ0, S
(0)
β0

, S
(1)
β0

, S
(2)
β0

).
Remember that the tag is computed by T ← (w ⊕ y)‖(x ⊕ z). The obtained tag
T1 indicates that the internal state value satisfies the following equations.

wβ0 ⊕ yβ0 = TL
1 , (1)

xβ0 ⊕ zβ0 = TR
1 , (2)

where TL
1 and TR

1 are 64-bit values satisfying TL
1 ‖TR

1 = T1.
Then, the attacker queries Q2 = α‖�(α)‖β‖�

(
α‖�(α)‖β

)
‖γ, and obtains the

corresponding ciphertext blocks and tag T2. The computation to process β is

shown in Fig. 6. As a result of RF8(wβ0 , xβ0 , yβ0, zβ0 , S
(0)
β0

, S
(1)
β0

, S
(2)
β0

, β0), the
attacker obtains the ciphertext block Cβ0 , which is computed by rβ0 ⊕ Mβ0 .
Hence, the key stream value rβ0 can be computed as Mβ0 ⊕ Cβ0 . From the
computation structure of the key stream, the attacker obtains the equation

rβ0 = xβ0 ⊕ SubNibbles(xβ0 ⊕ yβ0). (3)

Here, the attacker guesses the 64-bit value of xβ0 . For each guess, the cor-
responding zβ0 is obtained from Eq. (2), the corresponding yβ0 is obtained
from Eq. (3), and the corresponding wβ0 is obtained from Eq. (1). Hence,
for each guess of xβ0 , 256-bit internal state value (wβ0 , xβ0 , yβ0 , zβ0) is deter-
mined. Moreover, the knowledge of (wβ0 , xβ0 , yβ0 , zβ0) leads to the knowledge of
wβ1 , xβ1 , yβ1 , wβ2 , xβ2 , and rβ1 . These give another 64-bit relation

rβ1 = xβ1 ⊕ SubNibbles(xβ1 ⊕ yβ1), (4)

and 1 guess of xβ0 out of 264 possibilities is expected to satisfy this equation.
Therefore, the 256-bit internal state value (wβ0 , xβ0 , yβ0 , zβ0) is almost uniquely
determined. In Fig. 6, the focused variables up to here are stressed by bold circles.
Note that with some probability, several candidates of (wβ0 , xβ0 , yβ0 , zβ0) will
remain. Those false positives only give negligible impact to the attack complexity.
Moreover, if the key leak value is obtained for a few more message blocks, those
false positives can be eliminated easily.

Recovering w, x, y, z in All Rounds. In the round function of PANDA-s,
the input message affects the right most 3 blocks (=192 bits) of the state in a
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Fig. 6. Recovery of 256 Bits of the Internal State

complicated way through LinearTrans. Therefore, without the exhaustive guess
for those 192 bits, recovering all 448-bit internal state seems impossible. However,
2192 is already more expensive than the cost of the brute force attack.

To solve this problem, our strategy is to keep revealing the 256-bit state values
w, x, y, z for all rounds by using the knowledge of (wβ0 , xβ0 , yβ0 , zβ0). This can
be done with negligible cost for PANDA-s. Let us recall Fig. 6. Once the 256-bit
state values wi, xi, yi, zi are recovered for some i, the attacker can easily obtain
192-bit state values for the next round, i.e. wi+1, xi+1, yi+1. Therefore, if the
64-bit state value zi+1 can be recovered efficiently, the attacker can reveal the
256-bit state values w, x, y, z for any number of rounds. In Fig. 6, in order to
recover the 64-bit value of zβ1 , the attacker uses the key stream value after 1
round, i.e. rβ2 . In details, the attacker focuses on the following 64-bit relation.

rβ2 = xβ2 ⊕ SubNibbles(xβ2 ⊕ yβ2),

= xβ2 ⊕ SubNibbles
(
xβ2 ⊕ SubNibbles(yβ1 ⊕ zβ1)

)
.

The above equation is converted to

zβ1 = yβ1 ⊕ SubNibbles−1
(
SubNibbles−1(rβ2 ⊕ xβ2) ⊕ xβ2

)
. (5)

Then, zβ1 is recovered only with 1 computation. In Fig. 6, the focused variables
to recover zβ1 are stressed by bold lines. By iterating the same procedure for
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all the subsequent blocks, the attacker can recover (wβi , xβi , yβi , zβi) for any
block-length i as long as the key stream for the next block, rβi+1 , is obtained.

Forging Tag. Due to the message structure of Q2, the attacker can recover the
internal state after α‖�(α)‖β‖�

(
α‖�(α)‖β

)
is processed. Note that the length

of γ must be at least 1 block so that the internal state after the last block of
α‖�(α)‖β‖�

(
α‖�(α)‖β

)
can be recovered. Then, the tag value for a new message

M(= α‖�(α)‖β) is easily computed by (w ⊕ y)‖(x⊕ z) of this state. Because M
is included inside Q2, the ciphertext C can be copied from the ciphertext of Q2.

Complexity Evaluation. The attack requires 2 encryption oracle calls in the
chosen-plaintext scenario and the nonce repeating model. The number of queried
message blocks is minimized when we set α, β ← Null and |γ| ← 1. Then, the
number of queried message blocks is 1 for Q1 and 0 + 14 + 0 + 14 + 1 = 29
for Q2, in total 30 blocks. Therefore, the data complexity is about 25 chosen-
plaintext message blocks. To recover the 256-bit state (wβ0 , xβ0 , yβ0 , zβ0), 264

computational cost is required. Then, all the remaining cost is 1. Thus, the time
complexity of this attack is less than 264 PANDA-s computations. The memory
requirement is to store all the ciphertext blocks and the tag, which is negligible.

Attack Procedure. The attack procedure for the parameter α, β ← Null and
|γ| ← 1 in the algorithmic form is given in Algorithm 2. For simplicity, the
associated data is supposed to be Null.

Algorithm 2. Existential Forgery Attack on PANDA-s

Input: nonce N,Q1 = Null,Q2 = �(Null)‖�
(
�(Null)

)
‖γ

Output: ciphertext C and tag T in which (N, C, T ) is valid

1: Query Q1 to the encryption oracle to obtain the tag T1 = TL
1 ‖TR

1 .
2: Query Q2 to obtain the key stream rβ0 , rβ1 , . . . , rβ14 and set C to the first 14 blocks

of the ciphertext of Q2.
3: for 264 guesses of xβ0 do
4: Compute wβ0 , yβ0 , zβ0 with equations (1),(2),(3).
5: if Equation (4) is satisfied then
6: Fix the values of wβ0 , xβ0 , yβ0 , zβ0 .
7: end if
8: end for
9: for i = 1, 2, . . . , 14 do
10: With rβi+1 and equation (5), compute zβi to recover (wβi , xβi , yβi , zβi).
11: end for
12: Set T ← (wβ14 ⊕ yβ14)‖(xβ14 ⊕ zβ14)
13: return (C,T ).
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4 Countermeasures

The message extension attack seems to be possible to prevent with some extra
cost. To apply the message extension attack, two conditions must be satisfied.

1. The functions to update the state in FM and in FT are identical.
2. I(A, M) can be derived only from A and M .

In order to break the first condition, giving a small tweak to the state,
e.g. XORing a constant at the beginning of FT, is a possible option. The XOR
must be done to the state which is not directly updated by the message input.
Otherwise, the impact of the tweak can be canceled by the attacker by modify-
ing the message. For example, for PANDA-s, it is hard for the attacker to control
the impact to S(0), S(1), S(2) from a message block. Therefore, if a constant is
XORed to one of S(0), S(1), S(2) at the beginning of FT, the attacker cannot can-
cel its impact and thus the message extension attack can be prevented. Indeed,
AEGIS adopts such a mechanism, i.e. XORing some constant at the begging of
FT. This prevents the message extension attack on AEGIS though it does not
claim the security in the nonce-repeating model to begin with.

In order to break the second condition, the simplest way is to use the key K in
FT. Actually, many of known secure block-cipher based MACs run the full-round
encryption both in the beginning and the end, and many of hash function based
MACs use the key both in the beginning and the end. Compared to those, using
K in FT may be a reasonable extra cost to increase the security. Actually, the
message extension attack can be prevented by masking the final output with a
key-dependent value.

5 Concluding Remarks

In this paper, we proposed the new approach called message extension attack for
a class of authenticated encryptions, which includes many of currently discussed
designs. The message extension attack aims to mount the internal state recovery
attack or the existential forgery attack only with the encryption oracle in the
nonce-repeating model. The attack exploits the similarity of the state updating
function for processing the message and generating the tag.

We applied the message extension attack to PANDA-s, which is one of the de-
signs submitted to the CAESAR competition. Due to the state size and the com-
putation structure particular to PANDA-s, the simple application cannot work.
With some detailed analysis, we found that the forgery attack can be performed
with 25 chosen plaintexts, 264 computational complexity, and negligible memory.
The result clearly breaks the designers’ security claim of PANDA-s.

To apply the message extension attack, several conditions must be satisfied.
Thus it can be prevented with a small cost. Nevertheless, we believe that the
message extension attack is an useful object to learn. Accumulating the knowl-
edge of generic approaches at this stage is important to discuss the authenticated
encryption security in future. We hope that future authenticated encryption de-
signers understand the approach and make their designs resistant to it.
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Abstract. We consider a situation where the adversary performs a sec-
ond preimage attack and is able to influence slightly the preconditions
under which the iterated hash function is used. In the first variant of
the attack, the adversary is able to choose the initial value of the hash
function after receiving the original message. In the second variant, the
adversary is allowed to determine a prefix of the original message and has
to create a second preimage with the same prefix. Both of these attacks
use diamond structures and the expected number of compression func-
tion calls required to complete each of them successfully is in O(

√
n·2 2n

3 )
while on random oracle hash function it is in O(2n). We also show that it
is possible to decrease the before mentioned expected value to O(2

2n−l
3 )

if the length of the original message is 2l and l is sufficiently large. Fur-
thermore, we generalize these attacks to work against concatenated hash
functions as well.

1 Introduction

Hash functions are defined to be mappings which take an arbitrary length string
over a fixed alphabet (usually assumed to be the binary alphabet {0, 1}) and
return a (binary) string of a fixed length. These functions are employed to put
up various cryptographic structures that are in turn used to form cryptographic
protocols for various purposes such as message authentication, digital signatures
and electronic voting. Traditionally there are three security properties required
from a cryptographic hash function, preimage resistance, second preimage resis-
tance and collision resistance.

Most hash functions widely used in practice follow the design principles pro-
posed by Merkle and Damgård [5, 21]. There have been several attacks against
these functions, based on the flaws in the underlying compression function [7,
12, 13, 23–26]. In recent years, theoretical study has also found some weaknesses
in the iterative structure itself [4, 8–11, 14–19, 22].

One of the most interesting results concerning the iterative structure in a
theoretical sense was presented in [10]. The paper introduces the so called herding
attack which relies on diamond structures, a tree construction where several
hash values are herded towards one final hash value. Diamond structures proved
to be very useful in attack construction. They were employed in [1] and [2]
to create herding and second preimage attacks against several iterated hash

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 98–110, 2014.
c© Springer International Publishing Switzerland 2014
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function variants also beyond Merkle-Damgård. The results concerning diamond
structures have been further studied and improved in [3] and [19].

This paper applies diamond structures to create two new variants of preimage
attacks. In the Chosen Initial Value Attack (CIVA) the attacker, after receiving
the message, is allowed to choose the initial value of the hash function. In the
Chosen Prefix Attack (CPA) the state of affairs is as follows: The attacker A
wants to create a second preimage for some message generated by the victim B
and A can affect the message slightly by choosing a prefix to it. However, the
second preimage the attacker creates has to contain the same prefix. A situation
like this could occur for example when A and B wish to form a secret contract
and A can choose the time when the contract will be signed, that is public
information, but is not allowed to formalize its details freely.

We analyze the the effectiveness of both CIVA and CPA and generalize them
to the case where we are either dealing with long messages or attacking against
concatenated hash function.

This paper is organized in the following way. In the second section, we give
some basic definitions and results that are needed later. In the third section,
we introduce necessary earlier results concerning the topic. The fourth section
presents the details of CIVA and CPA. In Section 5 we generalize our results to
concatenated hash functions. The paper ends with a short conclusion.

2 Basic Concepts and Notation

Some basic definitions concerning hash functions follow.

2.1 Words, Hash Functions and Security Properties

Let N+ be the set of all positive integers and N = N+ ∪ {0}. An alphabet is any
finite nonempty set of abstract symbols called letters. Given an alphabet A, a
word (over A) is any finite sequence of symbols in A. Let w be a word over A.
Then w = a1a2 · · · ar where r ∈ N and ai ∈ A for i = 1, 2, . . . , r. Here r is the
(symbol) length of w. If r = 0, then w is the empty word, denoted by ε. For each
s ∈ N, denote by As the set of all words of length s over A. Furthermore, let A+

be the set of all nonempty words over A and A∗ = A+ ∪ {ε}. The concatenation
of two words u and v in A+ is the word u||v obtained by writing u and v after one
another. For any two sets U and V of words, let U ||V = {u||v

∣∣u ∈ U, v ∈ V }.
A hash function (of length n, where n ∈ N+ ) is a mapping H : {0, 1}+ →

{0, 1}n. An ideal hash function H : {0, 1}+ → {0, 1}n is a (variable input length)
random oracle: for each x ∈ {0, 1}+, the value H(x) ∈ {0, 1}n is chosen uniformly
at random.

There are three basic security properties of hash functions: collision resistance,
preimage resistance and second preimage resistance. In this work our main in-
terest is second preimage that has been historically defined as follows.
Second preimage resistance. Given any x ∈ {0, 1}+, it is computationally
infeasible to find x′ ∈ {0, 1}+, x �= x′, such that H(x) = H(x′).
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2.2 Iterated Hash Functions

The design principles of [21, 5] create a so called iterated hash function. A (finite)
compression function forms the core of an iterated hash function.

Definition 1. A compression function (of block size m and length n) is a map-
ping f : {0, 1}n × {0, 1}m → {0, 1}n where m, n ∈ N+.

Let m, n ∈ N+, m > n, and the compression function f : {0, 1}n × {0, 1}m →
{0, 1}n be given. The iterative closure f+ of f is a function: {0, 1}n× ({0, 1}m)+

→ {0, 1}n defined as follows: Given h in {0, 1}n and x = x1||x2|| · · · ||xl, where
l ∈ N+, and x1, x2, . . . , xl ∈ {0, 1}m, let hi = f(hi−1, xi) for i = 1, 2, . . . , l.
Then f+(h, x) = hl. Note that the assumption m > n is made for the sake of
notational simplicity, not because of necessity.

We wish to be able to compute the hash value of any word in {0, 1}+ and,
moreover, make use of f+ in our hashing process. Since all words in {0, 1}+ do
not have length that is divisible by m, it is necessary to preprocess the word by
adding extra bits (padding) at the end of the word to attain the suitable symbol
(or bit) length. The padding usually includes also the bit length of the original
message, so in fact all words are padded. This is known as Merkle-Damgård
strengthening.

Let us define the iterated hash function H : {0, 1}+ → {0, 1}n (based on f
and with initial value h0 ∈ {0, 1}n) as follows. Let x ∈ {0, 1}+ and padx be
the aforementioned padding of x: padx contains the bit length of x and the
length of the concatenated word x||padx is divisible by m. We then set H(x) =
f+(h0, x||padx).

Usually, the initial value h0 (often denoted also by IV ) is assumed to be a
fixed constant, but we will consider a situation where the attacker can choose
the initial value from some predetermined set.

From now on, we assume that all the words that are to be hashed have already
been appropriately padded; the words are thus in ({0, 1}m)+, i.e., their lengths
are divisible by m. The elements of ({0, 1}m)+ are called messages. Let x =
x1||x2 · · · ||xl where l ∈ N+ and xi ∈ {0, 1}m for i = 1, 2, . . . , l. Then the length
of the message x, denoted by |x|, is l.

2.3 Attack Complexity

In this work we define the (message) complexity of a given attack algorithm
to be the expected number of queries on the compression function f required
to complete the attack successfully. This means that the complexity of both
a preimage attack and a second preimage attack should be O(2n) while the
complexity of a collision attack should be O(2

n
2 ).

2.4 Concatenated Hash Functions

In practice, a natural way to build hash functions with large hash values, is to
take hash functions with smaller hash values and concatenate their results (see
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for example [20]). This means that, given the iterative closures f+
1 : {0, 1}n1 ×

({0, 1}m)+ → {0, 1}n1 and f+
2 : {0, 1}n2 × ({0, 1}m)+ → {0, 1}n2 of the com-

pression functions f1 and f2, respectively, one can simply set C(h0,1, h0,2, x) =
f+
1 (h0,1, x)||f+

2 (h0,2, x), where h0,1 ∈ {0, 1}n1, h0,2 ∈ {0, 1}n2 and x is a message.
Ideally C : {0, 1}n1 × {0, 1}n2 × ({0, 1}m)+ → {0, 1}n1+n2 should be random

oracle. This, however, is not the case and such structure has severe weaknesses
as has been shown before [9, 1]. From the perspective of this work it is important
to notice that [9] presents a second preimage attack against concatenated hash
function with the complexity O(2max{n1,n2}) while it should be in O(2n1+n2).

We shall later create new ways to attack concatenated hash functions.

3 Earlier Work

We will now present earlier results that we will need to create our new attacks.

3.1 Joux’s Multicollision Attack

In [9] Joux presents a clever way to find a 2r-collision for any r ∈ N+. The
attacker starts from the initial value h0 and searches two distinct message block
x1, x′

1 such that f(h0, x1) = f(h0, x
′
1) and denotes h1 = f(h0, x1) and M1 =

{x1, x
′
1}. By the birthday paradox, the expected number of queries is in O(2

n
2 ).

Then, for each i = 2, 3, . . . , r, the attacker continues by searching message blocks
xi and x′

i such that xi �= x′
i and f(hi−1, xi) = f(hi−1, x

′
i) and stating hi =

f(hi−1, xi) and Mi = {xi, x
′
i}.

After r steps the attacker has created a set M = M1||M2 · · · ||Mr such that:

(i) for each i ∈ {1, 2, ..., r}, the set Mi consists of two distinct message blocks;
and

(ii) f+(h0, x) = f+(h0, x
′) for all x, x′ ∈ M = M1M2 · · ·Mr.

Due to the birthday paradox, a two colliding message blocks can be found
with complexity O(2

n
2 ). Thus the expected number of queries on f to create a

2r-collision is clearly in O(r · 2
n
2 ). In certain instances r may depend on n.

3.2 Creating a Diamond Structure

Collision trees or diamond structures were originally presented in [10]. The idea
of the diamond structure is to take a large set of different hash values and force
these to converge towards a single hash value along equal length paths. The
definition of diamond structure that can be found for example in [19] follows.

A diamond structure that is based on 2d hash values, or of breadth 2d, where
d ∈ N+, is a both node labeled and edge labeled complete binary tree D satisfying
the following conditions.
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1. The tree D has 2d leaves, i.e., the height of the tree is d.
2. The nodes of the tree D are labeled by hash values (strings in the set {0, 1}n)

so that the labels of nodes that are on the same distance from the root of D
are pairwise disjoint.

3. The edges of the tree D are labeled by message blocks (strings in the set
{0, 1}m).

4. Let v1, v2, and v with labels h1, h2, and h, respectively, be any nodes of the
tree D such that v1 and v2 are children of v. Suppose furthermore that x1

and x2 are (message) labels of the edges connecting v1 to v and v2 to v,
respectively. Then f(h1, x1) = f(h2, x2) = h.

The important thing to notice is that we have 2d hash values (leaves) hi and
a single final hash value h′. For each leaf there exists a d message blocks long
message xi such that f+(hi, xi) = h′. We will skip the details of creating a
diamond structure in this work. They can be found for example in [19].

The complexity of creating a diamond structure has been under close examina-
tion. In their original article Kelsey and Kohno [10] propose that the complexity
of creating a diamond structure would be in O(2

n+d
2 ). However a study by Black-

burn et al [3] has shown, that creating diamond structure is not that simple and
that the assertion concerning complexity in [10] is incorrect. It was proven that
the complexity of creating a diamond structure with the same kind of approach
used in [10] is O(

√
d · 2

n+d
2 ).

The reasoning of [3] is sound. However later work [19] has shown that it is
possible to use a different kind of an algorithm to create a diamond structure
with complexity O(2

n+d
2 ).

Assume now that we have a Joux’s type multicollision set M of size 2dn. In
[1] it is shown that it is possible to create a variant of a diamond structure based
on M . The variant structure has 2d hash values (leaves) hi and for each of these
a n · d message blocks long message xi ∈ M that satisfy f+(hi, xi) = h′, where
h′ is the final hash value of the structure. In the following we call this variant
multicollision diamond structure.

3.3 Expandable Messages

With expandable message, based on initial value h0, we mean a set of messages
X , such that for any two distinct messages x, x′ ∈ X we have |x| �= |x′| and
f+(h0, x) = f+(h0, x

′). Then f+(h0, x) is called the final value of the expandable
message.

The first use of expandable messages against the iterated compression func-
tion f+ was carried out in [6]. The creation method presented in [6] requires a
weak compression function in order to work. However, later Kelsey and Schneier
showed [11], that one can with complexity O(k · 2n

2 ) create an expandable mes-
sages X , such that it is possible to choose any integer s between k and k+2k −1
and find a message x ∈ X that satisfies property |x| = s.



New Second Preimage Attack Variants against the MD-Structure 103

4 Second Preimage Attack Variants against MD
Structure

4.1 Chosen Initial Value Attack (CIVA)

Consider the iterative closure f+ : {0, 1}n × ({0, 1}m)+ → {0, 1}n of the com-
pression function f where m > n. The attacker receives a message and has to
provide a second preimage to it. After receiving the message, the attacker is al-
lowed to choose the initial value of from a subset I = {h1, h2, . . . , h2d} of {0, 1}n
of cardinality 2d where d ∈ N+ is smaller than n. For the sake of simplicity we
will assume that the length of the message is at least d + 1, i.e., the message
consists of at least d + 1 message blocks. This is not a necessary requirement by
itself, but makes the notation easier to follow. The following is assumed.

• The attacker is provided with a message y, with the length of at least d + 1
message blocks.

• The attacker picks up an initial value h0 ∈ I and message x �= y such that
f+(h0, x) = f+(h0, y).

The question arises: How hard it should be for the attacker to complete such an
attack?

Let H : {0, 1}n × ({0, 1}m)+ → {0, 1}n be a hash function, where, given
h ∈ {0, 1}n and x ∈ ({0, 1}m)+, the value H(h, x) in {0, 1}n is chosen uniformly
at random. Surely the expected number of hash function calls required to carry
out the second step when f+ is replaced with H successfully is O(2n). It seems
unlikely that the attacker can gain any advantage whatsoever from the ability to
choose the initial value of the hash function, so the only way to attack is through
exhaustive search. The probability that H(h0, x) = H(h0, y) for a random mes-
sage x is 2−n, so the expected number of messages the attacker has to try before
finding the right one is O(2n).

Let us now return to the use of f+ and assume that the attacker receives a
message y = y1||y2|| · · · ||yk where yi is a message block for all i ∈ {1, 2, · · · , k}
and k > d. Consider the following procedure. The attacker

1. creates a diamond structure based on the initial values h1, h2, . . . , h2d of I;
let h′ be the final hash value of the diamond structure. The attacker denotes
the final hash value of the diamond structure with h′;

2. searches a message block x′ such that
f(h′, x′) = f+(hi, y1||y2|| · · · ||yd+1) where i ∈ {1, 2, · · · , 2d}; and

3. chooses hi to be the initial value of the hash function and offers the string
x = z1||x′||yd+2||yd+3|| · · · ||yk, where z1 is message that takes hi to h′, as
the second preimage for y.

Clearly the lengths of x and y in message blocks are equal and

f+(hi, y) = f+(hi, y1||y2|| · · · ||yk) = f+(h′, x′||yd+2||yd+3|| · · · ||yk)

= f+(hi, z1||x′||yd+2||yd+3|| · · · ||yk) = f+(hi, x)

so x really is a second preimage for y.
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The complexity of the attack depends on d. The complexity of creating a
diamond structure is in O(2

n+d
2 ) (see [19]). The attacker can optimize the com-

plexity of finding suitable x′ in step 2 to be in O(
√

d · 2n−d). It follows that the
total complexity of the attack is in O(2

n+d
2 +

√
d · 2n−d). If we can choose d = n

3

we can minimize this complexity to O(
√

n · 2 2n
3 ).

Remark 1. The important property that allows the attacker to gain advantage
from the Chosen Initial Value Attack is the adversary’s ability to influence,
on some level, the circumstances where the iterated hash function is applied.
This influence does not necessarily have to include the initial value of the hash
function and soon we will describe a variant of the Chosen Prefix Attack that is
based on adversary’s ability to impact the current situation in another way.

hi 

h3 

h4 

h5 

h6 

h7 

h8 

h2 

y3 y1 y2 

h’   

y4 

h1 

x’   

f +(hi , y1ǁ y2ǁ y3ǁ y4) 

f (h’, x’) 

f (h’, x’) = 
 f +(hi , y1ǁ y2ǁ y3ǁ y4) 
  

Fig. 1. Example of the Chosen Initial Value Attack when d = 3

4.2 CIVA against a Long Message

It is possible to combine second preimage attack against long messages presented
in [11] and the Chosen Initial Value Attack presented above. Assume that y =
y1||y2|| · · · ||y2l , where yi is a message block for all i ∈ {1, 2, · · · , 2l} and l is fairly
large, while still l ≤ n

2 . Instead of the standard version of the CIVA, the attacker
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1. creates a diamond structure based on initial values
h1, h2, · · · , h2d and denotes by h′ the final value of the diamond structure;

2. creates an expandable message based on h′, with maximum length 2l and
miminum length l +1 and denotes by h′′ the final hash value of the expand-
able message.

3. searches for a message block x′′ such that
f(h′′, x′′) = f+(hi, y1||y2|| · · · ||yj) where i ∈ {1, 2, · · · , 2d} and j ∈ {d + l +
2, d + l + 3, · · · , 2l}; and

4. chooses hi to be the initial value of the hash function and offers x = z1||z2||
x′′||yj+1||yj+2|| · · · ||y2l , where z1 is message that takes hi to h′ and z2 is the
expandable message chosen so that |x| = 2l, as the second preimage for y.

Clearly x has the same length as y and f+(hi, x) = f+(hi, y) so x is a second
preimage for y.

The complexity of creating a diamond structure is in O(2
n+d
2 ) as before, while

the complexity of creating an expandable message is in O(l · 2
n
2 ). The attacker

can optimize the complexity of finding suitable x′′ and hi in step 3 to be in
O(2d+l + 2n−(d+l)).

Once again we can optimize this by setting d = n−2l
3 . The total complexity of

the attack is thus in O(2
2n−l

3 ), while it should be 2n.

Remark 2. Thus far the lowest complexity for the second preimage attack on it-
erated hash function has been presented in [11]. The attack offers the complexity
O(2n−l) when the length of the original message in message blocks is 2l and l is
sufficiently large.

4.3 Chosen Prefix Attack (CPA)

We can describe the situation in the Chosen Prefix Attack as the following game.

• The attacker is challenged with an initial value h0 ∈ {0, 1}n and a suffix
message y such that the length of y is at least d + 1. Here d is a positive
integer fixed in advance.

• The attacker creates a prefix p and a suffix x such that x �= y and f+(h0, p||x)
= f+(h0, p||y).

Above we assumed that the length of the message is at least d+1 message blocks
to simplify the notation. Again, this is not a necessary requirement and is simply
a matter of convenience.

If in the construction above the mapping f+ is replaced by a random oracle
hash function H , then the only way to attack is to make random queries on
H . This means that the best possible strategy for the attacker is simply to fix
the prefix p, calculate H(h0, p||y) and then use a random search to find such
x �= y that H(h0, p||x) = H(h0, p||y). The complexity of this kind of an attack
is certainly O(2n).

However, against the iterative structure f+, the adversary can construct the
attack almost in the same manner as in CIVA. Assume now that the attacker
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receives an initial value h0 and a suffix y = y1||y2|| · · · ||yk where yi is a message
block for all i ∈ {1, 2, · · · , k} and k > d. Denote k1 = d + 1. Now the attacker

1. chooses 2d random message blocks p1, p2, · · · , p2d ;
2. creates a diamond structure based on hash values f+(h0, p1), f

+(h0, p2), . . . ,
f+(h0, p2d) and denotes the final value of diamond structure by h′;

3. searches a message block x′ such that f(h′, x′) = f+(h0, pi||y1||y2|| · · · ||yk1)
where i ∈ {1, 2, · · · , 2d}; and

4. chooses pi to be the prefix of the second preimage and offers pi||z||x′||yk1+1

||yk2+2|| · · · ||yk, where z is message that takes f+(h0, pi) to h′, as the second
preimage for pi||y i.e. x = z||x′||yk1+1||yk2+2|| · · · ||yk.

Creating a diamond structure possesses the complexity O(2
n+d
2 ). The complexity

of finding a suitable x′ is O(
√

d·2n−d). This means that the if the attacker chooses
d = n

3 the total complexity of the attack is in O(
√

n · 2
2n
3 ).

It is also easy to show that the attacker can make use of the length of the
original message in the same manner as in the Chosen Initial Value Attack,
i.e., by creating an expandable message after the diamond structure and then
searching for a collision with any suitable chaining value in original message. If
the original message has the length 2l the attacker can reduce the complexity to
O(2

2n−l
3 ), when we assume l to be large enough.
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Fig. 2. Example of the Chosen Prefix Attack when d = 3
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5 Second Preimage Attacks on Concatenated Hash
Functions

We will now generalize our attacks to concern also concatenated hash functions.
Assume in the following that we are provided with the iterative closures f+

1 :
{0, 1}n1 × ({0, 1}m)+ → {0, 1}n1 and f+

2 : {0, 1}n2 × ({0, 1}m)+ → {0, 1}n2 of
the compression functions f1 : {0, 1}n1 × {0, 1}m → {0, 1}n1 and f2 : {0, 1}n2 ×
{0, 1}m → {0, 1}n1 where n1 ≤ n2 < m. Assume further that the concatenated
hash function C : {0, 1}n1 × {0, 1}n2 × ({0, 1}m)+ → {0, 1}n1+n2 is defined by
setting C(h0,1, h0,2, x) = f+

1 (h0,1, x)||f+
2 (h0,2, x).

5.1 CIVA on a Concatenated Hash Function

Assume that the attacker receives a message y = y1||y2|| · · · ||yk, where yi is a
message block for all i ∈ {1, 2, · · · , k} and k at least d + (d + 1)n2 + 1. Denote
k1 = d + (d + 1)n2 + 1. The adversary now has to create a second preimage for
y while she/he can choose the initial values for both f+

1 and f+
2 . The attacker

1. chooses a set I1 with 2d possible initial values for f+
1 , creates a diamond

structure based on these initial values, and denotes the final value of diamond
structure by h1;

2. creates a large Joux type multicollision of cardinality 2dn2 on f+
1 with initial

value h1, names the common hash value of the collision messages to h2,
and denotes the set of multicollision messages with M1; the attacker creates
a Joux type multicollision of cardinality 2n2 on f+

1 with initial value h2,
denotes this collision set with M2, and the common hash value of M2 with
h3;

3. creates a message block x′ such that f+
1 (h3, x

′) = f+
1 (h′

0,1, y1||y2|| · · · yk1)
for some h′

0,1 ∈ I1, and denotes the path from h′
0,1 to h1 in the diamond

structure by z1;
4. chooses a set I2 with 2d possible initial values for f+

2 , creates a multicolli-
sion diamond structure based on hash values {f+

2 (h, z1)|h ∈ I2} by using
the multicollision set M1, and denotes the final hash value of this diamond
structure by h4; and

5. searches for a message z3 ∈ M2 for which f+
2 (h4, z3||x′) = f+

2 (h′
0,2, y1||y2|| · · ·

yk1) where h′
0,2 ∈ I2, and denotes by z2 the path from f+

2 (h′
0,2, z1) to h4 (note

that z2 ∈ M1); and
6. chooses h′

0,1 and h′
0,2 to be the initial values of f+

1 and f+
2 and offers

z1||z2||z3||x′||yk1+1||yk1+2|| · · · ||yk as the second preimage for y.

The complexity of creating diamond structures in steps 1 and 4 are O(2
n1+d

2 )

and O(2
n2+d

2 ), respectively. The complexity of creating multicollision sets in step
2 is in O(dn2 · 2

n1
2 ) while the complexity of finding suitable x′, z3, h′

0,1 and h′
0,2

in steps 3 and 5 can be optimized to be in O(
√

d n2 · 2n2−d). If the attacker
is allowed to choose d = n2

3 , i.e., the length of the original message is about
(n2)

2

3 , the total complexity of the attack is O(n2 · 2
2n2
3 ). If the original message

is shorter then the complexity will be greater.
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5.2 CPA on a Concatenated Hash Function

Assume now that initial values for f+
1 and f+

2 are fixed to be h0,1 and h0,2,
respectively. Assume furthermore that s and d are positive integers and s, d < n2

2 .
The attacker receives a suffix y and now has to find a prefix p and another
suffix x �= y such that C(h0,1, h0,2, p||x) = C(h0,1, h0,2, p||y). Assume that y =
y1||y2|| · · · ||yk, where y1, y2, . . ., yk are message blocks and k at least d+n2(s+
1) + 1. Denote k1 = d + n2(s + 1) + 1. The attacker

1. chooses 2d random message blocks x1, x2, · · · , x2d and computes
hi,1 = f1(h0,1, xi) for i = 1, 2, . . . , 2d;

2. creates 2d Joux type multicollision sets M1, M2, . . . , M2d on f+
1 each of car-

dinality 2s such that the initial value for Mi is hi,1, and denotes the common
collision value of Mi by h′

i,1 (i = 1, 2, . . . , 2d});
3. creates a diamond structure based on hash values {h′

i,1|i = 1, 2, · · · , 2d} and
denotes the final hash value of the diamond structure by h1;

4. creates a Joux type multicollision set M ′
1 of cardinality 2n2s on f+

1 based on
the initial value h1 and denotes the common collision hash value of the set
M ′

1 with h2;
5. creates a Joux type multicollision set M ′

2 of cardinality 2n2 on f+
1 based on

initial value h2 and denotes the common collision hash value of the set M ′
2

with h3;
6. searches a message block x′ and an integer j ∈ {1, 2, · · · , 2d} such that

f1(h3, x
′) = f+

1 (h′
j,1, y1||y2|| · · · ||yk1) and denotes the path in diamond struc-

ture from h′
j,1 to h1 with z1;

7. makes use of messages in the set M ′
1 to createa a multicollision diamond

structure on f+
2 based on hash values {f+

2 (h0,2, xj ||p′||z1)|p′ ∈ Mj}, and
denotes the final hash value of the diamond structure by h4;

8. searches a message z3 ∈ M ′
2 such that

f+
2 (h4, z3||x′) = f+

2 (h0,2, xj ||pj ||y1||y2|| · · · ||yk1) where pj ∈ Mj and denotes
by z2 the path from f+

2 (h0,2, xj ||pj ||z1) to h4;
9. offers the message xj ||pj as a common prefix and the message

xj ||pj ||z1||z2||z3||x′||yk1+1||yk1+2|| · · · ||yk as a second preimage for xj ||pj ||y.

The complexity of the step 2 is O(s · 2d+
n1
2 ), while the complexity of the step

3 is in O(2
n1+d

2 ). The total complexity of steps 4 and 5 is in O(n2 · s · 2
n1
2 ) and

the complexity of finding suitable x′ and j in the step 6 can be optimized to be
in O(

√
(s + k1) · 2n1−d). The complexity of the step 7 is in O(2

n2+d
2 ) and finally

the complexity of the step 8 is in O(
√

s + k1 · 2n2−s).
The attacker can choose for example s = n2

3 , d = n1

4 . This results to the total
complexity O(n2 · 2

3n1
4 + 2

2n2
3 ). The exact efficiency of this attack depends on

the difference between n1 and n2. Certainly, however, in any case the complexity
of the attack is O(n2 · 2

3n2
4 ).

This is clearly significantly better than the complexity O(2n2) offered by
Joux’s attack against concatenated hash functions (see [9]). If the concatenated
structure would work as a random oracle hash function the complexity should
be in O(2n1+n2).
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6 Conclusion

In this article, we have considered a case where the attacker is able to influence
the situation where the second preimage attack takes place by either choosing
the initial value of the iterated hash function used or by choosing a common
prefix that the original message and the second preimage must include. We
have shown that in these situations by using diamond structures the attacker
is able to reduce the expected number of compression function calls required to
O(

√
n · 2

2n
3 ), while it should be O(2n). In addition we have shown that against

long messages with 2l message blocks these attacks work even better by reducing
the complexity to O(2

2n−l
3 ).

We have also generalized these attacks to work against concatenated hash
functions. The Chosen Initial Value Attack possesses the complexity O(n2 ·2

2n2
3 )

while the complexity of the Chosen Prefix Attack is O(n2 ·2
3n2
4 ). The best known

second preimage attack up to now has been of the complexity O(2n2) [9].
Thebasic idea of thepresentedattacks lie in the adversary’s ability to influence in

some manner the circumstances where the iterated hash function is applied and, by
making use of the diamond structure, to gain advantage in the game; this advantage
would be impossible to achieve against a random oracle hash function. A robust
research is needed to find the actual limits of these kind of attacks.
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Abstract. To ensure best security and efficiency, cryptographic proto-
cols should allow parties to negotiate the use of the ‘best’ cryptographic
algorithms supported by the different parties; this is usually referred to
as cipher-suite negotiation, and considered an essential feature of such
protocols, e.g., TLS and IPsec. However, such negotiation is absent from
protocols designed for distribution of cryptographically-signed objects,
such as DNSSEC. One reason may be the challenges of securing the
choice of the ‘best’ algorithm, especially in the presence of intermediate
‘proxies’ (crucial for performance), and in particular, providing solutions,
compatible with the existing legacy servers and proxies; another reason
may be a lack of understanding of the security and performance damages
due to lack of negotiation.

We show that most DNSSEC signed domains, support only RSA
1024-bit signatures, which are considered insecure, and are also larger
than alternatives; the likely reason is lack of negotiation mechanisms.
We present a DNSSEC-negotiation mechanism, allowing name-servers to
send responses containing only the keys and signatures required by the
requesting resolver. Our design is compatible with intermediary prox-
ies, and even with legacy proxies, that do not support our negotiation
mechanism. We show that our design enables incremental deployment
and will have negligible performance impact on overhead of DNSSEC as
currently deployed, and significant improved performance to DNSSEC
if more domains support multiple algorithms; we also show significant
security benefits from the use of our design, under realistic, rational
adoption model. Ideas of our design apply to other systems requiring
secure and efficient distribution of signed data, such as wireless sensor
networks (WSNs).

1 Introduction

A cipher-suite is an ordered set of (one or more) cryptographic algorithms, each
implementing a corresponding function among the functions used by a crypto-
graphic protocol. For example, the RSA WITH RC4 128 MD5 cipher suite uses RSA
for key exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for mes-
sage authentication. Cipher-suite negotiation refers to the process of selecting
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the cipher-suite to be used in a protocol between two (or more) parties, among
multiple cipher-suites supported by each of the participants. Many standard
cryptographic protocols, e.g., IKE, SSH, SSL and TLS, [RFC2409, RFC4253,
RFC6101, RFC5246] use cipher-suite negotiation to ensure that the parties se-
lect the ‘best’ cipher-suite among those they jointly support, in order to avoid
broken algorithms and to facilitate migration to better (more secure, more effi-
cient) algorithms.

Currently, DNSSEC is an exception: it allows the use of multiple signature al-
gorithms and hash functions, e.g., RSA and elliptic curves (see [7] for a complete
list of cryptographic algorithms). However, no mechanism allows name servers
to identify the best set of algorithms, keys and signatures to send in response to
a particular request, i.e., for cipher-suite negotiation. As a result, during a DNS
transaction between a resolver and a name server, all the keys and signatures,
supported by the target zone, are sent to the resolver, even if some of those
algorithms are unsupported or unvalidated by the resolver.

We collected responses’ sizes from Top Level Domains (TLDs) and Alexa-
top-million domains, [1]; our measurements are plotted in Figure 1. The mea-
surements show that the overhead of signed DNS responses is significant in
comparison to plain DNS responses. For instance, non-existent domain (NXD)
is a very common response, which often occurs due to a typo in a DNS query:
the size of NXD responses without DNSSEC is less than 400 bytes, while with
DNSSEC, 70% of the responses exceed 1000 bytes and 10% are even larger than
the link’s Maximal Transmission Unit (MTU) (which also holds for more than
30% of DNSKEY responses). Signed responses for ANY query type can reach even
5000 bytes and more, while plain ANY type responses are less than 1000 bytes.
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Fig. 1. Length of responses for signed and non-
signed Alexa and TLDs, for ANY, DNSKEY and
A resource records; A records were sent for ran-
dom subdomains of tested domains, and resulted
in NXD responses.

Large DNSSEC signed responses
inflict significant overhead on
the network and on the end
points to the DNS transation,
and often result in failures; we
describe the problems in Sec-
tion 3. We believe that the
problems with large responses,
and the lack of cipher-suite
negotiation mechanism, moti-
vate administrators to use only
a limited number of cipher-
suites. In particular, without
cipher-suite negotiation mech-
anism administrators are likely
to avoid algorithms with larger
keys/signatures, e.g., 2048 or 4096 bit RSA; these may offer better security, but
surely will increase response length significantly and as a result also exacerbate
the interoperability problems and exposure to attacks.
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Paradoxically, for a different motivation, administrators are also likely to
avoid offering alternative algorithms which may provide good security even with
shorter keys/signatures, e.g., elliptic curves. Without cipher-suite negotiation,
there is no motivation to offer such shorter alternatives, since when sent in ad-
dition to the existing keys/signatures, e.g., 1024-bit RSA (which is mandatory
to support), the resulting length of the response is even larger.

With the growing awareness of powerful, nation-state adversaries who may
be able to crack such key length, we find it alarming that 1024-bit RSA imple-
mentations are still dominant. Furthermore, 1024-bit RSA is entrenched, by the
lack of cipher-suite negotiation as well as by being mandated by NIST as well
as by IETF standards [RFC4033-4035], as well as by being the default choice in
key generation procedure of DNSSEC implementations.

Indeed, as our measurements on top-million Alexa, [1], and TLD domains,
in Figure 3 show, current adoption of DNSSEC algorithms by signed domains
seems to support our conclusions: the 1024-bit RSA algorithm, already consid-
ered not-sufficiently-secure, is, by far, the most popular (and mandatory), while
the elliptic curve (EC) variant, in spite of its shorter keys and signatures and
fast computation, and although it was standardised [RFC6605], is still not de-
ployed. For example, to provide equivalent security to 1024-bit RSA, an ECC
scheme only needs 160 bits on various parameters, such as 160-bit finite field
operations and 160-bit key size. Other signature algorithms which may have ad-
vantages (esp. over RSA), do not even have the (negligible!) penetration of EC
signatures.

This situation further demotivates resolvers to support elliptic curve, or other
non-RSA algorithms; and, surely, zones cannot sign using only elliptic curve
signatures, since that is likely to be incompatible with most resolvers. As we
show in Section 4.6, this results in a ‘vicious cycle’ which essentially prevents
adoption of new algorithms, and hence in significant security exposure - as well
as in significant performance penalty, once security sufficiently deteriorates to
force adoption of new algorithms.

Notice that similar need for cipher-suite negotiation exists in other systems,
such as Wireless Sensor Networks (WSNs), where efficient authentication and
short keys and signatures are critical for functionality and availability. In WSNs
different public key ciphers are not widely adopted due to resource constraints
on sensor platforms, and limited battery power (although some proposals for
short signatures and keys using Elliptic Curves were proposed, e.g., [5,10,9]). In
particular, to avoid overloading the network with multiple keys and signatures
and to reduce signatures validation complexity, implementors often prefer to
support weakest cipher(s) that most clients support, and not to send keys and
signatures that corresponds to a number of cryptographic options.

We conclude that cipher-suite negotiation for DNSSEC is essential for security,
interoperability and efficiency of DNS and DNSSEC. Furthermore, it may allow
end-to-end cryptographic protection of DNS, in particular, in mobile devices.

We present a cipher-suite negotiation mechanism for DNSSEC, allowing name-
servers to send responses containing only the keys and signatures required by
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the requesting resolver. Our design supports seamlessly intermediate resolvers
(proxies), without even requiring adoption by the proxies. Proxies are widely
used by DNS servers. Prior work showed that proxies are common among the
recursive resolvers, [12,6]. We also find that proxies are common on the name
servers side: (at least) 38% of top 50,000 Alexa domains and 3.73% of TLDs
are configured in the following way: a recursive resolver is registered as an au-
thoritative name server (in the parent domain and in the zone file of the child
domain), and it receives DNS requests from the clients to the target domain
(for which it is authoritative). The resolver then forwards the requests to the
name server hosting the zone file for the target domain. Upon responses from
the name server, the resolver caches them and subsequently returns them to the
requesting client.

Proxies pose a well-known challenge to cipher-suite negotiation. Essentially,
cipher-suite negotiation requires proxies to provide responses which depend on
the preferences of each requesting client, contrary to the basic design of the prox-
ies, which utilise caches. Our design overcomes these obstacles, without requiring
any change or adoption by the proxies.

Although our work is focused on DNS and DNSSEC, the ideas can be benefit
WSNs and other systems.

Cipher-suite negotiation for DNSSEC cannot use the design principles of ex-
isting standardised cipher-suite negotiation mechanisms, e.g., IKE and TLS.
These mechanisms are interactive, i.e., operate in two rounds. However, such
a two-round, interactive mechanism, would add too much overhead to a DNS
transaction and is not suitable for DNS, which is a pure request-response pro-
tocol. In contrast, our proposed secure cipher-suite negotiation protocol is non-
interactive; it only adds few, short fields, to the messages exchanged during a
DNS transaction. This is important, since adding another round would cause
significant extra delay, as well as make deployment much harder.

The cipher-suite negotiation mechanism for DNSSEC would alleviate deploy-
ment obstacles, and would speed up adoption of DNSSEC both by resolvers
and zones. We also review obstacles to DNSSEC adoption and report on our
measurements study of factors impeding DNSSEC adoption.

Organisation

In Section 2, we review background on DNS and DNSSEC and in Section 3
we discuss deployment status of DNSSEC and review obstacles towards wide
adoption thereof. We provide a design of cipher-suite negotiation for DNSSEC
in Section 4. In Section 4.6 we investigate the performance impact of our design,
on current and projected adoption rates of different signing algorithms, and the
resulting impact on security. Finally we conclude this work in Section 5.

2 Overview: DNS and DNSSEC

The domain name system (DNS), [RFC1034, RFC1035], is a distributed data
base of Internet mappings (also called resource records (RRs)), from domain
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names to different values. The most popular and widely used mappings, [4], are
for IP addresses, represented by A type RRs, that map a domain name to its
IPv4 address, and name servers, represented by NS type RRs, that map a name
server to domain name; see [RFC1035] for a list of standard DNS mappings.

The client side of the DNS infrastructure is composed of resolvers, which
lookup records in zones by sending DNS requests to corresponding name servers.
The resolvers communicate to the name servers using a simple request-response
protocol (typically over UDP); for instance, (abstracting out subtleties) to trans-
late www.foo.bar resolvers locate the name server ns.foo.bar, authoritative for
foo.bar, and obtain the IP address of the machine hosting the web server of
the website www.foo.bar, see Figure 2. Resolvers store DNS records, returned in
responses, in their caches for the duration indicated in the Time To Live (TTL)
field of each record set.

The resource records in DNS correspond to the different services run by the or-
ganisations and networks, e.g., hosts, servers, network blocks.

Fig. 2. DNS resolution process for www.foo.bar and
the involved DNS servers.

The zones are structured
hierarchically, with the root
zone at the first level, Top
Level Domains (TLDs) at
the second level, and mil-
lions of Second Level Do-
mains (SLDs) at the third
level. The IP addresses of
the 13 root servers are pro-
vided via the hints file, or
compiled into DNS resolvers
software and when a re-
solver’s cache is empty, ev-
ery resolution process starts
at the root. According to
the query in the DNS re-
quest, the root name server
redirects the resolver, via a
referral response type, to a corresponding TLD, under which the requested
resource is located. There are a number of TLDs types, most notably: country
code TLD (ccTLD), which domains are (typically) assigned to countries, e.g.,
us, il, de, and generic TLD (gTLD), whose domains are used by organisa-
tions, e.g., com, org, and also US government and military, e.g., gov, mil.
Domains in SLDs can also be used to further delegate subdomains to other en-
tities, or can be directly managed by the organisations, e.g., as in the case of
ibm.com, google.com.

A DNS domain is divided into zones, and includes all the nodes of the subtree
rooted at the zone. A DNS zone constitutes a portion of a domain name space.
A zone can be divided into subdomains, with its own DNS name servers. For in-
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stance, when querying the root zone for foo.bar., the resolver will be redirected
to bar. domain, via a referral to the authoritative servers for bar. zone. When
querying the name servers of bar., the resolver receives another referral for
foo.bar. zone. Notice that bar. zone does not include subdomains, e.g., like
foo.bar., but those are delegated from bar to their name servers.

Domains and their mappings are also administered hierarchically; the map-
pings of each domain foo.bar are provided by a name server, managed by the
owner of the domain.

DNS Security (DNSSEC). When no protection is employed, DNS requests and
responses can be inspected and altered by a MitM attacker. For example, a mali-
cious wireless client can tap the communication of other clients and can respond
to their DNS requests with maliciously crafted DNS responses, containing a
spoofed IP address, e.g., redirecting the clients to a phishing site. Domain Name
System Security Extensions (DNSSEC) standard [RFC4033-RFC4035] was de-
signed to prevent cache poisoning, by providing data integrity and origin au-
thenticity via cryptographic digital signatures over DNS resource records. The
digital signatures enable the receiving resolver, that supports DNSSEC valida-
tion, to verify that the data in a DNS response is the same as the data published
in the zone file of the target domain. DNSSEC defines new resource records
(RRs) to store signatures and keys used to authenticate the DNS responses. For
example, a type RRSIG record contains a signature authenticating an RR-set,
i.e., all mappings of a specific type for a certain domain name.

To allow clients to authenticate DNS data, each zone generates a signing and
verification key pair, (sk, vk). The signing key sk is used to sign the zone data,
and should be secret and kept offline. Upon queries for records in a domain, the
name server returns the requested RRs, along with the corresponding signatures
(in RRSIG RRs). The resolvers should also obtain the zone’s public verifica-
tion key vk, stored in a DNSKEY RR, which is then used by the clients to
authenticate the origin and integrity of the DNS data.

Keys for two different purposes can be stored in a DNSKEY RR: (1) Key
Signing Key (KSK) and (2) Zone Signing Key (ZSK). ZSK signs the RRs for
which a zone is authoritative, the ZSK is signed with the KSK and the KSK is
stored in the DS RR at the parent. This separation mainly allows to reduce the
overhead associated with updating the parent each time the ZSK is replaced.

Resolvers are configured with a set of verification keys for specific zones, called
trust anchors; in particular, all resolvers have the verification key (trust anchor)
for the root zone. The resolver obtains other verification keys, which are not
trust anchors, by requesting a DNSKEY RR from the domain. To validate these
verification keys obtained from the DNSKEY RR, the resolver obtains a corre-
sponding DS RR from the parent zone, which contains a hash of the DNSKEY
of the child; the resolver accepts the DNSKEY RR of the child as authentic if
the hashed value in the DNSKEY RR is the same as the value in the DS record
at the parent, and the DS record is properly signed (with a signature stored in a
corresponding RRSIG record). Since the DS record is signed with the DNSKEY
of the parent, authenticity is guaranteed. Hence, the resolver can establish a
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chain of trust from the trust anchor of the root, following the signed delegations
all the way to the target domain, and authenticate the public verification key
(stored in a DNSKEY RR) of the target zone.

3 DNSSEC Deployment Obstacles and Challenges

DNS responses, signed with DNSSEC, are much larger than traditional DNS re-
sponses, often exceeding the typical Maximal Transmission Unit (MTU) of the
Internet. In particular, due to their increased size, signed responses are often
exploited for attacks, e.g., cache poisoning and DDoS, [2,3], and incur interop-
erability problems with intermediate devices disrupting DNS functionality and
availability. As a result, zone operators are often hesitant about signing their
zones, and resolvers’ operators typically do not enforce validation of DNSSEC
records. The outcome is impeded deployment of DNSSEC. The fact that there
is currently limited deployment of DNSSEC further reduces a motivation for
early adopters, since protection of DNSSEC only ‘kicks in’ when all the entities,
involved in a resolution of a domain name, support DNSSEC.

3.1 DNSSEC Deployment Status

DNSSEC Validation at Resolvers. A significant fraction of the resolvers currently
signal DNSSEC support; however, less than 3% actually enforce DNSSEC valida-
tion [8]. Obviously, for such non-validating resolvers, DNSSEC does not provide
added security.
DNSSEC Deployment at Zones. To make DNSSEC validation effective in re-
solvers the zones have to adopt DNSSEC. However, most do not. Recently, the
root and some important top-level domains (TLDs), such as com, org, were
signed; through experimental study we found that currently 62% of the TLDs
are signed and less than one percent (0.46%) of top million Alexa domains are
signed.

3.2 DNSSEC Overhead

DNS Infrastructure. Adopting DNSSEC requires a significant increase in the
DNS infrastructure, both in resolvers and name servers platforms, [11]. In par-
ticular, most devices are needed, to support the increased number of requests,
processing and storage overhead.

Communication. Large responses cause noticeable overhead: (1) on the name
server that is required to transmit them,(2) on the recepient that needs to re-
ceive and process them (allocate buffers to store and reassemble) and (3) on
the network, and intermediate devices, e.g., routers and proxies, causing load
spikes and increasing processing. Not only much more data, than needed, is
sent: the name server sends all the keys and signatures that correspond to the
cryptographic options that the zone supports, but also such large responses often
result in fragmentation or cause resolvers to use TCP for the DNS transaction.
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Computation. Signatures generation increases the computational overhead on
name servers and is significant for dynamic zones, e.g., the common content
distribution networks. Signatures verification imposes overhead on busy resolvers
and is prohibitive for mobile devices, making support of DNSSEC on end-hosts
impractical.

3.3 Interoperability Problems with DNSSEC

DNSSEC signed DNS responses often exceed the 512B maximal DNS size spec-
ified in [RFC1035], requiring use of the EDNS [RFC6891] extension mechanism;
EDNS is also used to signal support of DNSSEC. Some firewalls interpret such
large DNS packets as malicious and drop them. Indeed, DNSSEC responses of-
ten exceed the maximal transmission unit (MTU) and thus may get dropped or
fragmented. Fragments are also blocked by some firewalls, mainly for security
concerns.

Due to concerns for the interoperability issues with large signed-DNS re-
sponses, many resolvers that support DNSSEC, accept and cache unvalidated
responses, thereby exposing themselves to a downgrade attack, [RFC4035]; for
instance, to avoid interoperability problems, unbound resolver supports a ‘per-
missive’ mode, accepting responses with missing or incorrect signatures.

In a downgrade attack an attacker sends fake responses that appear similar
to responses passing through non-interoperable devices.

3.4 Common Ciphers

Fig. 3. Distribution of the ciphers and public key sizes
supported by TLDs and Alexa top million domains.

Most signed zones, among
Alexa top million domains
and TLDs, suppport dif-
ferent variations of RSA
(with SHA1 or SHA256
hash functions) with weak
keys, 1024 bits. The results
are plotted in Figure 3. The
categories are grouped ac-
cording to key sizes1 ranges
and according to different
variations of the RSA ci-
pher; since all the domains
were found to support dif-
ferent versions of RSA algo-
rithm, we do not mention
‘RSA’ in the figure. The
measurements are consistent with the recommendations by NIST and IETF
[RFC4641] for a mandatory support of RSA and also to avoid using large keys

1 The transmitted keys and signatures are encoded in Base64 thus contain an extra
byte of redundancy for every three bytes of actual data.
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(specifying a range of 512-2048 bits for (ZSK) key size and recommending a
default value of 1024 bits), in order to avoid fragmentation, communication
and computation overhead and other problems with large keys and signatures.
There is hardly any adoption of cryptographic algorithms that produce short
signatures, such as ECC, since the motivation to add more overhead to the
transmitted data is low. This supports our argument that cipher-suite negoti-
ation mechanism is essential not only for deployment of stronger cryptography
and adoption of new cryptographic ciphers, which currently the zone operators
are hesitant to support, but also to mitigate the interoperability and overhead
problems associated with DNSSEC.

4 Cipher-Suite Negotiation for DNSSEC

A cipher suite negotiation requires that one of the end points to the transaction
signals to the other, the ciphers that it supports. The receiving end point would
then apply its own priorities, over those signaled to it, and select an optimal
cipher that reflects the priorities of both parties.

Recently, [RFC6975] standardised new options in the EDNS record, [RFC6891],
enabling clients to signal the supported ciphers to the name servers. The signal-
ing of deployed ciphers allows zone operators to determine whether they can adopt
new cryptographic algorithms. However, the zones would still have to support the
other algorithms, in order to serve the resolvers which have not adopted the new
cipher. In addition, a mechanism that relies on the EDNS record would not be
effective when resolvers or name servers communicate via the proxies (which is
common). The problem is that EDNS is a hop-by-hop transport layer mechanism,
and its records and options are not cached by the resolvers. Hence, it only allows
to signal and coordinate options between two communicating hops, e.g., a proxy
and a name server, or a resolver and a proxy, but not end-to-end, between a re-
solver and a name server. In particular, if a proxy has cached records according
to the preferences supported and signaled in EDNS by other clients, it will serve
those records to the subsequently requesting clients, and will be oblivious to the
signaling of different options by the other clients. Enhancing the proxy with a ci-
pher suite negotiation does not solve the problem. In particular, the proxy would
serve the records to the clients according to its own preferences.

We present a design that does not require any changes to the proxies. Our
design uses the DNS packets themselves for signaling of the supported crypto-
graphic options. The signaling is performed by the name server. The resolver
uses the options, signaled by the name server, to select the optimal cipher, ac-
cording to its own priorities. Then, in the DNS requests that the resolver sends,
it ‘asks’ the name server to return only the cryptographic DNSSEC algorithm
that corresponds to that selection. This design is based on two mechanisms: (1)
secure signaling from the name-server to the client, of the supported algorithms,
encoded and cached as a record in a DNS response, and (2) retrieval of the pre-
ferred cryptographic (signature and hash) algorithms, encoded within the DNS
query. We next elaborate on each of these mechanisms.
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Signaling the algorithms supported by the zone. To facilitate signaling the (sig-
nature and hash) algorithms supported by the zone, we propose to dedicate a
special algorithm number, say 99, whose meaning is a ‘list of supported algo-
rithms’. The zones supporting cipher suite negotiation, should add a DS and a
DNSKEY records, both with algorithm identifier 99 to every response contain-
ing DS or DNSKEY record set (RRSET); the DS RR would be served by the
parent domain to the resolver during the establishment of a chain of trust, and
the DNSKEY RR by the domain owner itself, upon DNSKEY requests from the
resolver. The ‘list of algorithms’ record will contain the list of algorithms sup-
ported by that zone, in the order of preference, and an expiration date for that
list. We expect the list of ciphers not to change frequently (as new algorithms are
adopted rarely), hence we expect long validity periods (in the order of months
and longer).

Once a resolver, enhanced with a cipher suite negotiation, receives that list, it
learns that the name server is enhanced with the cipher suite negotiation mecha-
nism and it learns the ciphers that the zone supports; the module, responsible for
cipher suite negotiation stores that ciphers list (associated with the correspond-
ing zone) for the duration specified in the expiration date field in the record.
Next time that the resolver sends a request for a record within that domain, it
will indicate the cryptographic options (the signature algorithm and the hash
function) in its DNS request, as a subdomain concatenated to the original query
(more details follow). Hence, our mechanism introduces only a negligible over-
head, see Section 4.6. To minimise the chance of loss due to response truncation,
the ‘list of algorithms’ record will be sent as the first record in the DNSKEY or
DS RR-sets.

The validity of the ‘list of algorithms’ record, is established by the resolver
as it validates the signature over the entire RR-set, namely, using the (already
validated) key signing key (KSK) of the zone, stored in a DNSKEY record, or
the parent’s zone DNSKEY record. This ensures that the resolver establishes a
chain of trust all the way from the root zone to the target domain.

The indirect signaling by the name servers to the resolvers implicitly supports
interoperability with legacy resolvers and legacy name servers, which do not sup-
port the cipher suite negotiation mechanism – while not increasing the amount
of DNS requests to the legacy DNS servers.

Encoding the preferred algorithms. We encode the preferred cryptographic
(signature and hash) algorithm, as a subdomain in each DNS request sent by
the cipher suite negotiation supporting resolver to the cipher suite negotiation
supporting name server. As an example, to resolve the domain name foo.bar

using RSA/SHA1, the client sends the query pAI 5.foo.bar. Here, pAI is a
fixed prefix identifying that this request contains a preferred Algorithm Identifier,
and 5 is the algorithm number of RSA/SHA1 as assigned by IANA [7]. These
algorithm-numbers are already used in DNSSEC (DS, RRSIG and DNSKEY)
records, to identify the cryptographic algorithm used to generate the hash and
signature algorithms.
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4.1 Query Processing

Suppose a resolver needs to make a query to a name server authoritative for
foo.bar, and that the resolver prefers the use of algorithm number 7 (ECDSA
Curve P-256 SHA-256). If the resolver does not have the ‘list of algorithms’
record for the zone foo.bar cached, then it sends a ‘regular’ query, e.g., query for
a name server (NS) record of domain foo.bar. If the name server supports cipher
suite negotiation, in response to its query for a DNSKEY record (or a DS record if
the query is sent to the parent domain), the resolver receives the ‘default/current’
DNSKEY (resp. DS) record, that contains the ‘list of algorithms’.

Note that all those records - the pAI 5.foo.bar responses and the ‘list of
algorithms’ - would automatically be cached by any intermediate ‘legacy’ DNS
proxy, without requiring modifications to the existing proxies. Additional re-
solvers (or clients), requesting records recently requested by another client, e.g.,
to the domain pAI 5.foo.bar, will receive the responses from the cache. Fur-
thermore, clients which do not support cipher suite negotiation, will receive
responses that contain all the cryptographic material supported by the target
domain – as is done currently; the ‘list of algorithms’ in the DS and DNSKEY
RR-sets will refer to an unknown algorithm and hence will be ignored by legacy
resolvers, that do not support cipher suite negotiation.

4.2 Considering Limitations

The query size field in DNS is limited to 256 bytes. Thus, this encoding will fail
if the original domain name is already at the limit or close to it. We measured
the distribution of domains’ lengths on Alexa top-50,000 and found that almost
72% are less than 10 characters, 88.45% are less than 20 characters, and the
remaning are less than 100 characters. Namely, current query field does not pose
a restriction for the prefix encoding.

4.3 Implementation

Our design does not require changes to the DNS software or protocol, and can
be easily integrated into the existing DNS infrastructure. We implemented our
cipher-suite negotiation mechanism as two separate user space modules, cipher-
suite client and cipher-suite server.

Our mechanism requires a modification of the current signature procedure
dnssec-keygen which currently signs each DNS record in a zone file with all the
supported keys. We show how to extend it to enable cipher-suite negotiation, in
Section 4.4.

To test our implementation, we extended the dig (domain information groper)
DNS lookup utility2, with the support for signaling of a list of ciphers.

To integrate support of cipher suite negotiation also into the process of signing
the zone file we create separate copies of the zone file, such that each copy

2 dig is a tool for performing DNS lookup by interrogating DNS name servers, and
displaying the responses.
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corresponds to a single cipher. This is instead of signing the same zone file with
multiple ciphers as is currently performed.

4.4 Separate Zone File per Cipher

When supporting a number of cryptographic options, zone operators sign, typ-
ically using dnssec-keygen procedure, the same zone file with a number of
algorithms. The signing process of DNSSEC creates a signature per each RR-
set, i.e., set of resource records of the same type; for instance, all the name
servers (NS) records (of a specific domain) are signed as a single unit, and for
each supported cryptographic option a signature is attached to the NS RR-set.
When a number of cryptographic options are supported (as is typically the case)
a number of signatures are created and attached to each RR-set in the zone file.
For instance, the entire DNSKEY RR-set is signed with each of the supported
algorithmic options - and the responses, to DNS requests for a DNSKEY record,
contain all those signatures. As a result, DNS responses typically contain multi-
ple signatures (that correspond to all the supported cryptographic ciphers) for
each RR-set that they return.

To encorporate support for a cipher-suite negotiation, we extended the
dnssec-keygen procedure, to generate a separate zone file, per each crypto-
graphic algorithm that the zone supports. Our ednssec-keygen (extended
dnssec-keygen) performs the same number of signing operations as the num-
ber thereof that would have been performed by the dnssec-keygen procedure.
However, instead of signing the same zone file with different keys (which results
in a zone file where every RR-set is coupled with a set of signatures per each
supported cipher), it creates a separate copy of the zone file for each supported
cryptographic option. Each resulting RR-set in a signed zone file contains the
signature that corresponds only to the algorithm that was used to sign that copy
of the zone file.

4.5 Experimental Evaluation

We evaluated two key performance factors affected by our cipher-suite nego-
tiation mechanism: the latency of a DNS request to a signed domain and the
communication overhead. We configured an iptables firewall rule to capture
all the packets to/from port 53 (DNS requests/responses) and to pass them to
our user space modules on the resolver side and on the server side; cipher-suite
client module running on the resolver side, and cipher-suite server module on
name server side. In our implementation of the cipher-suite client and the cipher
suite server we used the libipq module to retrieve the packets from the kernel
queue for user space processing.

We measured the latency of a DNS request as the elapsed time between the
transmission of the request by the resolver and the receipt of the response, with
and without support of cipher-suite negotiation. We measured the communica-
tion overhead (Figure 4) by comparing the amount of bytes transmitted (Figure



Negotiating DNSSEC Algorithms over Legacy Proxies 123

5) with and without support of cipher-suite negotiation by the resolver and the
name server.

For our evaluation we configured cipher-suite client and cipher-suite server as
modules on separate hosts. The cipher-suite client was set up on the resolver’s
network, to capture all the DNS requests sent by the resolver; it adding the
subdomain of the preferred cipher, in requests to zones supporting cipher suite
negotiation, and stored DS and DNSKEY RRs containing the ‘list of algorithms’
record. Cipher suite client also validated that the DNS responses, from the zones
supporting cipher suite negotiation, were signed with the correct algorithms,
according to the option signaled in the DNS requests. The cipher-suite server
was set up on name server’s network, and was redirecting requests enhanced
with cipher suite negotiation, to the correct zone file (according to the option
signaled in the subdomain of the DNS query). We added firewall rules to redirect
the DNS traffic via the cipher suite client and cipher suite server modules.

To test the impact of cipher suite negotiation mechanism on DNS requests
to top-50,000 Alexa domains, we wrote a script that was stripping all the keys
and signatures from the responses of the name servers and was adding keys
and signatures according to a cipher that we selected - simulating the cipher-
suite selection process. Due to its short keys and signatures size, we selected the
EC algorithm, and the keys and signatures were computed with an EC secret
signing key that we generated for this experiment; the resolver was configured
with a corresponding trust anchor, i.e., public verification key, which enabled it
to establish a chain of trust and to successfully validate the signatures over the
RR-sets in the responses.

We performed two series of evaluations of requests’ latency over a list of top-
50,000 Alexa domains and TLDs: (1) we wrote a python script that receives in
an input a list of TLDs and Alexa top domains, invokes the dig utility on each
domain, and measures the time between the transmission of the request and the
receipt of the response as well as the number of bytes received in the response; we
used Bind-9.9.3 software to set up a recursive DNS resolver. (2) Then, to measure
the impact of cipher-suite negotiation, we wrote a python script, which used the
extended dig tool with our cipher-suite negotiation options for appending the
algorithm as a subdomain to the query in the DNS requests. The measurements
are plotted in Figures 4 and 5.

As can be seen, in Figure 4, cipher-suite negotiation reduces the latency for
signed DNS responses both in TLDs and Alexa domains. The difference is more
evident in signed TLDs, majority of which support more keys than signed Alexa
domains. However, as can be seen in the figure, there is a significant latency
difference in signed Alexa domains and in TLDs that do not support cipher-
suite negotiation, after the point of 256 ms. This is due to transition to TCP
for responses which exceed the path maximal transmission unit (MTU); some
TLDs such as com, send large responses only over TCP.

We measured the impact of the cipher-suite negotiation on the amount of
the transmitted bytes for queries to the domains within the signed TLDs, using
the DNSKEY record type requests. The graph, plotted in Figure 5, with the
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Fig. 4. Latency of DNS requests to TLDs
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cipher-suite negotiation shows three steps. Intuitively, one may expect to see
an almost a straight line, however, the steps appear due to the fact that some
domains are in a process of key rollover for ZSK and thus use two ZSK records (in
addition to a KSK record). The improvement in traffic volume is the difference
between the two lines: the upper (with cipher-suite negotiation) and the lower
(without cipher-suite negotiation).

4.6 Impact on Performance and Security

In this section we discuss the impact of the proposed cipher suite negotiation
mechanism on performance and security. We first discuss the impact on perfor-
mance, which, we argue, is mixed, with reduced client to resolver communication,
reduced latency to clients, and reasonable additional communication to resolvers,
and storage kept by resolvers to accomodate for the additional records that re-
flect the priorities of the clients. We then argue that cipher suite negotiation can
have significant positive impact on the adoption of new algorithms, and hence
on security.

Impact on Performance. Our mechanism does not introduce a negative im-
pact on performance, since it is invoked only when the resolver receives the new
‘list of algorithms’ record in a DNS response. Similarly, the performance im-
pact on queries to zones enhanced with a cipher suite negotiation mechanism,
by ‘legacy’ resolvers (that do not support cipher suite negotiation mechanism),
is also negligible: just the addition of the few bytes required for the ‘list of al-
gorithms’ record in DNSKEY or DS type responses; this addition constitutes
less than 1% of the typical DNSSEC response length (see Introduction, Figure
1 for DNSSEC signed responses sizes. Therefore, the interesting comparison is
between the case of full or partial adoption (by both resolvers and zones), vs.
the case of no adoption.

The cipher suite negotiation mechanisms is expected to result in significant
savings in bandwidth in the client to resolver connection, since the client will only
receive the signatures and the keys that it uses. Cipher suite negotiation would
reduce the latency significant for all DNSSEC responses that are fragmented due
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to excessive length, and those that are resent over TCP (e.g., responses from a
com domain).

On the other hand, the algorithm-negotiation mechanism may cause a resolver
to make multiple requests for the same domain name - one request for each of
the algorithms supported by the zone (from different clients, each preferring a
different algorithm). This results in overhead of additional request and response
packets sent and received by resolver/proxy, and corresponding storage for these
records. However, the largest part of the response are the signatures and keys,
which are sent at most twice: in the ‘legacy’ response (containing all algorithms)
and in the response to query specifying the required algorithm. Furthermore,
since the responses are shorter, we avoid fragmentation and the use of TCP,
which results in a significant reduction in resources in the resolver and the name
servers (in particular, for buffering).

Impact on Adoption and Security. As can be seen in Figure 3, currently, es-
sentially all domains support only RSA signatures. Indeed, without the proposed
cipher suite negotiation mechanism, if a domain were to support an additional
algorithm, e.g., one based on Elipitic Curves (EC), this would result in larger
responses, hence in more truncation and fragmentation of responses, increas-
ing communication overhead and latency and causing interoperability failures.
Therefore, it is not surprising, that almost no domains have opted to use EC or
other non-RSA signature schemes.

The proposed cipher suite negotiation mechanism removes this concern of
fragmentation/truncation, for a domain offering a new, possibly better, cryp-
tographic (signature, hashing) algorithm. Furthermore, there is no ‘penalty’ to
the name server, unless and until the clients and the resolver begin requesting
the new algorithm. Therefore, the domains have incentive to adopt such alter-
natives to RSA. This can have significant security value, by allowing the use of
the secure alternatives.

5 Conclusions

It is well known that cryptographic protocols should allow parties to (securely)
negotiate the ‘best’ cryptographic functions; such ‘algorithm-agility’ is often
mentioned as a requirement from crypto-protocol standards. Indeed, appropri-
ate, secure ‘cipher-suite negotiation’ mechanisms were designed for many crypto-
protocol standards (TLS, IPsec, and others).

However, so far, such negotiation mechanisms were not proposed for protocols
designed for secure distribution of signed information, such as DNSSEC, used
for secure distribution of DNS records.

We show that currently, almost all (99.9% !) of domains use RSA with 1024
bit keys, for DNSSEC signatures, which is considered insecure (outdated). This
choice results in larger signatures than the existing (more efficient) alternatives.
The use of 2048-bit keys results in even larger DNS responses.

We present a simple, practical and efficient protocol allowing secure negotia-
tion of signature algorithms. The protocol is secure and efficient since it supports
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caching by the intermediate devices (proxies), without requiring upgrade of the
intermediaries.
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Abstract. The Domain Name System (DNS) is vital for access to infor-
mation on the Internet. This makes it a target for attackers whose aim is
to suppress free access to information. This paper introduces the design
and implementation of the GNU Name System (GNS), a fully decen-
tralized and censorship-resistant name system. GNS provides a privacy-
enhancing alternative to DNS which preserves the desirable property
of memorable names. Due to its design, it can also double as a partial
replacement of public key infrastructures, such as X.509. The design of
GNS incorporates the capability to integrate and coexist with DNS. GNS
is based on the principle of a petname system and builds on ideas from the
Simple Distributed Security Infrastructure (SDSI), addressing a central
issue with the decentralized mapping of secure identifiers to memorable
names: namely the impossibility of providing a global, secure and mem-
orable mapping without a trusted authority. GNS uses the transitivity
in the SDSI design to replace the trusted root with secure delegation
of authority, thus making petnames useful to other users while operat-
ing under a very strong adversary model. In addition to describing the
GNS design, we also discuss some of the mechanisms that are needed to
smoothly integrate GNS with existing processes and procedures in Web
browsers. Specifically, we show how GNS is able to transparently sup-
port many assumptions that the existing HTTP(S) infrastructure makes
about globally unique names.

1 Introduction

The Domain Name System (DNS) is a unique distributed database and a vital
service for most Internet applications. While DNS is distributed, it relies on cen-
tralized, trusted registrars to provide globally unique names. As the awareness
of the central role DNS plays on the Internet rises, various institutions are us-
ing their power (including legal means) to engage in attacks on the DNS, thus
threatening the global availability and integrity of information on the Web [1].
This danger has also been recognized by the European Parliament, which has
emphasized the importance of maintaining free access to information on the Web
in a resolution [2]. Tampering with the DNS can cause collateral damage, too: a
recent study [3] showed that Chinese censorship of the DNS has had worldwide
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effects on name resolution. At the same time, we observe that the Internet’s im-
portance for free communication has dramatically risen: the events of the Green
Revolution in Iran and the Arab Spring have demonstrated this. Dissidents need
communication channels that provide the easy linking to information that is at
the Web’s core. This calls for a censorship-resistant name system which ensures
that names of Internet servers can always be resolved correctly.

DNS was not designed with security as a goal. This makes it very vulnera-
ble, especially to attackers that have the technical capabilities of an entire nation
state at their disposal. The follow are some of the most severe weaknesses that the
DNS exhibits even in the presence of the DNS Security Extensions (DNSSEC).
DNSSEC [4] was designed to provide data integrity and origin authentication
to DNS. DNSSEC maintains the hierarchical structure of DNS and thus places
extensive trust in the root zone and TLD operators. More importantly, DNSSEC
fails to provide any level of query privacy [5]: the content of DNS queries and
replies can be read by any adversary with access to the communication chan-
nel and can subsequently be correlated with users. On a technical level, current
DNSSEC deployment suffers from the use of the RSA crypto system, which leads
to large key sizes. This can result in message sizes that exceed size restrictions
on DNS packets, leading to additional vulnerabilities [6]. Finally, DNSSEC is
not designed to withstand legal attacks. Depending on their reach, governments,
corporations and their lobbies can legally compel operators of DNS authorities
to manipulate entries and certify the changes, and Soghoian and Stamm have
warned that similar actions might happen for X.509 server certificates [7]. There
can also be collateral damage: DNSSEC cannot prevent problems such as the re-
cent brief disappearance of thousands of legitimate domains during the execution
of established censorship procedures, in which the Danish police accidentally re-
quested the removal of 8,000 (legitimate) domain names from DNS and providers
complied. The underlying attack vector in these cases is the same: names in the
DNS have owners, and ownership can be taken away by different means.

This paper presents the GNU Name System (GNS), a censorship-resistant,
privacy-preserving and decentralized name system designed to provide a secure
alternative to DNS, especially when censorship or manipulation is encountered.
As GNS can bind names to any kind of cryptographically secured token, it
can double in some respects as an alternative to some of today’s Public Key
Infrastructures, in particular X.509 for the Web.

The foundation of the GNS system is a petname system [8], where each in-
dividual user may freely and securely map names to values. In a petname sys-
tem, each user chooses a nickname as his preferred (but not necessarily globally
unique) name. Upon introduction, users adopt the nickname by default as a label
to refer to a new acquaintance; however, they are free to select and assign any
petname of their choice in place of—or, in addition to—the nickname. Petnames
thus reflect the personal choice of the individual using a name, while nicknames
are the preferred name of the user that is being identified.

The second central idea is to provide users with the ability to securely delegate
control over a subdomain to other users. This simple yet powerful mechanism is
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borrowed from the design of SDSI/SPKI. With the combination of petname sys-
tem and delegation, GNS does not require nor depend on a centralized or trusted
authority, making the system robust against censorship attempts. Decentraliza-
tion and additional censorship resistance is achieved by using a distributed hash
table (DHT) to enable the distribution and resolution of key-value mappings.
In theory, any DHT can be used. However, depending on the properties of the
DHT in question, varying degrees of censorship resistance will be the result. As
such, the choice of the DHT is crucial to the system. Finally, GNS is privacy-
preserving since both key-value mappings as well as queries and responses are
encrypted such that an active and participating adversary can at best perform
a confirmation attack, and can otherwise only learn the expiration time of a
response.

While this combination yields a secure name system, it also violates a fun-
damental assumption prevailing on the Web, namely that names are globally
unique. Thus, together with the working implementation of GNS1, another key
contribution of our work is the construction of system components to enable the
use of GNS in the context of the Web. We provide ready-to-use components to
enable existing Web applications to use GNS (and DNS in parallel, if desired)
without any prior modifications and knowledge.

As a alternative public key infrastructure, GNS can also be combined with
existing PKI approaches (such as X.509, DANE, Tor’s “.onion” or the Web of
Trust) to either provide memorable names or alternative means for verification
with increased trust agility. In combination with TLSA records, GNS can replace
existing X.509 certification authorities as described in Appendix A.3.

2 Background

In order to present GNS, we must first discuss technical background necessary
to understand our design. We define the adversary model that GNS addresses
and then provide some brief background on DNS, DNSSEC, SDSI/SPKI and
distributed storage in P2P Networks.

2.1 Adversary Model

The adversary model used in this work is modeled after a state trying to limit
access to information without causing excessive damage to its own economy. The
goal of the adversary is to force name resolution to change in the respective name
system, by either making the resolution fail or by changing the value to which
an existing name (not originally under the control of the adversary) maps.

We allow the adversary to participate in any role in the name system. Note
that this excludes the possibility of a global trusted third party. In addition,
the adversary is allowed to assume multiple identities. We impose no bound
on the fraction of collaborating malicious participants, and we assume that the

1 Available under: https://gnunet.org/gns

https://gnunet.org/gns
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adversary can take control of names using judicial and executive powers (for
example by confiscating names or forcing third parties to misdirect users to
adversary-controlled impostor sites). Computationally, the adversary is allowed
to have more resources than all benign users combined.

The adversary may directly compromise the computers of individual users;
for the security of the system as a whole, we only require that the impact of
such attacks remains localized. The rationale for being able to make such an
assumption is that the economic and political cost of such tailored methods is
very high, even for a state actor. Similarly, the adversary cannot prevent the
use of cryptography, free software, or encrypted network communication. The
adversary is assumed to be unable to break cryptographic primitives. As far as
network communication is concerned, we assume that communication between
benign participants generally passes unhindered by the adversary.

Zooko’s triangle [9], an insightful conjecture that is often used to define the
possible design space of name systems, has important implications under this
adversary model: it means that no name system can provide globally unique
and memorable names and be secure [10]. It should be noted that in weaker
adversary models, these implications do not hold [11].

2.2 DNS and DNSSEC

The Domain Name System is an essential part of the Internet as it provides
mappings from host names to IP addresses, providing memorable names for
users. DNS is hierarchical and stores name-value mappings in so-called records
in a distributed database. A record consists of a name, type, value and expiration
time. Names consist of labels delimited by dots. The root of the hierarchy is the
empty label, and the right-most label in a name is known as the top-level domain
(TLD). Names with a common suffix are said to be in the same domain. The
record type specifies what kind of value is associated with a name, and a name
can have many records with various types. The most common record types are
“A” records that map names to IPv4 addresses.

The Domain Name System database is partitioned into zones. A zone is a
portion of the namespace where the administrative responsibility belongs to one
particular authority. A zone has unrestricted autonomy to manage the records
in one or more domains. Very importantly, an authority can delegate responsi-
bility for particular subdomains to other authorities. This is achieved with an
“NS” record, whose value is the name of a DNS server of the authority for the
subdomain. The root zone is the zone corresponding to the empty label. It is
managed by the Internet Assigned Numbers Authority (IANA), which is cur-
rently operated by the Internet Corporation for Assigned Names and Numbers
(ICANN). The National Telecommunications and Information Administration
(NTIA), an agency of the United States Department of Commerce, assumes the
(legal) authority over the root zone. The root zone contains “NS” records which
specify names for the authoritative DNS servers for all TLDs.

The Domain Name System Security Extensions add integrity protection
and data origin authentication for DNS records. DNSSEC does not add
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confidentiality nor denial-of-service protection. It adds record types for public
keys (“DNSKEY”) and for signatures on resource records (“RRSIG”). DNSSEC
relies on a hierarchical public-key infrastructure in which all DNSSEC operators
must participate. It establishes a trust chain from a zone’s authoritative server
to the trust anchor, which is associated with the root zone. This association
is achieved by distributing the root zone’s public key out-of-band with, for ex-
ample, operating systems. The trust chains established by DNSSEC mirror the
zone delegations of DNS. With TLD operators typically subjected to the same
jurisdiction as the domain operators in their zone, these trust chains are at risk
of attacks using legal means.

2.3 SDSI/SPKI

SDSI/SPKI is a merger of the Simple Distributed Security Infrastructure (SDSI)
and the Simple Public Key Infrastructure (SPKI) [12]. It defines a public-key
infrastructure that abandons the concept of memorable global names and does
not require certification authorities. SDSI/SPKI has the central notion of prin-
cipals, which are globally unique public keys. These serve as namespaces within
which local names are defined. A name in SDSI/SPKI is a public key and a local
identifier, e.g. K −Alice. This name defines the identifier Alice, which is only
valid in the namespace of key K. Thus, K1−Alice and K2−Alice are different
names. SDSI/SPKI allows namespaces to be linked, which results in compound
names: KCarol −Bob−Alice is Carol’s name for the entity which Bob refers to
as KBob−Alice. Bob himself is identified by Carol as KCarol−Bob. SDSI/SPKI
allows assertions about names by issuing certificates2. A name cert is a tuple
of (issuer public key, identifier, subject, validity), together with a signature by
the issuer’s private key. The subject is usually the key to which a name maps.
Compound names are expressed as certificate chains.

GNS applies these key ideas from SDSI/SPKI to a name resolution mecha-
nism in order to provide an alternative to DNS. The transitivity at the core of
SDSI/SPKI is found in GNS as delegation of authority over a name. In both
systems, name resolution starts with a lookup in the local namespace.

2.4 Distributed Storage in P2P Overlay Networks

In peer-to-peer systems, it is common to use a DHT to exchange data with other
participants in the overlay. A DHT creates a decentralized key/value store to
make mappings available to other users and to resolve mappings not available
locally. GNS uses a DHT to make local namespace and delegation information
available to other users and to resolve mappings from other users. As mentioned
previously, the choice of DHT strongly affects the availability of GNS data.

2 Ultimately, SDSI/SPKI allows to create authorizations based on certificates and is
a flexible infrastructure in general, but we will focus only on the names here.
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3 Design of the GNU Name System

In the following, we describe the core concepts of GNS that are relevant to
users. The cryptographic protocol used to ensure query privacy is explained in
Section 4, and the protocol for key revocation in Section A.5.

3.1 Names, Zones and Delegations

GNS employs the same notion of names as SDSI/SPKI: principals are public
keys, and names are only valid in the local namespace defined by that key.
Namespaces constitute the zones in GNS: a zone is a public-private key pair and
a set of records. GNS records consist of a label, type, value and expiration time.
Labels have the same syntax as in DNS; they are equivalent to local identifiers
in SDSI/SPKI. Names in GNS consists of a sequence of labels, which identifies
a delegation path. Cryptography in GNS is based on elliptic curve cryptography
and uses the ECDSA signature scheme with Curve25519 [13].

We realise a petname system by having each user manage his own zones, in-
cluding, in particular, his own personal master zone.3 Users can freely manage
mappings for memorable names in their zones. Most importantly, they can del-
egate control over a subdomain to another user (which is locally known under
the petname assigned to him). To this end, a special record type is used (see
Section 3.5). This establishes the aforementioned delegation path. Each user uses
his master zone as the starting point for lookups in lieu of the root zone from
DNS. For interoperability with DNS, domain names in GNS use the pseudo-
TLD “.gnu”. “.gnu” refers to the GNS master zones (i. e. the starting point of
the resolution). Note that names in the “.gnu” pseudo-TLD are always relative.

Publishing delegations in the DHT allows transitive resolution by simply fol-
lowing the delegation chains. Records can be private or public, and public records
are made available to other users via a DHT. Record validity is established us-
ing signatures and controlled using expiration values. The records of a zone are
stored in a namestore database on a machine under the control of the zone owner.

We illustrate the abstract description above with the example shown in Fig-
ure 1. The figure shows the paths Alice’s GNS resolver would follow to resolve
the names “www.dave.carol.gnu” and “www.buddy.bob.gnu”, both of which re-
fer to Dave’s server at IP “192.0.2.1”. For Carol, Dave’s server would simply be
“www.dave.gnu”. It is known to Alice only because both Bob and Carol have
published public records indicating Dave, and Alice can resolve the respective
delegation chain via her known contacts. Recall that zones are identified using
public keys and records must be cryptographically signed to ensure authenticity
and integrity.

3 Each user can create any number of zones, but must designate one as the master
zone.
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Bob 
(TX12)

buddy, PKEY, L1G6

Carol
(QXDA)

dave, PKEY, L1G6

Alice
(RTA7)

bob, PKEY, TX12
carol, PKEY, QXDA

Dave 
(L1G6)

www, A, 192.0.2.1

.bob
.buddy

.dave
.carol

Fig. 1. Name resolution graph in GNS. Each user is shown with a fingerprint of his
master zone and the public records from this zone in the format name, type, value.

3.2 Zone Management with Nicknames and Petnames

Suppose Alice runs a web server and wants to make it available with GNS. In the
beginning she sets up her master zone using GNS. After the public-private key
pair is generated, Alice can create a revocation notice to be able to immediately
revoke their GNS zone in case she gets compromised. Suppose Alice wants to
propose that her preferred nickname is “carol” to other users. She therefore uses
the new “NICK” record that GNS provides. For her web server, she creates an
appropriate public “A” record under the name “www”. This “A” record is the
same as in DNS. To make it resolvable by other users, this record is marked as
public and published in the DHT.

Now suppose we have a second user, Bob. He performs the same setup on his
system, except that his preferred nickname is just “bob”. Bob gets to know Alice
in real life and obtains her public key. To be able to contact Alice and access her
web server, he then adds Alice to his zone by adding a new delegation using the
new “PKEY” record. Bob can choose any name for Alice’s zone in his zone. Nev-
ertheless, Bob’s software will default to Alice’s preferences and suggest “carol”,
as long as “carol” has not already been assigned by Bob. This is important as
it gives Alice an incentive to pick a nickname that is (sufficiently) unique to be
available among the users that would delegate to her zone. By adding Alice’s
public key under “carol”, Bob delegates queries to the “*.carol.gnu” subdomain
to Alice. Thus, from Bob’s point of view, Alice’s web server is “www.carol.gnu”.
Note that there is no need for Alice’s nickname “carol” to be globally unique,
they should only not already be in use within Alice’s social group.

