

SpringerBriefs in Computer Science

Series Editors
Stan Zdonik
Computer Science Department
Brown University
Providence, Rhode Island, USA

Shashi Shekhar
University of Minnesota Dept. Computer Science & Engineering
Minneapolis, Minnesota, USA

Jonathan Katz
Dept. Computer Science
University of Maryland
College Park, Maryland, USA

Xindong Wu
University of Vermont Dept. Computer Science
Burlington, Vermont, USA

Lakhmi C. Jain
School of Electrical and Information Engineering
University of South Australia
Adelaide, South Australia, Australia

David Padua
University of Illinois Urbana-Champaign Siebel Center for Computer Science
Urbana, Illinois, USA

Xuemin (Sherman) Shen
Department of Electronic and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

Borko Furht
Florida Atlantic University
Boca Raton, Florida, USA

V. S. Subrahmanian
Computer Science Department
University of Maryland
College Park, Maryland, USA

Martial Hebert
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Katsushi Ikeuchi
Tokyo, Japan

Bruno Siciliano
Napoli, Napoli, Italy

Sushil Jajodia
George Mason University
Fairfax, Virginia, USA

Newton Lee

Newton Lee Laboratories, LLC

Tujunga, California

USA

SpringerBriefs present concise summaries of cutting-edge research and practical
applications across a wide spectrum of fields. Featuring compact volumes of 50 to
125 pages, the series covers a range of content from professional to academic

Typical topics might include:

• A timely report of state-of-the art analytical techniques
• A bridge between new research results, as published in journal articles, and a

contextual literature review
• A snapshot of a hot or emerging topic
• An in-depth case study or clinical example
• A presentation of core concepts that students must understand in order to make

independent contributions

Briefs allow authors to present their ideas and readers to absorb them with minimal
time investment. Briefs will be published as part of Springer’s eBook collection,
with millions of users worldwide. In addition, Briefs will be available for individ-
ual print and electronic purchase. Briefs are characterized by fast, global electronic
dissemination, standard publishing contracts, easy-to-use manuscript preparation
and formatting guidelines, and expedited production schedules. We aim for publi-
cation 8-12 weeks after acceptance. Both solicited and unsolicited manuscripts are
considered for publication in this series.

More information about this series at http://www.springer.com/series/10028

Philippe De Ryck • Lieven Desmet
Frank Piessens • Martin Johns

Primer on Client-Side Web
Security

2123

Philippe De Ryck Frank Piessens
iMinds-DistriNet iMinds-DistriNet
KU Leuven KU Leuven
Heverlee Heverlee
Belgium Belgium

Lieven Desmet Martin Johns
iMinds-DistriNet SAP Research
KU Leuven Karlsruhe
Heverlee Germany
Belgium

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-3-319-12225-0 ISBN 978-3-319-12226-7 (eBook)
DOI 10.1007/978-3-319-12226-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014953777

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Have you ever wondered why all of a sudden, normal users start posting strange
messages on social networks? How wireless routers can be controlled remotely? Why
eBay accounts could be hijacked with a single HTTP request? Or why a newsWeb site
suddenly shows a page from the Syrian Electronic Army? All of these incidents were
possible due to attackers controlling some code within the victim’s browser, a result
of the current state of practice in Web security, which is less than stellar. As security
researchers, we are concerned by the large gap between the state of practice and
the currently available security technologies, which are often inspired by security
research. In an effort to improve this situation, we have written this book, which
gives a detailed view on the client-side Web security landscape. We explicitly focus
on client-side security vulnerabilities, which are exploited from within a browser or
explicitly target the browser, because they generally receive less attention compared
to their server-side counterparts. In total, we cover 13 attacks, for which we give a
detailed description, an overview of traditional mitigation techniques, and current
state-of-the-art research. For each attack, we also describe the current state of practice
in Web applications, and define the best practices to defend against these attacks in
the modern age.

We have written this book with several target audiences in mind. It offers students,
teachers, and trainers an introduction into the field of client-side Web security, with
an extensive reference list for learning more about each topic. The best practices can
be translated into teaching material for secure software development courses. The
book helps junior researchers to quickly get up to speed in the field, and offers an
overview of the current state-of-the-art for experienced researchers, who are look-
ing for new opportunities to explore. Finally, developers and security practitioners
get an overview of the current state of practice, and the upcoming state-of-the-art
technologies. They should use the best practices in the book to improve the state of
practice, which is beneficial for all users on the Web.

v

vi Preface

This book grew from our experience as security researchers1 working on Web
security, with a strong focus on client-side Web security topics such as cross-site
request forgery, cross-site scripting, session management problems, and click-
jacking. We also actively participate in European Web security projects, such as
STREWS2, WebSand3, and NESSoS4, and collaborate with the W3C and IETF stan-
dardization committees, further expanding our view on the current state of practice,
state-of-the-art, and best practices.

We would like to explicitly acknowledge the support of the Agency for Innova-
tion by Science and Technology (IWT), the STREWS project, where a preliminary
version of this book was written as a first deliverable, and the IWT-SBO project
SPION5, which provided valuable insights in the privacy and security concerns of
contemporary Web applications.

1 Philippe De Ryck, Lieven Desmet, and Frank Piessens are affiliated with the iMinds-DistriNet
research group at KU Leuven University (Belgium), and Martin Johns is affiliated with SAP Research
(Germany).
2 https://www.strews.eu/.
3 https://www.websand.eu/.
4 http://www.nessos-project.eu/.
5 http://www.spion.me/.

Contents

1 The Relevance of Client-Side Web Security . 1
1.1 The Web at a Glance . 2
1.2 Client-Side Web Security . 6
1.3 Purpose of this Book . 8
References . 9

2 Traditional Building Blocks of the Web . 11
2.1 Traditional Web Technology . 11

2.1.1 Loading Web Content . 12
2.1.2 Authentication and Authorization . 12
2.1.3 Cookies and Session Management . 13

2.2 Browser Security Policies . 14
2.2.1 Same-Origin Policy . 14
2.2.2 Security Model for Third-Party Content Inclusion 15
2.2.3 Context Navigation Policy . 17

2.3 Extending the Client-Side Features . 18
2.3.1 Plugins for Arbitrary Content . 19
2.3.2 Browser Extensions . 20

2.4 Enhancing the User’s Window on the Web . 21
References . 23

3 The Browser as a Platform . 25
3.1 The Synergy Between Browsers and Devices 25
3.2 From Rendering Engine to Feature-Rich Platform 27

3.2.1 Client-Side Storage . 27
3.2.2 Communication Mechanisms . 28
3.2.3 Mobile Features . 29
3.2.4 Registering Default Applications . 29

3.3 Transforming the Browser into an Operating System 29
References . 31

vii

viii Contents

4 How Attackers Threaten the Web . 33
4.1 Threat Models in Literature . 33

4.1.1 Forum Poster . 34
4.1.2 Web Attacker . 34
4.1.3 Gadget Attacker . 34
4.1.4 Related-Domain Attacker . 35
4.1.5 Related-Path Attacker . 35
4.1.6 Passive Network Attacker . 36
4.1.7 Active Network Attacker . 36

4.2 Threat Models as Concrete Attacker Capabilities 37
4.2.1 Send Requests to an Application . 37
4.2.2 Register Own Domain . 37
4.2.3 Host Content Under Own Domain . 39
4.2.4 Respond to Requests from Own Domain 39
4.2.5 Register a Valid TLS Certificate for Own Domain 39
4.2.6 Manipulate Target’s Domain-based Data 40
4.2.7 Manipulate Target’s Client-Side Context 40
4.2.8 Eavesdrop on Network Traffic . 40
4.2.9 Generate Network Traffic . 40
4.2.10 Intercept and Manipulate Network Traffic 43

4.3 Conclusion . 41
References . 42

5 Attacks on the Network . 43
5.1 Eavesdropping Attacks . 43

5.1.1 Description . 44
5.1.2 Mitigation Techniques . 44
5.1.3 State of Practice . 45
5.1.4 Best Practices . 46

5.2 Man-in-the-Middle Attacks (MitM) . 46
5.2.1 Description . 47
5.2.2 Mitigation Techniques . 48
5.2.3 State of Practice . 49
5.2.4 Best Practices . 50

5.3 Protocol-level Attacks on HTTPS . 50
5.3.1 Overview of Attacks . 51
5.3.2 State of Practice . 52

References . 53

6 Attacks on the Browser’s Requests . 57
6.1 Cross-Site Request Forgery . 57

6.1.1 Description . 58
6.1.2 Mitigation Techniques . 60
6.1.3 State of Practice . 62
6.1.4 Best Practices . 62

Contents ix

6.2 UI Redressing . 62
6.2.1 Description . 63
6.2.2 Mitigation Techniques . 65
6.2.3 State of Practice . 66
6.2.4 Best Practices . 66

References . 66

7 Attacks on the User’s Session . 69
7.1 Session Hijacking . 69

7.1.1 Description . 69
7.1.2 Mitigation Techniques . 71
7.1.3 State of Practice . 73
7.1.4 Best Practices . 73

7.2 Session Fixation . 73
7.2.1 Description . 74
7.2.2 Mitigation Techniques . 75
7.2.3 State of Practice . 76
7.2.4 Best Practices . 76

7.3 Authenticating With Stolen Credentials . 76
7.3.1 Description . 77
7.3.2 Mitigation Techniques . 77
7.3.3 State of Practice . 79
7.3.4 Best Practices . 79

References . 79

8 Attacks on the Client-Side Context . 83
8.1 Cross-Site Scripting . 83

8.1.1 Description . 84
8.1.2 Mitigation Techniques . 85
8.1.3 State of Practice . 86
8.1.4 Best Practices . 87

8.2 Scriptless Injection Attacks . 87
8.2.1 Description . 87
8.2.2 Mitigation Techniques . 88
8.2.3 Best Practices . 89

8.3 Compromised Script Inclusions . 89
8.3.1 Description . 90
8.3.2 Mitigation Techniques . 90
8.3.3 State of Practice . 91
8.3.4 Best Practices . 91

References . 92

9 Attacks on the Client Device . 95
9.1 Drive-By Downloads . 95

9.1.1 Description . 96

x Contents

9.1.2 Mitigation Techniques . 97
9.1.3 State of Practice . 98
9.1.4 Best Practices . 98

9.2 Malicious Browser Extensions . 98
9.2.1 Description . 99
9.2.2 Mitigation Techniques . 99
9.2.3 State of Practice . 100
9.2.4 Best Practices . 101

References . 101

10 Improving Client-Side Web Security . 105
10.1 Overview of Best Practices . 105

10.1.1 Secure Communication Channel . 106
10.1.2 Application-level Techniques . 106
10.1.3 Security Policies . 107

10.2 Research-driven Security Technology . 108
10.3 Conclusion . 109
References . 109

Chapter 1
The Relevance of Client-Side Web Security

Google [15], LinkedIn [16], Adobe [7], Yahoo [4], eBay [17], Nintendo [11], Last-
Pass [10], Vodafone [12], Target [18], Reuters [9]—there may not seem to be an
apparent commonality between these companies, but they have all been victims of
Web-based attacks resulting in the compromise of customer accounts, large-scale
theft of customer information, or embarrassing defacements of their Web sites. The
list includes ten prominent companies which are well aware of the dangers of the
Web, and they are only the tip of the iceberg. A report about Web security in 2013
lists 253 data breaches [22], good for exposing a total of 552 million identities, and
reports an astonishing 568,700 Web attacks blocked per day. Statistics show that cy-
bercrime affects 378 million victims per year or 12 victims per second. Financially,
the direct global loss induced by cybercrime amounts to $ 113 billion in a single
year, enough to host the London Olympics about 10 times over [21].

The averse effects of these Web attacks are often underestimated, both for com-
panies and for individuals. Companies that have become victims of a data breach
or defacement not only suffer from business disruptions but also face investigations
and potential lawsuits. Additionally, the ensuing reputation damage can cause long-
term harmful effects, with customers leaving and shareholders losing confidence.
Even worse, a continuous stream of security breaches can cause a loss of confidence
in online services among the general population, severely hurting the online retail
economy, e-government, and e-health services.

A 2013 survey [23] reports that 70 % of surveyed Internet users are concerned
that their personal information is not kept secure by Web sites, resulting in adapted
behavior, as 34 % of the users are less likely to give personal information onWeb sites.
And indeed, security breaches often cause significant collateral damage to individual
users. For example, a stolen database of personal information often contains users’
email addresses and even recoverable passwords. If the same credentials are used
for the email account, the user can lose control over this account, as well as over
all accounts that are associated with that email address. Even worse, the stolen
information can be used to commit identity theft, resulting in fraudulent costs being
attributed to the victim, instead of the perpetrator.

In other cases, the Web attack is only used as a stepping stone towards the com-
promise of a larger target. For example, Belgacom, a Belgian telco also running

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 1
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_1

2 1 The Relevance of Client-Side Web Security

infrastructure in Africa, was targeted by the British intelligence service GCHQ [8]
through a Web attack. The attackers faked a social network application to serve
malware to a Belgacom engineer, allowing the attackers to further infiltrate the Bel-
gacom infrastructure. Another example is the 2010 compromise of apache.org, where
a number of Web vulnerabilities eventually led to the compromise of the machine
holding the code repositories [5].

With cybercrime as a billion-dollar business, the Web is in a dire situation. Web
security is more important than ever, today and in the future. Before we start dis-
cussing attackers, problems, and their countermeasures, we take a closer look at how
the Web came to be the way it is today, and why client-side Web security, the topic
of this book, has become so popular.

1.1 The Web at a Glance

The World Wide Web started out as a distributed hypertext system, where documents
hosted on networked computers contain references to other documents, hosted on
different networked computers. These documents can be retrieved using a browser,
dedicated client software for viewing hypertext documents, and following hyperlinks
embedded within the text of these documents.

In order to make such a distributed hypertext system work, three fundamental
agreements (standards) are necessary:

1. Resource Identifiers URIs [2] (originally called URLs) provide universally
dereferenceable identifiers for resources on the network.

2. Transfer Protocol HTTP [3] (Hypertext Transfer Protocol) is a universally sup-
ported transfer protocol that, in its bare essence, provides a simple mechanism
to retrieve a resource across the network and to submit form data from a browser
to a Web server. HTTP is a request/response-based client–server protocol: The
browser will send a request to a server that (a) identifies the resource, (b) identifies
the media types of representations that the client is willing to consume in response
(e.g., plain text or HTML, GIF or PNG), and (c) potentially is characterized as a
form submission. The server responds with a resource representation that fulfills
these constraints.

3. Content Format HTML [1] is a broadly implemented format for content, and
started as a simple and declarative markup language. The early versions already
included an anchor element that permits embedding hyperlinks to resources iden-
tified by URIs within the text. Based on plain text with embedded “tags,” this
markup language can be written in a simple text editor and remarkably, it is often
written in code editors to this day, approximately 20 years later.

Notably, these three basic agreements are loosely coupled: While the URIs we use,
most frequently identify resources retrieved through HTTP, URIs can also be used
to identify resources retrieved through other protocols (early on, FTP was frequently
used to serve resources on the Web, and indeed, Web browsers included implemen-
tations of FTP, Gopher, and a number of other protocols). HTTP can be used to

1.1 The Web at a Glance 3

Fig. 1.1 An illustration of a rendered HTML page (top left) and its HTML code (top right) which
is accessible from JavaScript (bottom) through the DOM interface

retrieve URI-identifiable resources in just about any format that is represented in bits
and bytes, such as HTML documents, images, PDF documents, or scripts (i.e., ex-
ecutable program segments generally written in an interpretable scripting language
such as JavaScript). Similarly, the concept of hyperlinks exists in formats beyond
HTML: PDF, and even Word documents might permit these. Nevertheless, the Web’s
basic fabric is built on universal support for URIs, HTTP, and HTML.

The early Web was noninteractive, declarative, and stateless on the client side.
While these properties, in all their simplicity, enabled the World Wide Web, they
were insufficient to meet the demand for the rich application that the Web has become
today. Without a doubt, JavaScript is the single most influentialWeb technology in the
evolution of the Web. Initially intended to manipulate Web pages within the browser
through the DOM or document object model (illustrated in Fig. 1.1), JavaScript
quickly proved much more powerful, making it the de facto client-side programming
language of the Web. One of the driving factors behind the success of JavaScript is
AJAX, an asynchronous Web development technique based on JavaScript and XML,
allowing Web pages to store and retrieve information in the background, updating the
HTML of the Web page on the fly. Many modern Web applications still depend on this
technique, albeit that XML has been replaced with the JavaScript Object Notation
(JSON), a JavaScript-based format. A second technological upgrade consists of the
rich content types available on the Web today. Modern Web content is no longer
limited to HTML and images, as modern browsers also support several audio and
video formats, XML-based languages for defining images (SVG) and scientific data
(MathML), and advanced styling information for HTML documents (CSS). Finally,
the third essential component for a rich application platform is client-side state within
the browser, initially by means of cookies and later as full-fledged storage capabilities
in databases or virtual file systems.

4 1 The Relevance of Client-Side Web Security

These three major changes on top of the basic hypertext system have sparked
the shift from a one-way information exchange to a bidirectional read/write Web,
also known as Web 2.0. This new stage in the evolution of the Web combines the
technological advances with social aspects of actively participating users, resulting
in dynamic applications, that actively improve as their number of users increases.
Well-known examples are Wikipedia, Facebook, and the many Google services,
which inspired the social network example scenario that is discussed throughout
this book (introduced below). The social effect even intensified when people started
carrying always-on, always-connected devices everywhere they go. Smartphones
enable instant and continuous access to information, further stimulating location and
context-aware social services.

Further development of the browser towards an application platform has resulted
in a paradigm shift, where more responsibilities are pushed towards the client. The
client component is no longer simply a view on the application running in the back-
end but has become the application, which interacts with a light, storage-centered
back-end application through rich, RESTful APIs. This “appification” of the Web
is further stimulated by the rise of mobile devices, with their restricted operating
systems, and vendor-controlled application stores. Not only is the majority of appli-
cations offered in today’s application stores based on Web technology [13], but recent
standardization efforts [6] provide the necessary APIs to build Web applications
that can interact with the underlying device, making them indistinguishable from
native applications.

The Web has known several evolutionary steps, which have transformed the static
server-side content into dynamic server-side applications, and have transformed dull
page-viewing browsers into execution platforms running highly dynamic and pow-
erful Web applications. We observe a similar trend in the evolution of Web security,
resulting in a shift from server-side to client-side Web security.

Example Scenario: A Social Networking Application1

To better illustrate the security challenges in modern Web applications, we
introduce an example application that will be discussed throughout this book.
A social networking application serves as a perfect example, because it results
in an execution context with multiple stakeholders, with varying trust levels.
Additionally, the immense popularity of social networking sites makes the
example recognizable without the need for describing every feature in detail.
Our example application is aptly named Our Social Network and is virtually
hosted on www.oursocialnetwork.com. Figure 1.2 shows a conceptual overview
of the application, with four main components, each with a different trust level:

2

3

4

5

6

7

8

9

10

• The main context of the application responsible for embedding additional
components.

11

12

• The timeline, where users can post messages to their contacts and view
messages posted by their contacts. The timeline is shown in the middle.

13

14

1.1 The Web at a Glance 5

Message:

Hey Philippe, have you seen
the pictures of my latest trip?

Cats are awesome!

Check out our latest offers!
Free upgrades available.

I really like cats!

Our Social Network

OZM -2.00

NRF +1.03

SHPG -0.32

HTLD +0.04

DRII +1.81

ITUB -1.33

MyStore

Get your personal
discount here

New item: cat hats

Holiday specials available now!

Ask us anything …

LocalEnergyCo

14⁰C

Fig. 1.2 A conceptual depiction of our social networking example application. The application
consists of several components, with varying trust levels, all assigned a different background color

• Commercial spaces, which users can add to their profile, to keep up-to-date
with the latest business news. These commercial spaces can be purchased
by business owners, and are hosted by Our Social Network. The commercial
spaces are shown on the right.

15

16

17

18

• Third-party gadgets, which offer additional functionality, such as weather
information or small games. These third-party gadgets are not provided nor
hosted by Our Social Network, and are shown on the left.

19

20

21

Our example application, and every modern Web application, faces several
security challenges. First, the social network needs to ensure that its traffic is
protected against eavesdroppers and malicious intermediaries on the network.
Second, the basic functionality offered by the social network depends on ex-
ternal JavaScript libraries that enable easy development of a responsive user
interface, for example JQuery or AngularJS. Third, the application needs to
integrate third-party gadgets into its main page but also likes to retain control
over the behavior of the page, a challenge with currently available state of
practice mechanisms. Finally, the social network offers commercial spaces to
businesses as part of the oursocialnetwork.com domain. Therefore, the social
network is not only responsible for the content but also needs to ensure that
competitors do not influence each other, thereby causing reputation damage to
the social network.

22

23

24

25

26

27

28

29

30

31

32

33

34

6 1 The Relevance of Client-Side Web Security

Table 1.1 The OWASP Top Ten Project [24] lists the most critical Web application security flaws.
The gray-colored rows are relevant for client-side Web security and will be covered in this book

1 Injection

2 Broken Authentication and Session Management

3 Cross-Site Scripting (XSS)

4 Insecure Direct Object References

5 Security Misconfiguration

6 Sensitive Data Exposure

7 Missing Function Level Access Control

8 Cross-Site Request Forgery

9 Using Components with Known Vulnerabilities

10 Unvalidated Redirects and Forwards

1.2 Client-Side Web Security

The security landscape in the early Web was vastly different from what we see today.
Attackers focused on server-side services, attempting to exploit the services or gain
control over the server machine. Well-known examples of such attacks are SQL
injection, command injection, or the exploitation of buffer overflow vulnerabilities
within server software. As the functionalities of Web services grew, attackers started
targeting client machines, aiming at exploiting client-side vulnerabilities to install
malware, for example, to gain unauthorized access to the victim’s bank accounts
and other personal information. With the increasing security of browsers, the focus
has shifted more towards the “weaker” Web vulnerabilities. Attacks such as cross-
site scripting and cross-site request forgery use the browser as a means to carry out
actions on the server, in the name of the victim.

A perfect illustration of the attacker’s shift from server-side services towards the
client side are two industry-driven surveys of the most important security vulnera-
bilities. Both the OWASP Top Ten Project [24] and the CWE/SANS Top 25 Most
Dangerous Software Errors [14] include the typical server-side vulnerabilities, such
as SQL injection and command injection, but also have allocated approximately one
third of the slots to client-side security problems (shown in Tables 1.1 and 1.2).

Naturally, when the attackers’ focus shifts towards the client, the countermeasures
and security policies evolve as well. This evolution closely aligns with the evolu-
tionary steps of the Web. The first security policies were static, encoded as default
behavior in the browser, with the same rules for every Web application. Two exam-
ples of such static policies are the Same-Origin policy, and the same-origin behavior
of the XMLHttpRequest object, two policies, which will be explained in the coming
chapters. Next come the dynamic security policies, mainly enforced at the server
side. Typical examples are token-based or request header-based protections against
cross-site request forgery, or validation-based protections against cross-site script-
ing. These security policies line up with the rise of dynamic Web applications with a

1.2 Client-Side Web Security 7

Table 1.2 The CWE/SANS Top 25 Most Dangerous Software Errors [14] lists the most widespread
and critical errors that lead to serious vulnerabilities. The gray-colored rows are relevant for client-
side Web security and will be covered in this book

1 Improper Neutralization of Special Elements used in an SQL Command

2 Improper Neutralization of Special Elements used in an OS Command

3 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)

4 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)

5 Missing Authentication for Critical Function

6 Missing Authorization

7 Use of Hard-coded Credentials

8 Missing Encryption of Sensitive Data

9 Unrestricted Upload of File with Dangerous Type

10 Reliance on Untrusted Inputs in a Security Decision

11 Execution with Unnecessary Privileges

12 Cross-Site Request Forgery (CSRF)

13 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)

14 Download of Code Without Integrity Check

15 Incorrect Authorization

16 Inclusion of Functionality from Untrusted Control Sphere

17 Incorrect Permission Assignment for Critical Resource

18 Use of Potentially Dangerous Function

19 Use of a Broken or Risky Cryptographic Algorithm

20 Incorrect Calculation of Buffer Size

21 Improper Restriction of Excessive Authentication Attempts

22 URL Redirection to Untrusted Site (’Open Redirect’)

23 Uncontrolled Format String

24 Integer Overflow or Wraparound

25 Use of a One-Way Hash without a Salt

server-side processing component. The next wave of security mechanisms takes ad-
vantage of the browser transformation into an application platform. Modern security
policies are enforced at the client side but driven by the Web application at the server
side. Prime examples are Content Security Policy [20], which is an application-
specific policy enforced by the browser. Similarly, the recent work on Entry Points
[19] proposes client-enforced protection against cross-site request forgery attacks.
These server-driven, client-enforced policies are often used in a layered defense strat-
egy, where both the client and the server enforce a security policy, hoping to stop an
attacker that manages to circumvent one of the security measures.

This evolution where the client becomes the center of gravity for enforcing ad-
vanced security policies is exactly why this book focuses on client-side Web security.
Client-side security policies are crucial for securing the Web in the future, but, as
you will discover in this book, several challenges lie ahead of us.

8 1 The Relevance of Client-Side Web Security

1.3 Purpose of this Book

This book extensively covers the broad field of client-side Web security, in all its
aspects, in order to help understand and position client-side Web security in the
story of the Web. To this purpose, the book briefly covers the history of the Web,
along with its fundamental building blocks and most recent evolutions. Based on a
commonly used set of threat models, we investigate 13 different attacks, grouped into
five chapters, based on their methods and impact. This book does not only cover the
state-of-the-art technologies emerging from research and standardization activities,
but also provides valuable insights into the current state of practice.

To be able to offer relevant information on the current state of practice, we have
performed a large-scale study of the Alexa top 10,000 sites. We have trawled these
Web sites, in total good for 4,185,227 requests, looking for deployments of well-
known and recently introduced mitigation techniques. Based on these results, we
can give an up-to-date view on the adoption rate of certain mitigation techniques,
and show how even the most recent security technologies are already being adopted
across the Web.

