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Abstract. Many organizations rely on relational database platforms for OLAP-
style querying (aggregation and filtering) for small to medium size applications. 
We investigate the impact of scaling up the data sizes for such queries. We in-
tend to illustrate what kind of performance results an organization could expect 
should they migrate current applications to big data environments. This paper 
benchmarks the performance of Hive [20], a parallel data warehouse platform 
that is a part of the Hadoop software stack. We set up a 4-node Hadoop cluster 
using Hortonworks HDP 1.3.2 [10]. We use the data generator provided by the 
TPC-DS benchmark [3] to generate data of different scales. We use a represent-
ative query provided in the TPC-DS query set and run the SQL and Hive Query 
Language (HiveQL) versions of the same query on a relational database instal-
lation (MySQL) and on the Hive cluster. We measure the speedup for query  
execution for all dataset sizes resulting from the scale up. Hive loads the large 
datasets faster than MySQL, while it is marginally slower than MySQL when 
loading the smaller datasets. 
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1 Introduction 

Big data refers to petabyte scale datasets that cannot be managed and analyzed using 
traditional database management systems and data warehouses. The last decade has 
seen an enormous rise in the size of data collected by different organizations. Accord-
ing to Baru et al. [1], studies have indicated that enterprise data is estimated to grow 
from 0.5 ZB in 2008 to 35 ZB in 2020. Traditional relational database systems are 
considered incapable of handling data of such scale. However, it is not always clear to 
a smaller organization what performance gains they can expect to achieve for their 
application with a modest investment in additional hardware. One such organization 
approached us with this question. After analyzing their current configuration and 
typical queries, we selected a hardware/software configuration and test query to ena-
ble us to provide some indication of what they could expect if they scaled up their 
data. Their application only runs one data intensive query at a time, and they wished 
to own their own hardware, so our experiments target this scenario. There are no other 
results in the literature that address this question.  
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In this paper, we discuss the features of Apache Hive, and compare its performance 
against a relational database system. We use a query and data that are a part of the TPC-
DS [19] benchmarking standard. In the following sections, we briefly describe the fea-
tures of Hive. We present our experimental setup, procedures, and results obtained. We 
analyze the results and offer conclusions. We also suggest some future work. 

2 Apache Hive 

Apache Hive is a distributed data warehouse that is a part of the Hadoop software 
stack. Queries in Hive are written in HiveQL (Hive Query Language), which follows 
a syntax similar to SQL. Queries written in HiveQL are translated into a series of 
MapReduce [2] jobs. The HiveQL query is translated into a DAG (Directed Acyclic 
Graph) of MapReduce jobs. MapReduce is a parallel programming framework. The 
MapReduce jobs defined in the DAG are executed in parallel on the different nodes in 
the cluster where the data is stored to obtain the results. A typical Hive installation 
has a Metastore [20], which is used to store the metadata related to the tables and 
columns, a Thrift server [20], which provides a client API for executing the HiveQL 
statements, external interfaces such as command line interface (CLI), a driver [20], 
which is responsible for management of the life cycle of a HiveQL statement, a com-
piler [20] which is used to translate a HiveQL statement it receives from the driver 
into a DAG of MapReduce jobs. Once the DAG of MapReduce jobs is prepared by 
the compiler, the driver invokes the execution engine [20] (which in the case of Hive 
is Hadoop) to execute the MapReduce jobs. A Hive data model consists of tables, 
partitions and buckets [20]. A Hive table is similar to a table in a relational database 
and is made up of rows and columns. Each time a table is created in Hive, a new di-
rectory is created on HDFS (Hadoop Distributed File System) and data related to that 
table is stored in that folder. A table can have one or more partitions. Each partition is 
stored as a separate directory within the table directory and the data is stored in whi-
chever partition directory it belongs to. The partitions can be further sub-divided into 
buckets, depending upon the hash of a column in the table [20]. The buckets are 
stored as individual files within their respective partition directories.  

3 Experimental Setup 

3.1 Hardware Configuration 

A 4-node Hadoop cluster was set up using Hortonworks HDP 1.3.2 [10]. We were 
limited to a small cluster because of the feasibility of an academic setup wherein we 
used the available departmental hardware. Each machine has dual quad-core Intel 
Xeon processors for a total of 16 hyper-threaded cores per machine, 48 GB RAM and 
3.08 TB HDD. All four machines communicate with each other using a gateway ma-
chine. The MySQL machine shared the same processor and RAM, but had a 2.05 TB 
HDD installed. The six machines mentioned here are connected together using a  
Cisco SG 200-26 26-Port Gigabit Smart Switch.  
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3.2 Software Configuration 

The Hadoop cluster was set up using Hortonworks HDP 1.3.2. The version of Hive 
used in this study is 0.11, and the version of MySQL used is 5.1.71. Centos 6.4 mi-
nimal operating system was used to set up the Hadoop cluster, which ran Hadoop 
version 1.2. 

