
Semantic Monitoring and Compensation

in Socio-technical Processes

Yingzhi Gou1, Aditya Ghose1,2, Chee-Fon Chang1, Hoa Khanh Dam2,
and Andrew Miller1

1 Centre for Oncology Informatics
Illawarra Health & Medical Research Institute

University of Wollongong, Australia
{yg452,c03}@uowmail.edu.au

2 Decision Systems Lab.
School of Computer Science and Software Engineering

University of Wollongong, Australia
{aditya,hoa}@uow.edu.au

Abstract. Socio-technical processes are becoming increasingly impor-
tant, with the growing recognition of the computational limits of full au-
tomation, the growth in popularity of crowd sourcing, the complexity and
openness of modern organizations etc. A key challenge in managing socio-
technical processes is dealing with the flexible, and sometimes dynamic,
nature of the execution of human-mediated tasks. It is well-recognized
that human execution does not always conform to predetermined co-
ordination models, and is often error-prone. This paper addresses the
problem of semantically monitoring the execution of socio-technical pro-
cesses to check for non-conformance, and the problem of recovering from
(or compensating for) non-conformance. This paper proposes a semantic
solution to the problem, by leveraging semantically annotated process
models to detect non-conformance, and using the same semantic anno-
tations to identify compensatory human-mediated tasks.

1 Introduction

Socio-technical processes, which are executed by synergistic combinations of hu-
mans and technological components, have a long history, but have assumed new
significance with the current interest in issues such as crowd-sourcing, human
computation and gamification. They have also become important as a conse-
quence of the introduction of process automation in settings where human-
mediated functionality is critical and indispensable (such as clinical process
management, military command and control, or air traffic management). An
important aspect of socio-technical processes is that the human-mediated com-
ponents are fallible, while the machine-mediated components are generally not
(although there are critical exceptions). One way in which such fallibility might
be manifested is via structural non-conformance, where activities are overlooked
or executed in the wrong order, or where the wrong activities are executed.

M. Indulska and S. Purao (Eds.): ER Workshops 2014, LNCS 8823, pp. 117–126, 2014.
c© Springer International Publishing Switzerland 2014

118 Y. Gou et al.

There is a mature body of work focusing on structural non-conformance (see [1]
for a representative reference). Our focus is on the harder problem of semantic
non-conformance, where we are interested in managing situations where the exe-
cution of a process might be structurally correct (the right activities are executed
in the right order), but the effects achieved do not conform to what is required
by design, potentially due to human errors. For instance, a clinical process might
require the administration of an anti-hypertensive medication. The correct ex-
ecution of this task would require that a nurse should deliver the medication
to the patient in question and depart only when the patient has ingested the
medication. A semantically non-conformant execution might occur if the nurse
delivers the medication to the patient, but does not stay around to confirm that
the patient has actually taken it (and the patient happens to not take the medi-
cation). In a hospital with a process-aware information system, the nurse might
then confirm to the process engine that this task has been completed, leading
to a situation where no structural non-conformance would be detected. The fact
that this process instance is semantically non-conformant can only be deter-
mined by checking the effects of the process to ensure that what is expected is
actually obtained. Thus, in our example, a blood pressure check later in the day
might reveal elevated readings, when the expected readings are lower. This paper
addresses the problem of semantic monitoring of socio-technical processes, by
leveraging process designs that have been annotated with the expected effects at
each point. Semantic non-conformance is flagged in settings where the observed
effects deviate from the expected ones.

The human-mediated components of socio-technical processes also offer greater
flexibility in “fixing” semantic non-conformance via the introduction of human-
mediated activities constructed on the fly (generating newmachine-mediated func-
tionality, such as a new web service, can often take too long to be able to correct
errors in an executing process instance). Thus, in our example, the semantic non-
conformance detected via the blood pressure check can be fixed by having the
nurse correctly administer the medication as soon as possible. Once this is done,
the clinical process instance involving this patient would be restored to a seman-
tically conformant state. This paper also addresses the problem of computing the
best “fixes” of this kind, which we shall refer to as compensations. The problem is
non-trivial.While the common-sense compensation in our running example might
be to administer the anti-hypertensive medication as soon as the elevated blood
pressure is detected, this might not be possible because of potential interactions
between the anti-bypertensivemedication and amore recently administered drug.
We might thus need to search through the space of possible process re-designs to
identify one where the earliest compensation is possible.