While the book is relevant for anyone aiming to learn about Web security and
client-side countermeasures, the content is specifically tailored towards the following
target audiences:

• Students, Teachers, and Trainers: Web development and Web security have
become an indispensable part of academic computer science curricula and pro-
fessional training programs. This book is ideally suited for Web security courses,
as it provides the necessary background information, covers the different capabil-
ities of attackers on the Web, and continues with a broad coverage of the Web’s
security problems and their countermeasures. The grouping of the attacks into
chapters allows teachers and trainers to focus on the desired topics.

• Researchers: There is no lack of high-quality research on a wide variety of Web
security topics, but being researchers ourselves, we noticed that it is hard to see the
big picture. Therefore, we wrote this book to provide the big picture of the field of
client-side Web security, covering both the attacks and the mitigation techniques.
For every security problem, we describe the current state of practice as well as
the latest research. The numerous citations make this book a timely reference
work for both starting and experienced researchers, interested in discovering the
current state-of-the-art research and the challenges that lie ahead.

• Developers and Security Practitioners: As you will learn from this book, many
countermeasures depend on explicit developer action to ensure that Web applica-
tions are secured appropriately. Keeping up-to-date with all latest developments
in the field of Web security is a daunting task. This book targets Web developers
and security practitioners not only by offering an overview of the current Web
security problems and their countermeasures but also by discussing the current
state of practice in securing Web applications, as well as a set of best practices to
secure a Web application.

References 9

References

1. Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S., Hickson, I.:
HTML 5.1 specification. W3C Working Draft (2014)

2. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI): generic
syntax. RFC Internet Standard (RFC 3986) (2005)

3. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (1999)

4. Fitzgerald, D.: Yahoo passwords stolen in latest data breach. http://online.wsj.com/news
/articles/SB10001424052702304373804577522613740363638 (2012)

5. Gollucci, P.M.: Apache.org incident report for 04/09/2010. https://blogs.apache.org/infra
/entry/apache_org_04_09_2010 (2010)

6. Hirsch, F.: Device APIs Working Group. http://www.w3.org/2009/dap/ (2014)
7. Infosecurity: Adobe hacked customers’ card details and adobe source code stolen.

http://www.infosecurity-magazine.com/view/34872/adobe-hacked-customers-card-details-
and-adobe-source-code-stolen (2013)

8. Infosecurity: How GCHQ hacked belgacom. http://www.infosecurity-magazine.com/view/355
58/how-gchq-hacked-belgacom (2013)

9. Jacobs, F.: How reuters got compromised by the syrian electronic army. https://medium.com/
@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b(2014)

10. Kelly, S.M.: LastPass passwords exposed for some internet explorer users. http://mashable.com
/2013/08/19/lastpass-password-bug/ (2013)

11. King, A.: Club nintendo japan hacked, user details could be compromised. http://wiiudaily.com
/2013/07/club-nintendo-japan-hacked/ (2013)

12. Kovacs, E.: Vodafonegermany hacked, details of 2 million users stolen. http://news.softpedia.
com/news/Vodafone-Germany-Hacked-Details-of-2-Million-Users-Stolen-382458.shtml
(2013)

13. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on webview in the android system.
In: Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC),
pp. 343–352 (2011)

14. Martin, B., Brown, M., Paller, A., Kirby, D.: Cwe/sans top 25 most dangerous programming
errors. http://cwe.mitre.org/top25/ (2011)

15. Masnick, M.: FLYING PIG: The NSA is running man in the middle attacks imitating Google’s
servers. http://www.techdirt.com/articles/20130910/10470024468/flying-pig-nsa-is-running-
man-middle-attacks-imitating-googles-servers.shtml (2013)

16. Perlroth, N.: Lax security at linkedin is laid bare. http://www.nytimes.com/2012/06/11/technol
ogy/linkedin-breach-exposes-light-security-even-at-data-companies.html?pagewanted=all
(2012)

17. Reisinger, D.: eBay hacked, requests all users change passwords. http://www.cnet.com/news/
ebay-hacked-requests-all-users-change-passwords/ (2014)

18. Riley, M., Elgin, B., Lawrence, D., Matlack, C.: Missed alarms and 40 million stolen credit
card numbers: How target blew it. http://www.businessweek.com/articles/2014-03-13/target-
missed-alarms-in-epic-hack-of-credit-card-data (2014)

19. Ross, D.: Entry point regulation for web apps. http://randomdross.blogspot.be/2014/08/entry-
point-regulation-for-web-apps.html (2014)

20. Sterne, B., Barth, A.: Content Security Policy 1.0. W3C Candidate Recommendation (2012)
21. Symantec Corporation: 2013 norton report. http://www.symantec.com/about/news/resources/

press_kits/detail.jsp?pkid=norton-report-2013 (2013)
22. Symantec Corporation: Internet security threat report. http://www.symantec.com/content/en/

us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf (2014)
23. TNS Opinion & Social: Special eurobarometer 404—cyber security. http://ec.europa.eu/

public_opinion/archives/ebs/ebs_404_en.pdf (2013)
24. Wichers, D.: Owasp top 10. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_

Project (2013)

http://online.wsj.com/news/articles/SB10001424052702304373804577522613740363638
http://online.wsj.com/news/articles/SB10001424052702304373804577522613740363638
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
http://www.infosecurity-magazine.com/view/35558/how-gchq-hacked-belgacom
http://www.infosecurity-magazine.com/view/35558/how-gchq-hacked-belgacom
https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b
https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b
http://mashable.com/2013/08/19/lastpass-password-bug/
http://mashable.com/2013/08/19/lastpass-password-bug/
http://wiiudaily.com/2013/07/club-nintendo-japan-hacked/
http://wiiudaily.com/2013/07/club-nintendo-japan-hacked/
http://news.softpedia.com/news/Vodafone-Germany-Hacked-Details-of-2-Million-Users-Stolen-382458.shtml
http://news.softpedia.com/news/Vodafone-Germany-Hacked-Details-of-2-Million-Users-Stolen-382458.shtml
http://www.techdirt.com/articles/20130910/10470024468/flying-pig-nsa-is-running-man-middle-attacks-imitating-googles-servers.shtml
http://www.techdirt.com/articles/20130910/10470024468/flying-pig-nsa-is-running-man-middle-attacks-imitating-googles-servers.shtml
http://www.nytimes.com/2012/06/11/technology/linkedin-breach-exposes-light-security-even-at-data-companies.html?pagewanted=all
http://www.nytimes.com/2012/06/11/technology/linkedin-breach-exposes-light-security-even-at-data-companies.html?pagewanted=all
http://www.cnet.com/news/ebay-hacked-requests-all-users-change-passwords/
http://www.cnet.com/news/ebay-hacked-requests-all-users-change-passwords/
http://www.businessweek.com/articles/2014-03-13/target-missed-alarms-in-epic-hack-of-credit-card-data
http://www.businessweek.com/articles/2014-03-13/target-missed-alarms-in-epic-hack-of-credit-card-data
http://randomdross.blogspot.be/2014/08/entry-point-regulation-for-web-apps.html
http://randomdross.blogspot.be/2014/08/entry-point-regulation-for-web-apps.html
http://www.symantec.com/about/news/resources/press_kits/detail.jsp?pkid=norton-report-2013
http://www.symantec.com/about/news/resources/press_kits/detail.jsp?pkid=norton-report-2013
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://ec.europa.eu/publicprotect LY1	extunderscore opinion/archives/ebs/ebsprotect LY1	extunderscore 404protect LY1	extunderscore en.pdf
http://ec.europa.eu/publicprotect LY1	extunderscore opinion/archives/ebs/ebsprotect LY1	extunderscore 404protect LY1	extunderscore en.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Chapter 2
Traditional Building Blocks of the Web

The previous chapter introduced the Web, covering the evolution from static Web
pages towards a dynamic application platform. This chapter is more technical and
provides the necessary background on how the Web works, which will help you in
understanding the nuances of the attacks covered in the later chapters.

Within the distributed, hypertext-based Web, we will focus on the client-side
features that enabled the Web to evolve into the dynamic application platform it is
today and the browser security policies that are supposed to keep Web applications
in line. Many of the topics covered in this chapter have been introduced in the
early stages of the Web’s development but are still present or reused in modern Web
applications.

This chapter will first cover the basic building blocks of traditional Web appli-
cations, offering details on how content is loaded, how users can be authenticated
and how session management mechanisms enhance the stateless HTTP protocol.
Next, we will cover the browser’s security policies, which regulate what Web appli-
cations can do within the browser, up to this day. We also investigate how client-side
features can be extended beyond HTML, both by plugins for arbitrary content and
by browser extensions. Finally, we cover several browser features that enhance the
user’s window on the Web.

2.1 Traditional Web Technology

Most modern Web applications are highly dynamic, process content in the back-
ground and fetch information on a continuous basis. While these applications seem
vastly different from traditional Web applications, they share the same basis, and
still use the same underlying concepts. This section briefly explains these traditional
building blocks, offering you the required background knowledge.

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 11
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_2

12 2 Traditional Building Blocks of the Web

2.1.1 Loading Web Content

Content on the Web is identified by a Uniform Resource Identifier (URI), a more
general form of the earlier Uniform Resource Locators (URL). An example of a URI
is http://example.com/thisbook.html. The first part of the URI, before the :// is called
the scheme and identifies the protocol to be used for fetching the resource. Most
URIs on the Web today use the http or https scheme, which identifies HTTP protocol
[18], either over a plaintext channel or over a secure channel, using Transport Layer
Security [15], a topic that will be discussed in more detail in Chap. 5. Whenever
the browser wants to load such a resource, it issues an HTTP request to the remote
server, which is identified by the next part of the URI, between the :// and the next
/, here example.com. The server at this address responds with an appropriate HTTP
response for the requested path and parameters, which are the last part of the URI,
here thisbook.html. This request/response-based communication protocol lies at the
basis of every communication on the Web, even today.

HTTP requests and responses follow a certain pattern but have many configurable
fields. A request has a certain method, such as GET, to retrieve information and
POST to submit data to the server. In addition, both requests and responses can have
headers, carrying meta-information about the request. We will not discuss all these
possibilities in detail, information that can easily be found in other reference works
[36]. One specific characteristic of HTTP that is relevant for the remainder of this
text is that the protocol is stateless, meaning that there is no relation or required
order between subsequent requests. Any need for relations or order between requests
needs to be maintained by the browser and/or servers, on top of HTTP, for example
by using request and response headers.

HTTP/2.0 [8], currently under development by the IETF, will bring several sig-
nificant improvements to HTTP protocol, while preserving the original protocol’s
semantics. HTTP/2.0, based on the SPDY protocol by Google [7], essentially changes
the way HTTP traffic is sent on the wire, reducing the page load time. HTTP/2.0 in-
troduces new features such as multiplexed requests, prioritized requests, compressed
headers, and support for server-pushed content. On the security side, a secure chan-
nel using TLS has not been made mandatory, but the most efficient upgrade path
from the current HTTP/1.1 to HTTP/2.0 is by deploying HTTP/2.0 over TLS using
the Application Layer Protocol Negotiation extension [19].

2.1.2 Authentication and Authorization

Even in the early Web, when sites offered only static content, authentication and au-
thorization could be used to restrict access to the provided content. HTTP protocol
provides the Authorization request header, aimed at providing the Web application
with the user’s credentials. The most common authentication scheme with the Au-
thorization header uses Basic authentication, where the username and password are

2.1 Traditional Web Technology 13

base64-encoded,1 and included as the header value. This allows an application to
extract these credentials, verify them, and make a decision on whether to allow the
request or not. After a successful authentication, the browser will attach the user’s
credentials to every subsequent request to this origin. Since the browser remembers
these credentials during its session, logging out of an account is only possible by
closing the browser.

As Web applications became more complex, developers wanted to integrate au-
thentication with the application, streamlining the user experience within the same
look and feel. To authenticate users, they embedded an HTML form, where the user
had to enter a username and a password. By submitting the form, the username and
password were sent to the server, where they could be validated. However, since the
credentials are only sent in a single request after form submission, instead of in every
subsequent request as with the Authorization header, Web applications needed a way
to remember the user’s authentication state. Keeping track of the authentication state
is solved by using session management, our next topic of discussion.

2.1.3 Cookies and Session Management

As mentioned before, subsequent requests in HTTP protocol are independent of each
other. The lack of any relation between requests and the incapability of keeping state
between requests has resulted in the introduction of cookies [4]. Cookies are server-
provided key-value pairs, stored by the client, attached to every request to the same
domain. Essentially, cookies allow the server to store some state at the client side,
which will be attached to future requests. For example, cookies can be used to store
a language preference, allowing the Web application to serve the requested content
in the desired language.

A more complex mechanism, nowadays built on top of cookies, is session man-
agement. A session management mechanism offers a server-side session object, and
associates multiple requests from the same user with this server-side session object.
Web applications can use the session object to store useful session information, such
as an authentication state, a shopping cart, etc.

Under the hood, session management mechanisms assign a random, unique ses-
sion identifier to a newly created session. The session identifier is sent to the client in
a cookie and will be attached to every subsequent request. By looking up the session
object that belongs to the session identifier in the request, the Web application can
process the request in the appropriate context.

Session management mechanisms based on session identifiers were already avail-
able before cookies were widely supported. These mechanisms included the session

1 Base64 encoding transforms the entered username and password into an alphanumeric string,
which is easily reversed. The credentials are not encrypted, as is often mistakenly believed.

14 2 Traditional Building Blocks of the Web

identifier as a parameter in the URI, where it could be extracted by the Web appli-
cation. These mechanisms have seen a slow demise because of practicality reasons,
since every URI in the Web application needed to be dynamically generated to in-
clude the user-specific session identifier. In addition, embedding the identifier in
the URI also holds a security risk, since the URI is easily leaked or copy/pasted.
Note that many session management mechanisms still offer parameter-based session
management as a fallback mechanism in case a browser does not support cookies.

2.2 Browser Security Policies

Modern browsers are the execution platform for complex Web applications, which
consist of different kinds of static and dynamic content, coming from multiple
providers with varying trust levels. Within the browser, several security policies gov-
ern the behavior of this content, regulating interactions between different contexts,
managing access to potentially sensitive resources, and preventing unauthorized nav-
igation attempts. These security policies are essential for client-side Web security,
as their subtle nuances are often abused in attacks, and their restrictions are relied
upon when building countermeasures.

Browser security policies generally depend on the notion of an origin. An origin
is defined as the triple (scheme, host, port), which are part of any URI,2 in this sec-
tion, we cover the three most important browser security policies. The Same-Origin
Policy prevents unrestricted interactions between contexts from different origins,
and regulates access to sensitive resources and application programming interfaces
(APIs) on the basis of the origin of a document. This is the core security policy
of the browser. Second, we discuss how the browser deals with the inclusion of
cross-origin content, a common practice in almost every modern Web application.
Third, we cover the context navigation policy, which is responsible for preventing
unauthorized navigation requests between nested contexts.

2.2.1 Same-Origin Policy

The core security policy in a browser is the Same-Origin Policy (SOP), which regu-
lates direct interactions between different browsing contexts. The basic function of
the SOP is to prevent scripts loaded in one origin from programmatically accessing
resources from other origins. For example, if you have a script running on a page

2 The port is an optional URI component, and when omitted, the protocol’s default port is used,
which is 80 for HTTP and 443 for HTTPS.

2.2 Browser Security Policies 15

loaded from the URI http://www.example.com, it is not allowed to access the re-
sources of a page loaded from http://www.secret.com, as the origins of both contexts
are different, due to the distinct hosts.

There is one way to relax the constraints of the SOP, by using the document.domain
JavaScript property, which allows two Web applications that share the same parent
domain to interact with each other. For example, the application at www.example.com
and login.example.com can both set their document.domain property to example.com,
overriding any future same-origin checks with this parent domain. This allows two
sibling applications to cooperate freely. Even though both parties must explicitly
opt-in to this feature, once they have opted-in, any other site within the same parent
domain can “join” as well.

The SOP originally started as a way to prevent access to the document object
model (DOM) but has been gradually extended to other resources accessible within
the origin. One such example is the recently introduced canvas element in HTML 5
[9], which allows the Web application to use JavaScript code to draw graphics and
extract the result as an image. Certain features of the canvas allow the script to draw
arbitrary, cross-origin resources on the canvas (e.g., an image or video), making it
possible to steal the contents of the video or image. To prevent such cross-origin
leaking, the specification requires the browser to consider the canvas to be “tainted”
with the origin of the image, effectively preventing any access from an origin other
than that of the image.

Another example is the XMLHttpRequest (XHR) object [35], which allows
JavaScript code to issue new HTTP requests. Traditional XHR requests can only
be sent to servers within the same origin as the origin of the document containing the
script, motivated by the high degree of flexibility offered by the XHR object. Failing
to restrict these requests would allow a malicious page to send custom HTTP requests
to unsuspecting servers, for example, using the PUT or DELETE methods. As we
will discuss in more detail in the next chapter, these restrictions have recently been
relaxed with a server-driven security policy [34], inadvertently causing problems for
applications that implicitly depended on this same-origin restriction [3].

Finally, the security policy for cookies is similar to origin-based policies but is
actually domain-based. Cookies are generally set for a domain and only sent to
the corresponding domain. A similar situation for script-based cookie access exists:
any application that resides on the domain of the cookies, or a valid subdomain,
can access the cookies from JavaScript. For example, cookies set explicitly for
www.example.com can not only be accessed by any resource in www.example.com
but also by resources under dev.www.example.com.

2.2.2 Security Model for Third-Party Content Inclusion

Modern Web applications include content from a wide variety of locations, often
residing within a different origin. Common examples of such third-party content
inclusions are images, style sheets, or JavaScript files, simply integrated by including

http://dev.www.example.com

16 2 Traditional Building Blocks of the Web

an HTML tag with the appropriate URI. The inclusion of various JavaScript libraries
is especially popular, since it allows the creation of highly responsive user interfaces,
and enriches the Web site with additional functionality, ranging from integration
with social media sites, to context-sensitive advertisements and tools for Web site
analytics.

There are two commonly-used techniques to integrate third-party JavaScript into
a Web application: through script inclusion or via iframe integration. The former
loads the script within the security context of the including application, resulting
in a straightforward way to integrate components and enable interaction between
components. The latter places the script in a separate frame, within its own security
context, effectively shielding sensitive resources, but making interaction a bit more
complicated. We elaborate on both techniques below.

Script Inclusion

HTML script tags are used to include and execute JavaScript while a Web page
is loading. This JavaScript code can be located on a server with a different origin
than the integrating page. When executing, the browser will treat the code as if it
originated from the same origin as the Web page itself, without any restrictions of
the SOP.

The included code executes in the same JavaScript context, and has access to the
code of the integrating Web page and all of its data structures. All sensitive JavaScript
operations available to the integrating Web page are also available to the integrated
code.

Prevalence of Third-Party Script Inclusion1

A 2012 study [25] examined 3,300,000 pages of the top 10,000 Alexa sites,
and analyzed 8,439,799 remote script inclusions. From the results (shown in
Fig. 2.1), it becomes clear that 88.45 % of the 10,000 Web sites included at
least one remote JavaScript library. Even more remarkable, some sites in the
top Alexa list trust up to 295 unique remote hosts.

2

3

4

5

6

The caveat that applies to third-party content inclusion is the interaction
with the security policies of the browser, mainly the SOP. The included content
generally resides directly within the security context of the including document,
which is not a problem for static content, but results in complications when
dynamic content, such as JavaScript, is included. The dynamic code is included
within the security context of the application, where it gains access to all
origin-restrained resources. Combined with the practice of including numerous
third-party JavaScript libraries, this is a major security challenge for the Web.

7

8

9

10

11

12

13

14

2.2 Browser Security Policies 17

Fig. 2.1 Relative frequency distribution of the percentage of top Alexa sites and the number of
unique remote hosts from which they request JavaScript code. (Figure copyrighted by ACM, published
in [25] with DOI 10.1145/2382196.2382274)

Iframe Integration

HTML iframe tags allow a Web developer to include one document inside another.
The integrated document is loaded in its own environment almost as if it were loaded
in a separate browser window. The advantage of using an iframe in a Web application
is that the integrated component (coming from another origin) is isolated from the
integrating Web page by the SOP. However, the code running inside the iframe still
has access to the available JavaScript APIs, albeit limited within its own execution
context (i.e., origin). For instance, a third-party component can use local storage
APIs but has access only to the local storage of its own origin and not to those of the
integrating page.

The newly introduced HTML 5 sandbox attribute [10] aims to support the em-
bedding of untrusted content in an iframe by putting security restrictions on the
iframe, such as disabling JavaScript, turning off plugins, and restricting navigation.
Through coarse-grained directives, several features can be re-enabled, for example
by specifying the “allow-scripts” keyword to enable JavaScript.

2.2.3 Context Navigation Policy

Navigation events occur frequently on the Web, for example when a user opens a
page, follows a link, or when an automatic redirect happens. Triggering naviga-
tion events from within a document’s context is straightforward, for example using

18 2 Traditional Building Blocks of the Web

JavaScript to modify the document.location property or by automatically following
a link. Navigation becomes more complicated when one context wants to navigate a
window or frame from another context, possibly hosting a document from a different
origin. Common examples are documents that want to navigate their child frames
or a popup window they own. The decision as to whether to allow or deny such a
navigation is not based on the SOP, which would prohibit any navigation between
contexts from different origins, but is determined by a separate navigation policy.
Several navigation policies have been proposed, but modern browsers all use the
descendant policy [6, 9], which restricts navigation to child frames, or frames with
an equivalent level of access [5].

2.3 Extending the Client-Side Features

Traditionally, browsers offer a rich set of features and ample functionality but also
have limitations. By supporting extension mechanisms, browsers give developers the
ability to enhance the browser experience, adding additional features. A first popular
way of extending the browser is by adding plugins to handle arbitrary content. The
most popular example of a browser plugin isAdobe’s Flash player, which is capable of
playing Flash files, which add dynamic content to a Web page. The second extension
mechanism is browser extensions, which allow the user to modify the core behavior
of the browser, adding additional features, or user interface (UI) items. Popular
examples of browser extensions are NoScript, to limit the JavaScript that is run on a
Web page, and AdBlock, to prevent intrusive advertisements from being loaded.

While these mechanisms clearly extend the functionality of the browser, they also
have their consequences. For instance, they significantly enlarge the attack surface, as
demonstrated by regular discoveries of malicious or vulnerable plugins or extensions
[20, 31–33]. In this section, we briefly discuss how plugins and extensions work,
how they are integrated in the browser and what consequences are associated with
their use.

Embedding Advertisements in a Web Application15

Many of the free Web applications are built on an advertisement-based business
model, where third-party advertisements are embedded in the pages of the
application. These advertisements are created by the companies that want to
advertise their services or products, and are delivered through advertisement
networks, such as DoubleClick, AdSense, and AdBrite.

16

17

18

19

20

Unfortunately, the Web application embedding the advertisements has no
control of the content, and hence embeds untrusted content into its pages.
Integrating untrusted content in a Web application comes with a trade-off be-
tween flexibility and security [13]. Using script inclusion for integrating the
ads gives the advertisement provider great flexibility in ad placement, as well as

2.3 Extending the Client-Side Features 19

the capability to offer content-specific advertisements based on the displayed
content of the embedding page. iframe integration offers the embedding page
the necessary security guarantees but puts certain restrictions on the embed-
ded content. The rigidity of iframes and the lack of security guarantees of
scripts have driven the research community to come up with alternative ap-
proaches that offer isolation guarantees but enable the interaction demanded
by advertisement networks [2, 16, 29]. From a high-level point of view, these
approaches isolate the advertisement from the main page using a sandbox tech-
nique and allow a filtered set of interactions with the page’s content. The most
important interactions are drawing the advertisement in a dedicated part of the
page and receiving the user’s interaction with the advertisement, for example,
clicking on the advertisement.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

While these research efforts provide viable alternatives to the traditional
script and iframe-based integration techniques, they are not used in practice.
Almost every advertisement network uses script-based advertisements; this
which occasionally results in the spreading of a malicious advertisement [21,
23, 27].

38

39

40

41

42

2.3.1 Plugins for Arbitrary Content

Browser plugins are generally designated handlers for specific kinds of content. The
most common example of a browser plugin is Adobe’s Flash Player, responsible for
processing and displaying Flash content within the browser. Other popular examples
are Silverlight, Java, ActiveX, and PDF reader plugins. Browser plugins are associ-
ated with MIME types and are automatically invoked when the content of a specified
MIME type is encountered. The content is subsequently processed in the plugin’s
own runtime environment. A browser plugin can provide arbitrary functionality and
is not limited to content rendering. An example of a non-content rendering plugin
is the Gnome Shell Integration plugin [30], supporting the installation of additional
widgets from the distribution site into the Gnome desktop environment.

Plugin content is embedded in a document, and the registered handler is triggered
by the browser when this content is encountered. Most plugins allow communication
between the document and the plugin using JavaScript, albeit with some restrictions,
depending on the implementation. For example, in the case of Flash, an interface can
be exposed towards the document, and arbitrary JavaScript functions can be executed
in the embedding page.

Support for browser plugins is widespread on computing platforms running a tra-
ditional operating system, such as notebooks and desktop machines. Mobile support
for browser plugins is extremely limited. For example, Apple’s iOS does not support
any browser plugins, and Adobe has abandoned efforts for supporting Flash on An-
droid 4.1 and higher [11]. The demise of Flash on mobile platforms can mainly be

20 2 Traditional Building Blocks of the Web

attributed to the rise of HTML 5’s dynamic content features, and the performance is-
sues associated with running a Flash player on a mobile device. Microsoft’s Windows
Phone only supports the in-house Silverlight plugin. Due to the limited support of
plugins on mobile devices, Google has started to optimize search results, indicating
which pages are likely to cause problems for your mobile device [37].

