

M. Indulska and S. Purao (Eds.): ER Workshops 2014, LNCS 8823, pp. 3–12, 2014.
© Springer International Publishing Switzerland 2014

Model Based Enterprise Simulation and Analysis

A Pragmatic Approach Reducing the Burden on Experts

Vinay Kulkarni, Tony Clark, Souvik Barat, and Balbir Barn

{vinay.vkulkarni,souvik.barat}@tcs.com,
{t.n.clark,b.barn}@mdx.ac.uk

Abstract. Modern enterprises are complex systems operating in highly dynamic
environments. The time to respond to the various change drivers is short and
the cost of incorrect decisions is prohibitively high. Modern enterprises tend to
exist in silos leading to fragmented knowledge with little support available for
composing the fragments. Current practice places a heavy burden on experts by
requiring a quick and comprehensive solution. This paper proposes a model
based approach to this problem in terms of a language to be used for enterprise
simulation and analysis that is capable of integrating the ‘what’, ‘how’ and
‘why’ aspects of an enterprise. Possible implementation is also hinted.

1 Introduction

Modern enterprises operate in a highly dynamic environment wherein changes due to
a variety of external change drivers require a rapid response within a highly con-
strained setting. The cost of an erroneous response is prohibitively high and may pos-
sibly reduce options for subsequent changes in direction. Two further issues com-
pound the problem. Firstly, the large size of modern enterprises means the under-
standing of ‘what’ is the enterprise, ‘how’ it operates and ‘why’ it so exists is availa-
ble for highly localized parts only. Secondly, existing tool support addresses only one
aspect, for instance, i* (http://www.cs.toronto.edu/km/istar/) addresses the ‘why’
aspect, BPMN tools (http://www.softwareag.com/corporate/products/aris/default.asp)
address the ‘how’ aspect, ArchiMate (http://www.visual-paradigm.com/) addresses
the ‘what’ aspect, etc. Moreover, these tools are not only non-interoperable but also
paradigmatically different.

As a result, today, experts are forced to follow a process wherein: the problem un-
der consideration is first decomposed into its ‘why’, ‘what’ and ‘how’ parts; these
sub-problems are solved individually and independently making use of the available
tool support to the extent possible; and the part-solutions are composed into a whole.
This intellectually demanding endeavour becomes even more challenging due to the
fractured knowledge and non-interoperable nature of current EA tools. The former
constitutes the intrinsic complexity whereas the latter can be viewed as accidental
complexity.

This paper explores whether model based engineering (MBE) can take some bur-
den off experts’ shoulders by reducing the intrinsic complexity. MBE has been used

4 V. Kulkarni et al.

to good effect in systems development where models of systems are analysed before
they are built. In some cases, parts of systems can be generated from models or run
directly from models, thereby reducing the development and maintenance times.

Our proposal is that the application of MBE techniques to organizational decision
making involves providing models that reflect the perspective of the key decision
makers. To achieve this we apply techniques from Domain Specific Modelling
(DSM) that engineers languages (DSLs) to contain concepts that are closely aligned
with a given domain. In this way the key stakeholders engage with a support system
that is business-facing. We construct an extensible core language that is used as the
target of translations from a range of DSLs each supporting an organization analysis
and simulation use-case. We then construct a virtual machine to support executed
simulation for the core language. Thus, we envisage a system whereby an organiza-
tion is modelled from a given viewpoint and transform the model so that what-if (i.e.,
what will be the consequences of such and such action) and if-what (i.e., what would
have led to such and such situation) simulation can take place. Results of the simula-
tion help determine choices between organizational change alternatives.

The rest of the paper is organized as follows: section 2 provides motivation in the
light of current state, section 3 outlines the proposed solution rationale as well as the
set of key features of enterprise specification language, section 4 describes ongoing
work towards realization of the proposed solution, and section 5 concludes stating
future research necessary.

