
Chapter 2
Homomorphic Encryption

Abstract Homomorphic encryption is a form of encryption which allows specific
types of computations to be carried out on ciphertexts and generate an encrypted
result which, when decrypted, matches the result of operations performed on the
plaintexts. This is a desirable feature in modern communication system architec-
tures. RSA is the first public-key encryption scheme with a homomorphic property.
However, for security, RSA has to pad a message with random bits before encryption
to achieve semantic security. The padding results in RSA losing the homomorphic
property. To avoid padding messages, many public-key encryption schemes with
various homomorphic properties have been proposed in last three decades. In this
chapter, we introduce basic homomorphic encryption techniques. It begins with
a formal definition of homomorphic encryption, followed by some well-known
homomorphic encryption schemes.

2.1 Homomorphic Encryption Definition

In abstract algebra, a homomorphism is a structure-preserving map between two
algebraic structures, such as groups.

A group is a set, G, together with an operation ı (called the group law of G)
that combines any two elements a and b to form another element, denoted a ı b.
To qualify as a group, the set and operation, (G; ı), must satisfy four requirements
known as the group axioms:

• Closure: For all a; b in G, the result of the operation, a ı b, is also in G.
• Associativity: For all a; b, and c in G, .a ı b/ ı c D a ı .b ı c/.
• Identity element: There exists an element e in G, such that for every element a

in G, the equality e ı a D a ı e D a holds. Such an element is unique, and thus
one speaks of the identity element.

• Inverse element: For each a in G, there exists an element b in G such that aıb D
b ı a D e, where e is the identity element.

The identity element of a group G is often written as 1.
The result of an operation may depend on the order of the operands. In other

words, the result of combining element a with element b need not yield the same
result as combining element b with element a; the equation a ı b D b ı a may not
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Fig. 2.1 Group Homomorphism

always be true. This equation always holds in the group of integers under addition,
because a C b D b C a for any two integers (commutativity of addition). Groups
for which the commutativity equation a ı b D b ı a always holds are called abelian
groups.

Given two groups (G; ˘) and (H; ı), a group homomorphism from (G; ˘) to
(H; ı) is a function f W G ! H such that for all g and g0 in G it holds that

f .g ˘ g0/ D f .g/ ı f .g0/ (2.1)

Group homomorphism can be illustrated as in Fig. 2.1.
Let (P; C; K; E; D) be an encryption scheme, where P; C are the plaintext and

ciphertext spaces, K is the key space, and E; D are the encryption and decryption
algorithms. Assume that the plaintexts forms a group (P; ˘) and the ciphertexts
forms a group (C; ı), then the encryption algorithm E is a map from the group P to
the group C , i.e., Ek W P ! C , where k 2 K is either a secret key (in a secret key
cryptosystem) or a public key (in a public-key cryptosystem).

For all a and b in P and k in K, if

Ek.a/ ı Ek.b/ D Ek.a ˘ b/ (2.2)

the encryption scheme is homomorphic.
In an unpadded RSA [18], assume that the public key pk D .n; e/, the plaintexts

form a group (P; �), and the ciphertexts form a group (C; �), where � is the modular
multiplication. For any two plaintexts m1; m2 in P , it holds that

E.m1; pk/ � E.m2; pk/ D me
1 � me

2.mod n/

D .m1 � m2/e.mod n/

D E.m1 � m2; pk/

Therefore, the unpadded RSA has the homomorphic property. Unfortunately, the
unpadded RSA is insecure.
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2.2 Goldwasser–Micali Encryption Scheme

The Goldwasser–Micali (GM) encryption scheme [7] is a public-key encryption
algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the
distinction of being the first probabilistic public-key encryption scheme which is
provably secure under standard cryptographic assumptions. However, it is not an
efficient cryptosystem, as ciphertexts may be several hundred times larger than the
initial plaintext. To prove the security properties of the cryptosystem, Goldwasser
and Micali proposed the widely used definition of semantic security.

GM consists of three algorithms: a probabilistic key generation algorithm which
produces a public and a private key, a probabilistic encryption algorithm, and a
deterministic decryption algorithm.