3.3 Relative Names for Transitivity of Delegations

Users can delegate control over a subdomain to another user’s zone by indicating
this in a new record, “PKEY”. Suppose Dave is Bob’s friend. Dave has added
a delegation to Bob with a “PKEY” record under the name “buddy”—ignoring
Bob’s preference to be called “bob”. Now suppose Bob wants to put on his
webpage a link to Alice’s webpage. For Bob, Alice’s website is “www.carol.gnu”.
For Dave, Bob website is “buddy.gnu”. Due to delegation, Dave can access Alice’s
website under “www.carol.buddy.gnu”. However, Bob’s website cannot contain
that link: Bob may not even know that he is “buddy” for Dave.
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We solve this issue by having Bob use “www.carol.+” when linking to Al-
ice’s website. Here, the “+” stands for the originating zone. When Dave’s client
encounters “+” at the end of a domain name, it should replace “+” with the
name of the GNS authority of the site of origin. This mechanism is equivalent
to relative URLs, except that it works with hostnames.

3.4 Absolute Names

In GNS, the “.gnu” pseudo-TLD is used to provide secure and memorable names
which are only defined relative to some master zone. However, introducing new
zones into the system ultimately requires the ability to reference a zone by an
absolute identifier, which must correspond to the public key of the zone. To
facilitate dealing with public keys directly, GNS uses the pseudo-TLD “.zkey”,
which indicates that the specified domain name contains the public key of a GNS
zone. As a result, the “.zkey” pseudo-TLD allows users to use secure and globally
unique identifiers. Applications can use the “.zkey” pseudo-TLD to generate a
domain name for a GNS zone for which the user does not (yet) have a memorable
name. A label in the “.zkey” pseudo-TLD is the public key of the zone encoded
within the 63 character limitations for labels imposed by DNS.

3.5 Records in GNS

As GNS is intended to coexist with DNS, most DNS resource records from
[14,15] (e. .g., “A”, “MX”) are used with identical semantics and binary format in
GNS. GNS defines various additional records to support GNS-specific operations.
These records have record type numbers larger than 216 to avoid conflicts with
DNS record types that might be introduced in the future. Details on all record
types supported by our current implementation can be found in our technical
report [16].

4 Query Privacy

To enable other users to look up records of a zone, all public records for a given
label are stored in a cryptographically signed block in the DHT. To maximize
user privacy when using the DHT to look up records, both queries and replies
are encrypted. Let x ∈ Zn be the ECDSA private key for a given zone and
P = xG the respective public key where G is the generator of the elliptic curve.
Let n := |G| and l ∈ Zn be a numeric representation of the label of a set of
records Rl,P . Using

h : = x · l mod n (1)

Ql,P : = H(hG) (2)

Bl,P : = Sh(EHKDF(l,P )Rl,P ), hG (3)

we can then publish Bl,P under Ql,P in the DHT, where Sh represents signing
with the private key h, HKDF is a hash-based key derivation function and E
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represents symmetric encryption based on the derived key. Any peer can validate
the signature (using the public key hG) but not decrypt Bl,P without knowledge
of both l and P . Peers knowing l and P can calculate the query

Ql,P = H(lP ) = H(lxG) = H(hG) (4)

to retrieve Bl,P and then decrypt Rl,P .
Given this scheme, an adversary can only perform a confirmation attack; if

the adversary knows both the public key of the zone and the specific label, he can
perform the same calculations as a peer performing a lookup and, in this specific
case, gain full knowledge about the query and the response. As the DHT records
are public, this attack cannot be prevented. However, users can use passwords for
labels to restrict access to zone information to authorized parties. The presented
scheme ensures that an adversary that is unable to guess both the zone’s public
key and the label cannot determine the label, zone or record data.

5 Security of GNS

One interesting metric for assessing the security of a system is to look at the size
of the trusted computing base (TCB). In GNS, users explicitly see the trust chain
and thus know if the resolution of a name requires trusting a friend, or also a
friend-of-a-friend, or even friends-of-friends-of-friends—and can thus decide how
much to trust the result. Naturally, the TCB for all names can theoretically
become arbitrarily large—however, given the name length restrictions, for an
individual name it is always less than about 125 entities. The DHT does not
have to be trusted; the worst an adversary can do here is reduce performance
and availability, but not impact integrity or authenticity of the data.

For DNS, the size of the TCB is first of all less obvious. The user may think
that only the operators of the resolvers visible in the name and their local DNS
provider need to be trusted. However, this is far from correct. Names can be
expanded and redirected to other domains using “CNAME” and “DNAME”
records, and resolving the address of the authority from “NS” records may re-
quire resolving again other names. Such “out-of-bailiwick” “NS” records were
identified as one main reason for the collateral damage of DNS censorship by
China [3]. requires correct information from “x.gtld-servers.net” (the author-
ity for “.com”), which requires trusting “X2.gtld-servers.net” (the authority for
“.net”). While the results to these queries are typically cached, the respective
servers must be included in the TCB, as incorrect answers for any of these
queries can change the ultimate result. Thus, in extreme cases, even seemingly
simple DNS lookups may depend on correct answers from over a hundred DNS
zones [17]; thus, with respect to the TCB, the main difference is that DNS is
very good at obscuring the TCB from its users.

In the following, we discuss possible attacks on GNS within our adversary
model. The first thing to note is that as long as the attacker cannot gain direct
control over a user’s computer, the integrity of master zones is preserved. Attacks
on GNS can thus be classified in two categories: attacks on the network, and
attacks on the delegation mechanism.
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Attacks on the network can be staged as Eclipse attacks. The success depends
directly on the DHT. Our choice, R5N , shows a particularly good resistance
against such attacks [18].

Concerning the delegation mechanism, the attacker has the option of tricking
a user into accepting rogue mappings from his own zones. This requires social
engineering. We assume that users of an anti-censorship system will be moti-
vated to carefully check whose mappings they trust. Nevertheless, if the attacker
succeeds, some damage will be done: all users that use this mapping will be af-
fected. The effect thus depends on the “centrality” of the tricked user in the GNS
graph. It is difficult to give estimates here, as the system is not deployed yet. In
order to maximize the effects of his attack, the attacker would have to carry out
his social engineering many times, which is naturally harder. Comparing this to
DNSSEC, we note that even when a compromise has been detected, DNS users
cannot choose whose delegations to follow. In GNS, they can attempt to find
paths in the GNS graph via other contacts. The system that is most similar and
in deployment is the OpenPGP Web of Trust. Ulrich et al. found that the Web
of Trust has developed a strong mesh structure with many alternative paths [19].
If GNS develops a similar structure, users would greatly benefit.

Finally, censorship does not stop with the name system, and for a complete
solution we thus need to consider censorship at lower layers. For example, an
adversary might block the IP address of the server hosting the critical informa-
tion. GNS is not intended as an answer to this kind of censorship. Instead, we
advocate using tools like Tor [20] to circumvent the blockade.

6 Related Work

Timeline-based systems in the style of Bitcoin [21] have been proposed to create
a global, secure and memorable name system [11]. Here, the idea is to create a
single, globally accessible timeline of name registrations that is append-only. In
the Namecoin system [22], a user needs to expend computational power on find-
ing (partial) hash collisions in order to be able to append a new mapping. This
is supposed to make it computationally infeasible to produce an alternative valid
timeline. It also limits the rate of registrations. However, the Namecoin system
is not strong enough in our adversary model, as the attacker has more computa-
tional power than all other participants, which allows him to create alternative
valid timelines. Note that our adversary model is not a far-fetched assumption in
this context: it is conceivable that a nation-state can muster more resources than
the small number of other entities that participate in the system, especially for sys-
tems used as an alternative in places where censorship is encountered or during the
bootstrapping of the network, when only a small number of users participate.

The first practical system that improves confidentiality with respect to DNS
queries and responses was DNSCurve [5]. In DNSCurve, session keys are
exchanged using Curve25519 [13] and then used to provide authentication and en-
cryption between caches and servers. DNSCurve improves the existing Domain
NameSystemwith confidentiality and integrity, but the fundamental issues ofDNS
with respect to the adversary trying to modify DNS mapping is notwithin its focus.
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GNS has much in common with the name system in the Unmanaged Internet
Architecture (UIA) [23], as both systems are inspired by SDSI. In UIA, users can
define personal names bound to self-certifying cryptographic identities and can
access namespaces of other users. UIA’s focus is on universal connectivity between
a user’s many devices. With respect to naming, UIA takes a clean-slate approach
and simply assumes that UIA applications use the UIA client library to contact
the UIA name daemon and thus understand the implications of relative names. In
contrast, GNS was designed to interoperate with DNS as much as possible, and
we have specifically considered what is needed to make it work as much as possible
with the existing Internet. In terms of censorship resistance, both systems inherit
basic security properties from SDSI with respect to correctness.

7 Summary and Conclusion

GNS is a censorship resistant, privacy-enhancing name system which avoids the
use of trusted third parties. GNS provides names that are memorable, secure
and transitive. Placing names in the context of each individual user eliminates
ownership and effectively eliminates the possibility of executive or judicial control
over these names.

GNS can be operated alongside DNS and begins to offer its advantages as soon
as two parties using the system interact, enabling users to choose GNS or DNS
based on their personal trade-off between censorship-resistance and convenience.

GNS and the related tools are available to the public as part of the GNUnet
peer-to-peer framework and are free software under the GNU General Public
License. The current implementation includes all of the features described in
this paper. In the future, we will begin deployment to actual users and perform
experiments to find out which usability problems arise with GNS.
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A Special Features

This appendix describes some additional special features in GNS that are used
to deal with corner cases that a practical system needs to deal with, but that
might only be relevant for a subset of the users.

A.1 Automatic Shortening

Once Dave’s client translates “www.carol.+” to “www.carol.buddy.gnu”, Dave
can resolve “carol.buddy.gnu” to Alice’s public key and then lookup the IP ad-
dress for Alice’s server under the respective key in the DHT. At this point,
Dave’s GNS system will also learn that Alice has set her “NICK” record to
“carol”. It will then check if the name “carol” is already taken in Dave’s zone,
and—if “carol” is free—offer Dave the opportunity to introduce a PKEY record
into Dave’s zone that would shorten “carol.buddy.gnu” to “carol.gnu”.

Alternatively, the record could be automatically added to a special shorten
zone that is, in addition to the master zone, under Dave’s control. In this case,
Alice would become available to Dave under “carol.shorten.gnu”, thus highlight-
ing that the name was created by automatic shortening within the domain name.

In either case, shortening eliminates Bob from the trust path for Dave’s future
interactions with Alice. Shortening is a variation of trust on first use (TOFU),
as compromising Bob afterwards would no longer compromise Dave’s path to
Alice.

A.2 Relative Names in Record Values

GNS slightly modifies the rules for some existing record types in DNS. In par-
ticular, names in DNS values are always absolute; GNS allows the notation
“.+” to indicate that a name is relative. For example, consider “CNAME”
records in DNS, which map an alias (label) to a canonical name: as specified
in RFC 1035 [14], the query can (and in GNS will) be restarted using the spec-
ified “canonical name”. The difference between DNS and GNS is that in GNS,
the canonical name can be a relative name (ending in “.+”), an absolute GNS
name (ending in “.zkey”) or a DNS name.

As with DNS, if there is a “CNAME” record for a label, no other records are
allowed to exist for the same label in that zone. Relative names using the “.+”
notation are not only legal in “CNAME” records, but in all records that can
include names. This specifically includes “MX” and “SOA” records.

A.3 Dealing with Legacy Assumptions: Virtual Hosting and TLS

In order to integrate smoothly with DNS, GNS needs to accommodate some
assumptions that current protocols make. We can address most of these with
the “LEHO” resource record. In the following, we show how to do this for Web
hosting. There are two common practices to address here; one is virtual hosting
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(i. e. hosting multiple domains on the same IP address); the other is the practice
of identifying TLS peers by their domain name when using X.509 certificates.

The problem we encounter is that GNS gives additional and varying names
to an existing service. This breaks a fundamental assumption of these proto-
cols, namely that they are only used with globally unique names. For exam-
ple, a virtually hosted website may expect to see the HTTP header Host:

www.example.com, and the HTTP server will fail to return the correct site if
the browser sends Host: www.example.gnu instead. Similarly, the browser will
expect the TLS certificate to contain the requested “www.example.gnu” domain
name and reject a certificate for “www.example.com”, as the domain name does
not match the browser’s expectations.

In GNS, each user is free to pick his own petname for the service. Hence, these
problems cannot be solved by adding an additional alias to the HTTP server
configuration or the TLS certificate. Our solution for this problem is to add the
legacy hostname record type (“LEHO”) for the name. This record type specifies
that “www.example.gnu” is known in DNS as “www.example.com”. A proxy
between the browser and the web server (or a GNS-enabled browser) can then
use the name from this record in the HTTP Host: header. Naturally, this is only
a legacy issue, as a new HTTP header with a label and a zone key could also
be introduced to address the virtual hosting problem. The LEHO records can
also be used for TLS validation by relating GNS names to globally unique DNS
names that are supported by the traditional X.509 PKI. Furthermore, GNS also
supports TLSA records, and thus using TLSA records instead of CAs would be
a better alternative once browsers support it.

A.4 Handling TLSA and SRV Records

TLSA records are of particular interested for GNS, as they allow TLS appli-
cations to use DNSSEC as an alternative to the X.509 CA PKI. With TLSA
support in GNS, GNS provides an alternative to X.509 CAs and DNSSEC using
this established standard. Furthermore, GNS does not suffer from the lack of
end-to-end verification that currently plagues DNSSEC.

However, to support TLSA in GNS a peculiar hurdle needs to be resolved.
In DNS, both TLSA and SRV records are special in that their domain names
are used to encode the service and protocol to which the record applies. For
example, a TLSA record for HTTPS (port 443) on www.example.com would be
stored under the domain name 443. tcp.www.example.com.

In GNS, this would be a problem since dots in GNS domain names are sup-
posed to always correspond to delegations to another zone. Furthermore, even if
a special rule were applied for labels starting with underscores, this would mean
that say the A record for www.example.com would be stored under a different
key in the DHT than the corresponding TLSA record. As a result, an application
would experience an unpredictable delay between receiving the A record and the
TLSA record. As a TLSA record is not guaranteed to exist, this would make it
difficult for the application to decide between delaying in hope of using a TLSA
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record (which may not exist) and using traditional X.509 CAs for authentication
(which may not be desired and likely less secure).

GNS solves this problem by introducing another record type, the BOX record.
A BOX record contains a 16-bit port, a 16-bit protocol identifier, a 32-bit embed-
ded record type (so far always SRV or TLSA) and the embedded record value.
This way, BOX records can be stored directly under www.example.com and the
corresponding SRV or TLSA values are thus never delayed — not to mention
the number of DHT lookups is reduced. When GNS is asked to return SRV or
TLSA records via DNS, GNS recognizes the special domain name structure, re-
solves the BOX record and automatically unboxes the BOX record during the
resolution process. Thus, in combination with the user interface (Figure 2) GNS
effectively hides the existence of BOX records from DNS users.

We note that DNS avoids the problem of indefinite latency by being able to
return NXDOMAIN in case a SRV or TLSA record does not exist. However,
in GNS NXDOMAIN is not possible, largely due to GNS’s provisions for query
privacy. Furthermore, DNS can solve the efficiency problem of a second lookup by
using its “additional records” feature in the reply. Here, a DNS server can return
additional records that it believes may be useful but that were not explicitly
requested. However, returning such additional records might not always work, as
DNS implementations can encounter problems with the serious size restrictions
(often just 512 bytes) on DNS packets. As GNS replies can contain up to 63 kB
of payload data, we do not anticipate problems with the size limit in GNS even
for a relatively large number of unusually big TLSA records.

Fig. 2. The user can remain unaware of the behind-the-scenes boxing when creating
TLSA records in the GNS zone management interface
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A.5 Revocation

In case a zone’s private key gets lost or compromised, it is important that the key
can be revoked. Whenever a user decides to revoke a zone key, other users must
be notified about the revocation. However, we cannot expect users to explicitly
query to check if a key has been revoked, as this increases their latency (especially
as reliably locating revocations may require a large timeout) and bandwidth
consumption for every zone access just to guard against the relatively rare event
of a revoked key. Furthermore, issuing a query for zone revocations would create
the privacy issue of revealing that a user is interested in a particular zone.
Existing methods for revocation checks using certificate revocation lists in X.509
have similar disadvantages in terms of bandwidth, latency increase and privacy.

Instead of these traditional methods, GNS takes advantage of the P2P overlay
below the DHT to distribute revocation information by flooding the network.
When a peer wants to publish a revocation notice, it simply forwards it to all
neighbors; all peers do the same when the receive previously unknown valid
revocation notices. However, this simple-yet-Byzantine fault-tolerant algorithm
for flooding in the P2P overlay could be used for denial of service attacks. Thus,
to ensure that peers cannot abuse this mechanism, GNS requires that revocations
include a revocation-specific proof of work. As revocations are expected to be
rare special events, it is acceptable to require an expensive computation by the
initiator. After that, all peers in the network will remember the revocation forever
(revocations are a few bytes, thus there should not be an issue with storage).

In the case of peers joining the network or a fragmented overlay reconnecting,
revocations need to be exchanged between the previously separated parts of the
network to ensure that all peers have the complete revocation list. This can be
done using bandwidth proportional to the difference in the revocation sets known
to the respective peers using Eppstein’s efficient set reconciliation method. In
effect, the bandwidth consumption for healing network partitions or joining peers
will then be almost the same as if the peers had always been part of the network.

This revocation mechanism is rather hard to disrupt for an adversary. The
adversary would have to be able to block the flood traffic on all paths between
the victim and the origin of the revocation. Thus, our revocation mechanism
is not only decentralized and privacy-preserving, but also much more robust
compared to standard practice in the X.509 PKI today, where blocking of access
to certificate revocation lists is an easy way for an adversary to render revocations
ineffective. This has forced vendors to include lists of revoked certificates with
software updates.

A.6 Shadow Records

GNS records can be marked as “shadow records”; the receiver only interprets
shadow records if all other records of the respective type have expired. This is
useful to ensure that upon the timeout of one set of records the next set of
records is immediately available. This may be important, as propagation delays
in the DHT are expected to be larger than those in the DNS hierarchy.



Universally Composable Oblivious Transfer

Based on a Variant of LPN

Bernardo David1,�, Rafael Dowsley2, and Anderson C. A. Nascimento3

1 Department of Computer Science,
Aarhus University, Denmark

bernardo@cs.au.dk
2 Institute of Theoretical Informatics,

Karlsruhe Institute of Technology, Germany
rafael.dowsley@kit.edu

3 Department of Electrical Engineering,
University of Brasilia, Brazil

andclay@ene.unb.br

Abstract. Oblivious transfer (OT) is a fundamental two-party cryp-
tographic primitive that implies secure multiparty computation. In this
paper, we introduce the first OT based on the Learning Parity with Noise
(LPN) problem. More specifically, we use the LPN variant that was in-
troduced by Alekhnovich (FOCS 2003). We prove that our protocol is
secure against active static adversaries in the Universal Composability
framework in the common reference string model. Our constructions are
based solely on a LPN style assumption and thus represents a clear next
step from current code-based OT protocols, which require an additional
assumption related to the indistinguishability of public keys from ran-
dom matrices. Our constructions are inspired by the techniques used to
obtain OT based on the McEliece cryptosystem.

1 Introduction

Oblivious transfer (OT) [42,40,21] was introduced in the early days of public-key
cryptography and has thereafter played an essential role in modern cryptography.
They imply, among other things, the possibility of performing two-party secure
computation [24,31] and multi-party computation [13]. Initially many variants
of OT were considered, but they are equivalent [12] and therefore in this work
we will focus on the most common one: one-out-of-two bit oblivious transfer. In
this variant there is a sender who inputs two bits x0 and x1, and a receiver who
chooses which bit xc he wants to learn. On one hand, the receiver should learn

� Supported by European Research Council Starting Grant 279447. The author ac-
knowledges support from the Danish National Research Foundation and The Na-
tional Science Foundation of China (under the grant 61061130540) for the Sino-
Danish Center for the Theory of Interactive Computation, and also from the CFEM
research centre (supported by the Danish Strategic Research Council) within which
part of this work was performed.

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 143–158, 2014.
c© Springer International Publishing Switzerland 2014



144 B. David, R. Dowsley, and A.C.A. Nascimento

xc, but should have no information about xc. On the other hand, the sender
should not learn the choice bit c.

Given the importance of OT protocols, constructions were extensively studied
and nowadays solutions are known based on both generic computational assump-
tions such as enhanced trapdoor permutations [21], and also based on specific
computational assumptions such as: the hardness of factoring [40,26], the Deci-
sional Diffie-Hellman (DDH) assumption [4,35,1,43], the Quadratic Residuosity
(QR) assumption [26], the N’th residuosity assumption [26], the hardness of the
Subgroup Decision Problem [33], and the McEliece assumptions [19]. Since Shor’s
algorithm [41] would make factoring and computing discrete logarithms easy in
the case that quantum computers become practical, an important question is
determining which post-quantum assumptions are sufficient to implement OT
protocols. LPN-based/code-based cryptography is one of the main alternatives
for a post-quantum world and thus our result improves the understanding in this
area.

As with most cryptographic primitives, the first OT protocols considered sim-
ple security models (in this case the stand alone model in which there is only
one execution of the protocol isolated from the rest of the world). Afterwards,
stronger models were considered, such as security in the Universal Composabil-
ity (UC) framework by Canetti [5], which allows arbitrary composition of the
protocols. This latter notion is the most desirable security goal for oblivious
transfer protocols, since it allows these protocols to be used as building blocks
of more complex primitives and protocols.

In this work we will present the first OT protocol based on a variant of the
Learning Parity with Noise (LPN) problem that was introduced by Alekhnovich
[2,3]. The protocol achieves UC security against active static adversaries follow-
ing ideas similar to the ones that Dowsley et al. [19,20,15] used to build OT
protocols based on the McEliece assumptions [34]. It is well-known that UC-
secure oblivious transfer is impossible in the plain model [6,7], so our solution is
in the common reference string (CRS) model.

1.1 Related Works

Cryptography Based on Codes and LPN: McEliece [34] proposed a cryp-
tosystem based on the hardness of the syndrome decoding problem. Later on,
Niederreiter [36] proposed a cryptosystem that is the dual of McEliece’s cryp-
tosystem. These cryptosystems can be modified to achieve stronger notions of
security such as IND-CPA [37,38] and IND-CCA2 [18,22,16]. Based on these
cryptosystems it is possible to implement both stand alone secure [19,20] and
UC-secure [15] OT protocols. The main drawback of these code-based schemes
is that, besides assuming the hardness of the decoding problem, they also as-
sume that the adversary is not able to recover the hidden structure of the keys,
which is formalized by assuming that the public-keys are indistinguishable from
random matrices. But this later problem is far less studied than the decoding
one.
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Building public-key encryption schemes from the original LPN problem is a
difficult task and so far the only schemes are based on a variant of the LPN prob-
lem introduced by Alekhnovich in [2,3], which yields semantically secure encryp-
tion [2,3,28] and IND-CCA2 secure encryption by Döttling et al. [17]. Moreover,
other cryptographic primitives were built based solely on the Alekhnovich variant
of the LPN problem, such as: pseudo random generators (PRG) [28], message au-
thentication codes (MAC) [28], pseudo random functions (PRFs) [28], signature
schemes with constant overhead [28], zero-knowledge [29], and commitments [29].

Furthermore, Ishai et al. present a protocol for secure two-party and mul-
tiparty computation with constant computational overhead in the semi-honest
model and slightly superlinear computational overhead in the malicious model
based on Alekhnovich’s LPN [28]. However, their secure computation construc-
tions assume the existence of bit oblivious transfer, which wasn’t built from
Alekhnovich’s LPN until now (not even with stand-alone security).

Universally Composable OT: Peikert et al. developed a general framework
for obtaining efficient, round optimal UC-secure OT in the CRS model [39]
that provides instantiations based on the DDH, QR and Learning With Errors
(LWE) [39]. Constructions of OT protocols that achieve UC security against
different kinds of adversaries under various setup assumptions are also known
to be possible under the Decisional Linear (DLIN) assumption [14,30], the DDH
and the strong RSA assumptions [23] and the Decisional Composite Residuosity
(DCR) assumption [30,11].

Another approach to obtain UC-secure oblivious transfer protocols is to take
a stand alone secure OT protocol and use compilers [27,25,10] to achieve an
UC-secure protocol. However these compilers require access to UC-secure string
commitment schemes that were not yet built from the LPN assumption.

1.2 Our Contributions

In this work we address the open problem of constructing oblivious transfer
based on the assumption that LPN is hard. We focus on the LPN variant intro-
duced by Alekhnovich in [2,3]. Our main result is the first Oblivious Transfer
protocol based on LPN. Our protocol is Universally Composable and offers se-
curity against active static adversaries, i.e. adversaries that may deviate in any
arbitrary way from the protocol but are forced to corrupt their desired parties
before protocol execution starts. It is well-known that UC realizing any interest-
ing multiparty functionality (among them OT) is impossible in the plain model
(i.e. without a setup assumption) [6,7]. Hence, we build our protocol in the
Common Reference String (CRS) model, where the parties are assumed to have
access to a fixed string generated before protocol execution starts.

The protocol is based on the cut-and-choose approach of [15], although with a
different proof strategy. This approach basically requires a stand-alone passively
secure OT protocol and an extractable commitment scheme as building blocks.
We show that a stand alone OT protocol (with passive or active security) can
be obtained in a similar way as in [19,20]. We also observe that we can obtain an
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extractable commitment scheme from an IND-CPA secure public key encryption
scheme based on Alekhnovich’s LPN assumption introduced in [17].

Besides proving that it is possible to construct oblivious transfer from vari-
ants of the LPN assumption, our results greatly improve on previous code-based
OT protocols by relying on a weaker assumption. Moreover, together with the
CCA2 secure Alekhnovich cryptosystem [17] and the LPN based proofs of knowl-
edge and commitments [29], our results contribute towards obtaining more
complex cryptographic protocols based on coding based assumptions weaker
than McEliece. Unfortunately, the UC secure protocol we introduce is meant
to demonstrate the feasibility of obtaining OT based on LPN and lacks on ef-
ficiency, having high round communication complexity. Addressing efficiency is-
sues, as well as obtaining security against adaptive adversaries, is left as a future
work.

1.3 Outline

In Section 2 we introduce the notation, assumptions and definitions used through-
out the paper. In Section 3, we present the active secure universally composable
OT protocol based on cut-and-choose techniques.

2 Preliminaries

In this section we introduce our notation and also recall the relevant definitions.

2.1 Notation

If x is a string, then |x| denotes its length, while |X | represents the cardinality of a
set X . If n ∈ N then 1n denotes the string of n ones. s ← S denotes the operation
of choosing an element s of a set S uniformly at random. w ← AO(x, y, . . .)
represents the act of running the algorithm A with inputs x, y, . . ., oracle access
to O and producing output w. AO(x; r) denotes the execution with coins r.
We denote by Pr (E) the probability that the event E occurs. If a and b are
two strings of bits or two matrices, we denote by a|b their concatenation. The
transpose of a matrix M is MT . If a and b are two strings of bits, we denote
by 〈a, b〉 their dot product modulo 2 and by a ⊕ b their bitwise XOR. Un is an
oracle that returns an uniformly random element of {0, 1}n. If b is a bit, then
b denotes its inverse (i.e. 1 − b). Let F2 denote the finite field with 2 elements.
For a parameter ρ, χρ denotes the Bernoulli distribution that outputs 1 with
probability ρ.

2.2 Encryption Scheme

In this section we describe the LPN-based public-key encryption scheme that was
introduced by Döttling et al. [17] and that will be used in this paper. Note that
we use the simplest version of their cryptosystem, the one which only achieves
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IND-CPA security (which is already enough for our purposes) and does not allow
witness recovery.

Let n be the security parameter, ρ ∈ O(n−(1+2ε)/(1−2ε)), and n1, �1, �2 ∈
O(n2/(1−2ε)). Let G ∈ F�2×n1

2 be the generator-matrix of a binary linear error-
correcting code C and DecodeC an efficient decoding procedure for C that corrects
up to α�2 errors for a constant α.

Key Generation: Sample a uniformly random matrix A ∈ F�1×n1
2 , a matrix

T from χ�2×�1
ρ and a matrix X from χ�2×n1

ρ . Set B = TA+X . Set pk = (A, B, G)
and sk = T . Output (pk, sk).

Encryption Enc(pk,m): Given a message m ∈ Fn1
2 and the public key pk =

(A, B, G) as input, sample s from χn1
ρ , e1 from χ�1

ρ and e2 from χ�2
ρ . Then set

ct1 = As + e1 and ct2 = Bs + e2 + Gm. Output ct = (ct1, ct2).
Decryption Dec(sk, ct): Given a ciphertext ct = (ct1, ct2) and a secret key

sk = T as input, compute y = ct2 − T ct1 and m = DecodeC(y). Output m.
The IND-CPA security of this scheme was proved under the following assump-

tion which is equivalent to Alekhnovich’s hardness assumption [17].

Assumption 1 Let n1 ∈ N be the problem parameter, m = O(n1), ε > 0 and

ρ = ρ(n1) = O(n
−1/2−ε
1 ). Choose uniformly at random A ∈ Fm×n1

2 and x ∈ Fn1
2 .

Sample e according to χm
ρ . The problem is, given A and y ∈ Fm

2 , to decide
whether y is distributed according to Ax + e or uniformly at random.

The current best algorithms to attack this problem require time of the order

2n
1/2−ε

and for this reason by setting n1 = O(n2/(1−2ε)) where n is the security
parameter of the encryption scheme the hardness is normalized to 2Θ(n).

2.3 Extractable Commitment Schemes

A string commitment scheme is said to be extractable if there exists a polynomial-
time simulator that is able to obtain the committed value m before the Open
phase. In the CRS model, we will build an extractable commitment scheme based
on the encryption scheme from the previous section in the following way. The
CRS contains a public key pk of the cryptosystem and the scheme works as
follows:

– Comcrs(m) The sender encrypts m under the public key pk with randomness
(s, e1, e2) and sends the corresponding ciphertext ct to the receiver as a
commitment.

– Opencrs(m) The sender sends the message m and the randomness (s, e1, e2)
used in the commitment phase. The receiver checks if the encryption of m
with the randomness (s, e1, e2) results in the ciphertext ct that he received
before. Additionally, for a fixed constant γ > 1 such that γρ < α/3, he
checks if the Hamming weights of s, e1 and e2 are respectively smaller than
γρn1, γρ�1 and γρ�2. If all tests are passed, the receiver accepts the opening
as correct.
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Note that in the case that both parties are honest, the Hamming weight tests
will be passed with overwhelming probability, as it was shown in the proof of the
cryptosystem [17] that larger Hamming weights only occur with negligible proba-
bility, so the correctness of the commitment scheme follows. The hiding property
follows trivially from the IND-CPA security of the encryption scheme. For the
binding property, first notice that the Hamming weight tests performed during
the opening phase ensure that the error term Xs+e2−Te1 that would appear in a
decryption operation of Enc(pk,m; s, e1, e2) would be within the decoding limit of
C and so the decryption would have been successfully performed and m recovered
(see the proof of correctness of [17] for details). I.e., for any opening information
(m, s, e1, e2) that passes the tests, we have Dec(sk,Enc(pk,m; s, e1, e2)) = m and
Enc(pk,m; s, e1, e2) = ct. Thus, due to the uniqueness of the decryption, there is
only one m that can pass all the tests performed in the opening phase.

In order to extract the committed values, the simulator generates a key pair
(pk, sk) for the cryptosystem and sets the CRS to pk. With the knowledge of the
secret key sk, he can extract from any ct the only value m that can be successfully
opened in a later stage.

2.4 Universal Composability

The Universal Composability framework was introduced by Canetti in [5] to
analyze the security of cryptographic protocols and primitives under arbitrary
composition. In this framework, protocol security is analyzed by comparing an
ideal world execution and a real world execution. The comparison is performed
by an environment Z, which is represented by a PPT machine and has direct
access to all inputs and outputs of the individual parties and to the adversary A.
In the ideal world execution, dummy parties (possibly controlled by a PPT sim-
ulator S) interact directly with the ideal functionality F , which works as trusted
third party that computes the desired function or primitive. In the real world
execution, several PPT parties (possibly corrupted by a real world adversary A)
interact with each other by means of a protocol π that realizes the ideal func-
tionality. The real world execution is represented by the ensemble EXECπ,A,Z ,
while the ideal execution is represented by the IDEALF ,S,Z . The rationale be-
hind this framework lies in showing that the environment Z (that represents all
the things that happen outside of the protocol execution) is not able to efficiently
distinguish between EXECπ,A,Z and IDEALF ,S,Z , thus implying that the real
world protocol is as secure as the ideal functionality.1

Adversarial Model. In this work we consider security against static adver-
saries, i.e. the adversary corrupts parties before the protocol execution and cor-
rupted parties remain so during the whole execution. Moreover, we consider
active adversaries, which may arbitrarily deviate from the protocol in order to
perform an attack.

1 For the sake of brevity, we refer the reader to Canetti’s work [5] for further details
and definitions regarding the UC framework.
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Setup Assumptions. The security of our protocol is proved in the Common
Reference String (CRS) model (referred to as the FCRS − hybrid model in [5]),
where protocol parties are assumed to have access to a fixed string generated
according to a specific distribution before protocol execution starts, in a so called
setup phase. The CRS ideal functionality FCRS is formally presented below.

Common Reference String Ideal Functionality. The formal definition of
the CRS ideal functionality FD

CRS is taken from [9].

Functionality FD
CRS

FD
CRS runs with parties (P1, ..., Pn) and is parametrized by an algo-

rithm D.

• When receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n),
send (sid, crs) to Pi and send (crs, Pi, Pj) to the adversary. Next, when
receiving (sid, Pi, Pj) from Pj (and only Pj ), send (sid, crs) to Pj and
to the adversary, and halt.

Oblivious Transfer Ideal Functionality. The basic 1-out-of-2 oblivious trans-
fer functionality FOT as defined in [8] is presented bellow.

Functionality FOT

FOT interacts with a sender S and a receiver R.

• Upon receiving a message (sid, sender, x0, x1) from S, where each
xi ∈ {0, 1}� , store (x0, x1) (the length of the strings is fixed and known
to all parties).

• Upon receiving a message (sid, receiver, c) from R, check if a
(sid, sender, · · ·) message was previously sent. If yes, send (sid, xc)
to R, sid to the adversary S and halt. If not, send nothing to R (but
continue running).

Similarly to the framework of [39], our protocols reuse the same CRS for
multiple oblivious transfer invocations. In order to achieve this, we employ the
same techniques of UC with joint state (JUC) [9].

3 Universally Composable Active Secure OT

In this section, we construct an universally composable OT protocol secure
against active static adversaries in the Common Reference String model. Us-
ing cut-and-choose techniques similar to [15] we depart from a stand alone OT
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protocol. The stand alone protocol can be constructed from a IND-CPA secure
cryptosystem following the paradigm of [4], previously employed in [19] to obtain
OT based on the McEliece assumptions. Basically, the receiver R generates a
valid public key, scrambles it with random matrices of the same size and sends
both valid and scrambled keys to the sender S. S encrypts each of its messages
under one of the public keys provided by R and sends the ciphertexts back. R
is able to decrypt only the ciphertext created with the valid public key, obtain-
ing only one of the messages. On the other hand, S cannot distinguish between
the valid and scrambled public keys generated by R, thus not knowing which
message R obtains.

In the universally composable protocol, R generates a number of valid public
keys Ki,di for random di’s and commits to them. Next, both players run a
coin tossing protocol to generate the random paddings Ri that are used by
R to scramble each valid public key as Ki,di

= Ki,di + Ri. R sends all Ki,1

keys to S, who retrieves keys Ki,0 = Ki,1 + Ri. Next, another coin tossing
protocol is run between S and R to obtain a random string Ω. For each bit
equal to 1 in Ω, R opens the corresponding commitments to valid public keys
for verification. For each bit equal to 0 in Ω, R sends to S information that
derandomizes the corresponding public key pairs such that the valid public key
corresponds to his choice bit. S uses the corresponding public key pairs to encrypt
an additive share of its messages such that R can only retrieve a message if it’s
able to decrypt all ciphertexts. An extractable commitment scheme is employed,
allowing the simulator to cheat and obtain the information necessary to carry
out the simulation.

We use the LPN-based IND-CPA secure public key cryptosystem from [17]
(described in Section 2.2) as a building block for encryption and extractable
commitments (described in Section 2.3). In the following protocol, parameter ω
controls the number of parallel executions of randomized OTs. The protocol’s
security parameter is composed of ω and the underlying cryptosystem’s security
parameter n. The protocol has 10 rounds and communication complexity in the
order of O(ωn). The exact communication complexity depends on the relation
between ω and n, which in turn depends on the desired security level and the
hardness of solving Alekhnovich’s LPN problem with the currently best attack.

Protocol 1
Inputs: The sender S takes as input two bits x0 and x1, while the receiver R
takes as input a choice bit c.
Common reference string: A random public key ck used for the commitment
scheme.

1. Upon being activated with their inputs, the parties query FCRS with (sid,
S,R) and receive (sid, crs) as answer.

2. R initiates the first round by performing the following actions:
(a) R initially samples a random bit string d ← {0, 1}ω, where, di denotes

each bit in d for i = 1, . . . , ω.
(b) For i = 1, . . . , ω, R generates a public-key pki and a secret-key ski, and

sets Ki,di = pki = (Ai, Bi, Gi).



Universally Composable Oblivious Transfer Based on a Variant of LPN 151

(c) R commits to all public keys Ki,di by sending to S the message
(sid,Comck(K1,d1), . . . ,Comck(Kω,dω)).

3. Both parties run a coin tossing protocol in order to obtain random matrices:

(a) S samples uniformly random matrices of the same size as the public
key matrices A′

i ∈ F�1×n1
2 , B′

i ∈ F�2×n1
2 , G′

i ∈ F�2×n1
2 , assigns R′

i =
(A′

i, B
′
i, G

′
i) and sends a commitment (sid,Comck(R

′
1), . . . ,Comck(R

′
ω))

to R.
(b) For i = 1, . . . , ω, R samples uniformly random A′′

i ∈ F�1×n1
2 , B′′

i ∈
F�2×n1
2 , G′′

i ∈ F�2×n1
2 , assigns R′′

i = (A′′
i , B′′

i , G′′
i ) and sends (sid, R′′

1 , . . . ,
R′′

ω) to S.
(c) S opens its commitments and both parties compute

Ri =
(
Āi = A′

i + A′′
i , B̄i = B′

i + B′′
i , C̄i = C′

i + C′′
i

)
for i = 1, . . . , ω.

4. R computes the remaining keys as follows:

(a) For i = 1, . . . , ω, R sets Ki,di
= Ki,di +Ri = (Ai + Āi, Bi + B̄i, Gi + Ḡi),

scrambling the valid keys related to the random choice bit using the
random matrices obtained in the coin tossing.

(b) R sends all the resulting keys Ki,1 = (Ãi, B̃i, G̃i) to S as (sid, K1,1, . . . ,
Kω,1).

5. S computes Ki,0 = Ki,1 + Ri = (Ãi + Āi, B̃i + B̄i, G̃i + Ḡi) obtaining the
public key pairs Ki,0, Ki,1, for i = 1, . . . , ω.

6. Both parties run a coin tossing protocol in order to obtain a random bit
string Ω:

(a) S samples a random bit string v ← {0, 1}ω and sends a commitment
(sid,Comck(v)) to R.

(b) R chooses a random bit string v′ and sends (sid, v′) to S.
(c) S opens its commitment and both parties compute Ω = v ⊕ v′.

7. Let I be the set of indexes i ∈ {1, . . . , ω} such that Ωi = 1 and let J be the
set of indexes j ∈ {1, . . . , ω} such that Ωj = 0. R performs the following
actions:

– Verification: For each i ∈ I, R opens the commitments to Ki,di by
sending (sid,Openck(Ki,di)).

– Derandomization: For each j ∈ J , let ρj be a reordering bit such that
if ρj = 1 the keys Kj,0, Kj,1 are swapped and if ρj = 0 they are left as
they are. For each j ∈ J , R sends (sid, ρj) to S in such a way that, after
the reordering, all the keys Kj,c are valid.2

8. For each opening (sid,Openck(Ki,di)) that it receives, S checks that the
public key pair Ki,0, Ki,1 is honestly generated (i.e. that there exists b ∈
{0, 1} s.t. Ki,b = Ki,di and Ki,b = Ki,di ⊕ Ri). If this check fails for at least
one public key pair S aborts, otherwise it continues as follows:

2 If the operation performed with ρ is seen as computing (K̂j,0, K̂j,1) = Kj,0⊕ρ,Kj,1⊕ρ,
the choice of ρ can be seen as ρ = dj ⊕ c. Here R makes sure that the public keys
in the unopened commitments that will be used to encrypt the bit xc (related to its
choice bit) are valid public keys.
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– For each reordering bit ρj received by S, it derandomizes the correspond-

ing public key pair by computing (K̂j,0, K̂j,1) = Kj,0⊕ρ, Kj,1⊕ρ.
– Let μ be the number of indexes in J , and let j1, ..., jμ denote each of

these indexes. For j = j1, ..., jμ, S generates μ bits xj,0 such that xj1,0 ⊕
· · · ⊕ xjμ,0 = x0 and μ bits xj,1 such that xj1,1 ⊕ · · · ⊕ xjμ,1 = x1.

– For j = j1, ..., jμ, S encrypts xj,0 under public key K̂j,0 and encrypts

xj,1 under public key K̂j,1 by computing ctj,0 = Enc(K̂j,0, xj,0) and

ctj,1 = Enc(K̂j,1, xj,1).
– S sends all ciphertexts to R as (sid, (ctj1,0, ctj1,1), . . . , (ctjμ,0, ctjμ,1)).

9. For j = j1, ..., jμ, R decrypts the ciphertexts related to xc by computing
xj,c = Dec(skj , ctj,c). If any of the decryption attempts fail, R outputs a
random xc ← {0, 1}. Otherwise, R outputs xc = xj1,c ⊕ . . . ⊕ xjμ,c.

Correctness. It is clear that the protocol runs in polynomial time. The classical
coin tossing protocol ensures that the string Ω and matrices Ri are uniformly
distributed and the commitment hiding property ensures that S cannot obtain
any information about the keys in the unopened commitments.

Notice that, after the reordering, all the public key pairs (K̂j,0, K̂j,1) are such

that K̂j,c is a valid public key and K̂j,c is a scrambled public key (i.e. summed
with the random matrices in Rj). Thus, R is able to decrypt all of the cipher-
texts ctj,c for j = j1, ..., jμ, obtaining all bits xj,c that are necessary to compute
the bit xc = xj1,c ⊕ . . . ⊕ xjμ,c. On the other hand, R cannot obtain xc through
decrypting the ciphertexts cti,c, since they were generated under the scrambled
keys. S cannot obtain the choice bit c by distinguishing the valid public keys
from randomized keys, since the public-key of the cryptosystem is pseudoran-
dom [29,17].

Theorem 1. Protocol 1 securely realizes the functionality FOT in the FCRS-
hybrid model under Assumption 1. Let π denote Protocol 1. For every PPT
static malicious adversary A there is a PPT simulator S such that for all PPT
environment Z, the following holds:

EXECπ,A,Z
c≈ IDEALFOT ,S,Z

3.1 Security Proof

In this section we analyse the security of Protocol 1 by constructing a simulator
S that interacts with FOT such that no environment Z can distinguish between
interactions with a static adversary A in the real world and interactions with
S in the ideal world. The formal description of the simulator and the full proof
of Theorem 1 showing that execution with S is indeed indistinguishable from
execution with A are left for the full version of this paper. We first present trivial
simulation cases (where both parties are honest or corrupted) and then consider
the cases where only S or only R is corrupted separately. The simulators are
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based on techniques introduced in [32] and [15]. For each corruption scenario, S
works as follows:

Simulating Communication with Z. S writes all the messages received from
Z in A’s input tape, simulating A’s environment. Also, S writes all messages
from A’s output tape to its own output tape, forwarding them to Z.

Simulating Trivial Cases. If both S and R are corrupted, S simply runs A
internally. Notice that A will generate the messages from both corrupted S and
R. If neither S and R are corrupted, S runs the protocol between honest S and
R internally on the inputs provided by Z. All messages are delivered to A.

Simulator for a Corrupted S. If only S is corrupted, the simulator S has to
extract the bits x0 and x1 (the adversary’s input) by interacting with adversary
A through Protocol 1. The main trick for doing this lies in cheating the coin
tossing phase by means of the underlying commitment scheme’s extractability.
The simulator will use this ability to construct public key pairs where both keys
are valid (allowing it to obtain both bits) and pass the corrupted S’s verification
without getting caught. S sends the x0 and x1 obtained after decryption to FOT

and terminates. The simulator S is formally described in Appendix A.

Simulator for a Corrupted R. In this case where only R is corrupted, the
simulator has to extract the choice bit c (the adversary’s input) by interacting
with the adversary A through Protocol 1. First, simulator S sets the CRS in such
a way that it can extract the commitments sent by A in the first step. S runs the
protocol as an honest S, only deviating to extract the commitments containing
the valid public key sent by A. After the public key pairs are reordered, S
verifies which key K̂j,0 or K̂j,1 corresponds to the valid public key K̂j,dj in the
extracted (but unopened) commitment. The choice bit is determined as the bit
c such that K̂j,c = K̂j,dj . S sends c to FOT , obtaining xc in return. S then
encrypts xc and a dummy x1−c using the procedure of a honest sender, sends
the corresponding message to A and terminates. The simulator S is formally
described in Appendix B.
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A Simulator for a Corrupted S

Simulating FCRS: S generates a commitment key ck ← Gen(1n) for which he
knows the secret key tk and sets crs = (ck). Later on, the secret key will be used
as a trapdoor to extract unopened commitments. When the parties query FCRS ,
S hands them (sid, crs).

When the dummy S is activated, S proceeds as follows:

1. S initiates the first round by performing the following actions:

(a) S initially samples a random bit string d ← {0, 1}ω, where di denotes
each bit in d for i = 1, . . . , ω.

(b) For i = 1, . . . , ω, S generates a public-key pki and a secret-key ski, and
sets Ki,di = pki = (Ai, Bi, Gi).

(c) S commits to all public keys Ki,di by sending to A the message
(sid,Comck(K1,di), . . . ,Comck(Kω,di)).

2. S performs the coin tossing to generate the random matrices as follows:

(a) Upon receiving (sid,Comck(R
′
1), . . . ,Comck(R

′
ω)) from A, S extracts the

R′
i = (A′

i, B
′
i, G

′
i).

(b) S chooses public-keys pki,di
= (Ai, Bi, Gi) with the respective secret-

key, sets Ki,di
= pki,di

and computes R′′
i = R′

i ⊕ pki,di
= (Ai + A′

i, Bi +

B′
i, Gi + G′

i) for i = 1, . . . , ω. S sends (sid, R′′
1 , . . . , R′′

ω) to A.

3. Upon receiving the openings from A, S sends pk1,1, . . . , pkω,1 to A.
4. S simulates the coin tossing:

– Upon receiving (sid,Comck(v)) from A, S chooses a random bit string
v′ ← {0, 1}ω and sends to A.

– Upon receiving an opening (sid,Openck(v)) from A, S computes Ω =
v ⊕ v′ and stores (sid, Ω). However, If A does not correctly open its
commitment (sid,Comck(v)), then S sends ⊥ to FOT , simulating an
invalid opening and halts.
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5. After the coin tossing, S opens the commitments needed for verification and
simulates reordering. Recall that i represents the indexes for which Ωi = 1
and j represents the indexes for which Ωj = 0.
– Verification: For each i, S opens the commitments to Ki,di by sending

(sid,Openck(Ki,di)).
– Derandomization: For every j, S samples a random reordering bit

ρj ← {0, 1}. For each j, S sends (sid, ρj) to A. 3

6. Upon receiving (sid, (ctj1,0, ctj1,1), . . . , (ctjμ,0, ctjμ,1)), S uses the instruc-
tions of an honest receiver to decrypt and reconstruct both bits x0 and x1.
For j = j1, ..., jμ, S decrypts the ciphertexts related to xdi by computing
xj,di = Dec(skj,di , ctj,di) and the ciphertexts related to xdi

by computing
xj,di

= Dec(skj,di
, ctj,di

) (notice that S knows all secret keys skj,di , skj,di

since it cheated in the random padding generation). S obtains xdi = xj1,di ⊕
. . . ⊕ xjμ,di and xdi

= xj1,di
⊕ . . . ⊕ xjμ,di

. However, if A does not reply with

a valid message or any of the decryption attempts fail, then S samples two
random bits x0, x1 ← {0, 1}.

7. S completes the simulation by sending (sid, sender, x0, x1) to FOT as S’s
input and halts.

B Simulator for a Corrupted R

Simulating FCRS: S generates a commitment key ck ← Gen(1n) for which he
knows the secret key tk and sets crs = (ck). Later on, the secret key will be used
as a trapdoor to extract unopened commitments. When the parties query FCRS ,
S hands them (sid, crs).

When the dummy R is activated, S proceeds as follows:

1. Upon receiving (sid,Comck(K1,di , . . . ,Comck(Kω,di))) from A, S extract the
commitments and stores (sid, K1,di, . . . , Kω,di).

2. S simulates the coin tossing to obtain random matrices as follows:

(a) S samples uniformly random matrices of the same size as the public
key matrices A′

i ∈ F�1×n1
2 , B′

i ∈ F�2×n1
2 , G′

i ∈ F�2×n1
2 , assigns R′

i =
(A′

i, B
′
i, G

′
i) and sends a commitment (sid,Comck(R

′
1), . . . ,Comck(R

′
ω))

to to A.
(b) Upon receiving (sid, R′′

1 , . . . , R′′
ω) from A, S opens its commitments and

both parties compute Ri =
(
Āi = A′

i + A′′
i , B̄i = B′

i + B′′
i , C̄i = C′

i + C′′
i

)
for i = 1, . . . , ω.

(c) Upon receiving (sid, K1,1, . . . , Kω,1) from A where Ki,1 = (Ãi, B̃i, G̃i),

S computes Ki,0 = Ki,1 + Ri = (Ãi + Āi, B̃i + B̄i, G̃i + Ḡi) obtaining
the public key pairs Ki,0, Ki,1, for i = 1, . . . , ω. .

3. Simulating the coin tossing phase:

3 The reordering bit performs the same function described in the protocol for a honest
receiver.
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– S samples a random bit string v ← {0, 1}ω and sends a commitment
(sid,Comck(v)) to A.

– Upon receiving A’s string (sid, v′), S opens its commitment sending
(sid,Openck(v)) to A and receives.

– S computes Ω = v ⊕ v′.
4. Let i represent the indexes for which Ωi = 1 and j represent the indexes

for which Ωj = 0. Upon receiving the openings (sid,Openck(pki|ski)) and
reordering bits (sid, ρj) from A, S performs the following actions. However,

if A send invalid openings, then S sends ⊥ to F̂OT , simulating an abortion
and halts.

– For each opening (sid,Openck(Ki,di)), s uses the key Ki,di and the in-
structions of an honest sender to check whether the public key pairs are
valid (i.e. one of the keys is equal to Ki,di and the other is equal to

Ki,di ⊕Ri). If this check fails, S sends ⊥ to F̂OT , simulating an abortion
and halts. Otherwise it continues to the next step.

– For each reordering bit ρj received by S, it derandomizes the correspond-

ing public key pair by computing (K̂j,0, K̂j,1) = Kj,0⊕ρ, Kj,1⊕ρ.
– S uses the keys Kj,dj obtained from the extracted commitments to find

at least one valid reordered pair (K̂j,0, K̂j,1). If no such pair is found,

S aborts, sending ⊥ to F̂OT and halting. Otherwise, S obtains c by
checking which key in the pair is equal to Kj,dj , i.e. if Kj,0 = Kj,dj then
c = 0 and if Kj,1 = Kj,dj then c = 1.

– S sends (sid, receiver, c) to F̂OT , receiving (sid, xc) in response.

5. S samples a random bit xc ← {0, 1}, obtaining a pair (x0, x1) since it already
learned xc from F̂OT . S completes the protocol by performing the following
actions:

– Let μ be the number of indexes j, and let j1, ..., jμ denote each of these
indexes. For j = j1, ..., jμ, S generates μ bits xj,0 such that xj1,0 ⊕ · · · ⊕
xjμ,0 = x0 and μ bits xj,1 such that xj1,1 ⊕ · · · ⊕ xjμ,1 = x1.

– For j = j1, ..., jμ, S encrypts xj,0 under public key K̂j,0 and encrypts

xj,1 under public key K̂j,1 by computing ctj,0 = Enc(K̂j,0, xj,0; rj,0) and

ctj,1 = Enc(K̂j,1, xj,1; rj,1), respectively.
– S sends all ciphertexts to A as (sid, (ctj1,0, ctj1,1), . . . , (ctjμ,0, ctjμ,1)).
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Abstract. Fiore and Gennaro proposed an identity-based authenticated key ex-
change (ID-AKE) scheme without pairing. Though their scheme is very effi-
cient both in communication and computation, the scheme is not secure against
some advanced exposure attacks. In this paper, we achieve exposure-resilient ID-
AKE schemes without pairings. Specifically, we introduce two security preserv-
ing generic conversions from ordinary PKI-based AKE (PKI-AKE) to ID-AKE
(i.e., exposure resilience of PKI-AKE is preserved in converted ID-AKE). Our
first conversion is for the post-specified peer model (i.e., the peer can be un-
known at the beginning of the protocol), and our second conversion is for the
pre-specified peer model (i.e., the peer must be fixed at the beginning of the
protocol). The merit of the first conversion is round-preserving (i.e., converted
ID-AKE has same round complexity as PKI-AKE). The merit of the second con-
version is rich instantiability (i.e., it can be instantiated from various kinds of
number-theoretic assumptions such as RSA and lattices as well as Diffie-Hellman
variants) thanks to rich instantiability of known PKI-AKE schemes in the pre-
specified peer model.

Keywords: ID-based authenticated key exchange, pre/post-specified peer model,
exposure resilience.

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic primitive to share a common
session key among multiple parties through unauthenticated networks such as the Inter-
net. In the ordinary PKI-based setting, each party locally keeps his own static secret key
and publish a static public key corresponding to the static secret key. Validity of static
public keys is guaranteed by a certificate authority (CA). In a key exchange session,
each party generates an ephemeral secret key and sends messages corresponding to the
ephemeral secret key. A session key is derived from these keys with a key derivation
procedure. Parties can establish a secure channel with the session key.

PKI-based AKE (PKI-AKE) assumes that each static public key is strictly bound
with each party’s ID through PKI and is known to all parties in advance. This setting
allows us to easily design secure AKE protocols. However, in a practical viewpoint, it
is problematic that each party must manage lots of static public keys. Thus, it is natural
to consider the ID-based setting in order to avoid the burden of key managements. In

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 159–174, 2014.
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ID-based cryptography, it is assumed that a key generate center (KGC) exists. The KGC
manages a master public key and a master secret key, and generates static secret key of
each party with the master secret key. Parties can use their IDs instead of static public
keys. Especially, ID-based AKE (ID-AKE) is more suitable for mobile environment
than PKI-AKE. For example, let’s consider some P2P service for smart-phones. When
a user wants to securely connect to a peer with a secure channel in such a service but
he/she only knows the e-mail address or the phone number of the peer, PKI-AKE is not
available because each party must know the public-key of the peer. On the other hand,
ID-AKE can easily handle this situation by dealing with the e-mail address or the phone
number as the ID of the peer.

Security models for ID-AKE are studied by following security models for PKI-AKE.
For example, in the context of PKI-AKE, the Bellare-Rogaway (BR) model [1,2,3], the
Canetti-Krawczyk (CK) model [4], the extended CK (eCK) model [5], and the CK+

model [6] are introduced. The id-BR model [7,8], the id-CK model [9], the id-eCK
model [10], and the id-CK+ model [11] are ID-based setting versions of such security
models. The distinguished point of models for ID-AKE is that we must consider security
against the KGC. Even if the KGC is honest-but-curious, any information of session keys
must be protected. Thus, models for ID-AKE allow an adversary to expose the master
secret key in order to capture this situation. Also, it is desirable to capture security against
various advanced attacks. For example, key-compromise impersonation (KCI) [3] can
be a practical threat. Suppose a party A’s static secret key is disclosed. Though, clearly,
an adversary that knows the static secret key can now impersonate A, it may be desir-
able that this loss does not enable an adversary to impersonate other entities to A. Also,
ephemeral secret key-exposure attacks [5] are another concern. If an adversary can guess
the ephemeral secret key of one or both parties (e.g., due to a poor implementation of
pseudo-random number generator), the secrecy of session keys should not be affected.
Therefore, most of advanced attacks use exposure of secret information; thus, the secu-
rity model must capture such exposure. Some security models for ID-AKE can guarantee
exposure-resilience. The id-CK model allows to an adversary to expose static secret keys
and session state (i.e., some intermediate computation result). However, the id-CK model
only guarantees partial exposure-resilience because resistances to KCI and ephemeral se-
cret key-exposure attacks are not guaranteed. The id-eCK model allows to an adversary
to expose both static secret keys and ephemeral secret keys. Thus, the id-eCK model
captures resistances to KCI and ephemeral secret key-exposure attacks. However, it is
clarified that the id-eCK model is not stronger than the id-CK model because of the
difference on session state reveal property [12,13]. Fujioka et al. [6,11] revisit security
attributes of HMQV [14] as the CK+ model and id-CK+ model formulating exposure of
static secret keys, ephemeral secret keys and session state. The id-CK+ model captures
all known advanced attacks, and is stronger than the id-CK model.

Most of known ID-AKE schemes rely on bilinear pairings. The ID-AKE scheme by
Fiore and Gennaro [15] (FG scheme) is the only known scheme without pairings.1 The
FG scheme uses the Schnorr signature [16] in order to generate static secret keys for
parties by the KGC. It is proved to be id-CK secure under the strong DH assumption in

1 Though there are generic ID-AKE constructions based on ID-based KEM such as [9,11], ID-
based KEM has not been achieved under Diffie-Hellman (DH) assumptions without pairings.
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the random oracle (RO) model. Since the FG scheme is designed in the dedicated man-
ner, there are some mysterious point why they can achieve ID-AKE without pairings.
Indeed, as far as we know, there is no other exposure-resilient ID-AKE scheme without
pairings. Also, it is not clear if we can remove ROs or can achieve stronger security like
the id-CK+ model.

Our Contribution. In this paper, we give generic conversions from PKI-AKE to ID-
AKE. The main idea of our conversions comes from the FG scheme. The essential tech-
nique used in the FG scheme is to bind the static public key with the ID of the owner by
the Schnorr signature. We revisit this paradigm, and generalize to a more generic case
of any unforgeable signature scheme. Also, though the FG scheme is based on the DH
key exchange, our conversions can be based on any PKI-AKE. Our conversions are se-
curity preserving; that is, the converted ID-AKE is secure in the model the underlying
PKI-AKE satisfies. In this paper, we prove the case of the CK+ model and the id-CK+

model.
This methodology is very similar to the construction of ID-based signature from

the normal signature [17]. However, since AKE protocols are interactive, the design
of conversions has some subtle point. We must consider what timing the peer of a
key exchange session is decided. There are two models: the pre-specified peer model
and the post-specified peer model [18]. In the pre-specified peer model, the protocol
must start after deciding the peer. Conversely, in the post-specified peer model, the
protocol can start before deciding the peer. If the underlying PKI-AKE can work in
the post-specified peer model, we can convert it with the same round complexity (i.e.,
When the underlying PKI-AKE scheme is a n-pass protocol, then the converted ID-
AKE scheme is also a n-pass protocol). However, if the underlying PKI-AKE works
in the pre-specified peer model, the conversion needs an additional round for sending
the static public key and the signature. Since, in the ID-based setting, the peer’s static
public key is not known before starting the protocol, the session initiator must receive
the peer’s static public key before generating the 1st message.

Our conversions have various instantiations. The conversion in the post-specified
peer model can be instantiated from some DH-variant assumptions without pairings
like the FG scheme. The advantage against the FG scheme is to be able to satisfy
stronger security (e.g., the id-CK+ model). Also, some theoretical instantiation with
neither pairing nor ROs is possible. The conversion in the pre-specified peer model can
be instantiated from RSA or lattices. The instantiation from RSA is the first ID-AKE
scheme based on such an assumption. Since we can use KEM-based PKI-AKE [9,6,19]
in the pre-specified peer model, we enjoy rich instantiability of KEM-based PKI-AKE.
We also have some theoretical instantiation from other hardness assumptions such as
the factoring problem, code-based problems, subset-sum problems and multi-variate
quadratic systems.

2 Preliminaries

In this section, we formally define syntaxes of PKI-AKE and ID-AKE in order to de-
scribe our conversions. Due to space limitation, we omit definitions of the CK+ model,
the id-CK+ model and eUF-CMA. Please refer to [6,11,17].
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2.1 Notations

Throughout this paper we use the following notations. If Set is a set, then by m ∈R Set
we denote that m is sampled uniformly from Set. If ALG is an algorithm, then by
y ← ALG(x; r) we denote that y is output by ALG on input x and randomness r (if
ALG is deterministic, r is empty).

2.2 Syntax of PKI-AKE

Here, we give a syntax of n-pass PKI-AKE. The syntax is applicable both to sequential
protocols (i.e., a party sends the 1st message and the peer sends the 2nd message after
receiving the 1st message) and to simultaneous protocols (i.e., a party can send the 2nd
message without waiting the 1st message from the peer).2 We denote a party by a party
ID UP, and party UP and other parties are modeled as probabilistic polynomial-time
Turing (PPT) machines w.r.t. security parameter κ.

In this paper, we classify PKI-AKE into two models: the pre-specified peer model
and the post-specified peer model [18]. In the pre-specified peer model, the 1st message
in the protocol must be generated with information of the peer (i.e., the 1st message
must depend on the peer’s static public key). In the post-specified peer model, the 1st
message in the protocol can be generated without information of the peer (i.e., the 1st
message is independent from the peer’s static public key). We give the formal classifi-
cation on the syntax, later.

A PKI-AKE scheme consists of the following algorithms.

Setup. The setup algorithm Setup takes a security parameter κ as input, and outputs a
public parameter PPPKI , i.e.,

PPPKI ← Setup(1κ).

In the initialization of the system, PPPKI is published.

Key Registration. The static key generation algorithm StaticGen for party UP takes a
public parameter PPPKI as input, and outputs a static secret key S S KPKI

P and a static
public key S PKPKI

P , i.e.,

(S PKPKI
P , S S KPKI

P )← StaticGen(PPPKI).

Each party UP registers his/her static public key S PKPKI
P to the CA. After that, the party

ID UP is associated with the static public key S PKPKI
P . It can be supposed that the CA

securely distributes all pairs of party ID and static public key to all parties.

Key Exchange. An invocation of a protocol is called a session. The party UA and
the party UB share a session key by performing the following n-pass protocol. The

2 A typical example of sequential protocols is KEM-based schemes [9,6,19], and a typical
example of simultaneous protocols is DH-variant schemes like HMQV [14].
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ephemeral key generation algorithm EpheGen for party UP takes a public parameter
PPPKI as input, and outputs a ephemeral secret key ES KPKI

P , i.e.,

ES KPKI
P ← EpheGen(PPPKI).

In the pre-specified peer model, a session is activated with an incoming message of
the forms (Π,I,UA,UB) or (Π,R,UB, UA, [MesPKI

1 ]), where Π is a protocol identifier,
and I and R are role identifiers. In the post-specified peer model, a session is activated
with an incoming message of the forms (Π,I,UA) or (Π,R,UB, [UA], [MesPKI

1 ]). I
stands for the initiator, and R stands for the responder. If UA was activated with I,
then UA is called the session initiator. If UB was activated with R, then UB is called
the session responder. [UA] and [MesPKI

1 ] in (Π,R,UB,UA, [MesPKI
1 ]) and (Π,R,UB,

[UA], [MesPKI
1 ]) means that, if Π is a simultaneous protocol, UA and MesPKI

1 are not
contained.

A party UP starts the protocol by generating ephemeral secret keys ES KPKI
P . In the

pre-specified peer model, if UP generates the 1st message MesPKI
1 in the protocol, UP

computes MesPKI
1 by the algorithm Messagepre that takes the public parameter PPPKI ,

UP and the peer UP̄, the static secret key S S KPKI
P , the ephemeral secret key ES KPKI

P ,
the peer UP̄’s static public key S PKPKI

P̄
, and outputs the 1st message MesPKI

1 , i.e.,

MesPKI
1 ←Messagepre(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄ ).

In the post-specified peer model, if UP generates the 1st message MesPKI
1 in the proto-

col, UP computes MesPKI
1 by the algorithm Messagepost that takes the public parameter

PPPKI , UP, the static secret key S S KPKI
P , the ephemeral secret key ES KPKI

P , and out-
puts the 1st message MesPKI

1 , i.e.,

MesPKI
1 ← Messagepost(PPPKI ,UP, S S KPKI

P , ES KPKI
P ).

UP sends MesPKI
1 to the peer UP̄. In simultaneous protocols, MesPKI

2 is generated with-
out knowing MesPKI

1 , i.e.,

MesPKI
2 ←

Messagepre(PPPKI ,UP̄,UP, S S KPKI
P̄ , ES KPKI

P̄ , S PKPKI
P ) (pre-specified peer model),

MesPKI
2 ←Messagepost(PPPKI ,UP̄, S S KPKI

P̄ , ES KPKI
P̄ ) (post-specified peer model).

For i = 2, ..., n in sequential protocols and i = 3, ..., n in simultaneous protocols,
upon receiving the (i − 1)-th message MesPKI

i−1 , the party UP (P = A or B) computes the
i-th message by algorithm Message, that takes the public parameter PPPKI , UP and the
peer UP̄, the static secret key S S KPKI

P , the ephemeral secret key ES KPKI
P , the peer UP̄’s

static public key S PKPKI
P̄

and the sent and received messages MesPKI
1 , . . . ,MesPKI

i−1 , and
outputs the i-th message MesPKI

i , i.e.,

MesPKI
i ←Message(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄ ,MesPKI
1 , . . . ,MesPKI

i−1 ).

The party P sends MesPKI
i to the peer UP̄ (P̄ = B or A). Formally, after activated with an

incoming message of the forms (Π,I,UA,UB,MesPKI
1 , . . . ,MesPKI

k−1 ) from the respon-
der UB, the initiator UA outputs MesPKI

k , then may be activated next by an incoming
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message of the forms (Π,I,UA,UB,MesPKI
1 , . . . ,MesPKI

k+1 ) from the responder UB. Sim-
ilarly, after activated by an incoming message of the forms (Π,R,UB,UA,MesPKI

1 , . . . ,
MesPKI

k ) from the initiator UA, the responder UB outputs MesPKI
k+1 , then may be acti-

vated next by an incoming message of the forms (Π,R,UB,UA,MesPKI
1 , . . . ,MesPKI

k+2 )
from the initiator UA.

Upon receiving or after sending the final n-th message MesPKI
n , UP computes a ses-

sion key by algorithm SesKey, that takes the public parameter PPPKI , UP and the peer
UP̄, the static secret key S S KPKI

P , the ephemeral secret key ES KPKI
P , the peer UP̄’s

static public key S PKPKI
P̄

and the sent and received messages MesPKI
1 , ...,MesPKI

n , and
outputs an session key KPKI , i.e.,

KPKI ← SesKey(PPPKI ,UP,UP̄, S S KPKI
P , ES KPKI

P , S PKPKI
P̄ ,MesPKI

1 , . . . ,MesPKI
n ).

A session is identified by a session ID. If UA is the initiator of a session, the session
ID sid is updated as (Π,I,UA, [UB],MesPKI

1 ), (Π,I,UA,UB,MesPKI
1 ,MesPKI

2 ,MesPKI
3 ),

. . . , (Π,I,UA,UB,MesPKI
1 , . . . ,MesPKI

n ) according to progress of the session. Simi-
larly, if UB is the responder of a session, the session ID sid is updated as (Π,R,UB,
[UA],MesPKI

1 , [MesPKI
2 ]), (Π,R, UB, UA, MesPKI

1 , MesPKI
2 , MesPKI

3 , [MesPKI
4 ]), . . . ,

(Π,R,UB,UA,MesPKI
1 , . . . , MesPKI

n ) according to progress of the session. We say that a
session is completed if a session key is computed in the session. The matching session
of a completed session (Π,I,UA,UB,MesPKI

1 , . . . ,MesPKI
n ) is a completed session with

identifier (Π,R,UB,UA, MesPKI
1 , . . . , MesPKI

n ) and vice versa.

2.3 Syntax of ID-AKE

Here, we give a syntax of n-pass ID-AKE. As for PKI-AKE, the syntax is applicable
both to sequential protocols and to simultaneous protocols. Also, we can consider the
pre-specified peer model and the post-specified peer model in a similar manner.

We denote a party by UP, and party UP and other parties are modeled as PPT ma-
chines w.r.t. security parameter κ. Each party UP has identity IDP ∈ {0, 1}∗.

An ID-AKE scheme consists of the following algorithms.

Setup. The setup algorithm IDSetup takes a security parameter κ as input, and outputs
a master secret key MS KID and a master public key MPKID, i.e.,

(MS KID,MPKID)← IDSetup(1κ).

In the initialization of the system, MS KID is given to the KGC, and MPKID is pub-
lished.

Key Derivation. The key derivation algorithm IDKeyDer takes the master secret key
MS KID, the master public key MPKID, and an ID IDP given by a party UP, and outputs
a static secret key S S KID

P corresponding to IDP, i.e.,

S S KID
P ← IDKeyDer(MS KID,MPKID, IDP).

Each party UP sends his/her ID IDP to the KGC through a secure channel, and the KGC
generates and sends S S KID

P to UP.
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Key Exchange. The party UA and the party UB share a session key by performing the
following n-pass protocol. The ephemeral key generation algorithm IDEpheGen for
party UP takes a master public key MPKID as input, and outputs a ephemeral secret
key ES KID

P , i.e.,
ES KID

P ← IDEpheGen(MPKID).

In the pre-specified peer model, a session is activated with an incoming message
of the forms (Π,I, IDA, IDB) or (Π,R, IDB, IDA, [MesID

1 ]), where Π is a protocol
identifier, and I and R are role identifiers. In the post-specified peer model, a ses-
sion is activated with an incoming message of the forms (Π,I, IDA) or (Π,R, IDB,
[IDA], [MesID

1 ]). I stands for the initiator, and R stands for the responder. [IDA] and
[MesID

1 ] in (Π,R, IDB, IDA, [MesID
1 ]) and (Π,R, IDB, [IDA], [MesID

1 ]) means that, if Π
is a simultaneous protocol, IDA and MesID

1 are not contained.
A party UP starts the protocol by generating ephemeral secret keys ES KID

P . In the
pre-specified peer model, if UP generates the 1st message MesID

1 in the protocol, UP

computes MesID
1 by the algorithm IDMessagepre that takes the master public key

MPKID, IDP and the peer IDP̄, the static secret key S S KID
P , the ephemeral secret key

ES KID
P , and outputs the 1st message MesID

1 , i.e.,

MesID
1 ← IDMessagepre(MPKID, IDP, IDP̄, S S KID

P , ES KID
P ).

In the post-specified peer model, if UP generates the 1st message MesID
1 in the proto-

col, UP computes MesID
1 by the algorithm IDMessagepost that takes the master public

key MPKID, IDP, the static secret key S S KID
P , the ephemeral secret key ES KID

P , and
outputs the 1st message MesID

1 , i.e.,

MesID
1 ← IDMessagepost(MPKID, IDP, S S KID

P , ES KID
P ).

UP sends MesID
1 to the peer UP̄. In simultaneous protocols, MesID

2 is generated without
knowing MesID

1 , i.e.,

MesID
2 ←
IDMessagepre(MPKID, IDP̄, IDP, S S KID

P̄ , ES KID
P̄ ) (pre-specified peer model),

MesID
2 ← IDMessagepost(MPKID, IDP̄, S S KID

P̄ , ES KID
P̄ ) (post-specified peer model).

For i = 2, ..., n in sequential protocols and i = 3, ..., n in simultaneous protocols, upon
receiving the (i − 1)-th message MesID

i−1, the party UP (P = A or B) computes the i-th
message by algorithm IDMessage, that takes the master public key MPKID, IDP and
IDP̄, the static secret key S S KID

P , the ephemeral secret key ES KID
P , and the sent and

received messages MesID
1 , . . . ,MesID

i−1, and outputs the ith message MesID
i , i.e.,

MesID
i ← IDMessage(MPKID, IDP, IDP̄, S S KID

P , ES KID
P ,MesID

1 , . . . ,MesID
i−1).

The party P sends MesID
i to the peer UP̄ (P̄ = B or A). Formally, after activated with

an incoming message of the forms (Π,I, IDA, IDB,MesID
1 , . . . ,MesID

k−1) from the re-
sponder UB, the initiator UA outputs MesID

k , then may be activated next by an incoming
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message of the forms (Π,I, IDA, IDB,MesID
1 , . . . ,MesID

k+1) from the responder UB. Sim-
ilarly, after activated by an incoming message of the forms (Π,R, IDB, IDA,MesID

1 , . . . ,
MesID

k ) from the initiator UA, the responder UB outputs MesID
k+1, then may be activated

next by an incoming message of the forms (Π,R, IDB, IDA,MesID
1 , . . . ,MesID

k+2) from
the initiator UA.

Upon receiving or after sending the final n-th message MesID
n , UP computes a session

key by algorithm IDSesKey, that takes the master public key MPKID, IDA and IDP̄,
the static secret key S S KID

P , the ephemeral secret key ES KID
P , and the sent and received

messages MesID
1 , ...,MesID

n , and outputs an session key KID, i.e.,

KID ← IDSesKey(MPKID, IDP, IDP̄, S S KID
P , ES KID

P ,MesID
1 , . . . ,MesID

n ).

A session is identified by a session ID. If UA is the initiator of a session, the session
ID sid is updated as (Π,I, IDA, [IDB],MesID

1 ), (Π,I, IDA, IDB,MesID
1 ,MesID

2 ,MesID
3 ),

. . . , (Π,I, IDA, IDB,MesID
1 , . . . ,MesID

n ) according to progress of the session. Similarly,
if UB is the responder of a session, the session ID sid is updated as (Π,R, IDB, [IDA],
MesID

1 , [MesID
2 ]), (Π,R, IDB, IDA, MesID

1 , MesID
2 , MesID

3 , [MesID
4 ]), . . . , (Π,R, IDB,

IDA,MesID
1 , . . . , MesID

n ) according to progress of the session. We say that a session is
completed if a session key is computed in the session. The matching session of a com-
pleted session (Π,I, IDA, IDB,MesID

1 , . . . ,MesID
n ) is a completed session with identi-

fier (Π,R, IDB, IDA, MesID
1 , . . . , MesID

n ) and vice versa.

3 Fiore-Gennaro ID-AKE, Revisited

The Fiore-Gennaro (FG) ID-AKE [15] is the first scheme secure in the id-CK model
without pairings. The protocol of the FG scheme is shown in Fig. 1.

The FG scheme is a simultaneous protocol in the post-specified peer model. ID of
each party is certified by using the Schnorr signature [16]. Specifically, the master se-
cret key is the signing key of the Schnorr signature, and ID is signed as a message. The
exchanged message in ID-AKE contains a part of the signature (i.e., rP), and it implic-
itly guarantees that the message is sent by the owner of the signature. The session key
is the hash value of two group elements: one is the same as the Diffie-Hellman (DH)
key exchange, and the other is using the other part of the signature (i.e., sP). Since the
Schnorr signature does not need any pairing operation, the resultant ID-AKE is also
achievable without pairings.

The FG scheme provides us an interesting perspective about the design of ID-AKE.
First, gsP plays the role of the static public key in PKI-AKE; that is, the generation of
z1 is the same way as many PKI-AKE scheme such as HMQV [14] when we regard
gsP as the static public key. Also, sP is generated by the KGC, and gsP is bound with
ID as sP = kP + xH1(IDP, rP)). Though the FG scheme depends on the structure of
the Schnorr signature and the DH key exchange, it seems that this technique can be
captured generically.

Thus, we try to generalize their idea by any signature scheme and PKI-AKE scheme.
The essential point is that the static public key of PKI-AKE must be bound with ID.
Hence, if the static public key and ID is signed by the KGC, this condition is satisfied.
In this case, the signature scheme does not have to be the Schnorr signature, and we
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IDSetup(1κ)

Choose a group G of prime order p with a generator g ∈ G;
MS KID := x ∈R Zp; MPKID := (G, g, p, y = gx,H1,H2) where H1 and H2 are hash functions

IDKeyDer(MS KID,MPKID, IDP)

kP ∈R Zp; S S KID
P := (rP = gkP , sP = kP + xH1(IDP, rP))

Key Exchange

Party UA (Initiator) Party UB (Responder)

ES KID
A = tA ∈R Zp; uA := gtA ES KID

B = tB ∈R Zp; uB := gtB

MesID
1 = (IDA, rA, uA)−−−−−−−−−−−−−−−−−−−−−→

MesID
2 = (IDB, rB, uB)←−−−−−−−−−−−−−−−−−−−−−

z1 = (uBrByH1(IDB,rB ))tA+sA ; z2 = utA
B z1 = (uArAyH1(IDA,rA))tB+sB ; z2 = utB

A

KID = H2(z1, z2)

Fig. 1. Fiore-Gennaro ID-AKE

can use any unforgeable signature. If the static public key is certified by the KGC, a
party can use the peer’s static public key as in PKI-AKE by sending the certified static
public key as a part of the 1st message. Thus, we can execute the session key generation
procedure by the same way as PKI-AKE, and eUF-CMA is enough to prove. It means
that we can use any PKI-AKE as well as the DH key exchange. Therefore, the above
can be viewed as a generalization of the idea of the FG scheme.

However, we must consider the difference between the post-specified peer model
and the pre-specified peer model. As the FG scheme, protocols in the post-specified
peer model can be captured by the above generalization. On the other hand, in the
pre-specified peer model, there is a problem. In order to generate the 1st message, the
initiator needs the responder’s static public key. But, in the generalization, since the
responder sends the static public key with his/her 1st message, the initiator cannot know
it. Hence, in the pre-specified peer model, the responder must sends the static public key
in advance. It means that we need an additional round than the underlying PKI-AKE
scheme. Therefore, we need to consider two constructions according to the difference
between peer models.

4 Conversion in Post-specified Peer Model

In this section, we introduce a generic conversion of ID-AKE from PKI-AKE in the
post-specified peer model, named GCpost. The GCpost preserves the number of round
and security in the PKI-based setting. Specifically, if the underlying PKI-AKE scheme
is CK+ secure, then the converted ID-AKE scheme is id-CK+ secure. Similarly, the
cases of other known security models (the BR model, the CK model, and the eCK
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IDSetup(1κ)

PPPKI ← Setup(1κ); (vk, sk)← SigGen(1κ); MS KID = sk; MPKID = (vk, PPPKI)
IDKeyDer(MS KID,MPKID, IDP)

(S PKPKI
P , S S KPKI

P )← StaticGen(PPPKI); certP ← Sign(sk, (IDP, S PKPKI
P ));

S S KID
P = (S S KPKI

P , S PKPKI
P , certP)

Key Exchange

Party UA (Initiator) Party UB (Responder)

ES KID
A = ES KPKI

A ← EpheGen(PPPKI) ES KID
B = ES KPKI

B ← EpheGen(PPPKI)
MesPKI

1 ← Messagepost(PPPKI , If ΠPKI is a simultaneous protocol,
UA, S S KPKI

A , ES KPKI
A ) MesPKI

2 ←Messagepost(PPPKI ,UB, S S KPKI
B ,

ES KPKI
B )

MesID
1 = (MesPKI

1 , S PKPKI
A , certA)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

If ΠPKI is a sequential protocol,

1
?←− Ver(vk, (IDA, S PKPKI

A ), certA)
MesPKI

2 ←Message(PPPKI ,UB,UA, S S KPKI
B ,

ES KPKI
B , S PKPKI

A ,MesPKI
1 )

MesID
2 = (MesPKI

2 , S PKPKI
B , certB)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1
?←− Ver(vk, (IDB, S PKPKI

B ), certB) If ΠPKI is a simultaneous protocol,

1
?←− Ver(vk, (IDA, S PKPKI

A ), certA)
(For i = 3, ..., n)

MesPKI
i ←Message(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
,MesPKI

1 , . . . ,MesPKI
i−1 )

MesID
i = MesPKI

i←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KID = KPKI ← SesKey(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
,MesPKI

1 , . . . ,MesPKI
n )

Fig. 2. Conversion in the post-specified peer model, GCpost

model) also hold. Due to space limitation, in this paper, we prove the case of CK+

security.

4.1 Description of GCpost

GCpost converts a PKI-AKE ΠPKI = (Setup, StaticGen,EpheGen,Messagepost,
Message, SesKey) in the post-specified peer model to an ID-AKE ΠID =

(IDSetup, IDKeyDer, IDEpheGen, IDMessagepost, IDMessage, IDSesKey). ΠID be-
comes a simultaneous protocol if ΠPKI is also a simultaneous protocol. Fig. 2 shows the
protocol of the generic conversion GCpost.
ΠID is constructed as follows:

– (MS KID,MPKID)← IDSetup(1κ):
PPPKI ← Setup(1κ); (vk, sk)← SigGen(1κ); MS KID = sk; MPKID = (vk, PPPKI)

– S S KID
P ← IDKeyDer(MS KID,MPKID, IDP):

(S PKPKI
P , S S KPKI

P ) ← StaticGen(PPPKI); certP ← Sign(sk, (IDP, S PKPKI
P ));

S S KID
P = (S S KPKI

P , S PKPKI
P , certP)
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– ES KID
P ← IDEpheGen(MPKID):

ES KPKI
P ← EpheGen(PPPKI); ES KID

P = ES KPKI
P

– MesID
1 ← IDMessagepost(MPKID, IDP, S S KID

P , ES KID
P ):

MesPKI
1 ←Messagepost(PPPKI ,UP, S S KPKI

P , ES KPKI
P ); MesID

1 = (MesPKI
1 , S PKPKI

A ,
certA)

– MesID
2 ← IDMessagepost(MPKID, IDP̄, S S KID

P̄
, ES KID

P̄
) (simultaneous) :

MesPKI
2 ←Messagepost(PPPKI ,UP̄, S S KPKI

P̄
, ES KPKI

P̄
); MesID

2 = (MesPKI
2 , S PKPKI

P̄
,

certP̄)
– MesID

2 ← IDMessagepost(MPKID, IDP̄, S S KID
P̄
, ES KID

P̄
,MesID

1 ) (sequential) :

Verify 1
?←− Ver(vk, (IDP, S PKPKI

P ), certP); MesPKI
2 ← Message(PPPKI ,UP̄,UP,

S S KPKI
P̄
, ES KPKI

P̄
, S PKPKI

P ,MesPKI
1 ); MesID

2 = (MesPKI
2 , S PKPKI

P̄
, certP̄)

– MesID
i ← IDMessage(MPKID, IDP, IDP̄, S S KID

P , ES KID
P ,MesID

1 , . . . ,MesID
i−1):

Verify 1
?←− Ver(vk, (IDP̄, S PKPKI

P̄
), certP̄) (for i = 3, and i = 4 (simultaneous));

MesPKI
i ← Message(PPPKI ,UP, UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
, MesPKI

1 , . . . ,

MesPKI
i−1 ); MesID

i = MesPKI
i

– KID ← IDSesKey(MPKID, IDP, IDP̄, S S KID
P , ES KID

P ,MesID
1 , . . . ,MesID

n ):
KPKI ← SesKey(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
,MesPKI

1 , . . . ,MesPKI
n );

KID = KPKI

4.2 Security

We show the following theorem.

Theorem 1. If signature scheme (SigGen, Sign, Ver) is eUF-CMA andΠPKI = (Setup,
StaticGen, EpheGen,Messagepost,Message, SesKey) is CK+ secure, then protocol
ΠID = (IDSetup, IDKeyDer, IDEpheGen, IDMessagepost, IDMessage, IDSesKey)
converted by GCpost is id-CK+-secure.

Here, we show a proof sketch of Theorem 1.
In GCpost, messages and the session key generation procedure are same as the un-

derlying PKI-AKE. Thus, if an adversary cannot obtain any advantage by using the
additional message (i.e., spkP and certP), the same level of security is preserved.

We transform the id-CK+ security game such that the game halts if an adversary does
not pose MasterRev and poses Send query containing spkP and certP which is valid
for some ID not registered to the KGC. If the event occurs, it means that the adversary
can bind a static public key with a non-registered ID. We can prove that the difference
of advantages between two games is negligible due to eUF-CMA of the underlying
signature scheme. In the transformed game, all static public keys are strictly bound with
registered IDs unless the master secret key is not exposed. Thus, the situation is same
as PKI-AKE, and we easily obtain security for ID-AKE from security for PKI-AKE.

We show the proof of Theorem 1 in the full paper.

4.3 Instantiations

We can instantiate GCpost with CK+ secure PKI-AKE in the post-specified peer model
and an eUF-CMA signature scheme. For example, an instantiation based on the gap
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DH assumption and the discrete logarithm (DLog) assumption in the RO model is with
HMQV [14] as CK+ secure PKI-AKE, and with the Schnorr siganture as eUF-CMA
signature. This instantiation achieves ID-AKE without pairings like the FG scheme,
and is secure in the stronger security model (i.e., the id-CK+ model) than the model of
the FG scheme (i.e., the CK model).

Theoretically, we can also achieve ID-AKE without either of pairings and ROs in the
post-specified peer model. We can construct eUF-CMA signature from any one-way
function by combining the Lamport-Diffie one-time signature [20] and the Merkle sig-
nature [21]. Thus, we can obtain eUF-CMA signature based on the DLog assumption.
Also, Okamoto [22] proposed exposure-resilient 2-pass PKI-AKE under a DH-variant
assumption without ROs in the post-specified peer model. Therefore, with these build-
ing blocks, we have exposure-resilient 2-pass ID-AKE without either of pairings and
ROs in the post-specified peer model.

5 Conversion in Pre-specified Peer Model

In this section, we introduce a generic conversion of ID-AKE from PKI-AKE in the pre-
specified peer model, named GCpre. Compared with GCpost, GCpre needs an additional
round to send the static public key. As GCpost, we can prove that the converted ID-AKE
scheme preserves security of the underlying PKI-AKE.

5.1 Description of GCpre

GCpre converts a PKI-AKE ΠPKI = (Setup, StaticGen,EpheGen,Messagepost,
Message, SesKey) in the pre-specified peer model to an ID-AKE ΠID = (IDSetup,
IDKeyDer, IDEpheGen, IDMessagepost, IDMessage, IDSesKey). We note that ΠID

becomes a sequential protocol regardless of ΠPKI because the responder must wait the
initiator’s message in order to derive MesID

2 . Fig. 3 shows the protocol of the generic
conversion GCpre.
ΠID is constructed as follows:

– (MS KID,MPKID)← IDSetup(1κ), S S KID
P ← IDKeyDer(MS KID,MPKID, IDP),

and ES KID
P ← IDEpheGen(MPKID):

The same as GCpost in Section 4.1
– MesID

1 ← IDMessagepre(MPKID, IDP, IDP̄, S S KID
P , ES KID

P ):
MesID

1 = (S PKPKI
P , certP)

– MesID
2 ← IDMessage(MPKID, IDP̄, IDP, S S KID

P̄
, ES KID

P̄
,MesID

1 ):

Verify 1
?←− Ver(vk, (IDP, S PKPKI

P ), certP); MesPKI
1 ← Messagepre(PPPKI ,UP̄,UP,

S S KPKI
P̄
, ES KPKI

P̄
, S PKPKI

P ); MesID
2 = (MesPKI

1 , S PKPKI
P̄
, certP̄)

– MesID
3 ← IDMessage(MPKID, IDP, IDP̄, S S KID

P , ES KID
P ,MesID

1 ,MesID
2 ) (si-

multaneous) :

Verify 1
?←− Ver(vk, (IDP̄, S PKPKI

P̄
), certP̄); MesPKI

2 ←Messagepre(PPPKI ,UP, UP̄,

S S KPKI
P , ES KPKI

P , S PKPKI
P̄

); MesID
3 = MesPKI

2
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IDSetup(1κ)

PPPKI ← Setup(1κ); (vk, sk)← SigGen(1κ); MS KID = sk; MPKID = (vk, PPPKI)
IDKeyDer(MS KID,MPKID, IDP)

(S PKPKI
P , S S KPKI

P )← StaticGen(PPPKI); certP ← Sign(sk, (IDP, S PKPKI
P ));

S S KID
P = (S S KPKI

P , S PKPKI
P , certP)

Key Exchange

Party UA (Initiator) Party UB (Responder)

ES KID
A = ES KPKI

A ← EpheGen(PPPKI) ES KID
B = ES KPKI

B ← EpheGen(PPPKI)
MesID

1 = (S PKPKI
A , certA)−−−−−−−−−−−−−−−−−−−−−−−−−→

1
?←− Ver(vk, (IDA, S PKPKI

A ), certA)
MesPKI

1 ← Messagepre(PPPKI ,UB,UA,

S S KPKI
B , ES KPKI

B , S PKPKI
A )

MesID
2 = (MesPKI

1 , S PKPKI
B , certB)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1
?←− Ver(vk, (IDB, S PKPKI

B ), certB)
If ΠPKI is a simultaneous protocol,
MesPKI

2 ← Messagepre(PPPKI ,UA,UB, S S KPKI
A ,

ES KPKI
A , S PKPKI

B )
Otherwise,

MesPKI
2 ← Message(PPPKI ,UA,UB, S S KPKI

A ,

ES KPKI
A , S PKPKI

B ,MesPKI
1 )

MesID
3 = MesPKI

2−−−−−−−−−−−−−−−−−→
(For i = 3, ...,n)

MesPKI
i ←Message(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
,MesPKI

1 , . . . ,MesPKI
i−1 )

MesID
i+1 = MesPKI

i←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KID = KPKI ← SesKey(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
,MesPKI

1 , . . . ,MesPKI
n )

Fig. 3. Conversion in the pre-specified peer model, GCpre

– MesID
3 ← IDMessage(MPKID, IDP, IDP̄, S S KID

P , ES KID
P ,MesID

1 ,MesID
2 ) (se-

quential) :

Verify 1
?←− Ver(vk, (IDP̄, S PKPKI

P̄
), certP̄); MesPKI

2 ← Message(PPPKI ,UP,UP̄,

S S KPKI
P , ES KPKI

P , S PKPKI
P̄
,MesPKI

1 ); MesID
3 = MesPKI

2

– MesID
i+1 ← IDMessage(MPKID, IDP, IDP̄, S S KID

P , ES KID
P ,MesID

1 , . . . ,MesID
i ):

MesPKI
i ← Message(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
, MesPKI

1 , . . . ,

MesPKI
i−1 ); MesID

i+1 = MesPKI
i

– KID ← IDSesKey(MPKID, IDP, IDP̄, S S KID
P , ES KID

P ,MesID
1 , . . . ,MesID

n+1):
KPKI ← SesKey(PPPKI ,UP,UP̄, S S KPKI

P , ES KPKI
P , S PKPKI

P̄
, MesPKI

1 , . . . ,

MesPKI
n ); KID = KPKI
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5.2 Security

We show the following theorem.

