
On the Definition of Self-service Systems

Corentin Burnay1,2,3, Joseph Gillain2,3, Ivan J. Jureta1,2,3,
and Stéphane Faulkner2,3

1 Fonds de la Recherche Scientifique – FNRS, Brussels
2 Department of Business Administration, University of Namur

3 PReCISE Research Center, University of Namur

Abstract. Changing requirements are common in today’s organizations,
and have been a central concern in Requirements Engineering (RE). Over
time, methods have been developed to deal with such variability. Yet, the
latter often require considerable amount of time to be applied. As time-
to-value is becoming a critical requirement of users, new types of systems
have been developed to deal more efficiently with changing requirements:
the Self-Service Systems. In this paper, we provide an overall discussion
about what self systems are, what they imply in terms of engineering,
how they can be designed, and what type of questions they raise to RE.

1 Introduction

Information Systems (IS) are becoming central in contemporary organizations,
given that they intervene in most, if not all value chain activities. They do so by
helping organizations to collect, treat and diffuse data and information, thereby
enabling them to know more about, and hopefully influence more precisely and
relevantly the business activities. The engineering of IS is the responsibility of
systems engineers, which today involves various professions, including require-
ments engineers (or business analysts), software engineers, system architects,
etc. They are expected to define clear and relevant requirements, then engineer,
develop, deploy, maintain, and change solutions to satisfy the requirements.

It is well-known that it is hard to get the requirements right [1]. Part of the
difficulty comes from the fact that requirements that are available before using
a system or interacting with its prototype and after using it, can, and often
are different. The difference comes from various factors, including simply that
people learn through experience. Through learning, their expectations change,
and so do their requirements. Such issue, of changing requirements, has been a
topic of research in adaptive systems and requirements evolution [2].

In this paper, we are interested in one specific approach to deal with require-
ments changes. We observed it in industry, and our aim is to look at the theoret-
ical issues that arise in relation to it, how it relates to research in Requirements
Engineering (RE), and what new issues, if any, it gives rise to.

Specifically, we are interested in the so-called Self-Service Systems. The basic
idea is that the system engineers will not produce a system that satisfies all the
specific requirements that the various stakeholders may have. Instead, they will

M. Indulska and S. Purao (Eds.): ER Workshops 2014, LNCS 8823, pp. 107–116, 2014.
c© Springer International Publishing Switzerland 2014



108 C. Burnay et al.

engineer a system which can, if properly configured by the users, satisfy these
requirements, whichever they are at system design time, and whichever they may
end up being at run-time. If you think of requirements as being represented, as
usual in goal-oriented requirements engineering [3,4], as a goal forest, where goals
close to roots are abstract and general requirements, and goals close to leaves are
more specific requirements, then Self-Service Systems are engineered to satisfy
some goals midway in the goal forest, between the leaves and the roots, rather
than satisfy the leaves. As we will see later, this view is simplistic, but it gives
an initial idea that we build from in the rest of the paper.

We refer to Self-Service Systems as Selfs hereafter. We first motivate the
use of Selfs in Section 2 and 3. We then provide a more detailed definition of
what Selfs are, with examples in Section 4. We discuss how requirements from
traditional systems differ from those from Selfs in Section 5. Finally, we suggest
that designing a Self raises new challenges for RE in Section 6. We conclude with
a discussion about tradeoffs and future works respectively in Section 7 and 8.

2 Illustration - Self-service in Business Intelligence

We observed Self-Service Systems for Business Intelligence (BI). In general, IS
for BI gather business data in order to provide information to business decision-
makers, under the form of reports, dashboards, or any other relevant output
[5,6]. Despite there being frameworks for doing RE of BI systems [7,8], there
is a practical difficulty that is hard to overcome in terms of methodology. It
can be formulated as follows: the data types and sources, and the information
relevant for business decision-making may not be the same at all times, which
means that, for example, the content of reports, the analyses applied to data,
and so on, need to be changed regularly. In practice, it may be too costly (or
take too much time) to have business analysts elicit new requirements on reports
and analyses, and propagate these new requirements through the specifications,
system architects to architecture, and software engineers to code each time a
change occurs.