The scheme relies on deciding whether a given value x is a square mod N ,
given the factorization (p; q) of N . This can be accomplished using the following
procedure:

Compute

xp D x.mod p/ (2.3)

xq D x.mod q/ (2.4)

If

x.p�1/=2
p D 1.mod p/ (2.5)

x.q�1/=2
q D 1.mod q/ (2.6)

then x is a quadratic residue mod N .

Key Generation: The modulus used in GM encryption is generated in the same
manner as in the RSA cryptosystem.

Alice generates two distinct large prime numbers p and q, such that p D q D
3.mod 4/, randomly and independently of each other. Alice computes N D pq.
She then finds some non-residue a such that

a.p�1/=2
p D �1.mod p/; a.q�1/=2

q D �1.mod q/

The public key consists of (a; N ). The secret key is the factorization (p; q).

Encryption: Suppose Bob wishes to send a message m to Alice. Bob first encodes
m as a string of bits (m1; � � � ; mn).

For every bit mi , Bob generates a random value bi from the group of units
modulo N , or gcd.bi ; N / D 1. He outputs the value

ci D b2
i � ami .mod N / (2.7)

Bob sends the ciphertext .c1; c2; � � � ; cn/ to Alice.
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Decryption: Alice receives .c1; c2; � � � ; cn/. She can recover m using the following
procedure:

For each i , using the prime factorization (p; q), Alice determines whether the
value ci is a quadratic residue; if so, mi D 0, otherwise mi D 1. Alice outputs the
message m D .m1; � � � ; mn/.

GM Example: We choose small parameters in this example. In key generation,
we let

p D 7; q D 11

where p D q D 3.mod 4/. So

N D pq D 77

Take

a D 6

where

6.7�1/=2 D �1.mod 7/; 6.11�1/=2 D �1.mod 11/

The public key is (6, 77) and the private key is (7,11).
To encrypt 3-bit message m1m2m3 D 101. Choose

b1 D 2; b2 D 3; b3 D 5

and compute

c1 D 22 � 61 D 24.mod 77/

c2 D 32 � 60 D 9.mod 77/

c3 D 52 � 61 D 73.mod 77/

The ciphertext is (24,9,73).
To decrypt the ciphertext, compute

24.7�1/=2 D �1.mod 7/

9.7�1/=2 D 1.mod 7/; 9.11�1/=2 D 1.mod 11/

73.7�1/=2 D �1.mod 7/
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This shows that 24 and 73 are non-quadratic residue and 9 is quadratic residue,
and thus outputs the plaintext 101.

Homomorphic Property: The GM encryption scheme has a homomorphic prop-
erty, in the sense that if c0; c1 are the encryptions of bits m0; m1, then c0c1.mod N /

will be an encryption of m0 ˚ m1, where ˚ denotes addition modulo 2 (i.e.,
exclusive-OR).

Assume that

c0 D b2
0 � am0.mod N /; c1 D b2

1 � am1.mod N /

we have

c0 � c1 D .b2
0 � am0/ � .b2

1 � am1/.mod N /

D .b0b1/2 � am0Cm1.mod N /

When m0 C m1 is either 0 or 1, we have m0 C m1 D m0 ˚ m1. When m0 D
m1 D 1, m0 C m1 D 2 and c0c1.mod N / is a quadratic residue and thus it is an
encryption of 0. In this case, we have m0 ˚ m1 D 1 ˚ 1 D 0 as well.

Security: The GM encryption scheme is a probabilistic encryption [8]. Proba-
bilistic encryption refers to the use of randomness in an encryption algorithm,
so that when encrypting the same message several times it will, in general,
yield different ciphertexts. The term “probabilistic encryption” is typically used
in reference to public-key encryption algorithms; however, various secret key
encryption algorithms achieve a similar property (e.g., block ciphers when used in a
chaining mode such as CBC). To be semantically secure, that is, to hide even partial
information about the plaintext, an encryption algorithm must be probabilistic.