2 Motivation

Key decision makers of an enterprise need knowledge about the current state of the
enterprise, a set of change drivers, and a set of possible states (each of which is an
improvement in terms of a well-defined evaluation criterion) so as to be able to make
informed and preferably data driven decisions. Such a precise understanding of the
current state of enterprise includes the understanding of ‘what’, ‘how’ and ‘why’ as-
pects of an enterprise and their interrelationships in order to provide answers to ques-
tions such as: What optimization levers are still untapped? Will a change in business
strategy percolate through to the IT systems? Will a particular change deliver the
promised ROI? Which strategy is most likely to lead to a given desirable outcome?
Moreover, this understanding is required from multiple perspectives and at varying
degrees of detail.

The current state-of-the-art of enterprise specification can be broadly classified as:
those focusing on the ‘what’ and ‘how’ aspects [1,2,3] and those focusing on the
‘why’ aspects [4,5,6]. Supporting infrastructure for the former, with the exception of
(http://www.visual-paradigm.com/) to an extent, is best seen as a means to create high
level descriptions that are meant for human experts to interpret in the light of synthe-
sis of their past experience. The stock-n-flow model [7] provides an altogether differ-
ent paradigm for modelling the ‘what’ and ‘how’ aspects and comes with a rich simu-
lation machinery for quantitative analysis (http://www.iseesystems.com/). Elsewhere,
several BPMN tools providing simulation capability exist but are limited to the ‘how’

 Model Based Enterprise Simulation and Analysis 5

aspect only (http://www.softwareag.com/corporate/products/aris/default.asp). Tech-
nology infrastructure for ‘why’ aspects (http://www.cs.toronto.edu/km/istar/) is
comparatively more advanced in terms of automated support for analysis. However,
correlating the ‘what’ and ‘how’ aspects of enterprise with the ‘why’ aspects still
remains a challenge.

Given the wide variance in paradigms as well supporting infrastructure, the only
recourse available is the use of a method to string together the relevant set of tools
with the objective of answering the questions listed earlier. A lack of tool interopera-
bility further exacerbates automated realization of the method in practice. As a result,
enterprises continue to struggle in satisfactorily dealing with critical concerns such as
business-IT alignment, IT systems rationalization, and enterprise transformation.

3 Proposed Solution

3.1 Rationale

From an external stakeholder perspective, the organization can be viewed as some-
thing that raises and responds to a set of events as it goes about achieving its stated
objectives. The interface abstraction seems an appropriate fit to meet this perspective
and can be extended with negotiation mechanisms such as specification of quality of
service (QoS) and expectations from the environment – both of which are negotiation
enablers. For instance, they allow definition of multilevel contracts, each promising to
honour delivery of the stated objective at the specified QoS level iff the specified
level of expectations from environment are met. An interface abstraction can only
specify the ‘what’ and the ‘why’ of an organization. By providing an abstract imple-
mentation of an interface as a component the ‘how’ of an organization can also be
specified. Such an (Interface, Component) tuple seems appropriate to abstractly cap-
ture an enterprise for the purpose of machine-based analysis.

Compared to the external stakeholders such as Customer, Regulating Authority etc.,
internal stakeholders such as COO, CFO need views of the enterprise at a more granu-
lar level such as viewing the IT services organization as a set of interacting business
units namely Sales & Marketing, Human Resources development, Software develop-
ment, Quality control, Project management etc. Each of these business units have indi-
vidual and independent objectives and can deploy different strategies to achieve them.
Therefore, it seems the (Interface, Component) tuple can suffice to specify individual
business units also. However, since these business units together constitute the organi-
zation, a [de]composition mechanism seems required. This requirement can be met if
the component abstraction is first class as well as compositional.

We propose a modelling language engineering solution based on the principles of
separation of concerns [8] and purposive meta-modelling. We posit a core language
defined in terms of generic concepts such as event, behaviour, property, interface,
component, composition, and goal. They constitute a minimal set of concepts
necessary and sufficient for enterprise specification as argued below. The core lan-
guage can be seen as a meta-model template where the generic concepts are place-
holders. In the proposed approach a template emits the desired purposive meta-model

6 V. Kulkarni et al.

(i.e. a DSL) through a process of instantiation wherein the placeholder generic con-
cepts are replaced by purpose-specific concepts. Our proposal is to construct an ex-
tensible kernel language that supports the same set of core concepts and supports both
analysis and simulation. As purpose-specific DSLs and the kernel language share the
same set of core concepts, the DSLs can be mapped onto the kernel language as
shown in Figure 1. In other words, kernel language can be used as the target of trans-
lations from a range of DSLs. Each DSL supports an organization analysis and simu-
lation use-case. We then aim to construct a virtual machine for the kernel language so
that it is executable. Model execution supports organisation simulation and some
analysis use-cases. Links to external packages such as model-checkers will complete
the analysis use-cases.