In the rest of this paper, we show how semantic annotation of process designs
can be leveraged for a machinery for monitoring process execution based on effects
(Section 2). We then formalize the notion of compensation and discuss a class of
techniques that can be used to compute “optimal” compensations to deal with
semantic non-conformance (Section 3). We describe the implementation and em-
pirical evaluation of one of these techniques, with promising results (Section 4).

Semantic Monitoring and Compensation in Socio-technical Processes 119

2 Semantic Process Monitoring

There is a large body of work that explores the use of semantic annotation of busi-
ness process designs [2,3,4,5,6,7,8,9,10]. A large body of work also addresses the
problem of semantic annotation of web services in a similar fashion [11,12,13,14].
Common to all of these approaches is the specification of post-conditions, which
is what we primarily leverage in defining inter-process relationships. For our
purposes, two aspects of the post-conditions (or effects) are important. First,
post-conditions should be sensitive to process context, i.e., the post-conditions
of a task at a certain point in a process design should reflect not just the effects
achieved by executing that task but also the accumulated effects of the prior
tasks in the process design that have been executed. Second, non-determinism
must be accommodated in relation to post-conditions.

A number of the process annotation approaches referred to above achieve con-
textualization of post-conditions by using a device originally used in AI planning
- add-lists and delete-lists of effects. Others, such as [5] and [8], use a state up-
date operator derived from the literature on reasoning about action. We adopt
this approach. The need for permitting non-determinism in effects stems from
two observations. First, in any process with XOR-branching, one might arrive at
a given task via multiple paths, and the contextualized post-conditions achieved
must be contingent on the path taken. Since this analysis is done at design time,
we need to admit non-deterministic effects since the specific path taken can only
be determined at run-time. Second, many state update operators generate non-
deterministic outcomes, since inconsistencies (that commonly appear in state
update) can be resolved in multiple different ways. Our approach assumes that
each task/activity is annotated with post-conditions (in the implementation pre-
sented later, we shall assume them to be unique, as much of the literature does,
but this can be easily generalized to admit non-deterministic post-conditions),
which are contextualized via a process of effect accumulation. We shall assume
that all tasks (and their post-conditions) are drawn from an enterprise capability
library. In this approach, we are able to answer, for any point in a process design,
the following question: what will have happened if the process executes up to
this point? The answer is a mutually exclusive set of effect scenarios, any one
of which might describe the actual state of affairs at that point in the execution
of the process design. Additional detail on the specific effect annotation and
accumulation machinery used in the implementation can be found in Section 4.

We note that when a process is in a state that is (partially) characterized by
an effect scenario, the execution of the next task in the model, or the occurrence
of the next event, can lead to a very specific set of effect scenarios, determined by
the state update operator being used. In effect, the process model determines a
transition system, which determines how the partial state description contained
in an effect scenario evolves as a consequence of the execution/occurrence of
the next task (event) specified in the model. We assign each effect scenario
appearing in a semantically annotated process model a unique ID (thus if the
same partial description applies to a process at different points in its design,
it would be assigned a distinct ID at each distinct point). We can thus refer

120 Y. Gou et al.

to the predecessors (the effect scenarios that can lead to the current scenario
via a single state update determined by the next task/event) and successors
(the scenarios that can be obtained from the current scenario via a single state
update determined by the next task/event) of each effect scenario with respect
to the transition system implicitly defined by the process design. There are works
that have been done on obtaining such effect scenario, such as in [5] and [10],
which also suggest that due to different paths at gateways could be taken before
a task in a process model, and/or other reasons, there could be multiple effect
scenarios associated with the task.

Definition 1. A semantically annotated process model P is a process
model in which each activity or event is associated with a set of effect scenarios.
Each effect scenario es is a 4-tuple 〈ID, S, Pre, Succ〉, where S is a set of sen-
tences in the background language, ID is a unique ID for each effect scenario,
Pre is a set of IDs of effect scenarios that can be valid predecessors in P of the
current effect scenario, while Succ is a set of IDs of effect scenarios that can be
valid successors in P of the current effect scenario.

A semantically annotated process model is associated with a set of normative
traces, each providing a semantic account of one possible way in which the
process might be executed.