Probabilistic encryption is particularly important when using public-key encryp-
tion. Suppose that the adversary observes a ciphertext and suspects that the plaintext
is either “YES” or “NO.” When a deterministic encryption algorithm is used, the
adversary can simply try encrypting each of his or her guesses under the recipient’s
public key and compare each result to the target ciphertext. To combat this
attack, public-key encryption schemes must incorporate an element of randomness,
ensuring that each plaintext maps into one of a large number of possible ciphertexts.

An intuitive approach to converting a deterministic encryption scheme into
a probabilistic one is to simply pad the plaintext with a random string before
encrypting with the deterministic algorithm, such as padding RSA. Conversely,
decryption involves applying a deterministic algorithm and ignoring the random
padding. However, early schemes which applied this naive approach were broken
due to limitations in some deterministic encryption schemes. Techniques such as
OAEP integrate random padding in a manner that is secure using any trapdoor
permutation.

The GM encryption scheme is semantically secure [8]. Semantic security is
commonly defined by the following game:
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• Initialize: The challenger runs the key generation algorithm, gives the public key
pk to a probabilistic polynomial time-bounded (PPT) adversary, but keeps the
private key sk to itself.

• Phase 1: The adversary adaptively asks a number of different encryption queries
Ci D E.mi ; pk/ for mi , where i D 1; 2; � � � ; n.

• Challenge: Once the adversary decides that Phase 1 is over, it outputs a pair
of equal length plaintexts .M0; M1/ on which it wishes to be challenged.
The challenger picks a random bit b 2 f0; 1g and sends C D E.Mb; pk/ as
the challenge to the adversary.

• Phase 2: The adversary issues more encryption queries adaptively as in Phase 1.
• Guess: Finally, the adversary outputs a guess b0 2 f0; 1g and wins the game if

b0 D b.

The public-key encryption cryptosystem is semantically secure under chosen-
plaintext attack if the adversary cannot determine which of the two messages was
chosen by the challenger, with probability significantly greater than 1/2 (the success
rate of random guessing).

The GM encryption scheme is semantically secure based on the assumed
intractability of the quadratic residuosity problem modulo a composite N D pq

where p; q are large primes. This assumption states that given (a; N ) it is difficult
to determine whether a is a quadratic residue modulo N (i.e., a D b2.mod N / for
some b). The quadratic residue problem is easily solved given the factorization of N .
The GM encryption scheme leverages this asymmetry by encrypting individual
plaintext bits as either random quadratic residues or non-residues modulo N .
Recipients use the factorization of N as a secret key and decrypt the message by
testing the quadratic residuosity of the received ciphertext values.

Because the GM encryption scheme produces a value of size approximately
jN j to encrypt every single bit of a plaintext, GM encryption results in substantial
ciphertext expansion. To prevent factorization attacks, it is recommended that jN j be
several hundred bits or more. Thus, the scheme serves mainly as a proof of concept,
and more efficient provably secure schemes such as ElGamal encryption scheme
have been developed since.

2.3 ElGamal Encryption Scheme

The ElGamal encryption scheme [4] is a public-key encryption algorithm based on
the Diffie–Hellman key exchange. It was invented by Taher Elgamal in 1985. The
ElGamal encryption scheme is used in the free GNU Privacy Guard software, recent
versions of PGP, and other cryptosystems. The ElGamal encryption scheme can be
defined over any cyclic group G. Its security depends upon the difficulty of a certain
problem in G related to computing discrete logarithms.

The ElGamal encryption scheme consists of three components: the key genera-
tion, the encryption algorithm, and the decryption algorithm.
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Key Generation: The key generator works as follows:
Alice generates an efficient description of a cyclic group G, of order q, with

generator g.
Alice chooses a random x 2 f1; : : : ; q � 1g.
Alice computes

y D gx (2.8)

Alice publishes y along with the description of G; q; g, as her public key. Alice
retains x, as her private key which must be kept secret.

Encryption: The encryption algorithm works as follows:
To encrypt a message m, to Alice under her public key (G; q; g; y), Bob chooses

a random r 2 f1; : : : ; q � 1g, then computes

c1 D gr (2.9)

Bob computes the shared secret

s D yr (2.10)

Bob converts his secret message m, into an element m0 2 G.
Bob computes

c2 D m0 � s (2.11)

Bob sends the ciphertext .c1; c2/ D .gr ; m0 � yr/ to Alice.
Note that one can easily find yr , if one knows m0. Therefore, a new r , is

generated for every message to improve security. For this reason, r , is also called an
ephemeral key.