The meta-modelling approach is suited to the open-ended problem space of enterprise
modelling: any number of meta-models can be defined, relationships spanning across the
various meta-models specified and the desired semantic meaning imparted etc.

Organisations consist of many autonomous components that are organized into dy-
namically changing hierarchical groups, operate concurrently, and manage goals that
affect their behaviour. We aim for the kernel language to reflect these features by
having an operational semantics based on the Actor Model of Computation (AMC)
[9] and its relation to organisations, or iOrgs [10]. Our claim is that the AMC pro-
vides a suitable basis for execution and analysis of the core concepts and can be used
to represent the features of a component. The key features that must be supported by
the kernel language are detailed in [11].

4 Validation

Consider an organization that provides software development services. A client sup-
plies a requirement for a system and expects to receive a completed system for an
agreed price. It is in the interests of the service provider to deliver the system whilst
minimizing costs and achieving a minimum QoS level.

The costs and QoS represent aspects of the business strategy for the organization.
These can be decomposed into sub-goals that are eventually ascribed to various ele-
ments of the business such as individuals and departments. Such goals will contribute
to the way in which the elements respond to events and requests that occur during the
life-time of the organization.

Fig. 1. Relation between Core, Kernel and DSLs

 Model Based Enterprise Simulation and Analysis 7

An organization will naturally decompose into elements that correspond to physi-
cal or logical aspects of the business such as individuals, departments or IT compo-
nents. Many of these elements will be autonomous, for example an individual will not
wait to be instructed to perform a task, but may, at any time, decide on a course of
action. Indeed, such autonomous behaviour can have important ramifications for the
success of the overall business strategy. An individual who is highly motivated can
proactively perform tasks that pre-empt future requirements. In addition, an individual
whose goals are not aligned to those of the organization can take actions that are in
their own interests and that are inconsistent with those that are imposed on them. In
the case of the software services organization, an individual who is repeatedly over-
looked as team-leader, may start to delay the delivery of software components.

Decision making and negotiation is an important part of implementing complex
tasks within any organization. Individuals will make decisions that are based on their
local knowledge and beliefs regarding the current situation. For example, without
further direction, an individual may use a particular language to specify a software
component because they believe it to be effective based on previous experience. Ne-
gotiation occurs whenever resources are limited, a programmer may need to negotiate
regarding the availability of computing resources, and a manager may negotiate to
take designers from one department to another for the duration of a project. The suc-
cess of negotiation will depend upon a variety of factors, not least the local know-
ledge of the individuals that are participating.

In addition to long-lived groups that correspond to organizational components that
might be seen on a conventional organogram, the life-time of a group may be much
shorter; for example, a group of software designers that are convened and subsequent-
ly dissolved at the start of a project. Such groups need not have a physical realization,
for example, operating via electronic communication mechanisms, however they have
collective knowledge, may negotiate collectively and respond to events and requests
as a group.

A senior decision maker may be interested in modelling the software service pro-
vider from a variety of perspectives. In all cases they are interested in minimizing
costs and achieving a given minimum QoS. Perspectives include:

• Varying the number of resources available, for example changing the number of
designers (who are relatively expensive) or the number of programmers.

• Imposing certain business directives such as a requirement that agile development
methods should be used compared to traditional waterfall.

• Varying the abilities of individual roles within the organization with the resulting
impact on the costs of development and QoS.

• Varying the roles within an organization. A specific role may be defined that is
responsible for identifying opportunities for sharing good practice between differ-
ent projects. Simulations can be run both with and without individuals responsible
for the new role.