From the standpoint of those who make and sell BI systems, it may also be
more interesting to avoid changing the systems so much, because, for example,
it means maintaining systems that become different from each other over time,
even if they started from the same set of functionality. Self-Service Systems are a
response to this, in that they do not try to satisfy the most specific requirements,
but give features whose combinations could satisfy various specific requirements.
For example, a Self-Service BI (SSBI) system will have features that allow its
users (they can include business analysts as well, not only end-users) to change
analyses applied to data, create new reports or change existing ones, and so on.

In [9], SSBI is presented as an important promise of BI, despite the current
difficulties in making those softwares easy to use for business people. SSBI has
been the center of some attention from specialized institutions (e.g. TDWI [10],
Gartner [11] or Forrester [12]), which is another clue that business users are
actually interested in achieving shorter time-to-value and doing BI on their own.



On the Definition of Self-service Systems 109

3 Why Make Self-service Systems?

Selfs are ways to deal with the change of requirements. Instead of making a
system that satisfies exactly all of the most specific requirements identified at
design-time, we consider these merely as examples of requirements that may
arise at run-time, and we engineer features whose combinations can satisfy these
anticipated, and perhaps some of the unanticipated run-time requirements.

In fact, the problem with design-time requirements is not that they are chang-
ing. In practice, many RE approaches exist, that can be used to identify new
requirements [13] or track evolution of existing ones [14,15]. The translation of
those requirements into specifications for the system-to-be is not a problem ei-
ther, as it has also been discussed at length in RE [16]. The problem is rather
on the time it takes to go from there being a new run-time requirement, to the
time when the system has been changed to satisfy it.

In the case of BI systems, the IT department is expected to be very responsive,
and to provide quickly adapted solutions to business requirements. This is a
generic requirement from BI systems, also known as time-to-value: once a BI
system is implemented, users must gain easy and rapid access to information, so
that decision making process remains efficient [10]. Traditional RE approaches
can appear limited in that regard, because they assume elicitation, modeling,
analysis, verification, negotiation, validation, and so on, have to be done for new
requirements. This can influence time-to-value negatively.

As a response to delays due to changing requirements, Selfs attempt to transfer
some of the design responsibility to end-users, who are therefore in charge of
understanding what they need, and directly designing what is required to satisfy
these needs using a Self. For example, in BI, Self-Service Business Intelligence
(SSBI) is used to enable end-users to select some data sources and decide about
a visualization tool to view it, all by themselves. Ultimately, they choose what
to include in the report that they need the system to make.

Unlike for classical BI systems, SSBI does not require the usual RE processes
to occur each time a user has a new requirement. There is therefore a tendency
to make systems with generic features, and expect users to combine / configure
the latter by themselves, in order to satisfy their new, specific requirements on-
demand. They do so with the support of the system, but without the intervention
of system engineers. This approach has the main advantage of reducing time-to-
value, and hence improving users experience of the BI platform [10].

4 Indirect Requirements Satisfaction

In this section, we suggest and discuss an essential property held by typical re-
quirements of Selfs. We consider that any requirement which satisfies this prop-
erty can be characterized as a Self requirement. The more a system is specified
by such Selfs requirements, the more the system can be considered as a Self.

It implies that the distinction between Selfs and non Selfs is not clear cut,
and that any system can be placed on a “Self dimension”. Besides, Selfs can be



110 C. Burnay et al.

distributed or centralized, adaptive or not, agent-based or otherwise, and so on
- all such system categorizations are orthogonal to the Self dimension.

To introduce the property in question, it is important to distinguish users from
other stakeholders of a Self. The reason lies in the difference between how a Self
can satisfy user requirements, and how it can satisfy those of other stakeholders.
Just as any system, a Self may satisfy the requirement of a stakeholder who
is not a user, e.g., a stakeholder may not be involved in using the system, but
may require that the license to use the Self costs below some amount per year.
If the annual license costs X, and is smaller than Y (the maximal amount that
this stakeholder set), then the system satisfies the requirement. We say that the
requirement is directly satisfied, since this stakeholder does not need to invest
any more effort in using the system, in order to satisfy that requirement.