Theorem 2. If signature scheme (SigGen, Sign,Ver) is eUF-CMA andΠPKI = (Setup,
StaticGen,EpheGen,Messagepost,Message, SesKey) is CK+ secure, then protocol
ΠID = (IDSetup, IDKeyDer, IDEpheGen, IDMessagepost, IDMessage, IDSesKey)
converted by GCpre is id-CK+-secure.

The proof sketch is almost same as the case of GCpost. Please see Section 4.2.
We show the proof of Theorem 2 in the full paper.

5.3 Instantiations

We can instantiate GCpre with CK+ secure PKI-AKE in the pre-specified peer model
and an eUF-CMA signature scheme. We have a wider class of instantiations in the
pre-specified peer model than in the post-specified peer model thanks to KEM-based
PKI-AKE such as [9,6,19]. Though KEM-based PKI-AKE can not be used to instanti-
ate ID-AKE in the post-specified peer model because the initiator must know the peer’s
static public key for KEM, it is no problem in the pre-specified peer model. For exam-
ple, an instantiation based on lattices (without ROs) is with KEM-based PKI-AKE [6]
from the Peikert PKE [23], and with the Gentry-Peikert-Vaikuntanathan signature [24].
Moreover, we have an instantiation based on the standard RSA problem (without ROs),
which is with KEM-based PKI-AKE from the Hofheinz-Kiltz PKE [25], and with the
Hohenberger-Waters signature [26]. This instantiation is the first ID-AKE scheme from
the RSA assumption.

We can also construct ID-AKE schemes from other hardness assumptions in a the-
oretical sense. Fujioka et al. [6] proposed KEM-based PKI-AKE from the factoring
problem and code-based problem, and Yoneyama [19] proposed KEM-based PKI-AKE
from subset-sum problems and multi-variate quadratic systems. With one-way function-
based signature (see Section 4.3), we can have ID-AKE schemes from such
assumptions.

In [11], Fujioka et al. introduce a 2-pass generic construction of ID-AKE in the
pre-specified peer model from ID-based KEM. Their construction is instantiated from
pairings or lattices. Compared with GCpre, though their construction has an advantage
in round efficiency, possible instantiations are limited.
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Abstract. We provide a proof of correctness and security of a two-party-
computation protocol based on garbled circuits and oblivious transfer
in the presence of a semi-honest sender. To achieve this we are the
first to combine a machine-assisted proof of correctness with advanced
cryptographic primitives to prove security properties of Java code. The
machine-assisted part of the proof is conducted with KeY, an interactive
theorem prover.

The proof includes a correctness result for the construction and eval-
uation of garbled circuits. This is particularly interesting since checking
such an implementation by hand would be very tedious and error-prone.
Although we stick to the secure two-party-computation of an n-bit AND
in this paper, our approach is modular, and we explain how our tech-
niques can be applied to other functions.

To prove the security of the protocol for an honest-but-curious sender
and an honest receiver, we use the framework presented by Küsters et
al. for the cryptographic verification of Java programs. As part of our
work, we add oblivious transfer to the set of cryptographic primitives
supported by the framework. This is a general contribution beyond our
results for concrete Java code.

1 Introduction

Motivation and overview Protocols for secure two-party computation allow two
parties to evaluate a function f such that both parties provide a part of the
input. Neither of the parties must learn more about the input of the other than
can be inferred by its own input, the function f and the computed output. Since
first solutions for two-party computation protocols have been presented by Yao
[35, 36], the problem has received a lot of attention (e.g., [14, 8, 25, 26, 29]).
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S ROTs encoding R’s input

Response for OTs, garbled circuit,

encoding of S’s input

Fig. 1. Yao’s protocol for two-party computations

Yao’s approach Following the initial ideas of Yao, one can construct a two-
party computation protocol from garbled circuits [35, 36] and oblivious transfer
[32] (see Figure 1). The basic idea is to first encode the function f as a circuit
consisting of gates and wires. Such a circuit can then be transformed into a
garbled circuit by one of the parties, say the sender S. Instead of a bitstring,
the garbled circuit takes an encoding for each bit as input. These encodings are
initially only known to the creator of the garbled circuit (S here). When the
receiver R wants to evaluate the garbled circuit on a given input x ∈ {0, 1}n, it
needs to know the corresponding encoding for each input bit.

The encodings for the input bits of R are transmitted via oblivious transfer
from S to R. The oblivious transfer protocol guarantees that R learns exactly
one encoding for each of its own input bits and that S remains oblivious to
which encodings R learned. Subsequently, S transmits the garbled circuit and
the encodings of its own input bits to R. These encodings don’t tell R anything
about S’s input bits. Finally, R can evaluate the garbled circuit. Note that R
only knows the corresponding encoding for one bitstring x ∈ {0, 1}n and hence
can only use the garbled circuit to compute f(x).

From theory to practice While they have always been of theoretical interest, two-
party computation protocols seemed far away from being applicable to practical
problems for a long time. Beginning with Fairplay [28], methods to construct
(garbled) circuits for generic functions have drastically improved (e.g., [20, 16]).
This inspired various protocols for practical problems [19, 12, 30, 17]. As perfor-
mance of garbled circuits is going to increase, we are going to see more practical
applications of garbled circuits in the future.

Mind the gap Although all of those protocols come equipped with security proofs
of abstractions of the protocol, there remains a gap between the security of the
specification in a theoretical model and a real world implementation, e.g., in Java.
There are aspects of actual implementations, which have no counterpart in the
abstract world. For example, even if a protocol itself is secure, minor mistakes
in its realization can completely break security as the recent Heartbleed bug in
the OpenSSL library shows. Under this point of view it is important not only to
prove the security and correctness of a protocol in the abstract world but also to
verify its actual implementation. This can be achieved by using machine-based
verification techniques, and in this work we present a first step to close this gap.
We chose Java for being a widely used programming language in the real world,
unlike e.g. EasyCrypt [2], which offers verification in its own specific language.
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Our contributions We use the KeY tool[3], a deductive verification tool for
Java programs, to show the correctness of a two-party computation protocol
implemented in Java. KeY was previously used for verification of functional
properties[33], non-interference properties[15], and security properties of pro-
grams making use of public key encryption[22]. Our first contribution is to ex-
tend this body of work by using KeY to prove correctness of an implementation
that uses symmetric encryption for garbled circuits. The machine-assisted proof
is done for a concrete function f , namely an n-bit AND. While this might seem
limited at first glance, the proof is modular, i.e., it uses the correctness of the
implementation of garbled gates in a black-box way. Additionally, we explain
how correctness proofs for other functions can be conducted in the same fash-
ion. As a proof of concept, we also prove the correctness of a XOR gate. The
correctness of our implementation of an n-bit AND can be used in a black-box
way to show the correctness of more complicated circuits. This is the first paper
that presents a security and correctness proof of an implementation in a real-
world programming language. Alternative tools for languages like Java, C, and
C#, are, for example, Spec# [1], Krakatoa [13] or VCC [34]. Another tool using
symbolic execution for Java and C programs is the VeriFast system [18].

Our second contribution is to show the security of the implementation in
presence of a passive adversary for corrupted sender S and honest receiver R;
independently of the function f . To achieve this, we add oblivious transfer as
a cryptographic building block to the framework for Cryptographic Verification
of Java-like programs by Küsters et al. [23, 21]. That is, we provide an ideal
interface in Java for oblivious transfer following the ideal OT functionality of
[8] for Canetti’s UC-framework [7]. We show that this ideal interface can be
implemented by any UC-secure oblivious transfer protocol (e.g., [31, 11, 10]).

On our restrictions. We would like to point out that – although we only consider
honest-but-curious security in this paper – our work is a necessary step towards
proving security of implementations of adaptively secure protocols based on gar-
bled circuits (like [27] for example). Every security argument for these protocols
assumes that the actual implementation is correct; this is where our result is
needed. Furthermore, we would like to point out that it is sufficient that the
output is only learned by R as explained in [26].

Outline The structure of this paper is as follows. In the next section we introduce
some preliminaries. We briefly introduce the cryptographic building blocks used
in this paper, the specification language Java Modelling Language and the inter-
active theorem prover KeY . Subsequently, in Section 3, we describe the protocol
we analyze in this work. In Section 4 we present details on an abstraction for
the secret key encryption scheme, followed by a description of the modular im-
plementation for the cryptographic building blocks introduced earlier. We then
show two lemmas stating the correctness of the implementation. In Section 5 we
prove the security of our protocol for a semi-honest sender S using the results
from Section 4. In Section 6 we present potential directions for future work. A
full version of this paper is available online[6].
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2 Preliminaries

2.1 The CVJ Framework

Due to the limited space we cannot present the framework for Cryptographic
Verification of Java Programs here. We therefore would like to refer readers
interested in a summary of the framework to the full version of this paper [6]
and readers who are interested in the full details to the original paper [23].

2.2 Cryptographic Building Blocks

SKE A secret key encryption scheme (SKE scheme) with keyspace K and mes-
sage space M features three probabilistic-polynomial-time algorithms:
– Gen takes the security parameter λ and generates a key k ∈ K,
– E takes a key k ∈ K and a message M ∈ M and outputs a ciphertext, and
– D takes a key k ∈ K and a ciphertext C and outputs the plaintext if decryp-

tion works and ⊥ otherwise.
We say that an SKE scheme is correct if for all k ∈ K and all M ∈ M we have
D(k,E(k, M)) = M . Furthermore, we stipulate for SKE schemes throughout
the paper that Pr [D(k′,E(k, M)) �= ⊥ : k, k′ ← Gen(λ)] is negligible in λ. Note
that this already implies that two honestly generated keys are equal only with
negligible probability independent of the security of the SKE scheme.

The algorithms Gen, E and D can be provided in many ways; in our implemen-
tation they are provided by the interface ISKE (see [6] for details). The methods
GenKey, Encrypt and Decrypt provide the respective functionality. The classes
Key and Cipher provide a constructor, which we do not further specify and the
identifier ident which represents the numerical representation of a byte array.
An implementation can use the ident field to store an arbitrary representation
of the object. We use this concept throughout the paper for all abstract objects
we have. Although identifiers are defined here as of data type int, these fields
can hold arbitrary natural numbers during verification. Hence, they are merely a
placeholder and an actual representation would not be bounded by a 32 or 64 bit
integer size. The method GenKey creates a key which is not distinguishable from
a random number. ISKE contains methods Encrypt and Decrypt that provide
the expected functionality for symmetric encryption.

Circuits A circuit consists of input pins, output pins, gates and wires. Each gate
has two input pins and one output pin. Each wire connects exactly two pins and
each pin is connected to exactly one wire. Furthermore, each wire connects an
input pin of the circuit to an input pin of a gate. An output pin of a gate
is connected to an input pin of a gate or an output pin of the circuit. If the
gates, the input pins, and the output pins of the circuits are viewed as nodes
of a graph and the wires are viewed as the edges, a circuit must be a directed
acyclic graph. Each wire can take a value from {0, 1} and each gate resembles an
arbitrary binary function g : {0, 1}2 → {0, 1}. 1 To evaluate a circuit having n

1 Although there are more general definitions of circuits, this one is simple and doesn’t
restrict our results.
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input wires for an input x ∈ {0, 1}n, we assign xi to the wire connected to the ith
input pin and then evaluate gate after gate in a straightforward way. Obviously,
for every function f : {0, 1}n → {0, 1}m we can find a circuit encoding f , i.e.,
evaluating the circuit for x ∈ {0, 1}n yields f(x).

Garbled Circuits 2 Given a circuit, the idea behind garbling is basically to ob-
fuscate the function encoded by it to some extend. Using an SKE scheme, we
can garble a circuit as follows: First, we generate two keys k0, k1 for each wire.
These keys represent the two possible values the wire can take. The input of
each gate are now two keys l ∈ {l0, l1} and r ∈ {r0, r1}. The output must be a
key out ∈ {out0, out1}. For lb and rb′ we compute E(lb,E(rb′ , outg(b,b′))) which
yields a list of four ciphertexts (as above, g{0, 1}2 → {0, 1} is the binary function
describing the functionality of the gate). A random permutation of that list, also
referenced as evaluation table later, is the description of the gate. To evaluate a
garbled gate, one can, given the input keys l and r, try all ciphers and see which
one decrypts correctly to retrieve the output key. In this manner, the garbled
circuit can be evaluated gate by gate.

Oblivious Transfer The protocol we describe uses a cryptographic primitive
called oblivious transfer (OT), introduced by [32]. More concretely, we use a
2-1 oblivious transfer for two parties. One party (S) has two secrets of which
another party (R), may learn exactly one. S must not learn the choice of R while
R must learn only one of the secrets.

In our Java code, we use an interface called IOT resembling an abstraction of a
two message OT protocol (see [6] for details): The receiver R starts by generating
some secret information OTKey. This is used to prepare the request OTReq which
is then sent to S. From the request S can generate a response by providing inputs
in0 and in1. If R receives the response, it can extract in0 or in1 depending on
the value of choice used for generating the request.

2.3 The Verification Setup

We use JML*, an extension of the Java Modelling Language (JML) for specifi-
cation of Java programs and the KeY-tool as a prover. A full account of JML
can be found in [24]. Specifications are given as annotations in the source code
of a program. The main concept follows a design-by-contract approach, whose
central specification artefacts are method contracts and class invariants.

A method contract consists of a precondition and a postcondition. A method
satisfies its contract if for all states satisfying the method’s precondition it ter-
minates in a state that satisfies the postcondition. A class invariant describes a
global state which has to be preserved by all methods (except special ”‘helper”’
methods).

Pre-, postconditions and invariants are boolean valued JML expressions. A
JML expression can be almost any side-effect free Java expression. Besides the

2 A thorough and comprehensive state-of-the-art description can be found in [4].
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built-in operators in Java, some additional ones can be used; we explain the ones
relevant for our work in [6]. We make use of ghost variables, which are variables
that can be used for specifications. They do not influence the actual behaviour of
a program, but allow us to perform bookkeeping of information during execution
of a program within proofs. Ghost variables cannot be referred to by Java code.

We use the KeY-tool [3] to prove our correctness result. This interactive the-
orem prover is based on a generalization of Hoare logic. During a KeY proof, a
program is symbolically executed, i.e., transformed into a set of logical constraints
representing the behaviour of the program. Using first-order reasoning, the KeY
tool evaluates the postcondition, given the constraints.

3 The Protocol

We model a two-party computation of an n-bit AND between a sender S and a
receiver R following Yao’s initial construction (see Figure 1). During a normal
run of a protocol, both parties send exactly one message (we omit distributing
the output computed by the receiver).

Intuitively, the protocol works as follows: R starts by preparing oblivious trans-
fers (OTs) according to its own input. E.g., if R’s ith input bit is 1, it will prepare
the OT such that it will learn the second input of S to this OT later. R then
sends the OTs to S. S generates a garbled circuit. S generates for each input and
each output wire of the circuit a pair of keys that corresponds to the possible
bit-value of the wire (0 or 1). For the input wires that belong to R’s input, S
fills the OTs received from R with the corresponding key pairs. R will receive
only the corresponding key (and, by the security of the OT, R’s choice remains
hidden from S). S then sends the garbled circuit, the keys corresponding to its
own input, the filled OTs and the key pairs for the output wires to R. R extracts
the keys corresponding to its inputs from the OTs, evaluates the garbled circuit
and can – using the key pairs for the output wires – interpret the resulting keys
as a bitstring. This bitstring is the result of the two-party computation.

The interfaces of sender and receiver are given in Figure 2 in the appendix.

4 Correctness of Our Protocol

In this section we describe the proof of correctness for our implementation. We
will present only the idea behind the proof here. A more thorough description
can be found in the full version of this paper [6]. Additionally, the complete
implementation and machine-assisted proofs are available online[5].

A word on modularity and re-usability One of the most tedious tasks during
the verification of a program is finding a correct and sufficient specification.
This is especially true in the case of garbled gates and circuits, because a lot
of information is given implicitly by the code and the interworking of methods
following after another. In order to prove correctness, we have to make this
information explicit in the form of class invariants.
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Our implementation is modular in the way that only the contracts of other
objects are used for verification, not their actual implementation. In order to
implement binary gates with different algorithms the same functionality the
specification provided can be re-used. Also, when binary gates realizing a differ-
ent function are implemented, our specification can be reused, by only changing
the specification of the truth table and fixing two lines in the postcondition of
one method. As a proof of concept, we implemented and verified an additional
garbled gate with XOR-functionality, which can be found in the online sources
[5]. The proof process is essentially the same for both gates.

A circuit is built by wiring gates (which are used in a black-box fashion but
may again be circuits themselves) in a certain way. The way gates are wired is
called the topology of the circuit. In our work we use something one could call a
linear topology for the circuit that then forms the n-bit AND. Our specification
can easily be re-used for other circuits with a linear topology. For example,
realizing an n-bit OR would only require straightforward changes in two lines of
the postcondition of the evaluate method. Realizations of n-bit AND and n-bit
OR are particularly interesting to us because they are the basis for disjunctive
and conjunctive normal forms.

4.1 Encryption Abstraction

Instead of using a real implementation for the interfaces ISKE we provide an
abstract specification of this cryptographic primitive.

A Cipher has two ghost fields we use for specifying the encryption infor-
mation. The ghost field key holds the key, which was used for encryption of a
message. We call two objects of type Key corresponding, if they have the same
ident value. The ghost field msg holds the message that is encrypted in the
cipher by a key corresponding to the value of key.

Instead of directly using constructors or methods provided by Key or Cipher,
we encapsulate this functionality in a secret key encryption scheme, providing
the interface ISKE.

The SKE class has two static ghost fields. The field randoms holds a collection
of numbers, which represent random byte arrays. The content of randoms can
be seen as a stream of random numbers from which elements can be drawn. This
makes the methods provided by SKE deterministic and we can treat randomisa-
tion independent from execution of our actual code.

A field counter is a pointer to the element in randoms which is drawn the next
time a random number is needed. The management of this pointer is ensured by
the methods provided by SKE. To create a new key, we use the method GenKey.
It returns a new Key object, where the identifier has the same value as the next
element in randoms.

The method SKE.Encrypt encapsulates the encryption functionality in our
program. The Cipher object returned by the method has a fresh random num-
ber as identifier. The ghost field key remembers the key which was used for
encryption, while the ghost field msg remembers the clear text information.
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The method SKE.Decrypt provides decryption functionality, which ensures
that a null object is returned, if the key passed as parameter does not corre-
spond to the key originally used for encryption of the message. If the encrypted
message is of type Key, the Decrypt method has to return a key corresponding
to the originally encrypted key object. So the object structure is preserved by
decryption. For other cases, we leave the behaviour of Decrypt underspecified.

4.2 Implementation Details

Our realization of a garbled circuit consists of two classes. The class
GarbledANDGate implements a garbled gate with binary AND functionality. The
class GCnBitAND makes use of GarbledANDGate to realize the interface IGC.

GarbledANDGate The class GarbledANDGate (see Figure 3 in the appendix)
defines the field Cipher[] eT, representing the evaluation table as explained in
Section 2.2. Additionally, we introduce several ghost variables for bookkeeping
of the state of a GarbledANDGate to explicitly store information given by the
structure of the evaluation table.

The variables kl0 and kl1 store an object of type Key which represents the
key expected as 0- or 1-valued input on the left pin. The variables kr0 and kr1

do the same for the right pin. The variables out0 and out1 hold the objects
representing the keys used as 0- and 1-valued output.

The evaluation table holds on each position an encryption either of out0 or
out1, first encrypted by one of the input keys for the right pin and then en-
crypted by one of the input keys for the left pin. As explained in Section 2.2,
the evaluation table contains a random permutation of the ciphers and we use
the ghost variables ci0, ci1, ci2, ci3 to store the indices of the ciphers af-
ter permutation. For example, the encryption of out0 with the keys kr0 and
kl0 is stored at position eT[ci0]. For a full account of the definition of the
specification, we refer the reader to the implementation.

Further, we provide a method contract for the constructor and the method
evaluate provided by the gate. These contracts ensure that the gate does realize
a garbled AND functionality, assuming some preconditions. The correctness of
the implementation according to the contract is used as a lemma during the
proof of correctness of the garbled circuit.

Garbled n-bit AND circuit The class GCnBitAND (see Figure 4 in the appendix),
realizing IGC, defines an array gates. The gates stored in this array are respon-
sible for the functionality implemented by the circuit. The correct wiring of the
circuit is indirectly ensured by the constructor and the evaluate method.

We define four ghost variables to store the expected in- and output of the
circuit. The keys expected by the circuit as 0-valued input are stored in the
array in0, those representing a 1-valued input are stored in the array in1. The
ghost variables out0 and out1 store the keys representing the 0- and 1-valued
outputs.



Proving Correctness and Security of Two-Party Computation Implemented 183

The invariant of GCnBitAND ensures a well-definedness property. First, it is
ensured that the expected input of a gate on the left pin corresponds to the out-
put of the previous gate, i.e., the circuit implements a linear structure. Second,
it is ensured that the keys expected as an input on the right pin by the gates
correspond to the keys expected as input by the circuit. A special case here is
the first gate, for which both inputs come from the user. Finally, the invariant
ensures that the output of the last gate corresponds to the output the circuit is
supposed to provide.

4.3 Correctness of the Implementation

We prove the correctness of our implementation of the methods provided by
GCnBitAND against their contracts.

The contract of the constructor of class GCnBitAND (see Figure 5 in the ap-
pendix) requires that as many keys provided as 0-valued input are also provided
as 1-valued input. The amount of keys provided determines the number of pins
provided by the circuit. At least two keys have to be provided for each value,
which expresses the circuit to be built provides at least two pins.

Further, the precondition of the contract states that the keys used as possible
input for each pin do not correspond, neither do the keys used as possible input
on two subsequent gates. Both of these conditions are necessary for the correct-
ness of the gates, which are built during execution of the constructor. Finally the
possible output keys must not correspond, i.e., it can be distinguished between
a 0- and a 1-valued output.

The postcondition of the contract states that the identifier representing ex-
pected input keys in the ghost fields in0 and in1 are the same as the identifiers
of the keys used as input to the constructor. Additionally, the invariant of class
GCnBitAND is required to hold after termination of the constructor, which is an
implicit postcondition for the constructor.

Theorem 1 states the correctness of the constructor of IGC, since its imple-
mentation is correct with respect to its specification.

Theorem 1. Let GCnBitAND be the realization of IGC; let in0 and in1 be arrays
of keys, such that the length of in0 equals the length of in1, all elements in in0
and in1 are not null and in0 contains at least two elements; let out0 and out1
be keys that are not null and let all keys in in0, in1 and the keys out0 and out1
have pairwise different identifier.

Then a call IGC.GCnBitAND(in0, in1, out0, out1) returns an object gc realizing
IGC such that the invariant of gc holds and; for all i ∈ {0 .. length of in0 − 1}
the keys expected by gc as input on pin n representing a 0-valued input corre-
sponds to the key in0[n] and the key expected by gc as input on pin n representing
a 1-valued input corresponds to the key in1[n] and the key provided by gc as out-
put representing a 0-valued output corresponds to out0 and the key provided by
gc as output representing a 1-valued output corresponds to out1.

Proof. The conditions stated as preconditions in Theorem 1 imply the precon-
ditions of the constructor of class GCnBitAND. The postconditions stated in
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Theorem 1 are equivalent to the postcondition of class GCnBitAND. The real-
ization of IGC is given by the class GCnBitAND.

We proved with the KeY-tool that GCnBitAND.GCnBitAND satisfies its con-
tract. Therefore Theorem 1 holds.

The contract of evaluate of GCnBitAND (see Figure 6 in the appendix) re-
quires R to provide exactly one key for each pin of the circuit, while each key
either has to correspond to the key expected by the circuit on the respective pin
as 0- or 1-valued input. Implicitly it is also required that the invariant of the
circuit holds right before a call to evaluate. The postcondition of evaluate of
GCnBitAND states that a correct implementation of evaluate returns a key cor-
responding to the 1-valued output key, if all input keys correspond to 1-valued
input. If at least one input key does not correspond to a 1-valued input, the cir-
cuit returns a 0-valued output. It is easy to see that the postcondition expresses
a n-bit AND functionality.

Theorem 2 states the correctness of method evaluate of IGC, since the im-
plementation of the constructor is correct due to its specification.

Theorem 2. Let GCnBitAND be the realization of IGC; let gc be the object giving
access to IGC; let the invariant of gc hold; let in be an array of keys with the
same length as the amount of expected input keys by gc and let in[i] correspond
to the 0-valued or 1-valued input key expected by gc.

Then a call IGC.evaluate(in) returns a key o such that o represents a 1-
valued output if all keys in in represent 1-valued inputs and o represents a 0-
valued output if not all keys in in represent 1-valued inputs.

Proof. The proof can be found in the full version of this paper [6].

5 Security of Our Protocol

In this section we prove that our protocol (see Section 3) is secure against an
honest-but curious adversary if the sender S is corrupted. Security in this setting
means, that the inputs of the receiver R remain secret. This follows from the
correctness of the protocol and the UC-security of oblivious transfer.

I(Ŝ,R) (see [6] for details) describes the interface of the two-party computation
in presence of a corrupted sender to the environment. In addition to what a pas-
sive adversary can usually observe during a run of the protocol (using methods
getReceiverMessage, getSenderMessage, and getOutput), I(Ŝ,R) now provides
it with methods getSenderInput and getSenderKeys which leak S’s secrets. In
particular, getSenderKeys returns the list of all encryption keys generated by
S to construct the garbled circuit. Note that the adversary cannot change the
behavior of S.

We now introduce two implementations of the interface I(Ŝ,R).

– The real implementation 2PC
(Ŝ,R)
real runs the two-party protocol in the con-

structor on the given inputs and saves the exchanged messages, generated
encryption keys, etc. for later retrieval by the adversary through the corre-
sponding getters.
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– The ideal implementation 2PC
(Ŝ,R)
ideal doesn’t run the protocol but uses a sim-

ulator implementing the interface ISim which provides all getters except
getOutput. It resembles a wrapper for the ideal functionality (for corrupted
S and honest R) running in parallel with a simulator. Note that the simulator
is only given the input of the sender and the length of the receiver’s input.

OTideal is an ideal implementation of the interface for oblivious transfer IOT (see
[6] for details) resembling the ideal functionality FOT. Internally,OTideal maintains
a list of tuples (OTKey k, boolean choice, OTResp r, Object in0, Object in1)

each representing one OT instance. Constructing an OT request creates a new en-
try in that list with r, in0 and in1 set to null. Upon genResponse for an OTKey the
corresponding r, in0 and in1 are set according to the given values (which must not
be null and the length of their serialization must not exceed a fixed maximum).
On getOutput for OTResp r and OTKey k, depending on the value of choice, in0
or in1 is returned. The ident attributes of keys, responses and requests are set
to uniformly random values on object creation.3 As usual throughout the paper,
these idents are placeholders that can be used for data by a real implementation.

Theorem 3. Let 2PC
(Ŝ,R)
real , 2PC

(Ŝ,R)
ideal and OTideal be the programs introduced above

and SKEreal be a correct implementation of ISKE, then we have

SKEreal · OTideal · 2PC(Ŝ,R)
real ≤(Iout,∅,∅,ISim) SKEreal · OTideal · 2PC(Ŝ,R)

ideal

where Iout := I(Ŝ,R) ∪ IOT ∪ ISKE and ISim the interface described above.

Proof. The simulator can successfully fake getReceiverMessagebecause the OT
keys are random handles independent of choice in OTideal. It creates inR_length
OTsand returns the correspondingOT requests on a call of getReceiverMessage.
To simulate the sender, it generates a garbled circuit as an honest S would do and
prepares the OT responses accordingly to assemble the sender response. The cor-
rectness of the garbled circuit (seeTheorem 1,Theorem 2) guarantees that the out-
put in the real world actually matches that in the ideal world.

What remains to do is to show that we can replace the ideal implementation
for oblivious transfer by a real one.

Security of Oblivious Transfer We first describe the simplified functionality for
oblivious transfer [8]. FOT interacts with a sender S and a receiver R.
– Upon receiving a message (in0, in1) from S, store (in0, in1).
– Upon receiving a message b from R, check if a (in0, in1) message was previ-

ously sent by S. If yes, send inb to R. If not, send nothing to R (but continue
running).

Let OTreal be a system that implements the OT IOT interface (see [6] for
details). We show that the system OTideal can safely be replaced by OTreal if
OTreal suitably implements a two-party-two-message realization of FOT. Such

3 Theoretically, other distributions are also possible. For Theorem 3 we just need that
the idents of OT requests are independent of the choice bit.
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realizations exists under standard cryptographic assumptions, e.g., decisional
Diffie-Hellman, quadratic residuosity, or learning with errors [31].4

Theorem 4. If OTreal implements a realization R of FOT, then OTreal ≤(IOT,∅,∅,∅)

OTideal

Proof. The basic idea is that, since R realizes FOT, there is a simulator S such
that R and S · FOT are indistinguishable for every environment in the compu-
tational UC model (for a suitable composition · in that model). The output of
S is independent from the original inputs of the parties S and R (it doesn’t get
those values from FOT). As output distribution for OTideal we can hence pick
that of S. Since we can simulate Turing machines with Jinja+ programs, strong
simulatability in the CVJ framework follows.

6 Future Work

This work provides the proof of security of a two-party computation implemented
in Java against a semi-honest sender. In particular, we prove correctness of the
implementation of a garbled circuit using cryptographic primitives via a formally
specified interface.

One obvious direction for future work is to prove security for the two remaining
scenarios, i.e., security against a corrupted receiver and security if both parties
are honest (all in presence of a passive adversary).

One interesting challenge towards this goal is to prove at code level that the
evaluation of a garbled circuit does not leak more than the encoded function
f and the output f(x).5 For this, implementation details of the garbled circuit
(e.g., that the evaluation table is randomized) will become important.

Since the security against a corrupted receiver will also depend on the security
of the used encryption scheme, a suitable functionality for secret key encryption
will be necessary. This functionality should be realizable in the sense of strong
simulatability and sufficient for the construction of garbled circuits.

Finally, it would be interesting to build a compiler from functions to (garbled)
circuits that automatically outputs Java code that is verifiably correct. E.g., if
we have the description of a function in conjunctive normal form (one multi-
bit AND, a number of multi-bit ORs and NOTs) we can use the modularity
of our correctness proof as explained in Section 4. However, more work would
be needed to get from the proof for a conjunctive normal form to a high-level
description of the function like “addition of two integers given as bitstrings”.

4 These realizations need a common reference string functionality [9] which can be
part of OTreal.

5 Actually, a garbled circuit should leak f only to some extent. However, since f is
public in our setting, even a complete leakage of f would not be problematic which
relaxes the difficulty of the proof.
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Appendix

1public final class SenderMessage {
GarbledCircuit gc;

3 Key[] sender keys;

OTResp[] ots;

5 Key out0, out1;

}
7public final class Sender {

public Sender(boolean[] input);

9 public SenderMessage

getMessage(Receiver r,

11 ReceiverMessage m);

}
13

public final class ReceiverMessage {
15 OTReqt[] ots;

}
17public final class Receiver {

public Receiver(boolean[] input);

19 public ReceiverMessage getMessage();

public boolean

21 getOutput(Sender s,

SenderMessage m);

23}

Fig. 2. Interface for sender and receiver
in our protocol.

1public final class GarbledANDGate {
Cipher[] eT;

3 /∗@ ghost Key kl0, kl1, kr0, kr1,

@ out0, out1;

5 @ ghost int ci0, ci1, ci2, ci3;∗/
public GarbledANDGate(

7 Key kl0, kl1 , kr0, k1,

out0, out1 ){...}
9 public Key evaluate(Key inl, inr ){...}
}

Fig. 3. Definition of GarbledANDGate in-
cluding Ghost variables.

public final class GCnBitAND {
2 GarbledANDGate[] gates;

/∗@ ghost Key[] in0, in1;

4 @ ghost Key out0, out1;∗/
}

Fig. 4. Definition of GCnBitAND includ-
ing ghost variables.

1 /∗@ requires

@ inkeys0.length==inkeys1.length &&

3 @ inkeys0.length >= 2 &&

@ (\ forall int i ;

5 @ 1 <= i < inkeys0.length;

@ \distct (inkeys0[i−1],

7 @ inkeys1[i−1], inkeys0[i ],

@ inkeys1[i ]. ident)) &&

9 @ \distct (outkey0, outkey1); ∗/
@ ensures

11 @ (\ forall int i ;

@ 0 <= i < in0.length;

13 @ inkeys0[ i ]. ident==in0[i].ident &&

@ inkeys1[ i ]. ident==in1[i].ident) &&

15 @ outkey0.ident==out0.ident &&

@ outkey1.ident==out1.ident;

17 public GarbledNBitANDCircuit(

Key[] inkeys0, inkeys1;

19 Key outkey0, outkey1) {...}

Fig. 5. Contract of constructor of
GCnBitAND.

1 /∗@ requires

@ in. length == in0.length &&

3 @ (\ forall int i ;

@ 0 <= i < in.length;

5 @ in[ i ]. ident == in0[i].ident ||
@ in[ i ]. ident == in1[i].ident);

7 @ ensures

@ \ if (\ forall int i ;

9 @ 0 <= i < in.length;

@ in[ i ]. ident==in1[i].ident)

11 @ \then (\result .ident==out1.ident)

@ \else (\ result .ident==out0.ident); ∗/
13 public Key evaluate(Key[] in) {...}

Fig. 6. Contract of evaluate for
GCnBitAND.



Mining API Calls and Permissions for Android

Malware Detection

Akanksha Sharma and Subrat Kumar Dash

Department of Computer Science and Engineering,
The LNM Institute of Information Technology, Jaipur, India

{akshasharma.sharma,subrat.dash}@gmail.com

Abstract. The popularity of Android platform is increasing very sharply
due to the large market share of Android and openness in nature. The
increased popularity is making Android an enticing target for malwares.
A worrying trend that is alarming is the increasing sophistication of An-
droid malware to evade detection by traditional signature based scanners.
Several approaches have been proposed in literature for Android malware
detection. However, most of them are less effective in terms of true posi-
tive rate and involves computational overheads. In this paper, we propose
an effective approach to attenuate the problem of Android malware detec-
tion using static code analysis based models. The proposed models, in this
paper, are built to capture features relevant to malware behaviour based
on API calls as well as permissions present in various Android applica-
tions. Thereafter, models are evaluated using Naive Bayesian as well as
K-Nearest Neighbour classifiers. Proposed models are able to detect real
malwares in the wild and achieve an accuracy of 95.1% and true positive
rate with highest value one.

Keywords: Android malware detection, API calls, Permissions, Feature
Selection, Classification.

1 Introduction

Smartphones are becoming popular these days as they serve the user with same
utilities as desktop computers like web browsing, on-line shopping, social net-
working, on-line banking etc. Smartphones have additional features of SMS mes-
saging, location services, constantly updated data and global access. This rich
functionality and popularity is making them an enticing target for malicious
activities. In fact, malware developers can take advantage of these features by
stealing users credentials, accessing private data and charging users with pre-
mium rate SMSes and calls. It is estimated that there are around 657,000 ap-
plications available on Google‘s official Android market. According to a report
from Fortinet (issued in November 2011) [1], there exists 2000 malwares from
80 different families [2]. As stated in a report by Symantec (issued in October
2013) [3], the number of Android malware families increased by 69% between
June 2012 and June 2013. The reason for Android being the most popular plat-
form is that Android is open source and freely available to manufacturers for
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customization. As new families are evolving, it is becoming more difficult to de-
tect malwares using traditional signature based techniques. Oberheide et al. [4]
revealed some security challenges including resource constraints, lack of visibility
in mobile platforms, network obscurity, use of customized applications that uti-
lizes the native capabilities etc. for mobile malware detection. Several permission
based malware detection approaches have been proposed earlier [5,6]. But the
presence of certain permissions does not solely ensure the malicious behaviour
of an application. It is not necessary that the permissions declared in Android-
Manifest.xml are utilized by the application code. On the other hand, there are
existing approaches [8] that take into account only API level information to ex-
tract features on the basis of frequency analysis over a large data set. But these
techniques utilizes large feature sets for detection of malwares. Clearly, there is a
need for an effective approach that can detect malwares from unknown families
and at the same time uses a minimal feature set to avoid high computational
overheads.

In this paper, we propose a proactive approach towards Android malware
detection using static code analysis. In this approach, features based on API
calls as well as permissions present in applications are considered. Correlation
based feature selection and information gain feature selection techniques are
employed to select most relevant features. The profile build from this selected
feature set is validated using Naive Bayesian and K-Nearest Neighbor (kNN)
classifiers. The main contributions of this paper are:

– Extraction of a minimal set of features which is able to detect malwares with
an accuracy and true positive rate (TPR) of 94% and 97.5% respectively.

– Comparison of Naive Bayesian and kNN classifier in terms of performance
with same feature set shows that TPR is better in case of Naive Bayesian
classifier but higher accuracy is attained by kNN classifier.

– A TPR of value 1 is achieved using a feature set of 25 features indicating
that all the malwares present in the data set are detected.

– When tested using real world malwares, our approach is able to detect vari-
ous unknown malwares.

The rest of the paper is organised as follows. Section 2 gives description about
related work. Section 3 and 4 describes feature extraction process and feature
selection techniques used in our proposed approach. Section 5 provides detailed
discussion of data set used and the classification techniques employed. Section 6
includes experimental results and their discussion. Section 7 concludes the paper
giving some future work.

2 Related Work

Several studies have been done in the field of Android malware detection. Felt
et al. [5] developed a tool called Stowaway, which identifies the API calls used in
an Android application and maps those API calls to permissions. Based on this,
the tool can further detect over-privileged Android applications. As reported by
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the authors [5], when tested with 900 applications, it categorized 323 applications
having unnecessary permissions. Another approach towards permission based
malware detection proposed by Aung et al. [6] used K-means clustering cascaded
with Random Forest decision tree and CART (Classification And Regression
Tree) algorithm. This method reports highest accuracy of 91.75% with Random
Forest decision tree and highest true positive rate of 97.8% with CART.

Dini et al. [7] introduced MADAM (Multi-Level Anomaly Detector for An-
droid Malware), first real time anomaly based detector developed for real devices,
which is able to detect real malware of different categories. This technique uses
a detector that monitors Android both at kernel level as well as user level. A
data set of 1000 samples (900 standard and 100 malicious) with 13 features is
used including system calls and the state of system, whether it is idle or send-
ing unwanted outgoing SMSes, is used to test the technique. It shows overall
93% detection rate and in particular 100% detection rate with rootkits. Aafer
et al. [8] used generic data mining approach to build a classifier for Android
applications (apps). They compared performance of four classifiers in terms of
both the methods of feature extraction i.e. permission based and API calls based
feature set with package level and parameter information. Their data set con-
sists of 3987 malware samples from Android Malware Genome Project and 500
applications from each category in Google Play. Asfer et al. reported that kNN
is best performing model with an accuracy of 99.9% and false positive rate as
low as 2.2% with a feature set of 189 features. Yerima et al. [9] proposed an
effective approach of malware detection based on Naive Bayesian classification
using static code analysis. A data set of 2000 samples containing 1000 benign
and 1000 malware samples from 49 different families are analysed to obtain fea-
ture vectors containing 48 features based on API calls and system commands.
Information gain feature selection technique is used to reduce feature set. With
top 20 features when applied to Naive Bayesian classifier model it reported an
accuracy of 92.1% and TPR value of 0.906.

3 Feature Extraction

In this section, we describe extraction of a feature set that is utilized for build-
ing a profile of an Android application. Each Android application contain a
corresponding .apk file which describes the functionalities present in the appli-
cation.To obtain feature set for samples present in data set, we used a Java-
based Android package profiling tool for automated reverse engineering of the
.apk files named asApkAnalyser [12]. This tool unpacks and decompiles the in-
put .apk files to corresponding .dex and AndroidManifest.xml files. After doing
reverse engineering, a set of detectors are applied to the reverse engineered .apk
files to detect properties used to build the profile for APK file. The feature
vector obtained after property detection contains values for selected features as
binary numbers (0 and 1), which is a sequence of comma separated values. Let an



194 A. Sharma and S.K. Dash

application characteristic fi obtained from the ApkAnalyser detector be defined
by a random variable:

F =

{
1, if discovered by the detectors
0, otherwise

. (1)

Property detectors applied to the reverse engineered applications belong to
either of the following two categories:

– API call detectors: These are used to record API calls invoked by appli-
cations. Since API calls provide means to apps to interact with the device,
static inspection of API calls gives information about their runtime activi-
ties.

– Permission detectors: These are used to gather information about per-
missions requested in the manifest file of an application.

3.1 API Call Based Features

API calls basically refer to built-in code libraries. Our strategy is to reliably iden-
tify the major APIs that malwares invoke by statically analysing our samples.
We analyse a large number of malware samples and benign apps to identify a set
of API calls that describes the profile of malicious applications. We categorize
these APIs according to type of resources requested and their functionalities as
follows [8], [13]:

Android Framework Related APIs

– Broadcast Receiver: This class enables the application to respond to the
intents sent by other applications using sendBroadcast() method. The break-
down of APIs chosen from this class is shown in Table 1.

Table 1. Broadcast Receiver APIs and their utilities

API call Utility

AutoSmsReceiver Receives incoming messages automatically

BootReceiver Start up process that runs other processes at boot

PhoneCallReceiver Call back which fires off when phone changes state

abortBroadcast Abort the current broadcast

– PackageManager: This class has information about the packages that get
installed on the device. Malware apps call the getInstalledPackages() to scan
the system against a list of known anti-virus and take suitable actions (eg.
remain dormant, kill the anti-virus process etc.)

– Telephony/SmsManager and telephony/gsm/SmsManager: This
class manages all the SMS operations for sending data, text and PDU SMS
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messages. sendTextMessage() is used by malwares to send messages to pre-
mium rate numbers without user’s consent and thus incur financial losses.
getServiceCenterAddress() is used by malwares to obtain the address of SMS
service center that relayed the message.

– TelephonyManager: This class provides access to telephony services
present on the device. Malwares collect private data such as subscriber infor-
mation etc. and send it to remote servers to build user profile and track them.
The methods of this class which are frequently used by malware samples in
our data set are listed in Table 2.

Table 2. Telephony Manager APIs and their utilities

API call Utility

getCallState() returns call state

getDataActivity() returns a constant indicating the type of activity

getDeviceId() returns IMEI number

getLine1number() returns number string for line 1 e.g. MSISDN

getNetworkType() returns network type for current data connection

getSimOperator() returns MCC+MNC(mobile country code + mo-
bile network) code of the provider of the sim

getSimSerialNumber() returns serial number of sim card

getSimState() returns information about sim state

getSubscriberId() returns IMSI number of the device

DVM Related Resource APIs

– DexClassLoader: This class allows to load classes from external .jar and
.apk files containing classes .dex entry. loadClass() is a commonly invoked
API by malwares and is used to execute the code which is not installed as
part of the application.

System Resources API

– ConnectivityManager: This class gives information about the state of net-
work connectivity. It notifies the application about the change in network
state. The method used by malware samples often use getActiveNetwork-
Info(), which gives information about currently active default data network.

– WifiManager: This class is used to establish network connection and inter-
act with malicious remote servers. The method getConnectionInfo() is used
by malwares to get dynamic information about the Wi-Fi connection.

– SupplicantState: This class gives information about the current WPA (wi-
fi protected access) supplicant state. The API call invoked by malwares of
this call is getSupplicantState().
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3.2 Permissions Based Features

Permissions are declared by Android developer in AndroidManifest.xml file to
provide the application access to some protected APIs of Android. But some
applications request permissions that are not needed for their normal execution.
We identify a set of permissions that can be needed by malware applications
to steal private information and communicate to remote servers for charging
revenue from customers. The permissions along with their serviceabilities are
shown in Table 3 [13].

Table 3. Permissions and their services

Permission Functionality

ACCESS NETWORK STATE Allows to access information about networks

ACCESS WI-FI STATE Allows to access information about wi-fi networks

CALL PHONE Allows to call any number without going through
Dailer

CHANGE NETWORK STATE Allows to change network connectivity state

GET ACCOUNTS Allows access to the list of accounts in the account
service

INTERNET Allows to open network sockets

INSTALL PACKAGES Allows to install packages

READ CONTACTS To read user’s contacts data

READ LOGS Allows to read low-level system log files

READ PHONE STATE Allows read only access to phone state

READ SMS Allows to read SMS messages

RECEIVE BOOT COMPLETED Allows to receive signals after system finishes
booting

RESTART PACKAGES Deprecated in API level 8. This API is no longer
supported

RECEIVE SMS Record incoming SMS messages and perform pro-
cessing on them

SEND SMS To send SMS messages

4 Feature Selection

Feature selection is the process of removing as much irrelevant and redundant
information as possible. Presence of irrelevant information may lead to several
problems such as difficulty in learning phase, over-fitting of data, increased com-
plexity and runtime of classifier, effecting accuracy of model [11]. We used a Java
based suite of data mining algorithms named as WEKA [10] for implementing
correlation based feature selection technique.

4.1 Correlation Based Feature Selection (CFS)

CFS is basically a filter algorithm. The aim is to remove irrelevant features that
have low correlation with the class and also eliminate redundant features that



Mining API Calls and Permissions for Android Malware Detection 197

are highly correlated with one or more of the remaining features. CFS feature
subset evaluation function is given by Equation 2 [11] :

Fs =
nrcf√

n + n(n − 1)rff
(2)

where Fs is the heuristic “merit” of a feature subset S containing n features,
rcf is the mean feature-class correlation (f ∈ S ), and rff is the average feature-
feature inter-correlation. The numerator of Equation 2 shows how predictive of
the class a set of features are; the denominator shows how much redundancy is
there among the features [11].

The ranking of features obtained for our data set in decreasing order of sig-
nificance is listed in Table 4.

Table 4. Feature ranking using CFS method

Feature Ranking Feature Ranking

getSubscriberId 1 Access Wifi State 18

Read Phone State 2 Call Phone 19

Read SMS 3 Change Network State 20

getSimSerialNumber 4 getSupplicantState 21

Send SMS 5 getNetworkType 22

getInstalledPackages 6 BootReceiver 23

getServiceCenterAddress 7 Receive Boot Completed 24

getLine1Number 8 Internet 25

SendTextMsg 9 getSimOperator 26

Install Packages 10 getCallState 27

getDeviceId 11 Read Logs 28

PhoneCallReceiver 12 getConnectionInfo 29

get accounts 13 DexClassLoader 30

Restart Packages 14 Receive SMS 31

getDataActivity 15 AutoSmsReceiver 32

getActivityNetworkInfo 16 getSimState 33

Read Contacts 17 Access Network State 34

abortBroadcast 35

4.2 Information Gain Method

Information gain method measures the amount of information about class pre-
diction, if the only information available is the presence of a feature and the
corresponding class distribution. This method is also known as mutual infor-
mation method. Let D be the training set containing samples from two calsses
(malware and benign), then the entropy of D is defined as

H(D) = −
∑
i

(P (fi)log2P (fi)), (3)
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where pi is the probability that an arbitrary tuple in D belongs to class Ci. Sup-
pose the samples in D are partitioned into two classes based on some feature fi
(which can take only two possible values, i.e. 0 and 1, as explained in Section 3),
then the entropy of D given fi is as follows:

H(D|fi) = −
∑
v∈fi

P (v)
∑
i

P (fi|ci)log2P (fi|ci). (4)

The amount by which the entropy of D is reduced reflects the additional infor-
mation provided by fi about D and is called information gain, which is defined
as

Gain(D|fi) = H(D) − H(D|fi). (5)

The ranking of features based on decreasing order of information gain is shown
in Table 5.

Table 5. Feature ranking using Information Gain method

Feature Ranking Feature Ranking

getSubscriberId 1 getCallState 18

Read Phone State 2 Access Wifi State 19

Read SMS 3 Change Network State 20

getSimSerialNumber 4 getSimOperator 21

Send SMS 5 Receive Boot Completed 22

getLine1Number 6 Internet 23

SendTextMsg 7 getActivityNetworkInfo 24

getDeviceId 8 get accounts 25

getInstalledPackages 9 AutoSmsReceiver 26

Receive SMS 10 abortBroadcast 27

Call Phone 11 getSupplicantState 28

BootReceiver 12 Read Logs 29

Read Contacts 13 getNetworkType 30

Install Packages 14 getSimState 31

getServiceCenterAddress 15 Access Network State 32

PhoneCallReceiver 16 getDataActivity 33

Restart Packages 17 DexClassLoader 34

getConnectionInfo 35

5 Classification

In this section, we first describe the data set that we have used for experimen-
tation purpose followed by the classification models used and the evaluation
metrics.
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5.1 Data Set

For the purpose of feature mining and further evaluation of classification models
we collect a data set of total 1600 applications. The 1600 apk files includes 800
samples of Android malwares and 800 samples of benign Android applications
downloaded from official and third party Android markets. The malware samples
are obtained from The Android Malware Genome Project [14]. Our malware
samples have occurrences from the following 49 different families.

ADRD, AnserverBot, Asroot, BaseBridge, BeanBot, Bgserve,

CoinPirate, CruseWins, Dogwars, DroidCoupon, DroidDeluxe,

DroidDream, DroidDreamLight, DroidKungFu1, DroidKungFu2,

DroidKungFu3, DroidKungFu4, DroidKungFuSapp, DroidKungFuUpdate,

EndOfDay, FakeNetFlix, FakePlayer, GamblerSMS, Geinimi, GGTracker,

GingerMaster, GoldDream, Gone60, GPSMSSpy, HippoSMS, JiFake,

jSMSHider, KMin, LoveTrap, NickyBot, NickySpy, PjApps, Plankton,

RogueLemon, RogueSPPush, SMSReplicator, SndApps, Spitmo, Tapsnake,

WalkinWat, YZHC, zHash, Zitmo, Zsone.

5.2 Classification Models

We evaluate the feature ranking obtained during feature selection procedure
using different classification models. For this purpose, we use two classifiers:
Naive Bayesian and kNN. In our experiments, we use five fold stratified cross
validation. Thus, 1280 samples (640 each from benign and malware classes) are
used as the training set, while the remaining 320 samples (160 from each class)
for testing purpose in each fold.

5.3 Evaluation Metrics

There are several measures that have been proposed in the literature for evalu-
ating the accuracy of classifiers. The applicable measures utilized in our exper-
iments are discussed below. Let kben→ben be the number of benign applications
correctly classified as benign, kben→mal the number of misclassified benign ap-
plications, kmal→mal the number of malwares applications correctly classified as
malwares, kmal→ben the number of misclassified malicious applications. Accuracy
(Acc) and error rate (Err) are given by Equation 6 and Equation 7 respectively.

Acc =
kben→ben + kmal→mal

kben→ben + kmal→mal + kben→mal + kmal→ben
. (6)

Err =
kben→mal + kmal→ben

kben→ben + kmal→mal + kben→mal + kmal→ben
. (7)

We also define true positive rate (TPR), true negative rate (TNR), false positive
rate (FPR), false negative rate (FNR) and precision (p) as follows:

TPR =
kmal→mal

kmal→ben + kmal→mal
. (8)



200 A. Sharma and S.K. Dash

TNR =
kben→ben

kben→ben + kben→mal
. (9)

FPR =
kben→mal

kben→ben + kben→mal
. (10)

FNR =
kmal→ben

kmal→ben + kmal→mal
. (11)

p =
kmal→mal

kben→mal + kmal→mal
. (12)

6 Results and Discussion

In our experiments, we evaluated different feature sets obtained from ranking
generated by both the feature selection techniques with both the classifiers. The
purpose is to find minimal feature set that best describes the profile of malicious
applications.

Table 6, Fig. 1 and Fig. 2 show the results for Naive Bayesian classification
using five different feature sets containing 5, 10, 15, 20 and 25 features respec-
tively. In Column 1 of Table 6, 5f, 10f, 15f, 20f, 25f refer to the top 5, 10, 15,
20 and 25 ranked features respectively. From the results, we observe that the
TPR and FNR values for 5f, 10f, 15f, 20f and 25f sets are similar i.e 0.975 and
0.025 respectively. But the value of FPR for 10f set is relatively low than for
all other feature sets. FPR is not considered as critical as FNR since the latter
directly affects the malware that left undetected. On the other hand, a low value
of FPR means that less benign applications will need to be subjected to further
scrutiny; it then becomes more cost effective and less time consuming to do so.
The accuracy value is highest for 10f set.

Table 6. Experimental results from Naive Bayesian classification model for different
feature sets using CFS method

ERR(%) ACC(%) TNR FPR TPR FNR PREC AUC

5f 6.5 93.4 0.894 0.106 0.975 0.025 0.902 0.979

10f 5.9 94.0 0.906 0.094 0.975 0.025 0.912 0.985

15f 6.5 93.4 0.894 0.106 0.975 0.025 0.902 0.985

20f 8.1 91.8 0.862 0.138 0.975 0.025 0.876 0.984

25f 9.6 90.3 0.831 0.169 0.975 0.025 0.852 0.983

35f 8.7 91.25 0.825 0.175 1.00 0.00 0.851 0.985

This approach shows the capability of detecting unknown malwares as both
the training and testing sets have malware samples from various different mal-
ware families, as described in Section 5.1. Table 6 also includes precision (PREC)
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Fig. 1. Accuracy of Naive Bayesian
classifier for different number of features

Fig. 2. TPR of Naive Bayesian Classifier
for different number of features

and area under the curve (AUC) measures for each of the feature sets. Preci-
sion shows the precision of the model in terms of suspicious samples and AUC
represents the total area under the Receiver Operation Characteristic (ROC)
curve, which is a plot between TPR and FPR for every possible detection cut-
off. An AUC of 1 implies perfect classification. So, if the value of AUC is closer
to 1 that indicates better classifier predictive power. Also, the error parameter
(ERR) shows a subsequent decrease while moving from 25f to 10f. For 10f set,
the value of ERR is minimum. We observe that results for 10f feature set are
better than all other feature sets.

Table 7 shows the results for Naive Bayesian classification using five different
feature sets retrieved using information gain method of feature selection. We
observe that the values of TPR and FNR remains same for 5, 10, 15 and 20
feature sets i.e. 0.975 and 0.025 respectively. From Fig. 2, we see that the value
of TPR for 25 feature is 1 and also FNR is 0 which means all the malwares present
in the data set are detected using this feature set. The values for accuracy for 5f
and 10f are highest. Both 5f and 10f sets have same values for all the evaluation
metrics but 10f set has higher AUC area than 5f set.

Table 7. Experimental results from Naive Bayesian classification model for different
feature sets using Information Gain method

ERR(%) ACC(%) TNR FPR TPR FNR PREC AUC

5f 6.5 93.4 0.894 0.106 0.975 0.025 0.902 0.979

10f 6.5 93.4 0.894 0.106 0.975 0.025 0.902 0.985

15f 8.4 91.5 0.856 0.144 0.975 0.025 0.975 0.978

20f 9.3 90.6 0.838 0.162 0.975 0.025 0.857 0.984

25f 8.7 91.2 0.825 0.175 1.00 0.00 0.851 0.984

35f 8.7 91.2 0.825 0.175 1.00 0.00 0.851 0.985

Thus, we deduce from the results that 25f feature set gives the highest TPR
but slightly less accuracy than 10f set. So it can be chosen when the undetected
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malware can lead to serious problems. But in situations requiring cost effective
and less time consuming detection methods, we choose 10f feature set (which
has high accuracy of 93.4%).

For kNN classifier, we test the data set for different k values and observe that
k=1 gives better results in comparison to other k values.

Table 8 shows the results of using kNN classifier for calculating evaluation
metrics using five different feature sets. From Fig. 3 and Fig. 4 we observe that,
the TPR value shows improvement while increasing the feature set from 5f to
20f but decreases for 25f set, while the TNR value do not show much variation.
Also accuracy improves with increasing feature set until we reach 20f set but,
remains unchanged for 25f set. As 20f set has better TPR as well as TNR and
high AUC value, it is chosen as better performing feature set.

Table 8. Experimental results from kNN classification model for different feature sets
using CFS method

ERR(%) ACC(%) TNR FPR TPR FNR PREC AUC

5f 10.8 89.1 0.929 0.071 0.854 0.146 0.923 0.952

10f 6.2 93.8 0.960 0.040 0.915 0.085 0.958 0.966

15f 5.5 94.5 0.955 0.045 0.934 0.066 0.954 0.973

20f 4.8 95.2 0.940 0.060 0.962 0.038 0.941 0.977

25f 4.6 95.4 0.951 0.049 0.956 0.044 0.951 0.980

35f 4.4 95.6 0.952 0.048 0.960 0.040 0.953 0.981

Fig. 3. Accuracy of kNN classifier for
different number of features

Fig. 4. TPR of kNN classifier for different
number of features

Table 9 shows the results for evaluation metrics using five different feature
sets. A high TPR depicts greater malware detection rate, so feature set with
high TPR is considered as a better feature set to profile a class. It can be
observed from the results that the AUC value for 35f set is closest to 1 among
all other values. From this, it can also be inferred that the performance of 35f
is better than the other feature set when considered in relation to accuracy and
TPR.
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Table 9. Experimental results from kNN classification model for different feature sets
using Information Gain method

ERR(%) ACC(%) TNR FPR TPR FNR PREC AUC

5f 10.8 89.1 0.929 0.071 0.854 0.146 0.923 0.952

10f 7.8 92.2 0.954 0.046 0.890 0.110 0.951 0.961

15f 5.9 94.0 0.956 0.044 0.925 0.075 0.955 0.966

20f 5.6 94.3 0.950 0.050 0.936 0.064 0.949 0.968

25f 4.8 95.1 0.942 0.058 0.960 0.040 0.943 0.977

35f 4.4 95.6 0.952 0.048 0.960 0.040 0.953 0.981

6.1 Comparative Analysis between Naive Bayesian and kNN
Classifiers

Table 10 shows the performance metrics of both Naive Bayesian and kNN clas-
sifiers for feature sets selected using CFS method. As we can see that we get
better accuracy with kNN classifier but it utilizes feature set of Top 20 features
and has relatively low TPR. In case of Naive Bayesian classifier, the accuracy is
marginally low (1.1%), but it achieves higher TPR with a feature set of top 10
features. So, Naive Bayesian classifier achieves high TPR and comparable accu-
racy with a feature set of 10 features which is just half the feature set deployed
for kNN. So we conclude that Naive Bayesian classifier performs better with
CFS method.

Table 10. Comparative analysis between Naive Bayesian and kNN classifiers using
CFS method

Feature Set Classifier TPR Accuracy(%)

10f Naive Bayesian 0.975 94.0

20f K-Nearest Neighbour 0.963 95.1

Table 11. Comparative analysis between Naive Bayesian and kNN classifiers using
Information Gain method

Feature Set Classifier TPR Accuracy(%)

25f Naive Bayesian 1.00 91.2

35f K-Nearest Neighbour 0.960 95.1

Similarly, Table 11 shows the evaluation metrics for both Naive Bayesian
and kNN classifiers using Information Gain feature selection method. We can
clearly see that TPR value for Naive Bayes classifier is much better than that
for kNN classifier but accuracy improves for kNN in comparison to Naive Bayes
classification. As TPR has more significance in comparison to accuracy, and
considering the number of features, we conclude that Naive Bayesian classifier
performs better with Information Gain method.
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7 Conclusions and Future Work

In this paper, we have proposed an effective approach of detecting malwares
using static code analysis. It takes into account various features based on API
calls and permissions declared in AndroidManifest.xml file. We have extracted
35 features for all 1600 samples in the data set and implemented two feature
selection methods, namely CFS and Information Gain. It is observed that a sub-
set of 10 features gives better performance metrics than the whole feature set.
Small feature set will help in reducing computational overheads that is beneficial
in mobile devices having resource constraints regarding memory and power con-
sumption. Information Gain feature selection when applied to features yields a
TPR of value 1 indicating the superior detection power of proposed approach in
comparison to existing approaches of Android malware detection. CFS is more
effective approach towards feature selection to remove irrelevant and redundant
features as it attains higher evaluation metrics with smaller feature set than
Information Gain using naive Bayesian classifier. kNN classifier achieved high
accuracy (95%) than Naive Bayesian but TPR is elevated with Naive Bayesian
classifier in comparison to kNN classification. For future work classification mod-
els can be tested with larger number of malwares as more malwares are discovered
in the wild. Ensemble of classifiers can be used to improve the performance of
build models.
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Abstract. We introduce a new privacy-friendly cryptographic primi-
tive we call Direct Anonymous Attestations with Dependent Basename
Opening (DAA-DBO). Such a primitive is a Direct Anonymous Attesta-
tion in which the anonymity can be revoked only if a specific authority,
called the admitter, allowed to revoke the DAA signatures that include a
specific basename. We also present an efficient scheme that achieves this
functionality, secure in the random oracle model. Furthermore, we pro-
vide a prototype implementation of an anonymous transit pass system,
based on this new primitive. Compared to previous privacy-friendly cryp-
tographic primitives with partial linkability, we provide a way to share
the power to open signatures between two entities which is more practical
than the use of conventional techniques from threshold cryptography.

Keywords. Privacy-enhancing cryptography, Direct anonymous attes-
tations, Dependent anonymity revocation.

1 Introduction

Preserving privacy of users even during access control to services is a major
concern. As an evidence, the German BSI agency has recently introduced a
mechanism allowing owners of ID documents to authenticate to different service
providers while being unlinkable across these services (a property called, cross-
domain anonymity) [1]. Another example is the Big Brother award received
in 2012 by the Belgium transport operator STIB for its contactless transport
card. Ensuring both authentication and anonymity is necessary to reconcile the
users’ and the service providers’ interests. One solution could be the use of
a group signature, a primitive introduced by Chaum and Van Heyst [14] in
1991. Indeed, it enables members of a group to anonymously sign on behalf of
the group. To prevent abuse, a specific entity has the ability to open (i.e. to
identify the issuer of) any signature. However the strong anonymity provided
by this primitive may also be a drawback for some applications such as public
transports or authentication of ID documents. Regarding the former, the use
of group signatures makes clone detection impossible since signatures produced
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with the same key are unlinkable. Regarding the latter, the recommendations
of the BSI specifies that the service provider should be able to link users inside
its service which is not possible using group signatures. There is thus a need for
controlled-anonymity as in Direct Anonymous Attestation (DAA) [10,6]. This
primitive, close to group signatures, adds an element, called the basename, which
enables anyone to link signatures produced by the same user with the same
basename. Therefore, if each service provider uses a specific basename for its
domain it will be able to link users in its service but not across them, achieving
then the cross-domain anonymity property. For public transports, if a user in
some time slot uses the same basename, clones could be detected. Of course,
this slot has to be long enough to catch clones but not too much to avoid the
traceability of the user. Since corrupting the transport card in which the keys
are embedded requires a large amount of resource we may assume that the
adversary will have to produce many clones to be profitable which ensures a
significant probability of detection even within a short time slot.

Revocation in DAA. However DAA schemes do not consider an opening au-
thority but only a RogueList constructed using the secret keys we want to revoke.
This means, in some sense, that a user is the only person able to revoke his keys.
Most of the time however, the revocation will be performed without the help of
the user. The authors of [5,12,11] use Domain-Specific Pseudonym Signatures
(DSPS) for authentication of ID documents. This primitive can be seen as a
kind of DAA extended to allow the issuer to revoke users. As noticed in [9],
revocation offers a way to open signatures. The issuer in the DSPS is then also
the opener. To the contrary, we would like here to split the managing abilities
into different entities. One way to achieve this could be to share the opening
information among several entities in such a way that none of them can open
signatures alone. Unfortunately, running such a distributed protocol may be a
practical concern, especially if there are many signatures to open. This can be
the case, for example, if we want to find witnesses of a crime in transport system
because every signatures issued during a specific time slot (and so with the same
basename) will have to be opened.

Dependent Basename Opening. This problem has already been considered
for group signatures, leading the authors of [22] to propose a new primitive
called group signature with dependent message opening (GS-DMO). In a GS-
DMO scheme, the power of the opener is divided between an entity, called the
admitter, which issues a token τm corresponding to a message m, and another
one, called the opener, which can open any signature on m using τm. Their
security model ensures that the admitter is unable to open a signature without
the help of the opener and that the opener is unable to open a signature on
a message m without the corresponding token. Unfortunately, identity-based
encryption was proved necessary to build such schemes, leading to signatures
with significant sizes [22,19].

In this paper, we provide a similar extension of DAA, that we call DAA with
Dependent Basename Opening (DAA-DBO), where tokens issued by the admit-
ter now correspond to basenames. We substitute the message by the basename
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because in our use cases the latter has a specific meaning (the time slot for public
transport or the domain name for authentication of ID documents). Unlike GS-
DMO, we do not need identity based encryption for our primitive which permits
more efficient constructions. The reason is that signatures issued by the same
user with the same basename must be linkable whereas we want the opposite for
signatures on the same message in a GS-DMO scheme. A benefit of splitting the
opening power in such a way is that we can now consider authorities of different
computational power. Indeed, the complexity for the admitter does not depend
on the number of signatures to open, which implies that this role can be played
by an entity with a low computing power.

Our contribution. In this work, we introduce a new cryptographic primitive,
a variant of Direct Anonymous Attestation, that we call DAA with Dependent
Basename Opening tailored to the context of access control such as transit pass
systems or authentication of ID documents. We provide a formal security model
for this primitive along with an instantiation that we prove secure, under con-
ventional assumptions, in the random oracle model. Furthermore, we provide a
prototype implementation of an anonymous transit pass system, based on this
primitive, which complies with the functional requirements [2] of existing stan-
dards.

2 A Security Model for DAA-DBO Schemes

Definition. A DAA scheme with dependent-basename opening is defined by the
following algorithms:

Setup(λ): This probabilistic algorithm outputs param, a description of the
system parameters, such as the underlying groups.

Keygen(param): This probabilistic algorithm outputs the description of two
registers, Reg and Sreg, and the two following public/secret key pairs:
(tsk, tpk) for the admitter and (isk, ipk) for the group manager. The group
public key gpk is eventually set as (param,Reg, ipk, tpk).

UKeygen(gpk): This probabilistic algorithm outputs a key pair (ski, pki) for a
digital signature scheme. The value pki is public, and we assume that anyone
can get an authentic copy of it for any user.

(Join, Issue): This is an interactive protocol between a new group user i, whose
inputs are (ski, gpk), the group manager, whose inputs are (isk, gpk, Reg)
and the opening authority, whose input is Sreg. As a result of this protocol
the user obtains his group signing key gski and some data that are stored in
Reg (the public part) and Sreg (the secret part).

Sign(gpk, gski, m, bsn): This probabilistic algorithm takes as input the user’s
signing key, a message m and a basename bsn and outputs a signature σ.

Verify(gpk, σ, m, bsn): This deterministic algorithm outputs 1 if σ is a valid
signature on m with basename bsn and 0 otherwise.

Link(gpk, σ, m, σ′, m′, bsn): This deterministic algorithm outputs 1 if σ and σ′

are two valid signatures with the same basename bsn and were issued by the
same user.
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Token(gpk, tsk, bsn): This deterministic algorithm outputs a token τ enabling
the opening authority to open any signature with basename bsn.

Open(gpk, σ, m, bsn, τ,Reg,Sreg): This algorithm first checks that σ is a valid
signature on m with basename bsn and then outputs an index i and a proof
π that user i produced the signature σ or ⊥ if it did not succeed.

Judge(gpk, i, σ, m, bsn,Reg, π): This deterministic algorithm outputs 1 if π is
a valid proof that user i issued σ and 0 otherwise.

Security properties. The sets of honest and dishonest users will be denoted
HU and DU . Note that the adversaries of anonymity experiments have to select
targeted users from HU . This restriction, called selfless anonymity for group
signatures [9], is unavoidable for DAA schemes. Indeed, anyone knowing the
secret keys will be able to open the challenge signature by computing a new
signature with the same basename and running the Link algorithm. The security
notions make use of the following oracles (OAlg¬(x) means that an oracle query
on x is not allowed).

OJoinUD(gpk, isk) is an oracle that executes the user’s side of the join protocol
for the input user i ∈ HU . This oracle will be used by an adversary playing
the role of the corrupted group manager.

OJoinDM (gpk) is an oracle that executes the join protocol with the honest
group manager. This oracle will be used by an adversary to register a cor-
rupted user.

OSign(gpk, i, m, bsn) is an oracle that takes as input an identity i, a message
m and a basename bsn and returns a signature σ if the user i is honest and
registered.

OToken(gpk, bsn) is an oracle that takes as input a basename bsn and outputs
a token τ .

OOpen(gpk, σ, m, bsn, τ) inputs a signature σ on m with basename bsn and a
token τ and returns the result of a call to Open(gpk, σ, m, bsn, τ,Reg,Sreg).

OReadSreg(i) inputs an identity i and outputs the content of the secret regis-
tration table Sreg[i].

Correctness. Defining correctness is not a matter of concern. Due to space
limitations, a formal definition is given in Appendix A.1. Informally, a DAA-
DBO scheme is correct if (i) honestly computed signatures are accepted, (ii) valid
signatures that share the same basename are linkable, (iii) honestly computed
tokens enable to open signature and, (iv) valid opening proofs are accepted by
the judge.

Admitter Anonymity. Informally, admitter anonymity requires that signa-
tures do not reveal the signer’s identity even if the admitter is dishonest. The
adversary cannot obviously request a signature from users selected in the chal-
lenge phase with the challenge basename since the adversary could use the Link

algorithm to retrieve the identity. We define the admitter-anonymity experiment
Expad-anon-b

A (λ) as follows:
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1. DU ← A(1λ).
2. HU ← {1..n} \ DU .
3. (gpk, isk, tsk) ← Keygen(1λ).
4. For i ∈ HU :

(a) (uski, upki) ← UKeygen(gpk)
(b) (gski,Reg[i],SReg[i]) ← 〈Join(gpk, uski), Issue(gpk, isk)〉

5. (i0, i1,m, bsn) ← AOSign,OOpen,OJoinUD (gpk, isk, tsk) with (i0, i1 ∈ HU).
6. If OSign(gpk, ib, ·, bsn) was requested for b ∈ {0, 1} then abort.

7. Else σ ← Sign(gpk, gskib′ ,m, bsn) for b′ $← {0, 1}.
8. b∗ ← AOSign¬(gpk,ib,·,bsn),OOpen¬(gpk,σ,m,bsn,·),OJoinDM (gpk, isk, tsk).
9. Return b∗.

We define Advad-anon-b
A (λ) = |Pr[b′ = b∗] − 1

2 |. The scheme is admitter-anony-
mous if for any probabilistic polynomial time A, this advantage is negligible.

Opener Anonymity. Informally, opener-anonymity requires that the open-
ing authority is unable to identify the issuers of signatures with basename bsn
without the help of the admitter. We define the opener-anonymity experiment

Expop-anon-b
A (λ) as follows:

1. DU ← A(1λ).
2. HU ← {1..n} \ DU .
3. (gpk, isk, tsk) ← Keygen(1λ).
4. For i ∈ HU :

(a) (uski, upki) ← UKeygen(gpk)
(b) (gski,Reg[i],SReg[i]) ← 〈Join(gpk, uski), Issue(gpk, isk)〉

5. (i0, i1,m, bsn) ← AOSign,OToken,OJoinUD (gpk, isk,SReg) with (i0, i1 ∈ HU).
6. If OSign(gpk, ib, ·, bsn) or OToken(gpk, bsn) was requested for b ∈ {0, 1} then

abort.
7. Else σ ← Sign(gpk, gskib′ ,m, bsn) for b′ $← {0, 1}.
8. b∗ ← AOSign¬(gpk,ib,·,bsn),OToken¬(gpk,bsn),OJoinDM (gpk, isk,SReg).
9. Return b∗.

We define Advop-anon-b
A (λ) = |Pr[b′ = b∗]− 1

2 |. The scheme is opener-anonymous
if for any probabilistic polynomial time A, this advantage is negligible.

Traceability. Traceability requires that no adversary is able to create a valid
signature that cannot be traced to some user already registered. We define the
traceability experiment as follows:

1. DU ← {1..n}.
2. (gpk, isk, tsk) ← Keygen(1λ).
3. (σ,m, bsn) ← AOReadSreg,OJoinDM (gpk, tsk).
4. τ ← Token(gpk, tsk, bsn)
5. If Verify(gpk, σ,m, bsn) = 1 and Open(gpk, σ,m, bsn, τ,Reg,Sreg) =⊥

then return 1.
6. Return 0.

We define Advtrace
A (λ) = Pr[Exptrace

A (λ) = 1]. The scheme is traceable if for
any probabilistic polynomial time adversary, this advantage is negligible.

Non-frameability. Informally, non-frameability requires that no one can falsely
accuse an honest user of having signed a given message m with basename bsn.
We define the non-frameability experiment as follows:
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1. DU ← A(1λ).
2. HU ← {1..n} \ DU .
3. (gpk, isk, tsk) ← Keygen(1λ).
4. For i ∈ HU :

(a) (uski, upki) ← UKeygen(gpk)
5. (i, σ,m, bsn, τ, π) ← AOSign,OJoinUD (gpk, isk, tsk,Sreg).
6. If i /∈ HU or Verify(gpk, σ,m, bsn) = 0 then return 0.
7. If σ was returned by OSign(gpk, i,m, bsn) then return 0.
8. If Judge(gpk, i, σ,m, bsn, τ,Reg, π) = 0 then return 0.
9. Return 1.

We define Advnf
A (λ) = Pr[Expnf

A (λ) = 1]. The scheme is non-frameable if for
any probabilistic polynomial time adversary, this advantage is negligible.

3 Our DAA-DBO Scheme

We now introduce our DDA-DBO scheme, fulfilling the requirements of Section 2.

Bilinear groups. A bilinear environment is given by a set of three groups
G1,G2,GT of prime order p along with a bilinear map e : G1 × G2 → GT with
the following properties:

1. For all X1 ∈ G1, X2 ∈ G2 and a, b ∈ Zp, e([a]X1, [b]X2) = e(X1, X2)
ab.

2. For X1 �= 1G1 and X2 �= 1G2 , e(X1, X2) �= 1GT .
3. e is efficiently computable.

In the following, we will write G1 and G2 additively and GT multiplicatively.

Algorithms and protocols of our DAA-DBO scheme. Given bilinear
environments, our scheme is described as follows.

Setup(1λ): outputs param ← (p,G1,G2,GT , e, H, H1, G1, H, G2) where G1,G2

and GT are groups of prime order p, H : {0, 1}∗ → Zp and H1 : {0, 1}∗ →
G1 are hash functions (modelled as random oracles in the proofs of security),

and G1, H
$← G1 and G2

$← G2 are random generators. Finally, this algorithm
outputs the description of a digital signature scheme S whose message space is
M and of a hash function H0 : G1 → M.

Keygen(param): The group manager picks γ
$← Zp and sets (skM , pkM ) ←

(γ, W ) where W ← [γ]G2. The admitter picks δ
$← Zp and sets (skT , pkT )

← (δ, T ) where T ← [δ]G2. The group public key gpk is (param, W, T ).

UKeygen(gpk): Each user i generates a key pair (ski, pki) for the scheme S.

(Join, Issue): The user first chooses y′ ∈ Zp and computes (C′
1, C

′
2) ← ([y′]H ,

[y′]G2). Then, he sends (C′
1, C

′
2) to the opening authority who tests whether

e(C′
1, G2) = e(H, C′

2). If the equality holds, this last entity stores (C′
1, C

′
2) in

his secret register Sreg. To register with the group manager, the user begins
the Join protocol given Figure 11. At the end of the interaction, the user sets

1 The first moves are a proof of knowledge of a discrete logarithm. To prove full
traceability, we must add an extractable commitment of y′ together with a proof of
equality with the discrete logarithm of C′

1 (see [15], Section 4.1.)
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User(y′, ski, gpk) GM(γ, gpk)

r
$← Zp; R ← [r]H

i,C′
1, R−−−−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−−−− c

$← Zp

z ← r + y′ · c z−−−−−−−−−−−−−−−−→ If [s]H = R+ [c]C′
1then y′′, x $← Zp

C1 ← C′
1 + [y′′]H

y′′
←−−−−−−−−−−−−−−−− A ← [ 1

γ+x
](G1 + C′

1 + [y′′]H)

υ ← S .Sign(ski,H0(C1))
υ−−−−−−−−−−−−−−−−→ If S .Verify(pki, υ,H0(C1)) = 1

y ← y′ + y′′ A, x←−−−−−−−−−−−−−−−− then send A,x

Fig. 1. The DAA-DBO (Join, Issue) protocol

gski ← (A, x, y) while the group manager stores (i, C1, υ) in Reg. We assume
that the group manager ensured that the interaction between the user and the
opening authority was complete before issuing the user’s certificate. Users can,
for example, receive a signature from the opening authority whose validity will
be checked by the group manager at the beginning of the interaction. After the
interaction, the later sends ([y′′]H, [y′′]G2) to the opener, who updates Sreg by
recording (C′

1 + [y′′]H, C′
2 + [y′′]G2) instead of (C′

1, C
′
2).

Sign: The protocol to sign a message m with basename bsn is described in Figure
2. As in DAA schemes, the signer is divided into two entities, the TPM and the
Host.

Verify(gpk, σ, m, bsn): To check the validity of the signature σ, the verifier
parses σ as (C, K, c, sx, sy, sd, sz), computes R1 ← e([sx]C − [sz]H − [sd]G1, G2) ·
e(C, W )c, R2 ← e([sy]H1(bsn), T ) · K−c, R3 ← e([sz]H1(bsn), T ) · K−sd , and
checks whether c = H(m, bsn, C, K, R1, R2, R3). If the equality holds then the
signature is valid.

Link(gpk, σ, m, σ′, m′, bsn): To test if σ and σ′ were produced by the same user,
the algorithm first checks that σ is a valid signature on m with basename bsn
and that σ′ is a valid signature on m′ with the same basename. If this is true
then it parses σ as (C, K, c, sx, sy, sd, sz) and σ′ as (C′, K ′, c′, s′x, s′y, s

′
d, s

′
z). If

K = K ′ then it returns true, else it returns false.

Token(gpk, tsk, bsn): To issue a token τ on a basename bsn the admitter outputs
τ ← [δ]H1(bsn).

Open(gpk, σ, m, bsn, τ,Reg,Sreg): If τ is a valid token on the basename bsn
(i.e. if e(τ, G2) = e(H1(bsn), T )) and σ is a valid signature on m and bsn then
the opening authority will parse σ as (C, K, c, sx, sy, sd, sz) and test, for each
(i, [yi]G2) in Sreg, if K = e(τ, [yi]G2) until he gets a match. Then, he outputs i
and π, a non-interactive zero-knowledge proof of knowledge (using, for example,
the proof systems of [17]) of τ and C2 such that K = e(τ, C2), e(C1, G2) =
e(H, C2) and 1 ← S.Verify(pki, υ, H0(C1)) (C1, υ and i are stored in a public
register Reg).
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TPM(gpk, x, y, bsn,m) Host(gpk,A, x)

ky, kz
$← Zp kx, kd, d

$← Zp

J ← H1(bsn) kx, kd, d, C←−−−−−−−−−−−−−− C ← [d]A

(T1, T2) ← ([kz]H, [kz]J)
(T3, T4) ← ([y]J, [ky]H) T1, T2, T3, T4−−−−−−−−−−−−−−→

(K,R2) ← (e(T3, T ), e(T4, T ))
R1 ← e([kx]C − T1 − [kd]G1, G2)

K,R1, R2, R3←−−−−−−−−−−−−−− R3 ← e(T2, T ) ·K−kd

c ← H(m, bsn,C,K,R1, R2, R3)
sx ← kx + c · x [p]; sy ← ky + c · y [p]
sd ← kd + c · d [p]; sz ← kz + c · d · y [p]

σ = (C,K, c, sx, sy, sd, sz)−−−−−−−−−−−−−−→

Fig. 2. The DAA-DBO Sign protocol

Judge(gpk, i, σ, m, bsn,Reg, π): To check the validity of the opening, the algo-
rithm first recovers the data (i, C1, υ) in Reg. If π is a valid proof of knowledge
of two elements τ and C2 such that K = e(τ, C2), e(C1, G2) = e(H, C2) and
1 ← S.Verify(pki, υ, H0(C1)) then it outputs 1. Else, it returns 0.

4 Security Analysis of Our Scheme

We now present our results concerning the security of our scheme. Verifying its
correctness is not hard from its description. The security of our protocols rely
on the difficulty of the following problems.

Symmetric Discrete Logarithm (SDLP). This assumption, formalized in [7], un-
derlies many asymmetric pairing protocols or assumptions.
Given a tuple (G1, [x]G1, G2, [x]G2) ∈ G2

1 × G2
2 computing x is a hard problem.

Strong Diffie-Hellman (SDH). This well-know assumption [8] enables to compute
short signatures in bilinear environments.
Given (G1, [θ]G1, [θ

2]G1, . . . , [θ
q]G1, G2, [θ]G2) ∈ Gq+1

1 × G2
2, computing a pair

(c, [ 1
θ+c ]G1), for some c ∈ Zp \ {−θ}, is a hard problem.

External Diffie-Hellman (XDH). This assumption, formalized in the full version of
[13] is the Decisional Diffie-Hellman one extended to the bilinear setting.
Given (G1, [a]G1, [b]G1, [z]G1) ∈ G4

1, deciding whether z = a·b is a hard problem.

Decisional Bilinear Diffie-Hellman (DBDH). This assumption is the asymmetric
version of the one originally stated in [18] for symmetric pairings.
Given (G1, [a]G1, [b]G1, [c]G1, G2, [a]G2, [c]G2, e(G1, G2)

z) ∈ G4
1 × G3

2 × GT , de-
ciding whether z = a · b · c is a hard problem.

Given these assumptions, our security result is stated by the following theorem.
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Theorem 1. In the random oracle model, the DAA-DBO scheme is admitter
anonymous under the XDH assumption in G1, opener anonymous under the
DBDH assumption, traceable under the SDH assumption and non-frameable un-
der the SDLP assumption and the EUF-CMA security of S.

Due to space limitations, here we only provide the proofs of admitter and opener
anonymities. The other proofs, including the proof that the Sign algorithm is
a zero-knowledge proof of knowledge of a valid certificate on x and y such that
K = e(H1(bsn), T )y, are more classical and are given in Appendix A.2.

Proof of Admitter Anonymity. Let A be an ε-adversary against the admitter
anonymity, we construct a reduction R using A against XDH challenges in G1.
Let (H, [a]H, [b]H, [z]H) be such a challenge, R has to decide whether z = a · b.
After the adversary has chosen the set DU , R randomly selects i∗ from HU and
j∗ in [1; qH ], where qH is the number of hash queries.

[Keygen] R proceeds as usual and sends δ and γ to A.
[Join queries] R proceeds as usual for dishonest users. For honest users, R will

act as follows: (i) If i �= i∗, then it selects yi
$← Zp and gets a certificate on

xi and yi for a random xi. (ii) If i = i∗, then it acts as if yi = a and uses
[a]H to get a valid certificate A∗ on a and some random xi.

[Hash queries] Upon receiving the jth hash request on bsn, R proceeds as follows:
(i) If no previous request was made on bsn then we distinguish two cases. If

j �= j∗, then R selects uj
$← Zp, stores (j, bsn, uj , [uj]H) and outputs [uj ]H .

Else, it selects v
$← Zp, stores (j∗, bsn, −, [b · v]H) and returns [b · v]H . (ii) If

bsn has already been queried, then R returns the output of the first time.
[Sign queries] Upon receiving a signature query on m, with basename bsn, for

i ∈ HU , R proceeds as usual if i �= i∗, else, we distinguish the two following
cases. If bsn was the one requested in the j∗th hash request, then R aborts.

Else, it selects d
$← Zp, computes C ← [d]A, K ← ([a]H, T )uj , simulates the

proof of knowledge, stores the resulting signature (σ, m, bsn) in SignReg
and outputs σ.

[Open queries] Upon receiving an opening query on (σ, m, bsn), R checks if
(σ, m, bsn) ∈ SignReg. If so, then it returns i∗, else it proceeds as usual.

Challenge phase. A outputs two honest identities i0 and i1, a message m and a
basename bsn. If a hash request on this basename was already submitted during
the jth query then R aborts if j �= j∗. Now, R randomly selects a bit b and
aborts if ib �= i∗. Else, it has to issue a valid signature on m and bsn on behalf
of i∗. It proceeds as follows: (i) If no hash request was submitted on bsn, then
R programs the random oracle to return [b]H . (ii) It randomly selects d ∈ Zp,
computes C ← [d]H and K ← e([z]H, T )v (with v = 1 if no hash request on
bsn was made before the challenge phase), simulates the proof of knowledge and
outputs the resulting signature.

After the Challenge phase, R proceeds as in the first phase. The probability
that R aborts is then smaller than (1 − 1

qH ·|HU| ). If it did not aborted, its
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behaviour is the same as the challenger in the original anonymity experiment.
So if c = a·b, the signature issued by R in the challenge phase is indistinguishable
from an original one, else it is a random element from the signature space. Then,
the probability of success of R in breaking the XDH problem in G1 is greater
than 1

qH ·|HU| · ε
2 . ��

Proof of Opener Anonymity. Let A be an ε-adversary against the opener
anonymity, we construct a reduction R using A against DBDH challenges. Let
(H, [a]H , [b]H, [c]H, G2, [a]G2, [c]G2, e(G1, G2)

z) be such a challenge, R has to
decide whether z = a · b · c. After A chose the set DU , R randomly selects i∗

from HU and j∗ in [1; qH ], where qH is the number of hash queries.

[Keygen] R proceeds as usual except that it sets T ← [a]G2.
[Join queries] R proceeds as usual for dishonest users. For honest users, R will

act as follows. (i) If i �= i∗, then it selects yi
$← Zp and gets a certificate on

xi and yi for a random xi. (ii) If i = i∗, then it acts as if yi = c and uses
[c]H to get a valid certificate A∗ on c and some random xi and sends [c]G2

to A.
[Hash queries] Upon receiving the jth hash request on bsn, R proceeds as follows:

(i) If no previous request was made on bsn then we distinguish two cases. If

j �= j∗, then R selects uj
$← Zp, stores (j, bsn, uj , [uj]H) and outputs [uj ]H .

Else, it selects v
$← Zp, stores (j∗, bsn, −, [b · v]H) and returns [b · v]H . (ii) If

bsn has already been queried, then R returns the output of the first time.
[Sign queries] Upon receiving a signature query on m, with basename bsn, for

i ∈ HU , R proceeds as usual if i �= i∗, else, we distinguish the two following
cases. If bsn was the one requested in the j∗th hash request, then R aborts.

Else, it selects d
$← Zp, computes C ← [d]A, K ← ([c]H, T )uj , simulates the

proof of knowledge and outputs σ.
[Token queries] Upon receiving a token query on bsn, R aborts if bsn was the

basename used in the j∗th hash request and returns [uj · a]H otherwise.