Given the requirements outlined above, our proposal is that the concepts can be
represented using a fixed collection of concepts that include components, interfaces,
events, goals and behaviour. These concepts can be implemented using features from
the Actor model of computation and Multi-Agent Systems.

8 V. Kulkarni et al.

The kernel language is currently in development and is based on earlier work on

the LEAP language and associated toolset [12,13,14]. The hypothesis of LEAP and
the subsequent development of the ESL language is that, unlike current languages
such as ArchiMate and KAOS, it is not necessary to provide a large diversity of mod-
elling elements in order to capture the elements of interest when analysing aspects of
organisations. LEAP proposes that components, ports and connectors can be used in
conjunction with information models and behaviour rules in order to represent organi-
sational features. However, this aspect alone is insufficient, and a key property of the
LEAP and ESL languages is that they offer higher-order features including first-class
components, functions and procedures.

Higher-order features provide a basis for abstraction over patterns of structure and
behaviour that cannot otherwise be achieved by languages that are limited to first-
order features. Abstraction is an important aspect of the EASE-Y approach because
we aim to tailor the same architecture to multiple problem cases. Abstraction through
higher-order features means that models can be parameterised with respect to differ-
ent behaviours.

As an example of the use of higher-order features that implement a pattern of be-
haviour, consider the implementation of a resource manager to be used by the soft-
ware service provider. In this case the resources are software engineers and the re-
source manager is to be used to simulate different strategies for implementing devel-
opment projects.

act resource_manager(time,resources,queue) {
 advance_time(t,d) =
 case (t+d) <= time {

 true -> time
 else t + d
 }

 Request(t,filter,action) ->
 case t <= time {

 true ->
 let requested = filter(resources)
 in case requested {
 Fail ->
 become re-

source_manager(time,resources,queue+[Request(t,filter,action)])
 Success(some_resources) -> {
 become resource_manager(time,resources-some_resources,queue);
 action(time,some_resources)
 }
 }
 else become resource_manager(time,resources,queue+[Request(t,filter,action)])
 }

 Release(t,some_resources,d,next) ->
 case queue {

 [] -> {
 become resource_manager(advance_time(t,d),resources+some_resources,[]);
 next(advance_time(t,d))
 }
 request:queue -> {
 become resource_manager(advance_time(t,d),resources+some_resources,queue);
 next(advance_time(t,d));
 send self request
 }
 }

}

Fig. 2. ESL Resource Manager

 Model Based Enterprise Simulation and Analysis 9

Figure 2 shows the implementation of a resource manager in the ESL kernel lan-

guage. The resource manager is defined as an actor-behaviour. An actor is created
with a behaviour that can be changed using the command become. The resource man-
ager is parameterised with respect to the current time, the list of available resources
and a queue of pending resource requests. The behaviour of an actor defines the inter-
face of messages that the actor can process. Each message is handled in a separate
thread of computation. In this case the resource manager can handle Request and
Release messages. A request for resources includes the time at which the request is
made, a resource filter and an action. The resource filter is a predicate that can be
applied to the currently available resources to determine whether the request can be
satisfied. The filter returns Fail when there are insufficient resources and returns
Success otherwise. The action is supplied with the allocated resources. The higher-
order features (filter and action) allow the resource manager to be used in a wide
range of different resource allocation simulations. When the resources are released,
the procedure next is used as a continuation.

In addition to rule-based execution, actors will be goal-driven and will need to
plan. The ESL kernel language provides a deduction engine that can be used to devel-
op plans in response to requests that are received as messages.

 Figure 3 shows an outline of an underground train traveller actor that uses a col-
lection of rules and a simple planner to construct plans when instructed to go to a
target station. The ESL construct prove is used to construct a plan that is then
enacted when the actor sends itself a Do message. Actions within the plan are either
Move between stations or Change train lines. Figure 4 shows a general purpose

act traveller(name,goals,plan,location,line) {
 Go(target) ->
 case plan {
 [] ->
 prove PlanJourney({location},{line},{target},plan) <- [],tube_planner {
 become traveller(name,goals,plan,location,line);
 send self Do
 } print('FAIL\n')
 else become traveller(name,goals+[Go(target)],plan,location,line)
 }
 Do ->
 case plan {
 [] ->
 case goals {
 g:gs -> {
 become traveller(name,gs,plan,location,line);
 send self g
 }
 else print(name + ' travels are complete.\n')
 }
 Move(_,location):plan -> {
 become traveller(name,goals,plan,location,line);
 print(name + ' moves to ' + location + '\n');
 send self Do
 }
 Change(_,_,line):plan -> {
 become traveller(name,goals,plan,location,line);
 print(name + ' changes line to ' + line + '\n');
 send self Do
 }
 }
}