Definition 2. A normative trace nt is a sequence 〈τ1, es1, τ2,. . .esn−1, τn, esn〉,
where

– esi . . . , esn are effect scenarios, and for each esi = 〈IDi, Si, P rei, Succi〉,
i ∈ [2..n], it is always the case that IDi−1 ∈ Prei and IDi ∈ Succi−1;

– esn = 〈IDn, Sn, P ren, ∅〉 is the final effect scenario, normally associated with
the end event of the process;

– es1 = 〈ID1, S1, ∅, Succ1〉 is the initial effect scenario, normally associated
with the start event of the process;

– Each of τ1, . . . , τn is either an event or an activity in the process.

We shall refer to the sequence 〈τ1, τ2, . . . , τn〉 as the identity of the trace nt.

To simplify of the presentation later on, the es in the trace, from now, refers
to S in the 4-tuple 〈ID, S, Pre, Succ〉 because ID, Pre, and Succ are meta-
information used only to construct normative traces.

Definition 3. A semantic execution trace of a process P is a sequence
〈τ1, o1, τ2, o2, . . . , τm, om〉 where each τi is either a task or an event, and each
oi is a set of sentences in the background language that we shall refer to as an
observation that describes (possibly incompletely) the state of the process context
after each task or event. We shall refer to the sequence 〈τ1, τ2, . . . , τm〉 as the
identity of the execution trace.

Note that we do not require each τi to belong to the process design P to allow
the possibility of actual executions being erroneous. We will, on occasion, refer
to a semantic execution trace, simply as an execution trace.

Semantic Monitoring and Compensation in Socio-technical Processes 121

Definition 4. An execution trace et = 〈τ1, o1, . . . , τm, om〉 is said to be non-
conformant with respect to a semantically annotated process P if and only if
any of the following hold: (1) There exists an oi in et such that for all normative
traces nt′ = 〈τ ′1, es1, . . . , τ ′i , esi, . . .〉 for which the identity of 〈τ1, o1, . . . , τi, oi〉
is a prefix of its identity and oj |= esj for each j = 1, . . . , i − 1, oi �|= esi
(we shall refer to this as weak semantic non-conformance). (2) If we replace
non-entailment with inconsistency in condition (1) above, i.e., oi ∪ esi |=⊥, we
obtain strong semantic non-conformance. In each case, we shall refer to τi as
the violation point in the process.

We only deal with semantic non-conformance in structurally compliant process
instances. In other words, we assume that the identity of every semantic execu-
tion trace of interest equals the identity of some normative trace of the process.

3 Semantic Compensation

In this section, we formalize the notion of compensation and outline some strate-
gies for computing these. In the following, we will view process instances as se-
mantic execution traces. We will assume that each process is associated with a
goal assertion g.

Definition 5. A process instance et = 〈τ1, o1, . . . , τm, om〉 will be referred to as
a semantically compensated instance of a (semantically annotated) process
P if there exist τi and τj in et, with i < j, such that τi is a violation point, and
there exists a normative trace nt = 〈τ1, es1, τ2, . . . esh−1, τh, esh, . . . , τn, esn〉 of
P with an identity for which 〈τ1, . . . , τj−1〉 serves as a prefix, such that ok |= esl
for k = j, . . . ,m and l = h, . . . , n. As well, it must be the case that om |= g. We
shall refer to τj as the compensation point. The compensation point must be a
task and not an event.

Definition 6. Given a semantically compensated process instance
et = 〈τ1, o1, . . . , τm, om〉 of P with a compensation point τj, a compensation is
a process design P ′ for which the completion of τj−1 serves as the start event and
〈τj , oj , . . . , τm, om〉 is a valid normative trace. Every normative trace associated
with P ′ must end in an effect scenario es such that es |= g, where g is the goal
associated with the original process P .

This definition of compensation is fairly general. More specifically, we are
interested in optimal compensations, driven by the following intuitions. We pre-
fer earlier compensations. In other words, we aim to ensure that as few system
states as possible deviate for the normative process design (noting that a later
compensation will necessarily mean that there would be more states between the
violation point and the compensation point). We also prefer to minimize devia-
tion of the overall semantically compensated process instance from the semantic
“intent” of the original process design. These preferences can lead to competing
pulls. We might in some situations be able to introduce an earlier compensa-
tion, but the compensation, while ensuring conformance from subsequent steps

122 Y. Gou et al.

(assuming no other steps deviate), might lead to greater changes in the system
states than a potential later compensation.