Challenge phase. A outputs two honest identities i0 and i1, a message m and a
basename bsn. If a hash request on this basename was already submitted during
the jth query then R aborts if j �= j∗. Now, R randomly selects a bit b and
aborts if ib �= i∗. Else, it has to issue a valid signature on m and bsn on behalf
of i∗. It proceeds as follows: (i) If no hash request was submitted on bsn, then
R programs the random oracle to return [b]H . (ii) It randomly selects d ∈ Zp,
computes C ← [d]H and K ← [e(H, G2)

z]v (with v = 1 if no hash request on
bsn was made before the challenge phase), simulates the proof of knowledge and
outputs the resulting signature. After the Challenge phase, R proceeds as in the
first phase. The probability that R aborts is then smaller than (1 − 1

qH ·|HU|).
If it did not aborted, its behaviour is the same as the challenger in the original
anonymity experiment. So if z = a·b·c, the signature issued by R in the challenge
phase is indistinguishable from an original one, else it is a random element from
the signature space. Then, the probability of success of R in breaking the DBDH
problem is 1

qH ·|HU| · ε
2 . ��
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5 Implementation

Untraceable transit passes on NFC-enabled mobile phone. We de-
signed and implemented an anonymous public transit pass system based on our
new primitive. A transit pass refers to a transport subscription card that allows
a passenger of the transport service to take unlimited trips within a fixed period
of time (a week or a month). Our DAA-DBO scheme enables strong authentica-
tion and anonymity properties for the mobile phone, while being very effective.
To enter the public transport system the users will sign a random message m
received from the turnstile with the basename corresponding to the current time
slot. The architecture is that of a secure element embedded in the phone. This
fits DAA schemes were the signer is divided into the TPM, a low-power but
trusted entity, here the SIM card, and the host, a powerful but untrusted entity,
here the mobile phone.

Curve and pairing parameters. We use a 256 bits Barreto-Naehrig curve
[4] over Fq since this family of curves provides an optimal size for G1 and G2

while preventing the MOV attack [20] due to their embedding degree, equal to
12. The curve is thus defined by the equation E : y2 = x3 + b, G1 is the group
of Fq-rational points (of order p) and G2 is the subgroup of trace zero points in
E(Fq12)[p] (our pairing is thus of type-3 [16]). We use the following parameters:

q = 82434016654300907520574040983783682039467282927996130024655912292889294264593

p = 82434016654300907520574040983783682039180169680906587136896645255465309139857

b = 5

Equipment. Our scheme was tested on a smartcard provided by a smartcard
manufacturer enabling the use of low level APIs to access smartcard functions
handling elliptic curves operations and a Samsung galaxy S3 NFC phone (ARM
ARMv7 @ 1.40 GHz 1 processor, 4 cores). The verification was performed by
a PC (Intel(R) Celeron(R) CPU E3300 @ 2.50GHz, 2-core CPU) under Linux
(64-bit architecture). The NFC reader is an Omnikey 5321.

Precomputations. Our Sign protocol (Figure 2) can be divided into two phases:
the offline phase where the TPM interacts with the host to precompute a part
of the signature, and the online phase, where the former issues a signature more
quickly using these precomputations. In our scheme, only operations involving
the message m cannot be performed in the offline phase since m is only known
when accessing the service. Therefore, every elements of the signature can be pre-
computed, except c, sx, sy, sd, sz. With this methodology, the Sign procedure can
be performed very quickly. Indeed, given a message m and the precomputations,
it only remains to compute a hash value and some operations in Zp.

Performance. Figure 3 describes the timings of the precomputations. The
slowness of the communication protocol between a SIM card and a smartphone
affects the efficiency of these precomputations. The total size of the elements
that the card has to store for one signature is 1665 bytes.

Figure 4 describes the timings of the online part of the signature. Since the
card only has to compute one hash value and cheap operations in Zp, all the
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Card Computations Smartphone Computations Data sending and storage Total

360-390 ms 138-150 ms 990-1000 ms 1488-1540 ms

Fig. 3. Precomputations

Card Signature Verif. by PC Total

90-92 ms 38-46 ms 128-138 ms

Fig. 4. Signature and verification performance

validation process (online signature and verification) can be performed quickly. It
is worthy to note that our system fulfils the challenging functional requirements
of public transport [2] specifying that access control should be performed in less
than 300ms. The size of the signature is 577 bytes.

6 Conclusion

We introduced the notion of Direct Anonymous Attestations with Dependent
Basename Opening (DAA-DBO), where the anonymity of a Direct Anonymous
Attestation can be revoked only if a specific authority, called the admitter, al-
lowed to revoke the DAA signatures that includes a specific basename. We gave
an efficient scheme that achieves this notion. We implemented our scheme on
mobile phone, showing that this primitive is well-suited for practical uses such
as, for example, the design of a public transportation card embedded in a mobile
phone.
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the authors’ view. They does not reflect the view of their employers.
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A Appendix

A.1 Formal Definition of Correctness

We define the correctness of a DAA scheme with dependent-basename opening
through a game in which an adversary is allowed to request a signature on
two messages with the same basename by any of the honest group members.
The adversary wins if the resulting signatures are not linkable, do not pass the
verification test or are opened as if they were produced by a different user. The
scheme is correct if for any adversary A and any security parameter λ (we keep
this notation in the following experiments), Pr[Expcorr

A (λ) = 1] is negligible in
λ, where Expcorr

A (λ) is defined as follows:

1. HU ← {1..n}.
2. (gpk, isk, tsk) ← Keygen(λ).

3. For i ∈ HU :

(a) (uski, upki) ← UKeygen(gpk)
(b) (gski,Reg[i],SReg[i]) ← 〈Join(gpk, uski), Issue(gpk, isk)〉

4. (i, m0, m1, bsn) ← A(gpk).
5. If i /∈ HU then return 0.

6. σ0 ← Sign(gpk, gski, m0, bsn).
7. σ1 ← Sign(gpk, gski, m1, bsn).

8. If Verify(gpk, σ0, m0, bsn) = 0 or Verify(gpk, σ1, m1, bsn) = 0, return 1.
9. If Link(gpk, σ0, m0, σ1, m1, bsn) = 0, return 1.

10. τ ← Token(gpk, tsk, bsn)
11. If Open(gpk, σb, mb, bsn, τ,Reg,Sreg) = (j, πb) with j �= ib for b ∈ {0, 1},

return 1.
12. If Judge(gpk, ib, σb, mb, bsn, τ,Reg, πb) = 0, return 1.

A.2 Additional Proofs

Proof of Knowledge of a Valid Certificate. The Sign procedure of our
scheme is a proof of knowledge transformed into a signature by applying the
Fiat-Shamir heuristic, in a classical way [21]. More precisely, the Sign procedure
proves knowledge of a valid certificate on x and y where y is such that K :=
e(H1(bsn), T )y.

The proof is complete. We have

e([sx]C − [sz ]H − [sd]G1, G2) · e(C, W )c

= R1 · e([x]C − [z]H − [d]G1, G2)
c · e(C, W )c

= R1 · e([x]A − [y]H − G1, G2)
d·c · e(A, W )d·c = R1.

Moreover, e([sy]H1(bsn), T ) · K−c = R2 · e([y]H1(bsn), T )c · K−c = R2.
Finally, we have e([sz ]H1(bsn), T ) · K−sd = R3 · e([z]H1(bsn), T )c · K−d·c = R3.
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The proof is sound. Assume that the prover is able to answer (sx, sy, sz, sd) and
(s′x, s′y, s

′
z, s

′
d) for two different challenges c and c′ (with the same commitments).

Let x̃ =
sx−s′x
c−c′ , ỹ =

sy−s′y
c−c′ and d̃ =

sd−s′d
c−c′ . From:

e(H1(bsn), T )sy · K−c = e(H1(bsn), T )s
′
y · K−c′

e(H1(bsn), T )sz · K−sd = e(H1(bsn), T )s
′
z · K−s′d ,

we get e(H1(bsn), T )ỹ = K, e(H1(bsn), T )sz−s′z = Ksd−s′d and thus sz − s′z =
ỹ(sd − s′d). Then, since

e([sx]C−[sz]H−[sd]G1, G2)·e(C, W )c = e([s′x]C−[s′z]H−[s′d]G1, G2)·e(C, W )c
′

so we have:

e(C, G2)
sx−s′x · e(C, W )c−c′ = e(H, G2)

s′z−sz · e(G1, G2)
sd−s′d ,

e(C, G2)
sx−s′x · e(C, W )c−c′ = e(H, G2)

ỹ(sd−s′d) · e(G1, G2)
sd−s′d ,

e(C, G2)
x̃ · e(C, W ) = e(H, G2)

ỹ·d̃ · e(G1, G2)
d̃.

(i) If d̃ = 0 then x̃ = −γ, the prover thus knows the secret key of the group
manager and so a valid certificate on x̃ and ỹ (since he is able to issue it). (ii)
Now, if d̃ �= 0 then e([d̃−1]C, G2)

x̃ ·e([d̃−1]C, W ) = e(H, G2)
ỹ ·e(G1, G2), proving

that [d̃−1]C is a valid certificate on x̃ and ỹ.

The proof is zero-knowledge. The simulator first selects C
$← G1, c

$← {0, 1}l

and sx, sy, sd, sz
$← Zp. Then it computes R1 ← e([sx]C − [sz]H − [sd]G1, G2) ·

e(C, W )c, R2 ← e([sy]H1(bsn), T ) · K−c and R3 ← e([sz]H1(bsn), T ) · K−sd .
Since C is a random element from G1, then the transcript C, R1, R2, R3, c, sx,
sy, sd, sz is indistinguishable from those a real prover may generate.

Proof of Non-frameability. Let A be an adversary against the non-frameabi-
lity. A corruption of the public register Reg implies that A has successfully
produced a forgery for S. Due to the EUF-CMA security of this scheme we can
consider that such an event will not occur so we only describe a reduction R
using A against SDLP challenges. Let (H , [a]H , G2, [a]G2) be such a challenge,
R must then output a.

[Keygen] R proceeds as usual.
[Join queries] Given a honest user i ∈ HU , R randomly selects ri ∈ Zp,

sends ([ri]([a]H), [ri]([a]G2)) to A (as corrupted opening authority) and uses
[ri]([a]H) to register with A (as corrupted group manager).

[Sign queries] Upon receiving a signature query on m, with basename bsn, for
i ∈ HU , R proceeds as follows: it computes C ← [d]Ai for a random d
and computes K ← e(H1(bsn), [a]G2)

(ri·δ). Then, R simulates the proof of
knowledge of a and sends the resulting group signature to A.
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If A is successful then it outputs (i, σ, m, bsn, π) such that i ∈ HU and (gpk, i,
m, bsn) was never queried to the Sign oracle. Assuming that π was produced
using a sound proof system, σ is thus a valid signature opening to i, R can thus
extract the witness ri · a and output a.

Proof of Traceability. Let A be an adversary against the traceability. We
construct a reduction R using A against q-SDH challenges, where q is the number
of the dishonest users. Let (G1, [θ]G1, [θ2]G1, . . . , [θq], G2, [θ]G2) be a SDH
challenge. R must output (c, [ 1

θ+c ]G1), for some c ∈ Zp \ {−θ}.

Simulating parameters. R picks k
$← [1, q] and xn, sn

$← Z∗
p for n ∈ [1, q] (with

distinct xn). Let P , Pm and Pm− be the polynomials P :=
∏q

n=1 (X + xn − xk),
Pm :=

∏q
n=1
n�=m

(X + xn − xk), Pm− :=
∏q

n=1
n�=m,n�=k

(X + xn − xk). Thanks to the

q-SDH challenge, R is able to compute [P (θ)]G1. R sets W ← ([θ]G2)+[−xk]G2,

picks β, δ, ρ
$← Z∗

p and computes T ← [δ]G2, G′
1 ← [β(ρP (θ) − skPk(θ))]G1 and

H ← [βPk(θ)]G1. R gives A (p,G1,G2,GT , e, G′
1, H, G2) as parameters and W, T

as keys.

Simulating Join queries. R maintains a counter n for the queries. R obtains y′

from the extractable commitment and sets An ← [β(ρPn(θ) + Pn−(θ)(y′ + sn −
sk))]G1. (y′ + sn, An, xn) is a valid certificate under W .

Probability to win. If A is successful then, through the forking Lemma ([21]), we
extract a certificate (A∗, x∗, y∗) where y∗ does not correspond to any existing
user. We have: A∗ = [ 1

γ+x∗
](G′

1 + [s∗]H) = [ 1
θ−xk+x∗

]([β(ρP (θ) − skPk(θ))]G1 +

[βy∗Pk(θ)]G1) = [βPk(θ)(ρθ + y∗ − sk)
1

θ+x∗−xk
]G1. Two cases (I) and (II) arise.

(I) x∗ �∈ {x1, . . . , xq}. Let us see βPk(θ)(ρθ + y∗ − sk) as a polynomial A
in θ. The Euclidean division of A by (θ + x∗ − xk) gives Q and R such that
A(θ) = (θ + x∗ − xk) · Q(θ) + R(θ). Since (θ + x∗ − xk) is of the form X −
(xk − x∗), then R(θ) = A(xk − x∗). R computes C ← R(θ) = A(xk − x∗) =[∏q

n=1,n�=k (xn − x∗)
]
(ρ(xk − x∗) + y∗ − sk). Since A∗ = [ C

θ+x∗−xk
+ Q(θ)]G1,

R can compute [Q(θ)]G1 from the SDH challenge. We have two cases. (i) If

(y∗ − sk) �= ρ(x∗ − xk), then C �= 0. R computes g
1

θ+x∗−xk = (A∗ · g−Q(θ))
1
C ,

sets c ← x∗ − xk, and returns (c, g1/(θ+c)) as SDH solution. (ii) If (y∗ − sk) =
ρ(x∗ − xk), then R aborts.

(II) x∗ ∈ {x1, . . . , xq}. We have two cases. (i) If x∗ �= xk, then R aborts.
(ii) If x∗ = xk, then : [ 1

sk−y∗ ]([sk]A∗ + [−y∗]Ak) = [β(P (θ)(ρ(sk − y∗)) 1
sk−y∗ −

Pk(θ)sk)1θ ]G1. The point is that P vanishes in 0, but not Pk. Then the division
of β(P (θ)(ρ(sk − y∗)) 1

sk−y∗ − Pk(θ)sk) by θ gives R and Q such that C ←
R(0) = −βsk

∏q
n=1
n�=k

(xn − x∗) and [ 1
sk−y∗

]([sk]A∗ + [−y∗]Ak) = [Cθ + Q(θ)]G1

where C �= 0. R computes [1θ ]G1 ← [ 1
sk−y∗

]([sk]A∗ + [−y∗]Ak) + [ 1C ][−Q(θ)]G1,

sets c ← 0 and returns (0, [ 1θ ]G1) as SDH solution.
k is hidden from the adversary’s view. So if x∗ ∈ {x1, . . . , xq}, then x∗ = xk

with probability 1/q, and if x∗ �∈ {x1, . . . , xq}, then (y∗ − sk) = ρ(x∗ − xk) with
probability at most 1/q. Hence if A as advantage ε, R has advantage ε/q.
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3 ENSTA ParisTech/U2IS, France
4 Alcatel-Lucent, France

Abstract. Since the concept of locally decodable codes was introduced
by Katz and Trevisan in 2000 [11], it is well-known that information the-
oretically secure private information retrieval schemes can be built using
locally decodable codes [15]. In this paper, we construct a Byzantine ro-
bust PIR scheme using the multiplicity codes introduced by Kopparty et
al. [12]. Our main contributions are on the one hand to avoid full replica-
tion of the database on each server; this significantly reduces the global
redundancy. On the other hand, to have a much lower locality in the
PIR context than in the LDC context. This shows that there exists two
different notions: LDC-locality and PIR-locality. This is made possible
by exploiting geometric properties of multiplicity codes.

1 Introduction

Private information retrieval allows a user to privately retrieve a record of a
database, in the sense that the database server does not know which record the
user is asking for. The applications of this functionality are numerous. Imagine
for instance doctors having to query a company-wide database storing medical
for patients, or a police officer wanting to request financial data from the fiscal
administration. In both cases, to respect privacy of the patient, or secrecy of the
inquiry, it is desirable that the central administration does not know about the
queries sent by these users (the doctor or the police officer). A private information
retrieval protocol will allow these users to send their queries to the databases,
without revealing what they are asking for (either the name of patient, or the
name of the suspect under inquiry). Another example is an Internet user who
wants to use cloud-based remote storage services, like DropBox, GoogleDrive,
CloudMe, hubiC, etc, to store data, and retrieve portion of its data without
revealing to these remote services anything about what he is after.

Related work. The problem of Private Information retrieval (PIR) was intro-
duced in 1995 by Chor, Goldreich, Kushilevitz and Sudan [4]. A PIR protocol
is a cryptographic protocol the purpose of which is to protect the privacy of
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a user accessing a public database via a server, in the sense that it makes it
possible for a user to query a particular record of the database without revealing
to the server which record he wants to retrieve. We here deal with information
theoretic PIR, as opposed to computationally secure PIR [13]. In an information
theoretic PIR setting, a server gets no information about the identity of the
record of user interest even if it has unlimited computing power: the queries sent
to the server must not be correlated to the actual record the user is looking for.
In [4] it is shown that when accessing a database located on a single server, to
completely guarantee the privacy of the user in an information theoretic sense,
one needs to download the entire database, which results in a communication
complexity of O(N), N being the bit-size of the database. Thus scenarios have
been introduced where the database is replicated across several, say �, servers,
and the proposed schemes have communication complexity O(N1/�), for � ≥ 3.
Such multiple-server settings have been investigated since then, and the best
communication complexity to date is NO(1/(log2 log2 N)) for 3-server PIR proto-
cols (from matching vector codes construction [14,6]) and NO((log2 log2 �)/� log2 �)

for � ≥ 3 [1] .
Beimel and Stahl [2,3] have proposed several robust information theoretic PIR

protocols, based on polynomial interpolation, as well as on Shamir’s secret shar-
ing scheme. They have built a generic transformation from regular to robust PIR
protocols that relies on perfect hash families. They also addressed the Byzantine
setting. Recently, Devet, Goldberg and Heninger [5] proposed an Information-
Theoretic PIR tolerating the maximum possible number of Byzantine servers.
In all these previous proposals, the (encoded or not) database is fully replicated
among the servers.

Our contribution. Our main concern is to reduce the global storage overhead. We
achieve this by avoiding full replication of the database among the servers. We
use multiplicity codes and exploit the geometry of Fm

q to partition the encoded
database (codeword) of bit-size N into q shares of equal size, and distribute them
among the servers (one share for one server). This way, we reduce the storage on
each server from N bits down to N/q bits, q being the number of servers, while
totally preserving the information theoretic security of the PIR protocol. Here
N = log2(q

σqm ) = σqm log2 q, with σ =
(
m+s−1

m

)
, and s is an auxiliary small

integer (say s ≤ 6) used in the construction of multiplicity codes. Given that the
code has rate R, the storage overhead of our scheme is thus 1

R instead of 1
R � for

schemes with full replication of the encoded database (as in the standard LDC
to PIR reduction), � being the number of servers (� = q in our scheme). The
number of servers is also drastically reduced, from σ(q − 1) to q, see Fig 3.

The communication complexity in bits (total number of bits sent by the user
to all the servers as queries of our protocol) is (m − 1)qσ log2 q, and the total
number of bits answered by the servers is qσ2 log2 q. Thus the communication
complexity is (m− 1+σ)qσ log2 q bits. Putting � = q the number of servers, and
in contexts where s is small, say s ≤ 6, this gives a communication complexity
of O(�(log2 N)s).
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Our protocol tolerates ν = �t� byzantine servers, t = 1/2(q −1−d/s), d being
the degree of the multiplicity code, in the sense that even if ν out of q servers
always answer wrongly, then the database item can still be correctly recovered by
the user. Thus our protocol is a ν-Byzantine robust PIR protocol. The property
of being robust is a built-in feature of the decoding algorithms that are involved
in the process of retrieving the database item.

Organization of the paper. In section 2 we recall the basics of locally decodable
and self-correctable codes, private information retrieval schemes, and the link
between the two notions; we also set the necessary material and notation to define
multiplicity codes, namely Hasse derivatives. Section 3 describes the multiplicity
codes [12] as a generalization of Reed Muller codes, and explains their local
decoding. Section 4 contains our main ideas: we explain how we use multiplicity
codes in a PIR scenario in such a way as to avoid full replication of the encoded
database. We also explain how we achieve the Byzantine robustness property of
our protocol. We end the paper by numerical tables showing the main features
of the codes (rate, locality) for various parameter sizes.

2 Preliminaries

2.1 Locally Decodable and Locally Self-correctable Codes

A code in the ambient space is seen as an encoding map, which encodes a message
of k symbols on an alphabet Δ into code-vectors, or codewords of n symbols on
some alphabet Σ (possibly different from Δ). That is, it is a one-to-one map
C : Δk → Σn. The decoding problem is to find codewords close enough to any
element y in the ambient space (the “received word” in coding theory language).
Formally, given a distance d(), code C ⊂ Σn, for a given y = (y1, . . . , yn) ∈ Σn,
one has to find one, some, or all codewords c ∈ C such that d(c, y) is small. In
our setting, the distance d(x, y) is the Hamming distance which is the number of
indices i where xi �= yi. A major concern is to build codes with small redundancy,
or equivalently, large rate, where the rate is (k log |Δ|)/(n log |Σ|). In classical
settings, Δ = Σ, and the rate is simply k/n.

Locally decodable codes, in short LDCs, allow efficient sublinear time de-
coding. More precisely, an �-query LDC allows to probabilistically recover any
symbol of a message by looking at only � ≤ k randomly chosen coordinates of its
- possibly corrupted - encoding. The major objective is to have � � k. Although
LDCs appeared in the PCP literature in early 90’s [15], their first formal defini-
tion is due to Katz and Trevisan in 2000 [11]. The number � of queried symbols
is the query complexity, that we also call here locality. Formally:

Definition 1. A code C : Δk → Σn is (�, δ)-locally decodable if there exists a
randomized decoding algorithm A such that

1. for any message x ∈ Δk and any y ∈ Σn with d(C(x), y) < δn, we have, for
all i ∈ [k], Pr[Ay(i) = xi] ≥ 2

3 ,
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2. A makes at most � queries to y.

Here, and in the following, Ay means that A is given query access to y, and
the probability is taken over all internal random coin tosses of A. In the case
when one wants to probabilistically recover any codeword symbol and not only
information symbols, one has the following definition.

Definition 2. A code C : Δk → Σn is (�, δ)-locally self-correctable (LCC) if
there exists a randomized decoding algorithm A such that

1. for any codeword c ∈ Σn and y ∈ Σn with d(c, y) < δn, we have, for all
i ∈ [k], Pr[Ay(i) = ci] ≥ 2

3 ,
2. A makes at most � queries to y.

When Δ = Σ = Fq, the finite field with q elements, and when the code is Fq-
linear, one can easily construct an LDC from a LCC [16]. No known constructions
of LDCs or LCCs minimize both � and the length n simultaneously. The oldest
class of LDCs are the Reed-Muller codes over Fq, whose codewords are the
evaluations of m-variate polynomials of total degree at most d over Fq on all
the points of Fm

q . The main issues are thus to minimize one parameter given
that the other one is fixed. With this respect, constructions of subexponential
length codes with constant query complexity � ≥ 3 exist [15]. On the other
side, constant rate LDCs feature an � which is known to lie between Ω(log2 k)
and Θ(kε), with explicit constructions for the latter bound. A major result is the
construction of high-rate (i.e. > 1/2) locally self-correctable codes with sublinear
query complexity, in the presence of a constant (as a function of the distance of
the code) fraction of errors. Those codes are known as Multiplicity Codes and
were introduced by Kopparty, Saraf and Yekhanin in 2011 [12]. They generalize
the Reed-Muller codes by evaluating high degree multivariate polynomials as well
as their partial derivatives up to some order s. Using high-degree polynomials
improves on the rate, while evaluating their partial derivatives compensates for
the loss in distance. Other LDC constructions achieving rate > 1/2 and query
complexity nε are the one of Guo et al. [8] based on lifting affine-invariant codes
(namely, Reed-Solomon codes), and the Expander codes of Hemenway et al. [10].

In this work, we use Multiplicity codes, but recall Reed-Muller codes and their
local decoding for the sake of comprehension. These codes provide the simplest
geometric setting for partitioning a codeword and laying it out on servers. We
think such a partition can be done for other families of LDC codes, e.g. matching-
vector codes, affine invariant codes and possibly Expander codes.

2.2 Private Information Retrieval Schemes

We model the database as a string x of length k over Δ. An �-server PIR scheme
involves � servers S1, . . . , S�, each holding the same database x, and a user who
knows k and wants to retrieve some value xi, i ∈ [k], without revealing any
information about i to the servers.

Definition 3 (Private Information Retrieval (PIR)). An �-server p-PIR
protocol is a triple (Q, A, R) of algorithms running as follows:
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1. User obtains a random string s; then he invokes Q to generate an �-tuple of
queries (q1, . . . , q�) = Q(i, s).

2. For 1 ≤ j ≤ �, User sends qj to server Sj;

3. Each Sj answers aj = A(j, x, qj) to User;

4. User recovers xi by applying the reconstruction algorithm R(a1, . . . , a�, i, s).

Furthermore the protocol has the Correctness property: for any x ∈ Δk, i ∈ [k],
User recovers xi with probability at least p; and the Privacy property: each server
individually can obtain no information about i.

The Privacy property can be obtained by requiring that for all j ∈ [�], the
distribution of the random variables Q(i, ·)j are identical for all i ∈ [k]. Katz
and Trevisan [11], introduced a notion very relevant in the context of locally
decodable codes: that of smooth codes. The notion of smooth codes captures
the idea that a decoder cannot read the same index too often, and implies that
the distributions Q(i, ·)j are close to uniform. All known examples are such
that the distribution Q(i, ·)j are actually uniform. Uniform distribution of the
queries among codeword (or received word) coordinates is what is needed in
the PIR setting in order to achieve information theoretic privacy of the queries.
The locality as a core feature of LDCs, together with the fact that in all known
constructions of LDCs the queries made by the local decoding algorithm A
are uniformly distributed, make the application of LDCs to PIR schemes quite
natural. Note also that conversely PIR schemes can be used to build LDCs
with best asymptotic code-lengths [1,14,6]. The lemma below describes how it
formally works.

Lemma 1 (Application of LDCs to PIR schemes). Suppose there exists
an �-query locally decodable code C : Δk → Σn, in which each decoder’s query is
uniformly distributed over the set of codeword coordinates. Then there exists an
�-server 1-PIR protocol with O(�(log2 n + log2 |Σ|)) communication to access a
database x ∈ Δk.

Proof. Given an LDC C : Δk → Σn as in the lemma, one constructs the following
PIR protocol. First, in a preprocessing step, for 1 ≤ j ≤ �, server Sj encodes
x with C. Then, to actually run the protocol, User tosses random coins and
invokes the local decoding algorithm to determine the queries (q1, . . . , q�) ∈ [n]�

such that xi can be computed from {C(x)qj }1≤j≤�. For 1 ≤ j ≤ �, User sends
qj ∈ [n] to server Sj , and each server Sj answers C(x)qj ∈ Σ. Finally, User
applies the local decoding algorithm of C to recover xi.

This protocol has the communication complexity claimed in the lemma. Fur-
thermore, as the user applies the local decoding algorithm with non corrupted
inputs {C(x)qj}1≤j≤�, he retrieves xi with probability 1. Uniformity of the distri-
bution of the decoder’s queries over [n] ensures the information-theoretic privacy
of the protocol.
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2.3 Hasse Derivative for Multivariate Polynomials

Notation Considering m indeterminates X1, . . . , Xm, and m positive integers
i1, . . . , im, we use the short-hand notation

X = (X1, . . . , Xm) Xi = X i1
1 · · ·X im

m , Fq[X ] = Fq[X1, . . . , Xm]

i = (i1, . . . , im) ∈ Nm |i| = i1 + · · · + im P = (p1, . . . , pm) ∈ Fm
q

i.e. we use bold symbols for vectors, points, etc, and standard symbols for uni-
dimensional scalars, variables, etc. In general, we write polynomials Q ∈ Fq[X] =
Fq[X1, . . . , Xm] without parenthesis and without variables, and Q(X) (resp.
Q(P )) when the evaluation on indeterminates (resp. points) has to be specified.
For i, j ∈ Nm, i � j means it ≥ jt ∀1 ≤ t ≤ m.

Hasse derivative Given a multi-index i, and F ∈ Fq[X], the i-th Hasse

derivative of F , denoted by H(F, i), is the coefficient of Zi in the polyno-
mial F (X + Z) ∈ Fq[X ,Z], where Z = (Z1, . . . , Zm). More specifically, let

F (X) =
∑

j�0 fjX
j , then

F (X + Z) =
∑
j

fj(X + Z)j =
∑
i

H(F, i)(X)Zi,

where Zi stands for Zi1
1 · · ·Zim

m , and

H(F, i)(X) =
∑
j�i

fj

(
j

i

)
Xj−i with

(
j

i

)
=

(
j1
i1

)
· · ·
(

jm
im

)
.

Considering a vector V ∈ Fm
q \ {0}, and a base point P , we consider the restric-

tion of F to the line D = {P + tV : t ∈ Fq}, which is a univariate polynomial
that we denote by FP ,V (T ) = F (P + TV ) ∈ Fq[T ]. We have the following
relations:

FP ,V (T ) =
∑
j

H(F, j)(P )V jT |j|, (1)

coeff(FP ,V , i) =
∑
|j|=i

H(F, j)(P )V j , (2)

H(FP ,V , i)(α) =
∑
|j|=i

H(F, j)(P + αV )V j , for all α ∈ Fq (3)

3 Multiplicity Codes

3.1 Local Decoding of Reed-Muller Codes

We enumarte the finite field Fq with q elements as Fq = {α0 = 0, α1, . . . , αq−1}.
We denote by Fq[X]d the set of polynomials of degree less than or equal to d,

which has dimension k =
(
m+d
d

)
. We enumerate all the points in Fm

q :

Fm
q = {P 1, . . . ,P n} (4)
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where P i = (Pi,1, . . . , Pi,m) ∈ Fm
q , is an m-tuple of Fq-symbols, and n = qm. We

encode a polynomial F of degree ≤ d into a codeword c of length n using the
evaluation map

ev : Fq[X]d → Fn
q

F �→ (F (P 1), . . . , F (P n))

and the d-th order Reed-Muller code is RMd = {ev(F ) | F ∈ Fq[X]d}. The
evaluation map ev encodes k symbols into n symbols, and the rate is R = k/n ∈
[0, 1]. A codeword c ∈ RMd can be indexed by integers as c = (c1, . . . , cn) or by
points as c = (cP 1 , . . . , cPn), where ci = cP i .

Assuming d < q, we now recall how RMd achieves a locality of � = q − 1 as
follows. Suppose that c = ev(F ) ∈ RMd is a codeword, and that cj = cP j

is
looked for. Then, the local decoding algorithm randomly picks a non-zero vector
V ⊂ Fm

q \ {0} and considers the line D of direction V passing through P j :

D = {P j + t · V | t ∈ Fq} = {P j + 0 · V ,P j + α1 · V , . . . ,P j + αq−1 · V }
= {R0 = P j , . . . ,Rq−1} ⊂ Fm

q .

Then, the points R1, . . . ,Rq−1 are sent as queries, and the decoding algorithm
receives the answer: (

yR1 , . . . , yRq−1

)
∈ Fq−1

q .

In case of no errors,
(
yR1

, . . . , yRq−1

)
=
(
cR1

, . . . , cRq−1

)
. Now

cRu
= F (P j + αu · V ) = FP ,V (αu), u = 1, . . . , q − 1,

where

FP ,V = F (P + T · V ) ∈ Fq[T ] (5)

is the restriction of F to the line D, which is a univariate polynomial of degree
less than or equal to d. That is,

(
cR1

, . . . , cRq−1

)
belongs to a Reed-Solomon

code RSd of length q − 1 and dimension d+1. In case of errors,
(
yR1

, . . . , yRq−1

)
is a noisy version of it. Using a decoding algorithm of RSd, one can recover FP ,V ,
and then cP j

is found as cP j
= FP ,V (0).

The main drawback of these codes is the condition d < q, which imposes
a dimension k =

(
d+m
m

)
<
(
q+m
m

)
∼ qm/m!. For a fixed alphabet Fq, the rate

R = k/qm < 1/m! goes to zero very fast when the codes get longer.

3.2 Multiplicity Codes and Their Local Decoding

To obtain codes with higher rates, we need a derivation order s > 0 and an
extended notion of evaluation. There are σ =

(
m+s−1

m

)
Hasse derivatives H(F, i)

of a polynomial F for multi-indices i such that |i| < s. Letting Σ = Fσ
q , we

generalize the evaluation map at a point P :

evs
P : Fq[X] → Fσ

q

F �→ (H(F,v)(P ))|v|<s



A Storage-Efficient and Robust Private Information Retrieval Scheme 229

and, given an enumeration of the points as in Eq. 4, the total evaluation rule is

evs : Fq[X] → Σn

F �→
(
evs

P 1
(F ), . . . , evs

Pn
(F )

)
.

Given y = evs
P (F ) ∈ Σ, we denote by yv the coordinate of y corresponding

to the v-th derivative of F . As in the case of classical Reed-Muller codes, we
denote by (c1, . . . , cn) = (cP 1

, . . . , cPn
) = evs(F ), i.e. ci = cP i

= evs
P i

(F ). We
can consider Fq[X]d, with d < s(q − 1) [12], and the corresponding code is

Multsd = {evs(F ) | F ∈ Fq[X]d} .

Using the language of locally decodable codes, we have a code Multsd : Δk → Σn,
with Δ = Fq, and Σ = Fσ

q . The code Multsd, is a Fq-linear space, whose dimension

over Fq is k =
(
m+d
d

)
. Its rate is R = (logq |Fq[X ]d|)/(logq |Σn|) = k/(σn) =(

m+d
m

)
/
((

m+s−1
m

)
· qm

)
. Its minimum distance is (from Generalized Schwartz-

Zippel Lemma) qm − d
s qm−1.

This family of codes has a locality of (q − 1)σ = (q − 1)
(
m+s−1

m

)
queries. Here

is how the local decoding algorithm works. Let j be the index of the point where
we want to local decode, i.e. cj = cP j is looked for. The algorithm randomly
picks σ vectors U i ∈ Fm

q \ {0}, i = 1, . . . , σ. For each U i, i = 1, . . . , σ, consider
the line of direction U i passing through P j :

Di = {P j + 0 · U i,P j + α1 · U i, . . . ,P j + αq−1 · U i}
= {Ri,0 = P j ,Ri,1, . . . ,Ri,q−1} ⊂ Fm

q

For each i, 1 ≤ i ≤ σ, the algorithm queries the received word at points
Ri,1, . . . ,Ri,q−1, and gets the answers(

yRi,1
, . . . , yRi,q−1

)
∈ Σq−1,

thus a total of (q − 1)σ queries in Fm
q , and σ(q − 1) answers from Σ. In case of

no errors, we have

(yRi,b
)v = H(F,v)(Ri,b), b = 1, . . . , q − 1,

where (yRi,b
)v is the v-th coordinate of yRi,b

, and, using Eq. 3, we can compute

H(FP j ,Ui , e)(αb) =
∑
|v|=e

H(F,v)(Ri,b)U
v
i

{
1 ≤ b ≤ q − 1,
0 ≤ e < s

(6)

Having the values H(FP j ,Ui , e)(αb), for 1 ≤ b ≤ q − 1 and |v| < s, we can then
recover FP j ,Ui by Hermite interpolation. Next we solve, for the indeterminates
H(F,v)(P j), |v| < s, the linear system derived from Eq. 2:

coeff(FP j ,Ui , e) =
∑
|v|=e

H(F,v)(P j)U
v
i

{
e = 0, . . . , s − 1,
i = 1, . . . σ,

and we output {H(F,v)(P j), |v| < s} = evs
P j

(F ).
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In case of errors, for each direction U i, we define a function hi : F∗
q →

F{0,...,s−1}
q , αb �→ hi(αb), such that

(hi(αb))(e) =
∑
|v|=e

(yRi,b
)vU

v
i ,

{
1 ≤ b ≤ q − 1
0 ≤ e < s

(7)

By virtue of Eq. 6, note that hi(αb)(e) is the (erroneous) e-th Hasse derivative
of FP j ,Ui at αb.

Having hi(αb)(e) for all e ∈ {0, . . . , s− 1} and all b ∈ {1, . . . , q − 1}, FP j ,Ui is
recovered using a decoding algorithm of univariate multiplicity codes (see [12]),

provided d(evs(FP j ,U i), hi) ≤ (q−1)−d/s
2 . Once we have recovered FP j ,U i , we

solve for the indeterminates H(F,v)(P j), |v| < s, the linear system derived
from Eq. 2:

coeff(FP j ,Ui , e) =
∑
|v|=e

H(F,v)(P j)U
v
i

{
t = 0, . . . , s − 1,
i = 1, . . . σ

(8)

and we output {H(F,v)(P j), |v| < s} = evs
P j

(F ). This local decoding algo-

rithm is sketched in Alg 1. In case of more than (q−1)−d/s
2 errors in some di-

rections, the linear system 8 may have erroneous equations. In this case, due to
lack of space, we refer the reader to [12].

Algorithm 1. Local decoding algorithm for Multiplicity Codes

Require: Oracle Access to y = (y1, . . . , yn), a noisy version of c = evs(F ) ∈ Multd.
Input: j ∈ [n], the index of the symbol cj looked for in c
Output: cj = cP j = evs

P j
(F )

1: Pick distinct σ non zero random vectors U1, . . . ,Uσ giving σ different lines
2: for i=1 to σ do
3: Consider the line

Di = {P j + 0 ·U i,P j + α1 ·U i, . . . ,P j + αq−1 ·U i} = {Ri,0, . . . ,Ri,q−1}

4: Send Ri,1, . . . ,Ri,q−1, as queries,
5: Receive the answers: yRi,1 , . . . , yRi,q−1 , yRi,b ∈ Fσ

q .
6: Recover FP j ,Ui from (yRi,1 , . . . , yRi,q−1 ) using a univariate decoding algorithm

on the values (hi(αb))(e) defined in Eq. 7.
7: end for
8: Solve for the indeterminates H(F,v)(P j), |v| < s, the linear system 8.
9: return {H(F,v)(P j), |v| < s} = evs

P j
(F ).
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Fig. 1. Transversal lines for simple Reed-Muller codes (a), for Multiplicity Codes (b),
assuming that the point P j corresponding to query j lies on the H0 hyperplane. Pa-
rameters are q = 4, m = 3, s = 2, σ = 4. Not all point names are displayed for
readability.

4 Hyperplane Partitions and Their Use in PIRs

4.1 Affine Hyperplanes and Servers

Considering Multsd, we show how to equally share a codeword

c = evs(f) =
(
evs

P 1
(f), . . . , evs

Pn
(f)

)
on � = q servers, using the geometry of Fm

q . This is done as follows: consider H
a Fq-linear subspace of Fm

q of dimension m − 1. It can be seen as the kernel of a
linear map

fH : Fm
q → Fq

(x1, . . . , xm) �→ h1x1 + · · ·hmxm

for some (h1, . . . , hm) ∈ Fm
q \ {0}. Now Fm

q can be split as the disjoint union of
affine hyperplanes Fm

q = H0 ∪ H1 ∪ · · · ∪ Hq−1, where

Hi =
{
P ∈ Fm

q | fH(P ) = αi

}
, i = 0, . . . , q − 1.

As a simple example, consider the Fq-linear hyperplane H of Fm
q :

H = {P = (x1, . . . , xm) | xm = 0} .

Then we have Fm
q = H0 ∪ H1 ∪ . . .Hq−1 where

Hi =
{
P = (x1, . . . , xm) ∈ Fm

q | xm = αi

}
, i = 0, . . . , q − 1.

Up to a permutation of the indices, we can write any codeword
c =

(
cH0 | · · · |cHq−1

)
, where

cHi = (evs
P (f))P∈Hi

, i = 0 . . . , q − 1.

Now consider an affine line, which is transversal to all the hyperplanes. It is a
line which can be given by any direction U ∈ Fm

q \ {0} such that fH(U) �= 0,
and which contains a point P :

D = {P + t · U | t ∈ Fq} .
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In other words, it is a line not contained in any of the hyperplane H0, . . . , Hq−1.
Then,

D ∩ Hj =
{
Qj

}
, j = 0, . . . , q − 1,

for some points Q0, . . . ,Qq−1. Now, as long as U i, i = 1, . . . , σ, does not belong
to H , Algorithm 1 works, using the points {Qi,j}0≤j≤q−1, where Di ∩ Hj =
{Qi,j}, Di being the line with direction U i passing through P j , one query being
a fake one (see section 4.2 below).

Fig. 2. Parameters are q = 4, m = 3, s = 2, σ = 4. Queries for a Multiplicity
code used as an LDC codes (a), used in PIR scheme (b), assuming that the point P j

corresponding to query j lies on the H0 hyperplane. In the PIR scheme, random points
X1,0, . . . ,X4,0 are sent to the server S0 to hide him the fact that he hosts the index
of the request. Not all point names are displayed for readability.

4.2 Use in PIR Schemes

Given Fm
q = H0 ∪H1 ∪ . . . Hq−1, the PIR scheme can be built by requiring that,

for i = 1, . . . , q, Server Si is given cHi to store. Local decoding must be done using
transversal lines. The user will first select σ transversal lines Di, i = 1, . . . , σ,
which passes through the point P j which corresponds to the requested symbol,
and query each server Si at the point D ∩ Hi. In algorithms 1, 2, the main
and only change is to make sure that all lines under consideration are indeed
transversal to the chosen hyperplanes. We here explain how this works: the code
requires (q − 1) queries along each line. In our context, when P j is requested,
all σ lines have to pass through P j . For a direction U i, the queries sent to the
servers correspond to q − 1 points on the line Di defined by U i, those points
being all different from P j . Assume for instance that P j = (x1, . . . , xm) with
xm = αu, for some u. Query P j must not be sent to server Su who stores the
cHu part of the encoded word: Su would then know that it has the index of
the requested coordinate among its possibly queried indices. A solution to this
problem is to send σ fake (i.e. random) queries Xi,u, i = 1, . . . , σ, to server Su,
see Fig 2. This is enough to obfuscate server Su. See Algorithm 2.
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Algorithm 2. PIR Protocol from transversal lines on hyperplanes

Preprocessing Phase: The user:
1: chooses q,m, d, s so that the original data x of bit-size k can be encoded using

Multsd(q), i.e. parameters such that
(
m+d

d

)
log2 q ≥ k;

2: encodes the data x into the codeword c = evs(F ), where the coefficients of F
represent the original data x;

3: sends each server S� the cH	 part of the codeword.
Online Protocol: To recover cj = evsP j

(F ) for an index j ∈ [n], the user:
4: User selects σ distinct lines Di, 1 ≤ i ≤ σ, transversal to the hyperplanes, and

passing through P j ;
5: Let �j be such that Di ∩H�j = P j , i = 1, . . . , σ
6: For 1 ≤ � ≤ q, � 
= �j , user sends the queries {Di ∩H� = Ri,�}1≤i≤σ to server �.
7: User sends σ random queries Xi,�j , i = 1, . . . , σ to server S�j ;
8: For 1 ≤ � ≤ q, server sends the answers {yRi,	}1≤i≤σ . Answers {yRi,u}1≤i≤σ are

discarded by the user.
9: User then proceeds as in steps 5 to 8 of algorithm 1 to retrieve evs

P j
(F ).

5 Analysis of the Protocol Given in Algorithm 2

5.1 Overall Storage Overhead

The natural reduction from locally decodable codes to information theoretically
secure private information retrieval schemes leads to two overheads: the first
one is 1/R where R is the rate of the code used for encoding the data, the
second one is �, where � is the number of servers. The total overhead is thus
� · 1/R. Our scheme has an overhead of only 1/R, which is the natural overhead
of the code. With respect to the amount of storage required in each server for
encoding k symbols, only k/Rq symbols are required per server. In particular,
when R ≥ 1/q, each server stores less than k symbols, which is the amount of
information without redundancy.

5.2 Communication Complexity

We count the communication complexity in terms of the number of exchanged
bits during the online protocol, discounting the preprocessing phase. The user
has to send σ points to each server Sj , j = 1, . . . , q. A point consists in m
coordinates in Fq, but since it belongs to an hyperplane, it can be specified with
(m− 1) coordinates, i.e. (m− 1) log2 q bits. Thus σ(m− 1) log2 q bits are sent to
each server Sj , 1 ≤ j ≤ q, for a total of qσ(m − 1) log2 q. For his response, each
server sends σ field elements for each of the σ points it receives in the query:
σ2 field elements, i.e. σ2 log2 q bits, and thus a total of qσ2 log2 q bits for all the
servers. The overall communication complexity for the queries and the answers
is qσ(m − 1) log2 q + qσ2 log2 q = (m − 1 + σ)qσ log2 q = O(qσ2 log2 q), since
m ≤ σ as soon as s > 1.
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Parameters Locality Storage overhead Comm. complexity

q m s d k  queries  servers std ours std ours

16 2 1 14 120 15 16 32 2.1 180 128
16 2 2 29 465 45 16 25 1.7 900 768
16 2 3 44 1035 90 16 22 1.5 2880 2688
16 2 4 59 1830 150 16 21 1.4 7200 7040
16 2 5 74 2850 225 16 20 1.3 15300 15360
16 2 6 89 4095 315 16 20 1.3 28980 29568

16 3 1 14 680 15 16 90 6.0 240 192
16 3 2 29 4960 60 16 50 3.3 1680 1536
16 3 3 44 16215 150 16 38 2.5 7800 7680
16 3 4 59 37820 300 16 32 2.2 27600 28160
16 3 5 74 73150 525 16 29 2.0 79800 82880
16 3 6 89 125580 840 16 27 1.8 198240 207872

16 4 1 14 3060 15 16 320 21 300 256
16 4 2 29 40920 75 16 120 8.0 2700 2560
16 4 3 44 194580 225 16 76 5.1 17100 17280
16 4 4 59 595665 525 16 58 3.9 81900 85120
16 4 5 74 1426425 1050 16 48 3.2 310800 327040
16 4 6 89 2919735 1890 16 42 2.8 982800 1040256

256 2 1 254 32640 255 256 510 2.0 6120 4096
256 2 2 509 130305 765 256 380 1.5 30600 24576
256 2 3 764 292995 1530 256 340 1.3 97920 86016
256 2 4 1019 520710 2550 256 320 1.3 244800 225280
256 2 5 1274 813450 3825 256 310 1.2 520200 491520
256 2 6 1529 1171215 5355 256 300 1.2 985320 946176

256 3 1 254 2796160 255 256 1500 6.0 8160 6144
256 3 2 509 22238720 1020 256 770 3.0 57120 49152
256 3 3 764 74909055 2550 256 570 2.2 265200 245760
256 3 4 1019 177388540 5100 256 480 1.9 938400 901120
256 3 5 1274 346258550 8925 256 430 1.7 2713200 2652160
256 3 6 1529 598100460 14280 256 400 1.6 6740160 6651904

256 4 1 254 180352320 255 256 6100 24 10200 8192
256 4 2 509 2852115840 1275 256 1900 7.5 91800 81920
256 4 3 764 14382538560 3825 256 1100 4.5 581400 552960
256 4 4 1019 45367119105 8925 256 840 3.3 2784600 2723840
256 4 5 1274 110629606725 17850 256 690 2.7 10567200 10465280
256 4 6 1529 229222001295 32130 256 600 2.4 33415200 33288192

Fig. 3. Properties of our scheme for q = 16 and q = 256. We have to distinguish LDC-
locality (i.e.  queries) and PIR-locality (i.e.  servers), since they are not the same using
our construction. The storage overhead is the global overhead among all the servers:
in the standard case, using the standard LDC to PIR reduction as in Lemma 1, it is
(q− 1)/R; in our case, using partitioning on the servers, it is 1/R, R being the rate of
the code. Similarly the communication complexities (in bits) are shown. The degree d
has been chosen to be d = s(q−1)−1, the maximum possible value, with no correction
capability.
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5.3 PIR-Locality

Our construction leads to introduce the notion of “PIR-locality”: when an LDC
code admits a nice layout as multiplicity codes do, the number of servers can
be smaller than the locality of the code. We call this the PIR-locality. Here the
(LDC-)locality, i.e. the number of queries, is (q −1)σ, while the PIR-locality, i.e.
the number of servers, is q. The tables show the obtained parameters for q = 256
and q = 16 in Fig. 3. We can see that the rate and LDC-locality of the code
grow with s, while the PIR-locality is constant for a fixed q. The global storage
overhead is much smaller, and the communication complexities are very similar.

5.4 Robustness of the Protocol

Algorithm 1 involves σ applications of decoding of univariate multiplicity codes
of length q − 1. From [12], we can decode if the word yi = (yRi,1 , . . . , yRi,q−1)
is t-far from a codeword evs(F ), for a polynomial F ∈ Fq[X1]d, where t =
1/2(q − 1 − d/s). The received word yi corresponds to the answers of the q − 1
servers (all q servers except server u) for direction U i. Tolerating ν = �t� errors
here means that ν servers can answer wrongly. Thus, following the terminology
of Beimel and Stahl [3], our protocol is a ν-Byzantine robust protocol.

We sum up features of the protocol presented in Algorithm 2 in the following

Theorem 1. Let q be a power of a prime, m, s ∈ N∗, and d be an integer with
d < s(q−1). Set σ =

(
m+s−1

m

)
, with the constraint σ ≤ (qm−1)/(q−1). Protocol

from Algorithm 2 has:

– LDC-locality (i.e. number of queries) σ(q − 1);
– PIR-locality (i.e. number of servers) � = q;
– Communication complexity (m − 1 + σ)qσ log2 q bits;
– Storage overhead 1/R, where R =

(
m+d
m

)
/(qmσ) is the rate of the underlying

multiplicity code;
– ν-Byzantine robustness, where ν = �1/2(q − 1 − d/s)�, in the sense that it

can tolerate up to ν servers answering wrongly.

6 Discussing Parameters

6.1 Impact of the Byzantine Robustness on the Storage Overhead

Expressing d in terms of t for a given s gives d = (q − 1)s − 2st, which then
gives a rate, say Rt, to be compared with the rate R found for d = s(q − 1) − 1,
when no error can be tolerated. For small m and s(q − 1) large enough, we have
a relative loss:

Rt/R =

(
s(q−1)−2st+m

m

)
/σqm(

s(q−1)+m−1
m

)
/σqm

≈
(

(q − 1 − 2t + m/s)

(q − 1 + (m − 1)/s)

)m
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For m = s = 1, we find (q − 2t)/(q − 1), which is almost the rate of the t-error
correcting classical Reed-Solomon code. Otherwise, we get, for small t

Rt/R ≈
(

1 − 2t − 1/s

q − 1 + (m − 1)/s

)m

For t = 1 or 2 and m small, the relative loss is not drastic. But, if t is large, say
(q − 1)/2

Rt/R ≈ (1/(sq))m

and the loss is bigger.

6.2 Choice of q

We discuss how the size of q may be chosen independently of the size of entries
on the database. Consider a simple database, which is a table, with E entries,
each entry having S records, all of the same bit-size b. I.e. the total bit-size
of the database is thus N = E · S · b. A multiplicity code of Fq-dimension k
enables to encode k log2 q bits. Thus, to encode the whole database, we need
k log2 q ≥ N = E · S · b. If furthermore a = b/ log2 q is an integer, then, to
recover a record of size b, the user needs to apply the PIR protocol a times.
By definition of information theoretic PIR schemes, Protocol. 2 can be run any
number of times, with no information leakage. This implies that q does not need
to have a special relationship with the original data.

For instance, imagine a database of 90 000 IPV6 adresses. An IPV6 address
consists in 128 bits addresses, i.e. 16 bytes. The database has E = 90 000, S = 1,
b = 128, and requires 90 000 · 16 = 144 0000 bytes of storage. We first design a
PIR scheme using q = 256 = 28. Mapping a byte to an Fq-symbol, we need a
code of Fq-dimension at least 144 000. From Table 3, using m = 3, s = 1, we find
a code of Fq-dimension 2796160 ∼ 2, 7 · 106, and expansion 6. The LDC-locality
is 255, and its PIR-locality is 256. The communication cost is 6144 bits.

But we could also use q0 = 24 = 16. Then 144 0000 bytes require 2 ·144 0000 =
2, 88 · 106 Fq0 -symbols. From Table 3, with m = 4 and s = 6, we find a code
of Fq0 -dimension 2919735 ∼ 2.9 · 106, and expansion 2.8. Its LDC-locality is
(q0 − 1)

(
4+6−1

4

)
= 15 · 126 = 1890 while its PIR-locality is 16. This is better in

many aspects since less servers are needed, and a better rate is achieved. But
the communication cost is now 1040256 bits.

7 Conclusion

Starting from multiplicity codes, we have designed a layout of the encoded data
which leads to a new PIR scheme. It features a very small PIR-locality and
much smaller global redundancy compared to PIR schemes naturally arising
from LDCs, as well as Byzantine robustness. This layout is quite natural in the
context of multiplicity codes. A straightforward question, to be investigated in a
future work, is to construct layouts for other locally decodable codes, like affine-
invariant codes [8] and matching vector codes [14,6]. This seems feasible due to
the very multidimensional and geometric nature of these constructions.



A Storage-Efficient and Robust Private Information Retrieval Scheme 237

References

1. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the n1/(2k−1) bar-
rier for information-theoretic private information retrieval. In: Chazelle, B. (ed.)
The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings, vol. 59, pp. 261–270 (2002)

2. Beimel, A., Stahl, Y.: Robust Information-Theoretic Private Information Re-
trieval. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 326–341. Springer, Heidelberg (2003)

3. Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval.
J. Cryptology 20(3), 295–321 (2007)

4. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
Journal of the ACM 45(6), 965–981 (1998); Earlier version in FOCS 1995

5. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information
retrieval. In: 21st USENIX Security Symposium, Security 2012, pp. 269–283.
USENIX Association, Berkeley (2012)

6. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: STOC
2009. Proceedings of the Forty-first Annual ACM Symposium on Theory of Com-
puting, pp. 39–44. ACM (2009)

7. Gemmell, P., Sudan, M.: Highly resilient correctors for polynomials. Information
Processing Letters 43(4), 169–174 (1992)

8. Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In:
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS 2013, pp. 529–540. ACM, New York (2013)

9. Guruswami, V., Wang, C.: Linear-algebraic list decoding for variants of Reed–
Solomon codes. IEEE Transactions on Information Theory 59(6), 3257–3268 (2013)

10. Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes.
CoRR, abs/1304.8129 (2013)

11. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Yao, F., Luks, E. (eds.) Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, STOC 2000, pp. 80–86. ACM
(2000)

12. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decod-
ing. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing, STOC 2011, pp. 167–176. ACM, New York (2011)

13. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science 1997, pp. 364–373 (October 1997)

14. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
J. ACM 1, 1:1–1:16 (2008)

15. Yekhanin, S.: Locally Decodable Codes and Private Information Retrieval Schemes.
In: Information Security and Cryptography. Springer (2010)

16. Yekhanin, S.: Locally Decodable Codes. Foundations and Trends in Theoretical
Computer Science, vol. 6. NOW Publisher (2012)



238 D. Augot, F. Levy-dit-Vehel, and A. Shikfa

A Possible Ranges for d

In order the encoding function evs to be injective, it is sufficient to choose d < sq.
Indeed:

evs(f) = evs(g) ⇔ evs(f − g) = (0, . . . , 0),

which means that f −g admits sqm zeroes, counting multiplicities. By Schwartz-
Zippel lemma, we have: ∑

P∈Fm
q

mult(f − g, P ) ≤ dqm−1

that is here
sqm ≤ dqm−1

Thus, if we want f − g to be identically zero, it suffices that d < sq.
Now during the decoding phase, in the case of errors, one has to perform Reed-

Solomon with multiplicities decoding (indeed, σ Reed-Solomon applications of
decoding). In this case, the length of the Reed-Solomon code is always q − 1 as
we have q − 1 noisy evaluations of the original polynomial F on each line. In
order such a Reed-Solomon code to realize proper (i.e. injective) encoding, we
need d < s(q − 1), as shown below.

evs(f) = evs(g) ⇔ evs(f − g) = (0, . . . , 0),

i.e. f −g admits s(q−1) zeroes, where here evs(f) is the encoding of a univariate
degree ≤ d polynomial f ∈ Fq[X ] with a Reed-Solomon code of length q − 1 and
multiplicity s. But a univariate polynomial cannot have more zeroes, counted
with multiplicities, than its degree:∑

P∈F∗
q

mult(f − g, P ) ≤ d,

thus if we want f − g to be identically zero, it suffices that d < s(q − 1).

B Decoding Univariate Multiplicity Codes

When the number m of variables is 1, then the codes lead to Reed-Solomon
codes, also called derivative codes in [9]. We briefly recall how to decode these
codes, using the so-called Berlekamp-Welch framework [7]. We consider univari-
ate polynomials in Fq[X ]. For s > 0, we have Σ = Fs

q, and the code is the set of
codewords of length n = q − 1:

{c = evs(F ) | F ∈ Fq[X ]d} .

Decoding up to distance t is, for a given vector y ∈ Σn, find all polynomials
F ∈ Fq[X ]d such that

dΣ(evs(F ), y) ≤ t
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where dΣ is the Hamming distance in Σn. We first look for two polynomials
N, E ∈ Fq[X ] of degree (sn + d)/2 and (sn − d)/2 respectively, as follows. Write
the linear system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

N(αi) = E(αi) · yi,0
H(N, 1)(αi) = E(αi)yi,1 + H(E, 1)(αi) · yi,0

...

H(N, s − 1)(αi) =
∑s−1

j=0 H(E, j)(αi) · yi,s−1−j

for i = 1, . . . , n, where the indeterminates are the coefficients of N and E. This is
a system of sn homogeneous linear equations in (sn−d)/2+1+(sn+d)/2+1 =
sn + 2 unknowns. Thus a non-zero solution (N, E) always exists. Given any
solution, F can then be recovered as N/E.

Assuming that t = (n−d/s)/2, we can show the correctness of this algorithm:
any univariate polynomial F of degree ≤ d, such that dΣ(evs(F ), y) ≤ t will
satisfy N − EF = 0 where (N, E) is a solution of the above system. Indeed, for
any αu such that evs

αu
(F ) = yu, the system is satisfied at αu, and hence the

polynomial N − EF has a zero of multiplicity s at αu. Thus∑
i=1,...,n

mult(N − EF, αi) > (n − t)s = (sn + d)/2.

But deg(N −EF ) ≤ max{(sn+d)/2, d+(sn−d)/2} = (sn+d)/2. Thus N −EF ,
having more zeroes than its degree, is identically zero.
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Abstract. Parties in a rational secret sharing protocol may use mobile
devices which are severely resource-constrained. Therefore, it may be in
the interest of such parties to try to obtain the secret while spending as
little as possible on communication and computation. This preference is
different from a traditional rational player and is similar to freeriding. We
call such players ‘silent’. The traditional rational player is represented
as a ‘non-silent’ player and we modify its preference to incorporate the
fact that 1) it is indifferent between incurring a cost and not incurring
a cost when everybody is able to reconstruct the secret and 2) it prefers
that nobody obtains the secret over some players obtaining the secret
free-of-cost while others incur a cost in reconstructing the secret. We
thus introduce a mixed-utility model consisting of the utility of obtaining
the secret and the cost of computation in order to obtain the secret. We
propose new rational secret reconstruction protocols in the simultaneous
channel model for both online and offline dealer scenario, that satisfy
a new notion of fairness which we call cost-aware complete fairness, in
the presence of both silent and non-silent players. Our protocol with
the offline dealer makes use of a simplified version of the Boneh-Gentry-
Waters [21] broadcast encryption scheme. Both types of parties find it to
be in (Bayesian) computational Nash Equilibrium to follow our protocols
and the protocols are (� t

2
� − 1) resilient for non-silent players.

1 Introduction

Threshold secret sharing comprises the distribution of shares of a secret s among
n players P1, . . . , Pn such that at least t of these players must cooperate in or-
der to reconstruct the secret from the shares they possess. By cooperation, we
mean that at least t players must communicate their shares so that in the end,
each player has at least t shares with them. An example of such a threshold
secret sharing scheme is Shamir’s scheme [10] that uses the concept of polyno-
mial interpolation for generation and distribution of shares from the secret by a
dealer and subsequent reconstruction of the secret by players. It is often consid-
ered that players that are ‘good’ or ‘honest’ cooperate to reconstruct the secret,
while players that are ‘bad’ or malicious do not cooperate [6]. So, for successful
reconstruction of the secret, at most, n − t players may be ‘bad’. However, since
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each ‘good’ party communicates its share, the ‘bad’ parties too receive these
shares and are able to reconstruct the secret, even without actively participat-
ing in the reconstruction mechanism. Halpern and Teague [6] introduced the
concept of rational players in threshold secret sharing. This area which came to
be known as rational secret sharing (RSS) and its application in secure multi-
party computation (known as rational multi-party computation or RMPC ) has
attracted a lot of fruitful research [1,2,4,8,11,12,13,17]. Rational players are nei-
ther ‘good’ nor ‘bad’ but simply utility maximizing. Each rational party wishes
to learn the secret itself while allowing as few others as possible to learn the
secret. So, rational parties are inherently selfish. In the presence of such players,
Shamir’s scheme fails because, during secret reconstruction, it is in Nash Equi-
librium for each player to remain silent (instead of broadcasting its share). Since
the behavior of rational players favor an unfair outcome, achieving ‘fairness’ is
one of the central problems that rational secret reconstruction protocols need
to address. RSS protocols suggest a strategy for accomplishing a fair outcome
(where everybody gets the secret or nobody gets it) such that each player finds
it to be in its best interest to follow this suggested strategy.

In existing rational secret sharing protocols, what happens if a player is silent
but is still listening to the communication channel? If there are less than t players
that communicate, then the secret cannot be reconstructed. Otherwise, since, in
each round, the protocol requires the players to communicate their shares with
all the other players, irrespective of whether they are silent or not, the player who
remains silent is able to obtain the shares in each round. Along with the parties
that communicated all the while, this player who remained silent throughout also
comes to know the secret. The following example describes a practical scenario
where a rational party may prefer to remain silent. In a standard rational secret
sharing scenario, the costs incurred by each party include the cost of message
transfer and the cost of computation in each round. Now, parties in a rational
secret reconstruction mechanism may be using different types of devices such as
PCs and mobile devices. A party using a mobile device is energy constrained.
Apart from obtaining the secret, minimizing energy consumptions is also of in-
terest to the party. It wants to perform as little computation and data transfer
as possible. However it also wants to know the value of a secret that other parties
may be reconstructing. For this to be possible, its strategy is to remain silent
all the while and listen to all messages communicated by other parties. In this
way, it minimizes its costs by not actively communicating or computing any-
thing till all the shares of the actual secret are obtained. It only incurs the cost
of downloading messages and cost for the final reconstruction of the secret. Prior
protocols addressed only deviations that referred to remaining silent to obtain
the secret alone. Our main focus is to eliminate silence resulting from the desire
to obtain no cost.

Our Contributions. In this paper, we introduce a mixed-utility model consist-
ing of the utility of obtaining the secret and cost of computation in order to
obtain the secret. We propose new rational secret reconstruction protocols in



242 S.J. De, S. Ruj, and A.K. Pal

the simultaneous channel model for both online and offline dealer scenario, that
satisfies a new notion of fairness which we call cost-aware complete fairness, in
the presence of both silent and non-silent players. The solution approach that we
adopt is inspired by the approach of Asharov and Lindell [2] for achieving util-
ity independence. Our protocol with the offline dealer makes use of a simplified
version of the Boneh-Gentry-Waters [21] broadcast encryption scheme. Finally,
we show that both types of parties find it to be in Bayesian Nash Equilibrium
to follow our protocols and the protocols are ($ t

2% − 1) resilient for both types
of players.

Why should we bother at all about ‘silent’ rational parties? In rational secret
reconstruction protocols, the reconstructed secret reaches all parties irrespective
of their participation. So even though a player is active, it still prefers to remain
silent and gets the secret. This is unfair because parties who have communicated
during the protocol have incurred some cost. The others get the secret for free.
The silence of an active party may even prevent the secret from being recon-
structed which is again to the disadvantage of parties who communicate. This
requires us to introduce the new notion of ‘cost-aware complete fairness’ in order
to redefine the concept of ‘fairness’ for this new situation, with respect to cost
of communicating as opposed to remaining silent. To ensure that such a party
communicates, we must ensure that only parties that communicate during the
reconstruction protocol get the secret. A protocol that takes care of the situation
described above would inevitably cause the total cost of computation (i.e., the
cost of computation of all parties taken together) to increase by making silent
players incur some cost in order to obtain the secret. Although this may seem to
be a disadvantage at first, we must remember that players in a rational setting
are not concerned about the benefits of the whole group of players. Rather, each
of them is selfish and maximizes its own utility. We would like to observe here
that this situation is very similar to the classic example of the freerider problem,
“Tragedy of the Commons” [5], where selfish behavior by individuals cause them
to be worse off than if they had considered the interest of the group or commu-
nity as a whole [3,9]. So even though the solution approach may lead to the
overall increase in the cost, it should not be a concern to any of the non-silent
players as long as each of them is able to reconstruct the secret while incurring
an acceptable cost for preventing silent players from freeriding.

To successfully threaten silent parties that they would be thrown away from
the protocol once they start remaining silent is a major challenge in our solution.
Keeping track of parties remaining silent is another hurdle. In the online dealer
case, we have achieved this by employing the dealer itself to keep track of the
silent players and not to send them further shares once they start remaining
silent. For offline dealer case, we achieve the same by using broadcast encryption.

1.1 Related Work

Halpern and Teague (2004) [6] first demonstrated how Shamir’s secret sharing
failed in the presence of rational parties and showed that a fair rational secret
sharing protocol cannot be achieved if the secret revelation round is known to
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the parties beforehand. They proposed a (t, n) RSS protocol (with n ≥ 3) that
survives iterated deletion of weakly dominated strategies in the presence of an
online dealer and with simultaneous broadcast channel. Improving on their work,
Gordon and Katz (2006) [4], under similar assumptions about dealer and chan-
nel, proposed a protocol that works even for n = 2. In 2008, Kol and Naor [8], for
the first time, discussed rational secret sharing in the non-simultaneous channel
model and in the presence of an offline dealer. Henceforth, almost all works on
rational secret sharing assume the dealer to be offline. As pointed out later by
Asharov and Lindell (2010) [2], Kol and Naor’s protocol is fair but not correct,
since they assume that players prefer obtaining a fair outcome where all play-
ers prefer obtaining the correct secret rather than causing the other players to
obtain an incorrect secret. Ong et al (2009) [13] proposed a two-round protocol
for rational secret sharing in the presence of a minority of honest parties, in
non-simultaneous channel and with offline dealer. In 2010, the work of Asharov
and Lindell [2], introduced the concept of utility independence. One of the most
significant results they arrived at was a fair (t, n) (where n ≥ 3) RSS protocol,
independent of any utility value in the simultaneous channel model. They were
also the first to achieve both correctness and fairness in the non-simultaneous
channel even when players may mislead others into believing in an incorrect value
of the secret.They also proved the impossibility of achieving independence of the
utility of misleading in the (2, 2) case in non-simultaneous channel model and the
impossibility of obtaining a fair reconstruction protocol in the presence of side
information. However, future works such as [18] and [17] achieve these respec-
tively. Fuchsbauer et al (2010) [12] demonstrated an interesting use of Verifiable
Random Function (VRF) in non-simultaneous as well as point-to-point channel.
They were also the first to propose an exact t-out-of-n RSS protocol in the point-
to-point network. In 2010, Lysysanksaya and Segal [17] showed that it is possible
to achieve fairness even in the presence of arbitrary auxiliary information using
the Time Delayed Encryption scheme. De and Pal [18] (2013), use the result
of [17] to show that it is possible to achieve both correctness and fairness with
UNF -independence in the non-simultaneous channel model. The earliest refer-
ence to ‘different’ rational behavior than expected by the mechanism designer in
the literature appears in the work of Abraham et al [1]. They refer to agents who
are ‘altruists’ and prefer more agents learning the secret contrary to the normal
assumption of selfishness of rational agents. Specifically, they cite the example of
peer-to-peer file sharing networks like Kazaa or Gnutella which work on the basis
of cooperative behavior of participants rather than selfishness. Lysyanskaya and
Triandopoulos [11] consider the presence of irrational adversaries and rational
players for their general secure rational multi-party computation protocol. Groce
et al. [20] consider rational adversaries while revisiting the Byzantine Agreement
problem in the rational setting. They argue that it may be sometimes beneficial
to consider that even adversaries, like other players, try to maximize their util-
ity by moving towards their desired goal instead of just behaving arbitrarily, a
worst-case scenario that is typically assumed in cryptography. Similarly, De and
Pal [19], introduce the concept of rational adversary in the context of first and
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second price sealed bid auctions. Kol and Naor [8] briefly describe a strategy of
a rational player who wants to obtain the secret alone, in which it communicates
its share in the first round but remains silent in all the subsequent rounds. They
argue that such strategies are not ruled out by the iterated admissibility solution
concept used by Halpern and Teague [6].

In our work, the preferences of the silent and non-silent players are influenced
by their utility of obtaining the secret and the cost of computation to obtain the
secret. Some other works in the literature also consider this mixed utility model.
In their work on privacy enhanced auctions with rational players, Miltersen et
al. [15] discuss about privacy consciousness of rational players and propose a
hybrid utility model which is a linear combination of monetary utility, i.e., the
monetary gain related to participating in the auction and information utility,
i.e., the utility related to maintaining privacy. On a similar note, De and Pal [19]
also discuss about a hybrid utility consisting of auction utility and information
utility in the context of the role of a rational adversary in auctions. Halpern
and Pass [7] provide an interesting case where the utility of a player not only
depends on the actions and types of players but also on the complexity of the
chosen strategy. The complexity may be represented by cost in terms of running
time or space etc.
Organization of the paper. In section 2, we introduce preliminary concepts
of our work. In sections 3 and 4, we discuss the problem and various possible
solution approaches respectively. We propose our protocols in section 5 and
conclude in section 6.

2 Preliminaries

2.1 Preference of ‘Silent’ and ‘Non-silent’ Players

In this paper, we associate a cost incurred by each party to the mechanism

and this cost can be denoted by
−−−−−−−−→
c((Γ, −→σ )t,n) = (c1, . . . , cn), where ci is the

cost incurred by party Pi and ci ≥ 0. We then define the utility function ui

of each party Pi defined over the set of possible outcomes of the game and the
cost incurred by the players and are polynomial in the security parameter k.
Thus, in this work, UTN

i = ui(1
k, (oi = s, o−i =⊥), (ci > 0, c−i > 0)), UTcT

i =
ui(1

k, (oi = s, o−i = s), (ci = 0, c−i > 0)) (where o−i and c−i refer to the outputs
and costs respectively corresponding to the players P−i other than Pi). T refers
to obtaining the correct secret, N refers to not obtaining the secret and F refers
to obtaining an incorrect value of the secret.

Table 1 represents different outcomes, costs incurred and utility of the parties
corresponding to outcomes and incurred costs. There are other possible outcomes
and utilities which we have not considered in this work. Players have their prefer-
ences based on the different possible outcomes of the secret reconstruction game.
We shall refer to the following preferences of a party Pi throughout our work:
1. R′

1 : UTN > UTcT = UTT > UNN > UTTc > UNT

2. R′
2 : UTN > UTcT > UNN > UTT > UTTc > UNT



Should Silence be Heard? Fair Rational Secret Sharing 245

Table 1. Outcomes and Utilities for (t, n) rational secret reconstruction

Outcome of
Pi, (oi)

Outcome of
P−i

Cost incurred
by Pi, (ci)

Cost incurred
by P−i, (c−i)

Utility of Pi,
(Ui(oi, o−i))

Utility of P−i,
(U−i(oi, o−i))

oi = s o−i = s ci > 0 c−i > 0 UTT
i UTT

−i

oi =⊥ o−i =⊥ ci > 0 c−i > 0 UNN
i UNN

−i

oi = s o−i =⊥ ci > 0 c−i > 0 UTN
i UNT

−i

oi =⊥ o−i = s ci > 0 c−i > 0 UNT
i UTN

−i

oi = s o−i = s ci = 0 c−i > 0 UTcT
i UTTc

−i

oi = s o−i = s ci > 0 c−i = 0 UTTc
i UTcT

−i

We call a party having the preference R′
2 a silent party and that having R′

1 a
non-silent party. We assume that silent and non-silent parties may be present
in a secret reconstruction game simultaneously. Incurring any cost for obtaining
the secret is a strict no-no for the silent player, unless incurring such cost will
enable it to get the secret alone. However, existing rational secret reconstruction
mechanisms already prevent one from obtaining the secret alone. Therefore, any
behavior that allows the silent party to freeride (i.e., obtain the secret but not
incur any cost, UTcT ) is highly preferable. For non-silent players, on the other
hand, the priority is to obtain the secret and for that they do not mind incurring
a cost, given that others also incur a cost (i.e., not freeriding). Therefore, to such
players, UTcT = UTT . Neither silent nor non-silent players like others to freeride
(i.e., the situation where UNN > UTTc). When others freeride, the chances of
obtaining the secret without incurring a cost reduces for a silent player. For a
non-silent player, tolerating a freeriding player is synonymous to reducing the
chance of reconstructing the secret because the number of communicating players
may fall below t. We note here that we do not intend to model envy. Instead, we
model the situations where 1) players who are willing to incur some costs in order
to reconstruct the secret (or in other words to cooperate) do not tolerate players
who freeride (i.e., silent players) and 2) players who freeride do not want others
(i.e., other silent players) to freeride so as to keep intact the chances of being
able to reconstruct the secret without incurring any cost. Both these situations
reinforce the fact that both silent and non-silent players are inherently selfish.

2.2 Cost-Aware Complete Fairness in the Presence of Silent Players

Let (Γ, −→σ )t,n be a (t, n) rational secret reconstruction mechanism. Following
previous convention [2], we define cost-aware complete fairness as follows:

Definition 1. (Cost-aware Complete Fairness) A rational secret reconstruction
mechanism (Γ, −→σ ) is said to be completely fair in the presence of silent and non-
silent players if for every arbitrary alternative strategy σ

′
i followed by party Pi,

i ∈ {1, . . . , n} there exists a negligible function μ in the security parameter k
such that the following hold:
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1. Pr[oi(Γ, (σ
′
i, σ−i)) = s] ≤ Pr[o−i(Γ, (σ

′
i , σ−i)) = s] + μ(k) and

2. Pr[oi(Γ, (σ
′
i , σ−i)) = s|(o−i(Γ, (σ

′
i , σ−i)) = s) ∧ (ci(Γ, (σ

′
i , σ−i))) < c−i(Γ, (σ

′
i , σ−i))] < μ(k)

The first condition implies that if a party with a deviating strategy obtains the
secret, then a non-deviating party should also obtain the secret, except with
negligible probability. On the other hand, the second condition implies that, the
situation where a deviating player obtains the secret given that a non-deviating
player has also obtained the secret and the deviating player incurs a cost less than
the non-deviating player, occurs with negligible probability. Existing rational
secret sharing protocols do not satisfy the notion of cost-aware complete fairness
in the presence of silent and non-silent players. The preference of rational players
as defined in existing works deals only with their utility of obtaining the secret,
with respect to others. For example, a rational player in such works prefers
to obtain the secret alone and that everybody obtains the secret over nobody
obtaining it. In this work we introduce an additional component, the cost of
computation. In Shamir’s secret sharing scheme, a player would remain silent
in order to obtain the secret alone. However, existing works in rational secret
sharing, prevent such a deviation and enforce that either everybody gets the
secret (when there are at least t communicating players) or nobody gets the secret
(when there are less than t communicating players). However, the silent players
that we define has an additional reason to remain silent: cost of computation.
A silent player, by not communicating its share, either obtains the secret free
of cost (when there are at least t communicating players) or denies everybody
the secret (when there are less than t communicating players). In all existing
protocols (assuming simultaneous or non-simultaneous broadcast or point-to-
point channel) in rational secret sharing, players are supposed to stop sending
out their shares as soon the number of shares received in the previous round
falls below t. The effect of this is that, if there are less than t players who
communicate, the secret is not reconstructed at all. However, this does not in
any way stop a silent player (as we define) from being silent i.e. from deviating,
because it prefers nobody obtaining the secret to everybody obtaining the secret
after it incurs some cost. As an example, let us consider the t-out-of-n protocol
using non-simultaneous broadcast channel proposed in [8]. In the presence of
both silent and non-silent players, all silent players would get the secret in a
round as long as the total number of communicating players is at least t. In the
n-out-of-n point-to-point channel protocol proposed in [17], none of the players
obtain the secret even if there is one silent player. In this case, all the players
obtain a utility UNN , but the silent player is strictly better off in comparison
to the non-silent player because the main motive of the silent player, i.e., not
incurring any cost is successful while the main motive of the non-silent player,
i.e., obtaining the secret is not achieved.

2.3 Rational Secret Reconstruction with Silent Players as a
Bayesian Game

Our problem of rational secret reconstruction in the presence of silent players
can be represented as a Bayesian game or a game of incomplete information.
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Definition 2. (Bayesian Game [16]) A Bayesian game or a game with incom-
plete information G = (θ, S, φ, u) consists of:
1. A set Θ = Θ1 × Θ2 . . . × Θn, where Θi is the finite set of possible types for

player Pi;
2. A set S = S1 × S2 × . . . × Sn, where Si is the set of possible strategies for

player Pi;
3. A joint probability distribution φ(θ1, . . . , θn) over types where φ(θi) > 0 for

all θi ∈ Θi for finite type space;
4. Utility functions ui : S × Θ → R.

In our rational secret reconstruction game, a player may have either preference
R1 or preference R2. Each player knows its own preference but is not aware of
the preference of the other players. Therefore, we refer to these preferences as
types of the players such that Θi = {R1, R2}. We can assume that each player
has a prior belief that the other players’ preferences are drawn uniformly from
{R1, R2}. These prior beliefs are assumed to be common knowledge.

Definition 3. (Bayesian Nash Equilibrium [16]) The suggested strategy −→σ in
the mechanism (Γ, −→σ ) is a Bayesian Nash Equilibrium if for every player Pi,

type θi and every strategy σ
′
i,∑

θ−i∈Θ−i

ui(σi(θi), σ−i(θ−i), θi, θ−i)φ(θ−i|θi) ≥
∑

θ−i∈Θ−i

ui(σ
′
i(θi), σ−i(θ−i), θi, θ−i)φ(θ−i|θi)

2.4 Collusion Resilience

In general (t, n) rational secret reconstruction protocols are t − 1 resilient, with
a few exceptions. The completely utility-independent (t, n) rational secret re-
construction protocol suggested by Asharov and Lindell [2] is $ t

2% − 1 resilient.
The (t, n) rational secret sharing protocol proposed by Kol and Naor[8] is also
susceptible to collusions between a long player and a short player. For the prob-
lem scenario that we address, there may be three types of collusion: 1) collusion
among silent players; 2) collusion among non-silent players and 3) collusion be-
tween silent and non-silent players. Formally, a k-resilient equilibrium has been
defined as follows:

Definition 4. (k-resilient Equilibrium [1]) Given a non-empty set C ⊆ N , σC ∈
SC is a group best response for C to σ−C ∈ S−C if, for all τC ∈ SC and all i ∈ C,
we have, ui(σC , σ−C) ≥ ui(τC , σ−C). A joint strategy −→σ ∈ S is a k-resilient
equilibrium if for all C ⊆ N with |C| ≤ k, σC is a group best response for C to
σ−C . A strategy is strongly resilient if it is k resilient for all k ≤ n − 1.

3 Fair Rational Secret Sharing with Silent and Non-silent
Players

3.1 Our Assumptions

In this work, we assume that silent players remain silent at all points of time, i.e.,
a silent player never becomes non-silent, or more specifically, does not change
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its preference to R′
1. Moreover, which players are silent and which are not is

not known beforehand. We also assume that parties do not know the number
of players that may communicate in a secret reconstruction protocol. The chan-
nel between the dealer and each player is considered secure. Our protocols use
simultaneous broadcast channel. By nature, a silent player does not want to in-
cur any cost by communicating its shares. Even when it colludes with players
like itself, it has to communicate in order to reconstruct the secret among those
that collude. Thus, collusion among silent players for reconstructing the secret
is not practical. However, the aim of colluding silent players may be to prevent
communicating players from reconstructing the secret. In this work, we consider
that the number of silent players is at most $ t

2% − 1. Hence, in our protocols
where the least secret reconstruction threshold that we use is $ t

2% whereas the
required threshold is t (since it is a (t, n) secret reconstruction scheme where
n ≥ 3 and 2 < t ≤ n), no collusion of silent players can prevent communicating
players from reconstructing the secret. In addition, we assume that silent and
non-silent players do not collude with each other and that collusion takes place
only among non-silent players.

3.2 Solution Concept

We assume that the exact number and identities of communicating parties is not
known to any of the parties or to the dealer before the protocol execution begins.
In the first round, shares of a secret are distributed to all parties supposed to
take part in the secret sharing. In subsequent rounds, shares are only distributed
to or exchanged among those that communicated in the previous round. If the
dealer is online, then in each round with probability β, the dealer distributes the
shares of the correct secret and with probability 1 − β it distributes the shares
of a fake secret. If, on the other hand, the dealer is offline it simply sends a list
of shares to all the players where the position of the shares of the actual secret
in the list is chosen according to a geometric distribution G(β) with parameter
β. In the online case, the dealer keeps track of the communicating parties in
each round and sends shares only to those that communicated in the previous
one. It also facilitates players to exchange their shares with only those that
communicated in the previous round. In the offline case, the dealer does not
have the opportunity to give out shares selectively, unlike the online case. So,
each communicating player has the responsibility of exchanging its share only
with those that communicated in the previous round. In both the cases, the first
round requires at least t players to communicate, while in subsequent rounds it
is sufficient if only $ t

2% players communicate. As usual [1,2,4,8,11,12,13,6,17], the
dealer is assumed to be honest and signs all shares sent to the players.

In the first round, messages are sent to each party (since it is not known
whether a party is active or not) while in the subsequent rounds communication
occurs only among those parties which communicated in the previous round. If
less than t messages are received by a party in the first round then the proto-
col is aborted. So, in the first round, silent parties get the chance to know how
many communicating parties t∗ are there. Due to the nature of their preferences,
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any silent party may wish to quit after this round 1) if it finds that t∗ ≤ t − 1
thus ensuring a utility of UNN or 2) if it finds that t∗ ≥ t ensuring a utility
of UTcT . However, the tricks in our protocol are that 1) after the first round it
is sufficient if $ t

2% parties communicate and 2) in any round (except the first),
shares are distributed only to those parties that communicated in the previous
round. The first clause ensures that the secret can be reconstructed even without
any communication from the silent player beyond the first round. The second
clause ensures that a silent player that does not communicate does not obtain
the secret without any cost incurred. So in each round after the first one, if a
player gets less than $ t

2% messages then it quits. Since the first round requires
at least t players to communicate, it is a (t, n) secret reconstruction mechanism.
In our solution approach, the following cases arise:
Case I: t∗ < t − 1. In this case, secret reconstruction is anyway not possible,
irrespective of whether the silent player communicates or not.
Case II: t∗ = t−1.Here, the utility of the silent player due to non-communication
is UNN . Although the silent player is able to reconstruct the secret in the first
round, it is not the actual secret. Moreover, the other parties abort the protocol
because each of them receive less than t shares. If the silent player communicated
it would have obtained the secret and hence its utility would have been UTT .
Case III: t∗ ≥ t. In this case, if the silent party does not communicate then it
puts an end to all future scope of reconstructing the secret, because only parties
that communicate in a particular round get the shares corresponding to the next
round. Non-silent players have the incentive to communicate and reconstruct the
secret whereas the silent player does not get it. So the utility of the silent player
in this case becomes UNT . On the other hand, if the silent player did commu-
nicate, then it would have received the reconstructed secret giving it the utility
of UTT .
Even in our approach, we observe that communication in the first round does not
dominate non-communication. However, we have assumed that none of the play-
ers know the number of communicating parties in the protocol until the end of
the first round. Now, suppose a silent player decides not to participate in the pro-
tocol. Let us also assume that with probability β

′
the number of communicating

players t∗ = t− 1, while with probability (1−β
′
), the number of communicating

players is t∗ ≥ t. Here, we do not consider t∗ < t− 1 because in this case none of
the parties can reconstruct the secret irrespective of whether silent players com-
municate or not. Then for communication in the first round to be beneficial for
a silent player, the expected utility of communication must be greater than that
of non-communication for each silent player Pi: UTT

i > β
′
UNN
i + (1 − β

′
)UNT

i

So the overall condition on β
′
is:β

′
< mini

(
UTT

i −UNT
i

UNN
i −UNT

i

)
However, β

′
cannot be

controlled by the protocol designer and hence is not a parameter of the protocol.
We assume that the value of β

′
follows the above defined condition or in other

words, our protocol works only if β
′
satisfies the above condition.

Choice of β. Since the protocol must be fair, so we must make an appropriate
choice of β like previous rational secret sharing protocols. Reconstructions in
rounds after the first round require only $ t

2% players. Suppose a non-silent party
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Pj does not communicate in one of the rounds after the first. If this round is
the revelation round, Pj only obtains a utility of UTT

j instead of UTN
j because

there are extra players who communicate in this round. If this round is not the
revelation round, then it obtains a utility of UNT

j because the dealer will not
distribute shares to it in any subsequent rounds and hence even when others
obtain the secret, Pj will never be able to reconstruct the secret again. So, for
non-silent players, β must satisfy the condition: βUTT

j + (1 − β)UNT
j < UTT

j

Since for non-silent players UTT
j > UNT

j , the above condition is true for any
value of β. Now, suppose a silent party Pi does not communicate in one of the
rounds after the first. If this round is the revelation round, Pi only obtains a
utility of UTcT

i instead of UTN
i because there are extra players who communicate

in this round. If this round is not the revelation round, then it obtains a utility
of UNT

i because neither the dealer will distribute shares to it nor other players
will send their shares to it in any subsequent rounds and hence even when others
obtain the secret, Pi will never be able to reconstruct the secret again. So, for
silent players, β must satisfy the condition: βUTcT

i + (1 − β)UNT
i < UTT

i So we

have, β <
UTT

i −UNT
i

UTcT
i −UNT

i

. Therefore, the overall choice of β satisfies the condition:

β < mini

(
UTT

i −UNT
i

UTcT
i −UNT

i

)
. For the remaining rounds, we require the active parties

to multicast their messages only to those parties that communicated in the first
round. This can be achieved with the help of broadcast encryption technique
when broadcast channel is being used.

4 Fair Rational Secret Sharing Protocols with Silent and
Non-silent Players

4.1 Protocol with Online Dealer

Our approach is inspired by Asharov and Lindell’s [2] completely utility inde-
pendent protocol. The only difference is that, in our protocol, the online dealer
has to keep track of the number and identities of parties that are participating
in each round and should send shares of the secret to these parties only.
Protocol πonline

s−RSS

The Dealer’s Protocol:
Input. The secret s to be shared using (t, n) threshold secret sharing.
Computation and Communication: In the ith round, the dealer does the
following:
1. If this is the first round (i = 1), then the dealer chooses a random value r

and generates (t, n) shares of r ⊕ s and distributes this share to all the n
parties.

2. Else if the dealer had received an abort signal from the players at the end
of the (i − 1)th round, then it aborts.

3. Otherwise, the dealer does the following:
– It identifies the players who communicated in the (i − 1)th round from

broadcast messages received from players. If the number of players that
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communicated in the last round ni−1 < $ t
2%, then abort. For each of

these ni−1 identified players, the dealer does the following:
• It communicates a secret key ski.
• It then communicates a ($ t

2%, n) share si,j of the actual value r with
probability β or that of a fake value rf with probability (1 − β).

Output. The output for round i is a share si,j and a secret key ski for a
player Pj .
The Players’ Protocol:
In the ith round, each player does the following:
1. Each player Pj computes ci,j ← Encski(si,j) and broadcasts this encrypted

share simultaneously with other players.
2. If this is the first round (i = 1), then the player aborts if it has received less

than t shares at the end of this round. Else, if i > 1, then the player aborts if
it has received less than $ t

2% shares at the end of this round. Else the player
continues to the next step.

3. On receiving sufficient encrypted shares from other players at the end of a
round, each player first decrypts each of the encrypted share to obtain the
share in plain-text as follows: si,j ← Decski(ci,j). It then reconstructs a value
si from the shares obtained in this round.

– If i > 1, the player computes s
′ ← s1 ⊕ si. If i = 1 then simply store s1.

– If s
′ ∈ S (where S is the set of possible secrets), then the player aborts

the protocol, informs the dealer and outputs s
′

as the correct secret.
Otherwise continue with the next iteration.

Output. Each party outputs the secret s if it has been reconstructed. If the
protocol aborts before the secret is obtained then, it outputs a default value.

Theorem 1. Let n ≥ 3 and 2 < t ≤ n be integers. Then the proposed protocol
πonline
s−RSS which is a prescribed strategy −→σ of the game (Γ, −→σ ) is a (Bayesian)

computational Nash Equilibrium for both silent as well as non-silent parties for
suitable value of β

′
and an appropriate choice of β. The protocol is also ($ t

2%−1)
resilient with respect to non-silent players.