Fig. 3. Planning

10 V. Kulkarni et al.

Fig. 4. A General Purpose Planner in ESL

STRIPS-like planner implemented in the ESL kernel. The language provides
PROLOG-like deduction rules that are integrated with the actors and the associated
information structures. The planner is used in the definition of a rule-set called
tube_planner used in Figure 3. It is not envisaged that the senior decision makers
will need to understand these concepts and features because the intention is to use
techniques from language-engineering and model-driven development to offer a busi-
ness-facing interface for each of the use-cases. For example, a decision maker in the
software services example may be offered a simple interface that allows them to vary
number of elements in a pre-populated model of their organization. Figure 5 shows
the proposed EASE-Y architecture and the various stakeholders that take part in the
process of developing a language for a particular use-case, deploying the language on
the architecture and then using it to model part of an organisation, populate various
concrete scenarios and perform simulation and analysis.

It remains a research question as to how much variability can be exposed in such a
domain-specific way. Therefore, the proposed architecture for simulation and analysis
will involve a number of stakeholders and involve a development process for each
use-case. In the first instance the architecture will need to be tailored for a specific
class of use-cases, for example languages may be developed that support software
development companies. This will involve collaboration between a general domain
expert and a language engineer and will result in a language definition that translated
to a kernel using the general concepts. Secondly, the language will be tailored to the
needs of a specific company involving collaboration between a company-specific
domain expert and a language engineer. Thirdly, a domain specific language that is
suitable for the decision maker will be produced. This will involve an expert in user-
interface design. Finally the decision maker will be able to use the system unaided to
configure various scenarios and run analysis and simulation. Of course, there are
many opportunities within this process for reuse.

We modelled an IT services provisioning organisation in terms of i* (the ‘why’ as-
pect) and system dynamical (largely the ‘what’ aspect with little bit of ‘how’). We
used i* and system dynamic models individually and independently to answer a set of
questions. However, it was very hard to answer questions that need information of all
the three aspects together. This was largely due to the paradigmatic differences be-
tween the two models and non-interoperable nature of the tools. We are in the process
of specifying the same example using the proposed kernel language. We are confident
of being able to answer all the questions herein.

planner = rules {
 Solve(state,goal,plan,plan) :- Subset(goal,state).
 Solve(state,goal,sofar,plan) :-
 Action(action,precons,add,delete),
 Subset(precons,state),
 \+ Member(action,sofar),
 DeleteAll(state,delete,remainder),
 Append(add,remainder,newState),
 Append(sofar,[action],sofar'),
 Solve(newState,goal,sofar',plan)
}

 Model Based Enterprise Simulation and Analysis 11

5 Conclusion and Future Work

Modern enterprises are complex systems operating in increasingly dynamic environ-
ment. Understanding of the ‘what’, ‘how’’ and ‘why’ aspects is essential for quick
and comprehensive change response. We proposed a model based solution for reduc-
ing this inherent complexity and proposed technology infrastructure for automation.
We believe this will take a significant burden off experts’ shoulders. We hope to have
an illustration of the proposed approach along with the supporting technology infra-
structure ready very soon.