The story is different for most users of Selfs, i.e., individuals who will interact
with the system at run-time, precisely in order to satisfy their own requirements.
If a system directly satisfies the requirements of its users, then it does not belong
to Selfs. It does belong to Selfs, if it satisfies these requirements indirectly. We
say that a system satisfies a requirement indirectly, if there exists a scenario for
using that system, such that if the system is so used, then the requirement will be
satisfied, but that is not the only possible scenario for using that system, and that
scenario is not necessarily known by either the users or the system designers.

It looks like quite a lot of software only indirectly satisfies their users’ require-
ments. An operating system satisfies indirectly a user’s requirement to print out
a document, if the user needs to find, install, and configure by herself a printer
driver. A word processor indirectly satisfies the requirement to format a text
according to some formatting guidelines, because it is the user who has to figure
out how to use headers, footers, front pages, blank pages, and so on, in order to
ensure that the document does indeed follow the guidelines. A web browser, in
contrast, looks to be directly satisfying its main requirement, which is to display
content on the World Wide Web. But it indirectly satisfies the requirement to
play specific kind of video files, if the user has first to find, download and install
the relevant plugin.The usual calendar applications satisfy directly the require-
ments to add events and reminders, invite people to join events, and such. But
they only indirectly satisfy the requirement to find the slots that suit everyone,
when organizing a meeting. To satisfy that requirement, the user has to find
some clever way to use the various existing features in her calendar application.

It is an essential property of Selfs that the intention in designing them is
to satisfy many user requirements indirectly. The consequence is that a user
will have to do the work of finding the appropriate scenario that mobilizes the
features of the system, in a way which will satisfy this user’s requirements. The
scenario should not already built into the system in such a way that a user can,
without much effort, activate it. If the intention in designing a system is primarily
to enable the indirect satisfaction of many requirements, which were anticipated
or unanticipated at design-time, we will say that the system is undetermined.
We will say that the system is determined, if the intention in designing it is to
satisfy exactly some specific set of requirements identified at design-time.



On the Definition of Self-service Systems 111

Table 1. Examples of Software

Determined Undertermined

Business
Users

Google Calendar, Microsoft Out-
look, Microsoft Word, Skype

Blogger, Joomla, Matlab,
QlikView, Excel PowerPivot/View

IT Experts Visual Paradigm, FileZilla, AVG
Anti-Virus, Apache Web Server

MicroStrategy, Pentaho, Symfony
Framework, .NET Framework, Java

5 Requirements from Selfs and Non-selfs

In order to analyze the way RE happens in the particular case of Selfs, we
first suggest to distinguish between two types of requirements. Then, using this
distinction, we provide a more accurate, RE-oriented, definition of Selfs.

We start by distinguishing two kinds of requirements, called Stakeholder Re-
quirements (RStk) and Derived Stakeholder Requirements (RDS). As their name
suggests, we obtain RStk from stakeholders and through requirements elicitation,
which may involve interviews, observation, documentation analysis, and so on.
RDS are the requirements that a requirements engineer defines herself, on the
basis of RStk. RDS are made, for example, by refining, decomposing, disam-
biguating, or otherwise manipulating RStk, in the aim of identifying such RDS

which are operational. A requirement is operational when there is a specifica-
tion which can be implemented (that is, its implementation is judged feasible),
and there are good reasons to believe that, if implemented according to that
specification, the resulting system will satisfy that RDS . Various frameworks ex-
ist to identify variability in goal models, and could be of particular interest in
the identification of RDS [17,18]. We will say that RStk and RDS together are
Ground Requirements (RG), i.e, RG is the union of RStk and RDS .

We then distinguish RG from Self Requirements (RSelf ), which are defined by
requirements engineers, in order to ensure that the system has generic features,
whose various combinations could satisfy potentially many RG. For example, the
user of a BI system can have the requirement r1 to “Display average sales margin
per product”. Such requirement has been elicited explicitly from that business
user (through, for example, an interview): r1 is therefore part of RStk, and hence
of RG. That requirement provides some direction to derive requirement variants.
For instance, r2, “Display sales revenue repartition per vendors”, can be derived
from r1 and is then part of RDS , hence also of RG.

