

M. Indulska and S. Purao (Eds.): ER Workshops 2014, LNCS 8823, pp. 55–64, 2014.
© Springer International Publishing Switzerland 2014

Benchmarking Performance for Migrating a Relational
Application to a Parallel Implementation

Krishna Karthik Gadiraju, Karen C. Davis, and Paul G. Talaga

Electrical Engineering and Computing Systems
University of Cincinnati

Cincinnati, OH- 45221-0030
gadirakk@mail.uc.edu, karen.davis@uc.edu, talagapl@ucmail.uc.edu

Abstract. Many organizations rely on relational database platforms for OLAP-
style querying (aggregation and filtering) for small to medium size applications.
We investigate the impact of scaling up the data sizes for such queries. We in-
tend to illustrate what kind of performance results an organization could expect
should they migrate current applications to big data environments. This paper
benchmarks the performance of Hive [20], a parallel data warehouse platform
that is a part of the Hadoop software stack. We set up a 4-node Hadoop cluster
using Hortonworks HDP 1.3.2 [10]. We use the data generator provided by the
TPC-DS benchmark [3] to generate data of different scales. We use a represent-
ative query provided in the TPC-DS query set and run the SQL and Hive Query
Language (HiveQL) versions of the same query on a relational database instal-
lation (MySQL) and on the Hive cluster. We measure the speedup for query
execution for all dataset sizes resulting from the scale up. Hive loads the large
datasets faster than MySQL, while it is marginally slower than MySQL when
loading the smaller datasets.

Keywords: Hive, Hadoop, benchmarking, big data, SQL, queries.

1 Introduction

Big data refers to petabyte scale datasets that cannot be managed and analyzed using
traditional database management systems and data warehouses. The last decade has
seen an enormous rise in the size of data collected by different organizations. Accord-
ing to Baru et al. [1], studies have indicated that enterprise data is estimated to grow
from 0.5 ZB in 2008 to 35 ZB in 2020. Traditional relational database systems are
considered incapable of handling data of such scale. However, it is not always clear to
a smaller organization what performance gains they can expect to achieve for their
application with a modest investment in additional hardware. One such organization
approached us with this question. After analyzing their current configuration and
typical queries, we selected a hardware/software configuration and test query to ena-
ble us to provide some indication of what they could expect if they scaled up their
data. Their application only runs one data intensive query at a time, and they wished
to own their own hardware, so our experiments target this scenario. There are no other
results in the literature that address this question.

56 K.K. Gadiraju, K.C. Davis, and P.G. Talaga

In this paper, we discuss the features of Apache Hive, and compare its performance
against a relational database system. We use a query and data that are a part of the TPC-
DS [19] benchmarking standard. In the following sections, we briefly describe the fea-
tures of Hive. We present our experimental setup, procedures, and results obtained. We
analyze the results and offer conclusions. We also suggest some future work.

2 Apache Hive

Apache Hive is a distributed data warehouse that is a part of the Hadoop software
stack. Queries in Hive are written in HiveQL (Hive Query Language), which follows
a syntax similar to SQL. Queries written in HiveQL are translated into a series of
MapReduce [2] jobs. The HiveQL query is translated into a DAG (Directed Acyclic
Graph) of MapReduce jobs. MapReduce is a parallel programming framework. The
MapReduce jobs defined in the DAG are executed in parallel on the different nodes in
the cluster where the data is stored to obtain the results. A typical Hive installation
has a Metastore [20], which is used to store the metadata related to the tables and
columns, a Thrift server [20], which provides a client API for executing the HiveQL
statements, external interfaces such as command line interface (CLI), a driver [20],
which is responsible for management of the life cycle of a HiveQL statement, a com-
piler [20] which is used to translate a HiveQL statement it receives from the driver
into a DAG of MapReduce jobs. Once the DAG of MapReduce jobs is prepared by
the compiler, the driver invokes the execution engine [20] (which in the case of Hive
is Hadoop) to execute the MapReduce jobs. A Hive data model consists of tables,
partitions and buckets [20]. A Hive table is similar to a table in a relational database
and is made up of rows and columns. Each time a table is created in Hive, a new di-
rectory is created on HDFS (Hadoop Distributed File System) and data related to that
table is stored in that folder. A table can have one or more partitions. Each partition is
stored as a separate directory within the table directory and the data is stored in whi-
chever partition directory it belongs to. The partitions can be further sub-divided into
buckets, depending upon the hash of a column in the table [20]. The buckets are
stored as individual files within their respective partition directories.