However, several challenges remain to be addressed pertaining to both inherent as
well as accidental complexity. As regards the former, there is a need to support the
inescapable realities of ‘negotiation’ and ‘uncertainty’. Barring [15,16,17] very little
work is reported. Paradigmatic differences and non-interoperable nature of existing
EA modelling tools introduce accidental complexity which can only be addressed
through a manual method. Automation support based on meta-model mapping and
model transformation seems definitely possible. This can also help in maintaining
the various models always in sync – a key unmet requirement that leads to eventual
disuse of EA modelling tools. Size of modern enterprises and nature of problems
they face results in very large enterprise models. Precision of analysis, speed of simu-
lation, and life cycle support for these models that typically exist in a distributed
manner are major hurdles to be overcome for the proposed approach to be useful
and usable in real life. Many of the lessons learnt from use of MBE in application
generation [18,19] seem readily applicable. Success depends principally upon the
quality of models and only partially on the proposed technology infrastructure which
is but a solution enabler. Ensuring semantic validity of enterprise models is another
important challenge that needs to be addressed for the proposed approach to be usable
in real life.

Fig. 5. EASE-Y Architecture

12 V. Kulkarni et al.

References

1. Josey, A.: Togaf v 9.1 enterprise edition - an introduction. The Open Group (November
2009)

2. Zachman, J.A.: A framework for information systems architecture. IBM Systems Jour-
nal 26(3), 276–292 (1987)

3. Wisnosky, D.E., Vogel, J.: Foo. In: Managing and Executing Projects to Build Enterprise
Architectures Using the Department of Defense Architecture Framework, DoDAF (2004)

4. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Science of Computer Programming 20(1), 3–50 (1993)

5. Yu, E., Strohmaier, M., Deng, X.: Exploring intentional modeling and analysis for enter-
prise architecture. In: 10th IEEE International Enterprise Distributed Object Computing
Conference Workshops, EDOCW 2006, p. 32. IEEE (2006)

6. Object Management Group. Business motivation model (bmm), version 1.1 (2010),
http://www.omg.org/spec/BMM/1.1/

7. Meadows, D.H.: Thinking in systems: A primer. Chelsea Green Pub. (2008)
8. Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N degrees of separation: multi-dimensional

separation of concerns. In: Proceedings of the 21st Int. Conf. on Software Engineering, pp.
107–119 (1999)

9. Hewitt, C.: Actor model of computation: scalable robust information systems. ar-
Xiv:1008.1459 (2010)

10. Hewitt, C.: Norms and commitment for iorgs (tm) information systems: Direct logic (tm)
and participatory grounding checking. arXiv:0906.2756 (2009)

11. Kulkarni, V., Clark, T., Barn, B.: A Component Abstraction for Localized, Composable,
Machine Manipulable Enterprise Specification. In: 4th International Symposium on Busi-
ness Modeling and Software Design (2014)

12. Clark, T., Barn, B.: Goal driven architecture development using LEAP. Enterprise Model-
ing & Information Systems Architectures-An International Journal 8(1), 40–61 (2013)

13. Clark, T., Barn, B.S., Oussena, S.: LEAP: A precise lightweight framework for enterprise
architecture. In: Proceedings of the 4th India Software Engineering Conference, pp. 85–94.
ACM (2011)

14. Clark, T., Barn, B.S., Oussena, S.: A method for enterprise architecture alignment. In:
Proper, E., Gaaloul, K., Harmsen, F., Wrycza, S. (eds.) PRET 2012. LNBIP, vol. 120, pp.
48–76. Springer, Heidelberg (2012)

15. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.:
Automated negotiation: prospects, methods and challenges. Group Decision and Negotia-
tion 10(2), 199–215 (2001)

16. Bartolini, C., Preist, C., Jennings, N.R.: A software framework for automated negotiation.
In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS 2004. LNCS,
vol. 3390, pp. 213–235. Springer, Heidelberg (2005)

17. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-
agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

18. Kulkarni, V., Reddy, S., Rajbhoj, A.: Scaling up model driven engineering – experience
and lessons learnt. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part
II. LNCS, vol. 6395, pp. 331–345. Springer, Heidelberg (2010)

19. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of
MDE in industry. In: Proceedings of the 33rd International Conference on Software Engi-
neering, pp. 471–480. ACM (May 2011)

	Model Based Enterprise Simulation and Analysis
	1 Introduction
	2 Motivation
	3 Proposed Solution
	3.1 Rationale

	4 Validation
	5 Conclusion and Future Work
	References