Decryption: The decryption algorithm works as follows:
To decrypt a ciphertext (c1; c2), with her private key x, Alice computes the shared

secret

t D cx
1 (2.12)

and then computes

m0 D c2 � t�1 (2.13)

which she then converts back into the plaintext message m, where t�1 is the inverse
of t in the group G (e.g., modular multiplicative inverse if G is a subgroup of a
multiplicative group of integers modulo n).
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The decryption algorithm produces the intended message, since

c2 � t�1 D .m0 � s/ � c�x
1

D m0 � yr � g�xr

D m0 � gxr � g�xr

D m0

The ElGamal encryption scheme is probabilistic, meaning that a single plaintext
can be encrypted to many possible ciphertexts, with the consequence that a general
ElGamal encryption produces a 2:1 expansion in size from plaintext to ciphertext.

Encryption under ElGamal requires two exponentiations; however, these expo-
nentiations are independent of the message and can be computed ahead of time if
need be. Decryption only requires one exponentiation.

The division by t can be avoided by using an alternative method for decryption.
To decrypt a ciphertext (c1; c2), with Alice’s private key x, Alice computes t 0 D
c

q�x
1 D g.q�x/r . t 0 is the inverse of t . This is a consequence of Lagrange’s theorem,

because

t � t 0 D gxr � g.q�x/r D .gq/r D 1r D 1

where 1 is the identity element of G.
Alice then computes m0 D c2 � t 0, by which she then converts back into the

plaintext message m. The decryption algorithm produces the intended message,
since

c2 �t 0 D m0 �s �t 0 D m0 �yr �t 0 D m0 �gxr �t 0 D m0 �.gr /x �t 0 D m0 �cx
1 �t 0 D m0 �t �t 0 D m0

ElGamal Example: An example of the ElGamal encryption with small parameters
is given as follows:

At first, Alice generates a prime modulo p and a group generator g which is
between 1 and p � 1:

p D 2879

g D 2585

Alice selects a random number (x) which will be her private key:

x D 47

She then calculates

y D gx D 258547 D 2826.mod 2879/
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Alice’s public key is now (p; g; y) and sends them to Bob. The private key x is
known to Alice only.

Bob then creates a message

m D 77

and then selects a random value

r D 65

and calculates the ciphertext (c1; c2) where

c1 D gr D 258565 D 319.mod 2879/

c2 D m � yr D 77 � 282665 D 472.mod 2879/

Alice can decrypt the ciphertext:

c2=cx
1 D 472=31947 D 77.mod 2879/:

Homomorphic Property: ElGamal encryption scheme has a homomorphic prop-
erty. Given two encryptions

.c11; c12/ D .gr1 ; m1yr1/; .c21; c22/ D .gr2 ; m2yr2/

where r1; r2 are randomly chosen from f1; 2; � � � ; q � 1g and m1; m2 2 G, one can
compute

.c11; c12/.c21; c22/ D .c11c21; c12c22/

D .gr1gr2 ; .m1yr1/.m2yr2//

D .gr1Cr2 ; .m1m2/yr1Cr2 /

The resulted ciphertext is an encryption of m1m2.

ElGamal Security: The security of the ElGamal scheme depends on the properties
of the underlying group G as well as any padding scheme used on the messages.

If the computational Diffie–Hellman assumption (CDH) holds in the underlying
cyclic group G, then the ElGamal encryption function is one way. The CDH is
the assumption that a certain computational problem within a cyclic group G is
hard. Consider a cyclic group G of order q, the CDH assumption states that, given
.g; ga; gb/ for a randomly chosen generator g and random a; b 2 f0; � � � ; q � 1g, it
is computationally intractable to compute the value gab .