Selfs are, however, not made to satisfy specifically RG. Instead, they are made
to satisfy a requirement r3, which is “Be able to [displaying] an [arithmetic
function] over one [business fact] for one [business dimension]”. The latter re-
quirement is such that, if it is satisfied, then both r1 and r2 will be, but also
potentially many others similar to r1 and r2. The requirement r3 is in RSelf . The
difference between r1 and r3, and between r2 and r3, is that r3 is obtained by
looking at r1 and r2, and finding what is common to them, in order to formulate
a new requirement which, if satisfied, would lead us to conclude that both r1
and r2 are satisfiable, provided that the users find out how by themselves.



112 C. Burnay et al.

6 Requirement Engineering for Selfs

6.1 Selfs vs Non-self: An Illustration

Previous RE definition of Selfs offers a support for distinguishing between the
design concerns of Selfs and non-Selfs. Consider previous example r1, where a
user wants to “Display average sales margin by product”. To obtain such result,
the user can use a BI solution, and has two alternatives, called A and B below.

Alternative A: she could use a classical BI system. In that case, she would have
to ask the IT to design a report, which shows the average margin by product.
This results in the stakeholder requirement r1 which is part of RG. One could
model that requirement via a goal model such as in Figure 1. With RG, the IT
could decide about the design of a new report, with no room for self-service: user
might simply need to select a product to obtain the information she needs. Here,
there are no features to select: everything is decided for the user in advance, so
that the system can be said to be Determined.

Fig. 1. Goal refinement of r1 Fig. 2. Goal refinement of r2

As discussed in our Introduction section, the requirements from a BI solu-
tion are likely to change rapidly. Previous user could for instance have the new
requirement r2, illustrated with a goal model in Figure 2. To be achieved, that
goal would require a new round of elicitation and operationalization, as r2 would
be added to RG. Based on that new RG, IT would have to design a new report.
This repetitive RE process can increase time-to-value.

Alternative B: The user has access to an SSBI solution, and she is respon-
sible for satisfying her requirements. Suppose that this is a simple spreadsheet
software, such as Excel. Let there be a spreadsheet, which satisfies r3 mentioned
earlier. Starting with her first requirement r1 (Figure 1), the stakeholder could
for example select some rows from a data set she judged relevant, sum the cells
and divide the result by the count of rows. She could also select all the data, ap-
ply a filter to it to keep only the last six months, and compute the average using
the function for computing the mean, and so on. This system is Undetermined,
as it is up to the stakeholder to find and design a solution to her problem. If
a new requirement arises, let’s say r2, there is no need to re-engineer the SSBI
solution. The user, or someone helping her, would simply adapt some part of her
initial solution to design a new solution that satisfies the new requirement.



On the Definition of Self-service Systems 113

6.2 A RE Process Adapted for Selfs

From an RE perspective, Alternative A and B imply different design approaches.
This is illustrated in Figure 3. In Alternative A, engineers have to decide about
a specification that satisfies the Ground Requirements they elicit from business
users. Only RG is used to design the system-to-be. If RG changes (due for exam-
ple to a new variant of a requirement), then engineers must redesign the existing
software to satisfy that new set of requirements. In Alternative B, engineers
must identify user requirements, and then try to anticipate any other possible
requirement. This results in a set of generic requirements RSelf . The design
based on RSelf must offer sufficient features for the user to satisfy by herself the
requirements that may appear at run-time in RG.

Actually, the design of a Self cannot work on RG since operationalizing RG

would consist in delivering a determined system providing business users with
all required features in a single design. It is illustrated in the goal model GV in
Figure 4. Identifying Selfs Requirements is more than only taking into account of
all possible variability in users requirements. Although possible Self configuration
would be able to eventually operationalize each leaf node of GV, a system which
directly operationalize all leaf nodes of GV is not a Self. From there on, non-
Self systems build from the operationalization of requirements in RG, while Self
systems build from the operationalization of requirements in RSelf .

Nonetheless, setting up RSelf from RG is currently still a research challenge.
Current methodologies only focus on RG, i.e. how to gather and model RStk as
well as how to derive RSD. To the best of our knowledge, little attention has
been paid as to how RSelf can be abstracted from RG.