Plugin content runs within the environment of the handler, where the security
policies of the browser no longer reign. This effectively means that if the plugin
does not restrict the behavior of plugin content, basic browser policies are easily
circumvented. One example is Flash, which allows developers to specify a policy to
enable cross-origin requests, regardless of the SOP restrictions. A server can define
the crossdomain.xml policy file, defining the origins from where remote requests are
accepted. The Flash plugin is responsible for checking the file before carrying out
the cross-origin request.

Plugins can also be a source of severe security problems, as illustrated by the
numerous Java vulnerabilities in 2013 [31], eventually even leading to browser ven-
dors recommending that Java should be disabled altogether. One potential source of
vulnerabilities is the inability to deal with untrusted and potentially malicious input
[36]. Therefore, close cooperation between browser vendors and plugin developers
is crucial. In recent developments, the security of the Flash plugin has been signif-
icantly tightened. Flash is now effectively sandboxed on the OS level, preventing
serious harm in case a vulnerability is found and exploited [22]. Alternatively, a new
trend is emerging whereby plugin content is initially automatically disabled, but the
user is then given the option to activate each piece of content separately, by a single
click on a displayed play button [12].

2.3.2 Browser Extensions

Browser extensions extend the core functionality of the browser and come in various
flavors, from a simple toolbar to behavior-changing extensions. An extension is not
associated with a MIME content type but uses the exposed APIs to register hooks and
react to events. Some popular examples of extensions are NoScript, which selectively
disables JavaScript on Web pages; AdBlock, which removes advertisements; or
FireBug, a Web development tool offering a debugger, giving a view on network
traffic, etc.

Extensions for the Chrome and Firefox browsers are written in JavaScript,3 and
are restricted by the API offered by the browser. On Firefox, extensions can access
almost all browser internals and can also access the file system or launch commands
on the operating system. Chrome follows a more conservative approach, offering

3 Native code is also supported but discouraged since it requires different versions for different
platforms.

2.4 Enhancing the User’s Window on the Web 21

access to a select number of browser events but preventing extensions from reaching
outside the browser.

Browser extensions are very powerful; first of all because they can potentially
access everything that happens within the browser. In addition, Firefox extensions
can also access other resources on the user’s machine, making them even more pow-
erful. Preventing every form of misuse is virtually impossible, even with the manual
verification system employed by the MozillaAdd-Ons Web site. Therefore, installing
a browser extension effectively enlarges the attack surface, a risk unknown to or ac-
cepted by the users. One example is extensions in combination with private browsing
mode, which enable users to browse without leaving a trace on the local machine.
Unfortunately, many extensions fail to correctly deal with private browsing mode,
potentially exposing private information once the session is terminated [24]. Due to
such potentially unexpected violations, Google Chrome automatically disables ex-
tensions in private browsing mode, giving users the option to explicitly enable them,
if desired.

Contrary to plugins, which are often cross-browser runtime environments,
browser extensions are browser-specific. Browser support for extensions is less
widespread than support for plugins, but extensions are better supported on mo-
bile browsers. On the traditional platforms, Chrome, Firefox, and Opera offer the
most extensive support for extensions, along with rich APIs. On the mobile plat-
forms, Firefox and Opera offer extensive support for extensions through a similar
mechanism as on traditional operating systems. They typically do require a separate
user interface, adapted to the screen and interaction patterns of a mobile device. The
mobile version of Chrome does not support extensions, and there are no plans to
change this at the time of writing.

2.4 Enhancing the User’s Window on the Web

Users have a straightforward way to access and interact with Web content through
the browser. Next to the underlying technicalities of actually fetching, rendering, and
securing the content, the browser also offers several user-targeted features, aimed at
improving the browsing experience. In this section, we cover an important security
feature, the secure sockets layer (SSL)/transport layer security (TLS) indicator, which
attempts to warn the user of suspicious or unsafe activities. We also discuss private
browsing modes, where a user can browse the Web without leaving a local trace. The
last feature we briefly cover in this section is the synchronization of features across
browsers running on multiple devices.

SSL/TLS Security Indicators

Traditionally, a browser displayed a small lock icon to indicate that a Web site was
loaded over a SSL/TLS-secured connection. As the features of certificates changed,
for example, with extended validation certificates, the security indicators slightly

22 2 Traditional Building Blocks of the Web

Fig. 2.2 Browser vendors choose different ways of indicating the level of trust in the SSL/TLS
certificate, making it hard for users to grasp the precise meaning

changed as well. Currently, browsers use a combination of colors, lock icons, and
company names to indicate the level of security (see Fig. 2.2). Unfortunately, these
security indicators are often confusing and misunderstood [14, 28], therefore missing
the intended effect. This topic has once again become highly relevant with the rise
of browsers on mobile devices with limited screen sizes.

Private Browsing Modes

When opening a window in private browsing mode, also known as incognito mode
or InPrivate, the browser creates a window that allows the user to browse the Web,
without leaving a local trace after terminating the session. For example, all newly
created cookies are removed, and no entries appear in the browser’s history. The
implementation detail of the information that is available at the beginning differs per
browser, but the general concept remains the same. Note that private browsing mode
is aimed at offering privacy on the local machine, but does not necessarily protect the
user’s identity towards the server. While the cookies from normal browsing sessions
may not be available in private browsing mode, alternative techniques are available
to keep track of users. One example is browser fingerprinting, which uses a set of
browser characteristics to compile a “fingerprint” [1, 17, 26].

References 23

Cross-Browser Synchronization

Recently, browsers have started supporting synchronization services, allowing users
to share bookmarks, stored credentials, and open tabs across multiple installations
of a browser. Chrome takes this feature one step further, by also sharing devices
connected to the machine of a running browser instance. For example, leaving a
Chrome instance running on your workstation at work, allows you to print at work
from your Chrome instance at home.

References

1. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel, B.: Fpde-
tective: dusting the web for fingerprinters. In: Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), pp. 1129–1140 (2013)

2. Agten, P., VanAcker, S., Brondsema,Y., Phung, P.H., Desmet, L., Piessens, F.: JSand: complete
client-side sandboxing of third-party JavaScript without browser modifications. In: Proceedings
of the 28th Annual Computer Security Applications Conference (ACSAC), pp. 1–10 (2012)

3. Austin, M.: Hacking facebook with HTML5. http://m-austin.com/blog/?p=19 (2010)
4. Barth, A.: HTTP state management mechanism. RFC Proposed Standard (RFC 6256) (2011)
5. Barth, A., Jackson, C.: Protecting browsers from frame hijacking attacks. http://seclab.

stanford.edu/websec/frames/navigation/ (2008)
6. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers. Commun.

ACM 52(6), 83–91 (2009)
7. Belshe, M., Peon, R.: SPDY protocol. IETF Internet Draft (2012)
8. Belshe, M., Thomson, M., Melnikov, A., Peon, R.: Hypertext transfer protocol version 2.0.

IETF Internet Draft (2014)
9. Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S., Hickson, I.:

HTML 5.1 specification. W3C Working Draft (2014)
10. Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S., Hickson, I.:

HTML 5.1 specification—the sandbox attribute. W3C Working Draft (2014)
11. Brewis, M.: How to add adobe flash to an android phone or tablet. http://www.pcadvisor.

co.uk/how-to/google-android/3417930/flash-on-android/ (2014)
12. Coates, M.: Putting users in control of plugins. https://blog.mozilla.org/security/2013/01/29/

putting-users-in-control-of-plugins/ (2013)
13. De Ryck, P., Decat, M., Desmet, L., Piessens, F., Joosen, W.: Security of web mashups:

A survey. In: Proceedings of the 15th Nordic Conference on Secure IT Systems (NordSec),
pp. 223–238 (2010)

14. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of the ACM CHI
conference on human factors in computing systems (CHI), pp. 581–590 (2006)

15. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 5246bis
(2014)

16. Dong, X., Tran, M., Liang, Z., Jiang, X.: Adsentry: Comprehensive and flexible confinement
of javascript-based advertisements. In: Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC), pp. 297–306 (2011)

17. Eckersley, P.: How unique is your web browser? In: Proceedings of the 10th Privacy Enhancing
Technologies Symposium (PETS), pp. 1–18 (2010)

18. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol—HTTP/1.1. RFC 2616 (1999)

http://seclab.stanford.edu/websec/frames/navigation/
http://seclab.stanford.edu/websec/frames/navigation/
http://www.pcadvisor.co.uk/how-to/google-android/3417930/flash-on-android/
http://www.pcadvisor.co.uk/how-to/google-android/3417930/flash-on-android/
https://blog.mozilla.org/security/2013/01/29/putting-users-in-control-of-plugins/
https://blog.mozilla.org/security/2013/01/29/putting-users-in-control-of-plugins/

24 2 Traditional Building Blocks of the Web

19. Friedl, S., Popov, A.: Transport Layer Security (TLS) application layer protocol negotiation
extension. RFC Proposed Standard (RFC 7301) (2014)

20. Heath, N.: Malicious Chrome and Firefox extensions found hijacking Facebook profiles.
http://www.zdnet.com/malicious-chrome-and-firefox-extensions-found-hijacking-facebook-
profiles-7000015277/ (2013)

21. Jacobs, F.: How reuters got compromised by the syrian electronic army. https://medium.
com/@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b
(2014)

22. Keizer, G.: Google builds stronger Flash sandbox in Chrome. http://www.computerworld.
com/s/article/9230094/Google_builds_stronger_Flash_sandbox_in_Chrome (2012)

23. Kirk, J.: Yahoo’s malware-pushing ads linked to larger malware scheme.
http://www.pcworld.com/article/2086700/yahoo-malvertising-attack-linked-to-larger-
malware-scheme.html (2014)

24. Lerner, B., Elberty, L., Poole, N., Krishnamurthi, S.: Verifying Web browser extensions
compliance with private-browsing mode. In: Proceedings of the 18th European Symposium on
Research in Computer Security (ESORICS), pp. 57–74 (2013)

25. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel, C.,
Piessens, F., Vigna, G.: You are what you include: large-scale evaluation of remote Javascript
inclusions. In: Proceedings of the 19th ACM conference on Computer and communications
security, pp. 736–747 (2012)

26. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.: Cookieless
monster: Exploring the ecosystem of web-based device fingerprinting. In: Proceedings of the
34th IEEE Symposium on Security and Privacy (SP) (2013)

27. Rubenking, N.: Black hat briefing: building a million browser botnet for cheap.
http://securitywatch.pcmag.com/security/314341-black-hat-briefing-building-a-million-
browser-botnet-for-cheap (2013)

28. Schultze, S.: Web browser security user interfaces: Hard to get right and increasingly
inconsistent. https://freedom-to-tinker.com/blog/sjs/web-browser-security-user-interfaces-
hard-get-right-and-increasingly-inconsistent/ (2011)

29. Ter Louw, M., Ganesh, K.T., Venkatakrishnan, V.: AdJail: Practical Enforcement of Confi-
dentiality and Integrity Policies on Web Advertisements. In: Proceedings of the 19th USENIX
Security Symposium, pp. 371–388 (2010)

30. The GNOME Project: What’s this?—GNOME shell extensions. https://extensions.gnome.
org/about/ (2013)

31. US-CERT: Oracle Java Contains Multiple Vulnerabilities. Alert (TA13-064A) (2013)
32. Van Acker, S., Nikiforakis, N., Desmet, L., Joosen, W., Piessens, F.: Flashover: automated dis-

covery of cross-site scripting vulnerabilities in rich internet applications. In: Proceedings of the
7th ACM Symposium on Information, Computer and Communications Security (ASIACCS),
pp. 12–13. ACM (2012)

33. Van Acker, S., Nikiforakis, N., Desmet, L., Piessens, F., Joosen, W.: Monkey-in-the-browser:
malware and vulnerabilities in augmented browsing script markets. In: Proceedings of the
9th ACM symposium on Information, computer and communications security (ASIACCS),
pp. 525–530. ACM (2014)

34. van Kesteren, A.: Cross-origin resource sharing. W3C Recommendation (2014)
35. van Kesteren, A., Aubourg, J., Song, J., Steen, H.R.M.: XMLHttpRequest. W3C Working

Draft (2014)
36. Zalewski, M.: The Tangled Web: A Guide to Securing Modern Web Applications. San

Francisco, No Starch Press (2012)
37. Zeckman, A.: New Google mobile alert: Websites using flash may not work on your

device. http://searchenginewatch.com/article/2355766/New-Google-Mobile-Alert-Websites-
Using-Flash-May-Not-Work-on-Your-Device (2014)

https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b
https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b
http://www.computerworld.com/s/article/9230094/Google_builds_stronger_Flashprotect LY1	extunderscore sandbox_in_Chrome
http://www.computerworld.com/s/article/9230094/Google_builds_stronger_Flash_sandbox_in_Chrome
https://freedom-to-tinker.com/blog/sjs/web-browser-security-user-interfaces-hard-get-right-and-increasingly-inconsistent/
https://freedom-to-tinker.com/blog/sjs/web-browser-security-user-interfaces-hard-get-right-and-increasingly-inconsistent/
https://extensions.gnome.org/about/
https://extensions.gnome.org/about/

Chapter 3
The Browser as a Platform

In the previous chapters, we saw how the Web has evolved into a dynamic platform
governed by browser security policies. This evolution is enabled by the browser
which gives the user access to the Web. Dominating in the browser market has been
a high-stakes game for major browser vendors. In the first decade of the twenty-
first century, the browser wars were at an all-time high, resulting in incompatible
implementations of Web standards. Fortunately, browser vendors have become more
cooperative with the development of the HTML 5 specification [2], leading to a
widely supported specification, adding numerous new features.

In this chapter, we look at the browser from various perspectives. We discuss how
the browser is deployed on numerous devices nowadays, bringing the Web every-
where. We explain how the browser grew into a feature-rich application platform,
offering features such as client-side storage, remote communication mechanisms,
mobile features, and even the registration of default applications for handling certain
types of content. Finally, we take a look at the latest evolution, where the browser
became similar to an operating system, with Firefox OS and Google’s Chrome OS
being two major examples.

3.1 The Synergy Between Browsers and Devices

The browser has become one of the most important applications on a computer, but
has also conquered other devices. Nowadays, browsers can be found on numerous
devices, such as mobile phones, tablets, gaming consoles, smart televisions, and even
in modern cars, with many more to come. Some of these devices are open platforms
and support multiple browsers, while others are closed and only support a single
browser, or even provide their own custom software. Having a browser on all these
devices not only creates easy access to the Web but also brings certain security risks.
Browsers are known to have vulnerabilities, which can be exploited by malicious
Web pages. As a consequence, browsers require frequent updates, well-established
on traditional platforms, but more challenging on some modern platforms, such as
cars or smart TVs.

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 25
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_3

26 3 The Browser as a Platform

All the major browser vendors offer different flavors of their flagship browser,
tailored to the specific devices they support. For example, Google has a mobile
version of Chrome for mobile devices, with some limitations, such as no support
for extensions, while Firefox offers the Fennec browser, a mobile version of Fire-
fox, with roughly the same feature set, but a different UI. Similarly, household
devices embedding a browser generally cooperate with a browser vendor, allowing
for product-specific customs when necessary.

When digging deeper into the different browser vendors and their variety of
browser products, we end up at the heart of the browser, the browser engine or
layout engine. The browser engine is responsible for actually processing the Web
content, resulting in a rendered version of the page, and the execution of any embed-
ded scripts. The four most well-known browser engines are Gecko (Firefox), Trident
(Internet Explorer), WebKit (Safari), and Blink (Chrome and Opera), which was
recently forked from WebKit. In an ideal world, all these browser engines would
implement the same set of features defined by the W3C standardization committee.
In reality, they support a large subset of all these specifications, have their spe-
cific quirks with certain features, and implement some vendor-specific features [25],
making cross-browser Web development challenging.

A recent trend observed not only in mobile devices but also in traditional desktop
applications is the integration of a browser-rendering engine into a custom-developed
application. The rendering engine is offered as a library that can be included and
can then be instructed to load Web content. This is often used for displaying ad-
vertisements or documentation pages in a native application. However, since the
introduction of the powerful HTML 5 specification [2], app developers have started
writing the bulk of their code using HTML, CSS, and JavaScript, and render this
code using a small native app, which simply loads the rendering library. This na-
tive application is able to expose certain operating system APIs to the embedded
browser engine, offering the JavaScript code access to storage, contacts, cell phone
operations, etc. Further evolution of this powerful development model has led to
cross-device frameworks for Web applications, such as Apache Cordova and Phone-
Gap. These frameworks allow a developer to wrap an app built with Web technology
into native applications for numerous mobile platforms, such as iOS, Android,
Windows Phone, BlackBerry, etc.

In the end, all browsers are built on the same concepts of the Web, regardless of
the device they run on or the environment they are deployed in. Every browser relies
on the same cornerstone security policies to govern the Web application it loads.
Even the state-of-the-art features, being introduced today and tomorrow, base their
security guarantees on concepts such as the Same-Origin Policy and origin-based
access control.

3.2 From Rendering Engine to Feature-Rich Platform 27

3.2 From Rendering Engine to Feature-Rich Platform

Traditional browsers focused on fetching content and rendering it to the screen. Em-
bedded JavaScript would be executed, but it was limited to manipulating the rendered
page through the DOM, fetching additional content and accessing the cookies. With
the evolution of the Web, the available functionality at the client side has evolved as
well, offering advanced APIs and system features to the script environments. This
results in a full-featured client-side platform, where Web applications become as
powerful as traditional native applications. Take for example Google’s productivity
suite which contains a text editor, spreadsheet, and presentation software [9].

In this section, we cover the available features in several important areas, such as
storage, communication, mobile features, and default content handlers. Besides the
specifications we discuss here, there are many more, such as background process-
ing [12], sending notifications through the OS’s notification mechanism [22], and
performing cryptographic operations [6].

3.2.1 Client-Side Storage

Traditionally, Web applications did not have access to persistent storage or caching
mechanisms on the client. Some Web applications used cookies to store client-side
data, but the disadvantage is that this data is sent to the server on every request,
causing an enormous overhead. In response to the need for client-side storage, several
storage mechanisms have been made available, including an application cache for
offline applications.

The Web Storage specification [13] offers a straightforward key/value-pair stor-
age mechanism. Web Storage offers both persistent storage using the localstorage
object and temporary storage using the sessionstorage object. While Web Storage is
supported on most browsers, active development of the specification is discontinued
due to performance problems with the synchronous access mechanism. As an alterna-
tive, the Indexed Database specification [16] offers a more extensive, asynchronous
storage model, where data objects can be stored, indexed, and queried.

Alternatively, a set of specifications [20] defines the necessary APIs to offer Web
applications a file system, where folders can be created and files can be stored. This
file system lives within the browser container and is not related to the operating
system’s file system. By having access to a file system, Web applications can store
documents for offline viewing or editing, store image galleries, etc.

All these data storage mechanisms use a security model based on the Same-Origin
Policy. Each origin has its own storage container, and data-sharing between origins
is not possible. Within one origin, there are no restrictions on accessing the storage
containers.

The availability of application data at the client side allows Web applications to
operate in an offline mode, as long as they do not need server-side processing. A
prime example is Google’s productivity suite, which includes a JavaScript-based

28 3 The Browser as a Platform

spreadsheet application that runs entirely in the browser, only using server APIs for
file storage and sharing. These kinds of applications can benefit from the application
cache, introduced in HTML 5 [2]. The application cache allows applications to define
a manifest, specifying which files the browser must cache to enable offline use. The
browser transparently loads the files from the application cache when in offline mode,
and updates the cached version with new files when in online mode.

3.2.2 Communication Mechanisms

The traditional script-based communication mechanism uses the XMLHttpRequest
object, and was restricted to communication within the same origin. This limitation
has sparked creative solutions to bypass the same-origin restriction using script tags,
JSON [4] and “padding.” This technique, called JSON-P, dynamically loads a new
JavaScript file using a script tag, and provides the name of a callback as a parameter
in the URI. The server responds with the requested data in the form of a script file,
which contains an invocation of the callback, with the data in the JSON format as
the argument. This not only effectively enables cross-origin communication but also
introduces a severe security vulnerability, where any content can be injected into the
site.

In response to this dangerous practice, the XMLHttpRequest Level 2 specifica-
tion [23] makes cross-origin communication explicitly possible by implementing the
Cross-Origin Resource Sharing (CORS) specification [21]. CORS allows servers to
explicitly allow a wide variety of cross-origin traffic, by defining a security policy that
needs to be enforced by the browser, to ensure that unsuspecting legacy servers can-
not be attacked by the newly introduced client-side capabilities. Essentially, CORS
ensures that the cross-origin requests that can be processed by legacy servers are re-
stricted to the types of requests that could already be sent using a traditional HTML
form. While the specification largely succeeds in this goal, some caveats still remain
[7].

Next to the extension of the XHR object, several new communication mechanisms
have been introduced as well. The Server-Sent Events specification [10] allows a
script to keep a connection open, so it can be notified by the server in case of
interesting events. Web Sockets [11] introduces a way to open a communication
channel to send arbitrary data, not limited to the format of HTTP messages. Setting
up a Web socket involves upgrading an HTTP channel in cooperation with the server,
which is responsible for checking the origin of the party that initiates the upgrade
of the channel. A third mechanism is WebRTC [1], a specification that enables real-
time peer-to-peer communication between browsers. One of the primary use cases for
WebRTC is audio and video chat directly in the browser, for which the HTML Media
Capture specification [5] is crucial. The WebRTC protocol suite offers negotiation
protocols to set up a session, even behind firewalls, using a setup server. At the
time of writing, WebRTC is in full development, triggering challenges with identity
management and verification [8].

3.3 Transforming the Browser into an Operating System 29

3.2.3 Mobile Features

With the rise of mobile devices and their associated mobile browsers, new features are
being covered in specifications as well. For example, the Geolocation API [19] offers
a way to physically locate the device that is running the browser. The Vibration API
[14] offers Web applications a way to trigger the vibration functionality of phones and
Web notifications [22] allows a Web application to send system-level notifications
to the user. In another example, the Device Orientation Events specification [3]
offers Web applications a way to listen to events regarding the device orientation and
movement, data that is collected from gyroscopes, compasses, and accelerometers.

The Geolocation API uses a permission model based on the host component of
the origin, where the user explicitly has to grant permissions to the domain to access
the location information of the device. Similarly, to receive Web notifications, the
user must grant the origin permission to display system-level notifications. The other
specifications mentioned here are not invasive, and do not require user permissions.

3.2.4 Registering Default Applications

Delegating content handling to other applications is a solution that has existed for
a long time, and is mainly used by the mailto: links that invoke an email client.
Whenever such a link is opened, the browser opens the system default or user-
configured email client, using the parameters of the mailto: link.

HTML 5’s custom scheme and content handlers [2] take this delegation to a new
level, enabling Web applications to register themselves as the handler for a scheme
or content type. Whenever the browser encounters a URI with a specific scheme,
or a resource of a specific content type, the registered handler will be invoked. For
example, a Web mail application can register itself for the mailto: scheme, allowing
the user to directly compose a mail after clicking such a link. The possibilities are
endless with whitelisted schemes such as irc, sms, magnet, etc. In a process similar
to these schemes, a Web application can register itself as a handler for a specific
content type, such as PDF documents or audio files.

3.3 Transforming the Browser into an Operating System

Modern browsers are often referred to as the new operating system [15, 24], a fairly
inaccurate statement. However, with the rise of Google’s Chromebooks, a notebook
that runs on Chrome OS and Mozilla’s Firefox OS, a mobile operating system that
runs on top of the Gecko rendering engine, these claims may carry some truth.
What we are really seeing are small operating systems that are reduced to their core
tasks, such as interacting with hardware and scheduling processes, and run a single
application, a browser engine. Within the browser engine, the interface layer of the
operating system is loaded, which in turn supports loading additional applications
and carrying out tasks.

30 3 The Browser as a Platform

Fig. 3.1 Firefox OS uses an
Android-based Linux kernel,
which runs the Gecko
browser engine that in turn
runs the Gaia UI, offering the
features you expect from a
mobile operating system
(Simplified depiction of the
full architecture [18])

Gaia / Hosted apps

Gecko Run�me

Applica�on Layer (HTML5 / JS / CSS)

Open Web Pla�orm Interfaces

Web APIs

Device OS / Linux Kernel

Open Web Pla�orm Interfaces

System Libraries

Take Google’s Chromebooks for example. These custom-built notebooks have
lightning fast boot times, and load Chrome OS. Chrome OS is a modified version of
the Chrome browser running on top of a Linux kernel and presents the user with a
familiar browser interface. Within the browser, the user can choose to browse theWeb,
or install any of the available applications from the Chrome Web store. These include
Google’s productivity suite with a text editor and spreadsheet, as well as numerous
third-party applications. Chromebooks are most useful when permanently connected
to the Web but also support offline use [17]. For example, applications are available
offline and depending on the application, many of their features still work. For
example, Google Docs automatically synchronizes documents from Google Drive
allowing you to edit them offline.

An alternative to the proprietary Chrome OS is Firefox OS [18], a mobile operating
system developed by Mozilla, based on a Linux core and Mozilla’s Gecko browser
engine. In essence, Firefox OS is an Android-based operating system, where the
entire UI layer is a Web application, capable of loading other apps that are also Web
applications. The architecture of Firefox OS is depicted in Fig. 3.1.

Firefox OS has three main components. The core of the operating system is
called Gonk which consists of an Android-based Linux kernel and the hardware
abstraction layer. Gonk exposes the necessaryAPIs to Gecko, the application runtime
environment, which supports HTML, CSS, and JavaScript. Gecko has full access to
the exposed APIs but not to the other parts of the operating system. For example,
Gonk exposes the telephony system to Gecko through the Radio Interface Layer,
controlled by the RILd process. The main application run by Gecko is Gaia, the
operating systems UI layer, which implements features such as the lock screen, the
home screen and the applications you expect on a smartphone. Additionally, third-
party applications can be installed next to the Gaia layer, allowing users to install
their own apps.