If the decisional Diffie–Hellman assumption (DDH) holds in G, then ElGamal
achieves semantic security. Semantic security is not implied by the CDH alone. The
DDH is a computational hardness assumption about a certain problem involving
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discrete logarithms in cyclic groups. Consider a (multiplicative) cyclic group G of
order q, and with generator g. The DDH assumption states that, given ga and gb for
uniformly and independently chosen a; b 2 Zq , the value gab “looks like” a random
element in G. This intuitive notion is formally stated by saying that the following
two probability distributions are computationally indistinguishable:

• (ga; gb; gab), where a and b are randomly and independently chosen from Zq;
• (ga; gb; gc), where a; b; c are randomly and independently chosen from Zq .

ElGamal encryption is unconditionally malleable and therefore is not secure
under chosen-ciphertext attack. For example, given an encryption (c1; c2) of some
(possibly unknown) message m, one can easily construct a valid encryption (c1; 2c2)
of the message 2m.

To achieve chosen-ciphertext security, the scheme must be further modified, or
an appropriate padding scheme must be used. Depending on the modification, the
DDH assumption may or may not be necessary.

Other schemes related to ElGamal which achieve security against chosen-
ciphertext attacks have also been proposed. The Cramer–Shoup cryptosystem [3]
is secure under chosen-ciphertext attack assuming DDH holds for G. Its proof does
not use the random oracle model. Another proposed scheme is DHAES [1], whose
proof requires an assumption that is weaker than the DDH assumption.

The ElGamal encryption scheme is usually used in a hybrid cryptosystem, i.e.,
the message itself is encrypted using a symmetric cryptosystem and ElGamal is
then used to encrypt the key used for the symmetric cryptosystem. This is because
asymmetric cryptosystems like ElGamal are usually slower than symmetric ones for
the same level of security, so it is faster to encrypt the symmetric key (which most
of the time is quite small if compared to the size of the message) with ElGamal and
the message (which can be arbitrarily large) with a symmetric cryptosystem.

2.4 Paillier Encryption Scheme

The Paillier encryption scheme [11], named after and invented by Pascal Paillier
in 1999, is a probabilistic public-key algorithm. The problem of computing nth
residue classes is believed to be computationally difficult. The decisional composite
residuosity assumption is the intractability hypothesis upon which this cryptosystem
is based.

The Paillier encryption scheme is composed of key generation, encryption, and
decryption algorithms as follows:

Key Generation: Choose two large prime numbers p and q randomly and
independently of each other, such that

gcd.pq; .p � 1/.q � 1// D 1

This property is assured if both primes are of equal length.
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Compute

n D pq; � D lcm.p � 1; q � 1/

where lcm stands for the least common multiple.
Select random integer g where g 2 Z

�
n2 .

Ensure n divides the order of g by checking the existence of the following
modular multiplicative inverse:

� D .L.g�.mod n2///�1.mod n/ (2.14)

where function L is defined as

L.u/ D u � 1

n
(2.15)

Note that the notation a=b does not denote the modular multiplication of a times
the modular multiplicative inverse of b, but rather the quotient of a divided by b.

Finally, the public (encryption) key is (n; g) and the private (decryption) key is
(�; �).

If using p; q of equivalent length, a simpler variant of the above key generation
steps would be to set

g D n C 1; � D '.n/; � D '.n/�1.mod n/

where '.n/ D .p � 1/.q � 1/.

Encryption: Let m be a message to be encrypted where m 2 Zn.
Select random r where r 2 Z

�
n

Compute ciphertext as

c D gm � rn.mod n2/ (2.16)

Decryption: Let c be the ciphertext to decrypt, where c 2 Z
�
n2

Compute the plaintext message as:

m D L.c�.mod n2// � �.mod n/ (2.17)

As the original paper points out, decryption is “essentially one exponentiation
modulo n2.”

The Paillier encryption scheme exploits the fact that certain discrete logarithms
can be computed easily. For example, by binomial theorem,

.1 C n/x D
xX

kD0

 
x

k

!
nk D 1 C nx C

 
x

2

!
n2 C higher powers of n
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This indicates that

.1 C n/x D 1 C nx .mod n2/

Therefore, if

y D .1 C n/x mod n2

then

x D y � 1

n
.mod n/

Thus

L..1 C n/x.mod n2// D x .mod n/

for any x 2 Zn.
Therefore, when g D n C 1, we have

L.c�.mod n2// � � D L..gmrn/�.mod n2// � ��1

D L..gm�.mod n2// � ��1

D � � m � ��1 D m.mod n/

Paillier Example: An example of the Paillier encryption scheme with small
parameters is shown as follows.