Computing a compensation thus requires that we identify a process design
which permits us to complete the currently executing process instance from the
compensation point onwards in a manner that gives us a complete semantic
execution trace that is as close as possible to the normative trace that would
have been executed has there been no violation. The occurrence of a violation
entails that we are only able to identify a prefix of this normative trace (the part
that is actually executed prior to the violation). Given that multiple norma-
tive traces associated with the process design may share that prefix, we do not
actually know which of these we would have actually executed had there been
no violation. One way to compute the compensation is to identify that process
design (or designs) which would minimize deviation from this set of normative
traces (by picking one that minimizes the distance to the either the closest, or
the farthest normative trace). This requires a distance measure to assess the dis-
tance between an execution trace and a normative trace. This distance measure
must take into account both structural similarity (e.g., the number of activities
in common between the two traces) and semantic similarity (e.g., the extent to
which a set of observed assertions agree with an effect scenario). We describe an
implementation with one such distance measure in the next section.

4 Implementation and Evaluation

In this section, we outline one specific implementation of the general framework
for semantic process monitoring and compensation described above and present
some preliminary empirical results. We note that the general framework could
be instantiated in multiple ways (indeed the space of alternative design decisions
is very large) and we do not suggest that this particular implementation is to
be preferred to other possible ones (such claims can only be made after a series
of substantive comparative studies). However, this particular implementation
provides an adequate basis for making a preliminary determination of whether
this approach is practical.

We use a machinery for semantic annotation of business process designs rep-
resented in BPMN. We omit details here for brevity but these can be found
in [5]. It uses a syntactic state update operator based on the Possible Worlds
Approach (PWA) [15]. The choice of this particular operator is mainly a matter
of convenience (and adequate for assessing feasibility), while other operators,
such as one based on the Possible Models Approach (leveraged by [8]) could also
be used. We assume that a process model, semantically annotated using this
machinery, is provided as input.

To measure the structural distance between a pair of sequences of activi-
ties/events, we use the Levenshtein Distance lev(a, b) where a = 〈a1, . . . , an〉
and b = 〈b1, . . . , bm〉.

For semantic distances, we define a simple distance function φ(es, o) where es
is an effect scenario and o is a set of observations. We note that many, potentially

Semantic Monitoring and Compensation in Socio-technical Processes 123

more sophisticated schemes for measuring semantic distance exist, but this is ad-
equate for preliminary analysis. In the following, Vstrong computes the number of
assertions in an effect scenario that contribute to strong semantic non-conformance
(as in Definition 3), while Vweak computes the number of assertions that contribute
to weak semantic non-conformance. We leverage a background knowledge base
KB that contains, amongst others, domain and compliance constraints.

Vstrong = {e|e ∈ es, o ∪ KB |= ¬e}
Vweak = {e|e ∈ es, o ∪ KB �|= e, e �∈ Vstrong}

φ(es, o) = wstrong × |Vstrong|+ wweak × |Vweak|
where, wstrong and wweak are weights. If all observations reveal complete state
descriptions, then weak violations do not apply. We can focus attention solely
on strong or weak violations by appropriately setting the corresponding weights.

We measure the distance between a normative trace nt = 〈a1, es1, . . . , an, esn〉
and a semantic execution trace et = 〈b1, o1, . . . , bm, om〉 using the following func-
tion:

J(nt, et) =
∑

i=1...n

min
j=1...m

(w1 × φ(esi, oj) + w2 × lev(〈a1, . . . , ai〉, 〈b1, . . . , bj〉))

where w1 and w2 are the weights for each distance.
Our prototype takes a semantically annotated business process and a capa-

bility library as inputs, then generates a set of all normative traces. We simulate
a normative execution trace and randomly insert a violation in it. Once a viola-
tion is detected, the compensation computation machinery initiates a search for
a sequence of activities from the capability library that can constitute a valid
completion of the current partially complete process instance and that guar-
antees that it terminates in a goal-satisfying state. The prototype performs an
exhaustive constructive search. Every candidate partial extension of the cur-
rent process instance is evaluated for compliance with the KB. In the event of
non-compliance, the search backtracks and evaluates an alternative extension.
Our evaluation uses a propositional language for representing effects and the
KB. Effect accumulation, goal satisfaction and compliance checking require the
use of a theorem prover - in our prototype, the SAT4J SAT solver (modified
to generate all maximal consistent subsets) is used for this purpose. We apply
the effect accumulation machinery to generate a semantic trace from each of the
valid task sequences identified by the search procedure. This gives us a set of
semantically compensated process instances which are then ranked according to
the nearest distance to a valid normative trace (i.e., for each process instance,
we compute the shortest distance to any valid normative trace, and the instance
with shortest distance amongst all appears at the top of the ranking, and so on).
We limit each task in the capability library to be used only once in a semantically
compensated process instance.