References 31

All applications that run on Firefox OS are written in HTML, CSS, and JavaScript.
Since the OS runs no native applications, all system access is mediated through Web
APIs, including access to the device’s settings, filesystem, etc. Firefox OS strictly
limits access to sensitive APIs based on trust level. Possible values are, in the order
of trustworthiness. Certified apps, which are shipped with the phone, have access
to the Web APIs, including sensitive APIs such as the telephony system. Privileged
apps come from an authorized marketplace and have been reviewed, approved, and
signed. They have access to a subset of the Web APIs but not to the sensitive APIs.
The lowest trust level can only access those Web APIs that have sufficient security
mitigations to be exposed to untrusted content, such as the camera or notifications
API. Naturally, before access to these APIs is granted, the user has to explicitly grant
the app permission upon installation time.

References

1. Bergkvist, A., Burnett, D.C., Jennings, C., Narayanan, A.: WebRTC 1.0: real-time
communication between browsers. W3C Working Draft (2013)

2. Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S., Hickson, I.:
HTML 5.1 specification. W3C Working Draft (2014)

3. Block, S., Popescu, A.: DeviceOrientation event specification. W3C Working Draft (2011)
4. Bray, T.: The javascript object notation (JSON) data interchange format. RFC Proposed

Standard (RFC 7159) (2014)
5. Burnett, D.C., Bergkvist, A., Jennings, C., Anant, N.: Media capture and streams. W3C

Working Draft (2013)
6. Dahl, D., Sleevi, R.: Web cryptography API. W3C Last Call Working Draft (2014)
7. De Ryck, P., Desmet, L., Philippaerts, P., Piessens, F.: A security analysis of next generation

web standards. Tech. rep., European Network and InformationSecurity Agency (ENISA)
(2011)

8. Desmet, L., Johns, M.: Real-time communications security on the web. IEEE Internet Comput.
(2014)

9. Google: Google docs. http://www.google.com/docs/about/ (2014)
10. Hickson, I.: Server-sent events. W3C Candidate Recommendation (2012)
11. Hickson, I.: The WebSocket API. W3C Candidate Recommendation (2012)
12. Hickson, I.: Web workers. W3C Candidate Recommendation (2012)
13. Hickson, I.: Web storage. W3C Recommendation (2013)
14. Kostiainen, A.: Vibration API. W3C Last Call Working Draft (2014)
15. Lee, T.: The browser is the new operating system. https://www.techdirt.com/articles/20080530/

0022021266.shtml (2008)
16. Mehta, N., Sicking, J., Graff, E., Popescu, A., Orlow, J., Bell, J.: Indexed database API. W3C

Candidate Recommendation (2013)
17. Morris, J.: What chromebooks can do offline. http://www.zdnet.com/what-chromebooks-can-

do-offline-7000027307/ (2014)
18. Mozilla Developer Network: Firefox OS architecture. https://developer.mozilla.org/en-US/

Firefox_OS/Platform/Architecture (2014)
19. Popescu, A.: Geolocation API specification. W3C Recommendation (2013)
20. Ranganathan, A., Sicking, J.: File API. W3C Last Call Working Draft (2013)
21. van Kesteren, A.: Cross-origin resource sharing. W3C Recommendation (2014)
22. van Kesteren, A., Gregg, J.: Web notifications. W3C Last Call Working Draft (2013)

https://www.techdirt.com/articles/20080530/0022021266.shtml
https://www.techdirt.com/articles/20080530/0022021266.shtml
https://developer.mozilla.org/en-US/Firefox_OS/Platform/Architecture
https://developer.mozilla.org/en-US/Firefox_OS/Platform/Architecture

32 3 The Browser as a Platform

23. van Kesteren, A., Aubourg, J., Song, J., Steen, H.R.M.: XMLHttpRequest. W3C Working
Draft (2014)

24. Wayner, P.: 10 reasons the browser is becoming the universal OS. http://www.infoworld.com/
d/applications/10-reasons-the-browser-becoming-the-universal-os-230812 (2013)

25. Zalewski, M.: The Tangled Web: A Guide to Securing Modern Web Applications. San
Francisco, No Starch Press (2012)

http://www.infoworld.com/d/applications/10-reasons-the-browser-becoming-the-universal-os-230812
http://www.infoworld.com/d/applications/10-reasons-the-browser-becoming-the-universal-os-230812

Chapter 4
How Attackers Threaten the Web

The previous chapters have shown that the Web platform and the client-side exe-
cution platform are complex environments, with several components, interaction
patterns, and policies. The variety of features offered by the Web platform enables
the development of highly sophisticated Web applications. Unfortunately, attackers
aim to abuse these features of the Web platform, attempting to perform actions in the
user’s name, stealing valuable information, or just cause mayhem.

In this chapter, we will focus on the different kinds of attackers that are defined in
academic literature, and what they are capable of. Understanding these threat models
and their capabilities is crucial for fully grasping the chapters to come, as they will
flesh out concrete attacks, which require certain capabilities from an attacker.

The first part of this chapter covers the relevant academic threat models for theWeb
platform. We discuss the power of the attacker in each threat model and instantiate
the threat model in a scenario applied to our example application of a social network.

Academic threat models are often highly tailored to a specific problem statement
and solution, and different reference works have slightly different definitions, which
makes comparisons of different threat models challenging. Therefore, in the second
part of this chapter, we decompose each of the presented threat models into concrete
attacker capabilities. Attacker capabilities are specific, legitimate actions that can be
performed within the Web, both by non-malicious users as well as by attackers.

4.1 Threat Models in Literature

In this section, we present the relevant academic threat models for client-side Web
security. We explain each threat model with a scenario applied to the social network
application introduced in Chap. 1.

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 33
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_4

34 4 How Attackers Threaten the Web

4.1.1 Forum Poster

A forum poster [2] is the weakest threat model, representing a user of an existing Web
application who does not register domains or host application content. A forum poster
uses a Web application and potentially posts active content to the application, within
the provided features. In addition, a forum poster remains standards-compliant, and
cannot create HTTP(S) requests other than those he can trigger from his browser.

Our social network example allows users to post active content to the timeline.
An instantiation of the forum poster threat model would be a malicious user posting
content that contains malicious JavaScript code, also known as a cross-site scripting
or XSS attack (explained in Chap. 8). When another user views the posted content,
the forum poster’s malicious code will be executed in the user’s browser.

4.1.2 Web Attacker

The Web attacker [1–4] is the most common threat model encountered in papers and
represents a typical attacker who is able to register domains, obtain valid certificates
for these domains, host content, use other Web applications to post content to, etc.
Since none of these capabilities requires a special physical location or any other
typical attacker properties, every user on the Web is able to obtain them. Therefore,
academic literature assumes that every other threat model except for the forum poster
possesses these capabilities.

As an example of how the Web attacker can use his capabilities to threaten our
social network, we will assume that the attacker hosts a popular image gallery with
lolcats, a well-known Internet phenomenon that originated on postcards in the 1800s.
However, next to the image gallery code, the attacker’s page includes HTML code
that will send a background request to the social network, resulting in the provided
content being posted to the user’s message board. Whenever the victim visits the
image gallery, while still being signed in to the social network, e.g., in another
browser tab, the background request will result in the attacker-provided content
being posted to the victim’s timeline. This attack is known as a cross-site request
forgery or CSRF attack (explained in Chap. 6).

4.1.3 Gadget Attacker

A gadget attacker [1, 3] is a more powerful version of the Web attacker, where
the attacker hosts a component that is wilfully integrated into the target application.
Popular examples are JavaScript libraries, such as JQuery; analytics code, such as
Google analytics; or widgets, such as Google Maps. The gadget attacker is extremely

4.1 Threat Models in Literature 35

relevant in the context of code isolation for mashups or complex, composed sites,
which integrate content from multiple stakeholders with varying trust levels.

Our social network supports the integration of third-party applications, such as
weather gadgets, stock tickers, games, etc. The presence of a gadget attacker is
inherent to this design. For example, a malicious developer can create a legitimate-
looking weather gadget, allowing the users to add weather information to their main
page. Since the gadget is JavaScript code running in the user’s browser, it can perform
all kinds of operations in the background, such as reading and leaking the user’s
private messages, changing the appearance of the Web site, also known as defacing,
or actually sending requests in the user’s name.

4.1.4 Related-Domain Attacker

A related-domain attacker [4] is an extension of the Web attacker, where the attacker
is able to host content in a related domain of the target application. A common case
of a related-domain attacker is when the attacker is able to host content on a sibling or
child domain of the target application, e.g., for the Web sites of different departments
within a company.

Our social network sells personal spaces to commercial business owners, allowing
them to represent their business within the social network. Such personal spaces are
hosted as a subdomain of the social network, e.g., mybusiness.oursocialnetwork.com.
A related-domain attacker purchasing such a personal space can abuse specific fea-
tures reserved for child domains. For example, the attacker can read cookies that are
set for the oursocialnetwork.com domain and can create his own cookies that will
be sent to the social network’s main page. The latter can be used to mount a session
fixation attack, as explained in Chap. 7.

4.1.5 Related-Path Attacker

A related-path attacker is another extension of the Web attacker, and represents an
attacker that hosts an application on a different path than the target application, but
within the same origin. This scenario occurs, e.g., within the Web hosting of Internet
Service Providers (ISPs), which often offer each of their clients a Web space under a
specific path, all within the same origin. Academic papers aptly describe this attacker
[6] and its conflicts with the Web’s security model, albeit without giving it an explicit
name.

For example, if we would host the commercial spaces in our social networking
example under a single subdomain, but with different paths, we would allow these
individual spaces to circumvent the Same-Origin Policy. Since they would all reside
within the same origin, they would share the same cookies, have access to each other’s
origin-constrained resources, and would be allowed to reach into each other’s frames.

36 4 How Attackers Threaten the Web

4.1.6 Passive Network Attacker

A passive network attacker [7] is considered to be an attacker who is able to passively
eavesdrop on network traffic but cannot manipulate or spoof traffic.A passive network
attacker is expected to learn all unencrypted information. In addition, a passive
network attacker can also act as a Web attacker, for which no specific requirements
are needed.

One common example of a passive network attack is an attacker eavesdropping on
unprotected wireless communications, which are ubiquitous, thanks to publicly ac-
cessible Wi-fi networks and freely available hotspots. If the passive network attacker
observes any unencrypted network traffic between the victim and our social network,
he is not only able to extract personal information, but also important metadata, such
as the user’s cookies. Such cookies typically contain a session identifier, which can
in turn be used to mount a session hijacking attack, as explained in Chap. 7.

In 2013, whistleblower Edward Snowden [8] revealed that intelligence services
across the globe have powerful traffic monitoring capabilities. These pervasive mon-
itoring capabilities are passive network attacks, albeit on a very large scale compared
to the traditional passive network attacker. In response to the Snowden revelations,
the IETF has drawn up a best practice, stating that specifications should account for
pervasive monitoring as an attack [5].

4.1.7 Active Network Attacker

An active network attacker [1, 2, 7] is considered to launch active attacks on a
network, for example by controlling a DNS server, spoofing network frames, offering
a rogue access point, etc. An active network attacker has the ability to read, control
and block the contents of all unencrypted network traffic. An active network attacker
is generally not considered to be capable of presenting valid certificates for HTTPS
sites that are not under his control, unless by means of attacks such as SSL stripping
(covered in Chap. 5).

In our example, the active network attacker configures his own wireless access
point and chooses the name of popular hotspots provided by the local ISP. Unsuspect-
ing users are used to connecting to these networks, and visit our social network using
the attacker’s wireless network. The attacker can now not only read unencrypted in-
formation but also change the content posted by the user and modify the responses
sent to the user. In addition, should our social network use encrypted connections, the
attacker can attempt to break or downgrade the level of security, potentially allowing
him to read or manipulate even the encrypted traffic.

4.2 Threat Models as Concrete Attacker Capabilities 37

4.2 Threat Models as Concrete Attacker Capabilities

The threat models presented in academic literature are highly tailored to a specific
problem statement and solution, and different reference works have slightly different
definitions, making general reasoning with threat models, or even comparisons of
threat models within the Web platform difficult.

Therefore, we break down the academic threat models into concrete attacker
capabilities, which entail an action that can be performed by an attacker on the Web,
as shown in Table 4.1. Generally, these actions are legitimate operations within a
certain context, and are often performed by users, developers, and companies in
various legitimate scenarios. However, by using a capability to exploit a certain
feature of the Web, an attack can be mounted against a victim.

One example is a Web attacker that registers an available domain with a valid
certificate for the domain. By using his capabilities to perform these legitimate
actions within the Web platform, the attacker has now constructed a phishing setup,
where he will trick unsuspecting users into entering their credentials into a fraudulent
authentication form.

Essentially, attacker capabilities are fundamental operations that can be carried
out within the Web. Naturally, the exact set of capabilities an attacker possesses
depends on his position in the Web ecosystem. An attacker that merely hosts a Web
site under his own domain will not have the capability to eavesdrop on a user’s
local network traffic, but an attacker sitting next to the user, using the same wireless
network might.

In the remainder of this section, we will cover each of the identified attacker capa-
bilities, carefully expressing the ways of achieving the capability, and the associated
power.

4.2.1 Send Requests to an Application

A user on the Web sends requests to applications and receives responses in return.
This is the basic behavior of the Web and is also available to attackers. Depending
on the application, the authentication and authorization infrastructure, an attacker
might have access to public resources only, or resources deep within the application.
Note that when requests are sent by a browser, they should be standards-compliant
and cannot deviate from the implemented protocols, but that a user who controls his
client machine can issue nonstandards-compliant requests as well.

4.2.2 Register Own Domain

Any Internet user, including an attacker, is able to register a currently unregistered
domain. The procedure commonly requires the payment of an annual service fee to

38 4 How Attackers Threaten the Web

Ta
bl

e
4.

1
A

n
ov

er
vi

ew
of

ac
ad

em
ic

th
re

at
m

od
el

s,
de

co
m

po
se

d
in

to
fin

e-
gr

ai
ne

d
at

ta
ck

er
ca

pa
bi

lit
ie

s.
T

he
gr

ou
pi

ng
of

th
e

ca
pa

bi
lit

ie
s

is
ba

se
d

on
th

ei
rs

pe
ci

fic
ch

ar
ac

te
ri

st
ic

s

Fo
ru

m
po

st
er

W
eb

at
ta

ck
er

G
ad

ge
t

at
ta

ck
er

R
el

at
ed

-d
om

ai
n

at
ta

ck
er

R
el

at
ed

-p
at

h
at

ta
ck

er
Pa

ss
iv

e
ne

tw
or

k
at

ta
ck

er
A

ct
iv

e
ne

tw
or

k
at

ta
ck

er

Se
nd

re
qu

es
ts

to
an

ap
pl

ic
at

io
n

�
�

�
�

�
�

�
R

eg
is

te
r

ow
n

do
m

ai
n

�
�

�
�

�
�

H
os

tc
on

te
nt

un
de

r
ow

n
do

m
ai

n
�

�
�

�
�

�
R

es
po

nd
to

re
qu

es
ts

fr
om

ow
n

do
m

ai
n

�
�

�
�

�
�

R
eg

is
te

r
va

lid
ce

rt
fo

r
ow

n
do

m
ai

n
�

�
�

�
�

�
M

an
ip

ul
at

e
ta

rg
et

’s
do

m
ai

n-
ba

se
d

da
ta

�
�

�
�

�
M

an
ip

ul
at

e
ta

rg
et

’s
cl

ie
nt

-s
id

e
co

nt
ex

t
�

�
�

�
E

av
es

dr
op

on
ne

tw
or

k
tr

af
fic

�
�

G
en

er
at

e
ne

tw
or

k
tr

af
fic

�
In

te
rc

ep
ta

nd
m

an
ip

ul
at

e
ne

tw
or

k
tr

af
fic

�

4.2 Threat Models as Concrete Attacker Capabilities 39

a registrar, who is licensed to hand out subdomains for the specific parent domain
(e.g., registering example.org.uk would be authorized by the licensee for the org.uk
domain). Getting control of an already-registered domain is not possible, unless by
court order or by snatching it away after its previous owner had let it expire.

4.2.3 Host Content Under Own Domain

Hosting content under an own domain is a basic capability for Web developers, and
thus also available to any Web user with malicious intentions. Having a victim visit
the attacker-controlled content is easily achieved, e.g., by posting links to social
networking sites, offering interesting content, etc. Once a victim visits the attacker
content, the attacker-provided code runs within the victim’s browser, constrained
within its origin.

Setting up hosted content is fairly straightforward, especially using hosting ser-
vices from a provider, in exchange for a small service fee. Well-organized attackers
issue such payments using stolen credit cards or entire identities, making it difficult
to track and prevent such transactions.

4.2.4 Respond to Requests from Own Domain

Whenever an attacker controls a Web application, he can send arbitrary responses
to client requests. Note that this is an explicit capability, because an attacker is not
necessarily bound by HTTP specification or underlying Web serving software, and
can attempt to exploit vulnerabilities at the client side.

4.2.5 Register a Valid TLS Certificate for Own Domain

Setting up secure connections using HTTPS requires a valid certificate, otherwise the
browser will generate disconcerting warnings to the user. An attacker, or anyone for
that matter, can apply for a certificate for a given domain name, as long as the identity
verification checks succeed. Passing simple ownership validation is straightforward,
and is, for example, used when attackers register a domain name that resembles the
target domain, thereby obtaining a valid certificate for the fraudulent domain, hoping
to impersonate the target domain to victims. Obtaining certificates for non-attacker
controlled domains should be impossible, but depending on the verification process
and/or gullibility of the administrators, an attacker might succeed in obtaining a
certificate for a domain that is not controlled by the attacker. Once an attacker obtains
a valid certificate for a domain, he is able to impersonate a legitimate server for this
domain over a secure connection, allowing him to intercept and manipulate network
traffic.

40 4 How Attackers Threaten the Web

4.2.6 Manipulate Target’s Domain-based Data

Depending on the situation, an attacker may be capable of manipulating the tar-
get’s domain-based client-side data. This includes any data that is associated with
the parent domain, and becomes accessible through domain relaxation using the
document.domain property. The most common example are cookies assigned to the
parent domain, which are valid for all subdomains. Another example are client-side
storage facilities using origin-based constraints that may be accessible to multiple
applications.

4.2.7 Manipulate Target’s Client-Side Context

An attacker that is capable of manipulating the target application’s client-side context,
essentially bypasses any constraints enforced by the Same-Origin Policy. The client-
side context is extremely important, as it gives access to the DOM-tree and to any
client-side resource constrained by the origin. An attacker that has this capability
can run code within the target’s application origin, either directly on the page or on
a related page within the same origin.

4.2.8 Eavesdrop on Network Traffic

In certain circumstances, an attacker might be able to eavesdrop on network traffic
from legitimate users. One common case is an attacker using the same wireless
network, who is able to receive all transmitted data. Alternatively, attackers on a wired
network may also be able to see a certain fraction of network traffic. By eavesdropping
on the network, an attacker can gather valuable information, which can be used to
escalate an attack against a user or application. Note that eavesdropping can be done
in a completely passive way, preventing detection by the network infrastructure or
monitoring software.

4.2.9 Generate Network Traffic

In addition to eavesdropping on traffic, a network attacker can also generate new
traffic with spoofed parameters. For example, if an attacker sees a browser making a
request for a certain resource, he can generate a response that seems to come from the
target server, and send it before the actual response reaches the browser. This allows
an attacker to provide malicious content to legitimate client applications, potentially
compromising the application or even the client machine.

4.3 Conclusion 41

One example of how a traffic generation attack can be conducted was uncovered
by the Snowden [8] revelations. The NSA’s QUANTUMINSERT program monitors
the network close to the target and detects a request going out to a specific application.
Upon detection of the request, a response with a fake page is injected into the network,
and will very likely reach the victim’s browser before the original response. The fake
page can be used to redirect the victim to a malware server, part of the NSA’s
FOXACID program.

4.2.10 Intercept and Manipulate Network Traffic

A third network-based capability is to intercept and manipulate network traffic, con-
ducting a full Man-in-the-Middle (MitM) attack. An attacker sitting in the path
between a user and a server can intercept and inspect every request and response. In
addition, he can modify them to his wishes, potentially compromizing the client-side
or server-side context of the Web application. Carrying out a MitM attack is far from
stealthy and can be detected by monitoring software. In addition, whenever HTTPS
is used, an attacker has to obtain an appropriate certificate for the client and/or server,
in order to prevent alarm bells from going off.

4.3 Conclusion

Table 4.1 shows how the academic threat models can be expressed in concrete attacker
capabilities. The table clearly shows the differences in power between the threat
models. A forum poster can merely send requests to an application, while an active
network attacker has much more power. Note that while an active network attacker
may be significantly stronger, he is also capable of performing the same actions as
the forum poster. By using concrete capabilities, the requirements for an attack can
be expressed more finely. For example, in a session hijacking attack (Chap. 7), an
attacker will eavesdrop on an insecure network to steal the session identifier, which
is in turn used in a legitimate request to the application. This could be executed by a
passive network attacker, or an attacker with the capability to eavesdrop on network
traffic and send a request to the application.

The academic threat models covered in this chapter lie at the basis of every at-
tack covered in the subsequent chapters. Attacks often have multiple attack vectors,
which require a different set of concrete capabilities. Choosing a concrete attack
vector depends on the power of the attacker, and the exploitability of the applica-
tion vulnerabilities. The nuances between concrete attacker capabilities will help in
understanding these attacks, their attack vectors, and their countermeasures.

42 4 How Attackers Threaten the Web

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J.C., Song, D.: Towards a formal foundation of
web security. In: Proceedings of the 23rd IEEE Computer Security Foundations Symposium
(CSF), pp. 290–304 (2010)

2. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery. In:
Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS),
pp. 75–88 (2008)

3. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers. Commun.
ACM 52(6), 83–91 (2009)

4. Bortz, A., Barth, A., Czeskis, A.: Origin cookies: Session integrity for Web applications. Web
2.0 security and privacy (W2SP) (2011)

5. Farrel, S., Tschofenig, H.: Pervasive monitoring is an Attack. RFC Best Current Practice (RFC
7258) (2014)

6. Jackson, C., Barth, A.: Beware of finer-grained origins. Web 2.0 Security and Privacy (W2SP)
(2008)

7. Jackson, C., Barth, A.: Force HTTPS: Protecting high-security web sites from network attacks.
In: Proceedings of the 17th International Conference onWorldWideWeb (WWW), pp. 525–534
(2008)

8. The Guardian: Edward Snowden. http://www.theguardian.com/world/edward-snowden (2013)

Chapter 5
Attacks on the Network

The previous chapters of this book have introduced the Web platform and the different
kinds of attackers that are present within the Web. This chapter covers a first set of
attacks, executed at the network level, somewhere between the user’s browser and
the Web application’s server.

Attacks on the network level may be further away from the user, but that does not
take away their power. Successfully executing a network attack not only allows an
attacker to eavesdrop or manipulate network traffic, but also to use these capabilities
as a stepping stone towards many other attacks, as you will learn in the later chapters.

In this chapter, we cover three different kinds of network attacks. First, we discuss
eavesdropping attacks, where an attacker listens in on the network traffic being sent
over the wire or through the air. Next, we focus on man-in-the-middle (MitM) attacks,
where the attacker intercepts and manipulates the traffic. Finally, we focus on attacks
on Hypertext Transfer Protocol Secure (HTTPS), which already uses Transport Layer
Security (TLS) to add confidentiality, integrity, and entity authentication.

5.1 Eavesdropping Attacks

In an eavesdropping attack, an attacker listens in on other users’ network traffic,
such as Domain Name System (DNS) queries, HTTP requests and responses, etc.
By eavesdropping on their network traffic, an attacker is not only able to learn sensi-
tive and personal information such as credit card info, financial means, usernames,
passwords, contents of email messages, etc., but can also listen in on important Web
metadata, such as session identifiers or supposedly secret cookies. Obtaining any of
this information is not only directly harmful to the user but also enables the attacker
to escalate the attack, for example, through session hijacking (covered in Chap. 7).

Eavesdropping attacks are extremely relevant in the modern Web, especially be-
cause of the numerous wireless networks, to which users connect with their mobile
devices or laptops. Many of these networks are unprotected or easily spoofed by an
attacker. Additionally, with the revelations of Snowden [50], it has become clear that
state-sponsored eavesdropping occurs on a large scale, scooping up every piece of
unencrypted information that is encountered.

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 43
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_5

44 5 Attacks on the Network

5.1.1 Description

The goal of an eavesdropping attack is to obtain traffic that is sent over the net-
work. The way of executing an eavesdropping attack depends on the network under
attack. For example, eavesdropping on airborne signals, such as WiFi, radio, or cel-
lular, only requires an antenna in the proximity of the network. Eavesdropping on
a switched wired network requires some interference, for example by running an
Address Resolution Protocol (ARP) spoofing attack. Eavesdropping can also occur
at intermediaries within the network infrastructure, for example at an Internet service
provider (ISP), a proxy server, or a Tor [12] exit node. Even higher up in the network,
an attacker can eavesdrop on the backbone traffic, with submarine taps on fiber optic
cables [4] as an extreme example.

Technically, running an eavesdropping attack is fairly straightforward. As an
illustration, the browser add-on Firesheep [8] enables a user to eavesdrop on a WiFi
network, abusing obtained session identifiers to perform a session hijacking attack
with one point-and-click operation. Alternatively, software tools such as Subterfuge
[52] and dedicated devices such as the Pineapple [23] make collecting sensitive
information a straightforward task. Eavesdropping on a wired, switched network is
also possible with a wide variety of freely available tools, such as Ettercap [15] or
dsniff [49].

Essentially, eavesdropping attacks will always be possible, especially with the
evolution towards wireless networks. However, the real problem with eavesdropping
is the huge amount of information that is transmitted in the clear, making the physical
access to the network signals the only barrier to overcome.

5.1.2 Mitigation Techniques

The main approach to protect network traffic against eavesdropping attacks is to
deploy security protocols, effectively protecting the data being sent over the network.
The use of network-specific data link-layer security protocols, such as WiFi protected
access (WPA) [54] and Extensible Authentication Protocol (EAP) [1] can effectively
help in mitigating a local eavesdropping attacker but does not protect the traffic
against eavesdropping beyond the local network.