For ease of calculations, the example will choose small primes, to create a
small n. Let

p D 7; q D 11

then

n D pq D 7 � 11 D 77

Next, an integer g must be selected from Z
�
n2 , such that the order of g is a multiple

of n in Zn2 . If we randomly choose the integer

g D 5652

then all necessary properties, including the yet to be specified condition, are met, as
the order of g is 2310 D 30 � 77 in Zn2 . Thus, the public key for the example will be

.n; g/ D .77; 5652/
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To encrypt a message

m D 42

where m 2 Zn, choose a random

r D 23

where r is a nonzero integer and r 2 Zn.
Compute

c D gmrn.mod n2/

D 565242 � 2377.mod 5929/

D 4624.mod 5929/

To decrypt the ciphertext c, compute

� D lcm.6; 10/ D 30

Define L.u/ D .u � 1/=n, compute

k D L.g�.mod n2//

D L.565230.mod 5929//

D L.3928/

D .3928 � 1/=77

D 3927=77

D 51

Compute the inverse of k,

� D k�1.mod n/

D 51�1 D 74.mod 77/

Compute

m D L.c�modn2/ � �.mod n/

D L.462430.mod 5929// � 74.mod 77/

D L.4852/ � 74.mod 77/

D 42
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Homomorphic Properties: A notable feature of the Paillier scheme is its homo-
morphic properties. Given two ciphertexts E.m1; pk/ D gm1rn

1 .mod n2/ and
E.m2; pk/ D gm2rn

2 .mod n2/, where r1 and r2 are randomly chosen from Z
�
n ,

we have

• Homomorphic Addition of Plaintexts
The product of two ciphertexts will decrypt to the sum of their corresponding

plaintexts, i.e.,

D.E.m1; pk/ � E.m2; pk/ .mod n2// D m1 C m2.mod n/

because

E.m1; pk/ � E.m2; pk/ D .gm1rn
1 /.gm2rn

2 / .mod n2/

D gm1Cm2.r1r2/n.mod n2/

D E.m1 C m2; pk/

The product of a ciphertext with a plaintext raising g will decrypt to the sum
of the corresponding plaintexts, i.e.,

D.E.m1; pk/ � gm2.mod n2// D m1 C m2.mod n/

because

E.m1; pk/ � gm2 D .gm1rn
1 /gm2 .mod n2/

D gm1Cm2rn
1 .mod n2/

D E.m1 C m2; pk/

• Homomorphic Multiplication of Plaintexts
An encrypted plaintext raised to the power of another plaintext will decrypt to

the product of the two plaintexts, i.e.,

D.E.m1; pk/m2.mod n2// D m1m2.mod n/

because

E.m1; pk/m2 D .gm1rn
1 /m2 .mod n2/

D gm1m2.r
m2

1 /n.mod n2/

D E.m1m2; pk/

More generally, an encrypted plaintext raised to a constant k will decrypt to
the product of the plaintext and the constant, i.e.,
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D.E.m1; pk/k.mod n2// D km1.mod n/

However, given the Paillier encryptions of two messages, there is no known way
to compute an encryption of the product of these messages without knowing the
private key.

Paillier Security: The Paillier encryption scheme provides semantic security
against chosen-plaintext attacks (IND-CPA). The ability to successfully distinguish
the challenge ciphertext essentially amounts to the ability to decide composite
residuosity. The semantic security of the Paillier encryption scheme was proved
under the decisional composite residuosity (DCR) assumption—the DCR problem
is intractable.

The DCR problem states as follows: Given a composite N and an integer z, it is
hard to decide whether z is a N -residue modulo N 2 or not, i.e., whether there exists
y such that

z D yn.mod n2/

Because of the homomorphic properties, the Paillier encryption scheme, how-
ever, is malleable and therefore does not protect against adaptive chosen-ciphertext
attacks (IND-CCA2). Usually in cryptography the notion of malleability is not
seen as an “advantage,” but under certain applications such as secure electronic
voting and threshold cryptosystems, this property may indeed be necessary.