Notice that Self requirements open the way to some unanticipated uses of
the system. Consider the case of MS Word. Word proposes to its user a mailing
functionality, in which users are capable of selecting themselves fields, displaying
the latter on a form, defining the layout for these fields, etc. Word is therefore

Fig. 3. Comparison of RE process for traditional and Self systems



114 C. Burnay et al.

Fig. 4. The goal model GV

somewhere on the Self dimension between pure Selfs and pure non-Selfs, because
it satisfies at least one Self requirement, i.e., the user is able to define a mail on
her own. A side effect of being a Self system is that users may be creative in
using the software, e.g., defining a mailing is not the only way to use the Word
functionality. In practice, it could be used in some other, unanticipated, ways.

Imagine for example a professor who wants to create several exercises for her
students. Each exercise will be the same except some values and some words
which will be changed. For this purpose, she could use the mailing functionality
to design a template with print labels, and generate several exercises by giving
different values for each label. In this context, she used an Undetermined func-
tionality of Word in order to design her own solution. The use of a Self therefore
depends on the creativity of its users, and should not be limited to the use cases
for which it was initially designed.

7 Challenges of Selfs for Requirements Engineering

Although critical to ensure a Self anticipates as much as feasible of future stake-
holders’ requirements, the identification of RSelf based on RG (using, for exam-
ple, an abstraction mechanism) presents some risks. Using the full set of RSelf

to decide about the specification of a Self can lead to systems with numerous
features, and hence to relatively complex Selfs. By complex, we mean that they
provide many features to end-users. The problem with the complexity of a Self is
that it can be negatively correlated with its usability: end-users, who have rela-
tively low (sometimes no) IT background, may not be capable of understanding
and combining the features consistently to build custom solutions. That prob-
lem of complexity is typical of Selfs: regular systems avoid such complexity by
directly satisfying the specific RG.

Consider again the requirement of a user who wants to “Display average mar-
gin per product”. Imagine the user has to satisfy that requirement using a Self.
She is given a spreadsheet software such as Microsoft Excel. Excel contains Self
requirements because the user is in charge of designing its own solution to com-
pute her average margin from a range of data. In Microsoft Excel, she may have



On the Definition of Self-service Systems 115

the choice between five, maybe six, features (average, count, sum functions, etc.)
to be combined in order to compute an average margin. Imagine the same user is
exposed to a new, more complex system, with hundreds of features that could be
used to compute that same result. That system would be less usable for the busi-
ness user. There would be risks that the user gets lost, or uses inappropriately
some features of the software, with the ultimate risk that this business user does
not satisfy properly her requirements.

This threat is important, and is reflected in existing SSBI solutions, where
users are often discouraged because the Self is too complex for them. For ex-
ample, Weber emphasized that “In an effort to give users what they want, IT
sometimes errs on the side of giving users everything” which he claims is a typ-
ical problem of SSBI system [19]. SSBI experts also highlighted that “It turns
out that most users found the tools too difficult to use. Even when the tools
migrated from Windows to the Web, simplifying user interfaces and easing in-
stallation and maintenance burdens, it was not enough to transform BI tools
from specialty software for power users to general-purpose analytical tools for
everyone in the organization.” [9]. In that regard, we consider there is a gap in
current RE approach to Selfs: designers should not only be interested in creating
systems that satisfy the set of requirements RSelf (such as in SSBI). They should
also account for the fact that Selfs must be usable for business users. Therefore,
they should pay attention to the number of feature they provide.

Note finally that research has been conducted to bring variability into soft-
ware development. One of the most important research regarding variability is
Software Product Line Engineering [20]. Although it aims to build a base system
which can be customized to particular needs, this customization still requires IT
intervention. Moreover, it does not aim to transfer the design responsibility of
the users. Consequently, RE is traditionally about RG and how to derive prod-
ucts which implement sub-parts of RG. To the best of our knowledge, no research
has gone on the business-user intervention in the resolution of RG.