Proof. Since shares are signed by the honest dealer, players cannot send false
shares undetected.
Case I: Silent Players. Let us trace the actions of a silent player Pi through-
out the protocol.Pi is not silent in the first round. We have assumed that
players do not know the number of communicating players beforehand. Suppose,
Pi decides not to participate in the first round of the protocol. With probability
β

′
we have t∗ = t − 1 and with probability (1 − β

′
), we have t∗ ≥ t. Then the

expected utility of the silent player in not participating is β
′
UNN +(1−β

′
)UNT

whereas that of participation is UTT . Since, β
′

has been assumed to satisfy

the condition β
′
< UTT−UNT

UNN−UNT , the expected utility of communicating is strictly
greater than that of remaining silent. Therefore, Pi communicates in the first
round of the protocol.
Pi is not silent in the remaining rounds. Since Pi has participated in the
first round, it receives its share from the dealer and hence is capable of commu-
nicating this share in the next round. After the first round, the cooperation of
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only at least $ t
2% parties are required. Suppose Pi decides to remain silent. Now,

if this is not the revelation round, then Pi does not learn the secret in this round
and also forgoes all possibilities of learning the secret in future rounds. If this is
the revelation round, then Pi learns the secret. But since the number of shares
available is more than the threshold value of $ t

2%, everybody who communicated
in the previous round learns the secret. So the expected utility of Pi for remain-
ing silent is βUTcT + (1 − β)UNT . Now, suppose, Pi decides to communicate.
Then it will be able to reconstruct the secret and hence gain a utility of UTT . For
our choice of β, for Pi, the utility of communicating is strictly greater than the
expected utility of remaining silent. So Pi will also communicate in the rounds
after the first round.
Case II: Non-silent Players. As we saw in case of previous RSS protocols, a
non-silent player Pj is most interested in getting the secret alone. Since for Pj ,
UTT > UNN , it communicates in the first round irrespective of the number of
communicating players. After the first round, the cooperation of only at least
$ t
2% parties are required. Suppose Pj decides to remain silent. Now, if this is

not the revelation round, then Pj does not learn the secret in this round and
also forgoes all possibilities of learning the secret in future rounds. If this is the
revelation round, then Pj learns the secret. But since the number of shares avail-
able is more than the threshold value of $ t

2%, everybody who communicated in
the previous round learns the secret. So the expected utility of Pj for remaining
silent is βUTT + (1 − β)UNT . Now, suppose, Pj decides to communicate. Then
it will be able to reconstruct the secret and gain a utility of UTT . We observe
that irrespective of the value of β, for Pj , the expected utility of communicating
is strictly better than that of remaining silent because UNT < UTT .
For both types of players UTT > UTTc . By sending shares to everybody, each
of these players will enable other silent players to reconstruct the secret free of
cost. On the other hand, communicating shares to only those that communi-
cated in the previous rounds helps to eliminate players that take advantage by
remaining silent. Moreover, even if a player communicates its shares to only a
subset of players that communicated in the previous round, since the number of
shares available is more than the threshold value of $ t

2%, the remaining players
still have enough shares and hence are not eliminated from the protocol. Hence
it is in (Bayesian) computational Nash Equilibrium for both Pi and Pj to com-
municate shares to only those that communicated in the last round.
($ t

2%−1) resilience. Since in our protocol r⊕s is shared using ($ t
2%, n) Shamir’s

secret sharing scheme, it is impossible for any group of ($ t
2% − 1) players to re-

construct r ⊕ s and hence the secret s. So, our protocol is ($ t
2% − 1) resilient for

non-silent players. �

4.2 Protocol with Offline Dealer

The offline dealer cannot keep track of the players who are participating in
each round. It is not possible for it to distribute encryption/decryption keys
selectively.
Protocol πoffline

s−RSS
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The Dealer’s Protocol:Let s be the secret to be shared using (t, n) threshold
secret sharing.
Input. The secret s, number of players n and the threshold value t.
The dealer then proceeds through the following phases:
Key Set-up and Distribution Phase. In this phase, the dealer does the
following:

1. Choose randomly the following:

– α ∈ Zp;
– r1, r2, . . . , rn ∈ Zp;
– u1, u2, . . . , un ∈ G

(where p is a prime power and G is a bilinear group with generator g).

2. Define public parameters PP = (e(g, g)α, u1, u2, . . . , un).
3. Define the secret key for player Pi as follows:

Ki = (Ki,1, Ki,2, u
ri
1 , . . . , uri

i−1, u
ri
i+1, . . . , u

ri
n ) with Ki,1 = gαuri

i , Ki,2 = gri.
4. Broadcast PP to all players.
5. Send secret key Ki to player Pi.

Share Generation and Distribution Phase. In this phase, the dealer does
the following:

1. Choose randomly a value r ∈ {0, 1}|s|.
2. Generate n shares ri, (i = 1, . . . , n), of r using (t, n) Shamir’s secret sharing

scheme.
3. Generate j∗ ∼ G(β).
4. Generate n shares si,j∗ , (i = 1, . . . , n), of sj = r ⊕ s using ($ t

2%, n) Shamir’s
secret sharing scheme.

5. Generate d sets of fake values si,j , (j = 1, . . . , d; i = 1, . . . , n).
6. Generate indicator bits bj for each round (j = 1, . . . , d). Each indicator bit

is supposed to indicate whether the last round was the revelation round.

– If j = j∗, the dealer sets bj+1 = 1, else, bj = 0.
– Generate (t, n) shares bi,j , (i = 1, . . . , n) of bj.

7. Create n lists listi, (i = 1, . . . , n) each containing the following:
(ri, bi,1), (si,1, bi,2), . . . , (si,j∗ , bi,j∗), . . . , (si,d+1, bi,d+1).

Output. The dealer distributes the list listi and secret key Ki to player Pi and
broadcasts public parameter PP to all players.
The Players’ Protocol:
Input. The list listi for party Pi.
Communication Phase. Each player Pi does the following in round j:

1. Check the number of shares obtained in the last round, i.e., in round j − 1.
Denote this by nj−1. Also, note the identities of the players who commu-
nicated in the last round. Denote this by the set Sj−1. Skip this round if
j = 1.

– If j = 2 and nj−1 ≥ t, proceed, else abort.
– Else, if j > 2 and nj−1 ≥ $ t

2%, proceed, else abort.

2. If j = 1, simply broadcast the first share in list listi. Else, if j > 1, do the
following:

– Compute function F (Sj−1) =
∏

i∈Sj−1
ui.
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– Choose a random number sran ∈ Zp.
– Then compute Cj,1 = Me(g, g)αsran (where M = si,j ||bi,j , the current

share of the secret in the list listi), Cj,2 = gsran and Cj,3 = F (Sj−1)
sran .

– Broadcast the ciphertext Cj = (Cj,1, Cj,2, Cj,3) to all players.
Reconstruction Phase. Each player Pi does the following in round j:
1. If j = 1, reconstruct the value r from t shares obtained in this round.
2. If j > 1, do the following for the encrypted share received from each player

P−i:
– Decrypt the share as follows:

• Divide e(Ki,2, Cj,3) = e(g,
∏

l∈Sj−1
ul)

risran by

e(
∏

l∈Sj−1ı
uri
l , C2) = e(g,

∏
l∈Sj−1ı

ul)
risran This can be used to di-

vide e(Ki,1, Cj,2) = e(g, g)αsrane(g, ui)
risran to get the blinding factor

e(g, g)αsran .
• Remove the blinding factor e(g, g)αsran from Cj,1 to get M = s−i,j ||b−i,j.

– Reconstruct the current share as follows:
• Reconstruct the secret sj and the indicator bit bj from all the de-

crypted shares.
3. If bj = 0, then continue. Else if bj = 1, then compute s = sj−1 ⊕ r and

output s as the secret.
Output. Output the secret s.

Theorem 2. Let n ≥ 3 and 2 < t ≤ n be integers. Then the proposed protocol
πoffline
s−RSS which is a prescribed strategy −→σ of the game (Γ, −→σ ) is a (Bayesian)

computational Nash Equilibrium for both silent as well as non-silent parties for
suitable value of β

′
and an appropriate choice of β. The protocol is also ($ t

2%−1)
resilient with respect to non-silent players.

Proof. The only difference between protocol πoffline
s−RSS and πonline

s−RSS is that in the
first case the dealer is offline and cannot keep track of which players are com-
municating in each round. In both cases however, players may try to choose a
deviating strategy where they give out the shares to only to a particular set of
players or none at all. We already proved for πonline

s−RSS that even though such
deviating strategies exist, players will have no incentive to follow them. Play-
ers do not get any extra advantage due to the offline dealer. Hence, it is in
(Bayesian) computational Nash Equilibrium for players to follow πoffline

s−RSS and

that this protocol is ($ t
2% − 1) resilient with respect to non-silent players. �
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Abstract. In this paper, we introduce Attribute-Based Signatures with
User-Controlled Linkability (ABS-UCL). Attribute-based signatures al-
low a signer who has enough credentials/attributes to anonymously sign
a message w.r.t. some public policy revealing neither the attributes used
nor his identity. User-controlled linkability is a new feature which allows a
user to make some of his signatures directed at the same recipient linkable
while still retaining anonymity. Such a feature is useful for many real-
life applications. We give a general framework for constructing ABS-UCL
and present an efficient instantiation of the construction that supports
multiple attribute authorities.

Keywords. Attribute-based signatures, security definitions, user-
controlled linkability.

1 Introduction

Attribute-based cryptography can play a tremendous role in providing security
to cloud computing, whether for privacy/access control (encryption) or for au-
thentication (signatures). Attribute-based encryption [21,35] is a natural gener-
alization of Identity-Based Encryption (IBE) [34,9,13] and its subsequent fuzzy
variant [35] in the sense that it enables fine-grained control of access to encrypted
data.

Attribute-Based Signatures (ABS) [27] allow a signer owning a set of at-
tributes to sign messages w.r.t. any public access policy satisfied by his at-
tributes revealing neither his identity nor the set of attributes used in the signing.
Attribute-based signatures proved to be a powerful primitive and many existing
signature-related notions such as ring signatures [33] and group signatures [10]
could be viewed as special cases of attribute-based signatures. For a comparison
with other primitives, we refer to [30]. The authors in [30] also showed many ap-
plication of ABS including attribute-based messaging [8], trust negotiation [17]
and leaking secrets.

Some constructions of ABS consider multiple authorities while others only
support a single attribute authority. Okamoto et al. [32] and El Kaafarani et al.
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[14] provide the first schemes working in a decentralized fashion, where multiple
attribute authorities are involved in the scheme, with no reliance on a central au-
thority. To add accountability to attribute-based signatures, [25,15,14,20] grant
a designated tracing authority the power to revoke anonymity and reveal the
identity of the signer in the case of a dispute. [20] strengthen the security no-
tions of [14] but at the expense of having a public key infrastructure. Direct
Anonymous Attestation (DAA) [5,3] adds a new interesting feature, namely,
the user-controlled linkability (UCL). This is a lightweight solution that avoids
having a designated tracing authority, which had previously represented a bot-
tleneck to users’ privacy. In addition, it allows the user to opt to make some of his
signatures directed at the same verifier linkable without sacrificing anonymity.
Unlike the reliance on tracing authorities, which are generally thought of as “for
trouble-shooting”, UCL is intended to be built into normal use. For example, in
the world of attributes, assume that a signer wants to establish a session (in a
analogous way to the idea of cookies) with a recipient and maintain this session
in a convincing way that he is indeed the same person whom the recipient is
communicating with, not someone else who also has enough credentials to sat-
isfy the same policy in question; the tracing authority cannot help here, whereas
user-controlled linkability is an ideal functionality for such a scenario.

Existing ABS schemes differ from each other by the expressiveness of the poli-
cies they support. For instance, we have constructions supporting non-monotonic
policies, e.g. [31,15], and those supporting monotonic policies, e.g. [30], both
with signatures’ size linear in the length of the policy. There are also construc-
tions supporting threshold policies, e.g. [36,26,23,18], where some of them yield
constant-size signatures.

Contribution. We provide security definitions and a general framework for
constructing attribute-based signatures with user-controlled linkability. Instan-
tiations of the tools used in our generic construction exist in both the random
oracle [1] and the standard models. For efficiency reasons, we provide an instan-
tiation in the random oracle model.

Paper Organization. In Section 2, we define the notion of ABS-UCL, giving
its syntax along with the security definitions. In Section 3, we give the crypto-
graphic building blocks needed for ABS-UCL. We present our general framework
in Section 4, whereas in Section 5, we give a concrete construction of ABS-UCL
along with the security analysis. We conclude the paper by comparing our notion
to other notions in Section 6.

2 Definition and Security of ABS-UCL

In this section, we define the notion of Attribute-Based Signatures with User-
Controlled Linkability (ABS-UCL), and present its security requirements. Our
notion supports multiple attribute authorities, each responsible for a subset of
attributes.
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2.1 Syntax of ABS-UCL

In an ABS-UCL scheme, we have a set AA = {AAi}ni=1 of attribute authorities,
where Ai is the space of attributes managed by attribute authority AAi. The
universe of attributes is defined as A =

⋃n
i=1 Ai. Assume that A ⊂ A is a set of

attributes for which a certain predicate Ω is satisfied, i.e. Ω(A) = 1. We have,
a ∈ A ⇒ ∃Ai, s.t. a ∈ Ai, so attribute a is managed by attribute authority AAi.
Below are the definitions of the algorithms used in an ABS-UCL scheme, where
all algorithms (bar the first three) take as implicit input pp produced by Setup.

• Setup(1λ): On input a security parameter, it returns public parameters pp.
• AASetup(aid, pp): Is run locally by attribute authority AAaid to generate its

public/secret key pair (vkAA, skAA). The authority publishes vkAA and keeps
skAA secret.

• UKeyGen(id, pp): Is run by user id to generate his personal secret key skid.
• AttKeyGen(id, f(skid), a, skAA): Is run by attribute authority AA that is re-

sponsible for the attribute a, where f is an injective one-way function, it
gives the user id the secret key skid,a, bound to his identity id and f(skid).

• Sign(m, Ω, skid, skid,A, recip): If a user has enough attributes to satisfy the
predicate Ω, i.e. Ω(A) = 1, then he uses the corresponding secrets keys
skid,A = {skid,ai}ai∈A to produce a valid signature σ = {σABS, σUCL} on the
message m and the recipient tag recip w.r.t. the predicate Ω; if recip = ⊥
then σUCL =⊥.

• Verify(σ, {vkAAi
}i, Ω, m, recip): Takes a signature σ on the message m and

the possibly empty recipient tag recip w.r.t. a predicate Ω, the verification
keys {vkAAi

}i of the attribute authorities managing attributes involved in
Ω, and returns 1 if the signature is valid, and 0 otherwise.

• Link(σ0, m0, {vkAAi
}i, Ω0, σ1, m1, {vkAAj

}j , Ω1, recip): On input two
signatures, two messages, two signing policies and the verification keys of
the attribute authorities managing the attributes involved in the policies,
and a recipient tag, it returns 1 if the signatures are valid on their respective
messages and the same non-empty recipient tag recip (w.r.t. the respective
policy), i.e. if recip �=⊥ and (σUCL0 = σUCL1 �= ⊥), and 0 otherwise.

• Identify(σ, m, recip, {vkAAi}i, Ω, sk): Is only used in the security model for
capturing linkability. It checks whether the valid signature σ (w.r.t. the sign-
ing policy Ω) on the message m and the non-empty recipient tag recip was
produced by the secret key sk, outputting 0/1 accordingly.

2.2 Security Definitions

We define here the security requirements of an ABS-UCL scheme.

Correctness. This requires that signatures produced by honest users verify cor-
rectly and that signatures produced by the same user to the same valid recipient
(i.e. on the same non-empty recipient tag) link.

Linkability. As specified in [37], there are two methods to support user-
controlled linkability in anonymous digital signatures: In the first, a designated



Attribute-Based Signatures with User-Controlled Linkability 259

linking authority can determine whether or not two signatures are linked; whereas
in the second method, there exists a public linking algorithm which can be run
by any party. Our model supports the latter. We require that only valid signa-
tures directed at the same recipient and which were produced by the same user
link. In the game the adversary can choose all the secret keys of the users and at-
tribute authorities. The adversary outputs (σ1, recip1, m1, {vkAAi}i, Ω1, sk1) and
(σ2, recip2, m2, {vkAAj

}j, Ω2, sk2). It wins if σi is valid (w.r.t. Ωi) on mi and
recipi, for i = 1, 2 and either of the following holds:

• σ1 was produced by sk1 and σ2 was produced by sk2 where sk1 = sk2 and
recip = recip1 = recip2 �=⊥ but Link(σ1, m1, {vkAAi

}i, Ω1, σ2, m2, {vkAAj
}j ,

Ω2, recip) = 0.
• σ1 was produced by sk1 and σ2 was produced by sk2 where sk1 = sk2 and

Link(σ1, m1, {vkAAi
}i, Ω1, σ2, m2, {vkAAj

}j , Ω2, recipk) = 1 for k ∈ {1, 2} and
either recipk =⊥ or recip1 �= recip2.

• σ1 was produced by sk1 and σ2 was produced by sk2 where sk1 �= sk2 and
recip = recip1 = recip2 �=⊥ and Link(σ1, m1, {vkAAi

}i, Ω1, σ2, m2, {vkAAj
}j ,

Ω2, recip) = 1.

In summary, this requires that signatures by the same user on the same non-
empty recipient tag link. Also, signatures by different users but on the same
recipient tag or those by the same user but on different recipient tags do not
link.

Anonymity. This requires that a signature reveals neither the identity of the
signer nor the attributes used in the signing. In the anonymity game, we have
the following:

• Adversary’s Capabilities: Full control over all attribute authorities. It can
also ask for the secret keys of signers of its choice; those signers will be
referred to as corrupt users. In addition, the adversary can ask for the secret
key of any attribute and has a signing oracle that it can query on messages
and recipient tags on behalf of honest users.

• Adversary’s Challenge: The adversary outputs (m, id0, A0, id1, A1, Ω, recip)
where Ω(Ai) = 1 for i = 0, 1. If recip �=⊥ then we require that throughout
the game (i.e. even after the challenge phase) id0 and id1 must be honest
(i.e. their personal secret keys are not revealed to the adversary), and that
neither of (id0, recip), (id1, recip) is queried to the signing oracle. This ensures
that the adversary cannot trivially win by exploiting the linkability feature.
The adversary gets back a signature σb produced using (idb, Ab) for b ←
{0, 1}. After this, the adversary can continue accessing its oracles as long as
it does not violate the above two conditions.

• Adversary’s Output: The adversary outputs its guess b∗ and wins if b∗ = b.

Unforgeability. This requires that users cannot output signatures on (mes-
sage, recipient tag) pairs w.r.t. to a signing policy not satisfied by their set of
attributes, even if they pool their attributes together, which ensures collusion-
resistance. In addition, since our notion supports user-controlled linkability, we
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additionally require that an adversary cannot produce signatures which link to
other signatures by an honest user, i.e. one whose personal secret key has not
been revealed to the adversary, even if all other users and attribute authorities
in the system are corrupt. Note that, unlike in DAA, e.g. [2,3], in our notion
even if a user’s personal secret key is revealed, only signatures on non-empty
recipient tags by the user can be traced, i.e. it is impossible to trace signatures
on empty recipient tags.

In the unforgeability game, we have the following:

• Adversary’s Capabilities: Access to a signing oracle. Moreover, it can corrupt
any attribute authority. We refer to the non-corrupted attribute authorities
as honest ones. It can also ask for the personal secret key of any user. We
refer to the non-corrupted users as honest ones. It can also ask for the secret
key for any attribute.

• Winning Conditions: The adversary wins if either:
◦ Adversary outputs a valid signature σ on m and recip w.r.t. Ω, where

(m, recip, Ω) was not queried to the signing oracle, and there exists no
subset of attributes A∗ whose keys have been revealed to the adversary
or managed by corrupt attribute authorities s.t. Ω(A∗) = 1. In other
words, ∀A∗ s.t. Ω(A∗) = 1, ∃a∗ ∈ A∗ s.t. Ω(A∗ \ {a∗}) = 0 and a∗’s key
has never been revealed to the adversary and it is managed by an honest
attribute authority.

◦ Adversary outputs a tuple (m0, σ0, {vkAAi}i, Ω0, m1, σ1, {vkAAj}j ,
Ω1, recip �=⊥, id), where σ0 is valid on m0 and recip w.r.t. Ω0, σ1 is valid
on m1 and recip w.r.t. Ω1, user id is honest, Link(σ0, m0, {vkAAi

}i, Ω0,
σ1, m1, {vkAAj}j, Ω1, recip) = 1 and either (id, m0, recip, Ω0) or (id, m1,
recip, Ω1) was not queried to the signing oracle.
Note here the adversary has more freedom than it has in the anonymity
game because it is allowed to ask for signatures by the honest user it
intends to frame on any recipient tag.

3 Building Blocks

Bilinear Groups. A bilinear group is a tuple P = (G1,G2,GT , p, g1, g2, e)
where G1,G2 and GT are groups of a prime order p and g1 and g2 generateG1 and
G2, respectively. The function e is a non-degenerate bilinear map G1 × G2 −→
GT . According to [19], prime-order bilinear groups can be categorized into three
main types. We will use Type-3 where G1 �= G2 and no efficiently computable
isomorphisms between G1 and G2 are known. This type is considered to be more
efficient than Type-2, and definitely more efficient than Type-1, when the latter
is implemented over fields of large prime characteristic.1

1 One can implement Type-1 using supersingular curves over fields of small character-
istics (2 or 3), however recent records on solving DLog in these fields [22], with the
help of the MOV attack [28], ring a warning bell to avoid using Type-1 pairings in
new cryptographic applications.
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Digital Signatures. We require a Digital Signature (DS) scheme that is correct
and existentially unforgeable. In our construction realised in the ROM, we will
use different variants of the full Boneh-Boyen signature scheme [6]. We refer to
original full Boneh-Boyen scheme as the BB scheme, whereas we refer to its mod-
ified variant originally defined in [6], and used in, e.g. [12], as the BB† scheme.
Both schemes are secure under the q-SDH assumption.

Let P = (G1,G2,GT , p, g1, g2, e) be the description of a bilinear group and
h1 ∈ G1 is a random element. The schemes are described below:

• KeyGen(P): Choose x, y ← Zp, set (X, Y ) = (gx2 , gy2 ). The secret key is (x, y)
and the verification key is (X, Y ).

• BB.Sign(sk, m): To sign m ∈ Zp, choose r ← Zp such that x+ry+m �= 0 and

compute the signature σ = g
1/(x+ry+m)
1 . In the BB† scheme, the signature

is σ = (g1 · hz
1)

1/(x+ry+m), where the BB† signer need not know the value z.
• Verify(vk, m, σ): if e(σ, X · Y r · gm2 ) = e(g1, g2) output 1, otherwise 0.

In the BB† scheme, the verification equation is e(σ, X ·Y r ·gm2 ) = e(g1 ·hz
1, g2)

Linkable Indistinguishable Tags. A Linkable Indistinguishable Tag (LIT)
scheme [3] is similar to a Message Authentication Code (MAC) but requires
different security properties. It consists of a couple of algorithms KeyGen and
Tag. The former, on input a security parameter, produces a secret key sk, whereas
the latter, on input a message m and the secret key, outputs a tag.

Besides correctness, the security of LIT [3] requires Linkability and
f -Indistinguishability. Linkability requires that an adversary who is allowed to
control both the secret key and the message cannot produce equal tags unless
they are tags on the same message/key pair. Indistinguishability, which is de-
fined w.r.t. a one-way function f of the secret key, requires that an adversary
who gets f(sk) and access to a tag oracle, cannot determine whether or not a
new tag on a message of its choice was produced using the same key used by the
tag oracle.

As in [3], we instantiate the LIT in the ROM with the Boneh-Lynn-Shacham
(BLS) signature scheme [7]. The LIT instantiation is secure under the DDH and
the discrete logarithm problems [3].

Non-interactive Zero-Knowledge Proofs. Let R be an NP relation on pairs
(x, y) with a corresponding language LR = {y | ∃ x s.t.(x, y) ∈ R}. A NIZK proof
system Π for a relation R is a tuple of algorithms (Setup,Prove,Verify,Extract,
SimSetup, SimProve) defined as follows: Setup outputs a reference string crs and
an extraction key xk which allows for witness extraction. On input (crs, x, y),
Prove outputs a proof π if R(x, y) = 1. On input (crs, y, π), Verify outputs 1 if π
is a valid proof that y ∈ LR, and 0 otherwise. Extract outputs the witness x from
a valid proof π. Finally, SimSetup outputs a simulated reference string crssim and
a trapdoor tr, which is used by SimProve to simulate proofs without a witness.

We require: completeness, soundness and zero-knowledge. Completeness re-
quires that honestly generated proofs are accepted; Soundness requires that it
is infeasible to produce a convincing proof for a false statement; Zero-knowledge
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requires that a proof reveals no information about the witness used. For formal
definitions refer to [4].

In our construction in the random oracle model, we use the Fiat–Shamir
transformation [16] applied to interactive Σ-protocols.

Span Programs. A span program [24] is defined as follows:

Definition 1. Given a monotone boolean function Φ : {0, 1}n → {0, 1}, a l × t
matrix M with entries in a field F, and a labelling function a : [l] → [n] that
associates M ’s rows to Φ’s input variables. We say that M is a monotone span
program for φ over a field F if for every (x1, . . . , xn) ∈ {0, 1}n, we have the
following:

[Φ(x1, . . . , xn) = 1] ⇔[∃v ∈ F1×t : v · M = [1, 0, 0, · · · , 0]

∧ (∀i : xa(i) = 0 ⇒ vi = 0)]

4 Framework for ABS with User-Controlled Linkability

Overview of the Framework. The tools we use in our generic construction are:
a NIZK system Π that is sound and zero-knowledge, two existentially unforgeable
signature schemes DS1 and DS2, a collision-resistant hash function H and a f -
indistinguishable linkable indistinguishable tag scheme LIT. The Setup algorithm
of ABS-UCL generates the common reference string crs for the NIZK system Π.
It also generates a key pair (vkpsdo, skpsdo) for the digital signature schemes DS2.
The public parameters of the system is set to pp = (crs, vkpsdo,A, H), where A is
the universe of attributes. For a new attribute authority to join the system, it
creates a secret/verification key pair (skaid, vkaid) for signature scheme DS1. To
generate a signing key for attribute a ∈ A for signer id, the managing attribute
authority signs the signer identity along with the attribute and the image of the
one-way function on his secret key, i.e. (id,a, f(skid)), using skaid. The resulting
signature is used as the secret key for that attribute by signer id.

To sign a message m w.r.t. a signing policy Ω, there are two cases; if the signa-
ture is linkable (i.e. on a non-empty recipient tag recip �=⊥), the signer first uses
LIT and his secret key to compute a tag σUCL on the recipient name recip and a
NIZK proof π that such a tag verifies w.r.t. his personal secret key skid, and that
he either has a digital signature on a pseudo-attribute (following [30,14]), i.e. the
hash of the combination of the signing predicate, the message and the recipient
name recip, i.e. apsdo = H(Ω, m, recip), that verifies w.r.t. the verification key
vkpsdo or that she has enough credentials (DS1 signatures on (id, f(skid), ai)) to
satisfy the original signing predicate Ω. For non-linkable signatures (i.e. when
recip =⊥), it suffices to produce a NIZK proof that the signer has enough at-
tributes to satisfy the modified predicate, i.e Ω̂ = Ω ∨ apsdo, and therefore, no
need for the linking part that uses LIT. Note that in this case apsdo = H(Ω, m).

Before we define the languages for the NIZK proofs L1 for linkable and L2 for
non-linkable signatures, we will generically define the format of these languages,
where the secret values, aka witnesses for proofs, are underlined:

L :
{
(public values pv), (witness w) : Ri(pv,w)

}
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• Linkable signatures (recip �= ⊥):

L1 :
{(

(vk = {vki}|Ω̂|
i=1,a = {ai}|Ω̂|

i=1), (skid, id,v,σ = {σai}
|Ω̂|
i=1)

)
:

(
vM = [1, 0, . . . , 0]

) |Ω̂|−1∧
i=1

(
vi = 0 ∨ DS1.Verify(vki, id, skid, ai, σai) = 1

)
∧(

v|Ψ̂ | = 0 ∨ DS2.Verify(vkpsdo, apsdo, σapsdo
) = 1

)
∧(

LIT.Tag(skid, recip) = σUCL

}
·

• Non-Linkable signatures (recip = ⊥):

L2 :
{(

(vk = {vki}|Ω̂|
i=1,a = {ai}|Ω̂|

i=1), (skid, id,v,σ = {σai}
|Ω̂|
i=1)

)
:

(
vM = [1, 0, . . . , 0]

) |Ω̂|−1∧
i=1

(
vi = 0 ∨ DS1.Verify(vki, id, skid, ai, σai) = 1

)
∧(

v|Ψ̂ | = 0 ∨ DS2.Verify(vkpsdo, apsdo, σapsdo
) = 1

)
We use a span program (Section 3) to prove the satisfiability of the extended

predicate Ω̂. Using a public matrix M, the signer needs to prove the ownership

of a secret vector v ∈ Z
|Ω̂|
p for which vM = [1, 0, . . . , 0]. The zero elements in

this vector v corresponds to attributes that the signer does not actually need
in order to satisfy the predicate. For these values, the signer can safely choose
random signatures. For the non-zero elements in v, the signer needs to prove
ownership of their corresponding attributes/pseudo-attribute.

The hiding property of the Π system ensures that the proof π does not reveal
how the modified predicate Ω̂ was satisfied.

The pseudo-attribute is used for two reasons; firstly, it binds the signature to
the message, the signing predicate, and the recipient name recip if the the signa-
ture is linkable. Secondly, the secret signing key skpsdo for the digital signature
scheme DS will be used as a trapdoor in the security proofs to allow its holder to
simulate signatures and sign on behalf of any signer without knowing their se-
cret keys. That could be done by producing a signature on the pseudo-attribute
associated with the message and the signing predicate.

The full proof for the following Theorem is in the full version.

Theorem 1. The generic construction of the attribute-based signature with user-
controlled linkability ABS-UCL given above is secure if the underlying building
blocks are secure.

5 A Concrete Construction of ABS-UCL

Description of the Construction. The signer’s task is to provide a zero-
knowledge proof of knowledge π w.r.t. the languages defined earlier, i.e. L1 and
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L2, depending on whether or not the signature is linkable. We instantiate DS1

using the BB† scheme and DS2 using the BB scheme. The proof will be made
of 3 parts (or 2 if non-linkable). The first deals with the Span program to show
how to hide which subset of attributes the signer has used to satisfy the modified
predicate Ω̂. For this, the signer proves that he has used a secret vector v to span
the public matrix M ∈ Zα×θ

p of the span program, where α = |Ω̂|. The second
part is to show that the signatures verify correctly w.r.t. their corresponding
verification keys, where the span program can safely let the signer choose random
signatures for the attributes which he does not own/want to use. The third part
is to show that, when the signature is supposed to be linkable, the linking part
indeed uses the same user secret key used in the rest of the proof. Not that the
group elements used later in the commitments, i.e. k1, k2 and k3 are parts of the
public parameters pp whereas sk is the signer’s secret key.

Part 1: Span program
Prove that vM = [1, 0, . . . , 0], this can be done by proving the following:

|Ω̂|∑
i=1

viMij =

{
1 j = 1

0 2 ≤ j ≤ θ
(1)

• Commitments of vector v
◦ βvi , βti , ti ← Zp, i = 1 . . . α.

◦ Vi = g
βvi
1 · kβti

3 ; v̂i = gvi1 · kti
3

• Proof of Statement

◦ ∀j ∈ [1, θ] compute: Λj =
α∏

i=1

k
ti.Mij

3 ; λj =
α∏

i=1

(k
Mij

3 )βti

Part 2: DS1 and DS2
Now each verification equation is as follows:

e(σai

vi , X · Y r · g
ai||id
2 ) = e(g1, g2) · e(hsk

1 , g2)

DS1 is instantiated using the BB† scheme whereas DS2 is instantiated using the
BB scheme. The signatures are as follows:

σai =

{
(g1 · hsk

1 )1/(xi+yiri+ai||id) regular attributes

g
1/(xi+yiri+apsdo)
1 pseudo-attributes

Where the public keys of an attribute ai is the couple of group elements Xi = gxi

2

and Yi = gyi

2 . The identity of the signer is id and his secret key is sk. In order
to use the secret vector v to hide the subset of attributes used to satisfy the
predicate Ω, we can simply raise each σai to its corresponding vector value vi,
when vi is zero, the signer does not want to this attribute, and therefore he can
replace the signature by a random value.
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• Commitments of (σai , ri), i ∈ [1, α] and the signer identity id:
Pickρvi , ρid, ρri , ρsk, βρsk

, βidρvi
, βri , βρi , βid, βρri

, βρid
, βcs, ← Zp, andcompute:

Ti = σai

vi · kρvi
1 , Ki = Y ri · k2

ρri , Z = hsk
1 · kρsk

1 U = g2
id · k2ρid

K̂i = Y
βri

i · k2
βρri , Ẑ = hβsk

1 · k
βρsk
1 , Û = g2

βid · k2
βρid

Let, ∀i ∈ [1, α − 1] : ρi = ρri + ρid whereas ρα = ρrα .
• Simplification: (can be done by both prover and verifier)

X ′
i = e(k1, Xi · gai·2|id|

2 ) Y ′
i = e(k1, Yi) R = e(k1, g2)

T ′
i = e(Ti, k2) D′ = e(k1, G

apsdo

2 )

• Knowledge of Exponents
∀i ∈ [1, α] and ∀j ∈ [1, θ], compute:

X ′
ij = (X ′

i
Mij )βρvi Y ′

ij = (Y ′
i
Mij )βriρvi T ′

ij = (T ′
i
Mij )βρ

i

∀i ∈ [1, α − 1], ∀j ∈ [1, θ], compute:

Rij = (RMij )βidρvi

∀j ∈ [1, θ]:

◦ D′
αj = (M ′zαj)βρvi

◦ Pj = X ′
αj · Y ′

αj · T ′
αj · D′

αj

◦ Bj = Pj ·
α−1∏
i=1

X ′
ij · Y ′

ij · Rij · T ′
ij

Part 3:Linkability- LIT
The signer needs to prove the following equation:

BLS.Sign(sk, recip) = σUCL

If the signature is linkable, then compute:

N = H(recip)βsk , L =
( h1

H(recip)

)βsk

· kβρsk

1 σUCL = H(recip)sk,

otherwise; σUCL = ⊥.
Finally, compute the challenge c:

c = HFS( N||L︸ ︷︷ ︸
if linkable

||λj ||Si||Ti||Ki||U ||K̂i||Û ||Bj ||Z), ∀i ∈ [1, α], ∀j ∈ [1, θ].

• Responses
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◦ svi = βvi + cvi, sti = βti + cti, sid = βid + cid, ssk = βsk + csk, sρsk
=

βρsk
+ cρsk, sρid

= βρid
+ cρid

◦ ∀i ∈ [1, α] :
sρvi

= βρvi
+cρvi , sriρvi

= βriρvi
+c(riρvi), sρi = βρi+cρi, sri = βri+cri,

sρri
= βρri

+ cρri ;
◦ ∀i ∈ [1, α − 1], compute:

sidρvi
= βidρvi

+ c(idρvi)

Let Σ = {sρvi
, sriρvi

, sidi , sρi , sri , sρri
, sid, sρid

, svi , sti , ssk, sρsk
}, the signature is:

σABS−UCL = (Σ, c, {Λj}θ1, {v̂i, Ti, Ki}α1 , U, Z, σUCL)

Verification
Compute:

Δj = e(Tα, (Xα · K1α · Gapsdo

2 )Mαj )

Ej =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ1 ·

α−1∏
i=1

e(Ti, (Xi · Ki · U)Mij )/e(g1, g2) · e(Z, g2) j = 1

Δj ·
α−1∏
i=1

e(Ti, (Xi · Ki · U)Mij ) 2 ≤ j ≤ θ

• Û = g2
sid · k2sρid · U−c, Ẑ = hssk

1 · ksρsk
1 · Z−c

• ∀i ∈ [1, α] :
Si = g

svi
1 · ksti

3 · v̂i−c K̂i = Yi
sri · k2sρri · Ki

−c

• ∀j ∈ [1, θ]:
◦ λj = Λ−c

j ·
∏α

i=1(k
Mij

3 )sti

◦ Pj = (X ′Mαj

α )sκα · (Y ′
α
Mαj )srακα · (T ′

α
Mαj )sρα · (D′Mαj )sκα

◦ Bj = Ej
−c · Pj ·

α−1∏
i=1

(X ′Mij

i )sρvi · (Y ′
i
Mij )sriρvi · (RMij )sidi · (T ′

i
Mij )sρi

• For the linkablility:
◦ If σUCL �= ⊥, then compute:

N = H(recip)ssk · (σUCL)
−c, L =

( h1

H(recip)

)ssk
· ksρsk

1 ·
( Z

σUCL

)−c

• Let ĉ = HFS( N||L︸ ︷︷ ︸
if linkable

||λj ||Si||Ti||Ki||U ||K̂i||Û ||Bj ||Z),

• Verify that ĉ = c and that the following statement holds:

α∏
i=1

v̂i
Mij =

{
g1 · Λ1 j = 1

Λj 2 ≤ j ≤ θ

The full proof for the following Theorem is in the full version.

Theorem 2. The construction is secure in the random oracle model if the q-
SDH, DDH and Dlog assumptions hold, and the hash function H is collision
resistant.
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Table 1. Existing ABS schemes and their features

Scheme Anonymity Traceability Decentralisation UCL

[14,20] ✓ ✓ ✓ ✘
[32] ✓ ✘ ✓ ✘

[29] ✓ ✘ ✘ ✘

Ours ✓ ✘ ✓ ✓

6 Comparison

In Table 1, we compare the properties offered by our notion with those offered by
related attribute-based signature notions. We note that the size of the signature

of our concrete construction, which uses Type-3 bilinear groups is G2·|Ω̂|+θ+2
1 +

G|Ω̂|+1
2 +Z8·|Ω̂|+4

p , where θ is the number of columns in the span program matrix
M.

Our main concern in this paper was efficiency, hence the use of random oracles.
There are alternative building blocks in the literature to instantiate ABS-UCL
in the standard model.

Acknowledgments. We would like to thank Russell Bradford. The third author
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18. Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-
attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013)

19. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156, 3113–3121 (2008)

20. Ghadafi, E.: Stronger Security Notions for Decentralized Traceable Attribute-Based
Signatures and More Efficient Constructions. In: Cryptology ePrint Archive, Re-
port 2014/278 (2014)

21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption for Fine-
Grained Access Control of Encrypted Data. In: CCS 2006, pp. 89–98. ACM (2006)

22. Granger, R., Kleinjung, T., Zumbragel, J.: Breaking ‘128-bit Secure’ Supersingular
Binary Curves (or how to solve discrete logarithms in F24·1223 and F212·367 ). In:
CoRR 2014 (2014)

23. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based sig-
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Abstract. Attribute-based Credentials (ABCs) allow citizens to prove
certain properties about themselves without necessarily revealing their
full identity. Smart cards are an attractive container for such credentials,
for security and privacy reasons. But their limited processing power and
random access storage capacity pose a severe challenge. Recently, we,
the IRMA team, managed to fully implement a limited subset of the
Idemix ABC system on a smart card, with acceptable running times.
In this paper we extend this functionality by overcoming the main hur-
dle: limited RAM. We implement an efficient extended Pseudo-Random
Number Generator (PRNG) for recomputing pseudorandomness and re-
constructing variables. Using this we implement Idemix standard and
domain pseudonyms, AND proofs based on prime-encoded attributes,
and equality proofs of representation modulo a composite, together with
terminal verification and secure messaging. In contrast to prior work that
only addressed the verification of one credential with only one attribute
(particularly, the master secret), we can now perform multi-credential
proofs on credentials of 5 attributes and complex proofs in reasonable
time. We provide a detailed performance analysis and compare our re-
sults to other approaches.

1 Introduction

In Europe several eID systems supporting electronic transactions (particularly
in Austria, Belgium, Estonia, Finland, Germany, Netherlands, Portugal, Spain
and Sweden) exist. These systems vary a lot in terms of functionality, security
levels, and the amount of privacy protection and user control they offer [28,32],
and are extensively studied in projects such as Future ID and STORK [1, 2].
Using eIDs, the massive utilization of username/password pairs on the Internet
could be replaced by a Single-Sign-On (SSO) approach. For this reason a wide
range of identity federation systems have been proposed in the last decade, such
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as SAML [20] and OpenID [33]. These systems rely on a three-party scheme,
distinguishing a user, a Service Provider (SP), and an Identity Provider (IdP).
To access the service, the user logs in to the IdP, who provides an authentica-
tion token to the SP containing all the necessary information. Several security
and privacy risks associated with this approach have been identified [30]. For
example, the IdP knows every transaction its user performs [5].

Attribute Based Credentials (ABC) solve these problems, as follows. Creden-
tials are secure containers of attributes, that can be selectively disclosed to the
SP by the user. Moreover, the underlying cryptographic protocols are unlink-
able, ensuring that repeated use of the same credential cannot be linked to one
another. Despite the growing number of ABC systems (e.g. [6, 10, 14]), there
are very few applications of such systems in practice. ABC systems rely on the
secrecy of a master secret that binds all credentials to a single user. For security
and privacy reasons it is therefore preferable to store this master secret and the
associated credentials on a smart card, and run all cryptographic protocols (e.g.
for issuing credentials and selectively disclosing attributes) on the smart card
itself. This way the master secret never leaves the card. However, the limited
processing power and random access storage capacity of the smart card pose
a severe challenge for implementing the complex cryptographic protocols. Only
recently, the IRMA1 team, managed to fully implement a limited subset of the
Idemix ABC system on a smart card, with acceptable running times [36]. In
this paper we extend this functionality by overcoming the main hurdle: limited
RAM.

Our Contributions. We first describe, in Section 2, different architectures and
implementations of attribute based credentials presented in the literature. Then,
in Section 3 we introduce the actual capabilities of the IRMA card, its execu-
tion model and its current limitations. In Section 4, we present the design of a
PRNG for reducing the RAM requirements of the execution of proofs of knowl-
edge in smart cards. This enables us to extend the number of attributes per
credential, beyond the current IRMA limit of 5 attributes per credential. Our
construction for recomputing randomness incurs an overhead of only 39.81 ms
(3.66 %). Next, we broaden that approach to implement standard and domain
pseudonyms in Section 5. Standard pseudonyms add 401.60 ms overhead, while
domain pseudonyms in combination with standard pseudonyms add 658.63 ms
overhead. Moreover, we can now perform equality proofs of representation across
different credentials by combining this technique with variable reconstruction in
RAM (e.g. 2,261.19 ms in the best case across 2 credentials, while the rest of
proposed works in the literature only addressed the case of verifying one creden-
tial with one attribute (namely, the master secret) and obtained performance
figures beyond 4 and 7 seconds [9,35]). This is discussed in Section 6. We imple-
ment the terminal verification and a secure channel for ABCs from [4] in Section
7. For each of these constructions we provide a detailed performance analysis,
providing performance figures of our own constructions as well as giving those

1 https://www.irmacard.org (accessed August 11, 2014)

https://www.irmacard.org
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of alternative approaches (tested on the same hardware), and comparing the
results. Finally, we provide a performance analysis of all these operations using
prime-encoded attributes [13] in Appendix A. In this respect, Bichsel et al. esti-
mated an extra computation time of 1,684 ms over their verification operation
with one attribute (i.e. the master secret) using a modulus of 1,536 bits in the
prime-encoded AND proof [9]. That is 1.684 + 10.550 = 12.234 seconds. In our
case (Appendix A) we can perform AND proofs with credentials of 5 attributes
in 1,214.24 ms (hiding all the attributes) and we only require 1,547.83 ms for
proving the ownership of the 5 attributes revealing them all using a modulus
of 1,024 bits. In this case, we required 1,579.53 ms when proving the ownership
of a pseudonym. Moreover, we show that the computation of equality proofs
of representation involving several credentials on the smart card is also feasible
relying on prime-encoding attributes.

2 Related Work

Generally, private ABCs rely on the idea of a blind and randomizable signature
over a set of attributes [21]. A user that owns this type of signature can perform
authentication operations by selectively disclosing a subset of attributes that
describes her digital identity. Moreover, it is not possible to link transactions
to signatures. Modern anonymous credential systems such as Idemix [14] and
U-Prove [10] rely on that building block in combination with proofs of knowl-
edge [22]. In the last few years, a myriad of credential systems has been imple-
mented in smart cards [8,9,31,35,36]. Due to their availability in the market and
their functionalities, the Java Card and MULTOS platforms are generally the
preferred targets. Bichsel et al. presented the first implementation of Idemix on
the Java Card platform in 2009. Proving the possession of one credential with
one attribute (i.e. the master secret), required 7.4 seconds (1,280-bit modulus)
and 10.55 seconds with a modulus of 1,536 bits [9]. Sterckx et al. followed a
similar approach for implementing the signing protocol of Direct Anonymous
Attestation (DAA) in Java Cards [35]. In their design, one transaction requires
4.2 seconds using a modulus of 1,024 bits. Nonetheless, the Java Cards 2 that
Bichsel et al. and Sterckx et al. relied on do not provide direct access to mod-
ular arithmetic operations. Consequently, these authors had to rely on different
strategies for performing modular multiplications and exponentiations, thus un-
dermining the overall performance of the implementation. The IRMA card is
based on the MULTOS platform embedded on the Infineon SLE78 chip. In con-
trast, this chip supports a variety of modular arithmetic operations that are
crucial in the implementation of anonymous credentials together with asymmet-
ric encryption primitives (RSA), signature schemes (RSA, ECDSA), symmetric
encryption techniques (AES, 3DES) and hashing algorithms (SHA-1, SHA-2).
Vullers et al. implemented in this platform the issuing and selective disclosure
operations of Idemix. Using credentials of 5 attributes, the disclosure of all the
attributes requires 0.947 seconds whereas the worst case (hiding the 5 attributes)
is performed in 1.454 seconds [36].
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3 The IRMA Card

IRMA relies on the specification of the Identity Mixer Anonymous Credential
System [14] and is the first full card (i.e. no off-card or precomputation based)
implementation of Idemix on smart cards suitable for real life transactions i.e the
performance of a typical operation is reduced to 1–1.5 seconds [36] in comparison
to the first attempts for implementing anonymous credentials in the literature
(Section 2). Idemix provides different functionalities for proving the possession
of attribute-based credentials and their properties e.g. [12, 18].

Idemix relies on different cryptographic blocks such as the Camenisch-
Lysyanskaya (CL) signature, secure under the Strong RSA assumption [16].
Each credential can be categorized as an attribute container, protected by a
CL signature generated by an issuer. This signature guarantees the integrity of
the credentials i.e. modification, deletion or adding new attributes to a creden-
tial by the user can be easily detected by a verifier. Moreover, each credential
is linked to the cardholder by her master secret, securely stored on the card in
IRMA.

After the issuing process, the users owns a CL signature over one creden-
tial, represented by the triple (A, e, v) over (m0, m1, ..., m5). This information is
stored in the card for each credential. The CL signature is created by an issuer
according to its public key (S, Z, R0, R1, ..., R5 ∈ QRn, n) using its secret key
(p, q). For instance, a CL signature over a set of attributes (m0, ..., m5) is com-
puted by selecting A, e and v s.t. Ae = ZR−m0

0 R−m1
1 R−m2

2 R−m3
3 R−m4

4 R−m5
5 S−v

mod n. Then, a third party can check the validity of the signature by using the
issuer’s public key and the tuple (A, e, v) as Z ≡ AeRm0

0 Rm1
1 Rm2

2 Rm3
3 Rm4

4 Rm5
5 Sv

mod n. In IRMA, for performance reasons, the size of the modulus n is restricted
to ln = 1, 024 bits whereas the attributes are represented as lm = 256 bits. The
rest of parameters are set as l′

e = 120, lø = 80, lH = 256, le = 504, and lv = 1, 604
bits2.

The key property of the CL signature in Idemix is to prove its possession
without revealing additional information and performing the selective disclosure
of the cardholder’s attributes (Protocol 1) via discrete logarithm representation
modulo a composite proofs of knowledge [25].

The typical 3-movement protocol (commitment, challenge and response) de-
picted in Protocol 1 is transformed into a Non-Interactive Proof of Knowledge
(NIZK) via the Fiat-Shamir heuristic [24]. Therefore, the challenge c is com-
puted by the card via a collision-resistant hash-function over the commitments
and common values. Accordingly, an empty proof of possession over a set of at-
tributes (m0, ..., m5) is represented using the Camenisch-Staedler notation [19]
as: NIZK: {(ε′, ν′, α0, ..., α5) : Z ≡ ±Rα0

0 Rα1
1 Rα2

2 Rα3
3 Rα4

4 Rα5
5 Aε′

Sν′ mod n} be-
ing the Greek letters (ε′, ν′) and (α0, ..., α5) the values of the signature and the

2 The term l′
e represents the size of the interval where the e values are selected, lø

is the security parameter of the statistical ZKP, and lH is the domain of the hash
function used in the Fiat-Shamir heuristic (we use SHA-256). Finally le and lv are
related to the size of e and v parameters of the CL signature.
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Protocol 1. Message flow for proving the ownership of a CL signature over a set of
attributes

Prover Public Verifier
Z

∏
i∈Ar

R−mi
i = A′eSv′ ∏

i∈Ar̄
Rmi

i S, Z, R0, R1, ..., R5 ∈ QRn, n A′, v′, mi∈Ar

Signature randomization

rA ∈R {0, 1}ln+lø

A′ = ASrA mod n
v′ = v − erA

e′ = e − 2le−1

Generation of t values

ẽ ∈R ±{0, 1}l′
e+lø+lH

ṽ′ ∈R ±{0, 1}lv+lø+lH

m̃i ∈R ±{0, 1}lm+lø+lH (i ∈ Ar̄)
Z̃ = A′ẽ(

∏
i∈Ar̄

Rm̃i
i )Sṽ′ Z̃−−−−−−−−−−−−−−−→

c←−−−−−−−−−−−−−−− c ∈R {0, 1}lH

Generation of s values

ê = ẽ + ce′

v̂′ = ṽ′ + cv′

m̂i = m̃i + cmi(i ∈ Ar̄)
ê,v̂′,{m̂i}i∈Ar̄−−−−−−−−−−−−−−−−−−−−−−−−→ A′êSv̂′ ∏

i∈Ar̄
Rm̂i

i

?=
Z̃ (Z

∏
i∈Ar

R−mi
i )c

set of attributes proved in zero knowledge and not revealed i.e. ∈ Ar̄. The set
of revealed attributes is represented by Ar. Similarly, one can prove the CL sig-
nature over a set of attributes revealing some of them. For instance, revealing
m1 and hiding (m0, m2, m3, m4, m5) would be represented in zero knowledge
as NIZK: {(ε′, ν′, α0, α2, α3, α4, α5) : ZR−m1

1 ≡ ±Rα0
0 Rα2

2 Rα3
3 Rα4

4 Rα5
5 Aε′

Sν′

mod n}.
In IRMA, the prover part of Idemix is implemented in the card as a set of

states (PROVE_CREDENTIAL, PROVE_COMMITMENT, PROVE_SIGNATURE and
PROVE_ATTRIBUTE) that mimics the Prover-Verifier interaction between a termi-
nal and the smart card3. In each transaction, both entities exchange ISO 7816
APDUs that retrieve and write data in the smart card volatile (RAM) and non-
volatile (EEPROM) memories [27]. When the card receives a verification request,
it changes its initial state to PROVE_CREDENTIAL. Then, it acquires a presentation
policy with the description of the attributes that must be revealed (i.e. those
{mi}i∈Ar) and hidden (i.e. {mi}i∈Ar̄ ). Then, the card performs the operations
depicted in Protocol 1 (PROVE_COMMITMENT). Afterwards, the card changes its
working state to PROVE_SIGNATURE. In this state, the verifier can request the

3 We refer the reader to [36] for a description about how a (A, e, v) triple is obtained
by the card.
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randomized tuple (A′, ê, v̂′). Finally, the card switches to PROVE_ATTRIBUTE,
where the verifier is allowed to request the set of revealed and hidden attributes
related to the proof.

3.1 Execution Model

The latency of the verification operation can be modeled first according to the
number of attributes per credential (n = 5 in the case of IRMA) together with
the number of attributes that are revealed (r) or hidden. If we consider the worst
case (all the attributes are hidden), n−r+1 extra computations will be required
for generating each m̂i value (one extra operation is considered since the master
secret is always hidden). Otherwise, the mi attributes are sent in clear to the
verifier. Eq. 1 represents the overall latency of the four states described above
according to the (n, r) parameters.

Tverify(n, r) = Tsel cred + Tgen commit(n, r) +
∑

i=A,e,v

Tget sig(i) +
n∑

i=1

Tget attr(i) (1)

The time that Tsel cred comprises is related to the PROVE_CREDENTIAL state
whereas
Tgen commit(n, r) represents PROVE_COMMITMENT and Tget sig(i)\Tget attr(i) are
related to the PROVE_SIGNATURE and PROVE_ATTRIBUTE states respectively. Fur-
thermore, the latency of the
PROVE_COMMITMENT state can be expanded to the following expression:

Tgen commit(n, r) =
∑

i=A,v

Trand sig(i)+Tgen t values(n − r +1)+Thash +Tgen s values(n − r +1)

(2)

Eq. 2 represents the randomization of the CL signature and the generation
of the t values, s values and the challenge c. Further, Tgen t values represents the
latency due to the computation of the commitment according to the number of
non-disclosed values i.e. Σn−r+1

i=1 Tmul exp(Rm̃i

i ). This value is then multiplied by
A′ẽ · S ṽ′ as described in Section 3. In addition, n − r random m̃i values must be
generated. Finally, the s values are generated according to the number of hidden
attributes:

Tgen s values(n − r + 1) = Tgen ê + Tgen v̂′ +
r∑

i=0
Tgen m̂i (3)

From the Equations 1-3 we notice the following. First, that the pseudoran-
domness used to derive the (ẽ, ṽ′) tuple and the m̃i values are used in both
Tgen t values and Tgen s values. Second, that the overall verification time is dom-
inated by the number of non-revealed attributes (n − r) that requires: (1) the
modular exponentiations computed during the generation of the t values and
(2), the random generation of the m̃i values and the computation of the corre-
spondent m̂i value as m̂i = m̃i + cmi. All in all, any possible optimization in
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the implementation must be driven by: (1) recomputing the pseudorandomness
utilized in the m̃ values and (2) reducing the overhead of the required computa-
tion for hiding the selected attributes.

3.2 Memory Model

In the current IRMA implementation, the CL signatures and the credential at-
tributes are stored in EEPROM. Besides, the intermediate values m̂i and the
randomized signature are computed in RAM in order to speed-up the overall
performance of the verification operation. Since the RAM only comprises 960
bytes (together with 1,160 bytes of transient memory), we must consider how to
scale the operations with credentials of a large number of attributes in order to
deal with those intermediate values. In this respect, independently storing each
m̂i value for large credentials is impossible due to the RAM restrictions. In the
current implementation, based on 5 + 1 m̂i values (taking into account the mas-
ter secret, which is always hidden), one verification session requires 74 · 6 = 444
bytes of RAM, 74 bytes is the required space for storing one m̂i value. Finally,
given the current memory utilization, any optimization should be based on re-
arranging the storage of the random m̃i values.

4 Preliminary Optimizations

Our goal is to generate as many m̂i values as needed without being limited
by the current RAM size . This would make it possible to operate with larger
credentials in the card. As noted before, these values are used in two parts of
the generation of the NIZK: (1) during the computation of the commitment and
(2) for hiding the desired attributes in the generation of the s values. In the
seminal paper of Bichsel et al. they suggested the utilization of a PRNG to
regenerate the random exponent of the Idemix verification operation in the case
of one credential with one attribute (i.e. the master secret) [9]. Consequently,
we can extend this approach to regenerate all the involved pseudorandomness,
not only the random exponents, for supporting credentials with a large number
of attributes and implementing: pseudonyms, domain pseudonyms and AND
proofs. Moreover, we coupled this technique with variable reconstruction in RAM
for making possible to compute multi-credential proofs in the case of the equality
proofs of representation.

Using cryptographic primitives such as block ciphers and Message Authenti-
cation Codes (MACs), conjectured as pseudorandom generators under the as-
sumption that one-way functions exist (cf. [26,29]), a wide range of PRNGs has
been proposed in the literature e.g. [7, 23]. Therefore, it is expected that the
output of these constructions would be indistinguishable from random by any
probabilistic polynomial time algorithm or distinguisher. Among the schemes
described in [7,23] (e.g. Fortuna, HMAC DBRG and HASH DBRG), all share the same
behaviour: (1) acquire new entropy, (2) process the entropy into a seed and, if
needed, add a personalizing string, and (3) generate pseudorandom bits using a
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cryptographic primitive (e.g. a block cipher) categorized as Generator Function
(GF). The HASH DBRG PRNG utilizes SHA-1/-2 for generating pseudorandom-
ness whereas the HMAC DBRG PRNG can optionally rely on one of those primitives
following the HMAC construction, where a key k is also part of the initial state.
Finally, a PRNG can be constructed using a block cipher such as Fortuna [23],
which only enciphers a counter using a key derived from an entropy input and
processed via SHA-256.

In Table 1, we present the performance results in our target device for com-
puting one m̂i value (74 bytes) using six different PRNGs. We also present the
number of calls to the GF in each case to generate |m̂i| bytes. Notice that the
PRNGs based on HMACs are considerably slower due to the fact that they re-
quire performing two hash operations per call together with two updating func-
tions [7]. Moreover, the performance of using Fortuna and the PRNG based on
SHA-1 is similar, given that the number of calls to the SHA-1 hash algorithm is
almost equal in both cases (26.33 ms and 29.32 ms respectively). However, when
a considerable amount of pseudorandomness per session is generated (particu-
larly, during the execution of a proof that involves more than one credential),
a difference of 3 ms can be significant4. In this respect, we have lowered the
security level to AES-128 (24.76 ms per m̂i).

Table 1. Performance of PRNG candidates in the IRMA card for generating an m̂i

value of 74 bytes

Work PRNG GF Block size (bytes) No. calls (GF) Delay (ms)

[7] HMAC DBRG SHA-1 20 12 48.64
[7] HASH DBRG SHA-1 20 5 26.33
[7] HMAC DBRG SHA-256 32 10 106.78
[7] HASH DBRG SHA-256 32 4 47.47
[23] Fortuna AES-256 16 5 29.32

This work IRMA AES-128 16 5 24.76

In our case, during each verification session, a seed k is generated as the last
128 bits of the SHA-1 hash operation of the concatenation of the MULTOS
PRNG output together with the string “IRMA”. Then, this seed is fed into the
GF (AES-128) as the key. At the beginning of each verification session a counter c
is initialized to 0 and incremented in the generation of each pseudorandom block
of 128 bits. When the verification process is finished the seed stored in RAM
is erased by the discharge of the capacitors of the smart card and in the next
verification session, a new seed is generated. Thus, this design provides back-
tracking resistance between verification sessions. Moreover, prediction resistance
4 See, for instance, the number of required calls in our approach for performing equal-

ity proofs of representation (Section 6, Table 4). In that case, only generating the
pseudorandomness associated to a (A′, ê, v̂′) triple for one credential of 5 attributes
needs 9 + 16 + 4 + 5 · 6 = 59 calls to the PRNG if all the attributes are hidden.
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is ensured if we rely on the security of the AES block cipher. The PRNG runs
the following sequence in this case: initP RNG() ⇒ m̃i ⇒ resetP RNG() ⇒ m̃i.

4.1 Results for Verifying a Full Credential

In our implementation we proceed as follows. We replace the former 74 · 6 bytes
for storing all the m̂i values by three values maintained in RAM during the ver-
ification session: the seed/AES key (128/8 = 16 bytes), the counter c (16 bytes)
and 74 bytes for the m̂i values that are generated when required. Thus, when
an m̂ value needs to be generated, we get as many blocks as needed for filling
the 74 random bytes space and the counter c is incremented after each block is
computed. This process is repeated two times. First, during the computation of
the t value and second, during the s values generation. In the second part, the
PRNG is reset to its initial state (by choosing c = 0 again) in order to obtain
the same output as the first time without storing all the reconstructed m̂ values.
This requires 74 + 16 + 16 = 106 bytes of RAM instead of 74 · 6 = 444 bytes.
Nonetheless, an extra latency for computing all the m̂ values at run time is ex-
pected. This is depicted in Table 25. We have considered both worst cases (WC,
where all the attributes are hidden) and best cases (BC, where only the master
secret (m0) is hidden).

Table 2. Performance overhead while verifying five attributes using a custom PRNG
for generating the m̂ values (ms)

Work Encoding Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5) Total

This work normal BC 103.10 840.73 14.12, 11.52, 19.54 38.32, 11.51*5 1,084.91
This work normal WC 104.95 1,307.35 15.11, 11.48, 19.49 38.30*6 1,688.20

[36] normal BC 104.12 826.25 14.16, 11.48, 19.50 12.10, 11.49*5 1,045.10
[36] normal WC 105.20 1,259.24 16.10, 11.49, 19.48 12.13*6 1,484.32

According to Eq. 1–3, the calculation of the m̂ values as m̃i + cmi was per-
formed in
Tgen commit(n, r). Now, that generation operation is performed on demand in
Tget attr(i) i.e. when the verifier asks for those values. Therefore, Tgen s values

is represented as Tgen s values = Tgen ê + Tgen v̂′ and
n∑

i=1
Tget attr(i) includes the

generation of m̂i as Tgen m̂i for r m̂i values. This means, that we reduce the
5 The notation and abbreviations in Tables 2–3 and 5–9 are utilized as follows. First,

for those latencies that are related to the same operation e.g. Tget attr(i), only one
element appears multiplied by the number of elements of its type that are involved
e.g. 11.51∗5. Then, for each element that is optional according to the different proofs
represented in the same table, a vertical bar (|) appears in the header of the table
(e.g. Table 3). For those values that do not belong to the proof an horizontal bar
(−) is utilized. Finally, we represent the best performance figures in bold.
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overall time in Tgen commit(n, r) but add an extra delay according to the ran-
dom generation of the m̃i values. We also obtained an extra delay in Tget attr(i),
consisting of (1) recomputing the pseudorandomness for each m̃i value and (2)
computing m̂i = m̃i + cmi. All in all, we obtained a reduction of RAM of 338
bytes with an added overall latency of 203.88 ms in the worst case whereas the
extra latency in the best case is only restricted to the generation of the m̂i value
for hiding the master secret, where only 39.81 ms are required6.

5 Implementation of Standard and Domain Pseudonyms

Given the optimizations described in the past section, now it is possible to im-
plement additional proofs in combination to proving the ownership of a CL
signature over a set of attributes. In this section, we relate our implementation
of Idemix pseudonyms [15]. They provide extended operations to basic protocols
such as issuing a credential associated to a pseudonym or connect the card-
holder’s verification process to a given pseudonym. The latter, would guarantee
being recognized the next time an user visited the same SP. Besides standard
pseudonyms (described as randomized commitments to the cardholder’s mas-
ter secret i.e. Nym = gm0hr mod Γ where both generators (g, h) and modulo
Γ are public and part of the system group parameters) it is possible to cre-
ate pseudonyms associated to a certain domain such as an organization. They
are derived as dNym = gm0

dom where gdom = H(dom)(Γ −1)/ρ and the group Z∗
Γ

has order Γ − 1 = ρ · b for a prime ρ [15]. For instance, proving the own-
ership of both a standard and domain pseudonyms can be performed in zero
knowledge as NIZK: {(ε′, ν′, α0, ..., α5, ψ) : Z ≡ ±Rα0

0 Rα1
1 Rα2

2 Rα3
3 Rα4

4 Rα5
5 Aε′

Sν′

mod n ∧ nym ≡ gα0hψ mod Γ ∧ dNym ≡ gα0
dom mod Γ } without revealing any

attribute. However, performing a certain degree of selective disclosure would
provide the SP with more identification details linked to the pseudonym. In or-
der to design a RAM-efficient implementation of standard/domain pseudonyms,
the associated pseudorandomness to r and m0 must be recomputed by the
PRNG that we presented in Section 4. Therefore, the PRNG would follow the
initP RNG() ⇒ m̃i ⇒ r̃ ⇒ m̃0 ⇒ r ⇒ resetP RNG() ⇒ m̃i ⇒ r̃ ⇒ m̃0 sequence
in order to recompute the required pseudorandom values during the genera-
tion of both t- and s values in the case of proving the ownership of a standard
pseudonym and a domain pseudonym.

5.1 Results for Verifying a Full Credential with an Associated
Pseudonym

The user must store in EEPROM the two generators (g, h), together with r and
the modulus Γ . Given that our target device is comprised of 80KB of EEPROM
and the current implementation is 31,897 bytes we have plenty of space for
6 Extending the number of attributes of the credential also involves modifying the

issuing protocol implementation. Given the space limits, we opted for showing how
to compute complex proofs.



280 A. de la Piedra, J.-H. Hoepman, and P. Vullers

Table 3. Performance analysis of proving the ownership of standard and domain
pseudonyms (normal encoding, ms)

Implementation Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5, nym, r̂|dNym) Total

Nym BC 103.10 1,176.02 15.30, 11.41, 19.57 38.42, 11.55*5, 13.95, 50.99 1,486.51
Nym WC 103.15 1,647.33 15.35, 11.54, 19.57 38.11*6, 13.99, 50.86 2,065.42

Nym ∧ dNym BC 103.01 1,373.37 15.28, 11.41, 19.35 38.39, 11.83*5, 14.02, 58.37 | 51.12 1,743.54
Nym ∧ dNym WC 104.23 1,836.00 15.19, 11.59, 19.24 38.02*6, 13.84, 58.32 | 51.42 2,338.01

storing different pseudonyms. In this respect, encoding pseudonyms as strings
of 32 bytes would allow to store up to 80K−(31, 897/32) = 1, 503 pseudonyms
in the card. Finally, in addition to the revealed or hidden attributes that the
cardholder sends to the verifier, the commitments nym and dNym together with
the s value r̂ are recomputed and their respective delay is added to Tget attr(i).
As in Table 2, we have represented the best case/worst case scenarios for each
type of pseudonym in Table 3. In comparison to Table 2, performing the extra
number of modular exponentiations related to the pseudonyms commitments
(e.g. nym) required 1,176.02 - 840.73 = 335.29 ms in the best case. However,
due to the optimizations described in Section 4, is also possible to store extra
commitments in RAM in order to avoid recomputing them during Tget attr.

6 Tailored Execution of Equality Proofs of Representation

Sometimes, it is useful to prove that two or more credentials share some values
[17]. This type of proof would enable verifiers to evaluate different properties
in the credentials of the cardholder, for instance, proving that two or more
credentials belong to the same cardholder via the master secret that is included
in all the credentials with independence of the issuer. This is essential to prevent
credential pooling attacks.

In this section, we restrict ourselves to equality proofs of two creden-
tials, where the ownership of the cardholder is proved through the equal-
ity of the master secret, and where independent selective disclosures can
be performed in each credential. Given two credentials issued by differ-
ent issuers over the same master secret (m0) and two different CL sig-
natures (A1, e1, v1) and (A2, e2, v2), we describe an empty (i.e. where
all the attributes of the first and second credentials are hidden) equal-
ity proof of this type as: NIZK: {(ε′

1, ν′
1, ε′

2, ν′
2, μ, (α1, ..., α5), (β1, ..., β5)) :

Z(1) ≡ ±R
(1)μ
0 R

(1)α1
1 R

(1)α2
2 R

(1)α3
3 R

(1)α4
4 R

(1)α5
5 A(1)ε′

1S(1)ν′
1 mod n1 ∧ Z(2) ≡

±R
(2)μ
0 R

(2)β1
1 R

(2)β2
2 R

(2)β3
3 R

(2)β4
4 R

(2)β5
5 A(2)ε′

2S(2)ν′
2 mod n2}. Where μ repre-

sents the non-disclosed master secret7 and the two public keys of
the issuers consists of (S(1), Z(1), R

(1)
0 , R

(1)
1 , ..., R

(1)
5 ∈ QRn1 , n1) and

7 In this case α0 = β0 if both credentials belong to the same cardholder. We represent
the non-disclosed master secret as μ following the Camenisch-Staedler notation [19].
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(S(2), Z(2), R
(2)
0 , R

(2)
1 , ..., R

(2)
5 ∈ QRn2 , n2). Moreover, the following s values for

the groups of attributes of each credential and the master secret need to be com-
puted: m̂0 = m̃0 + cm0, m̂

(1)
1 = m̃

(1)
1 + cm

(1)
1 , m̂

(1)
2 = m̃

(1)
2 + cm

(1)
2 , m̂

(1)
3 = m̃

(1)
3 +

cm
(1)
3 , m̂

(1)
4 = m̃

(1)
4 + cm

(1)
4 , m̂

(1)
5 = m̃

(1)
5 + cm

(1)
5 , m̂

(2)
1 = m̃

(2)
1 + cm

(2)
1 , m̂

(2)
2 =

m̃
(2)
2 + cm

(2)
2 , m̂

(2)
3 = m̃

(2)
3 + cm

(2)
3 , m̂

(2)
4 = m̃

(2)
4 + cm

(2)
4 , m̂

(2)
5 = m̃

(2)
5 + cm

(2)
5 .

Finally, v̂1 = ṽ′
1 + cv′

1, v̂2 = ṽ′
2 + cv′

2, ê′
1 = ẽ1 + ce1 and ê′

2 = ẽ2 + ce2 are
computed for each CL signature in Tget sig(i).

6.1 Design
In order to implement these proofs, we must address three types of requirements
in terms of: (1) space, (2) performance and (3) cryptographic capabilities of the
card. First, we need space to store and/or maintain in RAM two or more (A, e, v)
tuples in order to generate each t value of the proof. Moreover, we also require
space for storing the (ê, v̂′) tuples for each credential during the computation
of each s value. Furthermore, we need to perform all these computations in a
reasonable time. In this respect, performing the operations in RAM would be
a top priority. Finally, we need a hash primitive for computing multiple and
subsequent blocks of data (t values) in order to generate the challenge c. In
this case, we need to include the set of the t and common values for each
credential in the proof. Since the MULTOS hash function for obtaining a SHA-
256 digest requires the full input in memory, and that resource is limited in our
target device, we must find an alternative function that can compute hashes
with partial inputs in a subsequent manner.

In order to implement the equality proof on the card and be able to cope
with multiple signatures of different issuers we extend the PRNG described in
Section 4 and couple it with variable reconstruction in RAM. We notice that
the (ê, v̂′) values only depend on the (ẽ, ṽ) pseudorandom variables. Since they
do not depend on m̃, the same space reserved in RAM for such value (74 bytes
as described in Section 4) can be reused for (ê, v̂′) if their size is adapted to the
largest value (i.e. 255 bytes in the case of ṽ). This approach, makes it possible
to sequentially reconstruct via the deterministic PRNG ê and v̂′ (i.e. as ê =
ẽ + ce′ and v̂′ = ṽ + cv′) for each credential during the generation of the t- and
s values. Furthermore, the randomized computation of the signature component
A′ requires rA, another random value that can be derived from the PRNG.
Moreover, since the randomization of this value is independent form the rest of
the signature (e, v) and the m̂i values, we can compute all these variables in
a sequentially way. After each pseudorandom value has been recomputed, the
reconstructed variable is temporary stored in the transaction memory of the card
till it is requested by the verifier.

Therefore, the generation and recomputing of these values for an equality
proof of two credentials would be orchestrated by the PRNG as initP RNG() ⇒
r
(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i ⇒ resetP RNG() ⇒

r
(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i . We describe two8

8 We provide a third alternative via prime encoding in Appendix A.
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Table 4. Time required for reconstructing A′
i, v̂′

i, êi, and m̂i in RAM

Variable Operation Size (bytes) No. of calls to PRNG Delay (ms)

A′
i ASrA 138 9 235.191

v̂′
i v′ = v − e · rA 255 16 104.365

v̂ = ṽ′ + c · v′

êi ẽ + c · e′ 57 4 30.710
m̂i m̃i + c · mi 74 5 36.708

different alternatives for performing this proof according to different scenarios
and speed requirements.

Alternative A: Equality Proofs Across n Credentials. We have depicted
in Table 4 the performance of recomputing the randomness for the (A′, v̂′, ê, m̂i)
values and reconstructing their values in RAM. Despite the required number of
calls to the PRNG is higher in v̂′, the overall execution time is dominated by the
reconstruction of A′ that requires recomputing the SrA modular exponentiation
(235.191 ms). In contrast to the execution model described in Section 3.2, we
have rearranged the computation of (A′, ê, v̂′) to (A′, v̂′, ê) since the computation
of v̂′ requires rA. On the contrary, ê does not depend on other values.

Finally, in relation to the third requirement, we rely on the
PRIM_SECURE_HASH_IV primitive of the MULTOS card in order to subsequently
hash each t value. This primitive makes possible to avoid maintaining a long
string of bytes in RAM with all the required inputs for generating the challenge.
Therefore, each A′ and t value is generated in an iterative way and sequentially
added to the temporary digest. After the last t value, the transaction nonce is
hashed and the final digest is derived. In contrast to Eq. 2, the s values for each
credential signature (ê, v̂′) are now recomputed on demand when the verifier
request them. Consequently, that latency is added to Tget sig(i).

Alternative B: Equality Proofs Across 2 Credentials. In this alternative,
we work under the assumption that each card stores only two credentials i.e. one
root credential with different information about an issuing organization, an expi-
ration date or a revocation state together with a second credential that includes
the cardholders attributes. In both credentials the master secret is shared and an
equality proof can be performed across the two in order to proof the validity of
the card or the attributes. In this case, it can be possible to store both A′(1) and
A′(2) and avoid recomputing them two times as described in the first alternative
(Table 4). Moreover, the randomization factors r

(1)
A and r

(2)
A can be stored too

in order to avoid regenerate them via the PRNG during the computing of v̂′
i. In

this case, we use the transient memory of the card for storing these four values.
Given that its size is 1,016 bytes and the APDU buffer is limited to 256 bytes
according to the ISO 7816 standard we can use up to 1,016 - 256 = 760 bytes for
storing these values. In this respect, we need 2·128 bytes for A′(1), A′(2) and 2·138
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bytes for r
(1)
A and r

(2)
A in our case. Finally, the PRNG sequence for this approach

is represented by initP RNG() ⇒ r
(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒ ṽ(2) ⇒

ẽ(2) ⇒ m̃
(2)
i ⇒ resetP RNG() ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i

skipping the regenerated values r
(1)
A , r

(2)
A (stored).

6.2 Results for Performing an Equality Proof of Representation
with Two Full Credentials

We have depicted in Table 59 the performance of equality proofs using the two
described alternatives (a, b) for proving that the credentials (2 in this example)
of the cardholder share their master secret and therefore, are linked to her.

Table 5. Performance overhead while verifying two credentials with 5 attributes using
the equality proof (normal encoding, ms)

Alternative Case Tsel cred (ms) Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5) Total

a BC 104.12 1,805.24 (231.95, 91.63, 27.47)(1,2) (32.02, 10.11*5)(1) , (10.10*5)(2) 2,744.51
a WC 105.23 2,738.78 (228.38, 91.64, 27.55)(1,2) (31.50*6)(1) , (31.13*5)(2) 3,883.83

b BC 103.99 1,743.37 (17.82, 91.58, 27.40)(1,2) (32.05, 10.49*5)(1) , (10.53*5)(2) 2,261.19
b WC 103.47 2,673.60 (14.78, 91.25, 27.37)(1,2) (31.86*6)(1) , (31.19*5)(2) 3,390.60

Using the second alternative (b), it can be possible to perform an equality
proof of representation in 2,261.19 ms revealing all the attributes, whereas hiding
all the attributes would require 1,129.40 extra ms. Finally, the first alternative
(a), due to the fact that we recompute (ê, v̂′) for each credential in the generation
of each t value, increases the execution time of Tgen commit(n, r) from 840.73 ms
(verification of one credential, best case, Table 2) to 1,805.24 ms (best case, all
the attributes are revealed) and from 1,307.35 ms (verification of one credential,
all the attributes hidden, Table 2) to 2,738.78 ms (worst case, all the attributes
remain hidden). However, given the case that the user is requested to perform
an equality proof of her credentials, it would be rare to hide all the attributes
in the case that one of the credentials (e.g. a root credential) would contain
information about the issuing operation required to be revealed e.g. a date, the
name of an organization, etc.

7 Authenticated Secure Channel

We have depicted in Table 6 the results for performing all the operations de-
scribed in Sections 4-6 through terminal verification and secure channel. We rely
9 We use the superscripts 1 and 2 for referring to the operations related to the creden-

tials 1 and 2 of the equality proof. During the randomization of the CL signatures
the operations for each credential are the same. We have put together the operations
related to each credential in the worst case. Therefore, two pairs of 5 attributes are
hidden together with the master secret i.e. 6 + 5 operations if the master secret is
hidden during the computation of the s values of the first credential.



284 A. de la Piedra, J.-H. Hoepman, and P. Vullers

Table 6. Performance analysis of a full operation using terminal verification and secure
channel (normal encoding, ms)

Operation Case Tset sc Tsel cred Tgen commit Tget sig(A, e, v1, v2) Tget attr(m0, ..., m5|nym, r̂|dNym) Total

verify 1 cred BC 203.31 183.50 889.53 82.49, 49.40, 81.25, 68.82 76.04, 49.40*5 1,881.30
verify 1 cred WC 203.29 183.53 1,360.42 82.47, 49.38, 81.24, 68.80 76.14*6 2,484.10

Nym BC 203.32 185.26 1,226,26 81.99, 49.21, 80.88, 68.54 75.75, 49.28*5 | 81.01, 93.62 2,392.21
Nym WC 203.28 182.27 1,690.50 82.18, 49.35, 81.01, 68.57 75.70*6 | 81.32, 93.67 2,986.42

Nym ∧ dNym BC 203.29 182.41 1,419.52 82.19, 49.43, 81.02, 68.63 75.97, 49.41*5 | 81.38, 93.63 | 124.23 2,708.82
Nym ∧ dNym WC 203.31 182.56 1,893.67 82.02, 49.45, 81.02, 68.50 75.08*6 | 81.21, 93.75 | 124.26 3,310.23

eq. proof b BC 203.31 182.56 1,809.39 (82.10, 49.41, 81.05, 68.54)1,2 83.37, (49.99*5)1,2 3,340.71
eq. proof b WC 203.33 182.56 2,743.20 (82.12, 49.43, 81.02, 68.50)1,2 84.10, (84.33*5)1,2 4,618.62

on the secure channel for ABCs proposed by Alpár et al. in [4] and we perform
terminal verification via ECDSA signatures using the light secp160r1 (160 bits)
curve [34]. Besides, we rely on the normative for secure messaging of the Ger-
man ID [11] for providing authentication and confidentiality (CBC-MAC and
3DES-CBC are used [11]). If we compare our results depicted in Table 6 with
the works described in Section 2, Bichsel et al. required 7.4 seconds for verify-
ing a credential of one attribute (i.e. master secret, modulo 1,280 bits) whereas
we can perform an equality proof of 5 credentials in the same time (Appendix
A, Figure 1). Besides, one transaction in the implementation of Sterckx et al.
required 4.25 s using a modulus of 1,024 bits whereas we can perform all the
operations described in Sections 4–6 (best cases) within the same time 10.

We have made available our prototypes11 for public verifiability under the
General Public License (GPL) together with a terminal code based on the
CHARM cryptographic framework [3].

8 Conclusions
We have presented the performance evaluation and our design options for im-
plementing Idemix on a smart card together with a variety of operations for
executing complex proofs. We relied on recomputing all the involved pseudoran-
dommness using a PRNG. Moreover, we have described our results in combina-
tion with a secure channel coupled with terminal verification based on ECC. All
our operations required between 1–3.3 seconds (best cases) and between 1–4.6
(all cases) while the prior art only addressed the case of one credential with one
attribute (i.e. the master secret). In contrast, our performance figures can be
acceptable in on-line settings and could be adapted to off-line scenarios.
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Appendix A: Equality Proofs of Representation via
Prime-Encoded Attributes

The main operation of Idemix is the modular exponentiation where the number
of these operations is related to the amount of the cardholder’s attributes that
are hidden i.e. O(l) for l attributes. Recently, Camenisch et al, proposed an
alternative method for encoding attributes that reduces the overall number of
modular exponentiations to 2 [13]. They utilize a base R1 for encoding all the
attributes, which are represented as prime numbers. Therefore, the attribute
corresponding to R1 consists of the product mt =

∏l
i=1 mi for l attributes.

Proving the presence of an attribute mi in mt is performed via the coprime
property: one shows that a certain attribute mi can divide the product mt.
For instance, proving that the attribute m1 belongs to mt is represented in
zero knowledge as NIZK: {(ε′, ν′, α0, α1) : Z ≡ ±Rα0

0 (Rm1
1 )α1Aε′

Sν′ mod n}. In
addition, the commitment C = ZmtSr mod n and the t values C̃ = (Zm1)m̃hSr

mod n and C̃0 = Zm̃tS r̃ mod n must be computed, where mh = mt/mr and mr

consists on the product of attributes mi that are revealed (in this case mr = m1).
Moreover, Z, S ∈ QRn are both part of the issuer public key as described in
Section 3. Finally, the verifier checks C and C0 as C̃

?= C−c(Zmr)m̂hS r̂ mod n

and C̃0
?= C−cZm̂S r̂ mod n together with the verification of the ownership

of the CL signature as described in Protocol 1. This is performed using the
following s values computed and sent by the card: m̂0 = m̃0+cm0, m̂ = m̃+cm,
m̂h = m̃h + cmh and r̂ = r̃ + cr. In this case, the PRNG would compute the
following sequence: initP RNG() ⇒ m̃i ⇒ m̃h ⇒ r̃ ⇒ r ⇒ m̃t ⇒ resetP RNG() ⇒
m̃i ⇒ m̃h ⇒ r̃. Otherwise, not revealing any attribute, that is, only proving the
ownership of the signature would be represented as NIZK: {(ε′, ν′, α0, α1) : Z ≡
±Rα0

0 Rα1
1 Aε′

Sν′ mod n}. This requires two exponentiations with independence
of the number of attributes hidden. In this case, the PRNG would follow the
same sequence depicted in Section 4.

Table 7. Performance overhead while verifying five attributes using a custom PRNG
for generating the m̂ values (ms)

Work Encoding Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5|C, r̂, m̂h) Total

This work prime BC 103.13 1,250.10 15.40, 11.61, 19.67 38.31, 11.53 | 13.94, 32.97, 51.14 1,547.83
This work prime WC 103.71 987.10 15.54, 11.44, 19.62 38.30*2 1,214.24

As depicted in Table 7 we notice that what we considered the worst case for
normal encoding is the opposite here. We reuse the notation utilized in Sections
4–7 i.e. WC for hiding all the attributes and BC for revealing the content of a
credential with the exception of m0. Hence, only proving the ownership of a CL
signature over a set of attributes without revealing any only requires 1,214.24
ms. In contrast, revealing all the attributes requires the computation of C, C̃
and C̃0. Thanks to the optimizations carried out in Section 4 we can store C in
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RAM to avoid its recomputing when the verifiers requests its value. However,
revealing all the attributes requires 492.20 ms more in comparison to the uti-
lization of traditional encoding due to the additional modular exponentiations
and multiplications required by the generation of C, C̃ and C̃o.

We have recomputed the performance of standard and domain pseudonyms
from Table 3 in Table 8 relying on prime-encoded attributes. In this respect, all
the performance figures concerning the worst cases were improved i.e. 485.89 ms
(standard pseudonyms) and 499.76 ms (domain pseudonyms in combination with
standard pseudonyms, Section 5). However, revealing all the attributes requires
the computation of three commitments that need a larger number of modular
arithmetic operations in comparison to normal encoding (Table 3).

Table 8. Performance analysis of proving the ownership of standard and domain
pseudonyms (prime encoding, ms)

Implementation Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5|C, r̂, m̂h|nym, r̂|dNym) Total

Nym BC 103.13 1,720.73 15.41, 11.23, 19.46 38.42, 11.55 | 14.13, 32.48, 52.17 | 13.98, 50.33 2,083.01
Nym WC 104.11 1,288.88 15.54, 11.64, 19.22 38.11*2 | − | 13.99, 50.86 1,579.53

Nym ∧ dNym BC 103.17 2,255.31 15.29, 11.51, 19.12 38.39, 11.83 | 14.17, 32.44, 52.05 | 14.16, 58.34 | 51.12 2,676.92
Nym ∧ dNym WC 104.33 1,487.86 15.22, 11.49, 19.48 38.02*2 | − | 13.58, 58.11 | 52.12 1,838.25

It can be possible to rely on prime encoding attributes for performing equality
proofs with a better performance in comparison to the first two alternatives. In
this respect, while the performance of the best case would be slightly worst due to
the computation of the extra commitments, it can be possible to improve the per-
formance of the worst one by reducing the number of exponentiations to O(1+1)
per credential instead of O(5) per credential as in the alternatives a and b (Table
5). Proving that 2 credentials share m0 without revealing any attributes would
be represented in zero knowledge as NIZK: {(ε′

1, ν′
1, ε′

2, ν′
2, μ, α1, α2) : Z(1) ≡

±R
(1)μ
0 R

(1)α1
1 A(1)ε′

1S(1)ν′
1 mod n1 ∧Z(2) ≡ ±R

(2)μ
0 R

(2)β1
1 A(2)ε′

2S(2)ν′
2 mod n2}.

We note that there is an improvement of 496.59 ms and 989.82 ms in comparison
to the alternatives b and a respectively (Table 9)

However, the computation of C, C̃o and C̃ together with the two extra s values
undermines any possibility of improving the figures related to the best cases from
b and a.

Table 9. Performance overhead while verifying two credentials with 5 attributes using
the equality proof (ms)

Alternative Case Tsel cred (ms) Tgen commit Tget sig(A, e, v) Tget attr(m0, ..., m5|C, r̂, m̂h) Total

c BC 103.23 3,145.11 (232.69, 91.37, 27.72)(1,2) (32.11, 11.01)(1), (11.14)(2) | (13.90, 32.95, 51.14)(1,2) 4,202.74
c WC 104.17 2,023.94 (232.61, 91.52, 27.62)(1,2) (31.19*2)(1,2) 2,894.01

We have also estimated the time that requires computing equality proofs up to
8 credentials using the alternatives a and c (Figure 1). We consider 4–5 seconds
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the acceptable time for an on-line setting. Hence, performing equality proofs
with 3 and 4 credentials revealing all the attributes would be possible whereas
execution times beyond 6 seconds (worst cases with 3 credentials and beyond and
best cases with 5 credentials and beyond) are unrealistic in practical scenarios.
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Fig. 1. Performance of the equality proof (credentials of five attributes)

We notice that it is possible to improve the performance results of an equality
proof of 2 credentials hiding all the attributes by using this type of encoding.
This approach would be only useful in systems where an user should prove the
ownership of n credentials without revealing her attributes.
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Abstract. Biometric authentication establishes the identity of an indi-
vidual based on biometric templates (e.g. fingerprints, retina scans etc.).
Although biometric authentication has important advantages and many
applications, it also raises serious security and privacy concerns. Here, we
investigate a biometric authentication protocol that has been proposed
by Bringer et al. and adopts a distributed architecture (i.e. multiple enti-
ties are involved in the authentication process). This protocol was proven
to be secure and privacy-preserving in the honest-but-curious (or pas-
sive) attack model. We present an attack algorithm that can be employed
to mount a number of attacks on the protocol under investigation. We
then propose an improved version of the Bringer et al. protocol that is
secure in the malicious (or active) insider attack model and has forward
security.

Keywords: Biometrics, privacy-preserving biometric authentication,
homomorphic encryption, active attack, forward security.

1 Introduction

Biometric authentication offers important advantages mainly due to the unique-
ness of biometric identifiers and other favorable properties since biometrics can-
not be lost or forgotten. A biometric authentication system consists of two phases,
namely, the enrollment phase and the authentication phase; and it typically in-
volves two entities: a client and a server. During the enrollment phase, the client
provides the server with his biometric data for storage in a database. Then,
during the authentication phase, the server authenticates the client if his fresh
biometric template matches the one that is stored in the database.

Since the server often has to perform many tasks (e.g. retrieving from the
database the client’s reference biometric template, checking if it matches the
fresh template) its role can be divided into several parts. Thus, the execution of
the protocol involves different entities where each entity performs a specific task.
For instance, a biometric authentication protocol could involve the following en-
tities: a user U , a biometric sensor S, an authentication server AS, a database
DB and a matcher M. This architecture of a biometric authentication system
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has been proposed by Bringer et al. [1]. In this new setup, a biometric authenti-
cation system works as follows. Let N be the number of users registered in the
authentication system. We denote by Ui the i-th user where 1 ≤ i ≤ N . In the
enrolment phase the user Ui registers his biometric data bi which is then stored
in the database DB. In the authentication phase a user Ui first provides a fresh
biometric trait b′i and his identity IDi to the sensor S, which in turn forwards
these data to the authentication server AS. AS then asks DB for Ui’s biometric
data bi that is already stored in DB. After getting bi from DB, AS sends bi and
b′i to the matcher M, which checks whether bi and b′i match and sends back the
result of the comparison to AS, which then makes the decision of whether to
grant authentication to the user depending on the matcher’s response.