3 Experimental Setup

3.1 Hardware Configuration

A 4-node Hadoop cluster was set up using Hortonworks HDP 1.3.2 [10]. We were
limited to a small cluster because of the feasibility of an academic setup wherein we
used the available departmental hardware. Each machine has dual quad-core Intel
Xeon processors for a total of 16 hyper-threaded cores per machine, 48 GB RAM and
3.08 TB HDD. All four machines communicate with each other using a gateway ma-
chine. The MySQL machine shared the same processor and RAM, but had a 2.05 TB
HDD installed. The six machines mentioned here are connected together using a
Cisco SG 200-26 26-Port Gigabit Smart Switch.

 Benchmarking Performance for Migrating a Relational Application 57

3.2 Software Configuration

The Hadoop cluster was set up using Hortonworks HDP 1.3.2. The version of Hive
used in this study is 0.11, and the version of MySQL used is 5.1.71. Centos 6.4 mi-
nimal operating system was used to set up the Hadoop cluster, which ran Hadoop
version 1.2.

3.3 Experimental Procedure

There are several benchmarking standards defined to benchmark the performance of
Hadoop such as such as Sorting programs (Hadoop Sort Program [17], TeraSort [7]),
GridMix [5] and HiBench Benchmarking Suite [12], but none of them have well-
defined queries or a schema necessary for evaluating the run time performance of a
big data management system such as Hive. BigBench [4] and Hive Performance
Benchmark [9] both define a schema and dataset for benchmarking Hive, but Big-
Bench is based on the TPC-DS benchmark and provides a larger variety and scale of
datasets and queries. While the structured part of BigBench is based on TPC-DS, it
also adds several semi-structured and unstructured data components [4]. Since we are
dealing with how Hive performs against a relational system, we use the TPC-DS
benchmark to analyze the performance of Hive.

TPC-DS (Transaction Processing Performance Council–Decision Support) is a
benchmark for evaluating decision support systems. It defines 99 distinct queries that
serve a typical business analysis environment [13]. TPC-DS uses a snowstorm sche-
ma [13], which is a collection of several snowflake schemas. The schema has been
created to model the decision support functions of a retail product supplier [13]. We
selected Query 7 [19] from the TPC-DS benchmark as a representative OLAP-style
query. It joins 5 tables and contains 4 aggregation operations, 1 group by operation,
and 1 order by operation. We modified the original version of the query to remove the
“top 100” expression in order to focus on aggregation and filtering over a fact table
and several dimension tables. The modified and HiveQL version of the query are as
shown below.

The modified SQL query is:

select i_item_id,
 avg(ss_quantity) agg1,
 avg(ss_list_price) agg2,
 avg(ss_coupon_amt) agg3,
 avg(ss_sales_price) agg4
from store_sales, customer_demographics, date_dim, item,
promotion
where ss_sold_date_sk = d_date_sk and
 ss_item_sk = i_item_sk and
 ss_cdemo_sk = cd_demo_sk and
 ss_promo_sk = p_promo_sk and
 cd_gender = 'F' and
 cd_marital_status = 'D' and

58 K.K. Gadiraju, K.C. Davis, and P.G. Talaga

 cd_education_status = 'College' and
 (p_channel_email = 'N' or p_channel_event = 'N') and
 d_year = 2001
group by i_item_id
order by i_item_id;