An approach offering end-to-end security is using HTTP deployed over TLS [11],
where TLS is aimed at offering confidentiality, integrity, and entity authentication.
The confidentiality property effectively eliminates the usefulness of the data in transit
to an eavesdropping attacker. As the next section will explain, the integrity and
entity authentication properties mitigate active network attacks. Note that TLS uses
certified public keys to establish entity authentication, but that confidentiality against
passive network attackers can already be achieved using self-certified keys. Such
a configuration is, however, not recommended for general use due to the weaker
security guarantees.

5.1 Eavesdropping Attacks 45

The TLS protocol itself is undergoing constant revision and its security is the topic
of ongoing cryptographic research. Recent examples are the discovery of timing
attacks against the CBC mode of operation [2], allowing the extraction of cookies
from the encrypted stream, and the identification of weaknesses in the RC4 algorithm
[3], supporting the common belief that RC4 should be considered broken. Reacting
to these results and other similar research output, the TLS working group within the
Internet Engineering Task Force (IETF) is currently considering new cipher suites,
for example based on the ChaCha20 cipher [29].

In addition to new ciphers, TLS deployment is also an important factor to con-
sider. Older versions of TLS remain in use for a considerable period, even after the
introduction of newer versions with better security features. For example, the attacks
mentioned in the previous paragraph have already been countered via authenticated
encryption cipher suites that were defined as a part of TLS 1.2 [10], but so far version
1.2 has not seen very widespread deployment. However, in response to these attacks,
deployment roadmaps for TLS 1.2 have been accelerated by browser vendors and
the open-source security community.

Another standardization proposal focuses on a new best current practice (BCP)
for the use of TLS on the Web [48], aiming to aid Web application developers and
administrators in the use of TLS. One example strategy that is advocated is the
achievement of perfect forward secrecy (PFS), which guarantees that previously
recorded TLS sessions cannot be deciphered by learning the server’s private key at a
later point in time. While PFS has previously been little deployed due to an impact
on performance and requiring less commonly used cipher suites, it has come into
the spotlight again due to private keys leaking out, for example if someone hacks a
Web server or if server units are decommissioned inappropriately.

Finally, a large effort is being spent on the development of the successor to HTTP,
HTTP/2.0 [7] based on Google’s SPDY protocol [6]. While initially SPDY was
proposed to always run over TLS, that position was somewhat watered down in
HTTP/2.0, mainly due to interference with middleboxes, such as Web caches or
HTTP proxies that need to be able to see some HTTP metadata (e.g., headers) to
function. Nonetheless, HTTP/2.0 will be far more likely to be deployed running
over TLS, since the application layer protocol negotiation TLS extension [19] offers
the most efficient upgrade path, with the fewest additional network round trips.
Additionally, discussions to allow clients and servers to make use of TLS even for
HTTP (i.e., non-HTTPS) URIs when using HTTP/2.0 are in process [37].

5.1.3 State of Practice

While TLS effectively tackles network attacks, it is not yet widely deployed, although
adoption is growing. As an indication of the current deployment state of TLS, a
monitoring site [53] reports that approximately 34 % of the top 10-million Web sites
are using TLS with certificates issued by a recognized certificate authority (CA).
Recently, Google has announced an HTTPS Everywhere initiative, encouraging the

46 5 Attacks on the Network

deployment of TLS. As a part of this initiative, Google is starting to use HTTPS as
a signal in their ranking algorithm [5].

Next to the limited adoption, older and less secure versions of TLS that are
deployed, are rarely upgraded to the latest version, leaving a trail of inadequate
legacy implementations across the Web. The SSL Pulse project [40] reports that
of the 152,733 surveyed TLS sites in July 2014, only 28.3 % had a secure TLS
deployment.

While the specific reasons for the slow adoption of TLS are hard to pinpoint, poten-
tial candidates are its (antiquated [28]) reputation imputing significant performance
impact, the difficulty of managing and deploying certificates, potential interference
or incompatibility of the encrypted traffic with middleboxes, such as proxies and
caches, and general ignorance of Web application operators. Additionally, TLS is
often used incorrectly, which may be attributed to relatively hard-to-use application
programming interface (APIs) and incorrectly configured trust-roots.

5.1.4 Best Practices

The best practice to protect network traffic against eavesdropping attacks is to deploy
TLS everywhere (see the best practices of Sect. 5.2 for additional information),
achieving confidentiality for all data and metadata sent between the user’s browser
and the Web application. Additionally, by selecting cipher suites offering perfect
forward secrecy, the encrypted data is even protected against an attacker who learns
the private key in the future. The IETF’s BCP document exclusively covers the best
practices with regard to TLS deployment [48], as does the work of Ivan Ristić [42, 43].
You should also test your site’s certificate and configuration using tools such as Qualys
SSL Labs [39].

5.2 Man-in-the-Middle Attacks (MitM)

An MitM is an active network attack, where the attacker positions himself in the
network, between the victim and the targeted Web application. This position not
only allows the attacker to inspect all traffic that is sent between the victim and the
target application but also allows modification of the traffic. Such a compromise gives
the attacker full control over the user’s actions, with potentially disastrous effects.
Note that there are also ‘legitimate’ use cases for performing an MitM attack, such
as ISPs injecting advertisements into HTTP responses, or corporations deploying a
Web content filter responsible for filtering unwanted or harmful content.

MitM attacks are more sophisticated than eavesdropping attacks and occur fre-
quently on the Web. Little is known about MitM attacks being carried out by
small-scale attackers, but they do occur on larger scales, such as for state-sponsored
censorship as seen in the Middle East, China, etc. Similarly, the same technology
is used for scenarios where user consent is given, such as companies that deploy
content filtering on their own networks, as a perimeter security measure [26].

5.2 Man-in-the-Middle Attacks (MitM) 47

5.2.1 Description

The goal of an MitM attack is to be able to inspect and manipulate the victim’s
network traffic. This allows an attacker to modify legitimate transactions, carry out
actions in the user’s name, compromise files that are being sent to and from the victim
and many more. TLS-secured connections with validated certificates are designed
to withstand MitM attacks, but flaws in the supporting systems may allow for subtle
attacks to be carried out anyway. These flaws are caused by misplacement of trust in
certain parties or by placing the decision-making burden on the user.

Actually, becoming an MitM in the network can be achieved at many levels.
An attacker can physically place a machine in the network path, forcing the data
to flow through this machine, or can manipulate the network’s parameters, to act
as a gateway on the logical level, for example through ARP poisoning attacks. The
technical details on becoming an MitM are less important, but the impact of an MitM
attack on the Web is. Once an attacker positions himself in the middle, inspecting
and manipulating traffic becomes straightforward.

Traditionally, TLS is deployed to prevent eavesdropping and MitM network
attacks, since it offers confidentiality, integrity, and entity authentication. The confi-
dentiality and integrity effectively prevent an attacker from modifying any network
traffic, while the entity authentication property ensures that the involved parties are
who they claim they are, thereby preventing an MitM attack within the TLS connec-
tion. Even though TLS is designed to counter MitM attacks, in reality, they remain
possible for several reasons.

In 2009, Moxie Marlinspike argued [32] that users visiting a secure Web applica-
tion probably will not type the https:// part of the URI manually, meaning that the
initial request will be made over HTTP. Typically, Web applications then redirect the
user towards the correct HTTPS URI, causing a transition from HTTP to HTTPS.
Exactly this transition can be exploited by an attacker that sits between the victim
and the target application, causing the downgrade of the connection from HTTPS to
HTTP, which is called an SSL Stripping attack [33].

Second, the entity authentication in TLS is based on private/public key pairs, of
which the public key is verified by a CA, which is part of the public key infrastructure
(PKI). Unfortunately, any CA in the Web’s PKI can issue a certificate for any Web
site, since no tightly bound name constraints are offered, in spite of the availability
of the technology [9]. With approximately 57 trusted root CAs in a modern browser,
any Web site is vulnerable to an attack with fraudulent but verified certificates being
issued.

Third, whenever an invalid certificate is encountered by a browser, the burden
of the security decision is placed on the user. Regardless of whether the invalid
certificate is caused by an expired expiration date, or a complete mismatch with the
targeted Web site, browsers show scary warnings, asking the user to decide whether
to trust the site or not. Since users also encounter these warnings for legitimate sites,
a simplistic MitM using an invalid certificate has some chances of success.

48 5 Attacks on the Network

A fourth degradation of the CA system in TLS comes from the deliberate MitM
devices, deployed by enterprises and large organizations with the goal of filtering
inbound and outbound Web traffic. Reasons to deploy such filtering mechanisms
go from offering protection, for example with a Web application firewall (WAF),
to preventing employees from accessing sites that are deemed inappropriate, such
as social networking applications. The problem with such devices is that in order to
perform an MitM attack over secure connections, they have to either install their own
certificate on a user’s machine, or they have to obtain a valid certificate for every
TLS-protected Web site on the Web. The former is a configuration hassle, which
only works if you control all the client-side devices as well, and the latter seems
impossible. Unfortunately, the system does not prevent collaboration between CAs
and vendors of MitM devices [51], thereby harming the trust placed in the system.

Finally, the trust placed in CAs is easily abused when a CA is compromised. For
example, the hacking of DigiNotar [38] resulted in the issuing of fraudulent certifi-
cates, allowing MitM attacks on secure connections to Yahoo, Mozilla, WordPress,
and the Tor project. The trusted roles of CAs can even be further compromised by
government coercion to issue fraudulent certificates. This strategy is believed to be a
common practice in non-democratic countries [47], but recent revelations show that
this practice is widely deployed by secret agencies across the world [34].

The essence of the problem with MitM attacks, especially against TLS connec-
tions, is the misplaced trust in the system on the one hand, and the burden of the
security decision on the user on the other. Clearly, blindly trusting every root CA in
the world has been proven to be a bad idea, and typical Web users are not capable of
making technical decisions about trusting a certificate or not.

5.2.2 Mitigation Techniques

For long, the main mitigation for SSL stripping attacks has put the burden on the
user, who should detect the presence of the lock icon to indicate a secure connection.
One technological solution is provided by HTTPS Everywhere [14] browser add-
on, which forces the use of HTTPS on sites that support it. By forcing the use
of HTTPS, SSL stripping attacks are effectively mitigated, since a direct HTTPS
connection will be made. The research proposal HProxy [36] prevents SSL stripping
attacks by leveraging the browser’s history to compose a security profile for each site,
and validating any future connection to the stored security profiles. This approach
effectively detects and prevents SSL stripping attacks without server-side support and
without relying on third-party services. Finally, the Force HTTPS research proposal
[27] has resulted in HTTP Strict Transport Security (HSTS) [24], which allows a
server to require that browsers supporting HSTS can only connect over HTTPS,
effectively thwarting any SSL stripping attack. A server can enable HSTS protection
by including a Strict-Transport-Security response header, declaring the
desired lifetime for the HSTS protection. One caveat to HSTS being implemented
as a response header, is the first contact with a site, when it is unknown whether

5.2 Man-in-the-Middle Attacks (MitM) 49

an HSTS policy applies or not. This issue has been addressed by modern browsers,
including a predefined list of HSTS-enabled sites, effectively avoiding an initial
HTTP connection.

Mitigation techniques against MitM attacks on TLS focus on determining the
trustworthiness of the presented certificate. Certificate transparency (CT) [30] aims
to maintain a public, write-only log of issued certificates so that either user agents or
auditors can detect fraudulent certificates. This would require a user agent to query
the log during the TLS handshake, and auditors can query the log offline, to check
for certificates being unexpectedly issued for one of their sites.

A second approach is based on detecting discrepancies between the currently
presented certificate, and previously seen certificates, a technique called certificate
pinning or public key pinning. While this approach requires the first connection
to be secure, it effectively enables the detection of unexpected future updates. This
approach is implemented in the Certificate Patrol browser add-on [35], and proposals
to achieve this at HTTP, TLS, or other layers have been made [16, 24]. Note that public
key pinning does not require a CA-signed certificate and is compatible with self-
signed certificates. Alternatively, Google has taken the approach of hardcoding the
certificate fingerprints of Google-related TLS certificates, allowing Google Chrome
to detect a potential MitM attack, even with a fraudulent certificate issued by a CA.
Naturally, controlling both the services and the client platform is a key to the success
of this approach.

Several proposals for alternate schemes to verify certificates have been made
and evaluated [22], but the standardization work on CT seems to be most likely
to gain widespread support, which is required for it to become an effective miti-
gation technique. In addition to CT-like approaches, DNS-based Authentication of
Named Entities (DANE) [25] leverages the security of Domain Name System Se-
curity Extensions (DNSSEC), thereby avoiding the name constraint problem that
enables MitM attacks. DANE is perhaps less suited for the Web due to the current
lack of deployment of DNSSEC and a corresponding lack of a well-defined transition
path from today’s PKI to a DANE-based PKI.

5.2.3 State of Practice

Currently, a large part of the Web still transfers content over HTTP, making an MitM
attack trivial. In the past few years, major sites have started to switch TLS on by
default, which has even increased after the revelations about pervasive monitoring.
Adoption of HSTS is still in its early stages, but our July 2014 survey of the Alexa
top 10,000 domains shows that 388 have already sent an HSTS header. Similarly,
Chromium’s predefined list of HSTS-enabled sites counts 438 entries.

A recent study [26] has discovered that forged certificates do occur in the wild.
Of the 3,447,719 real-world TLS connections, at least 6845 (0.2 %) used a forged
certificate. The authors attribute these forged certificates to adware, malware, and
security tools such as antivirus software, parental controls, and firewalls.

50 5 Attacks on the Network

5.2.4 Best Practices

Best practices for avoiding MitM attacks on TLS-secured connections are hard to
give, since preventing such attacks is entirely the goal of TLS. A good resource on
secure TLS deployments is the OpenSSL Cookbook [42], which discusses current
best practices, such as choosing a sufficiently strong key, fully encrypting your entire
site, enabling forward secrecy, etc. Additionally, if you deploy TLS, you should
configure HSTS as well.

In the meantime, experts are still debating on the future path for more secure
deployments, where the publication of DANE TLSA records through DNSSEC,
choosing a CA that supports CT and enabling public key pinning, are likely to be
good practices.

Browsers can provide better TLS error handling, clearly indicating which errors
are severe, and which are benign. Fortunately, improving the TLS experience on the
user side seems to be an ongoing effort for browser vendors.

5.3 Protocol-level Attacks on HTTPS

Once a secure connection has been initiated, without an MitM being present, the
transmitted content should be secure. However, sophisticated attacks on HTTPS and
TLS protocols have been able to extract data from a secure connection, or to inject data
into the stream. Luckily, these attacks are largely mitigated in upgraded versions of
the TLS protocol. Nonetheless, actively scrutinizing and repairing security protocols
remains essential for network-level security.

In this section, we provide an overview of the most relevant attacks on TLS,
followed by an overview of the state of practice. There is no detailed discussion of
mitigation techniques, as there are no dedicated techniques to mitigate these protocol
attacks, besides keeping up with the latest version. Whenever a flaw in the protocol
or tool is detected, it is either already patched in the latest version, or a solution
will be released almost immediately. Take for example the Heartbleed vulnerability
(covered below), for which a patch was available when the vulnerability was publicly
disclosed [45].

The Heartbleed Vulnerability1

In 2014, the Heartbleed vulnerability [46] was discovered, gaining plenty
of media attention and causing widespread panic. The vulnerability allowed
an attacker to extract arbitrary memory information from the server which
could include usernames, passwords, and the private keys belonging to the
TLS certificate. The Heartbleed vulnerability has severe consequences, as it
impacts the entire TLS deployment of a server, and not a single TLS session
of a single user.

2

3

4

5

6

7

8

5.3 Protocol-level Attacks on HTTPS 51

The Heartbleed vulnerability was caused by an implementation bug in
OpenSSL, and has been quickly mitigated by a security patch. While this
vulnerability is not related to client-side Web security, we covered it here for
completeness. The important lesson from the Heartbleed vulnerability is that,
even when everything is designed to be secure, vulnerabilities will always
remain. In the case of Heartbleed, a large part of the vulnerable servers has
been patched, but as usual, a fraction remains vulnerable to this attack, aptly
illustrated by the theft of 4.5 million patient records from a US hospital [31].
Pushing updates across all servers and applications on the Web is one of the
core challenges in securing the Web.

9

10

11

12

13

14

15

16

17

18

Many of the attacks discussed below are effectively mitigated in TLS 1.2 [10],
and as a result, the adoption of the new version is accelerating. Additionally, recent
standardization activities focus on the development of TLS 1.3 within the IETF’s
TLS working group [11]. TLS 1.3 aims to counter all known TLS attacks, and
will use more modern cipher suites, deprecating the vulnerable ones. Similarly, the
development of HTTP/2.0 [7] will counter attack abusing header compression, such
as the CRIME attack [44].

In addition to work on TLS, HTTP authentication schemes are receiving renewed
attention, with proposals aiming to overcome the problems with HTTP Basic and
Digest authentication [18], such as lack of control over the user interface, lack of
a logout function, and the clear text or hashed transmission of the user credentials.
One proposal is HTTP Origin Bound Authentication (HOBA) [17], which aims to
provide a digital signature challenge-response mechanism to perform HTTP-based
authentication. For completeness, we describe several attacks below.

5.3.1 Overview of Attacks

Client Authentication

A lesser-known feature of HTTP and TLS protocols is client authentication, where
HTTP offers the Authorization header (See Chap. 2), and TLS offers the abil-
ity to use client certificates. Important use cases of TLS client authentication are
WebDAV [21] deployments and server-to-server communication. A vulnerability in
the TLS renegotiation procedure allowed the injection of plaintext into the channel,
but confidentiality was never threatened. This attack has been quickly mitigated [41]
and has seen reasonably good deployment since its release.

52 5 Attacks on the Network

Lucky-13

The Lucky-13 attack [2] is a side-channel attack against the MAC-then-encrypt
scheme used in TLS for CBC cipher suites. Since Lucky-13 is a network timing
attack, it requires the attacker to be nearby in the network and to issue tens of thou-
sands of requests to the target application, in order to extract a plain text value, such
as a session cookie.

BEAST

The Browser Exploit Against SSL/TLS (BEAST) [13] attack uses active scripting in
the browser, in conjunction with a colluding intermediary, to exploit a CBC vul-
nerability, allowing the decryption of network traffic. BEAST is the first practical
implementation of a previously known vulnerability and has already been mitigated
in TLS 1.1.

CRIME and BREACH

The CRIME [44] and the recent BREACH [20] attack exploit compression at HTTP
or TLS layers, allowing an attacker to guess plain texts based on compression ratios.
These attacks can be prevented by turning off compression within TLS, the default
configuration; although, turning off compression in HTTP might be less practical.

RC4 Attacks

Recent attacks against the use of RC4 [3] target sensitive plain text in fixed positions
within the cipher text. Since cookie headers are often easily located, this attack
impacts real-life deployment scenarios.

5.3.2 State of Practice

The SSL Pulse [40] project analyses the use of TLS on the most popular Web sites.
Its July 2014 survey of 152,733 sites shows the following statistics:

• 7,000 sites (4.6 %) still support insecure renegotiation
• 114,497 sites (75.0 %) are vulnerable to the BEAST attack
• 14,542 sites (9.5 %) support TLS compression and are vulnerable to the CRIME

attack
• 45,260 sites (29.6 %) still use RC4 when modern browsers connect
• 777 sites (0.5 %) remain vulnerable to Heartbleed

References 53

These numbers illustrate the long lifetime of legacy systems on the Web as a
pressing problem. By not upgrading TLS deployments to the latest versions of both
protocol and software, these sites remain vulnerable to well-known attacks, which
are actively exploited in the wild.

References

1. Aboba, B., Simon, D., Eronen, P.: Extensible authentication protocol (EAP) key management
framework. RFC Proposed Standard (RFC 5247) (2008)

2. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS record protocols.
In: Proceedings of the 34th IEEE Symposium on Security and Privacy (SP) (2013)

3. AlFardan, N., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.: On the security of
RC4 in TLS and WPA. In: Proceedings of the 34th IEEE Symposium on Security and Privacy
(SP) (2013)

4. Associated Press: New nuclear sub is said to have special eavesdropping ability. http://
www.nytimes.com/2005/02/20/politics/20submarine.html?_r=0 (2005)

5. Bahajji, Z.A., Illyes, G.: Https as a ranking signal. http://googlewebmastercentral.
blogspot.be/2014/08/https-as-ranking-signal.html (2014)

6. Belshe, M., Peon, R.: SPDY protocol. IETF Internet Draft (2012)
7. Belshe, M., Thomson, M., Melnikov, A., Peon, R.: Hypertext transfer protocol version 2.0.

IETF Internet Draft (2014)
8. Butler, E.: Firesheep. http://codebutler.com/firesheep (2010)
9. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509

public key infrastructure certificate and certificate revocation list (CRL) profile. RFC Proposed
Standard (RFC 5280) (2008)

10. Dierks, T.: The transport layer security (TLS) protocol version 1.2. RFC 5246 (2008)
11. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 5246bis

(2014)
12. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. Tech.

rep., DTIC Document (2004)
13. Duong, T., Rizzo, J.: BEAST—here come the XOR Ninjas. http://nerdoholic.org/uploads/

dergln/beast_part2/ssl_jun21.pdf (2011)
14. Electronic Frontier Foundation: Https everywhere. https://www.eff.org/https-everywhere

(2013)
15. Ettercap Project: Ettercap home page. http://ettercap.github.io/ettercap/ (2013)
16. Evans, C., Palmer, C., Sleevi, R.: Public key pinning extension for HTTP. IETF Internet Draft

(2014)
17. Farrell, S., Hoffman, P., Thomas, M.: HTTP Origin-Bound Authentication (HOBA). IETF

Internet Draft (2014)
18. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., Stewart, L.:

HTTP authentication: basic and digest access authentication. RFC Draft Standard (RFC 2617)
(1999)

19. Friedl, S., Popov, A.: Transport Layer Security (TLS) application layer protocol negotiation
extension. RFC Proposed Standard (RFC 7301) (2014)

20. Gluck,Y., Harris, N., Prado,A.: BREACH: reviving the cRIME attack. http://breachattack.com/
resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf (2013)

21. Goland, Y., Whitehead, E., Faizi, A., Carter, S., Jensen, D.: HTTP extensions for distributed
authoring—WEBDAV (1999)

22. Grant, A.C.: Search for trust: an analysis and comparison of CA system alternatives and
enhancements (2012)

http://www.nytimes.com/2005/02/20/politics/20submarine.html?_r=0
http://www.nytimes.com/2005/02/20/politics/20submarine.html?_r=0
http://googlewebmastercentral.blogspot.be/2014/08/https-as-ranking-signal.html
http://googlewebmastercentral.blogspot.be/2014/08/https-as-ranking-signal.html
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf

54 5 Attacks on the Network

23. HAK5: wifi pineapple. https://wifipineapple.com/ (2013)
24. Hodges, J., Jackson, C., Barth, A.: HTTP strict transport security (HSTS). RFC Proposed

Standard (RFC 6797) (2012)
25. Hoffman, P., Schlyter, J.: The DNS-based authentication of named entities (DANE) transport

layer security (TLS) protocol: TLSA. RFC Proposed Standard (RFC 6698) (2012)
26. Huang, L.S., Rice, A., Ellingsen, E., Jackson, C.: Analyzing forged ssl certificates in the wild.

In: Proceedings of the 35th IEEE Symposium on Security and Privacy (SP) (2014)
27. Jackson, C., Barth, A.: ForceHTTPS: protecting high-security web sites from network attacks.

In: Proceedings of the 17th International Conference onWorldWideWeb (WWW), pp. 525–534
(2008)

28. Langley, A.: Overclocking ssl. https://www.imperialviolet.org/2010/06/25/overclocking-
ssl.html (2010)

29. Langley, A.: ChaCha20 and Poly1305 based Cipher suites for TLS. IETF Internet Draft (2013)
30. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC Experimental (RFC 6962)

(2013)
31. Lennon, M.: Hackers exploited heartbleed bug to steal 4.5 million patient records: Report.

http://www.securityweek.com/hackers-exploited-heartbleed-bug-steal-45-million-patient-
records-report (2014)

32. Marlinspike, M.: New tricks for defeating ssl in practice. BlackHat DC, February (2009)
33. Marlinspike, M.: Sslstrip. http://www.thoughtcrime.org/software/sslstrip/ (2009)
34. Masnick, M.: FLYING PIG: The NSA is running man in the middle attacks imitating Google’s

servers. http://www.techdirt.com/articles/20130910/10470024468/flying-pig-nsa-is-running-
man-middle-attacks-imitating-googles-servers.shtml (2013)

35. Modell, M., Barz, A., Toth, G., Loesch, C.v.: Certificate patrol. https://addons.mozilla.org/en-
US/firefox/addon/certificate-patrol/ (2014)

36. Nikiforakis, N., Younan, Y., Joosen, W.: Hproxy: client-side detection of ssl stripping at-
tacks. In: Proceedings of the 7th Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), pp. 200–218 (2010)

37. Nottingham, M.: Opportunistic encryption for HTTP URIs. IETF Internet Draft (2014)
38. Prins, J.: Diginotar certificate authority breach—‘operation black tulip’. Fox-IT (2011)
39. Qualys: Qualys SSL labs. https://www.ssllabs.com/ (2014)
40. Qualys: Trustworthy internet movement—ssl pulse. https://www.trustworthyinternet.org/ssl-

pulse/ (2014)
41. Rescorla, E., Ray, M., Dispensa, S., Oskov, N.: Transport layer security (TLS) renegotiation

indication extension. RFC Proposed Standard (RFC 5746) (2010)
42. Ristić, I.: OpenSSL cookbook. Feisty Duck (2013)
43. Ristić, I.: Bulletproof SSL and TLS. Feisty Duck (2014)
44. Rizzo, J., Duong, T.: The CRIME Attack. https://docs.google.com/presentation/d/11eBmGiHb

YcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222(2012)
45. Roberts, P.: Infographic: A heartbleed disclosure timeline (secunia). https://securityledger.com/

2014/06/infographic-a-heartbleed-disclosure-timeline-secunia/ (2014)
46. Schneier, B.: Hearbleed. https://www.schneier.com/blog/archives/2014/04/heartbleed.html

(2014)
47. Schoen, S., Galperin, E.: Iranian man-in-the-middle attack against google demonstrates

dangerous weakness of certificate authorities. https://www.eff.org/deeplinks/2011/08/iranian-
man-middle-attack-against-google (2011)

48. Sheffer, Y., Holz, R., Saint-Andre, P.: Recommendations for secure use of TLS and DTLS.
IETF Internet Draft (2014)

49. Song, D.: dsniff. http://www.monkey.org/ dugsong/dsniff/ (2000)
50. The Guardian: Edward Snowden. http://www.theguardian.com/world/edward-snowden (2013)
51. The H Security: trustwave issued a man-in-the-middle certificate. http://h-online.com/-

1429982 (2012)

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222
https://securityledger.com/2014/06/infographic-a-heartbleed-disclosure-timeline-secunia/
https://securityledger.com/2014/06/infographic-a-heartbleed-disclosure-timeline-secunia/

References 55

52. Toussain, M., Shields, C.: Subterfuge. http://kinozoa.com/blog/subterfuge-documentation/
(2013)

53. W3Techs: Usage statistics and makert share of ssl certificate authorities for websites, august
2014. http://w3techs.com/technologies/overview/ssl_certificate/all (2014)

54. Wi-Fi Alliance: Wi-Fi protected access: strong, standards-based, interoperable security for to-
day’s Wi-Fi networks. http://www.ans-vb.com/Docs/Whitepaper_Wi-Fi_Security4-29-03.pdf
(2003)

Chapter 6
Attacks on the Browser’s Requests

The previous chapter covered network-level attacks, allowing the attacker to listen
to information, or modify traffic being sent. The attacks in this chapter target the
browser’s requests, and the attacker actually runs code within the victim’s browser,
instead of sitting remotely on the network.