8 Conclusion and Future Work

In this paper, we provided an overall discussion about the use of Self-Service sys-
tems in organizations. We first discussed the rationale for such system, claiming
that Selfs are valuable solutions to the problem of changing requirements and
long time-to-value for business users. We defined Self-Service systems as be-
ing systems which contains operationalization of Self requirements. With such
operationalization business users are in charge for configuring themselves the
system in order to design their proper solution to some requirements. We then
provided a deeper RE perspective on Selfs, by distinguishing between Ground
Requirements, obtained requirements elicitation, and Self Requirements, which
are requirements to be able to solve other, forthcoming, Ground Requirements.
We concluded on a discussion about the trade-off that may appears, during RE
for Selfs, between the completeness of a Self platform (in terms of features) and
the usability of the latter.



116 C. Burnay et al.

References

1. Brooks Jr., F.P.: No silver bullet - essence and accidents of software engineering.
Computer 20, 10–19 (1987)

2. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
requirements for adaptive systems. In: Proceedings of the 6th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pp. 60–69.
ACM (2011)

3. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20(1), 3–50 (1993)

4. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour.
In: Proc. 5th IEEE International Symposium on Requirements Engineering, pp.
249–262 (2001)

5. Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: what’s next in business
intelligence? In: Proc. 7th ACM International Workshop on Data Warehousing and
OLAP, p. 1 (2004)

6. Negash, S.: Business Intelligence. Communications of the Association for Informa-
tion Systems 13, 177–195 (2004)

7. Pourshahid, A., Richards, G., Amyot, D.: Toward a goal-oriented, business intelli-
gence decision-making framework. E-Technologies: Transformation in a Connected
World, 100–115 (2011)

8. Burnay, C., Jureta, I.J., Faulkner, S.: A Framework for the Operationalization
of Monitoring in Business Intelligence Requirements Engineering. Software and
System Modeling (SoSym) (in press)

9. Eckerson, W.W.: Performance Dashboards: Measuring, Monitoring, and Managing
Your Business. John Wiley & Sons (May 2008)

10. Imhoff, C., White, C.: Self-Service: Empowering Users to Generate Insights. tech.
rep., The Data Warehouse Institute, TDWI (2011)

11. Richardson, J., Schlegel, K., Sallam, R.L., Hostmann, B.: Magic quadrant for busi-
ness intelligence platforms. Core Research Note ... (2008)

12. Evelson, B.: The Forrester Wave: Self-Service Business Intelligence Platforms, Q2
2012, tech. rep., Forrester (2012)

13. Zowghi, D., Coulin, C.: Requirements Elicitation: A Survey of Techniques, Ap-
proaches, and Tools. In: Engineering and Managing Software Requirements, pp.
19–46. Springer, Heidelberg (2005)

14. Zowghi, D., Offen, R.: A logical framework for modeling and reasoning about the
evolution of requirements. In: Proc. 3rd IEEE International Symposium on Re-
quirements Engineering, pp. 247–257 (1997)

15. Rolland, C., Salinesi, C., Etien, A.: Eliciting gaps in requirements change. Require-
ments Engineering 9(1), 1–15 (2004)

16. Van Lamsweerde, A.: Requirements engineering: from system goals to uml models
to software specifications (2009)

17. Gonzales-Baixauli, B., Prado Leite, J., Mylopoulos, J.: Visual variability analysis
for goal models. In: Proceedings of the 12th IEEE International Requirements
Engineering Conference, pp. 198–207. IEEE (2004)

18. Liaskos, S., Lapouchnian, A., Yu, Y.: On goal-based variability acquisition and
analysis. In: Proc. 14th IEEE International Conference on Requirements Engi-
neering, pp. 79–88 (2006)

19. Weber, M.: Keys to Sustainable Self-Service Business Intelligence. Business Intel-
ligence Journal 18, 18–24 (2013)

20. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering, vol. 10.
Springer (2005)


	On the Definition of Self-service Systems
	1 Introduction
	2 Illustration - Self-service in Business Intelligence
	3 Why Make Self-service Systems?
	4 Indirect Requirements Satisfaction
	5 Requirements from Selfs and Non-selfs
	6 Requirement Engineering for Selfs
	6.1 Selfs vs Non-self: An Illustration
	6.2 A RE Process Adapted for Selfs

	7 Challenges of Selfs for Requirements Engineering
	8 Conclusion and Future Work
	References