Note that it is assumed that the output of the authentication process denoted
as OutAS (i.e. knowing whether the authentication has been granted or not) is
publicly available; something that is quite common in the literature [2,3,4,5,6].
For instance, in case the biometric authentication system is used to restrict access
to a building then the event that the door opens corresponds to a successful
authentication.

However, biometric authentication has also many serious security and privacy
implications. Compromised biometric templates may lead to serious threats to
identity, while the inherent irrevocability of biometrics renders this risk even
more serious. Furthermore, biometric information may reveal very sensitive and
private information such as genetic [7] and medical information [8]. Additional
issues of linkability, profiling and tracking of individuals are raised by cross-
matching biometric traits. Therefore, privacy-preserving biometric authentica-
tion protocols are of utmost importance. Many existing protocols rely on the
use of secure multi-party computation techniques including homomorphic en-
cryption [9] and oblivious transfer [10,11].

Contributions and Related Work. In this paper, we review a privacy-
preserving biometric authentication protocol that has been proposed by Bringer
et al. [1]. This protocol relies on the Goldwasser-Micali (GM) cryptosystem [12]
which is a homomorphic encryption. Bringer et al. [1] have shown that their pro-
tocol is secure under the assumption that the system entities do not collude and
are honest-but-curious. Here, we improve upon the original protocol to safeguard
it against malicious insider attacks.

We first present a generic algorithm that can be employed by an adversary
to mount a number of attacks to the protocol under investigation. One of the
enablers of the attacks is the bit-by-bit encryption of the biometric data using
the GM encryption scheme. Then, we propose an improved protocol that is se-
cure and privacy-preserving in the malicious adversarial model. In particular,
the improved protocol is secure against malicious, but non-colluding insider at-
tacks and has forward security. We also compare our protocol with the original
protocol.

Some attacks on the protocol under study were presented by Barbosa et al. [13]
and Simoens et al. [14]. Barbosa et al. [13] present a simple attack that allows the
authentication server AS to learn some bits of the reference biometric templates
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due to non-randomisation of the response by the database DB to the authenti-
cation server AS. Simoens et al. [14] present possible insider attack ideas and
attacks by a single or multiple, colluding malicious entities. In this paper, we
extend some of their attack ideas and present a simple yet powerful attack algo-
rithm.

Bringer and Chabanne [15] presented an improvement of the protocol under
study, where they replaced the matching algorithm by an error correction proce-
dure using secure sketches and discussed how it can be integrated into the Private
Information Retrieval (PIR) scheme due to Lipmaa [16]. In their scheme, the
database stores encryptions of the biometric templates. However, this scheme is
computationally expensive. There are also several biometric authentication pro-
tocols proposed by Stoianov [17] that employ the Blum-Goldwasser (BG) [18,19]
encryption scheme. But in these protocols, there are three entities, namely a
client, a computation server (or database), and an authentication server. There
are many other works related to privacy-preserving biometrics. However, to the
best of our knowledge, Barbosa et al. [13] and Simoens et al. [14] are the only
ones that study the security of the protocol under investigation.

Outline. After giving some definitions and our threat model in Section 2, we
present the protocol under study in Section 3. Then, in Section 4, we describe
the attack algorithm. Section 5 presents an improvement of the Bringer et al.
protocol while Section 6 presents its security analysis and compares it with the
original protocol. Finally, Section 7 concludes the paper and highlights some
future work.

2 Preliminaries
We give notations and definitions of some of the key concepts used throughout
the paper. Also, we present a threat model in which we analyse the security and
privacy of the biometric authentication protocol under study.

Communication Model. In our modifications to the protocol under investiga-
tion, we assume that there is a secure and authentic channel between the system
entities. In particular, we assume that there are shared secret keys between S
and M, AS and M, DB and M, that are used to encrypt and authenticate
messages sent to M. In addition, M has a public encryption key to which all
other system entities have access, and S and DB have a shared secret key that
they use to derive a permutation to permute the biometric templates before en-
crypting them. Since we omit the underlying infrastructure for the public-key
primitive (i.e. the protocol does not explicitly use certificates), we also assume
the authenticity of the matcher’s public key. In this paper, we focus on the case
where there is only a single S, a single AS, and a single DB in the system. There-
fore, security in the case of multiple entities communicating with each other in
parallel is outside the scope of this paper.

Definitions. We use the following as a definition of privacy-preserving biometric
authentication.
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Definition 1 (Privacy-preserving biometric authentication). We say a
biometric authentication protocol is privacy-preserving if no probabilistic
polynomial-time (PPT) adversary can recover any of the following information,
if they are not already known: a fresh biometric b′i, a stored biometric bi or the
correspondence between the identity IDi and bi.

We also use provably secure message authentication codes (MACs) in our
modification to the protocol under study. A MAC scheme MAC consists of a key
generation algorithm KeyGen, a tag generation algorithm TAG, and a verification
algorithm VRFY. When we say a MAC scheme is ε-secure, we refer to the following
definition.

Definition 2. A MAC scheme is called ε-secure if no PPT adversary A can
generate a valid message-tag pair, even after making polynomially many tag gen-
eration and verification queries, except with probability ε.

Furthermore, when we say secure pseudorandom number generator (PNG) we
mean a PNG that satisfies the following definition.

Definition 3. A PNG is called an ε-secure if no PPT distinguisher D can dis-
tinguish its output from a randomly chosen bitstring of equal length except for a
negligible probability ε.

Lastly, we use symmetric key encryption, denoted by SKE, in our modifica-
tion. We require SKE to have indistinguishability against ciphertext-only attacks
(IND-COA) (cf. Appendix A). Note that we use Enc (and Dec) to denote the GM
encryption (and decryption), and EncK (and DecK) to denote symmetric key
encryption (and decryption) with a key K.

Threat Model. In our threat model, we go beyond the honest-but-curious
(or passive) model that is adopted in the original protocol by Bringer et al. [1]
and extend the adversary model investigated by Simoens et al. [14]. Hence, we
consider as an adversary A any passive (or active) internal entity that can violate
the protocol specifications and that attempts to recover any of the following
information, if they are not yet known: the fresh biometric b′i, the stored template
bi, and/or the correspondence of a user identity IDi to the stored template bi.
Thus, each of the entities – the user IDi, the sensor S, the authentication server
AS, the database DB, and the matcher M – may pose threats to privacy of
biometric reference, biometric sample and user identity [14].

Assumptions. When security and privacy of a biometric authentication system
are analysed, there are always certain assumptions that must hold. In our case,
we make the following assumptions.

Assumption 1. We assume that the sensor S is honest, has not been compro-
mised and captures the biometric templates from alive human users.

This assumption is important because if the sensor S is compromised, then
the adversary can wait until a legitimate user comes and authenticates himself
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to the system, and hence easily learns the identity and fresh biometric template
of a legitimate user. This is possible because as we mentioned earlier the output
of the authentication server to the user is assumed to be publicly known.

A malicious user may attempt to get himself authenticated to the system
by a fake identity and a fake biometric template. Also, a series of successful
consecutive authentication attempts by the same user identity may also be an
indication of a malicious behaviour if there is a specific pattern in the biometric
templates used. Therefore, we assume that the system has appropriate measures
to limit the number of such trials. This brings us to our next assumption.

Assumption 2. We assume that the biometric authentication system has a
limit on the maximum allowed consecutive failed trials to grant access. This limit
does not allow an adversary to create a fake fresh biometric b′i that is accepted by
the matcher M. Also, we assume that the system has a limit on the maximum
allowed consecutive successful trials to grant access. This limit helps the system
to detect hill climbing attacks; see Simoens et al. [14] for details on this attack.

Finally, we assume that the system entities are not colluding. We note that
this assumption is valid when an adversary has compromised only one of the
entities. And we believe that this is an important first step towards achieving a
protocol secure against malicious and colluding insider attacks.

Assumption 3. We assume that the entities AS, DB, M may not collude with
each other.

3 The Bringer et al. Protocol

Bringer et al. [1] have proposed a protocol for privacy-preserving biometric au-
thentication that follows the above described model and involves four entities
in the biometric authentication process. According to this protocol the sensor
S, the authentication server AS and the database DB store the public key pk
while the matcher M stores the secret key sk. AS also stores the mapping
(IDi, i), for i = 1, . . . , N , where i corresponds to user Ui and N is the total
number of users of the biometric authentication system. Furthermore, DB stores
the reference biometric template bi. The protocol is based on the GM cryp-
tosystem. We denote by Enc(bi) the bit-by-bit encryption of the template bi, i.e.
Enc(bi,1 . . . bi,M ) =

(
Enc(bi,1), . . . ,Enc(bi,M )

)
, where M is the bit length of the

template.
In the enrolment phase, user Ui registers (bi, i) at DB, and (IDi, i) at the AS.

The authentication phase comprises the following phases.
Phase 1 - Communication Ui → S → AS:
– Ui provides a fresh biometric trait b′i and his identity IDi to S.

– Then, S sends the fresh biometric b′i encrypted under the public key pk (i.e.
Enc(b′i)) as well as the claimed identity IDi to AS.

Phase 2 - Communication AS ↔ DB:
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– AS performs the mapping from IDi to i and then using a PIR mechanism
sends i and requests the corresponding stored biometric template bi. More
precisely, AS sends to DB the encrypted value Enc(tj), where 1 ≤ j ≤ N
and tj = 1, if j = i, 0 otherwise.

– DB computes: Enc(bi,k) =
∏N

j=1 Enc(tj)
bj,k where 1 ≤ k ≤ M and then sends

the computed values Enc(bi,k) to AS.

Phase 3 - Communication AS ↔ M:

– AS computes vk = Enc(b′i,k)Enc(bi,k) = Enc(b′i,k ⊕ bi,k), where 1 ≤ k ≤ M .
Then, AS permutes vk and sends λk = vπ(k) (1 ≤ k ≤ M ) to M.

– M decrypts the permuted vector λk and checks whether the Hamming weight
(HW) of the decrypted vector is less than a predefined threshold τ . The result
of this control is sent to AS.

Phase 4 - Communication AS → Ui: Finally, AS accepts or rejects the
authentication request (OutAS = 1 or OutAS = 0 respectively) depending on
the value returned by M.

4 Description of the Attacks

Barbosa et al. [13] and Simoens et al. [14] presented several attacks on the above
protocol when the adversary is a single entity or a combination of multiple enti-
ties. In addition, Simoens et al. [14] presented a framework for analysing security
and privacy of biometric data in biometric authentication systems. In this sec-
tion, we present a simple yet powerful algorithm (Algorithm 1) that can be used
as a basis for a number of attacks. The attack algorithm takes a ciphertext as in-
put and returns the corresponding plaintext by querying the matcher. The main
enabler of this attack algorithm is the bit-by-bit encryption of the communication
between the involved parties and the use of Hamming distance as the measure of
whether the fresh biometric template matches the stored biometric profile. The
algorithm uses as a subroutine the algorithm for the center search attack, but it
is called only if the condition HW(bi) ≤ τ holds; we urge the interested reader
to consult Simoens et al. [14] for details on the attack

The Attack Idea. Upon receiving from AS a vector λ of ciphertexts, the
matcher M first decrypts λ component-by-component and then compares
the Hamming weight of the resulting bitstring with a predefined threshold
τ . M responds YES to AS if the Hamming weight is less than τ ; other-
wise, responds NO. Therefore, in order to find bi from λ := Enc(bi) =
(Enc(bi1),Enc(bi2), · · · ,Enc(biM )), an adversary (say, AS) first finds a bitstring
whose Hamming weight is equal to the threshold τ + 1 by repeatedly replacing
the components of (Enc(0), · · · ,Enc(0)) with the corresponding components of λ
until it gets rejected by M. By using this bitstring with Hamming weight τ + 1,
the adversary is able to recover all bits of bi one by one, as shown in Algorithm 1.

In the following attacks, we only consider the case when the authentication
server AS (attacks 1 and 2) or the database DB (attack 3) is compromised,
respectively.
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Attack 1 - Compromised AS. AS receives from DB the biometric reference
template in encrypted form i.e. Enc(bi) = c1, . . . , cM . Then, AS follows Algo-
rithm 1. After executing the Algorithm 1, AS can successfully deduce all bits
of bi. The worst case complexity of this algorithm is max

(
2(τ + M), 4τ + M

)
,

where τ is the threshold. We may note here that the complexity of the center
search attack is max

(
2τ + M, 4τ

)
[14]. After executing this algorithm AS has

successfully deduced k out of the M bits of bi, where M − k = τ are the maxi-
mum allowed errors. By following a similar algorithm for the remaining τ bits,
it can recover all bits of bi.
Attack 2 - Compromised AS. A variation of the previous attack can be
performed if AS has also at his disposal a valid value Enc(b′i ⊕ bi). In this case
Algorithm 1 can be executed twice: once for λ = Enc(b′i) and once for λ =
Enc(b′i ⊕ bi). Thus, AS will be able to recover bi and b′i ⊕ bi and subsequently b′i.
Attack 3 - Compromised DB. A variation of attack 1 can also be performed
if DB is compromised. DB sets λ = Enc(t1), . . . ,Enc(tM ) if M < N ; otherwise,
λ = Enc(t1), . . . ,Enc(tN ),Enc(0), · · · ,Enc(0). This way, DB is able to recover tj ’s
by sending multiple queries to M. Note that in the case of M ≤ N , if it turns
out that tj = 0, for all j = 1, . . . , M , then λ can be chosen to be the encryption
of the remaining tj ’s. Here we remark that DB on its own cannot send queries
to M directly. But since M does not check the integrity of received queries, the
adversary can replace AS’s query to M with his own. In other words, here DB
impersonates AS to M.

Algorithm 1.
Input: Enc(bi) = c1, · · · , cM
Output: bi
Initialise: bi = 00 · · · 0
For k = 1 to M:

Set λ = c1, . . . , ck, Enc(0), . . . , Enc(0)
If λ is rejected Then

break
If k == M Then

Return centerSearch(bi)
Set k∗ = k and bi,k∗ = 1

If k∗ ≥ 2 Then
For k = 1 to k∗ − 1:

Set λ = c1, . . . , ck−1, Enc(0), ck+1 . . . , ck∗ , Enc(0), . . . , Enc(0)

If λ is accepted Then
bi,k = 1

For k = k∗ + 1 to M:
Set λ = c1, . . . , ck∗−1, Enc(0), . . . , Enc(0), ck, Enc(0), . . . , Enc(0)

If λ is rejected Then
bi,k = 1

Return bi

Thus, the Bringer et al. protocol is not secure or privacy-preserving in the
malicious insider attack model. Because of the bit-by-bit encryption of the com-
munication between the entities, the above presented attacks are straightforward
and easy to mount. Plus, the complexity of the attacks is low. To mitigate the
attacks, we next propose some modifications to the original protocol to improve
its security and privacy preservation.

5 Countermeasure

Now, we propose modifications to the protocol under study to restore its security
against the Attacks 1-3 presented in the previous section. Let us first discuss how
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we can protect the system against the Attack 1. We note that in this case the
attacker has Enc(bi) and wants to find out what bi is. If the matcher M does
not directly compute the Hamming weight (HW) of the resulting bit-string from
the decryption of the received ciphtertext, we may be able to protect the system
against the Attack 1. So, in our modification, M shares two secret keys K1 and
K2 with S, a secret key K3 with AS, and two more secret keys K4 and K5

with DB. These keys are used for symmetric key schemes, therefore the length
of these keys are not as long as the length of the key for the GM encryption. As
before, pk and sk are M’s public and secret keys for GM encryption. S and DB
also share a key KS↔DB that is used to derive a permutation π. In addition, S
has a key K that it uses to encrypt the user identity IDi.

During the enrollment phase, S stores (bi, i) at DB and (idi, i), where idi =
EncK(IDi) (a symmetric key encryption of IDi with key K), at AS.

The main changes take place in the authentication phase.
Phase 1 - Communication Ui → S → AS:
– Ui → S: Ui provides a fresh biometric trait b′i and IDi to S.
– S → AS: S derives a permutation π using the key KS↔DB (shared with DB)

and permutes b′i. Then, it generates two random bitstrings S and K ′
1 of length

M and encrypts (b′i)π ⊕S with the public key pk (i.e. a = Enc((b′i)π ⊕S)). In
order to achieve forward security, K ′

1 is generated to replace K1. S proceeds
to compute ω = EncK1(S, K ′

1), an encryption of S and K ′
1 with K1, and

computes σ = TAG(ω, K2). Also, S replaces K1 with K ′
1, which will be used

in the next run of the protocol and deletes K1 permanently. Finally, S sends a
and (ω, σ) along with the encryption of the claimed identity idi = EncK(IDi)
to AS. Note that this encryption of IDi is done to protect it from an adversary
observing the communication from S to AS.

Phase 2 - Communication AS ↔ DB:
– AS → DB: AS extracts the index i from idi and sends dj = Enc(tj) to DB ,

for j = 1, · · · , N , where tj is the same as before.
– DB → AS: DB derives π from KS↔DB, generates two random bit-

strings S′ and K ′
4 of length M , and computes ck = Enc

(
(bi,k)π ⊕ S′

k

)
=∏N

j=1 Enc(tj)
(bj,k)π⊕S′

k , where 1 ≤ k ≤ M . DB then encrypts S′ and K ′
4

using K4 to get ω′ = EncK4(S
′, K ′

4), and computes σ′ = TAG(ω′, K5). After
that, DB replaces K4 with K ′

4 (to guarantee forward security) and deletes
K4. Finally, DB sends c, (ω′, σ′) to AS.

Phase 3 - Communication AS ↔ M:
– AS → M: AS computes λk = akck = Enc

(
(b′i,k)π ⊕ S

)
Enc

(
(bi,k)π ⊕ S′) =

Enc
(
(b′i,k ⊕ bi,k)π ⊕S ⊕S′), for 1 ≤ k ≤ M , computes σ′′ = TAG(λ, K3), and

sends (ω, σ), (ω′, σ′), and (λ, σ′′) to M.
– M → AS: M first checks the authenticity of ω, ω′ and λ by respectively

running VRFY(ω, σ, K2), VRFY(ω′, σ′, K5), and VRFY(λ, σ′′, K3). If any one
of them is not authentic, it outputs ⊥ (i.e. aborts the protocol). Otherwise, it
proceeds to obtain S, K ′

1 ← DecK1(ω), S′, K ′
4 ← DecK4(ω

′), and (b′i⊕bi)π ←
Dec(λ)⊕S⊕S′; and replaces K1 and K4 with K ′

1 and K ′
4, respectively. Lastly,

M checks whether the HW
(
(b′i⊕bi)π

)
≤ τ and sends the result of this control

to AS.
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Phase 4 - Communication AS → Ui: Finally, AS accepts or rejects the
authentication request (OutAS = 1 or OutAS = 0 respectively) depending on
the value returned by M.

We should note here that the reason for replacing K1 and K4 with new in-
dependently generated K ′

1 and K ′
4, respectively, was to ensure forward security

and thus to limit the damage in case the keys are compromised. The main ques-
tion we want to answer now is: How secure is the improved protocol against the
presented attacks? We address this question in the following section.

6 Security Analysis

Let us assess the security of the modified protocol. Before we proceed, we recall
that we aim for security in the malicious, but non-colluding model, meaning
that any entity can deviate from the protocol specifications but none of the
entities may collude with each other. Therefore, we focus on security against
malicious insider attacks. Since our primary goal is to assure security and privacy
of biometric templates and user identity, we do not consider denial of service type
of attacks in our analysis.

To begin with, let us analyse case-by-case what may happen when the en-
tities, except for the sensor S which we assume to be honest and cannot be
compromised, are malicious.

– Attacker = AS: AS has knowledge of K3, so it can send arbitrary queries
to M. In addition, it has at its disposal the encrypted user identity idi =
EncK(IDi), encrypted biometric templates Enc((b′i)π ⊕ S) and Enc((bi)π ⊕
S′), ω = EncK1(S, K ′

1), ω′ = EncK4(S
′, K ′

4), their authentication tags σ =
hK2(ω), σ′ = hK5(ω

′). He wants to use all this information to gain knowledge
of b′i, bi, and the linkage between IDi and a biometric template bi. It may
arbitrarily deviate from the protocol specifications, except that it is not
allowed to compromise or collude with another protocol entity. Note that
AS can always cause denial of service to legitimate users by providing wrong
input to M.

– Attacker = DB: DB has knowledge of all stored biometric templates and of
K4, K5, S′ and π. However, it does not know which bi is related to which user
identity Ui. It also does not know which user is attempting to authenticate
himself to the server AS. Therefore, its goal is to learn which user is trying
to authenticate himself and to which user a biometric template belongs. It
may also deviate from the protocol specifications, but it cannot collude with
other entities.

– Attacker = M: M has the secret keys sk, K1, K2, K3, K4, and K5. Its goal
is to distinguish whether two authentication attempts are from the same
user. Since we assume that communications between the entities cannot be
eavesdropped, it cannot use the secret keys to learn bi and b′i, unless it
colludes with AS.

The modified protocol is secure and preserves the privacy of biometric tem-
plates and user identity. In particular, none of the entities AS, DB, and M, all
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malicious but non-colluding and PPT, can link a biometric template to a user
identity and a malicious DB cannot distinguish whether two authentication at-
tempts are from the same user. More precisely, Theorem 1 and Theorem 2 stated
in Bringer et al. [1] also hold in the proposed modified protocol. We provide their
proofs for the modified protocol in Appendix B. Finally, the modified proposed
protocol is secure against malicious authentications servers AS as stated in the
following theorem (we provide its proof in Appendix C).

Theorem 1. If the Assumptions 1-3 hold and if (a) S and S′ are generated using
ε-secure PNGs (cf. Definition 3), (b) the symmetric encryption schemes SKE used
between the sensor S and the matcher M, and between the database DB and the
matcher M, is IND-COA-secure, and (c) the GM scheme is IND-CPA-secure. Then,
our modified protocol is secure against any malicious authentication server AS.
Forward Security. Informally, forward security means that the disclosure of a
secret key material does not compromise the secrecy of the exchanged commu-
nications from previous rounds. As we briefly mentioned in the previous section,
our modified protocol has forward security. In particular, the biometric templates
exchanged will not be affected by a future disclosure of the secret key used to en-
crypt them. The original protocol, on the other hand, does not provide forward
security. This is because if the matcher M’s secret key is compromised, then all
biometric templates exchanged in the past can be learned. But in the modified
protocol, the adversary learns the biometric templates in the present round (and
onwards) only.

Comparison. In comparison with the original protocol, in our modification
each protocol entity performs additional cryptographic computations such as,
symmetric key encryption/decryption, MAC generation/verification, and gener-
ation of pseudo-random numbers. In particular, in the case of S, in the original
protocol, S only computes the encryption of the fresh biometric samples using
the GM encryption. But in the modified protocol, in addition to that, S first
generates S, K ′

1 and then computes ω = EncK1(S, K ′
1) and EncK(IDi) using a

symmetric encryption and computes an authentication tag for ω using a suit-
able MAC. In the case of AS, the only additional computation done in the
modified protocol is the authentication tag generation for λ, i.e. σ′′ = hK3(λ).
In the case of DB, in the modified protocol, DB first generates S′, K ′

4 and then
ω′ = EncK4(S

′, K ′
4), σ′ = TAGK5(ω

′). In the case of M, in the modified protocol,
the additional computations done by M are: VRFY(ω, σ, K2), VRFY(ω′, σ′, K5),
VRFY(λ, σ′′, K3), DecK1(ω) and DecK4(ω

′). Also, it XORs S and S′ with Dec(λ).
It is evident that in the modified protocol, each system entity performs some ad-
ditional computations than required in the original protocol. However, as they
are symmetric cryptographic operations, these computations are not as heavy as
those done in the GM encryption.

7 Conclusions
We investigated the security of a privacy-preserving biometric authentication
protocol proposed by Bringer et al. that uses the Goldwasser-Micali
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cryptosystem in the malicious attack model. We presented a simple attack algo-
rithm that can be employed to mount a number of attacks on the system to either
obtain the reference biometric template (bi) or the identity (IDi) of a user asso-
ciated with a biometric template (bi). Furthermore, we proposed an improved
version of the Bringer et al. [1] protocol and proved its security against malicious,
but non-colluding insider attacks. As future work, we would like to investigate
how to achieve security and privacy against colluding internal adversaries.
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A Appendix

ExpIND-COA
SKE,A is the IND-COA game against an SKE scheme defined as follows.

ExpIND-COA
SKE,A : K ← KeyGen(1	)

m0,m1 ← A1(1	)

c ← Enc(mβ,K), β
R←−− {0, 1}

β′ ← A2(m0,m1, c)

Return 1 if β′ = β, 0 otherwise

The adversary’s advantage in this game is defined as AdvIND-COA
SKE,A =∣∣∣2 Pr

(
ExpIND-COA

SKE,A = 1
)

− 1
∣∣∣. A SKE scheme is said to be IND-COA-secure, if ∀

PPT adversary A, AdvIND-COA
SKE,A ≤ negl(�), where (and below) negl(�) : N �→ [0, 1]

is a negligible function meaning that for all positive polynomials P and all suffi-
ciently large � ∈ N, we have negl(�) < 1/P (�).

ExpIND-CPA
GM,A is the IND-CPA game against the GM encryption and is defined

as in the previous game, but now the adversary has access to the public key.
This scheme is said to be IND-CPA secure if ∀ PPT adversary A, AdvIND-CPA

GM,A =∣∣∣2 Pr
(
ExpIND-CPA

GM,A = 1
)

− 1
∣∣∣ ≤ negl(�).

B Appendix

Here we prove the Theorem 1 and 2 in Bringer et al. [1] in the case of our
improved protocol.

Theorem 2. For any IDi0 and two biometric templates b′i0 , b′i1 , where i0, i1 ≥ 1
and b′i0 is the biometric template related to IDi0 , any of the malicious, but not
colluding AS, DB, and M can only distinguish between (IDi0 , b

′
i0) and (IDi0 , b

′
i1)

with a negligible advantage.
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Proof. Since DB and M have no access to user identities, their advantage is 0
in distinguishing between (IDi0 , b

′
i0

) and (IDi0 , b
′
i1

).
In the case of AS, it has access to idi0 = EncK(IDi0), where EncK(·) is a

symmetric encryption with the sensor S’s key K. However, even if AS knows IDi0 ,
it cannot distinguish between (IDi0 , b

′
i0

) and (IDi0 , b
′
i1

), except with a negligible
probability, as we see below.

Suppose that AS has a non-negligible advantage in distinguishing between
(IDi0 , b

′
i0) and (IDi0 , b

′
i1). Then, we can construct an adversary A, consisting of

algorithms A1 and A2, such that A’s advantage in the following game is non-
negligible, contradicting the IND-CPA-security of GM cryptosystem:

ExpIND-CPA
GM,A : pk = (n, x), sk = (p, q) ← KeyGen(1	)

mi0
= m′

i0
⊕ S,mi1

= m′
i1

⊕ S, m′
i0

�= m′
i1

← A1(1	, pk)

c ← Enc(miα
), α

R←−− {0, 1}
α′ = guessAS ← A2

(AS(mi0
, mi1

, c, pk)
)

Return 1 if β′ = β, 0 otherwise

In the experiment, A2 simulates the biometric authentication protocol by letting
pk be M’s public key and storing m′

i0 and m′
i1 in DB. A2 then asks AS to guess

β from c = Enc(miβ ) = Enc(m′
iβ

⊕ S) and returns β as the guess for α. So, A
wins if AS wins in his guess. Thus, AS can only distinguish between (IDi0 , b

′
i0)

and (IDi0 , b
′
i1

) with negligible probability. �

The next theorem shows that a malicious database DB cannot distinguish whether
two authentication attempts are from the same user.

Theorem 3. For any two users Ui0 and Ui1 , where i0, i1 ≥ 1, if Uiβ where
β ∈ {0, 1} makes an authentication attempt, then the malicious DB can only
guess β with a negligible advantage. Here, the adversary’s advantage is defined
as
∣∣Pr{β = β′} − 1/2

∣∣, where β′ is DB’s guess.

Proof (of Theorem 3). DB guesses β from Enc(tj), for j = 1, · · · , N , where
tj = 1 when j = iβ (β ∈ {0, 1}), otherwise tj = 0. The proof is similar to that
of Theorem 2 in Bringer et al. [1].

Suppose that DB can guess β with non-negligible advantage. Then, we can
construct a PPT adversary A, consisting of A1 and A2, that uses DB as a black-
box to win in the following game with non-negligible advantage; contradicting
the IND-CPA-security of GM cryptosystem:

ExpIND-CPA
GM,A : pk = (n, x), sk = (p, q) ← KeyGen(1	)

m0 = 0, m1 = 1 ← A1(1	, pk)

c ← Enc(mα), α
R←−− {0, 1}

α′ = guessDB ← A2
(DB(Enc(tj ), pk)

)
, j = 1, · · · , N

Return 1 if β′ = β, 0 otherwise

where Enc(ti1 ) = c, Enc(ti0) = y2xc, y
R←− Z�

n, tj = 0, ∀j �= i0, i1. Note that if
c = Enc(m0), then y2xc is not a quadratic residue mod n, so DB’s guess, which
is 0, and α coincide. Similarly, if c = Enc(m1), then y2xc is a quadratic residue
mod n, so DB’s guess, which is 1, and α coincide. Hence, DB’s advantage of
guessing β correctly should be negligible. �
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C Appendix

Here, we present the proof of Theorem 1. Let A be any PPT adversary, consisting
of two algorithms A1 and A2. Let us consider the following game against the
modified biometric authentication protocol Π . Let KeyGen be an algorithm that
generates both symmetric and asymmetric keys needed in the protocol, upon 1�

(a string of 1s of length �) as an input. As usual, � is a security parameter.

Exp
biometric-privacy
Π,A : (pk, sk), K,KS↔DB, K1, · · · , K5 ← KeyGen(1	)

S, S′ ← PNG(s), s
R←−− {0, 1}r>0

a, (ω, σ), c, (ω′, σ′) ← Π(pk, K,KS ↔ DB, K1, K2, K4, K5)

γ0 = (λ(0), σ′′
0 ), γ1 = (λ(1), σ′′

1 ) ← A1
(
a, c,K3, (ω, σ), (ω′, σ′))

β
R←−− {0, 1}

OutM ← M(
γβ, (ω, σ), (ω′ , σ′), sk, K1, · · · , K5

)
β′ ← A2

(
γ0, γ1, OutM

)
Return (β′ = β, OutM)

The adversary’s advantage Advbiometric-privacy
Π,A at the end of this game is defined as

Advbiometric-privacy
Π,A = | Pr{β′ = β} − 1/2|, where β ∈ {0, 1} is M’s choice and β′ is

the adversary’s guess for β. We say that the biometric authentication protocol
is secure against malicious AS, if Advbiometric-privacy

Π,A ≤ negl(�).
Note that as stated in Assumption 2, we assume that the adversary does not

have access to an acceptable biometric template, because otherwise the adversary
can easily produce two challenges so that it wins the above experiment with non-
negligible advantage.

Proof (of Theorem 1). Case 1. HW
(
Dec(λ(β)) ⊕ S ⊕ S′) ≤ τ , for ∀β ∈ {0, 1}.

In this case, M’s output always be the same (i.e., OutM = YES.) Hence, the
adversary’s advantage in this case is 0.
Case 2. HW

(
Dec(λ(β)) ⊕ S ⊕ S′) > τ , for ∀β ∈ {0, 1}. Also in this case, M’s

output always be the same (i.e., OutM = NO). Hence, the adversary’s advantage
in this case is 0.
Case 3. HW

(
Dec(λ(β)) ⊕ S ⊕ S′) ≤ τ and HW

(
Dec(λ(1−β)) ⊕ S ⊕ S′) > τ .

Suppose that a PPT adversary A has a non-negligible advantage δ of winning
the game Expbiometric-privacy

Π,A . Then we can construct a PPT adversary Ā that wins

in ExpIND-COA
SKE,Ā and/or ExpIND-CPA

GM,Ā with advantage δ. The construction of such an

adversary Ā, for example in the case of ExpIND-COA
SKE,Ā , may proceed as follows:

ExpIND-COA
SKE,Ā : K′ ← KeyGen(1	){

m0 = (m00,m01), HW(m00) ≤ τ & HW(¬m00) > τ

m1 = (m10,m11), HW(m10) > τ & HW(¬m10) ≤ τ
← Ā(1	)

c ← Enc
K′ (mα), α

R←−− {0, 1}

α′ =

{
guessA, if OutM = YES,

1 − guessA, if OutM = NO.
← Ā(A(m0,m1, c)

)
Return 1 if α′ = α, 0 otherwise

where |m00| = |m10| = |S| and |m01| = |m11| = |K1|. Ā then simulates the
biometric authentication protocol and replaces, without loss of generality, the
symmetric key encryption scheme between the sensor S and the matcher M.
More precisely, Ā replaces ω with the challenge ciphertext c and ω′ with an en-
cryption of a bitstring of all zeros. Ā then runs A1 to obtain γ0 = (EncGM(0), σ′′

0 )
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and γ1 = (EncGM(1), σ′′
1 ), where 0 and 1 respectively stand for bitstrings of all

zeros and ones. If OutM = YES, Ā outputs A’s guess β′ as α′; if OutM = NO, Ā
outputs 1 − β′ as α′. This is because, when OutM = YES, β′ = 0 would indicate
that HW(mα0) ≤ τ , and β′ = 1 would indicate that HW(1 ⊕ mα0) > τ . And
similarly, when OutM = NO, β′ = 0 would indicate that HW(mα0) > τ , and
β′ = 1 would indicate that HW(1 ⊕ mα0) ≤ τ . Hence, if A wins, so does Ā. �
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Abstract. With the advent of networking applications collecting user data on
a massive scale, the privacy of individual users appears to be a major concern.
The main challenge is the design of a solution that allows the data analyzer to
compute global statistics over the set of individual inputs that are protected by
some confidentiality mechanism. Joye et al. [7] recently suggested a solution
that allows a centralized party to compute the sum of encrypted inputs collected
through a smart metering network. The main shortcomings of this solution are
its reliance on a trusted dealer for key distribution and the need for frequent key
updates. In this paper we introduce a secure protocol for aggregation of time-
series data that is based on the Joye et al. [7] scheme and in which the main
shortcomings of the latter, namely, the requirement for key updates and for the
trusted dealer are eliminated. Moreover our scheme supports a dynamic group
management, whereby as opposed to Joye et al. [7] leave and join operations do
not trigger a key update at the users.

Keywords: data aggregation, privacy, time-series data.

1 Introduction

Progress in statistical data processing enables data analyzers to infer extremely
useful information from the massive amount of data collected through networks and
distributed applications. Such data analysis has tremendous benefits in a wide range
of applications. In an e-health scenario, statistics derived from the collected data sets
would greatly help field studies about diseases and the effect of a specific medicine. An-
other scenario entails a different environment whereby data is produced by a set of users
that hold smart meters. Smart meters can report accurately at specific time intervals en-
ergy, gas or water consumption. Considering electricity consumption for instance, a
data analyzer with cooperation of an energy provider can compute useful statistics such
as average electricity consumption over large population of users along a specific time
period. These statistics can then help the energy provider perform various operations
such as load balancing and forecasting for potential acquirement.

Despite its merits, statistical data processing is challenged with privacy issues such as
the confidentiality of private data. Frequent smart-readings with inappropriate analysis
by companies may leak private information such as the number of people that live in
a place, the time period in which the house is empty and personal habits that can be a
valuable asset to marketing retailers [10]. Serious privacy breaches are possible without
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any doubt in the medical scenario as well, in which the disclosure of personal data
to untrusted data analyzers jeopardizes user personal information in various ways: It
affects insurance coverage since records are exposed to insurance companies. Moreover,
a social discrimination is possible owing to the exposure of medical treatments.

While encryption of data would protect data privacy, data analysis by an untrusted ag-
gregator would become challenging. The most prominent privacy preserving solutions
for data analysis benefit from cryptographic algorithms [13] that either introduce a high
computation cost at the aggregator or restrict the possible range of values that users
can submit due to the need of discrete logarithm computation. To mitigate this draw-
back, Joye et al. [7] proposed a nifty construction which as the solution in [13] calls
for a fully trusted dealer. The reliance on trusted key dealer however can be deemed
unrealistic for real world applications. In addition, this solution builds upon a static key
management scheme where user joins and leaves induce a significant overhead in terms
of communication.

In this paper, we improve the design of the privacy preserving aggregation protocol
suggested by Joye et al. [7] by eliminating the need for key redistribution following a
user join or leave and the need for fully trusted key dealer. The features of the enhanced
protocol can be summarized as follows:

– No key dealer. Contrary to most previous privacy preserving aggregation protocols,
there is no trusted key dealer in our scheme. In contrast, we introduce a semi-trusted
party called collector which gathers partial key information from users through a
secure channel.

– Support for dynamic user populations. No coordination is required to manage
changes in the population of users. This is possible due to a self-generated key
mechanism by which no key agreement between users is required.

– Privacy. With respect to privacy, the scheme assures aggregator obliviousness as
introduced by Elaine Shi et al. [13]. That is, the untrusted aggregator only learns the
sum and the average over users’ private data at the end of the protocol execution.
Moreover, we show that the collector does not derive any information about the
users’ private data.

– Efficiency. Like Joye et al. [7] our scheme enables the computation of the sum and
the average over a large number of users without restrictions on the range of users’
values. It is also scalable in the sense that decryptions performed by the aggregator
do not depend on the number of users.

2 Problem Statement

We consider a scenario where an aggregator A would like to compute the aggregate sum
of the private data of some users Ui. Similarly to the work of [7] and [13], we restrict
ourselves to time-series data which is a series of data point observations measured at
equally spaced time intervals. A straightforward approach to compute the aggregate
sum would be encrypting Ui’s individual data using the public key of A. This solution
however relies on a trusted aggregator which first decrypts the users’ individual data
using its secret key then computes the sum. To tackle this issue, [7] and [13] employ
a combination of secret sharing techniques and additively homomorphic encryption to
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enable aggregator A to compute the sum of users’ data without compromising users’
privacy. The idea is to have a trusted third party called key dealer that provides each
user Ui with a secret share ski while supplying the aggregator A with the secret key
skA defined as −

∑
ski. Each user Ui encrypts its private data using its secret share

ski and forwards the resulting ciphertext to the aggregator, which in turn combines the
received ciphertexts so as to obtain an encryption of the sum of the users’ data that can
be decrypted using the aggregator’s secret key skA.

Although such solutions prevent the aggregator from learning users’ confidential
data, they suffer from two main limitations which we aim to address in this paper. The
first limitation is that they build upon the assumption that the key dealer is trusted and
does not have any interest in undermining user privacy. Whereas the second shortcom-
ing –which is generally overlooked– is that these solutions only support static groups
of users and as a result they are fault intolerant. Namely, in the case of user failures, ag-
gregator A cannot compute the aggregate sum. Along these lines, we propose a solution
for privacy preserving data aggregation of time-series data that draws upon the work of
[7] and which in addition to supporting dynamic group management and arbitrary user
failures does not depend on trusted key dealers. The idea is to introduce an intermediary
untrusted party that we call collector, who helps the aggregator A with the computation
of the sum of users’ individual data, without any prior distribution of secret keys by a
trusted dealer.

2.1 Entities

A scheme for dynamic and privacy preserving data aggregation for time-series involves
the following entities:

– Users Ui: At each specific time interval t, each user Ui produces a data point xi,t

that it wants to send to an aggregator. Each data point contains private sensitive
information pertaining to user Ui. To protect the confidentiality of the value of xi,t

against the aggregator and eavesdroppers, user Ui encrypts xi,t using some secret
input ski and forwards the resulting ciphertext ci,t to the aggregator. It also sends
to the collector some auxiliary information auxi,t that will be used later to compute
the aggregate sum of individual data. Without loss of generality, we denote U the
set of users Ui in the system.

– Collector C: It is an untrusted party which upon receiving the auxiliary information
auxi,t sent by users Ui ∈ U at time interval t computes a function g of auxi,t.
Hereafter, we denote auxt the output of function g at time interval t.

– Aggregator A: It is an untrusted entity which upon receipt of ciphertexts ci,t and

the auxiliary information auxt at time interval t computes the sum
∑
Ui∈U

xi,t over

the data points xi,t underlying ciphertexts ci,t.

2.2 Privacy Preserving and Dynamic Time-Series Data Aggregation

A privacy preserving and dynamic time-series data aggregation protocol consists of the
following algorithms:
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– Setup(1τ ) → (P , skA, skC , {ski}Ui∈U): It is a randomized algorithm which on
input of a security parameter τ , outputs the public parameters P that will be used
by subsequent algorithms, the secret key skA of aggregator A, the secret key skC
of collector C and the secret keys {ski}Ui∈U of users Ui.

– Encrypt(t, ski, xi,t) → ci,t: It is a deterministic algorithm which on input of time
interval t, secret key ski of user Ui and data point xi,t, encrypts xi,t and outputs the
resulting ciphertext ci,t.

– Collect((auxi,t)Ui∈U, skC) → auxt: It is a deterministic algorithm executed by
collector C which on input of the auxiliary information (auxi,t)Ui∈U provided by
individual users Ui and collector C’s secret key skC computes a function g over
auxi,t and outputs the result auxt.

– Aggregate({ci,t}Ui∈U, auxt, skA) →
∑

xi,t: It is a deterministic algorithm run by
aggregator A. It takes as inputs ciphertexts {ci,t}Ui∈U, auxiliary information auxt
supplied by collector C and aggregator A’s secret key skA, and outputs the sum∑

xi,t, where xi,t is the plaintext underlying ciphertext ci,t.

2.3 Privacy Definitions

In accordance with the work of [7,13], we assume in this paper an honest-but-curious
model. This means that while the participants in the protocol are interested in learning
the individual data of users, they still comply with the aggregation protocol. Namely,
users are always presumed to submit a correct input to the aggregation protocol. Actu-
ally, data pollution attacks where users submit bogus values to the aggregator is orthog-
onal to the problem of privacy preserving data aggregation. We also assume that while
users Ui may collude with either aggregator A or collector C by disclosing their private
inputs, aggregator A and collector C never collude.

In this section, we present two formalizations: The first one defines privacy against
aggregator A which we call in compliance with previous work aggregator oblivious-
ness, whereas the second formalization defines privacy against collector C which we
refer to as collector obliviousness.

Aggregator Obliviousness. Aggregator Obliviousness (AO) ensures that for each time
interval t, the aggregator learns nothing other than the value of

∑
Ui∈U

xi,t from ci-
phertexts ci,t and the auxiliary information auxt that it receives from users Ui ∈ U and
collector C respectively. It ensures also that even if aggregator A colludes with an arbi-
trary set of users K ⊂ U, it will only be able to learn the value of the aggregate sum of
honest users (i.e.

∑
Ui∈U\K

xi,t) and nothing else.

To formally capture the capabilities of an aggregator A against the privacy of aggre-
gation protocols, we assume that A is given access to the following oracles:

– Osetup,A: When called, this oracle provides aggregator A with the public parame-
ters denoted P of the aggregation protocol and any secret information skA that may
be needed by aggregator A to perform the aggregation.
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– Oencrypt: When queried with time t, identifier uidi of some user Ui and a data point
xi,t, oracle Oencrypt outputs the encryption ci,t of xi,t in time interval t using Ui’s
secret key ski.

– Ocorrupt: When queried with the identifier uidi of some user Ui, the oracle Ocorrupt

returns the secret key ski of user Ui.
– Ocollect,A: When called with time t, this oracle returns the auxiliary information
auxt that collector C computed during time interval t. We note that in schemes such
as [13,7] where a collector is not needed, the aggregator will not call this oracle.

– OAO: When called with a subset of users S ⊂ U and with two time-series
(Ui, t, x

0
i,t)Ui∈S and (Ui, t, x

1
i,t)Ui∈S such that

∑
x0
i,t =

∑
x1
i,t, this oracle flips a

random coin b ∈ {0, 1} and returns an encryption of the time-serie (Ui, t, x
b
i,t)Ui∈S

(that is the tuple of ciphertexts (cbi,t)Ui∈S) and the corresponding auxiliary infor-
mation auxbt that aggregator A should receive from the collector in time interval
t.

Aggregator A has access to the above oracles in two phases:

Learning Phase. The learning phase is executed in two steps:

1. Setup: Aggregator A calls Osetup,A which provides A with the set of public parame-
ters P associated with the aggregation protocol together with any secret information
skA that aggregator A may need to execute the aggregation correctly.

2. Queries: After calling Osetup,A, aggregator A issues three types of queries:
– Corruption queries: Aggregator A calls Ocorrupt with a user identifier uidi and

gets in return the secret key ski matching the identifier uidi.
– Encryption queries: Aggregator A queries Oencrypt with time interval t, a user

identifier uidi and a data point xi,t. The oracle Oencrypt outputs accordingly the
cipherext ci,t corresponding to the query (t, uidi, xi,t).

– Auxiliary information queries: Aggregator A invokes the oracle Ocollect

with time interval t to receive the auxiliary information auxt that collector C
computed at time t.

Challenge Phase. The challenge phase involves the following three operations:

1. Challenge selection: Aggregator A chooses a subset S∗ of users that were not
compromised and a challenge time interval t∗ for which it did not make an en-
cryption query during the learning phase. A then selects two time-series X 0

t∗ =
(Ui, t

∗, x0
i,t∗)Ui∈S∗ and X 1

t∗ = (Ui, t
∗, x1

i,t∗)Ui∈S∗ , such that
∑

x0
i,t =

∑
x1
i,t.

2. Query: Aggregator A submits the time-series X 0
t∗ and X 1

t∗ to the oracle OAO. Oracle
OAO accordingly flips a coin b ∈ {0, 1} and returns the encryption (cbi,t∗)Ui∈S∗ of
the time-serie X b

t∗ and the auxiliary information auxbt∗ computed by collector C for
time interval t∗.

3. Guess: Aggregator A outputs a guess b∗ for the bit b.

We say that aggregator A succeeds in the aggregator obliviousness game, if b∗ = b.

Definition 1 (Aggregator Obliviousness). An aggregation protocol is said to ensure
aggregator obliviousness if for any aggregator A, the probability Pr(b = b∗) � 1

2 + ε,
where ε is a negligible function.
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Collector Obliviousness. Collector Obliviousness (CO) guarantees that collector C
cannot infer any information about the private input of individual users Ui either from
the messages it receives directly from the users or the protocol exchange between the
users and the aggregator. It also entails that even in the case where collector C colludes
with a set of users K, it does not gain any additional information about the individual
values of honest users Ui in U \ K.

To formally reflect the adversarial capabilities of collector C against aggregation pro-
tocols, we assume that in addition to the oracles Oencrypt and Ocorrupt, collector C is
given access to the following oracles:

– Osetup,C : When queried, this oracle supplies collector C with the public parameters
denoted P of the aggregation protocol and any secret information skC that collector
C may need during the aggregation protocol.

– Ocollect,C : When invoked with time t, identifier uidi of some user Ui and ciphertext
ci,t, this oracle returns the auxiliary information auxi,t that corresponds to cipher-
text ci,t that user Ui computed during time interval t.

– OCO: When called with a subset of users S ⊂ U and with two time-series
(Ui, t, x

0
i,t)Ui∈S and (Ui, t, x

1
i,t)Ui∈S, this oracle flips a random coin b ∈ {0, 1}

and returns to collector C an encryption of the time-serie (Ui, t, x
b
i,t)Ui∈S (i.e. the

ciphertexts (cbi,t)Ui∈S) and the corresponding auxiliary information computed by
users Ui ∈ S (i.e. (auxbi,t)Ui∈S).

Collector C accesses the aforementioned oracles in two phases:

Learning Phase. In the learning phase, collector C proceeds as follows:

1. Setup: Collector C queries Osetup,C which supplies C with the set of public param-
eters P of the aggregation protocol and the secret information skC that collector C
should have to execute the aggregation properly.

2. Queries: After querying Osetup,C , collector C issues three types of queries.
– Corruption queries: Collector C calls Ocorrupt with user identifiers uidi to

compromise users in the system.
– Encryption queries: Collector C selects a time interval t, a user identifier uidi

and a data point xi,t and submits the query (t, uidi, xi,t) to Oencrypt which
outputs the corresponding ciphertext ci,t.

– Auxiliary information queries: Collector C picks a time interval t, a user iden-
tifier uidi and a ciphertext ci,t and queries Ocollect,C to get the auxiliary infor-
mation auxi,t generated by user Ui for time interval t and ciphertext ci,t.

Challenge Phase. The challenge phase is performed in three steps:

1. Challenge selection: Collector C selects a subset S∗ of honest users and a challenge
time interval t∗ for which it did not make an encryption query in the learning phase.
Then, collector C chooses two time-series X 0

t∗ = (Ui, t
∗, x0

i,t∗)Ui∈S∗ and X 1
t∗ =

(Ui, t
∗, x1

i,t∗)Ui∈S∗ .
2. Query: Collector C queries the oracle OCO with X 0

t∗ and X 1
t∗ which in turn selects

randomly a bit b ∈ {0, 1} and returns the tuple (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ .
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3. Guess: Collector C outputs a guess b∗ for the bit b.

We say that collector C succeeds in the collector obliviousness game, if b∗ = b.

Definition 2 (Collector Obliviousness). An aggregation protocol is said to ensure col-
lector obliviousness if for any collector C, the probability Pr(b = b∗) � 1

2 + ε, where ε
is a negligible function.

3 Idea of Solution

The homomorphic scheme suggested by Joye and Libert [7] allows an untrusted aggre-
gator to evaluate the sum or the average without any access to individual data. However
to support this functionality, a fully trusted dealer has to distribute secret keys to each
user Ui and as a result, it will be able to decrypt. Our scheme extends Joye and Libert
scheme [7] through two major enhancements :

– No key dealer: Our scheme does not require a trusted key dealer that might get
individual private data samples.

– Dynamic group management: In the Joye and Libert scheme [7], each join or
leave operation triggers a new key redistribution for all the users in the aggrega-
tion system, whereas in our protocol, join and leave operations are possible without
any key update at the users. Hence, dynamic group management is assured with
significantly lower communication and computation overhead. The proposed pro-
tocol is also resilient to user failures that may occur due to communication errors
or hardware failures.

In order to eliminate the need for a fully trusted dealer and to support dynamic group
management, we employ two techniques:

– Responsibility splitting mechanism: Each user Ui sends an encryption of its private
data sample to aggregator A and an obfuscated version of its secret key ski to the
semi trusted collector C, in such a way that neither the aggregator nor the collector
can violate the privacy of individual data points provided by users.

– Self-generation of secret keys: The secret keys used to encrypt individual data points
are generated independently by users without a trusted key dealer.

Actually, each user Ui chooses independently its secret key ski whereas the untrusted
aggregator generates a random key skA. For each time interval t, aggregator A publishes
an obfuscated version pkA,t of the secret key skA. Users Ui on the other hand encrypt
their private data samples xi,t with their secret keys ski using the Joye-Libert cryptosys-
tem, and send the corresponding ciphertexts ci,t to aggregator A. They also obfuscate
their secret keys ski using pkA,t and sends the resulting auxiliary information auxi,t to
collector C through a secure channel. Collector C computes a function g(t) of the aux-
iliary information auxi,t it has received and forwards the output auxt to aggregator A.
Upon receiving the ciphertexts ci,t and the auxiliary information auxt, A uses its secret
key skA and learns the sum

∑
xi,t for the time interval t.
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4 Protocol Description

Without loss of generality, we assume in the remainder of this section that the aggrega-
tion system comprises n users denoted U = {U1, ..., Un}.

Now before providing the description of our solution, we first give a brief overview
of the Joye-Libert (JL) scheme [7].

4.1 Joye-Libert Scheme

– SetupJL: A trusted dealer D selects randomly two safe prime numbers p and q and
sets N = pq. Then, it defines a cryptographic hash function H : Z → Z∗

N2 and
outputs the public parameters PJL = (N, H). Finally, the dealer D distributes to
each user Ui ∈ U a secret key ski ∈ [0, N2] and sends skA = −

∑n
i=1 ski to the

untrusted aggregator A.
We note that hereafter all computations are performed ”modN2” unless mentioned
otherwise.

– EncryptJL: For each time interval t, each user Ui encrypts its private data xi,t using
the secret key ski and outputs the ciphertext ci,t = (1 + xi,tN)H(t)ski mod N2.
We point out that ciphertexts ci,t fulfills the following property:

n∏
i=1

ci,t =

n∏
i=1

(1 + xi,tN)H(t)ski = (1 +

n∑
i=1

xi,tN)H(t)
∑n

i=1 ski

= (1 +

n∑
i=1

xi,tN)H(t)−skA

– AggregateJL: Upon receiving ci,t the untrusted aggregator computes

Pt =

n∏
i=1

ci,tH(t)skA = 1 +

n∑
i=1

xi,tN mod N2

and recovers
∑n

i=1 xi,t by computing Pt−1
N in Z. The value Pt−1

N is meaningful as
long as

∑n
i=1 xi,t < N .

We recall that the JL scheme is aggregator oblivious in the random oracle model
under the decisional composite residuosity (DCR) assumption (cf. [7]).

4.2 Description

Our protocol runs in four phases:

– Setup: A trusted third party T P selects two safe primes p and q, sets N = pq, and
picks a cryptographic hash function H : {0, 1}∗ → Z∗

N2 . T P then publishes the
public parameters P = (N, H) and goes offline. Next, aggregator A generates a
random secret key skA ∈ Z∗

N2 , and each user Ui ∈ U independently chooses its
random secret key ski ∈ [0, N2] without any coordination by a trusted key dealer.
It is important to note here that contrary to the JL scheme, the trusted third party
T P does not know the individual secret keys of users Ui, and once the public
parameters P are published it can go offline.
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– Encrypt: For each time interval t, each user Ui encrypts its private data xi,t using
its secret key ski and the algorithm EncryptJL as shown in subsection 4.1, and sends
the resulting ciphertext ci,t = (1 + xi,tN)H(t)ski mod N2 to aggregator A.

– Collect: For each time interval t, aggregator A publishes pkA,t = H(t)skA . Each

user Ui then computes the auxiliary information auxi,t = pkskiA,t = H(t)skAski using
its secret key ski and sends auxi,t to collector C through a secure channel.
Upon receiving auxi,t (1 � i � n) from users Ui ∈ U, collector C computes

auxt =

n∏
i=1

auxi,t =

n∏
i=1

H(t)skAski = H(t)skA
∑n

i=1 ski

and sends the result to aggregator A.
Notice here that C does not obtain the secret value H(t)ski employed by users Ui

during the encryption, rather it only learns an obfuscated encoding of it which is
auxi,t = H(t)skAski .

– Aggregate: Upon receiving the ciphertexts ci,t (1 � i � n) and the auxiliary
information auxt, aggregator A calculates:

Pt = (
n∏

i=1

ci,t)
skA = ((1 +

n∑
i=1

xi,tN)H(t)
∑n

i=1 ski)skA

= (1 +

n∑
i=1

xi,tN)skAH(t)skA
∑n

i=1 ski

Since the order of (1 +
∑n

i=1 xi,tN) in Z∗
N2 is either N or divisor of N , we have:

Pt = (1 +

n∑
i=1

xi,tN)sk
′
AH(t)skA

∑n
i=1 ski = (1 + sk′A

n∑
i=1

xi,tN)H(t)skA
∑ski

i=1

where sk′A = skA mod N .

Finally, aggregator A computes It =
Pt
auxt

−1

N = sk′A
∑n

i=1 xi,t in Z and evaluates

Rt = sk′A
−1

It mod N =
∑n

i=1 xi,t mod N to obtain the sum of xi,t. Notice
that since skA ∈ Z∗

N2 , sk′A is in Z∗
N . Now to obtain the average of the data points

xi,t, aggregator A computes Rt

n in Z.
As in [7], the result of the aggregation is meaningful as long as

∑n
i=1 xi,t < N .

Now the privacy of the above scheme can be stated as follows:

Theorem 1. The solution described above ensures aggregator obliviousness under the
decisional composite residuosity (DCR) assumption in Z∗

N2 .

Theorem 2. The solution described above assures collector obliviousness in the ran-
dom oracle model under the decisional composite residuosity (DCR) assumption in
Z∗
N2 , the quadratic residuosity (QR) assumption in Z∗

N and the decisional Diffie-
Hellman (DDH) assumption in the subgroup of quadratic residues in Z∗

N .

Due to space limitations, the proofs of Theorem 1 and Theorem 2 are deferred to
Appendix A and Appendix B respectively.
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4.3 Dynamic Group Management

Suppose at time interval t a set of users F fail to participate in the protocol execution.
This event does not affect the computation of the aggregate sum by the aggregator A.
Indeed, each user Ui �∈ F computes: auxi,t = pkskiA,t and encrypts its data by computing
ci,t = (1 + xi,tN)H(t)ski . Upon receiving the auxiliary information auxi,t from users

Ui �∈ F, collector C computes auxt =
∏
Ui �∈F

auxi,t =
∏
Ui �∈F

H(t)skAski . When aggregator

A receives the ciphertexts ci,t from users Ui �∈ F and auxt from collector C, it first

computes the product
∏
Ui �∈F

ci,t and computes as depicted above the value of
∑
Ui �∈F

xi,t.

Thus, our solution will still function correctly even when an arbitrary number of users
fail to submit their contributions to the protocol as long as collector C operates properly.

Similarly, if a set of k new users J = {U∗
1 , ..., U∗

k} join the protocol at time t, nothing
changes from the point of view of aggregator A and collector C. Notably, the new users

U∗
i compute the auxiliary information aux∗i,t = pk

sk∗i
A,t corresponding to their ciphertexts

c∗i,t. The collector C in turn evaluates the product auxt =
∏
Ui∈U

auxi,t ×
∏
U∗

i ∈J

aux∗i,t,

whereas the aggregator A calculates the product
∏
Ui∈U

ci,t ×
∏
U∗

i ∈J

c∗i,t. Now provided

with auxt and the secret key skA, aggregator A can derive the sum
∑
Ui∈U

xi,t +
∑
U∗

i ∈J

x∗
i,t.

5 Evaluation

Table 1 depicts the theoretical computation and communication cost of our protocol.
In each time interval t, aggregator A first publishes pkA,t = H(t)skA , whereas each
user Ui computes the ciphertext ci,t = (1 + xi,tN)H(t)ski which consists of one ex-
ponentiation, one multiplication, one addition and one hash evaluation in Z∗

N2 . User
Ui also performs an additional exponentiation to compute the auxiliary information
auxi,t = pkskiA,t = H(t)skAski ∈ Z∗

N2 . Then, the collector receives the auxiliary infor-
mation auxi,t (1 � i � n) and computes the product auxt =

∏n
i=1 auxi,t which calls

for n − 1 multiplications in Z∗
N2 . Finally, the aggregator computes the sum

∑n
i=1 xi,t

by performing n − 1 multiplications, one exponentiation, one division in Z∗
N2 and one

division in Z. Moreover, if l is the size in bits of N , then each user Ui sends 2l bits for
ciphertext ci,t to aggregator A and 2l bits for auxi,t to collector C. As such, the overall
communication cost per user is 4l per time interval.

Implementation. We implemented our scheme in Charm [2,1]. Charm is a program-
ming framework that provides cryptographic abstraction in order to build security pro-
tocols. We extended the Charm framework with an implementation of the JL encryption
using Python 3.2.3. All of our benchmarks are executed on Intel Core i5 CPU M 560
@ 2.67GHz × 4 with 8GB of memory, running Ubuntu 12.04 32bit.

To evaluate our scheme empirically, we generated a synthetic dataset with numbers
ranging between 1 and 1000 and we varied the size of the modulus N . Table 2 shows
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Table 1. Performance analysis

Algorithm Computation Communication

User 2 EXP+1MULT+1ADD+1HASH 4 · l
Aggregator 2 EXP+2DIV+(n − 1)MULT+1HASH 2 · l
Collector (n − 1)MULT 2 · l

the encryption time for different data ranges and different modulus sizes. As expected,
a slight increase in the encryption time (which is in the magnitude of microseconds)
occurs as we increase the size of N .

We also assessed the computation cost at the aggregator A. More specifically, we
measured the time needed to compute the product Pt = (

∏n
i=1 ci,t)

skA . In table 3 the
benchmark results are shown. The multiplication time was measured in seconds and
experiments were conducted for different values of N and the number of users n.

Table 2. Computation overhead of encryption
with different security levels and possible plain-
text range values. The benchmarks were exe-
cuted 106 times in order to eliminate time in-
consistencies due to concurrent memory usage.

����N
Values

[1-10] [1-100] [1-1000]

1024 110.13μs 112.23μs 114.57μs
2048 116.50μs 117.15μs 118.34μs
3072 116.99μs 118.23μs 120.83μs

Table 3. Aggregation time as a function of the
size of modulus N and the number of users n.

����N
Users

350 700 1000 2500

1024 0.26 s 2.40 s 9.65 s 49.92 s
2048 0.65 s 5.82 s 24.16 s 123.19 s
3072 1.01 s 9.37 s 39.34 s 198.12 s

6 Related Work

Önen and Molva [11] introduced a scheme to compute aggregate statistics over wireless
sensor networks with multilayer encryption by transforming a block cipher into a sym-
metrically homomorphic encryption. Even if the proposed solution provides generic
confidentiality, the sink-aggregator is fully trusted and shares keys with the sensors.
In [5], the authors proposed a protocol for secure aggregation of data using a modi-
fied version of Paillier homomorphic encryption. The aggregator which is interested in
learning the aggregate sum of data is able to decrypt without knowing the decryption
key. The idea behind the scheme is a secret sharing mechanism executed between users
such that the aggregation of encrypted data reveals the sum if and only if all users’ data
is aggregated. However, this scheme suffers from an increased communication cost due
to secret share exchange between users. A solution that blends multiparty computation
with homomorphic encryption is also presented in [8], but contrary to our scheme it
does not address the issue of dynamic group management.

The authors in [12,4,6,3] studied privacy preserving data collection protocols with
differential privacy. The combination of differential privacy with non conventional en-
cryption schemes can provide an acceptable trade-off between privacy and utility. In
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[12], a secret sharing mechanism and additively homomorphic encryption are employed
together with the addition of appropriate noise to data by the users. Upon receiving
the encrypted values a second round of communication is required between users and
aggregator to allow for partial decryption and noise cancellation. At the end of the
protocol, the aggregator learns the differential private sum. Jawurek and Kerschbaum
[6] eliminate this extra communication round between the users and the aggregator
by introducing a key manager which unfortunately can decrypt users’ individual data.
Barthe et al. [3] proposed a solution whereby each smart meter in the protocol estab-
lishes an ephemeral DH shared secret with all the aggregators. In their scheme the
service provider is willing to learn a noisy weighted sum. Interestingly dynamic leaves
and joins are supported with the cost of shared secrets between the smart meter and
all the aggregators. Aggregators also, unless they collude they cannot learn individual
meterings.

Chan et al. [4] devised a privacy preserving aggregation scheme that computes the
sum of users’ data, and handles user joins and leaves of smart meters and arbitrary user
failures. The decrypted sum is perturbed with geometric noise which ensures differ-
ential privacy. Nonetheless, this solution calls for a fully trusted dealer that is able to
decrypt users’ individual data. The authors in [9] presented a solution to tackle the issue
of key redistribution after a user joins or leaves. The propounded solution is based on
a ring based grouping technique in which users are clustered into disjoint groups, and
consequently, whenever a user joins or leaves only a fraction of the users is affected.

The existing work that resembles the most ours is the work of [13,7]. Actually, Song
et al. [13] employs an additively homomorphic encryption scheme with differential
noise to ensure aggregator obliviousness. The proposed solution is based on a linear
correlation between the keys which is known to the untrusted aggregator. However the
decrypted sum is encoded as an exponent, thus forcing a small plaintext space. Whereas
Joye et al. [7] designed a solution that addresses the efficiency issues of [13]. Notably,
Joye et al. [7] introduced a nifty solution to compute discrete logarithms in composite
order groups in which the decision composite residuosity problem is intractable. Still,
the scheme in [7] depends on a fully trusted key dealer which renders the scheme im-
practical for a real world application. Moreover, both schemes do not tackle either the
issue of dynamic group management or user failures.

7 Concluding Remarks

In this paper, we presented a privacy preserving solution for time-series data aggrega-
tion which contrary to existing work supports arbitrary user failures and does not de-
pend on trusted key dealers. The idea is to rely on a semi-trusted collector which plays
the role of an intermediary between the users and the aggregator, and which enables
the aggregator to compute the aggregate sum of users’ private data without undermin-
ing users’ privacy. An interesting feature of the proposed scheme is that users’ joins
and leaves do not incur any additional computation or communication cost at either the
users or the aggregator. Furthermore, the scheme is provably privacy preserving against
honest-but-curious aggregators and collectors.
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Proof. Assume there is an aggregator A that breaks the aggregator obliviousness of our
scheme with a non-negligible advantage ε. We show in what follows that there exists
an aggregator B that uses A to break the aggregator obliviousness of the JL protocol
(which is ensured under DCR) with a non-negligible advantage ε.

For ease of exposition, we denote OJL
setup, OJL

corrupt, OJL
encrypt and OJL

AO the oracles
needed for the aggregator obliviousness game of the JL protocol. We also assume that
the aggregation system of the JL scheme involves n users U = {U1, ..., Un}, each is
endowed with secret key ski.

Now to break the aggregator obliviousness of the JL scheme, aggregator B simulates
the aggregator obliviousness game of our scheme for aggregator A as follows:

Learning Phase

– To simulate the oracle Osetup,A for aggregator A, B first invokes the oracle OJL
setup

which returns the public parameters P = {N, H} (where N is the product of
two safe primes, and H : Z → Z∗

N2 is a cryptographic hash function) and the
aggregator secret key skB . We recall that according to the description of the JL
scheme skB = −

∑n
i=1 ski. Then, B supplies aggregator A in our scheme with the

public parameters P = {N, H}. After receiving P , aggregator A selects a secret
key skA ∈ Z∗

N2 and for each time interval t it publishes pkA,t = H(t)skA .
– Whenever A submits a corruption query for some user Ui to the oracle Ocorrupt, B

relays this query to the corruption oracle OJL
corrupt of the JL scheme which accord-

ingly returns the secret key ski of user Ui.
– Whenever A calls the encryption oracle Oencrypt with an encryption query

(t, uidi, xi,t), B forwards this query to OJL
encrypt which returns the matching cipher-

text ci,t = (1 + xi,tN)H(t)ski to B. Next, B provides A with ci,t.
– Whenever A queries the collection oracle Ocollect,A with time interval t, B com-

putes auxt = pk−skB
A,t which it returns to A. Note that auxt = pk−skB

A,t =

H(t)−skAskB = H(t)skA
∑

ski corresponds to the actual auxiliary information that
a collector in our scheme could have computed.

Challenge Phase. In the challenge phase, A chooses a subset S∗ of users that were
not compromised and a challenge time interval t∗ for which it did not make an encryp-
tion query during the learning phase. A publishes pkA,t∗ = H(t∗)skA . A then submits
two time-series X 0

t∗ = (Ui, t
∗, x0

i,t∗)Ui∈S∗ and X 1
t∗ = (Ui, t

∗, x1
i,t∗)Ui∈S∗ such that∑

x0
i,t∗ =

∑
x1
i,t∗ to B which simulates oracle OAO as follows:

– It submits the time-series X 0
t∗ and X 1

t∗ to the oracle OJL
AO which picks randomly

b ∈ {0, 1} and returns the encryption (cbi,t)Ui∈S∗ for the time-serie X b
t∗ .

– Then it computes the auxiliary information auxbt∗ = pk−skB
A,t∗ = H(t∗)−skAskB =

H(t∗)skA
∑

ski matching the time interval t∗.
– Finally, B returns (cbi,t∗)Ui∈S∗ and auxbt∗ to A.

It is important to notice here that aggregator A cannot tell whether it is interacting
with the actual oracles or with aggregator B during this simulated game. As a matter of
fact, the messages that A receives during this simulation are correctly computed.
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Now at the end of the challenge phase, A outputs a guess b∗ for the bit b. Note that
if A has a non-negligible advantage ε in breaking the aggregator obliviousness of our
scheme, then this entails that it outputs a correct guess b∗ for the bit b with a non-
negligible advantage ε. Notably, if A outputs b∗ = 1, then (cbi,t∗)Ui∈S is an encryption
of time-serie X 1

t∗ ; otherwise it is an encryption of time-serie X 0
t∗ . Now to break the

aggregator obliviousness of the JL scheme, it suffices that B outputs the bit b∗.
To conclude, if there is an aggregator A which breaks the aggregator obliviousness

of our solution, then there exists an aggregator B which breaks the aggregator obliv-
iousness of the JL scheme with the same non-negligible advantage ε. This leads to a
contradiction under the decisional composite residuosity assumption in Z∗

N2 . ��

B Collector Obliviousness

Theorem 2. The proposed scheme assures collector obliviousness in the random or-
acle model under the decisional composite residuosity (DCR) assumption in Z∗

N2 , the
quadratic residuosity (QR) assumption in Z∗

N and the decisional Diffie-Hellman (DDH)
assumption in the subgroup of quadratic residues in Z∗

N .

Proof. Assume there is a collector C that breaks the collector obliviousness of our
scheme with a non-negligible advantage ε. We show in what follows that there exists
an aggregator B that uses C to break the aggregator obliviousness of the JL protocol
(which is ensured under DCR) with a non-negligible advantage ε′.

To break the aggregator obliviousness of the JL scheme, aggregator B simulates the
collector obliviousness game of our scheme to collector C as follows:

Learning Phase

– To simulate the oracle Osetup,C for collector C, B first queries the oracle OJL
setup

which returns the aggregator’s secret key skB and the public parameters P =
{N, H} (where N is the product of two safe primes and H : Z → Z∗

N2 is a
cryptographic hash function). Then, B supplies collector C with the public param-
eters P = {N, H}. Finally, aggregator B picks randomly skA ∈ Z∗

N2 and for each
time interval t, B simulates aggregator A by publishing pkA,t = H(t)skA .

– Whenever C queries the oracle Ocorrupt for some user Ui, B forwards the query to
the corruption oracle of the JL scheme OJL

corrupt which outputs the secret key ski of
user Ui.

– Whenever C submits an encryption query (t, uidi, xi,t) to oracle Oencrypt, B
sends this query to OJL

encrypt which returns the matching ciphertext ci,t = (1 +

xi,tN)H(t)ski to B. B then provides C with ciphertext ci,t.
– Whenever C queries the collection oracle Ocollect,C with time interval t, user identi-

fier uid and ciphertext ci,t, B simulates Ocollect,C as follows:
• It submits the encryption query (t, uidi, 0) to OJL

encrypt which returns accord-
ingly (1 + 0 · N)H(t)ski = H(t)ski .

• Then using skA it computes auxi,t = H(t)skiskA .

It is noteworthy that the messages that C received so far are correctly computed.
This entails that C cannot detect during the learning phase that it is interacting with
aggregator B.
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Challenge Phase. In the challenge phase, C chooses a subset S∗ of users that were
not compromised and a challenge time interval t∗ for which it did not make an en-
cryption query during the learning phase. Next, C submits two time-series X 0

t∗ =
(Ui, t

∗, x0
i,t∗)Ui∈S∗ and X 1

t∗ = (Ui, t
∗, x1

i,t∗)Ui∈S∗ to B which simulates oracle OCO

as follows:

– It picks time-serie X 0
t∗ and generates a new time serie X ′1

t∗ = (Ui, t
∗, x′1

i,t∗)Ui∈S∗

such that
∑

x0
i,t =

∑
x′1
i,t and provides oracle OJL

AO with the time series X 0
t∗ and

X ′1
t∗ . OJL

AO consequently flips a coin b ∈ {0, 1} and returns the tuple of ciphertexts
(cbi,t∗)Ui∈S∗ such that (cbi,t∗)Ui∈S∗ is an encryption of the time-serie X 0

t∗ if b = 0;
otherwise, it is an encryption of the time-serie X ′1

t∗ .
– Upon receipt of (cbi,t∗)Ui∈S∗ , B selects randomly pkA,t∗ ∈ Z∗

N2 , and computes
auxbi,t∗ of each user Ui ∈ S by picking a random number rbi,t∗ ∈ Z∗

N2 and setting
auxbi,t∗ = rbi,t∗ .

– Finally, B gives (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ to collector C. It is important to indicate here
that under the DDH assumption and the random oracle model, C cannot detect that
pkA,t∗ and auxbi,t∗ are generated randomly, instead of being computed as pkA,t∗ =

H(t∗)skA and auxi,t∗ = H(t∗)skiskA (cf. Lemma 1).

Now notice that if b = 0 and if C does not detect that 〈(auxi,t∗)Ui∈S∗ , pkA,t∗〉 are
generated randomly, then from the point of view of collector C (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗

corresponds to a well formed tuple for the time-serie X 0
t∗ , and as a result, C will have a

non-negligible advantage ε in breaking collector obliviousness of our scheme. Notably,
C will output the correct guess b∗ = 0 for the bit b with a non-negligible advantage ε.
In this case, if B outputs the bit b∗ = 0 then it will break the aggregator obliviousness
of the JL scheme with a non-negligible advantage ε.

If b = 1, then the tuple (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ is independent of the time-series X 0
t∗

and X 1
t∗ submitted by C. Consequently, C will return with probability 1/2 either the bit

b∗ = 1 or the bit b∗ = 0. Therefore, to break the aggregator obliviousness of the JL
scheme, all B needs to do is output b∗. ��

Lemma 1. In the random oracle model, collector C cannot detect that pkA,t∗ and
(auxi,t∗)Ui∈S∗ are generated randomly under the decisional composite residuosity
(DCR) assumption in Z∗

N2 , the quadratic residuosity (QR) assumption in Z∗
N and the

decisional Diffie-Hellman (DDH) assumption in the subgroup of quadratic residues in
Z∗
N .

Due to space limitation, we omit the proof of lemma 1.
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Abstract. Participatory sensing enables new paradigms and markets
for information collection based on the ubiquitous availability of smart-
phones, but also introduces privacy challenges for participating users and
their data. In this work, we review existing security models for privacy-
preserving participatory sensing and propose several improvements that
are both of theoretical and practical significance.

We first address an important drawback of prior work, namely the lack
of consideration of collusion attacks that are highly relevant for suchmulti-
user settings. We explain why existing security models are insufficient and
why previous protocols become insecure in the presence of colluding par-
ties. We remedy this problem by providing new security and privacy
definitions that guarantee meaningful forms of collusion resistance. We
propose new collusion-resistant participatory sensing protocols satisfying
our definitions: a generic construction that uses anonymous identity-based
encryption (IBE) and its practical instantiation based on the Boneh-
Franklin IBE scheme.

We then extend the functionality of participatory sensing by adding
the ability to perform aggregation on the data submitted by the users,
without sacrificing their privacy. We realize this through an additively-
homomorphic IBE scheme which in turn is constructed by slightly mod-
ifying the Boneh-Franklin IBE scheme. From a practical point of view,
the resulting scheme is suitable for calculations with small sensor read-
ings/values such as temperature measurements, noise levels, or prices,
which is sufficient for many applications of participatory sensing.

Keywords: Privacy, participatory sensing, collusion resistance, data ag-
gregation, cryptographic models, additively homomorphic identity-based
encryption.

1 Introduction

Participatory sensing is a novel paradigm for data collection using smartphones
or other mobile devices with a multitude of applications (e.g., [18,12,10]). They
all leverage the high and increasing distribution of mobile phones, whose number
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of subscriptions surpassed 6 billion including a high share of smartphones with
sufficient computation power for a variety of sensing tasks.

The employment of people’s mobile phones as sensors however also introduces
privacy risks. These sensors—now carried around by their owners—reveal sensi-
tive location and behavioral information. In many settings, the sensed data itself
is highly privacy-sensitive and requires appropriate protection when published
or reported to a central data pool. Participatory sensing hence introduces the
challenging task to handle the sensed data in a secure and privacy-preserving
manner while offering maximal benefit from the obtained data to its users.

The utility for the above mentioned applications of participatory sensing in-
creases with a growing number of participants. Providing people with an incen-
tive to participate is therefore of crucial importance. From a business point of
view, it is reasonable to assume that such an incentive is given by a privacy-
preserving version of participatory sensing which may ultimately attract more
people to participate. This argument becomes even more striking when the sen-
sors are supposed to read very sensitive data such as data related to the personal
health of participants. For instance, in the European Union (cf. European Data
Protection Directive [13]), the data collector must prove sound security and stew-
ardship of such sensitive data, which can be done through the use of provably
secure cryptographic techniques.

The PEPSI Model. The only provably secure cryptographic treatment of par-
ticipatory sensing so far is due to De Cristofaro and Soriente [7,9,8], who came
up with a clear and concise infrastructural model and formally specified desirable
privacy goals. Their model, called PEPSI, involves mobile nodes that sense and
report data such as temperature, noise level, etc., forming the user basis for par-
ticipatory sensing, queriers that represent entities (individuals or organizations)
that consume sensed data such as “noise level on Time Square, New York”, and
an intermediate service provider that stores data reports received from mobile
nodes and forwards the data to subscribed queriers. The service provider is an
indispensable part of the infrastructure, needed to provide adequate efficiency
and enable asynchronous communication between (resource-constrained) mobile
nodes and queriers. However, its intermediary position, receiving both sensing
data reports as well as interest subscriptions of queriers, induces additional pri-
vacy challenges, treated in PEPSI’s corresponding privacy requirements.

Our Contribution. We show that although PEPSI contains formal definitions
of privacy for participatory sensing, it leaves aside a very important security
aspect, namely collusion attacks across different parties. In an application envi-
ronment with many interacting mobile nodes and queriers, the possibility that
some of them collude (potentially also with the service provider) in order to gain
insight into the interests of others constitutes a realistic threat with devastating
consequences on privacy. For instance, consider a scenario where a mobile node
and a querier, who should be restricted to upload data (or obtain data, in the
case of the querier) for registered interests only, follow the protocol honestly,
but collude by exchanging their obtained keys. In PEPSI, these colluding par-
ties (even if registered only for a single, identical interest), are able to obtain
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and decrypt sensor readings for any interest of their choice due to the lack of
collusion resistance, thus completely breaching the privacy of all other mobile
nodes in the system. Note that this form of collusion is already given when a
user is registered as both a mobile node and a querier. This simple example
illustrates the high importance of collusion resistance in participatory sensing
for the protection of all participants’ privacy.

We therefore revisit the PEPSI model and protocols from the perspective
of collusion resistance and give more precise definitions for its three main pri-
vacy goals, namely node privacy that protects the content and nature of data
reports, query privacy that hides the information for which queriers subscribe,
and report unlinkability that guarantees untraceability of the reports submitted
by mobile nodes. In order to distinguish both models, we refer to our model
for a privacy-enhanced participatory sensing infrastructure with collusion resis-
tance as PEPSICo. Subsequent to defining our extended security model, we give
a generic and provably secure PEPSICo construction using identity-based en-
cryption (IBE) and a concrete instantiation based on the Boneh-Franklin IBE
scheme [3]. Our construction offers collusion resistance and enjoys particularly
low computation, communication, and storage overhead.

Beyond this, in our model we additionally enable support for data aggregation
at the service provider that, besides functional benefits for participatory sensing,
helps to further reduce the communication overhead and to increase the privacy
of individual reports. By sending only one aggregated report (with the size of a
single one) instead of several single reports, aggregation reduces the amount of
transferred data. Moreover, aggregated values hide the contained accumulated
individual values, thus increasing the privacy of individual users.

For the purpose of data aggregation, we construct and analyze an additively
homomorphic IBE scheme as a variant of the Boneh-Franklin IBE scheme and
prove its security under the Decisional Bilinear Diffie-Hellman assumption in the
random oracle model. This IBE scheme can be directly used within our generic
collusion-resistant participatory sensing protocols to achieve data aggregation.
We note that our additively homomorphic IBE scheme is only suitable for cal-
culations with small sensor readings, which however is sufficient for most of the
above mentioned applications of participatory sensing. For all our constructions,
we analyze the performance and offer comparisons to prior work.

Related Work. One of the first privacy-aware architectures is AnonySense [6],
later extended [17], which however does not provide confidentiality against the
service provider or relies on multiple non-colluding parties. Dimitriou et al. [11]
aim at querier privacy only, using blind signatures.

So far, the only framework that aims at cryptographically provable privacy is
PEPSI by De Cristofaro and Soriente [7,9,8]. It is based on a simple but versatile
architecture that involves a trusted setup for the key generation phase and an
untrusted service provider for all later phases (see Section 2 for more details).
In contrast to our work, PEPSI does not allow for data aggregation and, more
importantly, does not protect against collusion attacks which has destructive
implications on privacy as we show in Section 2.1.
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In the context of secure data aggregation, a lot of work has been done in wire-
less sensor networks (see, e.g., [20]), though often focused on external adversaries.
Approaches for aggregation in a participatory sensing scenario [14,21,19] in con-
trast often require a known set of users or introduce additional communication
overhead.

A different approach to match data reports with queries would be to incor-
porate encryption with keyword search [2], which however inherently allows an
owner of a detection trapdoor for a keyword to identify this keyword in a given
set, rendering anonymity against the service provider impossible in our setting.

2 The PEPSI Model

In this section we briefly recall the PEPSI model as introduced by De Cristofaro
and Soriente [7,9,8]. Their infrastructure considers the following parties: mobile
nodes (MNs) are the devices that sense and report data, queriers are end-users
interested in receiving sensor reports, the network operator (NO) is the provider
of cellular network access for MNs, the service provider (SP) is the intermedi-
ary party between MNs and queriers that relays matching reports to subscribed
queriers, and the registration authority (RA) is the trusted party performing
system setup and node registration. The following PEPSI construction was pro-
posed in [7,9] using an encryption approach derived from the Boneh-Franklin
IBE scheme [3]. It uses groups G, GT of prime order q with a generator g ∈ G
and an efficient bilinear map e : G × G �→ GT such that e(ga, gb) = e(g, g)ab for
all a, b ∈ Zq and e(g, h) �= 1GT whenever g, h �= 1G.

Setup: The RA generates the bilinear group parameters (G = 〈g〉, q, e : G×G →
GT ), picks s ∈R Z∗

q as the master secret key msk and makes Q := gs public.
Further, RA chooses a “nonce” z ∈R Z∗

q , sets R := gz, and fixes three
cryptographic hash functions H1 : {0, 1}∗ → G, H2, H3 : GT → {0, 1}n.

MN Registration: A MN registers for the sensing of certain data at the RA
and obtains the pair (z, id) where z is the “nonce” from Setup and id the
identifier for the readings MN provides.

Query Registration: A querier registers at the RA for some query identifier
id∗ (e.g., “temperature in Berlin, Germany”) and obtains the pair (skid∗ , R)
for skid∗ := H1(id

∗)s. It then subscribes at the SP to receive reports for id∗

by sending T ∗ := H2(e(R, skid∗)).
Data Report: In order to submit a data reading m, a MN sends the pair

(T, c) := (H2(e(Q, H1(id)z)),Enck(m)) to the SP (via NO’s infrastructure),
with k := H3(e(Q, H1(id)z)) being the key for some symmetric encryption
operation Enc, e.g., AES. T is called a tag.

Query Execution: The SP matches received reports with query subscriptions
by comparing the tag T of a report with the stored subscriptions T ∗ and
forwards matching reports (T, c) to the according queriers.
The receiving querier computes k∗ := H3(e(R, skid∗)) and m := Deck∗(c).

Nonce Renewal: The RA periodically distributes a fresh z to the MNs and
R = gz to the queriers in order to ban misbehaving MNs.
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The PEPSI model identifies three privacy goals, stated here informally: node
privacy requires that NO, SP, unauthorized queriers, and other MNs learn noth-
ing about the data or nature (e.g., query id) of a report submitted by a MN; query
privacy demands that NO, SP, MNs, and other queriers learn nothing about the
query identifier a querier subscribes to; report unlinkability is achieved if no party
can link multiple data reports as originating from the same MN.

2.1 Limitations of PEPSI

With PEPSI [7,9,8], De Cristofaro and Soriente proposed the first cryptographic
framework for a formal analysis of security and privacy in participatory sensing.
As mentioned earlier, their model however does not achieve the required collusion
resistance necessary for a secure and privacy-protected participatory sensing
infrastructure and cannot deal with data aggregation at the SP.

While PEPSI excludes some forms of collusions by trust assumptions (e.g.,
between the SP and queriers), two types of collusions remain unmentioned which
lead to serious privacy loopholes in their construction:

– Collusion of SP and MN. All MNs possess the (same) “nonce” z allowing
to compute key k and tag T for any identity. The colluding SP and MN can
thus together decrypt all reports and determine the identity behind all query
subscriptions the SP receives (breaking node privacy and query privacy).

– Collusion of MN and Querier. The colluding MN and querier can use
the “nonce” z to subscribe for any identity (computing the resp. tag) and
decrypt all received reports (computing the resp. key), thus breaking node
privacy.1

Concerning data aggregation, De Cristofaro and Soriente acknowledge [8] that
performing aggregation at the SP would be an expedient capability in the set-
ting of participatory sensing; their constructions however only allow for single
encrypted measurements.

We argue that collusions, especially one person registering both as mobile node
and querier but also—though to a lesser extent—between MNs and the SP, are a
realistic threat in participatory sensing scenarios with devastating consequences
on privacy within PEPSI. Therefore, meaningful forms of collusion resistance
must also be reflected in the corresponding privacy definitions. Moreover, it
would be desirable—both performance- and privacy-wise—to directly allow for
aggregation of data reports in the underlying model. This motivates the following
revision of the original PEPSI model.

1 We stress that if no (additional) identity management is implemented to authenticate
queriers as such when interacting with the SP, this attack actually constitutes a total
privacy breach as every mobile node can subscribe for any query identifier without
registering as a querier and decrypt all received data reports. The collusion-resistant
model we introduce eliminates this attack independent of identity management.



326 F. Günther, M. Manulis, and A. Peter

Fig. 1. The PEPSICo infrastructure. Mobile nodes (MNs) and queriers (Qs) register to
the registration authority (RA). MNs report data to the service provider (SP), queriers
subscribe for reports at the SP. The SP may aggregate multiple reports and sends
reports matching with subscriptions to the according querier, which decodes them.

3 PEPSICo: Revised Model for Participatory Sensing

In this section, we propose a revised model for a privacy-enhanced participatory
sensing infrastructure which captures collusion resistance and foresees optional
data aggregation, denoted as PEPSICo.

The PEPSICo system model (cf. Figure 1) involves mobiles nodes (MNs),
queriers, a service provider (SP), and a registration authority (RA) with identical
roles as in the PEPSI model. We however drop the network operator, as its attack
capabilities in our model are strictly weaker than those of the service provider.
Thus, considering the latter only is sufficient.

Definition 1 (PEPSICo Instantiation). An instantiation of the privacy-en-
hanced participatory sensing infrastructure with collusion resistance (PEPSICo
instantiation) PI consists of the seven algorithms Setup, RegisterMN,
RegisterQ, ReportData, SubscribeQuery, ExecuteQuery, and DecodeData

and, potentially, the optional AggregateData algorithm defined as follows.

Setup(1n): The setup is executed by the RA to initialize PI. On input the security
parameter n ∈ N, this probabilistic algorithm outputs the RA’s secret key
RAsk and a master public key RApk. RApk contains a description of the
query identity space I and the message space M.

RegisterMN(RApk,RAsk, qid): The MN registration is executed by the RA to
register a new MN for a given query identity qid. On input RApk, RAsk, and
a query identity qid ∈ I, this probabilistic algorithm outputs a mobile node
registration value regMNqid for qid, which the RA sends to the MN.

RegisterQ(RApk,RAsk, qid): The querier registration is executed by the RA to
register a new querier for a given query identity qid ∈ I. On input RApk,
RAsk, and qid, this probabilistic algorithm outputs a querier registration value
regQqid for qid, which the RA sends to the querier.

ReportData(RApk, regMNqid, qid, m): The data report algorithm is executed by
the MN to report a message m ∈ M under some query identity qid ∈ I. On
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input RApk, a MN registration value regMNqid, qid, and m, this probabilistic
algorithm outputs a data report c, which the MN sends to the SP.

SubscribeQuery(RApk, regQqid, qid): The query subscription is executed by the
querier to subscribe for a given query identity qid ∈ I. On input RApk, a
querier registration value regQqid, and qid, this probabilistic algorithm out-
puts a subscription token s, which the querier sends to the SP.

ExecuteQuery(RApk, c, s): The query execution is executed by the SP. On input
the master public key RApk, a data report c, and a subscription token s, this
deterministic algorithm outputs either c (indicating that c matches with s)
or ⊥ (indicating mismatch) to the querier who provided the token s.

DecodeData(RApk, regQqid, qid, c): The data decoding is executed by a querier
on a received data report c to obtain the contained message. On input RApk,
a querier registration value regQqid, a query identity qid ∈ I, and c, this
deterministic algorithm outputs either a message m or ⊥, indicating failure.