By attacking the browser’s requests, an attacker is able to forge requests to a
target application in the user’s name. The attacker tricks the user’s browser into
sending a forged request, generally without the user noticing the request being sent
to the target application. The core problem behind forging requests is the fact that a
target application often cannot distinguish between legitimate requests, made by the
user, and forged requests, made without the user’s consent. Due to the way the Web
platform works, it is impossible to determine whether a request is legitimate without
taking some additional measures.

In this chapter, we cover two important ways of forging requests in the user’s
name. The first is cross-site request forgery (CSRF), where the attacker tricks the
user’s browser into automatically sending requests to the target application. CSRF
attacks can cause several actions, such as updating profile information or actually
carrying out transactions, such as wire transfers in online banking software. The
second way is UI redressing, where the attacker tricks the user into interacting
with a seemingly innocent page, while the interactions are actually sent to the target
application. UI redressing attacks can cause users to unknowingly post status updates
on social networks or enable their webcam in the settings of the Flash player.

6.1 Cross-Site Request Forgery

A CSRF attack enables an attacker to forge requests to the target application from
a legitimate user’s browser. A vulnerable application handles these forged requests
the same way as legitimate requests from the victim. Successful CSRF attacks can
trigger many actions in vulnerable applications, such as modifying account settings
or stealing money through an online banking system [39].

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 57
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_6

58 6 Attacks on the Browser’s Requests

The CSRF is prevalent in modern Web sites, and is ranked in both the OWASP Top
10 project [37] and the CWE/SANS Top 25 Most Dangerous Programming Errors
[25]. Both small and large-scale projects are affected with, for example, CSRF
vulnerabilities in online banking systems [39], Gmail [14], and eBay [18].

6.1.1 Description

The goal of a CSRF attack is to forge a request from a victim’s browser to the target
application, triggering state-changing effects in the target application. Examples
of such state-changing effects are modifying account settings or adding items to a
shopping cart. For a CSRF attack to succeed, it is essential that the user is already
authenticated to the target application, since the user will not see the forged request.
From the application’s point of view, the forged request has the same structure as a
legitimate request, and is therefore indistinguishable from a legitimate request.

Tricking the victim’s browser into making a request to the target application is
a straightforward task. Browsers not only frequently issue requests to numerous
unrelated sites, for instance when loading external resources such as images, style
sheets, or a document to load in a frame, but also when submitting form data to a
cross-origin URI. An attacker can easily include code that triggers a request to the
target application in his own Web site or a site he controls. Alternatively, he can inject
HTML or JavaScript code in an unrelated but legitimate site, such as a Web forum
allowing users to post images or other content. These two attack vectors require the
capabilities of a Web attacker and forum poster. Listing 6.1 shows the code that uses
a hidden image to trigger a forged request and Listing 6.2 shows a cross-origin form
submission.

<img width="0" height="0"
src="http://admin.example.com/deleteAccount.php" />

Listing 6.1 A CSRF attack carried out by a hidden img tag that triggers a GET
request to the target application.

document.getElementById("somediv").innerHTML += "<iframe
id=’attackframe’ style=’height: 0px; width: 0px;’></iframe>";

var f = document.getElementById("attackframe");

var code = "<form id=’attackform’ action=’http://admin.example.com/
createAccount.php’ method=’POST’>";

code += "<input type=’hidden’ name=’username’ value=’attacker’>";
code += "<input type=’hidden’ name=’password’ value=’12345678’>";
code += "<input type=’hidden’ name=’action’ value=’create’>";
code += "</form>";

f.contentDocument.body.innerHTML = code;
f.contentDocument.getElementById("attackform").submit();

Listing 6.2 A CSRF attack carried out by JavaScript code that creates a hidden iframe
containing a form, which is then automatically submitted to the target application.

6.1 Cross-Site Request Forgery 59

Fig. 6.1 In the CSRF attack
depicted here, the attacker
triggers a request from origin
E to origin A (step 13), to
which the browser attaches
the cookies from the existing
session with origin A. If
origin A does not have CSRF
protection, this request will
be executed as if it was
generated by the user

Browser Origin A Origin E

1. login

5. open page

4. success

2. login

3. success

6. open page

7. page

Set cookie C

Send cookie C

8. page

9. open page

13. hidden request

14. hidden response
Send cookie C

12. page

10. open page

11. page

A CSRF attack can only be successful if the forged request happens within a
previously authenticated session between the victim’s browser and the target appli-
cation. Unfortunately, the design of current session management mechanisms in the
browser attaches session information to any outgoing request, fostering the preva-
lence of CSRF attacks. For example, the browser attaches the relevant cookies for
the domain, scheme, and path to each outgoing request, both for requests internal to
the application and cross-site or cross-application requests (illustrated in Fig. 6.1).
Additionally, many applications prefer long-life sessions, sticking around as long as
the browser remains open, regardless of whether an application is currently active in
a browser tab. Essentially, this means that if a user had an authenticated session with
the target application in the lifetime of the browser, it is likely that forged requests
within an authenticated session can be made.

A Login CSRF attack is a variation of a CSRF attack, where the attacker forges a
request to authenticate the victim with an attacker-chosen account. Essentially, the
attacker submits a login form from within the user’s browser, using the credentials of
the attacker. When the user unknowingly uses the targeted application, any entered
information is associated with the attacker-chosen account, and can potentially leak to
the attacker. A common example is a search engine keeping a history for authenticated
users.

Next to traditional login CSRF attacks that forge a submission of the target appli-
cation’s authentication form, login CSRF attacks can also target applications using
third-party authentication providers such as Google single sign-on, Facebook authen-
tication, or OpenID. These authentication providers provide the target application
with an assertion, containing the necessary information to confirm a successful au-
thentication, as well as the user’s identity. Using a login CSRF attack, an attacker

60 6 Attacks on the Browser’s Requests

can submit his own assertion to the target application from the victim’s browser,
effectively establishing an authenticated session tied to the attacker’s credentials.

In essence, the problem of a CSRF attack is the lack of intent, leaving the server
in the dark as to whether a request was made intentionally by legitimate application
code, or was forged by an attacker. The fact that browsers handle same-origin and
cross-origin requests identically, and Web applications now heavily depend on this
behavior, enables CSRF attacks and hampers effective countermeasures.

6.1.2 Mitigation Techniques

During the early years of CSRF, several simple mitigation techniques have been
proposed, but proven ineffective at protecting against CSRF attacks. One sugges-
tion is to only carry out state-changing operations using POST requests, as actually
mandated by HTTP specification [12], assuming that forging POST requests is not
feasible. Unfortunately, this is not the case [39], as shown by the code example in
Listing 6.2, rendering this advice useless in protecting against CSRF.

A second mitigation technique enforces referrer checking at the server side. State-
changing requests should only be accepted if the value of the Referer header1

contains a trusted site and rejected otherwise. Referrer checking would effectively
mitigate CSRF attacks, were it not that the presence of the Referer header in the
request headers is unreliable. The Referer header is often missing due to privacy
concerns, since it tells the target application which resource at which URI triggered
the request. Similarly, browsers do not add the header when an HTTPS resource,
which is considered sensitive, refers to an HTTP resource. Additionally, browser
settings, corporate proxies, privacy proxies, or extensions [28, 29] and referrer-
anonymizing services [26] enable the stripping of automatically added Referer
headers.

As an improvement to the Referer header, the Origin header provides the
server with information about the origin of a request, without the strong privacy-
invasive nature of the Referer header [3]. Unfortunately, the specification [2] only
states that the Origin header may be added, but does not require user agents to
do so, potentially causing the same problems as with the Referer header. The
Origin header, however, is mandatory when using cross-origin resource sharing
(CORS) [36], an API that enables the sharing of resources across origins.

Alternatively, token-based approaches are an effective countermeasure against
CSRF attacks [6]. A token-based approach adds a unique token to the code triggering
state-changing operations. When the browser submits the request leading to the
action, the token is included automatically, and verified by the server. Token-based
approaches prevent the attacker from including a valid token in his payload, causing

1 The Referer header was originally misspelled in the specification, and the header has kept this
name until this day. In text, the correctly-spelled referrer is more commonly used.

6.1 Cross-Site Request Forgery 61

the request to be rejected. Key to the success of this mitigation technique is keeping
the token for an action out of the attacker’s reach. This requires the tokens to be
unique, or at least bound to a specific user. Additionally, the tokens are embedded
in the page, where they are protected by the same-origin policy, preventing theft by
an attacker-controlled context, loaded in the same browser. One example of a token-
based approach are hidden form fields that contain a randomly generated, user-bound
token, which is submitted with the form’s contents but cannot be read from the DOM
by a browsing context from another origin.

Further research on token-based approaches, which often struggle with Web 2.0
applications, has yielded several improvements over traditional tokens, to enable
complex client-side scripting and cross-origin requests between cooperating sites.
jCSRF [27], a server-side proxy solution, transparently adds security tokens to client-
side resources and verifies the validity of incoming requests. Alternatively, double-
submit techniques [20] embed a nonce in two different locations, for example, in
a cookie and as a hidden form field, allowing the server to compare both values,
without keeping track of state. Since the attacker cannot manipulate both tokens, he
is unable to forge valid requests.

Another approach at the level of the application’s architecture is based on the
observation that the cross-origin accessibility of Web application resources allows
the attacker to target any resource by making a request from a different origin. Several
techniques propose to mitigate CSRF by fixing the set of entry points to known safe
resources, thus eliminating a CSRF attack on a sensitive resource. These entry points
can be enforced purely at the server side [7] or in combination with a browser-based
mechanism [8]. Recently, the concept of entry points gained traction with browser
vendors and is being integrated as a core feature [30].

Another effective mitigation of CSRF attacks involves explicit user approval of
state-changing operations. By requiring additional, unforgeable user interaction, the
attacker is unable to complete the CSRF attack in the background. Examples are
explicit reauthentication for sensitive operations or the use of an out-of-band device
to generate security tokens, as employed by many European online banking systems.
The risk associated with this mitigation technique is a shift in attack from CSRF to
clickjacking, which is covered in Sect. 6.2.

Finally, client-side solutions have emerged to protect legacy applications, which
are no longer updated, or where developers do not know or care about CSRF vul-
nerabilities, leaving users vulnerable in the end. These client-side solutions detect
potentially dangerous requests and either block them or strip them from implicit
authentication credentials, such as cookies. Examples are RequestRodeo [17], the
first client-side mitigation technique in the form of a proxy, followed by browser
extensions CsFire [9, 10], RequestPolicy [34], DeRef [13], and NoScript ABE [23].
While these client-side solutions have registered some success among enthusiasts,
their main disadvantage is the need for compatibility with all sites, often resulting in
false positives, which distort the delicate balance between security and usability.

62 6 Attacks on the Browser’s Requests

6.1.3 State of Practice

Current practices for mitigating CSRF attacks are focused on token-based ap-
proaches, either custom-built for the application or deployed as part of a Web
framework, such as Ruby on Rails, CodeIgniter, and several others. Alternatively,
server-side libraries or APIs offer CSRF protection as well, such as the community-
supported OWASP ESAPI API and CSRFGuard. Sites being built using a content
management system (CMS)—instead of being built from scratch—can benefit from
built-in CSRF support as well. For example, Drupal, Django, and WordPress offer
token-based CSRF protection, with Drupal even extending its support to optional
customized modules.

Applications using the OAuth protocol for authentication are vulnerable to login
CSRF attacks, as shown by a formal analysis of Web site authentication flows [1],
which has dubbed this problem as social login CSRF. OAuth is a protocol enabling
third-party clients limited access to an API, such as used in Facebook authentication
[11]. The OAuth specification recommends using a generated nonce, strongly bound
to the user’s session, which would prevent a social login CSRF attack, if followed
by the implementations of the protocol.

6.1.4 Best Practices

Ideally, Web developers mitigate CSRF attacks by using built-in protection mecha-
nisms for state-changing operations. Alternatively, custom token-based approaches
can be integrated as well, taking precautions to prevent token compromise. For legacy
applications, the use of a transparent server-side solution, such as CSRFGuard, can
enable CSRF protection without having to fiddle with the application code.

As a second line of defense, it is recommended that user involvement should be
required for truly sensitive operations, especially when they have direct financial
consequences, or can lead to the compromise of a user account. For example, it
is not unreasonable to require explicit user involvement or reauthentication when
changing the password or making a wire transfer in an online banking system.

6.2 UI Redressing

A UI redressing attack, also known as clickjacking or tapjacking, redresses or “redec-
orates” a target application, confusing the user who is interacting with the application.
For example, Fig. 6.2 illustrates a clickjacking attack using a transparent overlay.
UI redressing attacks can be used to trigger any user interaction within the target
application, such as clicking a button, dragging and dropping items, etc.

A UI redressing attack uses various innocent features, combining them to trick the
user into clicking a sensitive element. UI redressing attacks can not only be annoying,
but also malicious. Examples of the former are Tweetbombs [21], which post Twitter

6.2 UI Redressing 63

Fig. 6.2 The essence of a clickjacking attack is tricking the user into clicking on a specific location,
under which an element of the target application is positioned. In this example, the user thinks he
starts a game, but in fact clicks on a button in the hidden target application

status updates to the victim’s account, and LikeJacking, which triggers unintended
likes on Facebook pages. Examples of the latter are attacks that trick the user into
enabling webcam access for the Flash player [16], and attacks on wireless routers,
stealing the secret WPA keys [33].

6.2.1 Description

The goal of a UI redressing attack is to forge a request from the victim’s browser to
the target application, by making the user unintentionally interact with an element
on a page of the target application. An attacker achieves this using misdirection, by
redressing the UI of the page to hide the real element that will be clicked by the user.
Many forms of UI redressing are possible, from transparent overlays to very precise
positioning of elements, or even fake cursors stealing the user’s attention.

A UI redressing attack requires a coordinating application, which is under control
of the attacker and actually attracts legitimate interaction from the user. However,
the coordinating application masquerades the target application, causing the user’s
interaction to be directed towards the target application. In the example in Fig. 6.2,
the user actually thinks he clicks on the Play! button, but in reality, the click goes to-
wards the invisibly framed page. Since both buttons are precisely positioned on
top of each other, the attacker ensures that the user actually clicks at the right
location.

64 6 Attacks on the Browser’s Requests

Fig. 6.3 A cursorjacking attack, where the target application’s Delete Account button is at the
bottom right of the page, with a skip this ad bait link remotely above it. Note there are two cursors
displayed on the page: a fake cursor is drawn over the skip this ad link while the actual pointer
hovers over the delete account button

Note that the attacker requires the capabilities of a Web attacker but does not
control the target application, and that the interactions of the user with the target
application are indistinguishable from legitimate interactions. Mitigation techniques
for CSRF attacks are ineffective against UI redressing attacks, since the requests are
not cross-origin but actually originate from within the application.

While UI redressing attacks were traditionally known as clickjacking attacks, nu-
merous variations have emerged as the technology evolved. Double clickjacking [15]
tricks the user into double clicking, and quickly raises a previously opened pop-under
window after the first click, misdirecting the user’s click to the target application,
which is opened in the pop-under window. Another variation uses history navigation
to store a target page in the window’s history, and quickly switching back when the
user double clicks somewhere in the attacker’s page [38]. Instead of abusing clicking,
an attack can also use the features of the drag-and-drop API [5] to persuade the user
to drag some text into the target application, thereby injecting data into form fields
[35]. Another variation is a cursorjacking attack [16], where a fake cursor is drawn
on the screen, while the original cursor is hidden or out of the user’s focus on screen
(Fig. 6.3). Alternatively, strokejacking abuses keyboard focus features to trick the
user into typing in an input field of the target application [16]. Finally, tapjacking
brings UI redressing attacks to mobile devices, tricking the user into tapping on
hidden elements [33].

In essence, a UI redressing attack results in an unintentional request by misdirect-
ing the interaction of a user. Well-conducted UI redressing attacks are impossible to
observe, exonerating the users from all blame. UI redressing attacks can even be used
to bypass an application’s mitigation techniques, such as an explicit confirmation
request before performing sensitive actions.

6.2 UI Redressing 65

6.2.2 Mitigation Techniques

UI redressing attacks commonly use frames to embed the target application. Tradi-
tional mitigation techniques therefore use framebusting code. Framebusting code is
targeted at detecting the unpermitted framing of an application, and subsequently
breaking out of the frame by moving the application to a top-level frame, as shown
by the example in Listing 6.3). Simple framebusting code is often easily evaded, but
carefully constructing robust framebusting code can withstand evasion, or fail in safe
ways [32]. The downside of framebusting is the strict on or off mode, either allowing
all kinds of framing or no framing at all, not even by trusted applications. In the
modern Web, with mashups and composed applications, this might be problematic.

A second popular mitigation technique is the regulation of framing through
the X-Frame-Options header [31]. By adding this header to the response, an
application can indicate that framing is denied, allowed within its origin, or al-
lowed by an explicitly listed origin. Recently, the functionality offered by the
X-Frame-Options header has been integrated in the content security policy
with the frame-ancestors directive [4]. The frame-ancestors directive offers bet-
ter support for nested browsing contexts, which are still vulnerable with the
X-Frame-Options header [19], and supports multiple host source values, instead
of the one supported by the X-Frame-Options header.

Research on UI redressing attacks has also focused on a browser-supported solu-
tion that addresses the root cause, i.e., user misdirection. InContext [16] incorporates
several measures that ensure that a user’s click is genuine, for example, by comparing
screenshots at the time of the click or by highlighting the area of the cursor to prevent
attacks involving a fake cursor. InContext also serves as an inspiration for the new
standardization efforts by W3C to ensure UI integrity in Web applications, effec-
tively preventing UI redressing attacks [24]. The specification proposes several new
directives to include in the content security policy, giving the developer control over
several heuristics to determine the genuineness of the interaction. Similar to other
directives in the Content Security Policy, the browser will enforce these heuristics,
by blocking and reporting any violation.

//UNSAFE - DO NOT USE
if(top != self) top.location.replace(location);

Listing 6.3 A simple approach aimed at detecting unpermitted framing, and break-
ing out of the frame by moving the application to the top-level frame. While this
countermeasure is often used, it is easily evaded [32]

Finally, clickjacking can be combated from the client side as well. The popu-
lar security add-on NoScript [22] includes the ClearClick module, which does a
screenshot-based comparison of the area to be clicked with the actually clicked
element, and which served as an inspiration for the InContext work [16]. When a dif-
ference between both is detected, the user is warned and explicitly asked to confirm
the action before the request is sent.

66 6 Attacks on the Browser’s Requests

6.2.3 State of Practice

By design, all Web applications are vulnerable to clickjacking attacks, but the attack
receives little attention compared to higher-risk attacks. Users of major, well-known
Web applications such as Twitter, Facebook, etc. have fallen victim to clickjacking
attacks, often indicated by spam messages making their way through the application.

Many Web applications deploy some form of framebusting code, of which sev-
eral variations are known to be vulnerable to evasion [32]. Additionally, many
applications have a different front end for normal browsers and mobile browsers,
often only implementing framebusting in their normal version [33]. Currently, the
X-Frame-Options header is gaining adoption. Our July 2014 survey of theAlexa
top 10,000 domains discovered 2159 domains that include an X-Frame-Options
header in their responses.

6.2.4 Best Practices

Ideally, applications employ both effective framebusting code where possible (il-
lustrated in Listing 6.4), combined with a framing restriction, either with the
X-Frame-Options header or through CSP’s frame-ancestors directive, config-
ured as tightly as possible. Introducing additional user interactions, such as an explicit
confirmation dialog, will certainly make UI redressing attacks more difficult but will
not always be sufficient to eradicate them [16].

In the near future, the newly standardized User Interface Safety Directives for CSP
will become available [24], giving more fine-grained control to determine whether
the interaction is genuine.

if(self == top) {
document.documentElement.style.display = ’block’ ;

} else {
top.location = self.location ;

}

Listing 6.4 Combining this framebusting code with content that is hidden by default
offers clickjacking protection that cannot be evaded, and it fails when the detection
is hampered somehow.

References

1. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website authoriza-
tion by formal analysis. In: Proceedings of the 25th IEEE Computer Security Foundations
Symposium (CSF), pp. 247–262 (2012)

2. Barth, A.: The web origin concept. RFC 6454 (2011)

References 67

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery. In:
Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS),
pp. 75–88 (2008)

4. Barth, A., Veditz, D., West, M.: Content security policy level 2. W3C Working Draft (2014)
5. Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S., Hickson, I.:

HTML 5.1 specification. W3C Working Draft (2014)
6. Burns, J.: Cross site reference forgery: An introduction to a commonWeb application weakness.

https://www.isecpartners.com/media/11961/csrf_paper.pdf (2005)
7. Chen, E.Y., Bau, J., Reis, C., Barth, A., Jackson, C.: App isolation: get the security of

multiple browsers with just one. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS), pp. 227–238 (2011)

8. Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.: Lightweight server support for browser-
based CSRF protection. In: Proceedings of the 22nd International Conference on World Wide
Web (WWW), pp. 273–284 (2013)

9. De Ryck, P., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: CsFire: Transparent client-
side mitigation of malicious cross-domain requests. In: Proceedings of the 2nd International
Symposium on Engineering Secure Software and Systems (ESSoS), pp. 18–34 (2010)

10. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-side protection
against csrf attacks. In: Proceedings of the 16th European Symposium on Research in Computer
Security (ESORICS), pp. 100–116 (2011)

11. Facebook: Facebook login. http://developers.facebook.com/docs/facebook-login/ (2013)
12. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:

Hypertext Transfer Protocol—HTTP/1.1. RFC 2616 (1999)
13. Fung, B.S., Lee, P.P.: A privacy-preserving defense mechanism against request forgery at-

tacks. In: Proceedings of the 10th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 45–52 (2011)

14. Hepper, D.: Gmail CSRF vulnerability explained. http://daniel.hepper.net/blog/2008/11/gmail-
csrf-vulnerability-explained/ (2008)

15. Huang, L.S., Jackson, C.: Clickjacking attacks unresolved. https://docs.google.com/document/
pub?id=1hVcxPeCidZrM5acFH9ZoTYzg1D0VjkG3BDW_oUdn5qc (2011)

16. Huang, L.S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking: attacks and
defenses. In: Proceedings of the 21st USENIX Security Symposium, pp. 22–22 (2012)

17. Johns, M., Winter, J.: Requestrodeo: Client side protection against session riding. In:
Proceedings of the OWASP AppSec Europe 2006 Conference (AppSecEU), pp. 5–17 (2006)

18. Kovacs, E.: CSRF Vulnerability in eBay allows hackers to hijack user accounts.
http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-
User-Accounts-Video-383316.shtml (2013)

19. Lekies, S., Heiderich, M., Appelt, D., Holz, T., Johns, M.: On the fragility and limitations of
current browser-provided clickjacking protection schemes. In: Proceedings of the 6th USENIX
Workshop on Offensive technologies (WOOT), pp. 53–63 (2012)

20. Lekies, S., Tighzert, W., Johns, M.: Towards stateless, client-side driven cross-site request
forgery protection for Web applications. In: Proceedings of the 7th conference on Sicherheit,
Schutz und Zuverlässigkeit (Sicherheit), pp. 111–121 (2012)

21. Mahemoff, M.: Explaining the dont click clickjacking tweetbomb. http://softwareas.com/
explaining-the-dont-click-clickjacking-tweetbomb/ (2009)

22. Maone, G.: NoScript—JavaScript/Java/Flash blocker for a safer Firefox experience!
http://noscript.net/ (2013)

23. Maone, G.: NoScript Application Boundaries Enforcer (ABE). http://noscript.net/abe/ (2013)
24. Maone, G., Huang, D.L.S., Gondrom, T., Hill, B.: User interface safety directives for content

security policy. W3C Last Call Working Draft (2014)
25. Martin, B., Brown, M., Paller, A., Kirby, D.: Cwe/sans top 25 most dangerous programming

errors. http://cwe.mitre.org/top25/ (2011)

http://daniel.hepper.net/blog/2008/11/gmail-csrf-vulnerability-explained/
http://daniel.hepper.net/blog/2008/11/gmail-csrf-vulnerability-explained/
https://docs.google.com/document/pub?id=1hVcxPeCidZrM5acFH9ZoTYzg1D0VjkG3BDW_oUdn5qc
https://docs.google.com/document/pub?id=1hVcxPeCidZrM5acFH9ZoTYzg1D0VjkG3BDWprotect LY1	extunderscore oUdn5qc
http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml
http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml
http://softwareas.com/explaining-the-dont-click-clickjacking-tweetbomb/
http://softwareas.com/explaining-the-dont-click-clickjacking-tweetbomb/

68 6 Attacks on the Browser’s Requests

26. Nikiforakis, N., Van Acker, S., Piessens, F., Joosen, W.: Exploring the ecosystem of
referrer-anonymizing services. In: Proceedings of the 12th Privacy Enhancing Technologies
Symposium (PETS), pp. 259–278 (2012)

27. Pelizzi, R., Sekar, R.: A server-and browser-transparent csrf defense for web 2.0 applications.
In: Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC),
pp. 257–266 (2011)

28. Privoxy. Online at http://www.privoxy.org (2013)
29. RefControl. https://addons.mozilla.org/en-us/firefox/addon/refcontrol/ (2013)
30. Ross, D.: Entry point regulation for web apps. http://randomdross.blogspot.be/2014/08/entry-

-point-regulation-for-web-apps.html (2014)
31. Ross, D., Gondrom, T.: HTTP header field X-frame-options. RFC Informational (RFC 7034)

(2013)
32. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study of

clickjacking vulnerabilities at popular sites. Web 2.0 Security and Privacy (W2SP) (2010)
33. Rydstedt, G., Gourdin, B., Bursztein, E., Boneh, D.: Framing attacks on smart phones and

dumb routers: tap-jacking and geo-localization attacks. In: Proceedings of the 4th USENIX
Workshop on Offensive technologies (WOOT), pp. 1–8 (2010)

34. Samuel, J., Zhang, B.: Requestpolicy: Increasing web browsing privacy through control of
cross-site requests. In: Proceedings of the 9th Privacy Enhancing Technologies Symposium
(PETS), pp. 128–142 (2009)

35. Stone, P.: Next generation clickjacking. BlackHat Europe (2010)
36. van Kesteren, A.: Cross-origin resource sharing. W3C Recommendation (2014)
37. Wichers, D.: Owasp top 10. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_

Project (2013)
38. Zalewski, M.: Arbitrary page mashups (ui redressing). http://code.google.com/p/browsersec/

wiki/Part2#Arbitrary_page_mashups_(UI_redressing) (2010)
39. Zeller, W., Felten, E.W.: Cross-site request forgeries: exploitation and prevention. Tech. rep.,

Princeton University (2008)

http://randomdross.blogspot.be/2014/08/entry-point-regulation-for-web-apps.html
http://randomdross.blogspot.be/2014/08/entry-point-regulation-for-web-apps.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://code.google.com/p/browsersec/wiki/Part2#Arbitrary_page_mashups_(UI_redressing)
http://code.google.com/p/browsersec/wiki/Part2#Arbitrary_page_mashups_(UI_redressing)

Chapter 7
Attacks on the User’s Session

The previous chapter covered attacks on the user’s requests, enabling an attacker to
send requests from within the browser. Attacks on the user’s session, covered in this
chapter, generally have a higher impact, as they give the attacker full control over
the user’s session.