Since HiveQL uses joins rather than listing tables using the ‘,’ operator in the FROM
clause as in the TPC-DS query above, the revised query is shown below:

select i_item_id,
 avg(ss_quantity) agg1,
 avg(ss_list_price) agg2,
 avg(ss_coupon_amt) agg3,
 avg(ss_sales_price) agg4
from store_sales ss join date_dim d on
(ss.ss_sold_date_sk = d.d_date_sk)
join item i on (ss.ss_item_sk = i.i_item_sk)
join promotion p on (ss.ss_promo_sk = p.p_promo_sk)
join customer_demographics cd on (ss.ss_cdemo_sk =
cd.cd_demo_sk)
 where
 cd_gender = 'F' and
 cd_marital_status = 'D' and
 cd_education_status = 'College' and
 (p_channel_email = 'N' or p_channel_event = 'N') and
 d_year = 2001
 group by i_item_id
 order by i_item_id;

The tables mentioned in the above query are defined in both SQL in HiveQL. Since
Hive 0.11 does not support variable types such as varchar and date, they are substi-
tuted by string and timestamp, respectively.

4 Results and Analysis

4.1 Results

We use dbgen2 [3] the data generator that is provided as a part of the TPC-DS
framework to generate datasets of different scales-100 GB, 300 GB and 1 TB (D1, D2
and D3). Tables 1, 2, and 3 display the sizes of datasets used for each experiment and
the amount of time taken to load the datasets into Hive and MySQL. Table 4 displays
the amount of time taken to execute the query mentioned in the previous section for
all the dataset sizes.

 Benchmarking Performance for Migrating a Relational Application 59

Table 1. Amount of time taken to load datasets (100GB)- D1

Table name Size Data load time (MySQL) Data load time (Hive)
customer_demographics 77 MB 5.78s 2.764s
item 56 MB 1.73s 2.045s
promotion 123 KB 0.01s 0.41s
store_sales 39 GB 14h 25m 47.22s 21m 43.907s
date_dim 9.9 MB 0.5s 0.6s

Table 2. Amount of time taken to load datasets (300 GB) – D2

Table name Size Data load time (MySQL) Data load time (Hive)
customer_demographics 77 MB 5.82s 2.507s
Item 72 MB 2.24s 2.271s
Promotion 159 KB 0.03s 0.407s
store_sales 116 GB 1d 19h 42m 48.84s 1h 2m 36.776s
date_dim 10 MB 0.37s 0.718s

Table 3. Amount of time taken to load datasets (1 TB) – D3

Table name Size Data load time (MySQL) Data load time (Hive)
customer_demographics 77 MB 5.74s 3.28s
item 82 MB 2.53s 2.168s
promotion 184 KB 0.02s 0.458s
store_sales 390 GB 6d 3h 17m 20.76s 2h 58m 8.888s
date_dim 10 MB 0.36s 0.686s

Table 4. Query execution times for datasets D1, D2, and D3

Dataset Original dataset
size

Query dataset
size

Query execution
time (MySQL)

Query execution
time (Hive)

D1 100 GB 39 GB 8m 49.18s 4m 12.816s
D2 300 GB 117 GB 31m 59.77s 11m 57.084s
D3 1 TB 390 GB 1h 35m 46.23s 38m 0.41s

4.2 Analysis

From Tables 1-4, we offer two observations and conclusions.

1. Regarding data loading: consider the amount of time taken by both MySQL and
Hive to load the item dataset from Tables 1, 2 and 3. While the dataset size is small
(D1), MySQL loads data faster than Hive. But as the size of the dataset increases,
the difference in time decreases. In D3, Hive is in fact faster in loading the dataset
than MySQL. By observing the amount of time taken to load the store_sales data-
set for the three datasets shown in Tables 1, 2, and 3 it can be observed that for our
scenario, Hive loads large datasets faster than MySQL. Since Hive copies the files

60 K.K. Gadiraju, K.C.

verbatim onto a folder
parses the data file, the
creases. Figures 1 and 2
item and store_sales da
store_sales is categorize
table [13]. In other w
small/medium scale da
store_sales dataset can b
tween 39 GB to 390 GB.
how Hive loads datasets

2. Regarding query executi
as shown in Table 4. I
executes the query faster
query execution times f
dataset increases, the di
Hive increases. This dif
fact that a query written
explained in Section 2
machines based on wher
execute the query faster t

Based on our studies, we c
ries in an RDBMS environ
nificantly larger datasets.
supports equijoins.