3.3 Experimental Procedure 

There are several benchmarking standards defined to benchmark the performance of 
Hadoop such as such as Sorting programs (Hadoop Sort Program [17], TeraSort [7]), 
GridMix [5] and HiBench Benchmarking Suite [12], but none of them have well-
defined queries or a schema necessary for evaluating the run time performance of a 
big data management system such as Hive. BigBench [4] and Hive Performance 
Benchmark [9] both define a schema and dataset for benchmarking Hive, but Big-
Bench is based on the TPC-DS benchmark and provides a larger variety and scale of 
datasets and queries. While the structured part of BigBench is based on TPC-DS, it 
also adds several semi-structured and unstructured data components [4]. Since we are 
dealing with how Hive performs against a relational system, we use the TPC-DS 
benchmark to analyze the performance of Hive.  

TPC-DS (Transaction Processing Performance Council–Decision Support) is a 
benchmark for evaluating decision support systems. It defines 99 distinct queries that 
serve a typical business analysis environment [13]. TPC-DS uses a snowstorm sche-
ma [13], which is a collection of several snowflake schemas. The schema has been 
created to model the decision support functions of a retail product supplier [13]. We 
selected Query 7 [19] from the TPC-DS benchmark as a representative OLAP-style 
query.  It joins 5 tables and contains 4 aggregation operations, 1 group by operation, 
and 1 order by operation. We modified the original version of the query to remove the 
“top 100” expression in order to focus on aggregation and filtering over a fact table 
and several dimension tables. The modified and HiveQL version of the query are as 
shown below. 

The modified SQL query is: 

select i_item_id,  
  avg(ss_quantity) agg1, 
  avg(ss_list_price) agg2, 
  avg(ss_coupon_amt) agg3, 
  avg(ss_sales_price) agg4  
from store_sales, customer_demographics, date_dim, item, 
promotion 
where ss_sold_date_sk = d_date_sk and 
  ss_item_sk = i_item_sk and 
  ss_cdemo_sk = cd_demo_sk and 
  ss_promo_sk = p_promo_sk and 
  cd_gender = 'F' and  
  cd_marital_status = 'D' and 
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  cd_education_status = 'College' and 
  (p_channel_email = 'N' or p_channel_event = 'N') and 
  d_year = 2001  
group by i_item_id 
order by i_item_id; 
 

Since HiveQL uses joins rather than listing tables using the ‘,’ operator in the FROM 
clause as in the TPC-DS query above, the revised query is shown below:  

select i_item_id,  
  avg(ss_quantity) agg1, 
  avg(ss_list_price) agg2, 
  avg(ss_coupon_amt) agg3, 
  avg(ss_sales_price) agg4  
from store_sales ss join date_dim d on 
(ss.ss_sold_date_sk = d.d_date_sk)  
join item i on ( ss.ss_item_sk = i.i_item_sk )  
join promotion p on (ss.ss_promo_sk = p.p_promo_sk)  
join customer_demographics cd on (ss.ss_cdemo_sk = 
cd.cd_demo_sk)  
  where  
  cd_gender = 'F' and  
  cd_marital_status = 'D' and 
  cd_education_status = 'College' and 
  (p_channel_email = 'N' or p_channel_event = 'N') and 
  d_year = 2001  
 group by i_item_id 
 order by i_item_id; 

The tables mentioned in the above query are defined in both SQL in HiveQL. Since 
Hive 0.11 does not support variable types such as varchar and date, they are substi-
tuted by string and timestamp, respectively.  

4 Results and Analysis 

4.1 Results 

We use dbgen2 [3] the data generator that is provided as a part of the TPC-DS 
framework to generate datasets of different scales-100 GB, 300 GB and 1 TB (D1, D2 
and D3). Tables 1, 2, and 3 display the sizes of datasets used for each experiment and 
the amount of time taken to load the datasets into Hive and MySQL. Table 4 displays 
the amount of time taken to execute the query mentioned in the previous section for 
all the dataset sizes. 
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Table 1. Amount of time taken to load datasets (100GB)- D1 

Table name Size Data load time (MySQL) Data load time (Hive) 
customer_demographics 77 MB 5.78s 2.764s 
item 56 MB 1.73s 2.045s 
promotion 123 KB 0.01s 0.41s 
store_sales 39 GB 14h 25m 47.22s 21m  43.907s 
date_dim 9.9 MB 0.5s 0.6s 