Paillier and Pointcheval [12] however went on to propose an improved cryptosys-
tem that incorporates the combined hashing of message m with random r . Similar
in intent to the Cramer–Shoup cryptosystem, the hashing prevents an attacker, given
only c, from being able to change m in a meaningful way. Through this adaptation
the improved scheme can be shown to be IND-CCA2 secure in the random oracle
model.

2.5 Boneh–Goh–Nissim Encryption Scheme

Boneh–Goh–Nissim encryption scheme [2], BGN scheme by brevity, resembles
the Paillier [11] and the Okamoto–Uchiyama [10] encryption schemes. The BGN
scheme was the first to allow both additions and multiplications with a constant-size
ciphertext. The multiplication is possible due to the fact that pairings can be defined
for elliptic curves.

Let G1; G2 be additive groups and GT a multiplicative group, all of prime
order p. Let P 2 G1; Q 2 G2 be generators of G1 and G2, respectively.

A pairing is a map

e W G1 � G2 ! GT

for which the following holds:
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1. Bilinearity: 8a; b 2 Z
�
p:

e.P a; Qb/ D e.P; Q/ab

2. Non-degeneracy: e.P; Q/ 6D 1.
3. For practical purposes, e has to be computable in an efficient manner.

In cases when G1 D G2 D G, the pairing is called symmetric. If, furthermore,
G is cyclic, the map e will be commutative; that is, for any P; Q 2 G , we have

e.P; Q/ D e.Q; P /

This is because for a generator g 2 G , there exist integers p; q such that P D gp

and Q D gq . Therefore

e.P; Q/ D e.gp; gq/ D e.g; g/pq D e.gq; gp/ D e.Q; P /

On the basis of pairing, BGN scheme can be described by three algorithms—key
generation, encryption, and decryption algorithms—as follows:

Key Generation: Given a security parameter � 2 Z
C, generate a tuple

(q1; q2; G; G1; e), where q1 and q2 are two distinct large primes, G is a cyclic group
of order q1q2, and e is a pairing map e W G � G ! G1. Let N D q1q2. Pick up
two random generators g; u from G and set h D uq2 . Then h is a random generator
of the subgroup of G of order q1. The public key is PK D fN; G; G1; e; g; hg. The
private key SK D q1.

Encryption: Assume the message space consists of integers in the set f0; 1; � � � ;

T g with T < q2. We encrypt bits in which case T D 1. To encrypt a message m

using the public key PK, pick a random r from f1; 2; � � � ; N g and compute

C D gmhr 2 G (2.18)

Output C as the ciphertext.

Decryption: To decrypt a ciphertext C using the private key SK D q1, observe that

C q1 D .gmhr/q1 D .gq1/m (2.19)

To recover the message m, it suffices to compute the discrete logarithm of C q1 to
the base gq1 . Since 0 � m � T , this takes expected time O.

p
T / using Pollard’s

lambda method [9].

Homomorphic Properties: The BGN scheme is clearly additively homomor-
phic. Let PK D fN; G; G1; e; g; hg be a public key. Given two ciphertexts
C1 D gm1hr1 2 G; C2 D gm2hr2 2 G of messages m1; m2 2 f0; 1; � � � ; T g respec-
tively, anyone can create a uniformly distributed encryption of m1 C m2.mod N /
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by computing the product

C D C1C2hr (2.20)

for a random r in f1; 2; � � � ; N � 1g, because

C1C2hr D .gm1hr1/.gm2hr2/hr D gm1Cm2hr1Cr2Cr

is an encryption of m1 C m2.
More importantly, anyone can multiply two encrypted messages once using the

bilinear map. Let

g1 D e.g; g/

and

h1 D e.g; h/

then g1 is of order N and h1 is of order q1. There is some (unknown) ˛ 2 Z such
that

h D g˛q2

Suppose that we are given two ciphertexts C1 D gm1hr1 2 G and C2 D gm2hr2 2 G.
To build an encryption of the product m1m2.mod N /, (1) pick a random r 2 ZN ,
and (2) let