Fig. 1. A compariso

Davis, and P.G. Talaga

on HDFS and does not parse the file [21], and MyS
difference becomes apparent as the size of the dataset
show a comparison of the amount of time taken to load
tasets. From the snowstorm schema defined by TPC-D

ed as a fact table, while item is categorized as a dimens
words, while the item dataset can be categorized a
ataset, with its size ranging between 56-72 MB,
be categorized as a large dataset, with its size ranging
. By considering both these datasets, we are able to anal
of different sizes.

ion: consider the amount of time taken to execute the qu
It can be observed that for all the three datasets, H
r than MySQL. Figure 3 shows a comparison between
for three datasets shown in Table 4. As the size of
ifference in query execution times between MySQL
fference in query execution speed can be attributed to
in HiveQL is translated into a series of MapReduce job

2. Since the query is executed in parallel on differ
re the data has been stored by the HDFS, Hive is able
than MySQL.

conclude that an organization working with aggregate q
ment can benefit from scaling up their applications to
One limitation, however, is that HiveQL currently o

on of data load times for item dataset: MySQL vs. Hive

SQL
t in-
 the
DS,
sion
as a

the
be-

lyze

uery
Hive

the
the
and
the

s as
rent
e to

que-
sig-

only

 Benchmark

Fig. 2. A comparison o

Fig. 3. A compar

5 Related Work

While there have been othe
this study differs from them
used, the relational databas
data used. Table 5 gives a
chmarking Hive and how th

king Performance for Migrating a Relational Application

of data load times for store_sales dataset: MySQL vs. Hive

rison of query execution times for MySQL and Hive

er studies that have benchmarked the performance of Hi
m in terms of the number of nodes used, the version of H
se used, the benchmarking standard used and the size
a comparison of the different studies conducted on b
hey differ from our study.

61

ive,
Hive
e of
ben-

62 K.K. Gadiraju, K.C. Davis, and P.G. Talaga

Table 5. Comparison of features with related studies

Study Benchmark Dataset
size

Hive
version

Number
of nodes

used

Additional Differ-
ences

Hortonworks
Stinger Initia-

tive [11]

TPC-DS
(Query 27, 95)

200GB,
1 TB

0.11,
0.12,
0.13

Not spe-
cified

• Not com-
pared to a rela-
tional database
• Does not
consider data
load time

Shi et al. [18] Queries and
datasets pro-
vided by Pav-
lo et al. [15]

110 GB 0.6 20 • Not com-
pared to a rela-
tional database
• Uses que-
ries that are not
as complex as
the one used in
this study

Hive Perfor-
mance

Benchmark
[9]

Queries and
datasets pro-
vided by Pav-
lo et al. [15]

110 GB Trunk
version
786346

11 • Not com-
pared to a rela-
tional database
• Uses que-
ries that are not
as complex as
the one used in
this study

Jia et al. [16] TPC-H 100 GB Trunk
version
799148

11 • Does not
consider data
load times

Pansare et al.
[14]

TPC-H 10 GB Not
specified

4 • Focuses
on mid-level da-
ta analysis and
uses only 10GB
dataset
• Not com-
pared to a rela-
tional database

Gadiraju et al.
(current
study)

TPC-DS 390 GB 0.11 4 • Compares
performance
with a relational
database
• Considers
both data load
time and query
execution time
• Focuses
on large scale
data analysis

 Benchmarking Performance for Migrating a Relational Application 63

6 Future Work

Future performance studies could investigate additional queries as well as increase the
number of nodes in the cluster. There are several directions in which research can be
conducted on Hive to achieve further improvement. Some of them include:

• Improved connection to the Hive Metastore: one of the issues we observed while
working with the cluster is that the Metastore used by Hive to store its metadata is
a single point of failure. Once the relational database service running as the Metas-
tore crashes, Hive has no other means of accessing its metadata. There is a need to
define a backup mechanism through which Hive can still access its metadata when
it is unable to access its Metastore.