Table 2. Amount of time taken to load datasets (300 GB) – D2 

Table name Size Data load time (MySQL) Data load time (Hive) 
customer_demographics 77 MB 5.82s 2.507s 
Item 72 MB 2.24s 2.271s 
Promotion 159 KB 0.03s 0.407s 
store_sales 116 GB 1d 19h 42m 48.84s 1h 2m 36.776s 
date_dim 10 MB 0.37s 0.718s 

Table 3. Amount of time taken to load datasets (1 TB) – D3 

Table name Size Data load time (MySQL) Data load time (Hive) 
customer_demographics 77 MB 5.74s 3.28s 
item 82 MB 2.53s 2.168s 
promotion 184 KB 0.02s 0.458s 
store_sales 390 GB 6d 3h 17m 20.76s 2h 58m 8.888s 
date_dim 10 MB 0.36s 0.686s 

Table 4. Query execution times for datasets D1, D2, and D3 

Dataset Original dataset 
size 

Query dataset 
size 

Query execution 
time (MySQL) 

Query execution 
time (Hive) 

D1  100 GB 39 GB 8m 49.18s 4m 12.816s 
D2 300 GB 117 GB 31m 59.77s 11m 57.084s 
D3 1 TB 390 GB 1h 35m 46.23s 38m 0.41s 

4.2 Analysis 

From Tables 1-4, we offer two observations and conclusions. 

1. Regarding data loading: consider the amount of time taken by both MySQL and 
Hive to load the item dataset from Tables 1, 2 and 3. While the dataset size is small 
(D1), MySQL loads data faster than Hive. But as the size of the dataset increases, 
the difference in time decreases. In D3, Hive is in fact faster in loading the dataset 
than MySQL. By observing the amount of time taken to load the store_sales data-
set for the three datasets shown in Tables 1, 2, and 3 it can be observed that for our 
scenario, Hive loads large datasets faster than MySQL. Since Hive copies the files  
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Table 5. Comparison of features with related studies 

Study Benchmark Dataset 
size 

Hive 
version 

Number 
of nodes 

used 

Additional Differ-
ences 

Hortonworks 
Stinger Initia-

tive [11] 

TPC-DS 
(Query 27, 95) 

200GB, 
1 TB 

0.11, 
0.12, 
0.13 

Not spe-
cified 

• Not com-
pared to a rela-
tional database 
• Does not 
consider data 
load time 

Shi et al. [18] Queries and 
datasets pro-
vided by Pav-
lo et al. [15] 

110 GB 0.6 20 • Not com-
pared to a rela-
tional database 
• Uses que-
ries that are not 
as complex as 
the one used in 
this study 

Hive Perfor-
mance 

Benchmark 
[9] 

Queries and 
datasets pro-
vided by Pav-
lo et al. [15] 

110 GB Trunk 
version 
786346 

11 • Not com-
pared to a rela-
tional database 
• Uses que-
ries that are not 
as complex as 
the one used in 
this study 

Jia et al. [16] TPC-H 100 GB Trunk 
version 
799148 

11 • Does not 
consider data 
load times 

Pansare et al. 
[14] 

TPC-H 10 GB Not 
specified 

4 • Focuses 
on mid-level da-
ta analysis and 
uses only 10GB 
dataset  
• Not com-
pared to a rela-
tional database 

Gadiraju et al. 
(current 
study) 

TPC-DS 390 GB 0.11 4 • Compares 
performance 
with a relational 
database 
• Considers 
both data load 
time and query 
execution time 
• Focuses 
on large scale 
data analysis 



 Benchmarking Performance for Migrating a Relational Application 63 

6 Future Work 

Future performance studies could investigate additional queries as well as increase the 
number of nodes in the cluster. There are several directions in which research can be 
conducted on Hive to achieve further improvement. Some of them include: 

• Improved connection to the Hive Metastore: one of the issues we observed while 
working with the cluster is that the Metastore used by Hive to store its metadata is 
a single point of failure. Once the relational database service running as the Metas-
tore crashes, Hive has no other means of accessing its metadata. There is a need to 
define a backup mechanism through which Hive can still access its metadata when 
it is unable to access its Metastore.  

• Optimizing performance: while several steps have been taken to ensure query op-
timization [20] in Hive, there are several ways in which Hive queries can be opti-
mized. Storing statistical data in the form of metadata in the Metastore at column, 
partition, and table level as suggested by Gruenheid et al. [6] is one way of improv-
ing query performance.  

• Herodotos et al. [8] conduct research to indicate how placement of data within the 
HDFS would govern how well a MapReduce job would run. Their model, StarFish 
[8], defines a means to place data optimally to enhance MapReduce performance. 
Further research can be conducted to study the efficiency of the StarFish model, 
and benchmark how the StarFish model would improve the performance of Hive.  
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