In the evaluation, we manually design 5 distinct semantically annotated pro-
cess models with variations in the number of activities, gateways (we only use

124 Y. Gou et al.

Table 1. Evaluated Process Models

Process
Model
ID

Complexity of Process Complexity of Semantic Annotation Complexity of Knowledge
Base

Total
Number of
Activities
and Events

Length of
Paths in
the Model
(Min/Max)

Number of
Gateways
(split and
merge)

Size of
Propositional
Vocabulary

Length of
Task Post-
conditions
(Min/Max)

Length
of Effect
Scenarios
(Min/Max)

Number of
Clauses in
the Knowledge
Base

Number of
Activities
in
Capability
Library

1 6 6/6 0 3 1/2 1/3 3 4

2 12 12/12 0 13 1/7 7/13 3 10

3 9 6/7 2 13 2/7 7/13 9 7

4 9 7/7 6 5 1/3 1/5 1 17

5 9 7/7 6 13 1/7 7/10 9 10

Table 2. Best Evaluation Result

Process
Model ID

Location of Violation
in Process

Shortest distance be-
tween process instance
and normative trace

Goal Compliance Time to compute
best compensa-
tion(mm:ss:SSS)

1 Beginning 10 NO 00:00:199

1 Middle 10 NO 00:00:038

1 End 3 YES 00:00:085

2 Beginning 114 NO 10:00:206

2 Middle 30 NO 00:00:019

2 End 1 YES 00:14:817

3 Beginning 30 NO 04:53:580

3 Middle 30 NO 00:00:009

3 End 2 NO 00:00:034

4 Beginning 9 YES 01:55:569

4 Middle 6 YES 00:16:785

4 End 7 YES 00:04:986

5 Beginning 38 NO 00:00:010

5 Middle 17 NO 00:00:018

5 End 2 NO 00:00:102

XOR gateways), complexity of the knowledge base and effect scenarios etc (note
that these cannot be randomly generated). These dimensions of the 5 process
model are summarized in Table 1. We then identify the quality of solutions
generated within a 10 minute time bound and report these results in Table 2.
The table only shows summaries of the best compensated process instances from
multiple runs of evaluation (violations are randomly generated).

Analysis of the results: The results we obtain here are only modestly en-
couraging. We note that none of the minimum distances for the compensated
process instances are 0, but this is not a negative (any violation will lead to
a non-zero distance). The location the violation is clearly important. A viola-
tion at the beginning of a process presents a much larger search space than a
violation later in the process. The more complex the semantic annotations are,
the longer it takes to compute compensations (which is not surprising). Process
models 4 and 5 are structurally identical, but 5 has semantic annotations that
are significantly more complex than those of 4. As a result, we are able to com-
pute a goal-satisfying compensation from process 4 within the time-bound, but
not for process 5. In general, not all of the “closest” process instances are goal
compliant. Many socio-technical processes of interest have durations far greater
than 10 minutes, hence the fact that we are able to compute goal-satisfying com-
pensations for many (if not all) of the processes is actually encouraging. This
suggests that with a higher time-bound, we might find even better and more
goal-satisfying compensations, while still being able to compensate quite early
in these long-duration processes.

Semantic Monitoring and Compensation in Socio-technical Processes 125

5 Related Work

Cook et al. [16] offer a process validation framework, which involves comparing
the event stream from the process model against the event stream from the
log using string distance metrics. Rozinat and van der Aalst [1] developed the
Conformance Checker as part of the ProM framework which, given a process
design and a collection of its event log from execution, determines whether the
process execution behavior reflects the designed behavior. Different from [1] and
[16], our semantic conformance checking assumes that the instance of executed
process is structurally correct. A number of proposals for goal-oriented process
management exist [17,18]. Klein and Dellarocas [19] present a knowledge-based
approach to exception detection and handling in work-flow systems. They define
an exception as “any deviation from an ‘ideal’ collaborative process that uses
the available resources to achieve the task requirements in an optimal way”
[19]. In their exception management approach, the participant of an enacted
process will be notified when there is an exception with the exception types and
associated exception handler processes proposed by the work-flow designer, so
that the participants are able to modify the instance of the process to resolve
the exception and allow the process to continue. Our approach does not require
that exceptions handlers be written for every possible exception.