• Optimizing performance: while several steps have been taken to ensure query op-
timization [20] in Hive, there are several ways in which Hive queries can be opti-
mized. Storing statistical data in the form of metadata in the Metastore at column,
partition, and table level as suggested by Gruenheid et al. [6] is one way of improv-
ing query performance.

• Herodotos et al. [8] conduct research to indicate how placement of data within the
HDFS would govern how well a MapReduce job would run. Their model, StarFish
[8], defines a means to place data optimally to enhance MapReduce performance.
Further research can be conducted to study the efficiency of the StarFish model,
and benchmark how the StarFish model would improve the performance of Hive.

Acknowledgements. Thanks to Dr. Thomas Wilson and James Newman for bringing
this interesting problem to our attention and to Trajectory HealthCare (www.
trajectoryhealthcare.com) for supporting the investigation.

References

1. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Setting the direction for big
data benchmark standards. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS,
vol. 7755, pp. 197–208. Springer, Heidelberg (2013)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-
munications of the ACM 51(1), 107–113 (2008)

3. DSGen v1.1.0, data generation tool for TPC-DS, http://www.tpc.org/tpcds/
4. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.-A.: Big-

Bench: Towards an Industry Standard Benchmark for Big Data Analytics (2013)
5. GridMix program. Available in Hadoop source distribution: src/benchmarks/gridmix
6. Gruenheid, A., Omiecinski, E., Mark, L.: Query optimization using column statistics in

hive. In: Proceedings of the 15th Symposium on International Database Engineering &
Applications, pp. 97–105. ACM (2011)

7. HadoopTeraSort program. Available in Hadoop source distribution since 0.19 version:
src/examples/org/apache/hadoop/examples/terasort

8. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: A
Self-tuning System for Big Data Analytics. In: CIDR, vol. 11, pp. 261–272 (2011)

64 K.K. Gadiraju, K.C. Davis, and P.G. Talaga

9. Hive Performance Benchmark, https://issues.apache.org/jira/browse/
hive-396

10. Hortonworks HDP 1.3.2, http://hortonworks.com/products/hdp/hdp-1-
3/#overview

11. Hortonworks Stinger Initiative, http://hortonworks.com/labs/stinger/
12. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: Characte-

rization of the MapReduce-based data analysis. In: 2010 IEEE 26th International Confe-
rence on Data Engineering Workshops (ICDEW), pp. 41–51. IEEE (2010)

13. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: Proceedings of the 32nd Interna-
tional Conference on Very Large Data Bases, pp. 1049–1058. VLDB Endowment (2006)

14. Pansare, N., Cai, Z.: Using Hive to perform medium-scale data analysis (2010)
15. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.:

A comparison of approaches to large-scale data analysis. In: Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data, pp. 165–178. ACM
(2009)

16. Running the TPC-H benchmark on Hive, https://issues.apache.org/jira/
secure/attachment/12416257/TPC-H_on_Hive_2009-08-11.pdf

17. Sort program. Available in Hadoop source distribution: src/examples/org/apache/hadoop/
examples/sort

18. Shi, Y., Meng, X., Zhao, J., Hu, X., Liu, B., Wang, H.: Benchmarking cloud-based data
management systems. In: Proceedings of the Second International Workshop on Cloud Da-
ta Management, pp. 47–54. ACM (2010)

19. TPC-DS benchmarking standard,
http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf

20. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive: A warehousing solution over a map-reduce framework. Proceedings of
the VLDB Endowment 2(2), 1626–1629 (2009)

21. White, T.: Hadoop: The definitive guide. O’Reilly (2012)

	Benchmarking Performance for Migrating a Relational Application to a Parallel Implementation
	1 Introduction
	2 Apache Hive
	3 Experimental Setup
	3.1 Hardware Configuration
	3.2 Software Configuration
	3.3 Experimental Procedure

	4 Results and Analysis
	4.1 Results
	4.2 Analysis

	5 Related Work
	6 Future Work
	References