AggregateData(RApk, c): The optional data aggregation is executed by the SP
on a vector of data reports c = (c1, . . . , ck) and, if all match, outputs a single,
aggregated data report. On input RApk and c, this probabilistic algorithm
outputs either a single data report c or ⊥, indicating failure.

If PI provides the AggregateData operation, it is called a PEPSICo instantiation
with data aggregation.

3.1 Trust Assumptions and Adversary Model

In our model, we allow collusions between the SP, mobile nodes, and queriers
against other mobile nodes or queriers. Particularly, we consider mobile nodes
to be arbitrary, unauthenticated users. Since our model aims at the higher-level
application of participatory sensing it is assumed that (uncorrupted) parties
communicate over confidential yet not necessarily authenticated channels.

In order to define security and privacy of a PEPSICo instantiation PI, we
consider a probabilistic polynomial-time (PPT) adversary A interacting with
PI. We allow for corruptions of MNs, queriers, the SP, and (in special cases)
the RA. Let CIMN resp. CIQ denote the set of identities A learned registration
values for by corrupting MNs resp. queriers and CI := CIMN ∪CIQ. Corruption
of the SP resp. RA is denoted by CSP = 1 resp. CRA = 1; initially both are 0. A
has access to the following oracles:

CorruptMN(qid): On input a query id qid, compute regMNqid ← RegisterMN(
RApk,RAsk, qid), provide A with regMNqid, and add qid to CIMN .

CorruptQ(qid): On input a query id qid, compute regQqid ← RegisterQ(RApk,
RAsk, qid), provide A with regQqid, and add qid to CIQ.

CorruptSP(): Set flag CSP := 1. (This influences subsequent ReportData queries.)
CorruptRA(): Provide A with RAsk and set flag CRA := 1.
ReportData(qid, m, s): On input a query id qid, a message m, and a vector of sub-

scription tokens s = (s1, . . . , sk), let regMNqid ← RegisterMN(RApk,RAsk,
qid) and c ← ReportData(RApk, regMNqid, qid, m). If CSP = 1, c is given to
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A. Otherwise A receives c := (c1, . . . , ck), where ci ← ExecuteQuery(RApk,
c, si) for i ∈ {1, . . . , k} (some of the ci may be ⊥).2

SubscribeQuery(qid): On input a query id qid, compute regQqid ← RegisterQ(
RApk,RAsk, qid), s ← SubscribeQuery(RApk, regQqid, qid), and give s to A.

DecodeData(qid, c): On input a query id qid and a data report c, compute
regQqid ← RegisterQ(RApk,RAsk, qid), m ← DecodeData(RApk, regQqid,
qid, c), and give m to A.

3.2 Privacy and Security Definitions

We proceed by strengthening the definitions of the three central privacy goals
for participatory sensing identified in [7] with collusion resistance.

Node Privacy. Our notion of node privacy formalizes confidentiality of data
reports against the SP, unauthorized queriers, and other MNs. More precisely,
node privacy hides both the message and the query identity of a report from
these parties, even if all of them collude. We thus model node privacy as indis-
tinguishability of data reports generated using two query identity-message pairs
freely chosen by an adaptive adversary that can obtain data reports, subscribe
to queries, and corrupt SP as well as MNs and queriers for other query identities.
Similar to classical security notions for encryption, we distinguish between node
privacy under chosen-ciphertext and under chosen-plaintext attacks, where in
the first the adversary has additional access to the decoding oracle.

Definition 2 (Node Privacy). Let PI be a PEPSICo instantiation and A =
(A1, A2) a PPT adversary interacting with PI via the queries defined in Sec-
tion 3.1 within the following game GameNP-CCA

PI,A (n):

Setup. Setup(1n) is executed and outputs (RAsk,RApk).
Phase I. A1 receives RApk and has access to the oracles CorruptMN, CorruptQ,

CorruptSP, ReportData, SubscribeQuery, and DecodeData. Eventually, A1

stops and outputs two challenge query identity-message pairs (qid0, m0),
(qid1, m1) and a vector of subscription tokens s = (s1, . . . , sk).

Challenge. A bit b ∈R {0, 1} is chosen, regMNqidb
← RegisterMN(RApk,RAsk,

qidb) and c ← ReportData(RApk, regMNqidb
, qidb, mb) are executed. If CSP =

1, set R := (c), otherwise set R := (c1, . . . , ck), where ci ← ExecuteQuery(
RApk, c, si) for i ∈ {1, . . . , k}.

Phase II. A2 receives RApk and R and has access to the oracles from Phase I.
Guess. Eventually, A2 outputs a guess b′ ∈ {0, 1} for b.

Adversary A wins the game, denoted by GameNP-CCA
PI,A (n) = 1, if b = b′, {qid0,

qid1} ∩ CI = ∅, and all the following conditions hold:

1. A did not query SubscribeQuery with qid0 or qid1.

2 The intuition of separating the cases CSP = 1 and CSP = 0 (i.e., SP is corrupted or
not) is as follows: If SP is corrupted, A sees any data report sent to SP. Otherwise,
A only learns reports for which he can provide a matching subscription token si.



Privacy-Enhanced Participatory Sensing 329

2. If CSP = 1, then A did not query ReportData with qid0 or qid1.
3. In Phase II A did not query DecodeData(qid0,R[i]) or DecodeData(qid1,R[i])

for any element R[i] of R.

We say PI provides node privacy under chosen-ciphertext attacks (or NP-CCA
security) if for all PPT adversaries A the following advantage function is negli-
gible in n: AdvNP-CCA

PI,A (n) :=
∣∣Pr

[
GameNP-CCA

PI,A (n) = 1
]
− 1

2

∣∣.
Consider the game GameNP-CPA

PI,A (n), which is identical to GameNP-CCA
PI,A (n), ex-

cept that A is not given access to the DecodeData oracle. We say PI provides
node privacy under chosen-plaintext attacks (or NP-CPA security) if for all PPT
adversaries A the analogously defined advantage AdvNP-CPA

PI,A (n) is negligible in n.

Remark 1. PEPSICo schemes with data aggregation never provide NP-CCA secu-
rity, as an adversary in GameNP-CCA

PI,A (n) can apply the AggregateData algorithm
on challenge c and a c′ for known m′ and decode the result using the DecodeData

oracle. Therefore, the desirable privacy flavor in case of aggregation is NP-CPA.

Query Privacy. By query privacy we formalize the privacy of queriers when
subscribing for query identities. We require that the query identity of a subscrip-
tion is hidden from the SP as well as MNs and other queriers, even if all of them
collude. Query privacy is thus modeled as indistinguishability of subscription
tokens for two query identities freely chosen by an adaptive adversary that can
obtain data reports, subscribe to queries, and corrupt SP as well as MNs and
queriers for other query identities.

Definition 3 (Query Privacy). Let PI be a PEPSICo instantiation and A =
(A1, A2) a PPT adversary interacting with PI via the queries defined in Sec-
tion 3.1 within the following game GameQP

PI,A(n):

Setup. Setup(1n) is executed and outputs (RAsk,RApk); set CSP := 1.
Phase I. A1 receives RApk and has access to the oracles CorruptMN, CorruptQ,

ReportData, SubscribeQuery, and DecodeData. Eventually, A1 stops and out-
puts two challenge query identities qid0 and qid1.

Challenge. A bit b ∈R {0, 1} is chosen, regQqidb
← RegisterQ(RApk,RAsk,

qidb) and s ← SubscribeQuery(RApk, regQqidb
, qidb) are executed.

Phase II. A2 receives RApk and s and has access to the oracles from Phase I.
Guess. Eventually, A2 outputs a guess b′ ∈ {0, 1} for b.

Adversary A wins the game, denoted by GameQP
PI,A(n) = 1, if b = b′, {qid0,

qid1} ∩ CI = ∅, and A did not query ReportData or SubscribeQuery with qid0 or
qid1. We say PI provides query privacy if for all PPT adversaries A the following
advantage function is negligible in n: AdvQP

PI,A(n) :=
∣∣Pr

[
GameQP

PI,A(n) = 1
]
− 1

2

∣∣.
Report Unlinkability. Report unlinkability prevents the linkage of two reports
as originating from the same MN by any other party, including the RA. As MNs
(as well as queriers) are not distinguished by device identifiers or anything simi-
lar in our model, we tie the notion of report unlinkability to the MN registration
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RA

Setup: (msk,mpk) ← E .Setup, RAsk := (msk, k ∈R {0, 1}n), RApk := mpk.
RegisterMN: regMNqid := Tqid := fk(qid).
RegisterQ: regQqid∗ := (skqid∗ ← E .Extract(msk, qid∗), Tqid∗ ).

MN

ReportData:
c := (T, c′) :=
(Tqid, E .Enc(qid,m)).

Q

SubscribeQuery:
s := T ∗ := Tqid∗ .

DecodeData:
m := E .Dec(skqid∗ , c′).

SP

ExecuteQuery: If T = T ∗ output (T, c′), else output ⊥.
AggregateData: If T1 = · · · = T� output (T, c′) = (T1, c1 ◦ · · · ◦ c�), else output ⊥. (optional)

qid

T
qid

qid
∗

(skq
id

∗ , Tqid
∗ )

(T,
c
′ ) T ∗

(T, c ′
)

Fig. 2. Generic PEPSICo instantiation PIIBE based on an IBE scheme E and a PRF f

value used to generate a data report. We model report unlinkability as indis-
tinguishability of the MN registration value used to generate a data report for
a query identity-message pair freely chosen by an adaptive adversary that can
obtain data reports, subscribe to queries, and corrupt SP, any MN and querier
as well as the RA (after setup). Due to space limitations, we give the formal
definition of report unlinkability in the full version of this paper [16].

Collusion Attacks against PEPSI. It is easy to see that the original PEPSI
scheme [7,9,8] does not fulfill our definitions of node and query privacy due to
collusion attacks by leveraging the ability to corrupt mobile nodes.

4 A Generic Solution Using Identity-based Encryption

We build our generic PEPSICo instantiation from an arbitrary IBE scheme
E = (Setup,Extract,Enc,Dec) (where Extract denotes the algorithm to derive
secret keys from identities using the master secret). For a formal definition
of IBE schemes as well as the established security notions of anonymity and
indistinguishability under chosen-ciphertext (ANO-IND-ID-CCA) resp. chosen-
plaintext (ANO-IND-ID-CPA) attacks we refer to the full version of this paper [16]
resp. the work of Boneh and Franklin [3] and Abdalla et al. [1].

Our generic PEPSICo scheme, denoted PIIBE and specified in Definition 4,
incorporates an IBE scheme E and a pseudorandom function (PRF) f : {0, 1}n×
{0, 1}∗ → {0, 1}n. Figure 2 illustrates its mapping to the PEPSICo infrastructure.

Definition 4 (PIIBE Scheme). Let E = (Setup,Extract,Enc,Dec) be an identity-
based encryption scheme and f : {0, 1}n × {0, 1}∗ → {0, 1}n a pseudorandom
function. The PIIBE scheme is defined as follows:

Setup(1n): Let (msk,mpk) ← Setup(1n) and k ∈R {0, 1}n. Output RAsk :=
(msk, k) and RApk := mpk. M is the message space of E, I = {0, 1}∗.
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RegisterMN(RApk,RAsk, qid): Let Tqid := fk(qid), output regMNqid := Tqid.
RegisterQ(RApk,RAsk, qid): Let skqid ← Extract(mpk,msk, qid) and compute

Tqid := fk(qid). Output regQqid := (skqid, Tqid).
ReportData(RApk, regMNqid, qid, m): Output c := (Tqid,Enc(mpk, qid, m)).
SubscribeQuery(RApk, regQqid, qid): Output s := Tqid.
ExecuteQuery(RApk, c, s): Parse c as (T, c′). If T = s output c, else output ⊥.
DecodeData(RApk, regQqid, qid, c): Parse c as (T, c′). Output m := Dec(mpk,

skqid, c
′).

If E is homomorphic w.r.t. some operation ◦, then PIIBE supports data aggrega-
tion using the following generic algorithm:

AggregateData(RApk, c): Parse c as ((T1, c1), . . . , (T�, c�)). If T1 = · · · = T�,
compute c′ = c1 ◦ c2 ◦ · · · ◦ c� and output c = (T1, c

′), otherwise output ⊥.

We obtain the following security result for PIIBE.

Theorem 1 (Privacy and Security of PIIBE). If f is pseudorandom and E
provides ANO-IND-ID-CCA (resp. ANO-IND-ID-CPA) security, then PIIBE provides
node privacy under chosen-ciphertext (resp. chosen-plaintext) attacks, query pri-
vacy, and report unlinkability.

Proof of Node Privacy. Assume we have an adversary A = (A1, A2) against
PIIBE with non-negligible advantage AdvNP-CCA

PIIBE,A (n).3 We first consider the game

GameNP-CCA∗
PIIBE,A (n), which is like GameNP-CCA

PIIBE,A (n), except that instead of f a real
random function g : {0, 1}n×{0, 1}∗ → {0, 1}n is used to compute the tags Tqid.

We argue that ε(n) :=
∣∣AdvNP-CCA

PIIBE,A (n) − AdvNP-CCA∗
PIIBE,A (n)

∣∣ is negligible, otherwise
A can be used to construct a distinguisher D between f and g by relaying
evaluations of f in the game to its oracle. If D is given oracle access to f , then
it acts like the challenger in GameNP-CCA

PIIBE,A (n), otherwise like in GameNP-CCA∗
PIIBE,A (n).

D outputs the game result (i.e., b = b′) as its own guess and thus has advantage
ε to distinguish f and g. As f by assumption is pseudorandom, ε is negligible.

Thus A’s advantage in the modified game GameNP-CCA∗
PIIBE,A (n) is non-negligible,

too. We construct an adversary B with non-negligible advantage in breaking the
ANO-IND-ID-CCA security of E which uses A as follows.

Setup. B receives the master public key mpk in the ANO-IND-ID-CCA game.
Phase I. B provides A1 with RApk = mpk and answers the oracle queries as

specified. It uses its Extract oracle to obtain secret keys skqid for CorruptQ
queries, chooses tags Tqid ∈R {0, 1}n at random on first request (reusing the
value later), and relays DecodeData queries to its own Dec oracle.
A1 eventually outputs (qid0, m0), (qid1, m1), and s = (s1, . . . , sk).

Challenge. B forwards (qid0, m0), (qid1, m1) as its own challenge and receives
c∗. B chooses T ∈R {0, 1}n and sets c := (T, c∗). If CSP = 1, B sets R := (c),
else R := (c1, . . . , ck) for ci ← ExecuteQuery(RApk, c, si).

3 We prove the NP-CCA/ANO-IND-ID-CCA case here, the NP-CPA/ANO-IND-ID-CPA
case works identical by removing the DecodeData oracle queries.
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Phase II. B provides A2 with RApk and R and answers queries as above.
Guess. A2 outputs a guess b′ ∈ {0, 1}, which B forwards as its own guess.

As B perfectly simulates GameNP-CCA∗
PIIBE,A (n) for A, we have AdvANO-IND-ID-CCA

E,B (n) =

AdvNP-CCA∗
PIIBE,A (n), which is non-negligible. ��

Proof of Query Privacy. Assume we have an adversary A against PIIBE with
non-negligible advantage AdvQP

PIIBE,A(n). Similar to the node privacy proof we

consider GameQP∗
PIIBE,A(n), which is identical to GameQP

PIIBE,A(n), except that instead
of f a real random function g is used to compute the tags Tqid. This is likewise

indistinguishable for A, i.e.,
∣∣AdvQP

PIIBE,A(n) − AdvQP∗
PIIBE,A(n)

∣∣ is negligible.

In GameQP∗
PIIBE,A(n), A now receives a challenge subscription token s chosen at

random. As A is not allowed to corrupt MNs or queriers registered for qid0 or
qid1 or query ReportData or SubscribeQuery on qid0 or qid1, he receives no further
evaluation of g under qid0 or qid1. Thus, for A, the probabilities Pr[g(qid0) = s]
and Pr[g(qid1) = s] are equal for any value s. Hence A can guess b no better

than with probability 1
2 , so AdvQP∗

PIIBE,A(n) = 0 and AdvQP
PIIBE,A(n) is negligible. ��

We give the proof for report unlinkability in the full version of this paper [16].

5 Concrete PEPSICo Instantiations

We now show how our generic PIIBE construction (without and with data aggre-
gation) can be instantiated in practice.

5.1 PEPSICo Schemes in the Random Oracle and Standard Model

The generic PIIBE construction can directly be instantiated with the IBE scheme
proposed by Boneh and Franklin [3], which provides ANO-IND-ID-CPA security
(under the Bilinear Diffie-Hellman (BDH) assumption [3] in the random ora-
cle model). The resulting PEPSICo scheme, denoted PIBF, thus by Theorem 1
provides node privacy under chosen-plaintext attacks, query privacy, and report
unlinkability. As our comparison in Section 6 shows, PIBF offers the same high
practical performance as the original PEPSI scheme.

Since our result in Theorem 1 holds in the standard model, we can easily
obtain further PEPSICo schemes whose security does not require random oracles.
For instance, the anonymous IBE schemes by Boyen and Waters [5] or Gentry [15]
can likewise be used as appropriate building blocks to instantiate PIIBE.

5.2 PEPSICo Schemes with Data Aggregation

Additively Homomorphic IBE Scheme. For our PEPSICo scheme with data
aggregation we first introduce an additively homomorphic IBE scheme AIBE that
we developed as a modification of the Boneh-Franklin IBE scheme [3].
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Definition 5 (AIBE Scheme). The additively homomorphic IBE scheme AIBE
is defined as follows.

Setup(1n). Generate the bilinear group parameters (G = 〈g〉, q, e : G×G → GT )
with GT = 〈ḡ〉 for ḡ = e(g, g). Choose x ∈R Z∗

q, set y := gx, and fix a
cryptographic hash function H : {0, 1}∗ → G∗. The message space is M =
ZM = {0, . . . , M − 1} ⊆ Zq with M = p(n) < q for some polynomial p,
the ciphertext space is C = G∗ × GT . Output mpk = (q,G = 〈g〉,GT =
〈ḡ〉, e, y, H) and msk = x.

Extract(mpk,msk, id). Compute and output skid := H(id)x.
Enc(mpk, id, m). Choose r ∈R Z∗

q and output c = (gr, ḡm · e(H(id), y)r).
Dec(mpk, skid, c). Parse c as (c1, c2). Compute m := c2/e(skid, c1) and m =

logḡ(m) as the discrete logarithm to the base ḡ of m in GT (which takes
polynomial time in n as m < M , cf. the performance discussion below).

Our AIBE scheme is additively homomorphic in the message space M = ZM by
element-wise multiplication of ciphertexts: c · c′ = (gr ·gr′, ḡm ·e(H(id), y)r · ḡm′ ·
e(H(id), y)r

′
) = (gr+r′ , ḡm+m′ · e(H(id), y)r+r′) = Enc(mpk, id, m + m′ mod q).

Theorem 2 (ANO-IND-ID-CPA Security of AIBE). AIBE provides anonymity
and indistinguishability under chosen-plaintext attacks under the DBDH assump-
tion, in the random oracle model.

Due to space limitations, the proof of Theorem 2 is given in the full version
of this paper [16]. We however note that the proof of indistinguishability takes a
similar approach as the proof of Theorem 4.1 in [4] and that ANO-IND-ID-CPA-
security, using this result, can be directly reduced to the DBDH assumption.

The full version of this paper [16] also includes a performance evaluation of
AIBE showing that, based on Pollard’s kangaroo method, computation of a dis-
crete logarithm within the decryption algorithm is feasible even for 32-bit integer
values on standard desktop hardware.4 We remark that AIBE’s restriction to a
polynomial message space is typical for additively homomorphic schemes based
on decisional DH assumptions where messages are encrypted in the exponents.

PEPSICo Scheme with Data Aggregation. We now instantiate the generic
PIIBE construction with the AIBE scheme and denote the resulting PEPSICo
scheme with data aggregation as PIAIBE. Combining Theorems 1 and 2, the
resulting scheme provides node privacy under chosen-plaintext attacks, query
privacy, and report unlinkability (under the DBDH assumption in the random
oracle model). We evaluate its practical performance in Section 6.

6 Performance Evaluation and Comparisons

We now evaluate the performance of our two concrete PEPSICo schemes: PIBF
from Section 5.1 and PIAIBE from Section 5.2. In particular, we compare the

4 Note that decryption will not be performed by resource-constrained mobile devices.
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Table 1. Computation and communication overhead of PEPSI [7], PIBF, and PIAIBE

PEPSI PIBF PIAIBE

Algorithm Comp. Comm. Comp. Comm. Comp. Comm.

Setup 2E – 1E – 1E –
RegisterMN – n 1f n 1f n
RegisterQ 1E 2G 1f+1E 1G+n 1f+1E 1G+n
ReportData 1E+1P+2H 2n 2E+1P+2H 1G+2n 3E+1P+1H 2G+n
SubscribeQuery 1P+1H n – n – n
ExecuteQuery – 2n – 1G+2n – 2G+n
DecodeData 1P+1H – 1P+1H – 1P+1DL –
AggregateData n/a n/a n/a n/a ≈ 0∗ –

E — modular exponentiation in G or GT ; P — pairing evaluation; H — hash function evaluation;
f — PRF evaluation; DL — computation of discrete logarithm; G — group element in G or GT ;
n — message length, Hash/PRF output length
∗ The AggregateData algorithm of PIAIBE requires 2� group multiplications to aggregate �
ciphertexts, negligible compared to the other units used.

induced computation, communication, and storage overhead of the two schemes
with the original PEPSI scheme [7,9], though keeping in mind that it does not
fulfill the requirements of node and query privacy in our model due to collusion
attacks.

Table 1 shows the computation and communication overhead introduced by
PEPSI, PIBF, and PIAIBE. PEPSI and PIBF perform similar in computation, ex-
cept that PIBF uses a pseudorandom function for tag generation. Computation
overhead of PIAIBE (the only scheme providing data aggregation) is significantly
higher only for the DecodeData operation, which requires computation of a
discrete logarithm. Note that DecodeData is not executed by the (resource-
constrained) mobile nodes, but by queriers with a presumable computing power
comparable to the machine running our test measurements. In return, PIAIBE
saves decryption time if reports are aggregated, requiring only 2(� − 1) cheap
group multiplications to aggregate � reports.5

Concerning communication costs, the only practical difference is in the length
of ciphertexts. While ciphertexts in PEPSI have the same length as messages, in
PIBF and PIAIBE they additionally contain one group element of G. Aggregation
in PIAIBE however allows for huge savings (a factor � for � aggregated reports) in
the communication between SP and queriers. More important, PIBF and PIAIBE
do not require any periodic update operations as opposed to the regular “nonce
renewal” of PEPSI, saving further computation and communication resources.

Table 2 shows the (virtually identical) space requirements of all three schemes.
Note however that the aggregation of reports possible in PIAIBE saves additional
storage capacity of the SP and queriers.

5 Our measurements for discrete logarithm and pairing computation (discrete loga-
rithm in interval [0,M ]: 0.18

√
M ms; pairing: 5.99 ms) show that PIAIBE outperforms

PIBF wrt. the decryption overhead if messages are integers between 0 and about
1000—independently of how many messages are aggregated in an arbitrary large
message space.
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Table 2. Space requirements of PEPSI [7], PIBF, and PIAIBE.

Component PEPSI PIBF PIAIBE

RA Public Key RApk 3G+n 3G+n 3G+n
RA Secret Key RAsk 1G+2n 2n 2n
MN Registration Value regMNqid n n n
Querier Registration Value regQqid 2G 1G+n 1G+n
Data Report c 2n 1G+2n 2G+n
Subscription Token s n n n

G — group element in G or GT ; n — message length, Hash/PRF output length

In summary, PIBF performs similar to PEPSI wrt. computation overhead and
key sizes and has only slightly higher communication overhead, while providing
stronger node privacy, query privacy, and report unlinkability guarantees in the
presence of colluding parties. For small messages, PIAIBE is almost as fast as the
PIBF scheme while achieving the same level of security and enabling support
for aggregation. The latter property allows for a significant reduction of the
communication overhead between service provider and queriers and can offer
more stringent privacy guarantees with respect to individual data reports.

7 Conclusion and Outlook

We presented PEPSICo, a refined version of the PEPSI model [7] that protects
data confidentiality and user privacy under collusion attacks and additionally
allows for data aggregation. Our generic and concrete instantiations leverag-
ing anonymous identity-based encryption (IBE) achieve full privacy as well as
equally high practical performance as earlier approaches. For future work, con-
structing an efficient additively homomorphic IBE scheme with exponential-sized
message space remains an open problem of independent interest.
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Abstract. The notion of comparable encryption is introduced in Es-
orics 2013 [18] which overcomes the weakness of order-preserving en-
cryption (OPE). While an OPE enables to compare the numerical order
of numbers from their corresponding ciphertexts alone, the comparable
encryption enables to compare the numerical order of the pair of num-
bers from their ciphertexts if either of the ciphertexts is accompanied
with the corresponding token. Hence, it significantly reduces the amount
of disclosed knowledge with respect to encrypted numbers from their
ciphertexts. Since an OPE is considered to be a key primitive for en-
crypted databases such as CryptDB [31] and Monomi [36], a comparable
encryption has a potential to enhance the security of these applications.
However, the previous comparable encryption requires large ciphertext
length, which so severely spoils the performance of encrypted databases
that it is no longer practical. We propose in this paper, a very short com-
parable encryption. While each bit is encrypted into a string of security
parameter length, say 160 bits, in the previous works, ours encrypts each
bit into 3-ary. This is even shorter than the ciphertext length of OPEs.

Keywords: token-based, encrypted database, range query, order com-
parison.

1 Introduction

A database (DB) system has been widely used to store and process a large
amount of data and has been an indispensable platform for variety of services.
Since many DBs store sensitive information, they have been the primary target
for data theft. But it has been extremely difficult to completely prevent such
a theft if DBs are persistently attacked or if DBs are on clouds that may have
malicious intent. A promising countermeasure is to encrypt data in such a way
that keys for decryption are kept by only data owners [12, 21, 22]. This can be
best compared to a current product for transparent database encryption such
as [28] that keeps keys along databases.

However, as simply encrypting data makes DBs unable to offer sufficient func-
tionalities, some dedicated encryption mechanisms are necessary. Searchable en-
cryptions [2,4,16,20,23] enable a DB management system (DBMS) to search nec-
essary data without decrypting them, and order-preserving encryptions (OPEs)
[1, 8, 9] enable a DBMS to recognize the numerical order of data without de-
crypting them. The controlled joining [19] and the adjustable join [31] enable

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 337–352, 2014.
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a management system of relational database (RDB) [15] to join encrypted ta-
bles without decrypting them. These mechanism enable DBs to offer various
functionalities even if they are encrypted.

CryptDB [31] and MONOMI [36] employed some of these dedicated encryp-
tion mechanisms and demonstrated these mechanisms can enable encrypted
RDBs to mark practical efficiency in TPC-C [34] and TPC-H [35] measures. It is
certain that these encryption mechanisms are weaker than strong cryptographic
protocols such as private information retrieval (PIR) introduced in [13, 14, 24],
which leaks only few knowledge. However, such an approach as PIR inevitably
requires either heavy computational or communicational cost for DBs and is not
practical except when DBs are tiny. As it is commonly understood that there is
no perfect security with reasonable availability in real services, the trade-off and
the level of compromise are critically important. These encrypted databases are
now attracting much attention as they are considered to offer beneficial trade-off.

Although these dedicated encryptions are attractive, they often fail to provide
not only perfect security but the minimum level of security. Thus, their trade-off
needs to be scrutinized. For example, CryptDB and MONOMI use deterministic
encryption so as to respond to search queries. However, deterministic encryption
reveals whether or not any pair of two encrypted data are the same. This is a
fatal vulnerability if data are consists of a single bit that indicates, for example,
whether or not each patient is affected with a highly sensitive disease. Such a
vulnerability in searchable encryptions is basically solved by the scheme in [16]
where relevant data is pointed only when queried with the corresponding token.
This token-based searchable encryption is strengthened in [23] to securely update
data.

An OPE [8,9] received great attention from the applied community [17,25,26,
31, 33, 38] when introduced. As the order comparison is a fundamental process
that are frequently executed (next to searching by simple matching) in databases,
OPE is what makes encrypted databases practical. However, it is even worse
than deterministic encryption from the security perspective. Indeed, it is easy
to see that if a set of numbers that includes the all numbers in a domain D are
encrypted by an OPE, an adversary is able to decrypt all the ciphertexts simply
by sorting them.

The weakness of OPE demands the development of token-based cryptographic
protocols for range query as those for searching. This demands is very natural
as an OPE is deterministic encryption and token based approaches are already
common in [16,19,20,23,31] when deterministic approaches are no longer appro-
priate. Furukawa [18] proposed a notion of comparable encryption that overcome
this weakness of order-preserving encryption (OPE). The comparable encryption
enables to compare the numerical order of the pair of numbers from their cipher-
texts if either of the ciphertexts is accompanied with the corresponding token.
Hence, it significantly reduces the amount of disclosed knowledge with respect to
encrypted numbers from their ciphertexts. This is the first token-based protocol
for the range query.
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However, the development of the comparable encryption neither open the
way nor remove the last hurdle for practical encrypted databases. The previous
comparable encryption requires awfully large ciphertext length, which severely
spoils the performance of encrypted databases. As it converts each bit into a
string of security parameter length, the ciphertext of 4 byte long message can be
640 byte long when the security parameter is 80. This is not an acceptable cost
for almost all databases. Therefore, the lack of short comparable encryptions
is still the fundamental problem for providing a practical encrypted database
service.

We proposed in this paper, a very short comparable encryption to solve this
problem. While each bit is encrypted into a string of security parameter length
in the previous works, ours encrypts each bit into 3-ary. Its each ciphertext
additionally requires an initial vector to ensure its uniqueness. The resulting
ciphertext is even shorter than typical OPE in most cases. Our comparable
encryption requires twice computational cost when comparing ciphertexts than
the previous comparable encryption.

Although [18] introduced the notion of ideal security requirement for compa-
rable encryption, it also introduced a weaker security requirement and presented
only a scheme that satisfies this weaker security requirement. The weakness of
this weaker notion compared to the ideal notion is evaluated in that paper.
The expected ratio between the number of occasions when a token of an ideal
scheme distinguishes two ciphertexts and the number of occasions when a to-
ken of a weaker scheme distinguishes two ciphertexts are shown to be only at
most “2.8”. Hence, schemes with the weaker security still have significance. Our
scheme inherits the technique of the scheme in [18] and achieves exactly the same
level of security in the standard model.

The proposed encryption scheme can encrypt data without loosing the ability
of database management systems to handle range queries. The most queries in
most RDBs can be handled if searching, inequality test, joining, and summation
are possible. Currently searching can be handled by [23], joining can be handled
by [31] or [19], and summation can be handled by [29] with a reasonable security.
Hence, additionally with our short comparable encryption, an RDB management
system now can process most of queries by combining these protocols while
data are being encrypted. A small amount of data that cannot be processed
by the management system itself can be sent back to the application, and then
application who made queries can process them after decrypting them.

If we apply the above strategy to cloud databases, their users can be confi-
dent that the data will not be leaked via even cloud service providers. A cloud
management system and a database management system have so an extensive
privilege for accessing and controlling data that is difficult to audit rigorously.
Moreover, cloud users are not allowed to audit cloud management system which
includes systems of other users. Hence, encrypting database is most practical so-
lution to make users feel their data safe. If we apply this strategy to on-premise
databases, these databases can be managed thorough the network, which is of-
ten impossible within the current technology since there is no way to monitor
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database administrators outside the organization who might to access to confi-
dential data.

The disadvantage of installing comparable encryption to databases is that
the cost for evaluating inequality of each ciphertext compared to the query re-
quires much higher than evaluating inequalities of plaintexts. The most database
system developers are crazy about speed. In most relational databases, simple
comparison between plaintexts are not always executed as is but leverage index
technology for high performance. The proposed comparable encryption needs to
be in concert with such technology so that its lower performance remain to be
acceptable. We show how this is done in Section 2.

Related Works. Several works proposed stronger primitives for range query
that can be replaced with OPEs. These are the committed efficiently-orderable
encryption (CEOE) [9] that exploits a monotone minimal perfect hash function
[3], range, conjunctive, and subset query methods in a public key setting [11,32],
and searchable encryptions in a public key setting [4,5,10]. Among these, CEOE
is not token based and are still unable to provide enough security when data
are densely distributed. Some of range, conjunctive, subset queries or searching
in public key settings are token based. As they are public key primitives, an
attacker is able to generate ciphertexts and test which key word the token, i.e.,
the query, includes. Hence, although these primitives exercise heavy public key
operations, they do not suit for our purpose. An order-preserving encryption
with additional interactions [30] can enhance the security, but most applications
assume that an RDB handles a thread of instructions without such additional
interactions.

Organization. Section 2 discusses how comparable encryptions are employed
by database management system in concert. Section 3 introduces the algorithms
of comparable encryption and describes its basic functionality. Section 4 first in-
troduces the security requirement of ideal comparable encryptions and its weaker
variant. Then the comparison of ideal and weaker requirements is given. Section 5
presents a concrete scheme of our novel comparable encryption. Section 6 proves
that our scheme satisfies the completeness and weak indistinguishability. Then
it compares complexity of our scheme with that of the previous one. Section 7
summarizes our paper and poses an open problem.

2 Comparable Encryption for DB Management System

Suppose that every data in a database is encrypted by a comparable encryption.
Then, its user is able to make an encrypted range query by sending tokens for the
edges of this range. Upon receiving the query, the DB is able to compare these
stored encrypted values with the edge values without interacting with the user to
select out the required ciphertexts. Here, that the DB needs no more interaction
is extremely important since it receives a sequence of requests at one time to
avoid heavy communication and incoherent transaction. To implement such a
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functionality into databases, one can install a comparing protocol of comparable
encryption as a user-defined-function. This is how CryptDB [31] install several
cryptographic protocols into databases.

A comparable encryption leaks some numerical orders of the data to the DB
via issued tokens, but what is leaked to the DB is what the DB needs for process-
ing data with practical efficiency. A use of a protocol such as“private information
retrieval” introduced in [13,14,24] may provide security closer to perfect one but
requires awfully heavy resources, which spoils the benefit of databases. A huge
number of different and varied queries may help DBMS decrypt data. Our ap-
proach is no longer effective in such an extreme case.

One may consider that an efficient comparable encryption provides a per-
fect solution for both range queries and insertion queries in encrypted DBs.
However, before concluding, we must consider the fact that logarithmic time
(binary) search is obligatory in almost all of current actual DBs requires some
ciphertexts to be sorted in order. Then, the numerical order of the ciphertexts
is no longer hidden even if comparable encryption is deployed. In such a case,
the numerical order is not what we can conceal from the DBs without sacrificing
their practicality.

Even when numerical order is revealed, a comparable encryption has an ad-
vantage over OPEs and avoids its ciphertexts from being totally decrypted. Ac-
cording to the impossibility result shown in [9] and the extreme case we discussed
before, an OPE reveals much more (and even awfully in some cases) than nu-
merical order of encrypted numbers. That is, each number can be almost or even
totally decrypted. On the other hand, a comparable encryption reveals only the
numerical order from sorted DBs without tokens. Suppose that there are m num-
bers in a domain of the size n where m > n. If these numbers are encrypted
by OPE, the resulting values varies less than n. On the other hand, if these
numbers are encrypted by comparable encryption, the resulting values are all
different (m values appear.). That means, comparable encryptions unlike OPEs
do not reveal equality of two encrypted numbers. Hence, the state of duplication
is not revealed and thus, unlike OPEs, sorting does not decrypt ciphertexts. This
is the main advantage of comparable encryptions over OPEs when applied to
DBs that provide fast range querying.

An comparable encryption can insert an encrypted number into an ordered
table also in logarithmic time. We summarize how an DB maintains a table of
encrypted numbers by deploying comparable encryption. A user first encrypts
all numbers in the table by the comparable encryption and sends them to the
DB in numerical order of the original numbers. The DB keeps these encrypted
numbers in a table in this order. When the user is to insert a new encrypted
number into this table, it generates the corresponding token and sends it to
the DB with this encrypted number. Since the DB is able to compare this new
encrypted number with other stored encrypted numbers (with the help of the
token), the DB can successfully insert the new encrypted number into the table in
the right numerical order. The number of comparison that this process requires
is a logarithm of the size of the stored numbers. For range queries, the DB can
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again compare the edge numbers to other stored encrypted numbers if the tokens
for these edges are given, which requires only logarithmic time also.

3 Model

Now we introduce the model of comparable encryption. Comparable encryption
is composed of four algorithms (Gen,Enc,Der,Cmp).

Gen: A probabilistic algorithm that, given a security parameter κ ∈ N and a
range parameter n ∈ N, outputs a parameter param and a master key mkey.
n is included in param.

(param,mkey) = Gen(κ, n)

Enc: A probabilistic algorithm that, given a parameter param, a master key
mkey, and a number 0 ≤ num < 2n, outputs a ciphertext ciph.

ciph = Enc(param,mkey, num)

Der: A possibly probabilistic algorithm that, given a parameter param, a master
key mkey, and a number 0 ≤ num < 2n, outputs a token token.

token = Der(param,mkey, num)

Cmp: An algorithm that, given a parameter param, two ciphertexts ciph and
ciph′, and a token token, outputs 0, 1, or 2.

Cmp(param, ciph, ciph′, token) ∈ {0, 1, 2}

Although this model provides no decryption algorithm, it can be easily pro-

vided by appending an ordinary ciphertext c̃iph to each comparable encryption

ciphertext ciph as ciph|c̃iph and preparing an ordinary decryption algorithm for
it. Then, decryption is straightforward.

We assume ciph and token input to Cmp are related so that they satisfy
ciph = Enc(param,mkey, num) and token = Der(param,mkey, num) for the
same param,mkey, and num. The output of Cmp is 0, 1, or 2, respectively, when
num = num′, num > num′, or num < num′. This requirement is formalized in
the following completeness.

Definition 1. We say a comparable encryption is complete if, for every κ ∈ N,
n ∈ N, 0 ≤ num, num′ < 2n, and random tapes input to Gen,Der,Enc, and Cmp,
it holds that

(param,mkey) = Gen(κ, n), token = Der(param,mkey, num),

ciph = Enc(param,mkey, num), ciph′ = Enc(param,mkey, num′),

Cmp(param, ciph, ciph′, token) =

⎧⎨⎩
0 if num = num′

1 if num > num′

2 if num < num′
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One may model comparable encryption with Cmp that is fed only param, ciph,
and token. In fact we consider token is always used with ciph and thus token
can be redefined as (token, ciph). Our definitions of indistinguishability assume
such a manner of using token. However, we consider the choice is a matter of
taste and choose the previous way.

4 Security Requirements

4.1 Ideal and Weaker Requirements

We require comparable encryptions are indistinguishable against chosen plain-
text attacks as long as no token is generated. We also require the knowledge that
token discloses to DBMS is minimum while the efficiency of DBMS is maintained.
Hence, it is considered that, when a token token with respect to a number num is
given, it is best if token only enables to compare this num with other encrypted
numbers. We introduce the notion of ideal indistinguishability and weak indistin-
guishability which are more simple than those defined in [18]. The simplification
is due to the fact that both token and ciphertext are issued when (cmprkey, num)
is queried in our games. Since the token input to our Cmp always accompanies
a ciphertext of plaintext with respect to which the token is generated, this si-
multaneous issuing is what the usage of comparable encryptions is supposed to.
We first introduce ideal security requirement.

Definition 2. The distinguishing game is played between challenger C and
adversary A∗ as in the following. It begins when C receives a security parameter
κ ∈ N and a range parameter n ∈ N, runs (param,mkey) ← Gen(κ, n), and gives
param to A∗. C responds to queries from A∗ in the game as follows;

– Upon receiving (encrypt, num) for any 0 ≤ num < 2n, C returns ciph =
Enc(param,mkey, num).

– Upon receiving (cmprkey, num) for any 0 ≤ num < 2n, C returns token =
Der(param,mkey, num) and ciph = Enc(param,mkey, num).

– C receives (test, num∗
0, num

∗
1) such that 0 ≤ num∗

0 < num∗
1 < 2n only once

in the game. On receiving this message, C randomly chooses b ∈ {0, 1} and
generates and returns ciph∗ = Enc(param,mkey, num∗

b ).

During the game, A∗ is not allowed to make such a query (cmprkey, num) that
the following relation holds:

num∗
0 ≤ num ≤ num∗

1 (1)

At the end of the game, A∗ sends b′ ∈ {0, 1} to C. The result of the game
ExpκC,A∗ is 1 if b = b′; otherwise 0.

The distinguishing game challenges the adversary’s ability to distinguish ci-
phertexts. However, if a certain set of queries is sent to the challenger, it is
inevitable to prevent rational adversaries from distinguishing these ciphertexts.
This is because tokens for comparing a pair of encrypted numbers inevitably
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enable DBMS to compare these numbers as designed. Hence, the cases and only
the cases when tokens trivially help distinguishing ciphertexts need to be ex-
cluded from the games to measures the strength of the scheme. This trivial
distinguishing is captured by the restriction to cmprkey queries.

We do not consider chosen-ciphertext attacks here. This is partly because
encrypt-then-MAC [6] generic construction can easily make the scheme resistant
for them even when an ordinary ciphertext is concatenated to each ciphertext so
as to be decryptable. And this is mostly because preventing chosen-ciphertext
attacks has few significance in our scenario. An encrypted database cannot prove
the correctness of the response efficiently. For example. it is unrealistic for the
encrypted databases to prove so when no matching data exist, that is, responses
are malleable.

Definition 3. We say a comparable encryption is indistinguishable (Ind)
if, for every polynomial time adversary A∗, AdvκC,A∗ := | Pr[ExpκC,A∗ = 0] −
Pr[ExpκC,A∗ = 1]| is negligible with respect to κ in the distinguishing game.

We next introduce weaker security requirement. This requirement is defined
via weak distinguishing game which is the same with the distinguishing game
except that the allowed queries to the adversary is more restricted.

Definition 4. The weak distinguishing game is played between challenger
C and adversary A∗ as in the following. It begins when C receives a security
parameter κ ∈ N and a range parameter n ∈ N, runs (param,mkey) ← Gen(κ, n),
and gives param to A∗. C responds to queries from A∗ in the game as follows;

– Upon receiving (encrypt, num) for any 0 ≤ num < 2n, C returns ciph =
Enc(param,mkey, num).

– Upon receiving (cmprkey, num) for any 0 ≤ num < 2n, C returns token =
Der(param,mkey, num) and ciph = Enc(param,mkey, num).

– C receives (test, num∗
0, num

∗
1) such that 0 ≤ num∗

0 < num∗
1 < 2n only once

in the game. On receiving this message, C randomly chooses b ∈ {0, 1} and
generates and returns ciph∗ = Enc(param,mkey, num∗

b ). .

During the game, A∗ is not allowed to make such a query (cmprkey, num) that
the following relation holds:

∃�(0 < � ≤ n) s.t.

((α�, . . . , αn−1) = (β�, . . . , βn−1) = (γ�, . . . , γn−1)) ∧ (β�−1 < γ�−1) . (2)

where num =
∑n−1

i=0 αi2
i, num∗

0 =
∑n−1

i=0 βi2
i, num∗

1 =
∑n−1

i=0 γi2
i such that

αi, βi, γi ∈ {0, 1} for all i.
At the end of the game, A∗ sends b′ ∈ {0, 1} to C. The result of the game

ExpκC,A∗ is 1 if b = b′; otherwise 0.

Note that here, if num∗
0 < num∗

1, then there is � such that

((β�, . . . , βn−1) = (γ�, . . . , γn−1)) ∧ (β�−1 < γ�−1) .
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holds. And num∗
0 ≤ num ≤ num∗

1 guarantees that

(α�, . . . , αn−1) = (β�, . . . , βn−1) = (γ�, . . . , γn−1)

holds for this �. Hence, the weak distinguishing game forbids larger class of
queries than the distinguishing game.

Definition 5. We say that a comparable encryption is weakly indistinguish-
able if, for every polynomial time adversary A∗, AdvκC,A∗ := | Pr[ExpκC,A∗ =
0] − Pr[ExpκC,A∗ = 1]| is negligible w.r.t. κ in the weak distinguishing game.

As the weak distinguishing game forbids larger class of queries than the distin-
guishing game, Def. 5 guarantees weaker security than Def. 3 does. However, the
difference between these requirement are estimated as moderately small in [18] if
the number of leaked queries is small. The intuition of the weakness is sketched
in Section A.

4.2 Evaluation of Weaker Indistinguishability

Let 0 ≤ num∗
0 < num∗

1 < 2n, D(num∗
0, num

∗
1) be the number of num such that

num∗
0 ≤ num ≤ num∗

1, and N(num∗
0, num

∗
1) be the number of num such that Eq.

(2) is satisfied. Then R(num∗
0, num

∗
1) =

N(num∗
0, num

∗
1)/D(num∗

0, num
∗
1) is the ratio of “the number of occasions when

tokens of a weaker scheme distinguishes a pair of ciphertexts” to “the number
of occasions when tokens of an ideal scheme distinguishes a pair of ciphertexts”,
which represents how weaker scheme is weak compared to ideal scheme. When
the ratio is one, they guarantee the ideal level of security. A larger ratio signifies
the weakness.

As the ratio R(num∗
0, num

∗
1) varies over the choice of pair (num∗

0, num
∗
1),

its expected value over uniformly and randomly chosen (num∗
0, num

∗
1) is esti-

mated as a measure of the weakness in [18]. Similarly, the expected value of
D(num∗

0, num
∗
1)/N(num∗

0, num
∗
1) and the expected value of N(num∗

0, num
∗
1) are

also evaluated. These estimation reported in [18] is given in Table. 1

Table 1. Various comparison measures

Measures value

Expected Value of “N(num∗
0,num

∗
1)/D(num∗

0,num
∗
1)” ≤ 2.8

Expected Value of “D(num∗
0,num

∗
1)/N(num∗

0,num
∗
1)” ≤ 2

“E.V. of N(num∗
0, num

∗
1)”/ “E. V. of D(num∗

0,num
∗
1)” ≥ 1/2
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5 Proposed Scheme

Now we present the specific construction of our scheme. Suppose a number num
is such that num =

∑n−1
i=0 bi2

i with bi ∈ {0, 1} for all 0 ≤ i ≤ n − 1 for a range
parameter n ∈ N. Then, we let (b0, . . . , bn−1) represent num and express this
relation as num = (b0, . . . , bn−1).

Intuitively, each number is assigned to a leaf of tree. Each bit in a number
corresponds to the node of this tree and the value of this bit indicate which child
node the next bit corresponds to. HashA in Der reveals a sequence of hash values,
each unique to each of nodes along the route to the leaf. HashB in Enc give a
random base to each node which is added to the bit corresponding to this node.
Because of this base, the value of this bit is hidden as long as the ciphertexts
with the same bit-value of this node are given with their corresponding tokens.
HashC encrypts each bit probabilistically.

Gen: Suppose a security parameter κ ∈ N and the range parameter n are given.
Gen first randomly chooses a hash function HashA,HashB,HashC : {0, 1}κ ×
{0, 1}∗ → {0, 1}κ and assigns param = (n,HashA,HashB,HashC). Next, Gen
uniformly and randomly chooses a master key mkey ∈ {0, 1}κ. Gen outputs
param = (n,HashA,HashB,HashC) and mkey.

Der: Suppose that param = (n,HashA,HashB,HashC), mkey, and a number
num = (b0, b1, . . . , bn−1) are given. Der sets bn = 0 and generates

di = HashA(mkey, bn, bn−1, . . . , bi)) for i = n, . . . , 1

Der outputs the token token = (d1, . . . , dn).
Enc: Suppose that param = (n,HashA,HashB,HashC), mkey, and a number

num = (b0, b1, . . . , bn−1) are given. Enc first generates (d1, . . . , dn) =
Der(param,mkey, num) and then randomly chooses random number I ∈
{0, 1}κ. Next, Enc generates

fi = HashC(di+1, I) + HashB(mkey, di+1) + bi mod 3

for i = n− 1, . . . , 0. Enc finally outputs ciphertext ciph = (I, (f0, . . . , fn−1)).

Here, (f0, . . . , fn−1) can be encoded into an integer F =
∑n−1

i=0 fi3
i to make

the ciphertext short.
Cmp: Suppose that param = (n,HashA,HashB,HashC), a pair of ciphertexts

ciph = (I, (f0, . . . , fn−1)) and ciph′ = (I ′, (f ′
0, . . . , f

′
n−1)), and a

token token = (d1, . . . , dn) are given.
– Cmp sets j = n − 1 and keep generating the following cj by repeatedly

decreasing j by 1 at each step.

cj = fj − f ′
j − HashC(dj+1, I) + HashC(dj+1, I

′) mod 3

This repetition stops when Cmp generated cj such that cj �= 0 or when cj = 0
for all 0 ≤ j ≤ n − 1. In the former case, Cmp outputs this first non zero cj .
In the latter case Cmp outputs 0.
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6 Property of the Proposed Comparable Encryption

6.1 Security

Theorem 1. The proposed comparable encryption is complete. ��

Definition 6. We say a function Hash : {0, 1}κ×{0, 1}� → {0, 1}L is a pseudo-
random function if every poly-time distinguisher D has an advantage in distin-
guishing whether it is accessing Hash(K, ·) with randomly chosen key K ∈ {0, 1}κ
or it is accessing a random function R : {0, 1}� → {0, 1}L with at most negligible
probability in κ.

Theorem 2. The proposed comparable encryption is weakly indistinguish-
able as long as HashA,HashB,HashC are a pseudorandom function.

The structure of ciphertext of our protocol is essentially the same as that of
the previous protocol [18] except that our protocol no longer equipped with the
largest element in the previous one. This element was use to check whether or
not each bit of number num to which the token is associated to equals to the
bit of the number num′ to which num is compared to. But this check is done by
(fi)i in our scheme. Although this checking mechanism is quite different from
the previous one, the difference in the proofs of indistinguishability depends only
on the structure of ciphertexts. Hence, our proof is very similar to that in [18].

The proof is straightforward. We replace some of outputs of hash functions
with random variable and then simply prove indistinguishability of them.

Proof. The proof is by contraposition. Suppose that there exists an adversary A∗

such that AdvκC,A∗ is not negligible with respect to κ in the weak distinguishing
game. Then, we show that Hash is distinguishable from the random function,
which is against the assumption that they are pseudorandom function. In par-
ticular, we consider a sequence of games by challengers C, C1, and C2 and then
prove the theorem by the hybrid argument.

From two lemmas 1 and 2 and the hybrid argument, |AdvκC,A∗ − AdvκC2,A∗ | is
negligible in κ as long as Hash is a pseudorandom function. Since AdvκC2,A∗ = 0
from Lemma 3, AdvκC,A∗ is negligible in κ. Hence, the theorem is proved.

Definition 7. Challenger C1 is the same as C in Definition 2 except the fol-
lowing:

– At the beginning of the game, C1 discards mkey.
– C1 prepares a table for each of hash functions HashA(mkey, ·) and

HashB(mkey, ·) and simulate them. That is, whenever C1 simulates output =
HashA(mkey, input) or output = HashB(mkey, input) for some input, C1

let output be output′ if an entry (input, output′) is in the correspond-
ing table. Otherwise, C1 randomly chooses output ∈ {0, 1}κ and writes
(input, output) into that table.

Lemma 1. Assume that HashA and HashB are a pseudorandom function. For
every polynomial time A∗, |AdvκC1,A∗ − AdvκC,A∗ | is negligible in κ.
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Proof. Since mkey is used for only input to hash functions and is never revealed
to A∗, the lemma follows from the indistinguishability of pseudorandom function.

Definition 8. Challenger C2 is the same as C1 except the following:

– Let (d̄1, . . . , d̄n) and (d̂1, . . . , d̂n) be (d̄1, . . . , d̄n) = Der(param,mkey, num∗
0),

(d̂1, . . . , d̂n) = Der(param,mkey, num∗
1). Here, d̄i = d̂i for � ≤ i ≤ n where

� is such that ((β�, . . . , βn−1) = (γ�, . . . , γn−1)) ∧ (β�−1 < γ�−1) . for
num∗

0 = (β0, β1, . . . , βn−1), num
∗
1 = (γ0, γ1, . . . , γn−1). C2 prepares a table

and simulate hash function HashC(d̄i, ·) and HashC(d̂i, ·) for all 0 ≤ i ≤ �.
The simulation is as is the before.

Lemma 2. Assume that HashC is a pseudorandom function. For every polyno-
mial time A∗, |AdvκC2,A∗ − AdvκC1,A∗ | is negligible in κ.

Proof. Suppose that the adversary queries (cmprkey, num) for
num = (α0, . . . , αn−1). If αi = βi for � ≤ i < n, then such a query is not allowed
in the weak distinguishing game by definition. Hence, this is not the case we
consider. Therefore, there exists j such that αj �= βj and that � + 1 ≤ j < n. In

such case, none of d̄0, . . . , d̄�, d̂0, . . . , d̂� is revealed to the adversary. Since, the
values d̄0, . . . , d̄�, d̂0, . . . , d̂� are randomly chosen and unrevealed, the hardness of
distinguishing random values with outputs of HashC(d̄i, ·) and HashC(d̂i, ·) for
0 ≤ i ≤ � follows from the indistinguishability of pseudorandom function.

Lemma 3. For every polynomial time A∗, AdvκC2,A∗ = 0.

Proof. The lemma follows from the fact that ciph∗ does not depend on b, which
can be shown as follows. The difference between ciphertexts of num∗

0 and of
num∗

1 occur only in (fi)i for i = 0, . . . , � − 1. Since each HashC(d̄i, ·) (we assume
b = 0 w.l.g.) for i = 0, . . . , � is randomly chosen, every fi for i = 0, . . . , �−1 does
not depend on b. Therefore, the lemma is proved.

6.2 Performance

We compare complexity of our scheme and the previous comparable encryption
in Table 2. Here, n is the maximum length of numbers, Hash is the cost of
computing hash function which we consider the dominant cost, and � is such that
(β�, . . . , βn−1) = (γ�, . . . , γn−1) and β�−1 < γ�−1 for num∗

0 = (β0, β1, . . . , βn−1),
num∗

1 = (γ0, γ1, . . . , γn−1).
Our scheme provide very short ciphertext length and smaller encryption cost

compared to those of the previous scheme. But our scheme requires twice cost
for comparison. Other complexities are the same.

When our scheme is applied, it is natural to attach ciphertexts so that they
can be decrypted when necessary. For these ciphertexts to be both probabilistic
and short, we can use format preserving encryptions such as [7] or [27] that
maps short messages to short ciphertexts of the same length with randomly
chosen initial vector. If this initial vector is reused as the initial vector of our
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Table 2. Comparison

Previous Scheme [18] Our Scheme

ciphertext(text) length (bits) (n+ 1)κ+ 2n κ+ (ln 3/ ln 2)n

token length (bits) (n+ 1)κ (n+ 1)κ

encryption cost (4n+ 1) · Hash 3n · Hash
token generation cost (n+ 1) · Hash (n+ 1) · Hash
comparison cost (n− �+ 2) · Hash 2(n− �+ 2) · Hash

scheme, ciphertexts length of our scheme is shortened to be only (ln 3/ ln 2)n.
This is very short.

We have implemented core mechanism. For hash function, we employed AES
rather than SHA1 etc. so that AES-NI instructions can be used for higher per-
formance. The performance was evaluated with Intel Core i7 1.9GHz in 1 core
by running 10,000 comparisons sequentially. The average number of cycles re-
quired for one comparison was roughly 8000, which means 250,000 comparisons
are possible in one second.

7 Summary and Open Problem

We greatly improved the length of the comparable encryption in [18] which sat-
isfies the same security level as the original scheme. With this technology as well
as searchable encryption in [23], the adjustable join in [31], and homomorphic
encryption in [29], a meaningful encrypted relational databases can be provided.

We consider the effect on privacy of the weaker notion needs to be analyzed
more. What we consider most important is the comparison of leaked informa-
tion between two encrypted databases, one uses comparable encryption with the
weaker notion and the other with the ideal notion. The comparison is best if
data and queries are distributed as those of real.
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A Intuition for Weaker Security Requirement

Indistinguishability and weak indistinguishability are different only in that
queries of type cmprkey, num are more restricted in weak distinguishing game.
The Fig. 1 illustrates the difference between two notions in the case num∗

0 = 9
and num∗

1 = 13. The figure consists of nodes of a tree expressed by dots. The left-
most dot is the root and rightmost dots are leaves. Other dots are internal nodes.
Each path from the root to a leaf expresses a number in [0, 25). Each path con-
sists of five edge and each edge represents a bit. An upward edge represents 1 and
downward one represents 0. Hence 13, which is (b4, b3, b2, b1, b0) = (0, 1, 1, 0, 1), is
expressed as a path that advances from the root to a leaf by choosing directions
(down,up,up,down,up) at nodes on the path.
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In the case of Fig. 1, the adversary are not allowed to query (cmprkey, num) for
m∗

0 = 9 ≤ num ≤ 13 = m∗
1 in distinguishing game. But in weak distinguishing

game, the adversary may not allowed to query (cmprkey, num) for 8 ≤ num ≤ 15.
Note that these numbers 8, 9, 13, 15 share the same node pointed indicated by
“branch point(9, 13)” in the figure. Here, 8 and 15 are the minimum and the
maximum number that share the node where 9 and 13 branch away. The weak
distinguishing game forbids numbers in wider range to be queried. If we consider
how much this range is widened is how much schemes get weaker, the range
13 − 9 + 1 = 5 is widened to 15 − 8 + 1 = 8 by the ratio of 8/5 = 1.6 in this
example. The expected value of this ratio is estimated as smaller than 2.8 in [18].
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Abstract. Data usage control provides mechanisms for data owners to
remain in control over how their data is used after it is has been shared.
Many data usage policies can only be enforced on a global scale, as they
refer to data usage events happening within multiple distributed sys-
tems: ‘not more than three employees may ever read this document’, or
‘no copy of this document may be modified after it has been archived’.
While such global policies can be enforced by a centralized enforcement
infrastructure that observes all data usage events in all relevant systems,
such a strategy involves heavy communication. We show how the overall
coordination overhead can be reduced by deploying a decentralized en-
forcement infrastructure. Our contributions are: (i) a formal distributed
data usage control system model; (ii) formal methods for identifying all
systems relevant for evaluating a given policy; (iii) identification of sit-
uations in which no coordination between systems is necessary without
compromising policy enforcement; (iv) proofs of correctness of (ii, iii).

1 Introduction

Consider a company’s financial department in which the CFO and her employees
collaborate via email. Business reports, contracts, and transactional information
are exchanged via email and edited by multiple employees. Employees also use
email to collaborate on documents that are not considered sensitive. However,
due to the other documents’ sensitivity and their decentral sharing, the company
deploys usage control [1,2] technologies on the employees’ devices with the goal
to enforce policies such as ‘document D1 must not be edited’ (P1), or ‘there
may be at most one ongoing edit process for document D2 at each point in time
and no editing is allowed after the CFO archived the final version’ (P2). What
is usually meant by such policies is that not only one particular file pertaining to
a document (e.g. D1) must be protected, but all copies and derivations of it: If
the document is copied to another file, loaded into a Java application or sent via
the network, all of these representations of D1 (file, java object, network packet)
must be protected [3, 4]. We refer to policies P1 and P2 throughout this paper.

Once representations of documents D1 and D2 have been emailed to multiple
employees and exist in different systems, each of those systems is in charge of
enforcing the corresponding policies P1 and P2 [5]. Intuitively, policy P1 can be
enforced locally by denying all edit requests for each local copy of D1. Policy
P2, in contrast, refers to events happening within multiple systems and intro-
duces dependencies between them. Thus, enforcement of policy P2 necessitates

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 353–369, 2014.
c© Springer International Publishing Switzerland 2014
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coordination between all systems potentially capable of editing and archiving
representations of document D2.

Within one single system, usage control enforcement infrastructures are com-
monly implemented in correspondence with the XACML standard architec-
ture [6]: System-layer specific policy enforcement points (PEPs, e.g. for MS
Windows [7], OpenBSD/Linux [4], Mozilla Thunderbird [5]) intercept data usage
events (e.g., save, edit, send, archive) and signal them to the local policy decision
point (PDP) [3, 8, 9]. The PDP evaluates each event against the deployed data
usage policies and signals its decision back to the corresponding PEP, which will
then enforce it. For taking this decision, the PDP might need additional infor-
mation about the system’s state, such as subject and object attributes, or the
data’s current representations—also called the data flow state. Such information
is collected by the policy information point (PIP), which is queried by the PDP.

As indicated earlier, policy P1 can be enforced locally: The system’s PEPs
signal all edit events to their local PDP, which in turn queries the local PIP to
learn whether a particular edit event takes place on a representation of document
D1. If so, the PDP’s decision is to disallow the event.

Policy P2, however, can not be enforced by local PDPs/PIPs only: Assume
three representations of document D2 on three different systems. Whenever an
employee requests to edit a representation of D2, this edit event must only be
allowed if no other employee is currently editing a representation of D2. Similarly,
after the event archive has been performed by the CFO on a representation of
D2, all future editing requests must be disallowed. Because the representations
of D2 are decentrally shared and because edit and archive events can happen on
any of those systems, purely local PDPs are generally unable to decide about this
policy. Additional information is needed, e.g. ‘how many employees are currently
editing D2?’, and ‘has D2 been archived in the past?’.

Intuitively, policy P2, or, more generally, any policy referring to distributed
data and data usage events, can be enforced by a centralized enforcement in-
frastructure, i.e. a single global PDP/PIP (Fig. 1). However, such a centralized
infrastructure imposes the problem of heavy communication overhead, as all
data usage events from all relevant systems must be signalled to the central
PDP/PIP. Such an approach is particularly inappropriate if employees also work
on unprotected documents. Moreover, if employees work while travelling, each
event must be sent to the central PDP/PIP via a mobile internet connection.
This is likely to make the work cumbersome due to large communication delays

System

PEP
PEP

PEP
PEP
PEPPEP PEP

PDP
/PIP

Fig. 1. Naive centralized enforcement.

PEP PEP
Subsystem 2

PEP
PEP
PEP

PEP
PEP
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Subsystem 3
System

Coordination
Mechanisms

PDP/PIP

PDP
/PIP

PDP
/PIP

Fig. 2. Decentralized variant (§3-4)
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Decentral coordination
or central PDP/PIP

PEP Alice PDP/PIP Alice
representations of D1: {F1}
representations of D2: {F2}

PDP/PIP CFO PEP CFO

edit(F1)?
deny

edit(F2)?
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edit(D2)?
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D2 edit
count: 1

edit(F3)?
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edit(D2)?

Denied because
of ongoing editedit(F2)!

D2 edit
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From now on all editing of D2 must always be denied according to P2.
No more coordination via central PDP/PIP is needed upon edit requests.edit(F2)?

deny
edit(F3)?
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D2 edit
count: 0

Time

1

2

3

4

5

Fig. 3. Enforcement of policies P1 and P2 given the event trace of Table 1

and the fact that PEPs usually block system execution upon each intercepted
event until the PDP’s decision is available [7, 10, 11].

Our goal is to improve on this situation by reducing the amount of commu-
nication needed whenever global policies of the kind of P2 ought to be enforced.

Table 1. Event trace

Time Alice CFO
1 edit(F1)
2 edit(F2)
3 edit(F3)
4 archive(F3)
5 edit(F2) edit(F3)

Our solution is an enforcement infrastruc-
ture that is inherently distributed. It deploys
a local PDP/PIP on each site, e.g., a physi-
cal device or virtual machine (Fig. 2). PEPs sig-
nal events to these local PDPs/PIPs using fast
inter process communication. While the local
components can independently (i.e. without co-
ordination with other PDPs/PIPs) decide P1,
some coordination with other PDPs/PIPs is still
needed for the enforcement of P2. Fig. 3 depicts
the advantages of our proposed solution when en-
forcing P1 and P2, given the trace of events in Table 1; and assuming F1 to be a
representation of document D1, and F2 and F3 representations of document D2.
Dash-dotted arrows ( ) indicate expensive cross-system communication that
is needed in a centralized enforcement infrastructure but not in our approach.
Dotted arrows ( ) indicate communication that is introduced by our solution.
Question marks (?) indicate decision requests from PEPs to PDPs if intended
events are intercepted. Exclamation marks (!) indicate to a PDP that an event
has actually happened.

This work aims at minimizing the communication overhead for such a decen-
tralized enforcement infrastructure by providing the following contributions:

1. We provide a formal distributed data usage control system model (§3).
2. We provide formal methods to identify all systems potentially relevant for

evaluating a given data usage policy at any point in time (§4.1).
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3. We provide insights in which situations communication between PDPs and
PIPs can be omitted (§4.2) without compromising policy enforcement.

4. We show the correctness of 2. and 3. in Appendices A and B.

2 A Formal Usage Control Model

We recap a formal model for specifying and enforcing usage control policies
[3,4,12], where policies define constraints over system states and traces of events.
Before defining the syntax and semantics of policies (§2.3), we describe its foun-
dations, i.e. system events (§2.1) and system states (§2.2).

2.1 System Events and System Runs

Events E are defined by a name (set EName) and a set of parameters, which
are, in turn, defined by a name (set PName) and a value (set PValue): E ⊆
EName × P(PName × PValue). For an event e ∈ E , let e.n denote the event’s
name and e.p the set of its parameters. Furthermore, let obj ∈ PName denote
an event’s primary object whose value can be accessed using notation e.obj .

Event refinement. When specifying policies, it is not useful to define all
possible event parameters. Instead, one would like to specify only relevant pa-
rameters, quantifying over all unmentioned ones. In our example, it is irrelevant
which particular user edits document D2, but not the fact that D2 is edited.
Hence, refines ⊆ E × E defines a refinement relation on events: event e1 refines
event e2 iff they have the same event name and the parameters of e1 are a super-
set of the parameters of e2: ∀e1, e2 ∈ E : e1 refines e2 ⇔ e1.n = e2.n∧e1.p ⊇ e2.p.

System events S, i.e. events intercepted by PEPs at runtime in a real sys-
tem, are always maximally refined, i.e. all parameters are determined. Hence,
S = E \ {e ∈ E | ∃e′ ∈ E : e′ �= e ∧ e′ refines e}.

System runs are modeled as traces, mapping each abstract moment in time
to the set of system events happening at that time: Trace : N → P(S).

2.2 System States

Since the data to be protected may exist in multiple representations (e.g., doc-
ument D1 might be represented as a file, a java object, or a network packet),
a system’s state is defined in terms of the distribution of data within that sys-
tem [3,4]. Hence, we also refer to it as the system’s data flow state. We call the
data’s representations containers and C the global set of containers. The global
set of data to be protected by usage control policies is denoted D, and C ∩D = ∅.

As motivated earlier, data usage policies are specified in terms of data, imply-
ing that the imposed restrictions also apply to all copies and derivations. Thus,
only elements v ∈ D are possible values for an event’s obj parameter when spec-
ifying policies. In contrast, system events e ∈ S operate on containers, which is
why elements v ∈ C are the only possible values for a system event’s obj param-
eter. Taken together, elements v ∈ C ∪ D are possible values for an event’s obj
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parameter, (C ∪ D) ⊆ PValue. For the remainder of this paper we constrain the
set of possible values for event parameter obj to C ∪ D ∪ {ε}, reflecting the fact
that an event operates on a container, a data, or neither of the two, respectively.

System states Σ = C → P(D) map containers to data potentially stored in
them. In our example, σ ∈ Σ records which files, emails, and editing processes are
representations of documents D1 and D2. Transition relation R describes how
the execution of system events S changes the system’s state: R ⊆ Σ×P(S) → Σ.

Given a system trace t ∈ Trace and a point in time i ∈ N, the system’s state
is computed as σi

t = R(σi−1
t , t(i − 1)); σ0

t = ∅ represents the trace’s initial state.
Instantiations of this generic data flow model, in particular semantics of R,

have been described for various system layers such as MS Windows [7], Open-
BSD/Linux [4], X11 [13], Thunderbird [5], as well as distributed systems [10].

Event Refinement in the Presence of States. Extending the earlier event
refinement, refinesΣ ⊆ (S × Σ)×E describes the refinement between two events
in the presence of a given system state. The reason is that policies (§2.3) are
specified in terms of data (∃e2 ∈ E , d ∈ D : e2.obj = d), while system events
operate on containers (∃e1 ∈ S, c ∈ C : e1.obj = c). Hence, we need to evaluate
the system’s current state σ ∈ Σ in order to decide whether an event refines
another. We say that (e1, σ) refines e2 iff d ∈ σ(c) and if the parameters of e1
are a superset of the parameters of e2 when ignoring the obj parameter:

∀e1 ∈ S, e2 ∈ E , σ ∈ Σ : (e1, σ) refinesΣ e2 ⇐⇒ ∃c ∈ C, d ∈ D : e1.n = e2.n
∧ e1.obj = c ∧ e2.obj = d ∧ d ∈ σ(c) ∧ e1.p\{(obj , c)} ⊇ e2.p\{(obj , d)}

For instance, consider a state σ ∈ Σ in which file F1 is a representation of
document D1. Then ((edit , {(obj ,F1 ), . . .}), σ) refinesΣ (edit , {(obj ,D1 )}).

2.3 Data Usage Policies

Building upon previous work [3, 14–16], we assume technical policies to be ex-
pressed as event-condition-action (ECA) rules: whenever a triggering Event is
detected and if it makes the Condition true, then (additional) Actions might
be performed. Because the policies’ conditions are formulated in terms of past
temporal logics, this work focuses on the evaluation of such formulas. Based on
the above foundations and [3], the syntax of ECA Conditions (Φ) is defined as:

Ψ = false | E
ΦΣ = isNotIn(D, P(C)) | isCombined(D,D,P(C)) | isMaxIn(D,N,P(C))
Φ = (Φ) | Ψ | ΦΣ | Φ and Φ | not(Φ) | Φ since Φ | Φ before N | repmin(N,N, E)

Ψ is self-explanatory. ΦΣdefines state-based operators for constraints on the
system’s data flow state: isNotIn(d, C) is true iff data d is not in any of the
containers C; isCombined (d1, d2, C) is true iff there is at least one container
in C that contains both data d1 and d2; isMaxIn(d, m, C) is true iff data d is
contained in at most m containers in C. For Φ, the semantics of and and not
are intuitive; α since β is true iff β was true some time earlier and α was true
ever since, or if α was always true; α before j is true iff α was true exactly
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j timesteps ago; repmin(j, m, e) is true iff event e happened at least m times
in the last j timesteps. Further shortcuts include those for true and or ; plus
repmax (j, m, e) ≡ not(repmin(j, m + 1, e)); replim(j, m, n, e) ≡ repmin(j, m, e)
and repmax (j, n, e). The formal semantics of policies Φ are:

∀t ∈ Trace, i ∈ N, ϕ ∈ Φ • (t, i) |= ϕ ⇐⇒ (ϕ �= false)∧
∃e ∈ E , e′ ∈ t(i) • (ϕ = e ∧ (e′, σi

t) refinesΣ e)
∨∃d ∈ D, C ⊆ C • (ϕ = isNotIn(d, C) ∧ ∀c ∈ C • d �∈ σi

t(c))
∨∃d1, d2 ∈ D, C ⊆ C • (ϕ = isCombined(d1, d2, C) ∧ ∃c ∈ C • {d1, d2} ⊆ σi

t(c))
∨∃d ∈ D, m ∈ N, C ⊆ C • (ϕ = isMaxIn(d, m, C) ∧ |{c ∈ C|d ∈ σi

t(c)}| ≤ m)
∨∃α, β ∈ Φ • ((ϕ = not(α) ∧ ¬((t, i) |= α))

∨(ϕ = α and β ∧ (t, i) |= α ∧ (t, i) |= β)
∨(ϕ = α or β ∧ (t, i) |= α ∨ (t, i) |= β)
∨(ϕ = α since β ∧ ∃j ∈ [0, i] • ((t, j) |= β ∧ ∀k ∈ (j, i] • (t, k) |= α)

∨∀k ∈ [0, i] • (t, k) |= α))
∨∃α ∈ Φ, j ∈ N • (ϕ = α before j ∧ (t, i − j) |= α)
∨∃j, m ∈ N, e ∈ E • (ϕ = repmin(j, m, e)

∧m ≤
∑j−1

k=0 |{e′ ∈ t(i − k)|(e′, σi−k
t ) refinesΣ e}|)

Policy enforcement is usually performed as sketched in §1 [3, 8, 9, 11, 13, 17].
With CEditProc denoting the set of all processes with the capability to edit doc-
uments [4], one way of expressing our example policies as ECA rules is:

P1 Event: (edit , {(obj ,D1 )})
Condition: ϕ = true

Action: inhibit

P2 Event: (edit , {(obj ,D2 )})
Condition: ϕ = not(isMaxIn(D2 , 0, CEditProc) and

not((archive, {(obj ,D2 ), (user ,CFO)})) since false)

Action: inhibit

3 A Distributed System Model

The model in §2 suggests a monolithic view on policy enforcement: at runtime
there is one single global trace and system state at any point in time. Techni-
cally, one central PDP/PIP globally observes the entire system. As this is likely
impractical in real-world distributed scenarios, we propose an extended model
in which multiple PDPs and PIPs observe different parts of the global system.

3.1 Individual and Concurrently Executing Subsystems

Adapting to the terms used in §2, we refer to the distributed system as a whole as
the system, which is, in turn, composed of a set of subsystems. In our terminology,
each subsystem is a set of possibly distributed system layers whose PEPs share
one single PDP. More technically, a subsystem may be an operating system
instance, a physical or virtual machine, a set of applications, or a set of physical
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or virtual machines. A subsystem thus contains exactly one PDP/PIP and at
least one PEP (Fig. 2). We assume each subsystem to be assigned a unique
identifier s ∈ N, which could map to a MAC address or UUID in practice.

For each subsystem s ∈ N we define Cs ⊆ C as its unique set of containers,
Ss ⊆ S as its unique set of system events1, Σs : Cs → P(D) as its set of states,
and Traces : N → P(Ss) as its set of all possible runs, Traces ⊆ Trace. Because
we will ‘overlay’ traces of different subsystems shortly, we require each system
event e ∈ Ss to carry parameter sub with value s:

∀s, s′ ∈ N, e ∈ Ss : (sub, s) ∈ e.p ∧ s �= s′ =⇒ Ss ∩ Ss′ = ∅ ∧ Cs ∩ Cs′ = ∅.2

Containers and system events for a set of subsystems M ⊆ N are defined by
∀M ⊆ N : SM =

⋃
s∈M Ss ∧ CM =

⋃
s∈M Cs.

Concurrent System Runs. In practice, subsystems run in parallel and pro-
duce independent system traces: Each subsystem’s PDP observes a trace of sys-
tem events, ts ∈ Traces. Assuming sufficiently synchronized system clocks [18],
it is the union of these local observations that one single global PDP would
observe. When reasoning about this global behavior, the behavior of individ-
ual subsystems or of sets of subsystems, we will use notations tτs and tτM , in
order to refer to the trace of a particular subsystem s ∈ N or set of subsys-
tems M ⊆ N given a tuple τ of concurrently executing traces. The intuition is
that tτM overlays the concurrently executing traces of all subsystems m ∈ M by
unifying all events happening in all subsystems m ∈ M at each point in time
i ∈ N . Let

∏
denote the Cartesian product. Then τ ∈

∏
n∈N

Tracen is a tuple
of traces of all subsystems, and the m-th element of τ , i.e. τ.m, is a trace of
subsystem m ∈ N. The overlay of a set of traces of subsystems M ⊆ N, tτM , is
∀τ ∈

∏
n∈N

Tracen, i, s ∈ N, M ⊆ N : tτs = τ.s ∧ tτM (i) =
⋃

m∈M (τ.m)(i) .
In the following, we will mostly talk about sets of subsystems M ⊆ N. The

same considerations apply to the single subsystems s ∈ N by letting M = {s}.

3.2 Policy Projections

When considering a set of subsystems M ⊆ N, it is generally not possible to con-
clusively evaluate a given policy ϕ ∈ Φ, since evaluation of ϕ might depend on
information unavailable within M . In our example (Fig. 3, Table 1), Alice’s PDP
cannot decide about event edit(F2) at time 2, since another employee might al-
ready be editing D2. However, Alice’s PDP can evaluate a projection of formula ϕ
of policy P2 by hiding parts that refer to other subsystems: Letting CA denote all
containers within Alice’s subsystem, subformula isMaxIn(D2 , 0, CEditProc ∩ CA)
can be evaluated by Alice’s PDP. We will make use of these policy projections

1 Events belonging to multiple subsystems (such as transfer(data,from,to)) are at-
tributed to the initiating one.

2 Parameter sub makes us redefine relations refines and refinesΣ , as this parameter
must not influence event refinement: ∀e1, e2 ∈ E , s, s′ ∈ N : e1 refines e2 ⇔ e1.n =
e2.n∧e1.p\{(sub , s)} ⊇ e2.p\{(sub, s′)}. We refrain from formally redefining refinesΣ .
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in §4.2 with the goal to omit unnecessary coordination between subsystems. In
general, the projection ϕM ∈ Φ of ϕ ∈ Φ for subsystems M is defined as:

∀ϕ ∈ Φ, M ⊆ N, ∃ϕM ∈ Φ : (ϕ = false ∧ ϕM = false)
∨(∃ α, β ∈ Φ • (ϕ = α and β ∧ ϕM = αM and βM )

∨(ϕ = α or β ∧ ϕM = αM or βM )
∨(ϕ = α since β ∧ ϕM = αM since βM )
∨(ϕ = not(α) ∧ ϕM = not(αM ))

∨(∃ e ∈ E • (ϕ = e ∧ ϕM = e))
∨(∃ d1, d2 ∈ D, C ⊆ C • ϕ = isCombined (d1, d2, C)

∧ϕM = isCombined (d1, d2, C ∩ CM ))
∨(∃ d ∈ D, C ⊆ C • ϕ = isNotIn(d, C) ∧ ϕM = isNotIn(d, C ∩ CM ))
∨(∃ d ∈ D, m ∈ N, C ⊆ C • ϕ = isMaxIn(d, m, C)

∧ ϕM = isMaxIn(d, m, C ∩ CM ))
∨(∃ α ∈ Φ, j ∈ N • ϕ = α before j ∧ ϕM = αM before j)
∨(∃ j, m ∈ N, e ∈ E • ϕ = repmin(j, m, e) ∧ ϕM = repmin(j, m, e))

4 Coordinating Subsystems

Deploying one PDP/PIP per subsystem necessitates their coordination for the
enforcement of certain policies: a PDP’s decision might depend on past decisions
and observations of other PDPs and PIPs, because policies might refer to events
or system states of multiple subsystems. For enforcing policy P2, all subsystems
(1) capable of editing or archiving documents and (2) having a representation of
D2 stored locally must generally coordinate their decisions and data flow states if
a representation of D2 is about to be edited. While naively each PDP/PIP could
disclose all of its knowledge to all other PDPs/PIPs or to one central PDP/PIP,
we aim at minimizing this coordination overhead. For this, we approximate the
set of subsystems relevant for evaluating a formula ϕ ∈ Φ (§4.1), and analyze in
which cases coordination between PDPs/PIPs can safely be omitted (§4.2).

4.1 Identifying Subsystems Relevant for Evaluating Formulas

Our goal is to approximate the subsystems relevant for evaluating ϕ ∈ Φ at time
i ∈ N, given the tuple of concurrently executing traces τ ∈

∏
n∈N

Tracen, by
function sys(ϕ, i, τ). In particular, if |sys(ϕ, i, τ)| ≤ 1, then no coordination is
needed for evaluation of ϕ. We start by defining three auxiliary functions:

(1) awareC : P(C) → P(N) returns for a given set of containers the set of
subsystems that are aware of at least one of the given containers:

∀C ⊆ C : awareC (C) = {s ∈ N | Cs ∩ C �= ∅}

(2) awareD : P(D) × N ×
∏

Trace → P(N) returns for a given set of data
items, a point in time, and a tuple of executing traces the set of subsystems in
which there exists a container that contains at least one of those data items:

∀D ⊆ D, i ∈ N, τ ∈
∏

n∈N
Tracen :

awareD(D, i, τ) = {s ∈ N | ∃c ∈ Cs : D ∩ σi
τ.s(c) �= ∅}
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(3) mayHappen : E × N ×
∏

Trace → P(N) returns for an event e ∈ E , a
point in time, and a tuple of executing traces the set of subsystems in which an
event refining e might happen. This set contains all subsystems that are able to
perform events with name e.n and that are ‘aware of’ the data addressed by e:

∀e ∈ E , i ∈ N, τ ∈
∏

n∈N
Tracen : mayHappen(e, i, τ) =

{s ∈ N | ∃e′ ∈ Ss : e.n = e′.n ∧ ∃d ∈ D • e.obj = d ∧ s ∈ awareD({d}, i, τ)}

sys(ϕ, i, τ) then returns all subsystems potentially relevant for evaluating ϕ:

∀ϕ ∈ Φ ∪ ΦΣ ∪ Ψ, i ∈ N, τ ∈
∏

n∈N
Tracen :

sys(ϕ, i, τ ) = {s ∈ Y | (ϕ = false ∧ Y = {})
∨(∃ α, β ∈ Φ ∪ ΦΣ ∪ Ψ • ((ϕ = α and β ∨ ϕ = α or β)

∧Y = sys(α, i, τ ) ∪ sys(β, i, τ ))

∨(ϕ = α since β ∧ Y =
⋃i

j=0(sys(α, j, τ ) ∪ sys(β, j, τ ))))

∨(∃ α ∈ Φ ∪ ΦΣ ∪ Ψ • ϕ = not(α) ∧ Y = sys(α, i, τ ))
∨(∃ e ∈ E • ϕ = e ∧ Y = mayHappen(e, i, τ ))
∨(∃ d1, d2 ∈ D, C ⊆ C • ϕ = isCombined(d1, d2, C)

∧Y = awareD({d1}, i, τ ) ∩ awareD({d2}, i, τ ) ∩ awareC (C))
∨(∃ d ∈ D,m ∈ N, C ⊆ C • (ϕ = isNotIn(d,C) ∨ ϕ = isMaxIn(d,m,C))

∧Y = awareD({d}, i, τ ) ∩ awareC (C))

∨(∃ j,m ∈ N, e ∈ E • ϕ = repmin(j,m, e) ∧ Y =
⋃j−1

k=0 mayHappen(e, i− k, τ ))

∨(∃ α ∈ Φ ∪ ΦΣ ∪ Ψ, j ∈ N • ϕ = α before j ∧ Y = sys(α, i− j, τ ))}

We claim that subsystems sys(ϕ, i, τ) are sufficient to evaluate ϕ at time i,
given executing traces τ . Subsystems N\sys(ϕ, i, τ) do not influence evaluation
of ϕ, and no coordination is needed if |sys(ϕ, i, τ)| ≤ 1. We provide proofs of
correctness in Appendix A. We will refer to tτsys(ϕ,i,τ) as tτ

N
, indicating that the

investigated trace is equivalent to what a single global PDP would have observed.
Considering example policy P1 (ϕ = true), sys(ϕ, i, τ) returns the empty

set, matching the intuition that P1 can always be evaluated locally. Considering
policy P2, sys(ϕ, i, τ) returns both Alice’s and the CFO’s subsystem, since repre-
sentations of document D2 exist in both subsystems and both subsystems exhibit
editing capabilities. Hence, both subsystems might influence policy evaluation.

4.2 Omitting Unnecessary Coordination

While in general coordination between subsystems is needed if an ECA mecha-
nism’s triggering event is observed and |sys(ϕ, i, τ)| > 1, there are situations in
which no coordination is required. We have seen that sys(ϕ, i, τ) returns both
Alice’s and the CFO’s subsystems for policy P2. However, at timestep 5 no co-
ordination takes place (cf. Fig. 3). This is because the CFO archived a represen-
tation of D2, in which case all further edit requests must be denied. Once Alice’s
PDP learns that this archiving event has happened, all further editing request
can immediately be denied by Alice’s PDP without any further coordination.

Given τ ∈
∏

n∈N
Tracen and a policy ϕ ∈ Φ, there are special situations in

which we can deduce a formula ϕ′ ∈ Φ such that (i) trace tτM satisfies ϕ′ at
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time i ∈ N , and (ii) this local satisfaction of ϕ′ implies global satisfaction of ϕ,
formally: (tτM , i) |= ϕ′ =⇒ (tτ

N
, i) |= ϕ. For example, a part of the condition of

policy P2 is not(isMaxIn(D2 , 0, CEditProc)) when converting P2’s condition into
disjunctive normal form (DNF). If Alice is already editing a representation of
D2, any further concurrent edit requests can be denied without coordination.

We formalize this intuition by predicate S ⊆
∏

Tracen × P(N) × N × Φ that
holds true iff for the tuple of executing traces τ ∈

∏
n∈N

Trace and a set of
subsystems M ⊆ N, trace tτM satisfies ϕM ∈ Φ at time i ∈ N ((tτM , i) |= ϕM )
and if this implies global satisfaction of formula ϕ ∈ Φ at the same point in time
((tτ

N
, i) |= ϕ). Similarly, the same argument holds for the violation of formula ϕ,

which can intuitively be expressed by negating formula ϕ:

∀τ ∈
∏

n∈N
Tracen, M ⊆ N, i ∈ N, ϕ ∈ Φ :

(tτM , i) |= ϕM ∧ S(τ, M, i, ϕ) =⇒ (tτ
N
, i) |= ϕ

∧ (tτM , i) �|= ϕM ∧ S(τ, M, i, ¬ϕ) =⇒ (tτ
N
, i) �|= ϕ.

Demanding ϕ ∈ Φ to be given in DNF, we define S ⊆
∏

Trace × P(N) × N × Φ
as follows. Proofs of correctness are provided in Appendix B.

∀τ ∈
∏

n∈N
Tracen, M ⊆ N, i ∈ N, ϕ ∈ Φ ∪ ΦΣ ∪ Ψ : S(τ, M, i, ϕ)

⇐⇒ ϕ = true ∨ sys(ϕ, i, τ) ⊆ M
∨(∃ e ∈ E , j, m ∈ N • (ϕ = e ∨ ϕ = repmin(j, m, e)))
∨(∃ d1, d2 ∈ D, C ⊆ C • ϕ = isCombined(d1, d2, C))
∨(∃ d ∈ D, m ∈ N, C ⊆ C • (ϕ = ¬isNotIn(d, C) ∨ ϕ = ¬isMaxIn(d, m, C)))
∨(∃ α ∈ Φ ∪ ΦΣ ∪ Ψ, j ∈ N • (ϕ = α before j ∧ S(τ, M, i − j, α))

∨(ϕ = ¬(α before j) ∧ S(τ, M, i − j, ¬α)))
∨(∃ α, β ∈ Φ ∪ ΦΣ ∪ Ψ • (ϕ = α since β

∧(∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ, M, j, β)
∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ, M, k, α)))

∨(∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ, M, k, α)))
∨(ϕ = ¬(α since β)

∧(∀j ∈ [0, i] : ((tτM , j) �|= βM ∧ S(τ, M, j, ¬β)
∨∃k ∈ (j, i] : (tτM , k) �|= αM ∧ S(τ, M, k, ¬α)))

∧(∃k ∈ [0, i] : (tτM , k) �|= αM ∧ S(τ, M, k, ¬α)))
∨(ϕ = α and β ∧ S(τ, M, i, α) ∧ S(τ, M, i, β))
∨(ϕ = α or β ∧ ((tτM , i) |= αM ∧ S(τ, M, i, α)

∨(tτM , i) |= βM ∧ S(τ, M, i, β))))

This formalism allows us to identify situations such as in timesteps 4 and 5 of
our example: After the CFO’s PDP has observed event archive(F3) at time 4,
subformula not((archive , {(obj ,D2 ), (user ,CFO)})) since false will always eval-
uate to false, implying that policy P2’s overall condition ϕ will always evaluate
to true. Consequently, all further edit requests can safely be disallowed by the
CFO’s PDP despite the fact that |sys(ϕ, i, τ)| > 1. Once Alice’s PDP gets in-
formed that archive(D2) happened (Fig. 3, time 4), it is capable of disallowing
any further edit requests (time 5) without coordination. In sum, all further co-
ordination for enforcing policy P2 can be omitted. Because of space limitations,
we do not detail this additional information exchange between PDPs here.
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5 Related Work

Chadwick et al. [9] investigate the coordination of distributed stateless PDPs in
the access control context. To synchronize resource access across time and space,
PDPs synchronize via central ‘coordination objects’ holding the coordination
attributes. Our work is different in that the distributed components are stateful:
even policies of a global scale might be evaluated locally (§4.2). Further, our focus
is on usage control rather than on access control and our contributions might
be implemented in a purely decentralized fashion. Also, our approach enforces
policies on all copies of the protected data rather than on only one instance.

Service Automata [11] realize distributed decisions by delegation: If a local
monitor’s (‘service automaton’ in [11]) knowledge is insufficient for taking a
decision, the decision process is delegated to another local monitor. However, this
delegatee is fixed for any pair of conflicting events, thus effectively being a central
enforcement point for all corresponding policies. Our approach, in contrast, can
be implemented in a pure decentral fashion. As [11] exclusively discusses ‘critical
events’, it remains unclear to which extent Service Automata are able to enforce
policies on all copies and derivations of data across systems.