6 Conclusion

In this paper we present a novel framework for semantic monitoring and compen-
sation of business processes, leveraging semantic annotations of process designs.
We identify some abstract strategies for implementing such a framework, and
then present a concrete implementation. The evaluation of the implementation
suggests that there is modest room for optimism that such an approach would
be viable in practice.

References

1. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Information Systems 33(1), 64–95 (2008)

2. Fensel, D., Facca, F., Simperl, E.: Web Service Modeling Ontology. In: Semantic
Web Services, pp. 107–129. Springer (2011)

3. Fensel, D., Lausen, H., Polleres, A., Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling On-
tology. Springer (2006)

4. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: A vision towards using semantic Web services for business
process management. In: IEEE International Conference on e-Business Engineer-
ing, pp. 535–540. IEEE (2005)

5. Hinge, K., Ghose, A., Koliadis, G.: Process SEER: A tool for semantic effect anno-
tation of business process models. In: Proceedings of the 13th IEEE International
EDOC Conference. IEEE Computer Society Process (2009)

126 Y. Gou et al.

6. Di Pietro, I., Pagliarecci, F., Spalazzi, L.: Model checking semantically annotated
services. IEEE Transactions on Software Engineering 38, 592–608 (2012)

7. Smith, F., Proietti, M.: Rule-Based Behavioral Reasoning on Semantic Business
Processes. In: Proceedings of the 5th International Conference on Agents and Ar-
tificial Intelligence, pp. 130–143. SciTePress (2013)

8. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: On the verification of
semantic business process models. Distributed and Parallel Databases 27, 271–343
(2010)

9. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.:
Semantcally-aided business process modeling. In: Bernstein, A., Karger, D.R.,
Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC
2009. LNCS, vol. 5823, pp. 114–129. Springer, Heidelberg (2009)

10. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

11. Martin, D., et al.: Bringing semantics to web services: The OWL-S approach.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42.
Springer, Heidelberg (2005)

12. Meyer, H.: On the Semantics of Service Compositions. In: Marchiori, M., Pan,
J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 31–42. Springer,
Heidelberg (2007)

13. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographiess. ACM Trans-
actions on the Web 4, 3:1–3:62 (2010)

14. Smith, F., Missikoff, M., Proietti, M.: Ontology-Based Querying of Composite Ser-
vices. In: Ardagna, C.A., Damiani, E., Maciaszek, L.A., Missikoff, M., Parkin, M.
(eds.) BSME 2010. LNCS, vol. 7350, pp. 159–180. Springer, Heidelberg (2012)

15. Ginsberg, M.L., Smith, D.E.: Reasoning about action I: A Possible World Ap-
proach. Artificial Intelligence 35(2), 165–195 (1988)

16. Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the
correspondence of a process to a model. ACM Transactions on Software Engineer-
ing and Methodology 8(2), 147–176 (1999)

17. Ghose, A., Koliadis, G.: Actor eco-systems: From high-level agent models to ex-
ecutable processes via semantic annotations. In: Proceedings of the 31st An-
nual International Computer Software and Applications Conference, vol. 02, pp.
177–184. IEEE Computer Society, Washington, DC (2007)

18. Koliadis, G., Vranesevic, A., Bhuiyan, M., Krishna, A., Ghose, A.K.: A combined
approach for supporting the business process model lifecycle. In: Proceedings of
the, Pacific Asia Conference on Information Systems, pp. 1305–1319 (2006)

19. Klein, M., Dellarocas, C.: A knowledge-based approach to handling exceptions in
workflow systems. Computer Supported Cooperative Work 9, 399–412 (2000)

	Semantic Monitoring and Compensationin Socio-technical Processes
	1 Introduction
	2 Semantic Process Monitoring
	3 Semantic Compensation
	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion
	References