By gaining control over an authenticated session, the attacker gets the same level of
access to the target application as the victim. Some attacks allow the attacker to obtain
the user’s authenticated session in his own browser, while other attacks focus on using
a user’s stolen credentials. These attacks are enabled by applications deploying weak
authentication systems and insufficiently protecting authenticated sessions.

This chapter covers two ways of transferring an existing authenticated session
from the victim’s browser to the attacker’s browser: session hijacking and session
fixation. Finally, the use of stolen credentials, which gives the attacker all he needs
to independently establish an authenticated session is discussed.

7.1 Session Hijacking

A session hijacking attack allows the attacker to transfer an authenticated session from
the victim’s browser to an attacker-controlled browser. Using the transferred session,
the attacker can impersonate the user and perform all actions available to the user.

Session hijacking, together with other session-related problems, is ranked second
in the OpenWebApplication Security Project (OWASP) top ten [51]. In addition, with
ubiquitous, freely accessible, and unprotected wireless networks, session hijacking
has become a straightforward attack [23].

7.1.1 Description

The goal of a session hijacking attack is to transfer the user’s authenticated session
to a different machine or browser, enabling the attacker to continue working in the
victim’s session. To achieve this, the attacker hijacks the session, that the user has

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 69
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_7

70 7 Attacks on the User’s Session

Fig. 7.1 In a session hijacking attack, an attacker steals the session identifier of the user (step 4),
resulting in a complete compromise of the user’s session

established with the target application. Note that if the attacker manages to hijack an
unauthenticated session, he simply has to wait until the user authenticates himself,
since this state will be stored in the server-side session object.

Technically, once a session between the user’s browser and the server is estab-
lished, future requests will be handled within the context of this session (explained
in Chap. 3). The de facto standard session management mechanism in modern Web
applications is cookie-based, where a random, unique session identifier is stored in
a cookie within the browser. In a session hijacking attack, an attacker succeeds in
stealing the session identifier, which he can subsequently use to send requests to the
server (illustrated in Fig. 7.1). This is possible because the session identifier acts as
a bearer token, and the mere presence of this identifier in a cookie attached to the
request suffices for legitimizing the request within the session.

Depending on the security parameters of the cookie, an attacker has several ways
of obtaining the session identifier. One way is by calling the document.cookie prop-
erty from within the target’s application origin, which can for example be achieved
through cross-site scripting (covered in Chap. 8). A second way is by directly ac-
cessing the cookie store from a compromised browser, for example, by installing a
malicious browser extension (covered in Chap. 9). A third alternative is by eavesdrop-
ping on the network traffic (covered in Chap. 5) and snatching the session identifier
from the response or any subsequent request, as illustrated by point-and-click tools
such as Firesheep [9]. Finally, a weak or predictable session identifier can be guessed
or obtained through a brute-force attack.

An alternative session management mechanism is based on the uniform resource
identifier (URI) parameters, including a session identifier as a parameter in the URI
in every request to the application. This mechanism is often used as a fallback mech-
anism for browsers that do not support cookies or refuse to store them. Technically,
the scenario for a session hijacking attack does not change, other than the means to
obtain the session identifier. An attacker can still access it from JavaScript or eaves-
drop on the network to extract it. In addition, an attacker can attempt to trigger a
request to an attacker-controlled resource, hoping that a Referer header will be

7.1 Session Hijacking 71

included, since it contains the full URI, including the parameter with the session
identifier.

In essence, a session hijacking attack is possible because the session identifier,
which acts as a bearer token for an authenticated session, is easily obtained and
transferable between browsers. Making the session identifier accessible through
JavaScript or by eavesdropping on the network is a suboptimal decision, which
enables a highly dangerous and harmful attack.

7.1.2 Mitigation Techniques

A traditional mitigation technique for session hijacking is IP address binding, where
the server binds a user’s session to a specific IP address. Subsequent requests within
this session need to come from the same IP address, and any requests coming from
another IP address are discarded. While this mitigation technique works well in
scenarios where every machine has a unique, unchanging public IP address, it is
ineffective when the same public IP address is shared among multiple machines,
or when the public IP address changes during a session. Precisely, these two cases
have become ubiquitous in modern network infrastructure, with NATed home and
company networks (publicly accessible), shared wireless networks, and mobile net-
works. Recently, the technique of tracking a client has been refined through browser
fingerprinting, where numerous characteristics of the browser are compiled into a
fingerprint [1, 20, 40]. Anomaly detection based on the browser fingerprint triggers
alerts when an unexpected fingerprint is seen, which may be an attacker stealing a
session.

Another approach focuses on preventing the theft of the session identifier, which
is commonly stored and transmitted in a cookie. The HttpOnly and Secure cookie
attributes can be used to, respectively, prevent a cookie from being accessible through
JavaScript and prevent a cookie issued over HTTPS from being used (and thus leaked)
on a non-HTTPS connection. Correctly applying both attributes to cookies holding
a session identifier effectively thwarts script-based session hijacking attacks, as well
as session hijacking attacks through eavesdropping on network traffic.

One long-lived line of research focuses on providing protection against session hi-
jacking attacks from within a Web application, without specific infrastructure support
at the client side. The idea behind these approaches is not to hide the session identifier
but to ensure that the session identifier no longer acts as a bearer token, meaning that
the mere knowledge of the session identifier is insufficient to hijack a session.

SessionSafe [31] combines several mitigation techniques against session hijacking
into a single countermeasure, and thereby effectively prevents script-based session
hijacking attacks. To summarize, three combined mitigation techniques are (i) de-
ferred loading, which hides the session identifier from malicious JavaScript before
main content is loaded, (ii) one-time URLs, where a secret component prevents
URLs from being guessed by an attacking script, and (iii) subdomain switching,

72 7 Attacks on the User’s Session

which removes the implicit trust between pages that happen to belong to the same
origin but not necessarily trust each other.

SessionLock [2] negotiates a shared secret between a client and a server and stores
this in the client-side context. The secret is used to add integrity checks to outgoing
requests. Since the secret value is never transmitted in the clear, SessionLock prevents
an attacker with a stolen session identifier from making valid requests. Unfortunately,
because the secret is stored in the JavaScript context, it cannot be protected against
script-based attacks.

The HTTP Integrity Header [25] uses a similar approach as SessionLock but
makes the secret negotiation and integrity check part of HTTP protocol, thereby
avoiding modifications to the application logic. SecSess [15] further improves on
HTTP integrity header by achieving compatibility with commonly deployed mid-
dleboxes such as Web caches. GlassTube [26] also ensures integrity on the data
transfer between client and server and can be deployed both within an application or
as a modification of the client-side environment, for example as a browser plugin.

Finally, several approaches look into strengthening cookies to prevent session
hijacking attacks. One-Time Cookies [12] propose to replace the static session iden-
tifier with disposable tokens per request, similar to the concept of Kerberos service
tickets. Each token can only be used once, but using an initially shared secret, ev-
ery token can be separately verified and tied to an existing session. Macaroons [7]
improve upon cookies by placing restrictions on how, where, and when the implicit
authority of the bearer token can be used. The technology behind macaroons is based
on chains of nested hash-based message authentication codes (HMACs), built from
a shared secret and a chain of messages. Macaroons target cloud services, where del-
egation between principals without a central authentication service is often required,
for example to share access to the user’s address book on another service.

Other techniques follow a similar approach but base their security measures on
the user’s password, which in itself is a shared secret between the user and the
Web application. BetterAuth [33] revisits the entire authentication process, offering
secure authentication and a secure subsequent session. Hardened Stateless Session
Cookies [37] use unique cookie values, calculated using hashing functions based on
the user’s password, effectively preventing the generation of new requests within an
authenticated session.

Alternatively, origin-bound certificates (OBC) [19] extend the transport layer
security (TLS) protocol to establish a strong authentication channel between browser
and server, without falling prey to active network attacks. Within this secure channel,
TLS–OBC supports the binding of cookies and third-party authentication tokens,
which prevents the stealing of such bearer tokens.

Another line of research targets session hijacking problems from the client side
without explicit support from the target application. SessionShield [39] is a client-
side proxy that mitigates script-based session hijacking attacks by ensuring that all
session cookies are marked HttpOnly before they reach the browser. Determining
which cookies are session cookies at the client side, in an application-agnostic way,
is achieved by applying sensible heuristics, including an entropy test. Serene [13]

7.2 Session Fixation 73

implements SessionShield as a browser extension for Firefox and extends it to support
parameter-based session management techniques.

7.1.3 State of Practice

Unfortunately, many sites still use unprotected cookies to store session identifiers,
leaving users vulnerable to session hijacking attacks. On the bright side, the adoption
of the HttpOnly and Secure attributes is gaining ground, starting to be turned on by
default [4]. Our July 2014 survey of the Alexa top 10,000 domains shows that more
than half of the domains use the HttpOnly attribute (5,465 domains in total) and
1,419 domains use the Secure attribute, which is a significant increase compared to
a study in 2010 [49].

Another practice that is being deployed by major sites is to operate split session
management between HTTP- and HTTPS-accessible parts of the site. For example,
a Web shop can run its catalog inspection and shopping cart filling operations over
HTTP and use HTTPS for sensitive operations such as logging in, checking out the
cart, payments, or account modifications. Technically, they use two different session
cookies, one for HTTP usage and another for HTTPS usage, where the latter is
declared HttpOnly and Secure. While this leaves the user vulnerable to a session
hijacking attack on HTTP part, it effectively protects HTTPS part, where sensitive
operations are conducted.

7.1.4 Best Practices

The best practice for preventing session hijacking attacks is to use strong, random
session identifiers [48], and deploy the application over HTTPS (see best practices
in Chap. 5), using the HttpOnly and Secure attribute for all cookies not needed by
JavaScript, especially the cookies containing a session identifier.

In addition, Web development frameworks and application servers that offer easy-
to-use session management mechanisms should deploy these protections by default,
and discourage their users from turning them off.

7.2 Session Fixation

A session fixation attack enables an attacker to force the victim’s browser to use an
existing session, which is also known by the attacker. The goal of the attacker is to
wait for the user to perform state-changing actions, such as authenticating himself
to the application, after which the attacker takes control of the session. The effects
of a session fixation attack are similar to those of a session hijacking attack.

74 7 Attacks on the User’s Session

Fig. 7.2 In a session fixation attack, an attacker fixates his own session identifier into the browser
of the user (step 4), causing the user to authenticate in the attacker’s session

Session fixation is categorized as a session management problem, ranked sec-
ond in the OWASP top ten [51]. Session fixation is technically more difficult than
session hijacking, and requires the capability to transfer a session identifier towards
the victim’s browser. Unfortunately, no exact numbers of the prevalence of session
fixation attacks are available. However, the prevalence of the attack vectors that can
lead to a session fixation attack is a good indicator, and is covered in subsequent
chapters.

7.2.1 Description

The goal of a session fixation attack is to register the results of the victim’s state-
changing actions in a session controlled by the attacker. The most prominent example
of such a state-changing action is the authentication process, which results in the
authentication state being stored in the session. The attacker forces the victim’s
browser to use a specific, attacker-known session, allowing him to retake control of
this session at any time. If the attacker takes over the session after user authentication,
he can effectively impersonate the user.

For cookie-based session management systems, the attacker first obtains a valid
session identifier for the application, either by visiting the target application himself
or by crafting a session identifier. In the next step, the attacker has to fixate the
session identifier in the victim’s browser, which depends on the session management
mechanism used by the application. Once the session is fixated and the user visits
the application, he will be working within the attacker’s session. This means that
the authentication state at the server side will be stored within this session as well,
allowing the attacker to take over the session later on (illustrated in Fig. 7.2).

The crucial part of a session fixation attack is fixating the session identifier, an
action that depends on the presence of a secondary vulnerability such as cross-site

7.2 Session Fixation 75

scripting, header injection, etc. [13]. For example, in cookie-based session manage-
ment systems, the attacker can set a cookie using the document.cookie property from
JavaScript or by using an injection attack to insert meta elements that mimic header
operations into the page’s content or by manipulating network traffic.

Fixating a session identifier in parameter-based session management systems is
straightforward. All it takes is tricking the user into visiting a URI which contains
the fixated session identifier as a parameter in the query string.

In essence, session fixation attacks are possible because the session identifier acts
as a bearer token for a session between a user and an application, combined with
the fact that sessions are easily transferable between browsers. Session fixation and
session hijacking attacks both exist for the same reasons, but use a different attack
vector to obtain an authenticated session.

7.2.2 Mitigation Techniques

Due to multiple attack vectors that can lead to a session fixation attack, plugging them
all is difficult. Nonetheless, protecting session cookies with the Secure and HttpOnly
attributes makes the attack more difficult, since it prevents an attacker from easily
overwriting an already-existing session cookie. However, these protections can be
bypassed, for example, by overflowing the cookie jar with meaningless cookies,
causing the browser to purge the oldest ones (i.e., the session cookie) and allowing
the attacker to fixate a new session identifier.

An effective mitigation technique for fixation attacks consists of sending the user
a renewed session identifier after the user changes privilege levels in the application,
such as a login or logout operation, accessing an administrative part of the application,
etc. For example, by issuing a new session identifier after user authentication, an
application ensures that the authentication information is not associated with the
fixated session identifier, preventing the attacker from taking over the authenticated
session. Renewing the session identifier is the server’s responsibility and is often
supported by the Web programming language or Web framework. No explicit client
support is required, since the server can just override the already-existing session
cookie using a Set-Cookie header.

However, integrating the renewal of the session identifier in legacy applications
is challenging. Research proposals propose several solutions to this problem, both
from the server side and the client side. Depending on the available frameworks at
the server side, renewing the session identifier can be integrated in the framework’s
session management mechanism or be offered as a server-side reverse proxy solution
[32]. On the other hand, a client-side protection mechanism against session fixation
attacks, called Serene, offers protection to a user, without requiring a change or
modification at the server side [13]. Serene is a browser add-on that detects cookie and
parameter-based session identifiers in requests and responses and offers additional
protection for these identifiers. Serene can prevent fixation attacks initiated by script
or metatag injection attacks, as well as by parameter-based session fixation attacks.

76 7 Attacks on the User’s Session

A variant of a session fixation attack can be carried out by a related domain attacker
[8], who controls an application hosted under the same registered domain as the target
application (e.g., example.com). By setting a cookie that applies to all sibling do-
mains, an attacker can easily fixate a session identifier. Origin Cookies [8] protect ap-
plications against this kind of attack by allowing cookies to be limited to one domain,
preventing manipulation from sibling sites. TLS-OBC [19] is follow-up research that
offers even stronger guarantees but requires a TLS-secured channel to be present.

7.2.3 State of Practice

Modern frameworks support the renewal of the session identifier, albeit only after
explicit actions from the developer to enable this behavior [47]. In addition, correctly
enabling the HttpOnly attribute on session cookies can successfully mitigate certain
attack vectors.

7.2.4 Best Practices

The best practice for protection against session fixation attacks is to renew the session
identifier on every privilege change within the application. This effectively ensures
that the new privilege level is never accessible using the original session identifier,
thus preventing session fixation attacks. In addition, session cookies should always
be issued with the HttpOnly attribute set, which prevents overwriting from headers
and from JavaScript in most modern browsers.

7.3 Authenticating With Stolen Credentials

Stealing the victim’s credentials for a target application allows an attacker to authen-
ticate himself to the application as if he were the user. The attacker can successfully
impersonate the user and can also bypass reauthentication checks for sensitive opera-
tions such as changing the password. With the prevalent reuse of the same credentials
for multiple applications and the use of single-sign on solutions, stealing the creden-
tials for one application often gives the attacker access to other applications as well.

In recent years, credential theft has become a common practice. The compromises
of credential databases have become enormous, with the theft of thousands, even
millions of users being no exception. Some examples are the 2013 Adobe breach,
resulting in the theft of 2.9 million customer details [29], or the compromise of
eBay, which asked its 145 million registered users to change their credentials [43]. In
addition, attackers can use phishing techniques, where unsuspecting users are tricked
into entering their credentials into a fraudulent authentication form. PhishTank, an
antiphishing initiative, collects about 20,000 valid phishing Web sites per month [41].

7.3 Authenticating With Stolen Credentials 77

7.3.1 Description

By using valid user credentials, the attacker can impersonate the user towards the
target application, resulting in full control over the victim’s data and actions. In the
modern, interconnected Web, compromise of one account often allows the escalation
towards other accounts and the victim’s entire online presence [27, 28].

Attackers often employ social engineering techniques to trick victims into will-
ingly surrendering their credentials. The most common example of such an attack is
phishing, where the attacker capitalizes on a user’s inability of distinguishing a le-
gitimate page from one that looks legitimate but is actually fraudulent. By luring the
user to the fraudulent page, for example with a carefully crafted “urgent” email mes-
sage, the user is tricked into entering his credentials, causing them to be sent to the
attacker. Phishing attacks can be conducted both on large and small scale, depending
on an attacker’s objectives. Large-scale attacks are very generic and generally easier
to detect. Small-scale attacks, also known as spear phishing, target highly specific
individuals and companies and are very difficult to detect.

A variation on the traditional phishing attack is tabnabbing [42]. In tabnabbing
(shown in Fig. 7.3), the user is lured into visiting a malicious site, that however looks
innocuous. If a user keeps the attacker’s site open and uses another tab of his browser
to browse a different Web site, the tabnabbing page takes advantage of the user’s lack
of focus (accessible through JavaScript as window.onBlur) to change its appearance
(page title, favicon, and page content) to look identical to the login screen of a popular
site. When a user returns back to the open tab, he has no reason to reinspect the URL
of the site rendered in it, since he already did that in the past. This type of phishing
separates the visit of a site from the actual phishing attack and could, in theory, even
trick users who would not fall victim to traditional phishing attacks.

Instead of directly targeting the victim users, attackers can also focus on the
target application itself. A common way of obtaining valid credentials for a target
application is by compromising the application’s database. The database not only
contains full details of the registered users but also contains all user credentials. In
addition, with the numerous applications requiring authentication credentials, users
often reuse the same set of credentials, allowing an attacker to impersonate the victim
towards other applications as well.

In essence, attacks based on credential theft are possible because an attacker
can easily get hold of a victim’s credentials. Traditional username/password-based
credentials are easily transferable, often reused, and stored insecurely. In addition,
users are not trained security professionals and often fall for well-conducted social
engineering attacks.

7.3.2 Mitigation Techniques

A recent evolution towards limiting the impact of credential theft is the use of mul-
tifactor authentication. In a multifactor authentication process, the application no

78 7 Attacks on the User’s Session

Fig. 7.3 In a tabnabbing attack, the attacker switches an innocuous-looking tab (left) to a phishing
page (right), avoiding being caught when the user checks the URI of a newly loaded tab

longer depends on a single piece of knowledge, such as a set of credentials, but
requires additional factors, such as a token sent to a user’s phone by text message, a
token generated by a dedicated device [22], a smart card, biometric information, etc.
Multifactor authentication makes the traditional credentials less valuable, since one
of the additional authentication factors is an out-of-band device, beyond the control
of an attacker. However, introducing additional authentication factors also introduces
additional concerns. For example, if the user’s smartphone acts as a second factor
in the authentication process, a problem arises when the phone is stolen, since it
provides both, the browser with potentially stored credentials and the out-of-band
device. Similarly, biometrics are often considered a viable alternative to password
authentication [5, 6] but they possess different characteristics compared to traditional
credentials. For example, fingerprints are left behind everywhere and the readers can
easily be fooled [44]. In addition, the amount of biometric information is limited
(i.e., ten fingerprints) and revocation is rather difficult.

In addition to multifactor authentication, major sites further improve their
authentication procedures with additional security checks when logging in from
an untrusted device, similar to anomaly-based prevention of credit card fraud. Mi-
crosoft, Facebook, and Google allow you to register trusted computers from where a
traditional username/password-based authentication can be used. All other machines
require two-factor authentication with a verification code [10, 24].

Currently, several client-side tools are available to store a user’s password [36, 45],
no longer requiring the user to the remember all accounts and associated passwords.
Such tools enable the use of unique, application-specific passwords, limiting the
harmful effect of credential theft at the server side. Implementing a safe browser
extension for managing passwords is a non-trivial task, as illustrated by research
[45] and disclosed vulnerabilities [34].

Attackers have been trying to convince users to voluntarily give up their creden-
tials for the past 19 years [35]. Several studies have been conducted trying to identify
why users fall victim to phishing attacks [18, 21] and various solutions have been
suggested, such as the use of per-site “page-skinning” [17], security toolbars [52],
images [3], trusted password windows [46], use of past-activity knowledge [38], and

References 79

automatic analysis of the content within a page [53]. Finally, users can also install
client-side countermeasures to protect themselves phishing [11] and tabnabbing [14].

7.3.3 State of Practice

In practice, stolen credentials are a valuable asset, as illustrated by the high demand
on underground markets [30]. Major Web sites offer strong, multifactor authentica-
tion, in combination with trusted devices, which effectively mitigates most of the risk
associated with credential theft. Also, major players, such as Google and Facebook
offer single-sign on solutions, allowing other sites to benefit from the secure authen-
tication procedures. On the downside, numerous smaller sites still use traditional
credentials and cannot prevent the use of stolen credentials.

Unfortunately, combating phishing in an automated way is difficult, which is
why the currently deployed antiphishing mechanisms in popular browsers are all
blacklist-based [16]. The blacklists themselves are either generated automatically
by automated crawlers, searching for phishing pages on the Web [50] or are
crowdsourced [41].

7.3.4 Best Practices

The best protection against the use of stolen credentials is multifactor authentication.
Instead of building your own multifactor authentication system, you can choose
two strategies that involve a third-party authentication provider. The first strategy
integrates an additional authentication factor in your own authentication procedure,
using APIs offered by third-party providers. The second strategy fully outsources the
authentication procedure to an authentication provider, for example, using a protocol
like OpenID or OAuth.

Specifically for phishing, a social engineering attack, users should be trained to
recognize phishing scams and never act on them. However, as the attacks become
more complicated, tool support for detecting and preventing phishing attacks is
necessary. The best practice here is the use of safe browsing initiatives, which are
based on crowdsourced blacklisting.