Basin et al. [19] monitor compliance with data usage policies in distributed
systems in a detective manner: Locally collected logs are merged and a-posteriori
evaluated against data usage policies. While [19] also considers propagation of
data through the system, our solution targets preventive enforcement.

Lazouski et al. [8] allow for continuous usage control enforcement of data
whose copies are distributed. Among policies, also PDP/PIP allocation policies
are embedded into the protected data, and they are used by PEPs to locate
the PDPs/PIPs responsible for taking decisions. Different to our approach, the
responsible PDP is fixed throughout the data’s lifetime and for all its copies

Kelbert et al. [10] enable tracking of usage controlled data across systems, as
well as enforcement of local usage control policies. While distributed PDPs and
PIPs exchange information upon cross-system data flows, policies that are of a
global scale can not be enforced due to missing coordination between PDPs.

Complementary to our work, Janicke et al. [20] perform static analysis of
usage control policies with the goal to identify (in)dependencies between PDPs
(‘Controllers’ in [20]). Their analysis results reveal which concurrent decision
processes do (not) require synchronization via a central PIP.

Bauer et al. [21] monitor LTL formulas in distributed systems. By leveraging
formula rewriting techniques and exchanging rewritten formulas, local monitors
can detect satisfaction or violation. Instead of rewriting formulas, our approach
exchanges additional information between local monitors. Further, we leverage
peculiarities of data usage control policies to minimize communication overhead.

6 Conclusion, Discussion, and Future Work

We have shown how to reduce overall communication overhead when enforcing
global data usage control policies such as “only one employee may be editing
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document D1 at each point in time”. While a naive centralized enforcement
infrastructure would impose heavy communication overhead, we provide a dis-
tributed data usage control model that supports decentral monitoring of multiple
concurrently running systems. Once copies of the protected data, as well as their
corresponding usage policies, have been distributed, enforcement of policies that
refer to data and data usage events within multiple systems, necessitates the co-
ordination of the decentrally deployed enforcement mechanisms (i.e. PDPs and
PIPs). While naively each PDP/PIP could disclose all of its knowledge to all
other PDPs/PIPs, our contributions aim at reducing this communication over-
head. Hence, we provide formal methods to approximate all systems potentially
relevant for evaluating a given policy at each point in time. Subsequently, we can
limit coordination to this set of identified systems for enforcement of the given
policy. Moreover, we provide insights in which situations coordination between
distributed PDPs/PIPs can safely be omitted although the policy to be enforced
is of a global scale. Further, we show the correctness of our formal approaches.

We occasionally omitted details for simplicity’s sake. The literature [3,10,12,
22,23] discusses more complex data flow states, a slightly more expressive policy
language, and the differentiation between intended and actual system events:
While intended events can be intercepted, and consequently denied, before their
execution, actual events can only be observed thereafter. As our intention was
to prevent policy violations, we implicitly assumed events to be intended rather
than actual. However, the considerations in §3 and §4 apply to actual events as
well. We also tacitly assumed policies to be shipped along with the protected
data in case of cross-system data flows. Corresponding mechanisms have been
described in the literature [5, 8, 10, 24].

While we have exemplified our general contributions along a running exam-
ple, the performance of our approach depends on the event traces being observed
(predicate S). While in our example no more coordination is needed starting from
timestep 5, other formulas might necessitate coordination between subsystems
at each point in time. Because of this and because there are usually several ways
to technically implement high-level usage policies, we see our contributions as
a basis for future work that investigates how policies ought to be specified or
transformed to allow for their most efficient enforcement. Along the same lines,
our contributions can serve as a basis for building efficient usage control enforce-
ment infrastructures: Given a set of concrete uses cases, i.e. event traces and
policies, our contributions can help to answer questions such as where to place
PDPs/PIPs in order to minimize communication and performance overhead.

We have not investigated whether the described coordination mechanisms
should be implemented in a centralized or decentralized fashion. Since both is
possible, we plan to implement both approaches and to compare them for several
use cases. Depending on the use case, we expect diverse evaluation results, thus
providing further insights into how an efficient enforcement infrastructure can
be built. While we have an intuitive understanding which information must
be exchanged between PDPs/PIPs (e.g. parts of the data flow state or events
happening), the planned implementation will shed further light on this question.
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A Proofs: Correctness of Function sys

Assuming the formulas to be given in disjunctive normal form (DNF), we show
that function sys as defined in §4.1 is correct in the following sense: For any
tuple of concurrently executing traces τ ∈

∏
n∈N

Tracen, point in time i ∈ N,
formula ϕ ∈ Φ, set of subsystems M = sys(ϕ, i, τ) and N ⊆ N\M it holds that

(tτM , i) |= ϕ ⇐⇒ (tτM∪N , i) |= ϕ.

In other words, the set of subsystems sys(ϕ, i, τ) is sufficient to evaluate ϕ at
time i given τ . Adding any other set of subsystems to the evaluation process
does not change the evaluation’s result. For each of the following proofs,
part a) shows (tτM , i) |= ϕ =⇒ (tτM∪N , i) |= ϕ, while
part b) shows (tτM , i) |= ϕ ⇐= (tτM∪N , i) |= ϕ.

Because subsystems’ states do not overlap (Σs : Cs → P(D) and Cs ∩ Cs′ = ∅
for s �= s′), for any tuple of concurrently executing traces τ ∈

∏
n∈N

Tracen,
any point in time i ∈ N, and any set of subsystems M ⊆ N we can define their
common state as σi

tτM
= {x ∈ (C → P(D)) | ∃m ∈ M : x ∈ σi

tτm
}. It follows that

∀M, N ⊆ N, M ⊆ N : σi
tτM

⊆ σi
tτN

. We will make use of this relation between
states of sets of subsystems throughout the following proofs.
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Proof. For ϕ = e.

a) ∀τ ∈
∏

n∈N
Tracen, i ∈ N, e ∈ E , ϕ = e, M = sys(ϕ, i, τ), N ⊆ N\M :

(tτM , i) |= ϕ
⇐⇒ ∃e′ ∈ tτM (i) : (e′, σi

tM )refinesΣ e
=⇒ ∃e′ ∈ tτM∪N (i) : (e′, σi

tM∪N
)refinesΣ e

⇐⇒ (tτM∪N , i) |= ϕ ��
b) Assume: ∃τ ∈

∏
n∈N

Tracen, i ∈ N, e ∈ E , ϕ = e, M = sys(ϕ, i, τ)
N ⊆ N\M : (tτM∪N , i) |= ϕ ∧ (tτM , i) �|= ϕ

⇐⇒ ∃e′ ∈ tτM∪N (i) : (e′, σi
tM∪N

) refinesΣ e
∧�e′′ ∈ tτM (i) : (e′′, σi

tM ) refinesΣ e
=⇒ ∃e′ ∈ tτN (i) : (e′, σi

tN ) refinesΣ e
=⇒ N ∩ mayHappen(e, i, τ) �= ∅

Since M = sys(e, i, τ) = mayHappen(e, i, τ) and N ⊆ N\M
=⇒ N ∩ M �= ∅ ∧ N ∩ M = ∅. Contradiction. ��

Proof. For ϕ = isCombined(d1, d2, C).

a) ∀τ ∈
∏

n∈N
Tracen, i ∈ N, d1, d2 ∈ D, C ⊆ C, ϕ = isCombined(d1, d2, C),

M = sys(ϕ, i, τ), N ⊆ N\M :
(tτM , i) |= ϕ ⇐⇒ ∃c ∈ C : {d1, d2} ⊆ σi

tτM
(c)

=⇒ ∃c ∈ C : {d1, d2} ⊆ σi
tτM∪N

(c) ⇐⇒ (tτM∪N , i) |= ϕ ��
b) Assume ∃τ ∈

∏
n∈N

Tracen, i ∈ N, d1, d2 ∈ D, C ⊆ C,
ϕ = isCombined(d1, d2, C), M = sys(ϕ, i, τ), N ⊆ N\M :
(tτM∪N , i) |= ϕ ∧ (tτM , i) �|= ϕ

⇐⇒ ∃c ∈ C : {d1, d2} ⊆ σi
tτM∪N

(c) ∧ �c′ ∈ C : {d1, d2} ⊆ σi
tτM

(c′)
=⇒ ∃c ∈ C : {d1, d2} ⊆ σi

tτN
(c) =⇒ ∃c ∈ CN : {d1, d2} ⊆ σi

tτN
(c)

Since N ⊆ N\M and M = sys(isCombined (d1, d2, C), i, τ)
= awareD({d1}, i, τ) ∩ awareD({d2}, i, τ) ∩ awareC (C)

=⇒ M ∩ N = ∅ ∧ M ∩ N �= ∅. Contradiction. ��
We omit proofs for further operators due to space limitations.

B Proofs: Correctness of Predicate S

We show that predicate S as defined in §4.2 is correct in the following sense: For
any tuple of concurrently executing traces τ ∈

∏
n∈N

Tracen, set of subsystems
M ⊆ N, point in time i ∈ N, formula ϕ ∈ Φ, it holds that

(tτM , i) |= ϕM ∧ S(τ, M, i, ϕ) =⇒ (tτ
N
, i) |= ϕ.

Proof. For sys(ϕ, i, τ) ⊆ M .
Follows immediately with the claims and proofs presented in §4.1 and §A.

Proof. For ϕ = e

∀τ ∈
∏

n∈N
Tracen, e ∈ E , M ⊆ N, i ∈ N, ϕ = e :

(tτM , i) |= ϕM ⇐⇒ ∃e′ ∈ tτM (i) : (e′, σi
tτM

) refinesΣ e

=⇒ ∃e′ ∈ tτ
N
(i) : (e′, σi

tτ
N

) refinesΣ e ⇐⇒ (tτ
N
, i) |= ϕ ��



368 F. Kelbert and A. Pretschner

Proof. For ϕ = isCombined(d1, d2, C)

∀τ ∈
∏

n∈N
Tracen, d1, d2 ∈ D, C ⊆ C, M ⊆ N, i ∈ N, ϕ= isCombined(d1, d2, C) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= isCombined (d1, d2, C ∩ CM )
⇐⇒ ∃c ∈ C ∩ CM : {d1, d2} ⊆ σi

tτM
(c) =⇒ ∃c ∈ C : {d1, d2} ⊆ σi

tN
(c)

⇐⇒ (tτ
N
, i) |= isCombined(d1, d2, C) ⇐⇒ (tτ

N
, i) |= ϕ ��

Proof. For ϕ = ¬isNotIn(d, C)

∀τ ∈
∏

n∈N
Tracen, d ∈ D, C ⊆ C, M ⊆ N, i ∈ N, ϕ = ¬isNotIn(d, C) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= ¬isNotIn(d, C ∩ CM )
⇐⇒ ¬(∀c ∈ C ∩ CM : d �∈ σi

tτM
(c)) ⇐⇒ ∃c ∈ C ∩ CM : d ∈ σi

tτM
(c)

=⇒ ∃c ∈ C : d ∈ σi
tτ
N

(c) ⇐⇒ ¬(∀c ∈ C : d �∈ σi
tτ
N

(c))

⇐⇒ (tτ
N
, i) |= ¬isNotIn(d, C) ⇐⇒ (tτ

N
, i) |= ϕ ��

Proof. For ϕ = ¬isMaxIn(d, m, C)

∀τ ∈
∏

n∈N
Tracen, d ∈ D, m ∈ N, C ⊆ C, M ⊆ N, i ∈ N, ϕ=¬isMaxIn(d, m, C) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= ¬isMaxIn(d, m, C ∩ CM )
⇐⇒ |{c ∈ C ∩ CM | d ∈ σi

tτM
(c)}| > m =⇒ |{c ∈ C | d ∈ σi

tN(c)}| > m

⇐⇒ (tτ
N
, i) |= ¬isMaxIn(d, m, C) ⇐⇒ (tτ

N
, i) |= ϕ ��

Proof. For ϕ = α before j

∀τ ∈
∏

n∈N
Tracen, α ∈ Φ, j ∈ N, M ⊆ N, i ∈ N, ϕ = α before j :

(tτM , i) |= ϕM ∧ S(τ, M, i − j, α) ⇐⇒ (tτM , i) |= αM before j ∧ S(τ, M, i − j, α)
⇐⇒ (tτM , i − j) |= αM ∧ S(τ, M, i − j, α) =⇒ (tτ

N
, i − j) |= α

⇐⇒ (tτ
N
, i) |= α before j ⇐⇒ (tτ

N
, i) |= ϕ ��

Proof. For ϕ = α since β

∀τ ∈
∏

n∈N
Tracen, α, β ∈ Φ, M ⊆ N, i ∈ N, ϕ = α since β :

(tτM , i) |= ϕM

∧(∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ, M, j, β)
∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ, M, k, α))

∨∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ, M, k, α))
⇐⇒ (∃j ∈ [0, i] : ((tτM , j) |= βM ∧ ∀k ∈ (j, i] : (tτM , k) |= αM

∨∀k ∈ [0, i] : (tτM , k) |= αM ))
∧(∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ, M, j, β)

∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ, M, k, α))
∨∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ, M, k, α))

⇐⇒ ∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ, M, j, β)
∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ, M, k, α))

∨∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ, M, k, α)
=⇒ ∃j ∈ [0, i] : ((tN, j) |= β ∧ ∀k ∈ (j, i] : (tN, k) |= α)

∨∀k ∈ [0, i] : (tN, k) |= α
⇐⇒ (tN, i) |= α since β ⇐⇒ (tN, i) |= ϕ ��
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Proof. For ϕ = α or β

∀τ ∈
∏

n∈N
Tracen, α, β ∈ Φ, M ⊆ N, i ∈ N, ϕ = α or β :

(tτM , i) |= ϕM ∧ ((tτM , i) |= αM ∧ S(τ, M, i, α) ∨ (tτM , i) |= βM ∧ S(τ, M, i, β))
⇐⇒ ((tτM , i) |= αM ∨ (tτM , i) |= βM )

∧((tτM , i) |= αM ∧ S(τ, M, i, α) ∨ (tτM , i) |= βM ∧ S(τ, M, i, β))
⇐⇒ (tτM , i) |= αM ∧ S(τ, M, i, α) ∨ (tτM , i) |= βM ∧ S(τ, M, i, β)
=⇒ (tτ

N
, i) |= α ∨ (tτ

N
, i) |= β ⇐⇒ (tτ

N
, i) |= α or β ⇐⇒ (tτ

N
, i) |= ϕ ��

Proof. For ϕ = repmin(j, m, e)

∀τ ∈
∏

n∈N
Tracen, j, m ∈ N, e ∈ E , M ⊆ N, i ∈ N, ϕ = repmin(j, m, e) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= repmin(j, m, e)

⇐⇒ m ≤
∑j−1

k=0 |{e′ ∈ tτM (i − k) | (e′, σi−k
tτM

) refinesΣ e}|
=⇒ m ≤

∑j−1
k=0 |{e′ ∈ tτ

N
(i − k) | (e′, σi−k

tN
) refinesΣ e}|

⇐⇒ (tτ
N
, i) |= repmin(j, m, e) ⇐⇒ (tτ

N
, i) |= ϕ ��

Again, we omit proofs for further operators due to space limitations.
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Abstract. Security for digital signature schemes is most commonly an-
alyzed in an ideal single user setting where the attacker is provided only
with a single public key. However, when digital signature schemes are
deployed in practice they are often used by many users, each having its
own public key, e.g., in authenticated key exchange (AKE) protocols.
Common security models for AKE model real world capabilities of an
adversary by allowing it (among others) to corrupt secret user keys. For
digital signatures it is well known that security in the idealized single
user setting implies security in this stronger and more realistic multi
user setting with corruptions. However, the security reduction loses a
factor which is linear in the number of users. It is not clear how to avoid
this loss in general.

In this paper we propose an efficient signature scheme whose security
reduction in the above setting is tight. The security reduction loses a
factor of about 2. When 80 bits of security are required our signatures
are of size roughly 2700 bits.

Keywords: Tight security, digital signatures, Groth-Sahai proofs,
Katz-Wang technique, random-oracle heuristic.

1 Introduction

When a new cryptographic scheme is proposed, nowadays the construction comes
along with a proof of security. Most commonly, the proof describes an efficient
algorithm, the reduction, that turns any successful attacker against the scheme
(with respect to the considered security notion) into another efficient algorithm
that breaks a supposed to be hard problem. The quality of a reduction R is
measured in terms of its success probability εR relative to its running time tR.
Ideally we have εR

tR
= O( εFtF ) where εF and tF denote the success probability and

the running time of the forger. In this case the reduction is said to be tight and
the cryptographic scheme is said to have tight security. Tight reductions are a
desirable goal since the quality of a reduction influences the size of the system
parameters when they are selected in a theoretically sound way, cf. table 1.
There exist implementations of many cryptographic primitives that come along
with an (almost) tight reduction in the standard or the random oracle model,
e.g., for digital signatures in the single user setting [8,21,9,28,20], for public key
encryption in the multi user setting [5,17] and for AKE [3].

D. Gritzalis et al. (Eds.): CANS 2014, LNCS 8813, pp. 370–383, 2014.
c© Springer International Publishing Switzerland 2014
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Digital Signatures in the Multi User setting. The standard security notion for
digital signatures (in the single user setting) is existential unforgeability under
chosen message attacks (EUF-CMA-security) [15]. EUF-CMA-security was later
extended to the multi user setting without corruptions [25]. Recently, [3] intro-
duced the notion of existential unforgeability under chosen message attacks in
the multi user setting with adaptive corruptions (MU-EUF-CMACorr-security).
Here the attacker is considered successful if it manages to produce a signature
for a message m (that was not signed before with respect to the target public
key) that verifies under an uncorrupted public key (the target public key). While
tightness in the single user setting is mostly considered with respect to the num-
ber μ of sign queries issued by the attacker, in the multi user setting tightness
is additionally considered relative to the number � of public keys the adversary
has access to and that it may corrupt. Hence, for digital signatures in the multi
user setting there are two dimensions to consider tightness in.

It is well known [25,3] that standard EUF-CMA security (i.e., � = 1) implies
MU-EUF-CMACorr-security. However, the generic reduction loses a factor of �,
i.e., εR

tR
= O(� · εF

tF
) and it is not clear how to avoid this loss in general. On the

bright side this means that the proofs from [9,28,20] give rise to digital signature
schemes in the multi user setting with corruptions that come along with a proof
that only depends (linearly) on � (the number of public keys) but is independent
of μ (the number of sign queries issued by the attacker). Recently, standard
model schemes that come along with a reduction that is independent of μ and
� were proposed [3]. However, as the authors remark due to its large signature
size the full tight scheme from [3] is rather a feasability result. While the almost
tight scheme from [3] supports very short signatures it has public parameters
that are linear in the length of messages.

We stress that common security models for authenticated key exchange (AKE)
or channel establishment (ACCE), e.g. [7,11,19], allow the adversary to cor-
rupt long-term secret keys which often are secret keys of a signature scheme,
e.g., in ephemeral Diffie-Hellman Ciphersuites of the TLS-Handshake [14] or
when compilers lift a passively secure protocol to meet stronger security no-
tions [6,22,18,23]. Therefore, the MU-EUF-CMACorr security notion is implicitly
widely used in practice. However, the security proofs for most schemes apply the
“polynomial equivalence between EUF-CMA and MU-EUF-CMACorr security”
argument which incurs a loss of � for the reduction and requires larger parame-
ters when the scheme is implemented in practice. Therefore an efficient signature
scheme, i.e., small signatures and public parameters, that comes along with a
tight MU-EUF-CMACorr security reduction is a desirable goal with practical
applications. In particular, plugging in a tightly MU-EUF-CMACorr-secure sig-
nature scheme into the tightness preserving compiler from [3] leads to a tightly
secure authenticated key exchange protocol the efficiency of which is roughly
determined by the efficiency of the signature scheme.

Our Contribution. In this paper we propose a signature scheme that tightly
satisfies MU-EUF-CMACorr security, i.e., the running time and the success prob-
ability of the reduction are roughly the same as the running time and the success
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Table 1. Comparison between our scheme and random oracle signature schemes from
the literature. We compare public key size and signature size in bits when parameters
are selected to obtain 80 bits of security in a theoretically sound way (i.e., parameter
selection considers the security loss) following NIST recommendations [4]. Following
[8] we assume μ = 230 sign-queries and qh = 260 hash-queries per public key. The BLS
and ECDSA schemes as well as our scheme do also require common public parameters.
These are omitted in our comparison since they have to be stored only once by each
user.

� = 1 � = 216 � = 245
Loss Assumption|vk| |σ| |vk| |σ| |vk| |σ|

ECDSA [29,1,30] ≈ 280 ≈ 560 ≈ 312 ≈ 624 ≈ 370 ≈ 740 O(qh�) DLOG
BLS [10] ≈ 2000 ≈ 220 ≈ 3000 ≈ 256 > 4000 ≈ 310 O(μ�) CDH

RSA PSS [8,12] > 1024 1024 > 1350 ≈ 1350 > 3000 ≈ 3000 O(�) RSA
Ours 1024 2688 1024 2688 1024 2688 O(1) SXDH

probability of the adversary (and in particular independent of μ and � except
for a negligible fraction). The security reduction loses roughly a factor of 2. The
scheme works over asymmetric bilinear groups G = (G1, G2, GT ) equipped with
an efficiently computable pairing e : G1 × G2 → GT . Public parameters contain a
description of the group, one additional element from G1, two additional elements
from G2 and the description of a Hash-function. A public key is a single group
element from G2 and signatures live in G4

1 × G2
2 . Table 1 compares our signature

scheme to random oracle signature schemes from the literature. We observe that
if the number of users is 216 then the signature size of our scheme is roughly
twice the size of an RSA PSS signature and 10 times the size of a BLS signature.
Our scheme outperforms RSA PSS in both, public key size and signature size, if
the number of public keys is about 245 which is a very large number. However,
even in this case, BLS and ECDSA signatures are shorter than our signatures.
Therefore, for most of today’s practical applications our scheme is no better than
known solutions. However, due to the loss of the generic reduction (see above)
and to some problems that occur by natural approaches (see end of this section)
we find it interesting in its own right to construct a signature scheme with tight
MU-EUF-CMACorr security.

Technical Approach. When designing an MU-EUF-CMACorr-secure signature
scheme with tight reduction we are faced with the following problem: On the
one hand we need to be able to reveal the secret key to any public key (note
that guessing the target public key would cause a loss of �) and on the other
hand we must be able to extract a solution to a hard problem from (almost)
any forgery that is output by the adversary. That is, we must be able to extract
a solution from a forgery even if we know the secret key corresponding to the
target public key. To face this problem, we apply non-interactive proof systems
that provide two computationally indistinguishable modes of common reference
strings (CRS), perfectly binding ones and perfectly hiding ones. A perfectly bind-
ing CRS allows to extract knowledge from a given proof while a perfectly hiding
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CRS does not. A signature will roughly be a proof (using a suitable proof system)
that the signer ’knows’ a one time signature. Now, to extract a solution from an
adversarially generated signature the proof output by the adversary needs to be
binding. Note that we do not know the target public key and message up front.
At the same time, to hide all critical information from the adversary all proofs
output by the reduction need to be hiding.

To achieve this we apply the random oracle in a way similar to Katz-Wang
[21] to the (standard model, DLIN-based) linearly homomorphic signature scheme
from [24] converted to the SXDH-setting. Namely, public parameters contain part
of a Groth-Sahai CRS [16]. To sign a message m, a bit b is sampled uniformly
at random. The message is hashed together with b and the public key of the
signer to complete the CRS. Finally, using the secret key, a one time signature
over m is computed and correctness of the computed signature is proved with
respect to the CRS. During the security reduction the random oracle will be
programmed such that for each pair of message m and public key vk one out of
two possible CRS (recall that m and vk are hashed together with b) is perfectly
hiding and the other one is perfectly binding. Both are indistinguishable under a
computational assumption. Now, the reduction will make all proofs on a hiding
CRS (and thus leak no information about sk) and with high probability the
adversary will output a forgery on a binding CRS from which we can extract a
solution to a hard problem with overwhelming probability.

A note on schemes from OR proofs. We note that it might look heavy to use the
random oracle heuristic in combination with pairings at all and in particular to
additionally use Groth-Sahai proofs. Probably the most natural way to construct
a tightly secure scheme in the ROM would be to apply OR proofs as introduced
in [13] to Fiat-Shamir like signature schemes that have a tight reduction, e.g.
[21]. Similar to the fully tight construction from [3] and following the Naor-Yung
paradigm [27], a public key in such MU-EUF-CMACorr-secure scheme would
consist of two public keys (vk0, vk1) of the underlying signature scheme whereas
the secret key would consist only of one of the corresponding secret keys, skδ.
A signature on message m would be a witness indistinguishable OR proof that
the signer ’knows’ a signature on m that validates under vk0 or vk1. The OR
proofs from [13] provide perfect witness indistinguishability. Therefore it remains
information theoretically hidden from the view of the adversary which secret key
is known by the reduction. Unfortunately perfect witness indistinguishability
makes the reduction fail to actually extract knowledge from the forgery output
by the adversary.

If we are to apply pairings we can resort to Groth-Sahai proofs [16] and could
apply a similar technique. However, in this case we need to prove satisfiability of
a set of quadratic equations which makes the proofs expensive, i.e., large. Since
we are interested in efficient schemes we do not apply this technique. We note
however that this technique works even in the standard model [3]. However, it
leads to rather long signatures.
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2 Preliminaries

Notation. By [n] we denote the set [n] := {1, 2, . . . , n}. If A is a set then by a ←$

A we denote the action of sampling a uniformly from A. If A is an algorithm then
a ← A(x) denotes that A outputs a when run on input x with fresh uniformly
random coins. By PPT we will abbreviate probabilistic polynomial time. If an
algorithm A has black-box access to an algorithm O, we will write AO.

By G = (e, G1, G2, GT , g1, g2, p) we denote the description of an asymmetric
bilinear group. That is, e : G1×G2 → GT is a non-degenerate bilinear map, gb is a
generator of Gb and |G1| = |G2| = |GT | = p where p is prime. It is well known that
there is a PPT algorithm that on input 1κ returns G such that 2κ < p ≤ 2κ+1. We
denote this algorithm by GEN.asym(1κ). Throughout the paper we reasonably
assume the non-existence of efficiently computable homomorphisms between G1

and G2. Given elements h ∈ G2 and 'g = (g, k) ∈ G2
1 we denote by E('g, h) the

vector (e(g, h), e(k, h)).

Complexity Assumptions. Let in the sequel be b ∈ {1, 2}. Given g, h ∈ G2
b we

denote by DDHb(g, h) the set DDHb(g, h) :=
{
(ĝ, ĥ) ∈ G2

b : logg(ĝ) = logh(ĥ)
}
.

Definition 1. Let G = (e, G1, G2, GT , g1, g2, p) ←$ GEN.asym(1κ). We say that
an adversary (t, ε)-breaks the external Diffie-Hellman assumption in Gb (XDHb

assumption) if it runs in time t and∣∣∣Pr
[
A(G, g, h, ĝ, ĥ) = 1 : (g, h) ←$ G2

b ∧ (ĝ, ĥ) ←$ DDH(g, h)
]

−Pr
[
A(G, g, h, ĝ, ĥ) = 1 : (g, h) ←$ G2

b ∧ (ĝ, ĥ) ←$ G2
b

]∣∣∣ ≥ ε

where the probability is over the random choices of g, h, ĝ, ĥ and the random
coins of A.

We say that an adversary (t, ε)-breaks the symmetric external Diffie-Hellman
assumption in G if it (t, ε)-breaks the XDH1 or XDH2 assumption.

A given instance of the XDHb problem is efficiently re-randomizable [26,5].

That is, there is an efficient algorithm that, on input (g, h, ĝ, ĥ, 1q), outputs q
tuples (gi, hi), i ∈ [q] such that

(gi, hi) ←$ DDH(g, h) if (ĝ, ĥ) ∈ DDH(g, h)

(gi, hi) ←$ G2
b if (ĝ, ĥ) /∈ DDH(g, h) .

Definition 2. LetG = (e, G1, G2, GT , g1, g2, p) ←$ GEN.asym(1κ) and (gz, gr) ←$

G2
2 . We say that an adversary (t, ε)-breaks the double pairing assumption in G2

(DP2 assumption) if it runs in time t and

Pr [(z, r) �= (1, 1) ∧ e(z, gz) · e(r, gr) = 1 : (z, r) ← A(G, gz, gr)] ≥ ε

where the probability is over the random choices of gz and gr and the random
coins of A.

We define the DP1 assumption analogously.
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Lemma 1 ([2]). For any attacker A that (tDPb
, εDPb

)-breaks the DP assumption
in Gb (where b ∈ {1, 2}) there exists an attacker B that (tXDH, εXDH)-breaks the
XDH assumtion in Gb where tDPb

≈ tXDH and εXDH ≥ εDPb
.

Proof. Let wlog b = 2. Algorithm B, given an XDH2 instance (G, g, h, ĝ, ĥ),
runs A as a subroutine on input (G, g, ĝ). When A outputs (z, r) such that

e(z, g) · e(r, ĝ) = 1 we know that logz(r) = −logĝ(g) and thus e(z, h) · e(r, ĥ) =

1 ⇔ (ĝ, ĥ) ∈ DDH(g, h).

3 Digital Signature Schemes in the Multi User Setting

Syntax. A digital signature scheme SIG = (Setup,Gen, Sign,Vfy) is a four-tuple
of PPT algorithms.

Public Parameters. The parameter generation algorithm Π ←$ Setup(1κ) on
input 1κ returns public parameters. We silently assume that 1κ is contained
in Π. We note that while Setup often is omitted in the single user setting it
is convenient to define it in the multi user setting. If not explicitly required,
it just outputs 1κ.

Key Generation. The key generation algorithm when input Π outputs a key
pair, (vk, sk) ←$ Gen(Π). Even if not explicitly stated we assume that vk
contains at least Π and that sk contains vk.

Signature Generation. The signature generation algorithm, given a secret
key sk and message m, outputs a signature σ on that message. That is,
it returns σ ←$ Sign(sk, m).

Verification. The verification algorithm accepts or rejects a signature over a
message with respect to a given public key, Vfy(vk, m, σ) ∈ {0, 1}.

For correctness we require that for all κ, all Π ←$ Gen(1κ), all (vk, sk) ←$

Gen(Π) and any message m that

Pr
[
Vfy(vk, m, σ) = 1 : σ ←$ Sign(sk, m)

]
= 1 .

Security Notion. Consider the following security experiment that is played be-
tween a challenger C and an adversary A and that is parametrized by μ, the
number of overall sign queries the adversary may issue and � the number of
public keys the adversary has access to and that it may corrupt.

1. On input 1κ the challenger runs Π ←$ Setup(1κ) and samples (vki, ski) ←$

Gen(Π), i ∈ [�]. Next, it initializes a set SCorrupt ← ∅ to keep track of cor-
rupted keys and sets Si ← ∅ to keep track of messages that were signed with
respect to public key vki. It passes vki, i ∈ [�] to A.

2. The adversary may now adaptively issue sign-queries (m, i) where m is a
message and i ∈ [�] and corrupt -queries i (where also i ∈ [�]). C responds to
the respective queries as follows. When issued a sign query (m, i), C updates
Si to Si ← Si ∪ {m}. Next, it returns σ ←$ Sign(ski, m). When issued a
corrupt query i, C updates SCorrupt to SCorrupt ← SCorrupt ∪ {i} and returns
ski. A is restricted to perform no more than μ overall sign-queries.

3. Finally, A outputs a forgery (i∗, m∗, σ∗).
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Definition 3 (MU-EUF-CMACorr-security). We say that an adversary (t, μ, �,
ε)-breaks the multi user existential unforgeability under chosen message attacks
with adaptive corruptions security of a signature scheme SIG if it runs in time
t in the above security game and

Pr
[
Vfy(vki∗ , m∗, σ∗) = 1 : i∗ /∈ SCorrupt ∧ m∗ /∈ Si∗

]
≥ ε .

4 Non-interactive Proof Systems

Given a binary relation R ⊆ X × W and (x, w) such that R(x, w) we call
x the statement and w the witness. A non-interactive proof system NIPS =
(Gen,Prove,Vfy) for witness relation R is a three-tuple of PPT algorithms.

– The common reference string generation algorithm, on input 1κ, returns a
common reference string, CRS ←$ Gen(1κ).

– The prove algorithm when input (x, w) such that R(x, w) returns a proof
π ←$ Prove(CRS, x, w) with respect to CRS.

– The verification algorithm verifies a proof, Vfy(CRS, x, π) ∈ {0, 1}.

Definition 4. We call NIPS a witness indistinguishable proof of knowledge
(NIWI-PoK) for R, if the following conditions are satisfied:

Perfect completeness. For all κ ∈ N it holds that if R(x, w) then

Pr
[
NIPS.Vfy(CRS, x, π) = 1 : CRS ←$ NIPS.Gen(1κ) ∧ π ←$ Prove(CRS, x,w)

]
=1

Perfect Witness Indistinguishability. Let CRS ←$ Gen(1κ). For b ∈ {0, 1}
we denote by Ob an oracle that when input (x, w0, w1) such that R(x, wb)
returns π ←$ Prove(CRS, x, wb). We require

Pr
[
AO0 = 1

]
= Pr

[
AO1 = 1

]
Simulated CRS. There exists an algorithm (CRSsim, τ) ←$ E0 that, on input

1κ, outputs a simulated common reference string CRSsim and a trapdoor τ .
Perfect Knowledge Extraction on Simulated CRS. Let (CRSsim, τ) ←$

E0(1
κ). We require the existence of an algorithm E1 such that for all (π, x) ←

A that satisfy NIPS.Vfy(CRSsim, x, π) = 1 it holds that

Pr
[
w ←$ E1(CRSsim, π, x, τ) : (x, w) ∈ R

]
= 1

Secure NIWI-PoK. Let CRSreal ←$ NIPS.Gen(1κ) and (CRSsim, τ) ←$ E0(1
κ).

We say that an algorithm (t, εCRS)-breaks the security of a NIWI-PoK if it
runs in time t and it holds that

Pr
[
A(CRSreal) = 1)

]
− Pr

[
A(CRSsim) = 1

]
≥ εCRS

If CRS ←$ Gen(1κ) we call CRS hiding and if (CRSsim, ·) ←$ E0(1
κ) we call

CRSsim binding. It is easy to verify that perfect witness indistinguishability on a
hiding CRS is preserved if many statements are proven.
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Defining a Relation. Consider the following equation over (z, r)

1 = e(z, kz) · e(r, kr) · e(m, k) (1)

The core of our signature scheme will be the assumption (which we will justify
later) that given (kz, kr, k, m) it is hard to compute (z, r) that satisfy equation
1. We define a relation as follows:

R ((kz, kr, k, m), (z, r)) =

{
1, if 1 = e(z, kz) · e(r, kr) · e(m, k)

0, else

Suitable Proof Systems. The SXDH-based Groth-Sahai proof system [16] is an
(efficient) proof system for witness relation R. Note that equation 1 is linear
where the variables live in G1. In this case each commitment costs two elements
from G1 and a proof element costs additional two elements from G2 (instead of
four elements from G1 and G2 if we had quadratic equations).

Since we need the notation for our signature scheme we recall SXDH-based
Groth-Sahai proofs with efficiency improved verification [24] for relation R here.

CRS ←$ Gen(1κ): The common reference string generation algorithm samples
G = (e, G1, G2, GT , g1, g2, p) ←$ GEN.asym(1κ), 'v1 = (g1, f1) ←$ G2

1 and

'v2 = (ĝ1, f̂1) /∈ DDH(g1, f1). It returns (G, 'v1, 'v2).
π ←$ Prove(CRS, (kz, kr, k, m), (z, r)): The prove algorithm first commits to z

and r via
Cz =(1, z) · 'vδz,11 · 'vδz,22

Cr =(1, r) · 'vδr,11 · 'vδr,22

where multiplication is done component-wise. Next, it computes proofs that
the commitments actually contain a solution to equation 1. These are com-
puted as

π′ = (π′
1, π

′
2) =

(
k−δz,1
z · k−δr,1

r , k−δz,2
z · k−δr,2

r

)
The proof is returned as π = (Cz , Cr, π

′) ∈ G4
1 × G2

2 .
Vfy(CRS, (kz , kr, k, m), π): The verification algorithm outputs 1 iff

(E((1, m), k))−1 = E(Cz, kz) · E(Cr , kr) · E('v1, π
′
1) · E('v2, π

′
2) (2)

(CRSsim, td) ←$ E0(1
κ): The simulated CRS generation algorithm samples G =

(e, G1, G2, GT , g1, g2, p) ←$ GEN.asym(1κ), 'v1 = (g1, f1) ←$ G2
1 and 'v2 =

(ĝ1, f̂1) ←$ DDH(g1, f1). It sets x = logg1(f1) and returns ((G, 'v1, 'v2), x).

That for any attacker A that (tA, εA)-breaks the NIWI-PoK security of this
proof system there is an attacker B that (tB, εB)-breaks the SXDH-assumption in
G with tA ≈ tB and εB ≥ εA is proven in [16]. We stress that if 'v2 ∈ DDH('v1) then
('v1, 'v2) is a perfectly binding CRS whereas if 'v2 /∈ DDH('v1) then ('v1, 'v2) yields a
perfectly hiding CRS both of which are computationally indistinguishable under
the XDH1 assumption in G.
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5 Our New Signature Scheme

Intuition of our scheme. Before we introduce our scheme formally we would like
to give some intuition what is behind the scheme. Actually our scheme is similar
to the DLIN-based signature scheme from [24] that allows for linear OR-proofs.
However, we do not need OR-proofs at all.

A signature over m is an SXDH-based Groth-Sahai proof [16] of satisfiability
of equation 1 (where (kz, kr, k) are given in the public parameters and the public
key, respectively). The system parameters contain part of a Groth-Sahai CRS
for relation R described in the previous section. The hash of a message, the
verification key of the signer and a uniformly random bit completes the CRS.
Now, the signer (using sk) computes (z, r) that satisfies equation 1 and generates
a proof of this fact using Prove from the proof system of the previous section. We
note that there are many possible solutions to equation 1. The secret key of our
signature scheme allows to compute exactly one satisfying solution to equation
1. However, two distinct solutions yield a solution to the instance (kz , kr) of the
DP2 problem.

Description of our scheme. The scheme works as follows.

SIG.Setup(1κ). The setup algorithm, on input 1κ, works as follows:

1. Sample G = (e, G1, G2, GT , g1, g2, p) ←$ GEN.asym(1κ).
2. Sample f1 ←$ G1 and kz, kr ←$ G2 and set 'v1 = (g1, f1).
3. Choose a hash-function H : {0, 1}∗ → G1. The security analysis will view

H as a random oracle.

It returns Π ← (G, kz, kr, 'v1, H). The message space is G1.
SIG.Gen(Π). The key generation algorithm samples χ, γ ←$ Zp and computes

k = kχ
z kγ

r ∈ G2. The key is returned as (vk, sk) ← (k, (χ, γ)).
SIG.Sign(sk, m). The sign algorithm first checks if m has been already signed.

If this is the case it recovers the bit bvk,m that was previously used to sign
m 1. Else it samples bvk,m ←$ {0, 1}. Next, it proceeds as follows (recall that
m ∈ G1).

1. Compute z = m−χ and r = m−γ .
2. Compute 'v2 = (H(0||vk||m||bvk,m), H(1|vk|||m||bvk,m)) ∈ G2

1 and set
CRS = ('v1, 'v2).

3. Run the prove algorithm for relation R from the previous section and
return σ ←$ Prove(CRS, (kz , kr, k, m), (z, r)) ∈ G4

1 × G2
2 .

SIG.Vfy(vk, m, σ). Theverificationalgorithmaccepts iffVfy(CRS, (kz, kr, k, m), σ)
where CRS = ('v1, 'v2) and v2 = (H(0||vk||m||0), H(1||vk||m||0)) or v2 =
(H(0||vk||m||1), H(1||vk||m||1)).

1 Note that we could also let the signer evaluate a pseudo-random function on m to
determine b. According to [21] another very simple solution is to determine b by
evaluating another hash function H ′ on m and vk (which again will be viewed as
a random oracle by the analysis). This way the signer does not need to maintain
states.
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Remark 1 (On the requirement of a trusted setup). We note that if the scheme
is implemented the way we describe it here we require Setup to be run by a
trusted party. We can get rid of this requirement if we let the public parameters
contain only the description of the group. In this case each user needs to choose
H , 'v1 ←$ G2

1 and kz, kr ←$ G2 itself and publish these as part of its public key.
By the random self reducibility of DDH and DP the tightness of the reduction
will be preserved. However, this approach leads to longer public keys. Because
of this and for ease of readability we chose to describe the scheme as above.

Next, we show that there is a tight reduction from breaking the SXDH-
assumption to breaking the unforgeability of the above signature scheme.

Theorem 1. For any attacker A that (t, μ, �, εSIG)-breaks theMU-EUF-CMACorr-
security of SIG there is an attacker B = (BXDH, BDP) such that BXDH (tXDH, εXDH)-
breaks the XDH-assumption in G1 or BDP (tDP, εDP)-breaks the double pairing
assumption in G2 with t ≈ tXDH ≈ tDP and

εSIG <
�2

2 · p + 2 ·
(

εXDH + εDP +
μ + 1

p

)
.

The analysis will view H as a random oracle.

Proof. The proof is built on the following fact: Given only the public key, there
are many possible secret keys and the actual values of χ and γ are information
theoretically hidden. However, given a message and a secret key the pair (z, r) is
determined. That is, a given secret key allows to compute exactly one pair that
satisfies equation 1. At the same time, even if the secret key is available, any
other tuple that satisfies equation 1 allows to solve an instance of the DP2 prob-
lem. We argue that since the signer commits to (z, r) via hiding commitments
the actual values (z, r) are information theoretically hidden from the view of A.
Therefore the secret key is also hidden from the adversary. Now, the reduction
will manipulate H to produce binding commitment keys for (almost) any ad-
versarially generated signature. From this, we can extract a DP solution with
probability 1 − 1

p .

The proof proceeds in a sequence of games. Here, we denote by Pr[χi] the
probability that A is considered successful in game i. Let us denote by (i∗, m∗, σ∗)
the forgery otuput by A and vki∗ by vk∗.

Game 0. This game is the real MU-EUF-CMACorr-security game. When issued
a hash-query for the string s the reduction R first checks if s has already been
hashed. If this is the case it returns the previously computed value H(s). Other-
wise it samples r uniformly at random from G1 and sets and returns H(s) = r.
All other queries are answered according to the MU-EUF-CMACorr-security ex-
periment. This perfectly simulates the challenger in the random-oracle model.
Thus, we have:

Pr[χ0] = εSIG
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Game 1. Let Qvkcoll denote the following event:

Qvkcoll :=
{
∃(i, j) ∈ [�]2 : i �= j ∧ vki = vkj

}
In Game 1 R aborts (and A looses) if event Qvkcoll occurs. Since χ and γ are
chosen uniformly at random by R, public keys are distributed uniformly random

over G2 which implies Pr[Q] = �·(�−1)
2·p . Thus, we have

| Pr[χ0] − Pr[χ1]| ≤ �2

2 · p

Game 2. Before we introduce the changes made in Game 2 let us fix some
notation. Let bvk,m denote the bit that is (lazily) sampled by R during signing on
m under vk. In Game 2, R aborts if for the forgery (i∗, m∗, σ∗) that is output by
A it holds that v∗2 = (H(0||vk∗||m∗||bvk∗,m∗), H(1||vk∗||m∗||bvk∗,m∗)). In other
words, R aborts (and A looses) if A chooses for the forgery the same bit bvk∗,m∗

that R would have chosen itself to sign m∗ under vk∗. Since R chooses each
bit uniformly at random the actual choice of bvk∗,m∗ is information theoretically
hidden from the view of A (recall that all vk are distinct due to Game 1). Thus
we have

Pr[χ1] ≤ 2 · Pr[χ2]

Game 3. In Game 3 the reduction proceeds similarly to Game 2 except for the
following: R lazily programs the hash-oracle such that for every pair of m and
vk we have that (H(0||vk||m||1 − bvk,m), H(1||vk||m||1 − bvk,m)) ∈ DDH(g1, f1).
By the random self reducibility of DDH we get:

|Pr[χ2] − Pr[χ3]| < εXDH

Game 4. This game is similar to Game 3, except that R aborts (and A looses),
if for any sign query (m, i) issued by A during the security experiment we have
that (H(0||vki||m||bvki,m), H(1||vki||m||bvki,m)) ∈ DDH(g1, f1). Since images of
H are distributed uniformly over G we have that

|Pr[χ3] − Pr[χ4]| ≤ μ

p

Game 5. Game 5 proceeds exactly like Game 4 except for the following. R
aborts if it cannot extract a satisfying assignment for equation 1 from σ∗. Due
to Game 3 we know that (ĝ1, f̂1) = (H(0||vk∗||m∗||1−bvk∗,m∗), H(1||vk∗||m∗||1−
bvk∗,m∗)) ∈ DDH(g1, f1). Therefore ('v1, 'v2) is in the (first) range of E0(1

κ) and
gives a perfectly binding CRS.

Given the trapdoor τ = logg1(f1) and using E1, R is able to extract (z∗, r∗)
that satisfy equation 1 due to the perfect knowledge extraction on simulated
CRS [16]. Thus, we have:

Pr[χ4] = Pr[χ5]
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Game 6. Game 6 proceeds exactly as Game 5 except for the following. The
reduction aborts (and A looses) if for the forgery that A outputs it holds that
the satisfying assignment of equation 1, (z∗, r∗), that is extracted by R from
σ∗ is equal to ((m∗)−χ, (m∗)−γ). Since for all sign queries (m, i) issued by A it
holds that (H(0||vki||m||bvki,m), H(1||vki||m||bvki,m)) /∈ DDH(g1, f1) (which is
due to Game 4) the signatures output by R are perfectly hiding proofs and do
not leak any valuable information on (z, r) that are used by R to compute the
respective commitements. From the view of the adversary all (z, r) that satisfy
the respective equation 1 are equally likely. In particular the only information
that the adversary obtains on χ and γ comes from the public key. However the
public key provides the adversary with one linear equation in two unknowns
which has p possible solutions. Thus we have:

|Pr[χ5] − Pr[χ6]| ≤ 1

p

Lemma 2. Pr[χ6] < εDP2 .

We will show that any forgery output by the adversary in Game 6 allows BDP

to solve a given instance of the DP2 assumption. To this end, assume that A
outputs a valid signature σ∗ for m∗ that was not signed before under vk. By
Game 5 we know that from σ∗ we can extract (z∗, r∗) such that 1 = e(kz, z

∗) ·
e(kr, r

∗) · (k∗, m∗). Moreover due to Game 6 we know that (z∗, r∗) �= (z, r) =
((m∗)−χ, (m∗)−γ). However, we do know that (z, r) also satisfies equation 1.
Now, ( z

z∗ , r
r∗ ) �= (1, 1) yields a solution to the DP2 instance (kz, kr) ∈ G2:

e(
z

z∗
, kz) · e(

r

r∗
, kr) =e(z, kz) · e(r, kr) · e(z∗, kz)−1 · e(r∗, kr)−1

=e(z, kz) · e(r, kr) · e(m∗, k∗)1−1 · e(z∗, kz)−1 · e(r∗, kr)−1

=1

where the last equation is due to the fact that both, (z, r) and (z∗, r∗), satisfy
equation 1. This completes our proof. ��

We stress that the reduction is able to reveal the secret key corresponding to
a public key in every single game throughout the proof and is nevertheless able
to extract a solution to a hard problem from a forgery. We do not even have to
re-randomize publicly available values. That is, we can use kz and kr, as well as
v1 from Π for all users.
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Abstract. Generating pairing-friendly elliptic curves is a crucial step in
the deployment of pairing-based cryptographic applications. The most
efficient method for their construction is based on polynomial families,
namely complete families, complete families with variable discriminant
and sparse families. In this work we further study the case of sparse
families which seem to produce more pairing-friendly elliptic curves than
the other two polynomial families and also can lead to better ρ-values
in many cases. We present two general methods for producing sparse
families and we apply them for four embedding degrees k ∈ {5, 8, 10, 12}.
Particularly for k = 5 we introduce for the first time the use of Pell
equations by setting a record with ρ = 3/2 and we present a family
that has better chances in producing suitable curve parameters than any
other reported family for k /∈ {3, 4, 6}. In addition we generalise some
existing examples of sparse families for k = 8, 12 and provide extensive
experimental results for every new sparse family for k ∈ {5, 8, 10, 12}
regarding the number of the constructed elliptic curve parameters.

Keywords: Pairing-based cryptography, pairing-friendly elliptic curves,
polynomial families, Pell equations.

1 Introduction

Over the past few years, pairing-based cryptography has gained much attention
and a variety of pairing-based protocols have been developed (e.g. Joux’s one-
round tripartite key agreement protocol [11], Boneh and Franklin’s identity-
based encryption [3] etc.). All these protocols require the construction of a special
type of elliptic curves that satisfy certain properties and are known as pairing-
friendly elliptic curves [9]. Generating these elliptic curves is a crucial step in
pairing-based applications and even though many methods have been proposed,
it is still an active field.

For a large prime q, let E/Fq be an ordinary elliptic curve of order #E(Fq) =
hr where r is a large prime and h is a small integer called the cofactor. Let also
t = q + 1 − #E(Fq) be the Frobenius trace of the curve. In many pairing-based
protocols, it is required that h = 1 (prime order curves). However such curves
are rare and in most applications a small h > 1 is acceptible. In this latter
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case, we define the security parameter ρ = log(q)/ log(r) measuring how close
to the ideal case is the constructed curve. Clearly, ρ should be as close to 1 as
possible. The embedding degree of the curve E/Fq, is the smallest positive integer
k > 1, such that E[r] ⊆ E(Fqk), where E[r] is the group of r-torsion points of
E/Fq. Equivalently we can say that k is the smallest positive integer such that
r | qk − 1 (see [8,9]). The embedding degree k must be carefully chosen to be
large enough ensuring the hardness of the DLP in F∗

qk and simultaneously small
enough in order to keep an efficient arithmetic in F∗

qk . Current requirements
indicate that a good security level is around 128 bits or more, in which case
3000 < k log q < 5000 [9]. Determining suitable integer triples (q, t, r) satisfying
the above properties, for a specific k > 1, and requiring at the same time that
ρ ≈ 1, is one of the most demanding tasks in pairing-based cryptography. Once
these parameters are generated, the Complex Multiplication (CM) method [1]
can be used for the construction of the curve equation. The efficiency of the CM
method is closely related to the size of an integer D (called the CM discriminant)
which is the square free positive value satisfying the CM equation DY 2 = 4q−t2

for a given pair (q, t). The value of D must be relatively small (e.g. D < 1010 or
even smaller) in order to implement the CM method efficiently.

Since 2001 a variety of methods have been proposed for constructing pairing-
friendly elliptic curves, most of which are based on parameterizing the curve
parameters as polynomial families (q(x), t(x), r(x)) in Q[x]. There are three types
of such polynomial families depending on the form of the polynomial 4q(x)−t2(x)
representing the right hand side of the CM equation expressed in polynomial
field.

Definition 1 ([5,9]). A polynomial family (q(x), t(x), r(x)) is said to be com-
plete, if there exists an s(x) ∈ Q[x], such that 4q(x) − t2(x) = Ds2(x), for some
positive, square-free integer D representing the CM discriminant. If the polyno-
mials q(x) and t(x) satisfy 4q(x) − t2(x) = g(x)s2(x) for some g(x) ∈ Q[x] with
deg g = 1 then the polynomial family is called complete with variable discrimi-
nant. If deg g > 1, then the family is called sparse.

In this paper we further investigate the construction of sparse families of
pairing-friendly elliptic curves using the solutions of a generalized Pell equation.
We present two methods for generating sparse families for arbitrary k and focus
on four embedding degrees k ∈ {5, 8, 10, 12}. Especially when k = 5 we intro-
duce for the first time the use of Pell equations and set a record with ρ = 3/2.
Additionally, we produce some new sparse polynomial families for k ∈ {8, 10, 12}
achieving ρ = 3/2, which is the smallest value reported in the literature for vari-
able discriminant. Furthermore, the proposed methods generate pairing-friendly
elliptic curves with smaller CM discriminant than other existing methods, im-
proving the efficiency of the CM method. Finally, we have conducted extensive
experimental assessments which show that the proposed new polynomial families
lead to the construction of many elliptic curves, achieving at the same time a
relatively small value for the CM discriminant.

The paper is organized as follows. In Section 2 we present some background
related to pairing-friendly elliptic curves as well as some of the most important



386 G. Fotiadis and E. Konstantinou

methods for generating suitable curve parameters for the three types of families
in Definition 1. We analyze our proposed methods in Sections 3 and 4 and
proceed by demonstrating our experimental results in Section 5. Finally, we
conclude the paper in Section 6.

2 Preliminaries and Previous Work

In this Section, we will give the notion of polynomial families of pairing-friendly el-
liptic curves and proceed by analyzing the existing methods for their construction.
Our goal is to find suitable integers (q, t, r) for a fixed embedding degree k > 0,
such that ρ ≈ 1. The best ρ-values in the literature are achieved by representing
the parameters (q, t, r) as polynomials q(x), t(x), r(x) ∈ Q[x] respectively.

Definition 2 ([9]). Let q(x), t(x), r(x) ∈ Q[x] be non-zero polynomials. Then
the polynomial triple (q(x), t(x), r(x)) parameterizes a family of pairing-friendly
ordinary elliptic curves with embedding degree k and CM discriminant D if the
following conditions are satisfied:

1. the polynomial q(x) represents primes,
2. the polynomial r(x) is non-constant, irreducible, integer-valued, with posi-

tive leading coefficient,
3. r(x) divides the polynomials q(x) + 1 − t(x) and Φk(t(x) − 1), where Φk(x)

is the kth cyclotomic polynomial and
4. there are infinitely many integer solutions (x, Y ) for the parameterized CM

equation
DY 2 = 4q(x) − t2(x) = 4h(x)r(x) − (t(x) − 2)2. (1)

The ρ-value of a polynomial family can be measured by the ratio ρ(q, t, r) =
deg q(x)/ deg r(x). The condition r(x) | (q(x)+1−t(x)) implies that #E(Fq(x)) =
h(x)r(x), where h(x) ∈ Q[x] is the cofactor. Our problem now reduces in finding
a suitable solution (x0, Y0) of Equation (1) such that q(x0) and r(x0) are prime
integers. Then, we can use the CM method to construct an elliptic curve E/Fq(x0)

with Frobenius trace t(x0) and order #E(Fq(x0)) = h(x0)r(x0), where h(x0) =
1 is the ideal case. Let f(x) = 4q(x) − t2(x) ∈ Q[x] be the CM polynomial.
Most methods focus on CM polynomials of the form f(x) = g(x)s2(x) for some
g(x), s(x) ∈ Q[x], where deg s is arbitrary, but deg g ≤ 2. By Definition 1,
when deg g = 0 the polynomial family (q(x), t(x), r(x)) is complete with f(x) =
Ds2(x), for some square-free positive D. When deg g = 1 we have a complete
family with variable discriminant and finally when deg g = 2 but g(x) is not a
square, the family is sparse.

Complete Families. The most well known method in this case is the Brez-
ing and Weng method [4] and its variants [9,12,17,19]. These methods start by
fixing a k > 1 and some square-free CM discriminant D. They choose an irre-
ducible polynomial r(x) ∈ Q[x], such that K ∼= Q[x]/(r(x)), where K is the field
containing a primitive kth-root of unity ζk. Then, let t(x) and s(x) be the poly-
nomials mapping to ζk + 1 and (ζk − 1)/

√
−D in K respectively. The resulting
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CM polynomial will be of the form f(x) = Ds2(x). The best family in this case
is given in [2] for k = 12 and D = 3, with ρ(q, t, r) = 1. Additional examples
appear also in [9,12,17,19].

Complete Families with Variable Discriminant. Such families are con-
structed in the work of Lee and Park [13] and additionally in [5]. The method
of Lee and Park sets the polynomial r(x) to be an irreducible factor of the cy-
clotomic polynomial Φk(u(x)), for some u(x) ∈ Q[x]. The challenging part of
the method is to determine a suitable polynomial u(x). This is accomplished by

fixing an embedding degree k and an element θ = a0+a1ζk+ . . .+aϕ(k)−1ζ
ϕ(k)−1
k

in Q(ζk). Then, the transition matrix P from the set Bθ = {1, θ, . . . , θϕ(k)−1}
to the basis Bζk = {1, ζk, . . . , ζ

ϕ(k)−1
k } is constructed, which is a ϕ(k) × ϕ(k)

matrix with elements Pij obtained by the relation θj =
∑ϕ(k)−1

i=0 Pijζ
i
k, for each

j ∈ {0, 1, . . . , ϕ(k) − 1}. If det(P ) �= 0 then P has an inverse P−1 = (P ′
ij) and

the polynomial u(x) will be equal to u(x) =
∑ϕ(k)−1

i=0 P ′
i1x

i. Finally, they set
t(x) = u(x) + 1 and f(x) ≡ −(u(x) − 1)2 mod r(x).

Propositions 1 and 2 in [13] guarantee that if θ = a0 − 2a1ζk + a1ζ
2
k for some

non-zero a0, a1 ∈ Q, then deg f = 1. Several examples of such polynomial families
appear in [13]. However, they all lead to large CM discriminants D > 107.
Clearly, the method of Lee and Park gathers all CM polynomials of the form
f(x) = g(x)s2(x) with deg s = 0 and deg g = 1, but misses the cases where
deg s > 0. Such cases are studied in greater detail in [5]. Additional examples
appear in [9].

Sparse Families. In this case f(x) = (ax2 + bx + c)s2(x), where a, b, c ∈ Q.
Substituting into Equation (1) and excluding the perfect square term s2(x), we
get DY 2 = g(x) = ax2 + bx + c. Multiplying by 4a and completing the squares
yields a generalized Pell equation of the form

X2 − aD(2Y )2 = b2 − 4ac, where X = 2ax + b. (2)

If Equation (2) is solvable for some square-free D, then it has an infinite number
of integral solutions (Xi, Yi) (see [15]). In order to generate the elliptic curve, we
firstly check if Xi = 2ax0 + b, for some x0 ∈ Z. If this is the case, then we check
if q(x0) and r(x0) are primes and if t(x0) satisfies the Hasse’s bound.

The first method for generating sparse families is due to Miyaji, Nakabayashi
and Takano [14] (MNT method) for k ∈ {3, 4, 6}. In their method they describe
polynomial families (q(x), t(x), r(x)) such that h(x) = 1 (ideal case) and so
ρ(q, t, r) = 1. Several generalizations and extensions of the MNT method have
been proposed in [6,7,10,18] allowing h(x) > 1. Particularly, in [6] and [7] the
notion of effective polynomial families is introduced. These are sparse polyno-
mial families leading to CM polynomials of the form f(x) = g(x)s2(x) with
g(x) quadratic and factorable. In this case, the constructed Pell equations have
the advantage that they are always solvable for every square-free D and so
the sparse family has better chances in producing suitable curve parameters.
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For k /∈ {3, 4, 6}, the best known result is reported in [8] for k = 10 and achieves
a value ρ(q, t, r) = 1. Another method for constructing sparse families is dis-
cussed in [5], where the author starts by fixing an embedding degree k > 1 and
constructing a number field K containing a primitive kth root of unity. Then, an
irreducible polynomial r(x) ∈ Q[x] is chosen so that K = Q[x]/(r(x)) and the
algorithm searches for a quadratic polynomial g(x) ∈ Q[x] so that −g(x) is a
square in K. Finally, t(x) and s(x) are set as polynomials mapping to ζk +1 and
(ζk−1)/

√
−g(x) respectively. The constructed CM polynomial is not necessarily

quadratic, but has a perfect square factor s2(x) with deg s > 1. An alternative
method is described in [6] which starts by fixing a k > 1 and chooses an ir-
reducible polynomial r(x) ∈ Q[x]. Then searches for a trace polynomial t(x),
such that r(x) | Φk(t(x) − 1). Once these polynomials are determined, the CM
polynomial is equal to f(x) ≡ −(t(x) − 2)2 mod r(x).

Our Contribution. Summarizing, Brezing-Weng like polynomial families pro-
duce the best ρ-values in the literature for k /∈ {3, 4, 6, 10}. However, they work
for a fixed and very small discriminant D which according to the German In-
formation Security Agency may lead to vulnerable elliptic curves. On the other
hand, polynomial families with variable discriminant provide some flexibility
on D, but result in large CM discriminants which make the CM method very
inefficient. In this paper, we argue that sparse families using solutions of gen-
eralized Pell equations are more attractive in applications that require variable
but relatively small CM discriminants.

We here present two methods for the generation of sparse families of pairing-
friendly elliptic curves. The first method is based on [6] and [13]. It extends the
ideas in [13] by searching for CM polynomials f(x) = g(x)s2(x) with deg g =
2 instead of linear polynomials f(x) and it is more efficient compared to the
method in [6]. Using the new method, we obtained for the first time sparse
families based on Pell equations for k = 5, setting at the same time a record with
ρ = 3/2. Among these families, we found an effective polynomial family for k = 5
leading to a generalized Pell equation that is always solvable for every positive
and square-free D. Based on our new method, we also obtained some sparse
families for k = 10 with ρ = 3/2. The second method is more general and can
be implemented for any k > 1 and arbitrary CM polynomials f(x) = g(x)s2(x),
with g(x) ∈ Q[x] quadratic and not a perfect square. Using this method, we give a
generalization of the examples presented in [5] for k = 8, 12 and ρ = 3/2. Finally,
we provide experimental results on the number of suitable curve parameters
obtained from our newly proposed polynomial families. Our experiments indicate
that our effective family for k = 5 produces more curve parameters than any
other polynomial family for k /∈ {3, 4, 6}.

3 Sparse Families with deg f < deg r

In this section we present a method for constructing sparse families of pairing-
friendly elliptic curves with embedding degree k > 1, such that the CM polynomial
is of the form f(x) = g(x)s2(x) with deg g = 2 and g(x) not a perfect square.
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Our method starts by choosing an arbitrary embedding degree k > 1 and
fixing an element θ ∈ Q(ζk) of the form

θ = a0 + a1ζk + a2ζ
2
k + . . . + aϕ(k)−1ζ

ϕ(k)−1
k (3)

such that u(θ) = ζk in Q(ζk) for some u(x) ∈ Q[x]. We then construct the
transition matrix P from the set B(θ) to the basis B(ζk) using the relation

θj =

ϕ(k)−1∑
i=0

Pijζ
i
k, for j = 0, 1, . . . , ϕ(k) − 1. (4)

Since Φk(u(x)) should contain an irreducible factor of degree ϕ(k), we need
to ensure that a0, a1, . . . , aϕ(k)−1 are chosen so that det(P ) �= 0. Then, the
coefficients of the polynomial u(x) are given by the second column of the inverse
matrix P−1 = (P ′

ij) of P using the relation:

u(x) =

ϕ(k)−1∑
i=0

P ′
i1x

i. (5)

Setting the polynomial u(x) as

u(x) = uϕ(k)−1x
ϕ(k)−1 + . . . + u2x

2 + u1x + u0 ∈ Q[x] (6)

Equation (5) implies that the coefficients of u(x) are actually multivariate poly-
nomials in Q[a0, a1, . . . , aϕ(k)−1]. Once the polynomial u(x) is created, then we
set t(x) = u(x)+ 1 to find the polynomial representing the Frobenius trace. The
polynomial r(x) is set to be the irreducible factor of Φk(u(x)) with deg r = ϕ(k)
and it is the minimal polynomial of θ over Q(ζk). Thus, we set

r(x) = rϕ(k)x
ϕ(k) + . . . + r2x

2 + r1x + r0 ∈ Q[x]. (7)

The coefficients of r(x) are multivariate polynomials in Q[a0, a1, . . . , aϕ(k)−1] and
can be obtained by solving the system r(θ) = 0.

Algorithm 1. Families of Pairing-Friendly Elliptic Curves with deg g = 2

Input: The embedding degree k

Output: Suitable polynomials q(x), t(x), r(x), h(x), f(x) ∈ Q[x]

Step 1: For each a0, a1, a2, . . . , aϕ(k)−1 ∈ Q do
Step 2: Calculate the transition matrix P from B(θ) to B(ζk) by Equation (4)
Step 3: If det(P ) 
= 0 compute the coefficients of the polynomials u(x) and r(x)

using the Equation (5) and r(θ) = 0 respectively; else return to Step 1
Step 4: Set the CM polynomial to f(x) ≡ −(u(x)− 1)2 mod r(x)
Step 5: If f(x) = g(x)s2(x) with g(x) quadratic and not a perfect square, with

positive leading coefficient, then set h(x) = (f(x) + (u(x) − 1)2)/4r(x), q(x) =
h(x)r(x) + u(x) and t(x) = u(x) + 1; else return to Step 1

Step 6: If q(x) is irreducible over Q[x] and q(x0) ∈ Z for some x0 ∈ Z, output the
polynomials (t(x), r(x), q(x), h(x), f(x)); else return to Step 1
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After obtaining u(x) and r(x), we set the CM polynomial as f(x) ≡ −(u(x) −
1)2 mod r(x) and we also require that deg g = 2. Additionally, we must also
ensure that the leading coefficient of g(x) is positive and that g(x) is not a
perfect square. The corresponding generalized Pell equation can be constructed
by setting DY 2 = g(x) and following the procedure described in Section 2.

The above method is summarized in Algorithm 1. The proposed algorithm
differs from the work of Lee and Park [13] in that we are actually searching for
CM polynomials of the form f(x) = g(x)s2(x), for some quadratic and non-
square polynomial g(x). On the other hand, our method is faster than the one
proposed in [6], since in this work the authors start by randomly choosing an
irreducible polynomial r(x) and then search for a trace polynomial t(x), such
that r(x) | Φk(t(x) − 1). Clearly, this is a very demanding and time consuming
step.

3.1 Families with Embedding Degree k = 5

The 5th-cyclotomic polynomial is represented by Φ5(x) = x4 + x3 + x2 + x + 1.
Set the element θ ∈ Q(ζ5) to be of the general form in Equation (3), for some
a0, a1, a2, a3 ∈ Q such that det(P ) �= 0, where P is the 4 × 4 transition matrix
from Bθ to Bζ5 . This choice will ensure that Φ5(u(x)) has a quartic irreducible
factor r(x) ∈ Q[x]. Based on Algorithm 1 and setting f(x) ≡ −(u(x) − 1)2 mod
r(x), we will get a CM polynomial f(x) of degree 3. Since we are searching
for sparse families we add the condition deg f = 2. Based on our extensive
experimental assessments, we realized that θ can be of a special form that leads
to quadratic CM polynomials. This special form depends only on the choice of a0

and a1 (in an analogy to Proposition 1 of Lee and Park [13]). Randomly choosing
integer pairs (a0, a1) ∈ Q2 we can produce different polynomial families.

Family 1. Let θ = a0 + 7a1ζ5 − 2a1ζ
2
5 + 4a1ζ

3
5 , for a0, a1 ∈ Q and a1 �= 0. The

transition matrix has det(P ) = 553a6
1. We then obtain the polynomials:

u(x) = (4x3 − (12a0 − 62a1)x
2 − (124a0a1 − 12a2

0 − 887a2
1)x

− (4a3
0 − 62a2

0a1 + 887a0a
2
1 − 1104a3

1))/552a3
1

r(x) = x4 + (9a1 − 4a0)x
3 + (6a2

0 − 27a0a1 + 121a2
1)x

2

+ (27a2
0a1 − 4a3

0 − 242a0a
2
1 − 31a3

1)x

+ (a4
0 − 9a3

0a1 + 121a2
0a

2
1 + 31a0a

3
1 + 1231a4

1)

f(x) = ((−x + a0 − 21a1)(−x + a0 − a1))/55a2
1

with ρ(q, t, r) = 3/2. This is an effective polynomial family, since the polynomial
f(x) factorizes in Q[x]. Therefore, this family will lead to a larger number of
suitable curve parameters compared to other sparse families.

Family 2. Let θ = a0 + a1ζ5 − 8a1ζ
2
5 + 20a1ζ

3
5 , with a0, a1 ∈ Q and a1 �= 0.

The transition matrix has det(P ) = −521513a6
1 and we obtain the following
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polynomials ρ(q, t, r) = 3/2:

u(x) = (−4x3 + (12a0 + 264a1)x
2 − (12a2

0 + 528a0a1 + 1931a2
1)x

+ (4a3
0 + 264a2

0a1 + 1931a0a
2
1 + 81040a3

1))/5 · 1512a3
1

r(x) = x4 + (13a1 − 4a0)x
3 + (6a2

0 − 39a0a1 + 969a2
1)x

2

+ (12177a3
1 − 4a3

0 + 39a2
0a1 − 1938a0a

2
1)x

+ (a4
0 − 13a3

0a1 + 969a2
0a

2
1 − 12177a0a

3
1 + 246341a4

1)

f(x) = (x2 + (6a1 − 2a0)x + (a2
0 − 6a0a1 + 273a2

1))/151a2
1

3.2 Families with Embedding Degree k = 10

For embedding degree k = 10 we have an ideal polynomial family given by
David Freeman [8] with ρ(q, t, r) = 1. It may be useful in applications that do
not require ρ = 1, to use families that provide larger ρ-value. Such examples are
obtained by our method with ρ(q, t, r) = 3/2. When k = 10, the 10th-cyclotomic
polynomial is given by Φ10(x) = x4 −x3 +x2 −x+1. We set θ ∈ Q(ζ10) to be of
the form in Equation (3), for some (a0, a1, a2, a3) ∈ Q4, such that det(P ) �= 0.
As in the case k = 5 we obtained certain special forms for θ depending only on
a0, a1 ∈ Q, that lead to quadratic CM polynomials.

Family 3 (Freeman [8]). Let θ = a0 + a1ζ10 − 2a1ζ
2
10, for some a0, a1 ∈ Q,

with a1 �= 0. The transition matrix has det(P ) = −25a6
1 and we obtain the

following polynomials with ρ(q, t, r) = 1:

u(x) = (2x2 − (4a0 + 3a1)x + (2a2
0 + 3a0a1 + 8a2

1))/5a2
1

r(x) = x4 − (4a0 + 3a1)x
3 + (6a2

0 + 9a0a1 + 9a2
1)x

2

− (4a3
0 − 9a2

0a1 − 18a0a
2
1 − 7a3

1)x + (a4
0 + 3a3

0a1 + 9a2
0a

2
1 + 7a1a

3
1 + 11a4

1)

f(x) = (3x2 − (6a0 + 2a1)x + (3a2
0 + 2a0a1 + 7a2

1))/5a2
1

Family 4. Let θ = a0+7a1ζ10−6a1ζ
2
10+4a1ζ

3
10, with a0, a1 ∈ Q and a1 �= 0. The

transition matrix has det(P ) = 313a6
1 and we obtain the following polynomial

family with ρ(q, t, r) = 3/2:

u(x) = (4x3 − (12a0 + 38a1)x
2 + (12a2

0 + 76a0a1 + 391a2
1)x

− (4a3
0 + 38a2

0a1 + 391a0a
2
1 + 80a3

1))/312a3
1

r(x) = x4 − (4a0 + 17a1)x
3 + (6a2

0 + 51a0a1 + 169a2
1)x

2

− (4a3
0 + 51a2

0a1 + 338a0a
2
1 + 633a3

1)x + (a4
0 + 17a3

0a1 + 169a2
0a

2
1 + 1111a4

1)

f(x) = (4x2 − 2(a0 + a1)x + (a2
0 + 2a0a1 + 13a2

1))/31a2
1

4 Sparse Families for Arbitrary CM Polynomials

In this section we present a more general method for the construction of polyno-
mial families of pairing-friendly elliptic curves. This approach can be applied for
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CM polynomials of any form, but as in the previous section we focus on cases
where f(x) = g(x)s2(x) for some quadratic, non-square polynomial g(x) (sparse
families). The proposed method is based on the remarks in [10,13].

We start by fixing an element θ ∈ Q(ζk) such that det(P ) �= 0, where P is the
transition matrix form B(θ) to the basis B(ζk). The polynomials u(x) and r(x)
are determined in the same way as described in Algorithm 1 where the coefficients
of u(x) and r(x) are all multivariate polynomials in Q[a0, a1, . . . , aϕ(k)−1]. We
compute these polynomials according to Equations (6) and (7) and we set the
trace polynomial to t(x) = u(x) + 1. The next step is to construct the cofactor
h(x) by setting

h(x) = hϕ(k)−2x
ϕ(k)−2 + . . . + h2x

2 + h1x + h0 ∈ Q[x]. (8)

We require that deg h = ϕ(k) − 2 or smaller, because in this case ρ = (2ϕ(k) −
2)/ϕ(k) < 2 (since deg(u − 1)2 = 2ϕ(k) − 2, while deg r = ϕ(k)). Substituting
the polynomials h(x), r(x) and t(x) into the parameterized CM equation (1) we
will get a degree 2ϕ(k) − 2 CM polynomial of the form

f(x) = f2ϕ(k)−2x
2ϕ(k)−2 + f2ϕ(k)−3x

2ϕ(k)−3 + . . . + f2x
2 + f1x + f0. (9)

The only unknown values are the coefficients of the cofactor which must be
determined. Suppose that we are searching for CM polynomials with deg f = i,
for some even i = 2, 4, . . . 2ϕ(k) − 2. Then the first 2ϕ(k) − i − 2 coefficients of
f(x) in Equation (9) must satisfy f2ϕ(k)−2 = f2ϕ(k)−3 = . . . = fi+1 = 0. Using
this system we can calculate some, or all the coefficients of the cofactor h(x). If
we set deg f < deg r = ϕ(k), then all coefficients of h(x) can be determined by
the above system. Otherwise, for the remaining coefficients of h(x) we will have
to do some additional search.

For example, when ϕ(k) = 4, (i.e. k ∈ {5, 8, 10, 12}) the polynomials f(x)
and h(x) will have deg f = 6 and deg h = 2 respectively. For CM polynomials
of the form f(x) = g(x)s2(x), with g(x) quadratic and non-square, the possible
values for the degree of f(x) are deg f ∈ {2, 4, 6}. Setting deg f = 2, we have
f6 = f5 = f4 = f3 = 0. From f6 = f5 = f4 = 0 we determine h(x) and we must
also guarantee that f3 = 0. When deg f = 4, we require some search for h0, while
when deg f = 6 we need to search for all coefficients of h(x). We applied this
idea for k = 8, 12 and we obtained a generalization of Drylo’s examples given
in [5], by representing θ in two variables a0, a1 ∈ Q.

Family 5. Let θ = a0 + a1ζ8 + a1ζ
2
8 − a1ζ

3
8 , with a0, a1 ∈ Q and a1 �= 0. The

transition matrix has det(P ) = −24a6
1 and setting h(x) = (x−a0−3a1)

2/(576a6
1)

we obtain the next polynomial family with ρ(q, t, r) = 3/2:

u(x) = (−x3 + 3(a0 + a1)x
2 − (3a2

0 + 6a0a1 − 5a2
1)x

+ (a3
0 + 3a2

0a1 − 5a0a
2
1 − 3a3

1))/12a3
1

r(x) = x4 − 4a0x
3 + (6a2

0 − 2a2
1)x

2 − (4a3
0 − 4a0a

2
1)x + (a4

0 − 2a2
0a

2
1 + 9a4

1)

f(x) = (x2 − 2a0x + a2
0 − a2

1)(x − a0 − 3a1)
2/18a4

1
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Family 6. Let θ = a0 +2a1ζ12 +a1ζ
2
12 −a1ζ

3
12, with a0, a1 ∈ Q and a1 �= 0. The

transition matrix has det(P ) = −45a6
1 and setting h(x) = (x−a0−3a1)

2/(900a6
1)

we obtain the next polynomials with ρ(q, t, r) = 3/2:

u(x) = (−x3 + (3a0 + 4a1)x
2 − (3a2

0 + 8a0a1 − 5a2
1)x

+ (a3
0 + 4a2

0a1 − 5a0a
2
1 − 9a3

1))/15a3
1

r(x) = x4 − (4a0 − 2a1)x
3 + (6a2

0 + 6a0a1 − 3a2
1)x

2

− (4a3
0 + 6a2

0a1 − 6a0a
2
1 − 4a3

1)x + (a4
0 + 2a3

0a1 − 3a2
0a

2
1 − 4a0a

3
1 + 13a4

1)

f(x) = (4x2 − 4(2a0 + a1)x + 4a2
0 + 4a0a1 + 17a2

1)(x − a0 − 3a1)
2/75a4

1

5 Experimental Results

We demonstrate some experimental results obtained by every polynomial family
described in Sections 3 and 4. Recall that each representative comes of a ran-
dom choice a0, a1 ∈ Q. For each polynomial family, different a0, a1 will result
in different polynomials q(x), t(x), r(x), producing the same curve parameters.
Before constructing the generalized Pell equation, we need to apply a linear
transformation on each family in order to make the polynomials integer valued
(See [12,13]). Furthermore, evaluating Families 5, 6 at (a0, a1) = (0, 1) we get
Drylo’s examples [5].

Example 1 (k = 5). Set (a0, a1) = (1, 1) in Family 1 and apply the transfor-
mation x → (55x−20) to obtain the next polynomial family with ρ(q, t, r) = 3/2:

t(x) = 220x3 + 470x2 + 345x + 87

r(x) = 55x4 + 145x3 + 145x2 + 65x + 11

q(x) = 12100x6 + 51700x5 + 93175x4 + 90645x3 + 50215x2 + 15030x + 1901

with CM polynomial f(x) = 5(x + 1)(11x + 7) and generalized Pell equation:

(55x − 10)2 − 55DY 2 = 100 (10)

Example 2 (k = 5). Set (a0, a1) = (0, 1) in Family 2 and apply the transfor-
mation x → (755x + 223) to get the polynomial family with ρ(q, t, r) = 3/2:

t(x) = −15100x3 − 12060x2 − 3185x − 276

r(x) = 3775x4 + 4525x3 + 2040x2 + 410x + 31

q(x) = 57002500x6 + 91053000x5 + 60407650x4 + 21289350x3 + 4201280x2

+ 440095x + 19129

with CM polynomial is f(x) = 3775x2 + 2260x+ 340 and generalized Pell equa-
tion:

(755x + 226)2 − 151DY 2 = −264. (11)
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Example 3 (Freeman for k = 10). Set (a0, a1) = (0, 1) in Family 3 and apply
the transformation x → (5x+ 2) to obtain the following polynomial family with
ρ(q, t, r) = 1:

t(x) = 10x2 + 5x + 3

r(x) = 25x4 + 25x3 + 15x2 + 5x + 1

q(x) = 25x4 + 25x3 + 25x2 + 10x + 3

with CM polynomial f(x) = 15x2 + 10x + 3 and generalized Pell equation:

(15x + 5)2 − 15DY 2 = −20. (12)

Example 4 (k = 10). Set (a0, a1) = (0, 1) in Family 4 and apply the transfor-
mation x → (31x−8) to obtain the next polynomial family with ρ(q, t, r) = 3/2:

t(x) = 124x3 − 134x2 + 57x − 7

r(x) = 31x4 − 49x3 + 31x2 − 9x + 1

q(x) = 3844x6 − 8308x5 + 8023x4 − 4253x3 + 1289x2 − 204x + 13

with CM polynomial f(x) = 31x2 − 18x + 3 and generalized Pell equation:

(31x − 9)2 − 31DY 2 = −12 (13)

Example 5 (k = 8). Set (a0, a1) = (1, 1) in Family 5 and apply the transfor-
mation x → (12x+4) to conclude to the polynomial family with ρ(q, t, r) = 3/2:

t(x) = −144x3 − 72x2 − 4x + 2

r(x) = 288x4 + 288x3 + 104x2 + 16x + 1

q(x) = 5184x6 + 5184x5 + 1872x4 + 144x3 − 54x2 − 4x + 1

Setting h(x) = 18x2 we get the CM polynomial f(x) = 8x2(144x2 + 72x + 7)
and the generalized Pell equation:

(24x + 6)2 − 2DY 2 = 8 (14)

Example 6 (k = 12). Set (a0, a1) = (1, 1) in Family 6 and apply the transfor-
mation x → (30x+24) to conclude to the polynomial family with ρ(q, t, r) = 3/2:

t(x) = −1800x3 − 3900x2 − 2796x − 662

r(x) = 3600x4 + 10800x3 + 12132x2 + 6048x + 1129

q(x) = 810000x6 + 3510000x5 + 6329700x4 + 6078600x3 + 3277725x2

+ 940704x + 112237

Setting h(x) = 25(3x+2)2 we get the CM polynomial f(x) = 12(400x2+600x+
223)(3x + 2)2 and the generalized Pell equation:

(60x + 45)2 − 3DY 2 = 18 (15)
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A different transformation in each example may result in some different curve
parameters. Recall that we are searching for x0 ∈ Z such that q(x0) and r(x0) are
both primes. However, this condition can be further loosened if we allow r(x0)
to contain a small cofactor s [18]. Pell Equation (10) is considered as special
because it is always solvable, for any positive and square free integer D. This
is because the standard Pell equation U2 − 55DV 2 = 1 is always solvable (see
Theorem 4.1 [16]) and if (Ui, Vi) is a solution of this equation, then (10Ui, 10Vi)
is a solution for (10). Thus we expect that Family 1 will produce more curve
parameters compared to the other sparse families (see [7] for details). In Table 1

Table 1. Suitable parameters for k ∈ {5, 8,10, 12} (128 ≤ log q ≤ 960)

Construction k D < 105 D < 106 ρ(q, t, r)

Example 1 5 12 47 3/2

Example 2 5 0 1 3/2

Example 3 10 2 4 1

Example 4 10 2 5 3/2

Example 5 8 1 5 3/2

Example 6 12 0 1 3/2

we present the number of suitable parameters obtained from Examples 1 to 6.
The field size is between 128 and 960 bits, while for D we set a limit up to 106

which is a reasonable value in order to keep CM method efficient. For Examples 2
and 6, increasing the bound for D will result in more suitable triples (q, t, r). The
table justifies our earlier claim that Family 1 has better chances in generating
suitable curve parameters than any other family reported for k /∈ {3, 4, 6}. We
also found several examples for k = 5 that improve the examples appeared
in [13] where a 252-bit prime q is constructed using a CM discriminant D with
7 decimal digits. Some examples of suitable parameters (q, t, r) are given in the
Appendix A.

6 Conclusion

We presented two different methods for producing sparse families of pairing-
friendly elliptic curves. We focus on the cases k ∈ {5, 8, 10, 12}, but our methods
can be applied for every embedding degree. Particularly for k = 5, we introduce
for the first time the use of Pell equations and presented an effective polynomial
family leading to a Pell equation that produces more curve parameters than
others. Furthermore our ρ-value 3/2 sets a record on sparse families with k = 5.
We also presented experimental results for the number of suitable triples (q, t, r)
obtained by every family of Section 5 for k ∈ {5, 8, 10, 12}.
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A Additional Polynomial Families and Parameters of
Proper Cryptographic Size

A.1 Additional Polynomial Families for k ∈ {5, 10}
We present two additional examples of sparse families for k = 5, 10. The following
families are constructed from elements θ which depend only on a0, a1 ∈ Q.

Family 7. Let θ = a0 + a1ζ5 + 2a1ζ
2
5 + 6a1ζ

3
5 , with a0, a1 ∈ Q and a1 �= 0. The

transition matrix has det(P ) = −113a6
1 and we obtain the polynomials:

u(x) = (−6x3 + (18a0 + 22a1)x
2 + (39a2

1 − 18a2
0 − 44a0a1)x

+ (6a3
0 + 22a2

0a1 − 39a0a
2
1 − 1328a3

1))/(11a1)
3

r(x) = x4 + (9a1 − 4a0)x
3 + (6a2

0 − 27a0a1 + 21a2
1)x

2

+ (27a2
0a1 − 4a3

0 − 42a0a
2
1 + 139a3

1)x

+ (a4
0 − 9a3

0a1 + 21a2
0a

2
1 − 139a0a

3
1 + 881a4

1)

f(x) = (x2 + (2a1 − 2a0)x + (a2
0 − 2a0a1 − 19a2

1))/11a2
1

with ρ(q, t, r) = 3/2.

Family 8. Let θ = a0 + 4a1ζ10 − 9a1ζ
2
10 + 6a1ζ

3
10, with a0, a1 ∈ Q and a1 �= 0.

The transition matrix has det(P ) = 52113a6
1 and we obtain the polynomials:

u(x) = (−3x3 + (9a0 + 72a1)x
2 − (9a2

0 + 144a0a1 + 490a2
1)x

+ (3a3
0 + 72a2

0a1 + 490a0a
2
1 − 324a3

1))/605b3

r(x) = x4 − (4a0 + 19a1)x
3 + (6a2

0 + 57a0a1 + 91a2
1)x

2

− (4a3
0 + 57a2

0a1 + 182a0a
2
1 − 371a3

1)x

+ (a4
0 + 19a3

0a1 + 91a2
0a

2
1 − 371a0a

3
1 + 331a4

1)

f(x) = (2x2 − (4a0 + 19a1)x + (2a2
0 + 19a0a1 − 13a2

1))/55a2
1

with ρ(q, t, r) = 3/2.

A.2 Curve Parameters of Proper Cryptographic Size

We give some examples of suitable integer triples (q, t, r) obtained from the
polynomial families described in Section 5. Recall that we considered cases where
the order r is not necessarily prime but it may contain a small cofactor s, in which
case r = s · r̃ for some large prime r̃. We also give some examples obtained by
Freeman’s family again considering r as a nearly prime integer.
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Family of Example 1 (k = 5)

D = 107

x0 = 1170622244439162529

q = 31137662343827744551142706385896615302997261945942170125424854062898211567553375827328090

441432034923364570532141 (374 bits)

t = 352917340712114878936613350792963264809459350656454770167

r̃ = 153924325441846702408790989300257953361367647121303724027660177936902261 (237 bits)

s = 671

ρ = 1.5802

D = 141811

x0 = −11994919643295

q = 36038725807179632846121982264894020506015116280644554421295633955149244889919168941 (275 bits)

t = −379677367285328888596979964823118201071433

r = 1138549877741377933395022094278669277536945192203801451 (180 bits)

ρ = 1.5272

D = 227715

x0 = −6451333850566315667727

q = 87233333991933520436364492086029196902705342851777194616867647955622986668808024860010894

0348738715309158652494135718896119867350695181 (449 bits)

t = −59070579476397053688101033517360218652807824815338621499478343551033

r = 95271007237162045789384923633955286139031806991393577973739432727800408780288403427388411

(296 bits)

ρ = 1.5165

D = 383259

x0 = −4133570859843463005

q = 60358396257221629182345603319603709624185200112850740092554000742162689307714418757327712

558715354305776137285883341 (385 bits)

t = −15538133254316186251355289076376868368098140548317354327583

r̃ = 517967539003274709960997568423373862586544447314877703857401093284827959671 (249 bits)

s = 31

ρ = 1.5496

D = 584915

x0 = 923586152635579344325

q = 75101713820205889762723839841611970090249093111475504738731273047109345166689007527938953

26903475129355677294315246233807405985141 (432 bits)

t = 173322489966196700451126893215802355630442497676479648477965499867

r̃ = 629525458436623677361367527688019566219283592204259776270209146137288982600232581 (269 bits)

s = 63571

ρ = 1.6074

D = 879515

x0 = −44614321100137293687

q = 95418174239059772134251115900324243294147299645849145168155742349228224690584734518526584

469902051743344078888187791164381 (406 bits)

t = −19536445351092892419034920540489034583449754390490653292958433

r = 217901311512235692233368368115403359841826330176190408953014913308137507745536211 (267 bits)

ρ = 1.5183
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Family of Example 3 (k = 10)

D = 35707

x0 = 18496897600565332717798

q = 29264127335801009923075618730398332208277331379369690762853077974906042604288972945954982

83 (301 bits)

t = 3421352208457995627824074565002131557723277033

r̃ = 572606078821846398521757991833165656234691773483393315664616031308981446036703400161

(279 bits)

s = 5110691

ρ = 1.08

Family of Example 4 (k = 10)

D = 203547

x0 = 22135059892867860

q = 45213443809488309090269664562338678320921402080888190758160941573203714103166816660827656

4827307572973 (338 bits)

t = 1344818854857237775934665018462083587567592383545613

r̃ = 950314324394168276687704680443726100035400288573930051829637131 (210 bits)

s = 7831

ρ = 1.6141

Family of Example 5 (k = 8)

D = 123998

x0 = −4905703988594849146021

q = 72255852307496602190358838372039620872388857865993606551782283905685268613721698290007633

186373043500929463962638466668310049924398799 (445 bits)

t = 1344818854857237775934665018462083587567592383545613

r = 166800690696195508912807274002584741056682578896316371026683908097448317598808893213388889

(279 bits)

ρ = 1.5003

D = 249614

x0 = −12121921090938970

q = 16447265702239232230524893751417864688297201974229296032271581948519955327250225227613898

691712275281 (333 bits)

t = 256493787076718349353650951939281473598462227483082

r̃ = 10486332031231303372764054074012739342556761692856009203286692017 (213 bits)

s = 593

ρ = 1.5654
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