C D e.C1; C2/hr
1 2 G1 (2.21)

We have

C D e.C1; C2/hr
1

D e.gm1hr1 ; gm2hr2/hr
1

D e.gm1C˛q2r1 ; gm2C˛q2r2 /hr
1

D e.g; g/.m1C˛q2r1/.m2C˛q2r2/hr
1

D e.g; g/m1m2C˛q2.m1r2Cm2r1C˛q2r1r2/hr
1

D e.g; g/m1m2h
rCm1r2Cm2r1C˛q2r1r2

1

where r C m1r2 C m2r1 C ˛q2r1r2 is distributed uniformly in ZN . Thus C is a
uniformly distributed encryption of m1m2.mod N /, but in G1 rather than G. We
note that the BGN scheme is still additively homomorphic in G1.
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BGN Example: We will demonstrate the operation of the BGN scheme with a
small example. First we choose two distinct prime numbers

q1 D 7; q2 D 11

and compute the product

N D q1q2 D 77

Next we construct an elliptic curve group with order N that has an associated
bilinear map e. The equation for the elliptic curve is

y2 D x3 C x

and is defined over the field Fq for some prime q D 3 mod 4. In this example, we set

q D 307

Therefore, the curve is supersingular with #.E.q// D q C 1 D 308 rational points,
which contains a subgroup G with the order N D 77 (=308/4).

Within the group G, we choose two random generators

g D Œ182; 240�; u D Œ28; 262�

where these two generators have order N , and compute

h D uq2 D Œ28; 262�11 D Œ99; 120�

where h has order q1 D 7.
We compute the ciphertext of a message

m D 2

Take r D 5 and compute

C D gmhr D Œ182; 240�2 ˚ Œ99; 120�5 D Œ256; 265�

To decrypt we first compute

Og D gq1 D Œ182; 240�7 D Œ146; 60�

and

C q1 D Œ256; 265�7 D Œ299; 44�
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Now we find the discrete logarithm by iterating through all the powers of Og D gq1

as follows:

Og1 D Œ146; 60�

Og2 D Œ299; 44�

Og3 D Œ272; 206�

Og4 D Œ191; 151�

Og5 D Œ79; 171�

Og6 D Œ79; 136�

Og7 D Œ191; 156�

Og8 D Œ272; 101�

Og9 D Œ299; 263�

Og10 D Œ146; 247�

Og11 D 1

Observe that Og2 D C q1 . Therefore, decryption of the ciphertext equals 2, which
is the same as the original message.

BGN Security: The BGN encryption scheme has been proved to be semantically
secure on basis of the subgroup decision problem in [2]. The subgroup decision
(SD) problem is stated as follows.

Given a group G of composite order n D pq, where p; q are distinct (unknown)
primes, and generators gp 2 Gp and g 2 G, distinguish between whether an
element x is a random element of the subgroup Gp or a random element of the
full group G.

Gjosteen [6] has undertaken an extensive survey of such problems, which he calls
subgroup membership problems. For example, the quadratic residuosity problem is
a subgroup membership problem: if we let N D pq be a product of two distinct
primes and define the group G to be the group of elements of Z�

N with Jacobi symbol
1, the problem is to determine whether a given element in G lies in the subgroup of
squares in G.

Boneh, Goh, and Nissim [2] defined their SD problem for pairs of groups (G; G1)
of composite order N D pq for which there exists a nondegenerate bilinear map,
or pairing, e W G � G ! G1. The problem is to determine whether a given element
x 2 G is in the subgroup of order p. Note that if g generates G, then e.g; x/ is a
challenge element for the same problem in G1; thus if the SD problem is infeasible
in G, then it is in G1 as well.

Freeman [5] developed an abstract framework that encompasses the key
properties of bilinear groups of composite order that are required to construct
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secure pairing-based cryptosystems and showed how to use prime-order elliptic
curve groups to construct bilinear groups with the same properties. In particular,
he defined a generalized version of the subgroup decision problem and give explicit
constructions of bilinear groups in which the generalized subgroup decision
assumption follows from the decision Diffie–Hellman assumption, the decision
linear assumption, and/or related assumptions in prime-order groups.
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