References

1. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel, B.: Fpde-
tective: dusting the web for fingerprinters. In: Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), pp. 1129–1140 (2013)

2. Adida, B.: Sessionlock: securing web sessions against eavesdropping. In: Proceedings of the
17th International Conference on World Wide Web (WWW), pp. 517–524 (2008)

3. Agarwal, N., Renfro, S., Bejar, A.: Yahoo!’s sign-in seal and current anti-phishing solutions.
Web 2.0 Security and Privacy (W2SP) (2007)

80 7 Attacks on the User’s Session

4. Apache Software Foundation: Apache tomcat—migration guide. http://tomcat.apache.org/
migration-7.html (2013)

5. Apple: iphone 5s: About touch ID security. http://support.apple.com/kb/HT5949 (2014)
6. Berg, D.: How to use your fingerprint reader. http://blog.laptopmag.com/how-to-use-your-

fingerprint-reader (2012)
7. Birgisson, A., Politz, J., Erlingsson, Ú., Taly, A., Vrable, M., Lentczner, M.: Macaroons:

cookies with contextual caveats for decentralized authorization in the cloud. In: Proceedings
of the 21st Annual Network and Distributed System Security Conference (NDSS) (2014)

8. Bortz, A., Barth, A., Czeskis, A.: Origin cookies: session integrity for web applications. Web
2.0 Security and Privacy (W2SP) (2011)

9. Butler, E.: Firesheep. http://codebutler.com/firesheep (2010)
10. Center, F.H.: Extra security features. https://www.facebook.com/help/413023562082171/

(2014)
11. Chou, N., Ledesma, R., Teraguchi, Y., Mitchell, J.C.: Client-side defense against web-based

identity theft. In: Proceedings of the 11th Annual Network and Distributed System Security
Conference (NDSS) (2004)

12. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-time cookies: preventing session
hijacking attacks with stateless authentication tokens. ACM Trans. Internet Technol. (TOIT)
12(1), 31 (2012).

13. De Ryck, P., Nikiforakis, N., Desmet, L., Piessens, F., Joosen, W.: Serene: self-reliant
client-side protection against session fixation. In: Proceedings of the 12th International IFIP
Conference on Distributed Applications and Interoperable Systems (DAIS), pp. 59–72 (2012)

14. De Ryck, P., Nikiforakis, N., Desmet, L., Joosen, W.: Tabshots: client-side detection of
tabnabbing attacks. In: Proceedings of the 8th ACM symposium on Information, computer and
communications security (ASIACCS), pp. 447–456 (2013)

15. De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: Eradicating bearer tokens for session
management. W3C/IAB workshop on strengthening the internet against pervasive monitoring
(STRINT) (2014)

16. Developers, G.: Safe browsing API. https://developers.google.com/safe-browsing/ (2014)
17. Dhamija, R., Tygar, J.D.: The battle against phishing: dynamic security skins. In: Proceedings

of the 1st Symposium on Usable Privacy and Security (SOUPS), pp. 77–88 (2005)
18. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of the ACM CHI

conference on Human Factors in computing systems (CHI), pp. 581–590 (2006)
19. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-bound certificates: a fresh approach

to strong client authentication for the web. In: Proceedings of the 21st USENIX Security
Symposium, pp. 16–16 (2012)

20. Eckersley, P.: How unique is your web browser? In: Proceedings of the 10th Privacy Enhancing
Technologies Symposium (PETS), pp. 1–18 (2010)

21. Egelman, S., Cranor, L.F., Hong, J.:You’ve been warned: an empirical study of the effectiveness
of web browser phishing warnings. In: Proceedings of the ACM CHI conference on Human
Factors in computing systems (CHI), pp. 1065–1074 (2008)

22. EMC: RSA SecurID—Two-Factor Authentication Security Token. http://www.emc.com/
security/rsa-securid.htm (2013)

23. Geier, E.: Prevent wi-fi eavesdroppers from hijacking your accounts. http://www.ciscopress
.com/articles/article.asp?p=1750204 (2011)

24. Google: Trusted computers. https://support.google.com/accounts/answer/2544838?hl=en
(2014)

25. Hallam-Baker, P.: Http integrity header. IETF Internet Draft (2012)
26. Hallgren, P.A., Mauritzson, D.T., Sabelfeld, A.: Glasstube: a lightweight approach to Web

application integrity. In: Proceedings of the 8th ACM SIGPLAN workshop on Programming
Languages and Analysis for Security (PLAS), pp. 71–82 (2013)

27. Hiroshima, N.: How i lost my $50,000 twitter username. https://medium.com/@N/how-i-lost-
my-50-000-twitter-username-24eb09e026dd (2014)

http://tomcat.apache.org/migration-7.html
http://tomcat.apache.org/migration-7.html
http://www.emc.com/security/rsa-securid.htm
http://www.emc.com/security/rsa-securid.htm
http://www.ciscopress.com/articles/article.asp?p=1750204
http://www.ciscopress.com/articles/article.asp?p=1750204

References 81

28. Honan, M.: How apple and amazon security flaws led to my epic hacking. http://www.wired
.com/2012/08/apple-amazon-mat-honan-hacking/ (2012)

29. Infosecurity: Adobe hacked customers’ card details and adobe source code stolen. http://www.
infosecurity-magazine.com/view/34872/adobe-hacked-customers-card-details-and-adobe-
source-code-stolen (2013)

30. Infosecurity: 360 million stolen credentials and 1.25 billion email addresses found
on the black market. http://www.infosecurity-magazine.com/view/37135/360-million-stolen-
credentials-and-125-billion-email-addresses-found-on-the-black-market/ (2014)

31. Johns, M.: Sessionsafe: implementing xss immune session handling. In: Proceedings of the
11th European Symposium on Research in Computer Security (ESORICS), pp. 444–460 (2006)

32. Johns, M., Braun, B., Schrank, M., Posegga, J.: Reliable protection against session fixation
attacks. In: Proceedings of the 26thACM Symposium onApplied Computing (SAC), pp. 1531–
1537 (2011)

33. Johns, M., Lekies, S., Braun, B., Flesch, B.: Betterauth: web authentication revisited.
In: Proceedings of the 28th Annual Computer Security Applications Conference (ACSAC),
pp. 169–178 (2012)

34. Kelly, S.M.: LastPass passwords exposed for some internet explorer users.
http://mashable.com/2013/08/19/lastpass-password-bug/ (2013)

35. Langberg, M.:Aol acts to thwart hackers. http://simson.net/clips/1995/95.SJMN.AOL_Hackers.
html (1995)

36. LastPass.com: LastPass. https://lastpass.com (2013)
37. Murdoch, S.J.: Hardened stateless session cookies. Secur. Protoc. XVI, 93–101 (2011)
38. Nikiforakis, N., Makridakis, A., Athanasopoulos, E., Markatos, E.P.: Alice, what did you

do last time? fighting phishing using past activity tests. In: Proceedings of the 3rd European
Conference on Computer Network Defense (EC2ND), pp. 107–117 (2009)

39. Nikiforakis, N., Meert, W., Younan, Y., Johns, M., Joosen, W.: Sessionshield: lightweight
protection against session hijacking. In: Proceedings of the 3rd International Symposium on
Engineering Secure Software and Systems (ESSoS), pp. 87–100 (2011)

40. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.: Cookieless
monster: exploring the ecosystem of web-based device fingerprinting. In: Proceedings of the
34th IEEE Symposium on Security and Privacy (SP) (2013)

41. OpenDNS: PhishTank. http://www.phishtank.com/ (2014)
42. Raskin, A.: Tabnabbing: a new type of phishing attack. http://www.azarask.in/blog/post/a-new-

type-of-phishing-attack/ (2010)
43. Reisinger, D.: eBay hacked, requests all users change passwords. http://www.cnet.com/news/

ebay-hacked-requests-all-users-change-passwords/ (2014)
44. Roberts, P.F.: 7 ways to beat fingerprint biometrics. http://www.itworld.com/slideshow/

120606/7-ways-beat-fingerprint-biometrics-374041 (2013)
45. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password authentication

using browser extensions. In: Proceedings of the 14th USENIX Security Symposium (2005)
46. Sandler, D.R., Wallach, D.S.: <input type=“password”> must die! Web 2.0 Security and Privacy

(W2SP) (2008)
47. Siles, R.: Session management cheat sheet—renew the session id after any privilege level

change. https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Renew_the_
Session_ID_After_Any_Privilege_Level_Change (2013)

48. Siles, R.: Session management cheat sheet—session id properties. https://www.owasp.org/
index.php/Session_Management_Cheat_Sheet#Session_ID_Properties (2013)

49. Singh, K., Moshchuk, A., Wang, H.J., Lee, W.: On the incoherencies in web browser access
control policies. In: Proceedings of the 31st IEEE Symposium on Security and Privacy (SP),
pp. 463–478 (2010)

50. Wenyin, L., Huang, G., Xiaoyue, L., Min, Z., Deng, X.: Detection of phishing webpages based
on visual similarity. Special Interest Tracks and Posters of the 14th International Conference
on World Wide Web (WWW), pp. 1060–1061 (2005)

http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
http://www.infosecurity-magazine.com/view/34872/adobe-hacked-customers-card-details-and-adobe-source-code-stolen
http://www.infosecurity-magazine.com/view/34872/adobe-hacked-customers-card-details-and-adobe-source-code-stolen
http://www.infosecurity-magazine.com/view/34872/adobe-hacked-customers-card-details-and-adobe-source-code-stolen
http://simson.net/clips/1995/95.SJMN.AOLprotect LY1	extunderscore Hackers.html
http://simson.net/clips/1995/95.SJMN.AOLprotect LY1	extunderscore Hackers.html
http://www.cnet.com/news/ebay-hacked-requests-all-users-change-passwords/
http://www.cnet.com/news/ebay-hacked-requests-all-users-change-passwords/
http://www.itworld.com/slideshow/120606/7-ways-beat-fingerprint-biometrics-374041
http://www.itworld.com/slideshow/120606/7-ways-beat-fingerprint-biometrics-374041
https://www.owasp.org/index.php/Sessionprotect LY1	extunderscore Managementprotect LY1	extunderscore Cheatprotect LY1	extunderscore Sheet#Renewprotect LY1	extunderscore theprotect LY1	extunderscore Sessionprotect LY1	extunderscore IDprotect LY1	extunderscore Afterprotect LY1	extunderscore Anyprotect LY1	extunderscore Privilegeprotect LY1	extunderscore Levelprotect LY1	extunderscore Change
https://www.owasp.org/index.php/Sessionprotect LY1	extunderscore Managementprotect LY1	extunderscore Cheatprotect LY1	extunderscore Sheet#Renewprotect LY1	extunderscore theprotect LY1	extunderscore Sessionprotect LY1	extunderscore IDprotect LY1	extunderscore Afterprotect LY1	extunderscore Anyprotect LY1	extunderscore Privilegeprotect LY1	extunderscore Levelprotect LY1	extunderscore Change
https://www.owasp.org/index.php/Sessionprotect LY1	extunderscore Managementprotect LY1	extunderscore Cheatprotect LY1	extunderscore Sheet#Sessionprotect LY1	extunderscore IDprotect LY1	extunderscore Properties
https://www.owasp.org/index.php/Sessionprotect LY1	extunderscore Managementprotect LY1	extunderscore Cheatprotect LY1	extunderscore Sheet#Sessionprotect LY1	extunderscore IDprotect LY1	extunderscore Properties

82 7 Attacks on the User’s Session

51. Wichers, D.: Owasp top 10. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_
Project (2013)

52. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phishing attacks?
In: Proceedings of the ACM CHI Conference on Human Factors in Computing Systems (CHI),
pp. 601–610 (2006)

53. Zhang, Y., Hong, J.I., Cranor, L.F.: Cantina: a content-based approach to detecting phishing
web sites. In: Proceedings of the 16th International Conference on World Wide Web (WWW),
pp. 639–648 (2007)

https://www.owasp.org/index.php/Category:OWASPprotect LY1	extunderscore Topprotect LY1	extunderscore Tenprotect LY1	extunderscore Project
https://www.owasp.org/index.php/Category:OWASPprotect LY1	extunderscore Topprotect LY1	extunderscore Tenprotect LY1	extunderscore Project

Chapter 8
Attacks on the Client-Side Context

In previous chapters, we have shown how the attacker was able to manipulate the
user’s actions. By attacking the client-side context of a target application, the attacker
actually inserts himself into the target application’s context in the user’s browser.
This gives the attacker the power to monitor the user’s interactions with the target
application, to read and extract data, and to send seemingly legitimate requests to
the server-side application.

In this chapter, we look at three attacks that can lead to the attacker controlling the
client-side context. The first attack is cross-site scripting (XSS), a very common, well-
known attack, where the attacker injects JavaScript code into the victim application.
Next, we cover scriptless attacks, where content is also injected into the target
application, but the content is not script code. Finally, we investigate the dangers of
remote script inclusions, which are very common but also prone to compromise.

8.1 Cross-Site Scripting

With an XSS attack, an attacker is able to execute his own JavaScript code within the
application’s execution context, gaining him the same privileges as the target appli-
cation code. This exposes all client-side application data, resources, and APIs to the
attacker, including the possibility to manipulate and generate legitimate application
requests towards the server-side application code.

XSS is a serious problem in the Web, and is highly ranked in both the OWASP
top ten of Web application vulnerabilities [42] and the CWE/SANS most dangerous
programming errors [22]. Almost every Web application has had a script injection
vulnerability at some point, with even serious players such as Google, Facebook,
and Twitter not being exempted [43]. Hence, XSS is often referred to as the buffer
overflow of the Web.

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 83
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_8

84 8 Attacks on the Client-Side Context

Fig. 8.1 When the vulnerable Web application processes this URI, the source of the response will
include <script>alert(‘‘XSSed!’’)</script>, leading to a reflected XSS attack

Fig. 8.2 In a stored XSS attack, the attacker injects script code into the application’s server-side
content storage, which is then unknowingly served to victim users, visiting legitimate pages of the
application

8.1.1 Description

The goal of an XSS attack is to execute attacker-controlled code in the client-side
application context within the victim’s browser. In an XSS attack, the attacker is
able to inject JavaScript code into a page of the target application, mixing it with the
legitimate page content, causing it to be executed altogether as the page is processed.
As the browser sees a single Web page, it is unable to distinguish between legitimate
code and malicious code.

An attacker has many attack vectors to inject a payload into the target application.
A first way is by manipulating the uniform resource identifier (URI) to inject code
into request parameters, which are processed by a client-side script of the target
application. Whenever the client-side script constructs code using these parameters,
which it does not expect to hold code, the attacker’s code will be executed alongside
the legitimate application code. This type of XSS attack is known as document object
model (DOM)-based XSS or XSS type 0.

A second class of XSS attacks consists of tricking the server into including the
attacker’s code in its response. For example, if the attacker makes the victim’s browser
visit the URI shown in Fig. 8.1, the server will reflect the value of the URI parameter
back in the response, where it will be executed as part of the requested page. This
type is known as reflected XSS or XSS type 1.

Finally, an attacker can also store the malicious code in the application’s data, for
example by hiding in a forum post or blog comment. Whenever the victim requests
a page that includes the attacker’s content, the malicious code will be embedded in
the page as well. This type of XSS is known as stored XSS or XSS type 2, and is
illustrated in Fig. 8.2.

8.1 Cross-Site Scripting 85

In essence, the problem of an XSS attack is the failure of the target application
to recognize the insertion of code, thus allowing the payload to be executed. The
combination of the facts that code can be placed anywhere in a document and that
browsers attempt to correct syntactically incorrect documents rather than rejecting
or ignoring them, helps the easy exploitation of injection vulnerabilities.

8.1.2 Mitigation Techniques

The traditional mitigation technique used against XSS attacks depends on sanitiz-
ing input and output, preventing any dangerous input from reaching the final output.
These sanitization techniques attempted to simply replace or remove dangerous char-
acters such as < > & " ’ or check against a whitelist of allowed characters, but
modern sanitization techniques take the context of the output into account.

Modern Web applications generate output for different contexts, with different
output formats and injection vectors. Some example contexts are HTML elements,
HTML element attributes, cascading style sheets (CSS) code, JavaScript code, etc.
Several publicly available libraries provide context-sensitive content encoding, and
effectively mitigate XSS attacks. Popular examples of Java applications are the
OWASP Java Encoder Project [14], which offers several context-specific sanitiza-
tion operations, and OWASP’s Java XML Templates [13], which offer automatic
context-aware encoding. Alternatively, HTML purifier [44] offers automatic saniti-
zation for PHP applications, and even ensures that the output is standards-compliant
HTML. Automating context-sensitive sanitization is an active research topic. Script-
Gard [33] focuses on the detection of incorrect use of sanitization libraries (e.g.,
context-mismatched sanitization or inconsistent multiple sanitizations), and is capa-
ble of detecting and repairing incorrect placement of sanitizers. Other work focuses
on achieving correct, context-sensitive sanitization, using a type-qualifier mechanism
to be applied on existing Web templating frameworks [31].

Even with the most advanced mitigation techniques, both newly created and legacy
applications remain vulnerable to XSS attacks. Therefore, Mozilla proposed Content
Security Policy (CSP) [35], a server-driven, browser-enforced policy to be used as a
second line of defense. CSP allows a developer or administrator to strictly define the
sources of trusted content, such as scripts, stylesheets, images, etc., preventing the
inclusion of malicious scripts from untrusted sources. In addition, CSP prevents the
execution of harmful inline content by default. When deploying CSP, a reporting-
only mode is available. This mode will report any violations of the policy to the
developer, without actually blocking any content. This allows to dry-run a policy
before actually deploying it towards users. We give more details about CSP in the
next section, when discussing scriptless attacks.

CSP’s restrictions on dangerous inline content effectively render-injected script
code harmless, since it will not be executed, and the list of trusted sources further
limits an attacker when including a remote script file. Currently, CSP is being adopted
by major browsers, and is on the standardization track of W3C [36]. One downside

86 8 Attacks on the Client-Side Context

of CSP is its impact on an application’s code since the application is no longer
allowed to use inline code, or dangerous features such as eval(). For newly developed
applications, this is manageable, but legacy applications require some effort to be
made compatible [40]. As a response to this problem, the upcoming 1.1 version of
CSP [3] will allow inline scripts if they possess a unique, unguessable nonce. Injected
scripts will not be able to provide this nonce, hence will not be executed.

The detection of XSS vulnerabilities in Web applications commonly relies on
penetration testing (colloquially referred to as pentesting) and static analysis [9, 34].
In addition to these state of practice techniques, the state-of-the-art research focuses
on the discovery and detection of potential injection vulnerabilities. Kudzu [32]
achieves this using symbolic execution of JavaScript. Gatekeeper [10], on the other
hand, allows site administrators to express and enforce security and reliability poli-
cies for JavaScript programs and was successfully applied to automatically analyze
JavaScript widgets, with very few false positives and no false negatives.

8.1.3 State of Practice

Injection vulnerabilities leading to XSS attacks are prevalent in both new and legacy
Web applications. A large-scale analysis of the Alexa top 5,000 sites has discovered
6167 unique XSS vulnerabilities, distributed over 480 domains [19]. XSS attacks are
often only the first step in a more complicated attack, involving underlying infras-
tructure or higher-privilege accounts. The consequences of escalating an XSS attack
are aptly demonstrated by exploitation frameworks, such as the Browser Exploitation
Framework (BeEF) [2] or Metasploit [29].

Currently, almost every newly developed Web application sanitizes its inputs
and outputs, in an attempt to avoid injection vulnerabilities altogether. Most mod-
ern development frameworks offer library support for sanitization. Unfortunately,
sanitization libraries are not always context-sensitive, and many applications apply
sanitization procedures wrongly or inconsistently [33]. In addition, a few context-
sensitive sanitization libraries are available, as discussed above as an aspect of
mitigation techniques.

Since injection vulnerabilities remain widespread, several attempts have been
made to stop them from within the browser, independent of any application-specific
mitigation techniques. Examples of in-browser mitigation techniques are XSS filters
[4, 30, 37], or the popular security add-on NoScript [21]. The newly introduced CSP
[3, 36] is slowly starting to be adopted. Our July 2014 survey of the Alexa top 10,000
sites found 131 sites that already issue a CSP policy in their response headers.

In addition, applications often apply code-based isolation techniques to prevent the
damage that can be done by untrusted or injected scripts. Examples of currently avail-
able isolation techniques are HTML 5 sandboxes [5] or browser-based sanitization
procedures for dynamic script code, such as Internet Explorer’s toStaticHTML() [6].

8.2 Scriptless Injection Attacks 87

8.1.4 Best Practices

The best defense against XSS attacks is to apply proper input and output sanitization.
Sanitization has to be context-sensitive, so one should use either sanitization libraries
that automatically determine the correct context or use the appropriate sanitization
function for the output context at hand.

When filtering input or output, use a whitelist approach, where only the valid
patterns are whitelisted, instead of a blacklist approach, which has to be an exhaustive
list of prohibited patterns. In addition, avoid writing custom sanitization libraries,
which is an error-prone process, especially due to different encoding options, browser
quirks, and obscure Web features [46].

If possible, use a tight CSP on your site, fully preventing dangerous inline content
and strictly limiting the sources of external content. Even when not directly deploying
CSP, it might be useful to adapt your code to support CSP in a subsequent incarnation
(e.g., do not use inline scripts, eval() etc.).

8.2 Scriptless Injection Attacks

With a scriptless injection attack, an attacker is able to manipulate the client-side
execution of a target application, without injecting actual script code. Due to the
scriptless characteristic of the attack, it is likely to bypass any XSS mitigation tech-
nique. Scriptless attacks may enable an attacker to steal a user’s password, extract
security tokens from the page, or change the destination of a page’s form, but a
successful scriptless attack requires a lot of specific circumstances to line up.

8.2.1 Description

Scriptless injection attacks are essentially the same as XSS attacks, with the main dif-
ference that the injected payload is not JavaScript code. By not injecting script code,
this attack succeeds in bypassing numerous filters and other mitigation techniques.

In a scriptless injection attack, an attacker has a wide variety of content types to
choose from. One attack vector is the injection of HTML content [8, 45], allowing an
attacker to modify the destination of forms, extract hidden security tokens, etc. For
example, by injecting a new button element, with a formaction attribute to change the
destination of a form, an attacker can trick the user into submitting a form towards
an attacker-controlled URI. An alternative attack vector is the injection of CSS style
code and scalable vector graphics (SVG) image code, allowing an attacker to even
extract passwords from an input field [11].

In essence, preventing scripts from being injected does not solve the underlying
issue, which is injection vulnerability. By carefully selecting the payload, an attacker
is still able to execute sensitive operations, even though he needs to be a bit more
creative than with a straightforward XSS attack.

88 8 Attacks on the Client-Side Context

8.2.2 Mitigation Techniques

Similar to XSS, mitigating scriptless attacks depend on strict input validation and
output sanitization. As these have already been covered, we are not going to repeat
them here. Instead, we will elaborate a bit on a promising mitigation technique, CSP
[3, 36], as this newly introduced policy is able to prevent most scriptless injection
attacks as well.

With CSP, a Web application can set a policy that specifies the characteristics
of the page, and where content is loaded from. CSP policies are added to a Web
document through an HTTP header or a meta-tag.

One of the goals of CSP is to prevent injected JavaScript from being executed. To
achieve this goal, a CSP policy can:

1. Disallow the mixing of HTML mark-up and JavaScript syntax in a single doc-
ument (i.e., forbidding inline JavaScript, such as event handlers in element
attributes).

2. Prevent the runtime transformation of string-data into executable JavaScript via
functions such as eval().

3. Provide a list of Web hosts, from which script code can be retrieved.

If used in combination, these three capabilities lead to an effective thwarting of
the vast majority of XSS attacks. Forbidding inline scripts renders direct injection
of script code into HTML documents impossible. Furthermore, the prevention of
interpreting string data as code removes the danger of DOM-based XSS. Finally,
only allowing code from whitelisted hosts to run reduces the adversary’s capabilities
to load custom attack code from external Web locations. Compromising the code
on a whitelisted host remains a potential attack vector, even with a tight CSP policy
in place.

In addition to putting constraints on the JavaScript that is executed, CSP also
limits the CSS code allowed to be processed. CSP defines constraints on the source
of stylesheets, and prevents inline stylesheet code from being executed. This already
stops several of the attack vectors used by scriptless attacks.

CSP will become even more versatile. In the upcoming 1.1 version [3], a developer
will be able to specify where forms can be submitted to, preventing an attacker from
overriding the form’s action with injected HTML code. Similarly, CSP also enables
a developer to define the list of destinations to be used by the XMLHttpRequest
object, thus preventing unwanted connections to originate from JavaScript.

For completeness, we also want to mention the other capabilities of CSP. CSP
allows the developer to constrain the source of several content types, such as images,
media files, embedded objects, fonts, etc. The upcoming 1.1 version will also provide
a way to sandbox the page, enable a browser-provided XSS filter to mitigate reflected
XSS attacks, and eases the developer’s life by offering a nonce-based system to
selectively enable inline scripts.

In our social network example application (Chap. 1), we include gadgets from
third-party providers. When these are loaded from anywhere on the Web, CSP would

8.3 Compromised Script Inclusions 89

need to be very open, as scripts can be loaded from anywhere. However, when we
create a gadget store where third-party providers can upload their gadgets, CSP in
Listing 8.1 would only allow scripts from our own application, our subdomains,
which are the commercial spaces, and the gadgets store. We limit all other content-
types to our own domain, except for images, which can be loaded from anywhere.
Whenever a CSP violation is detected, it is reported to our violation handler, located
at the given URI.

Content-Security-Policy:
default-src ’self’;
img-src *;
script-src ’self’ *.oursocialnetwork.com *.oursocialgadgets.com;
report-uri http://csp.oursocialnetwork.com/report/;

Listing 8.1 This Content Security Policy header locks down the social networking
example application introduced in Chap. 1. Violations are reported to the handler
located at the given reporting URI

8.2.3 Best Practices

Similar to XSS, the best practices to defend against scriptless attacks are properly
applied input and output sanitization. As a second layer of defense, a strict CSP
can severely limit the consequences of an attacker exploiting a remaining injection
vulnerability.

8.3 Compromised Script Inclusions

Compromising an included JavaScript file allows an attacker to execute attacker-
controlled code within the execution context of the application, giving him the same
level of privilege as the application code itself. The capabilities gained by such an
attack are essentially the same as with an XSS attack, but the attack vector and
required capabilities vastly differ.

The inclusion of third-party JavaScript code is a common practice on the Web.
Examples are the use of popular libraries and the inclusion of advertisement code.
By including remote scripts, the target application trusts these providers to be secure,
and offer non-malicious code. Unfortunately, in practice, this is not the case. For
example, in 2014, the Reuters Web site got compromised because of an insecure
advertisement provider [16]. Advertisement networks are known to let malicious
code slip through every now and then [17].

90 8 Attacks on the Client-Side Context

8.3.1 Description

The goal of compromising the inclusion of a piece of JavaScript is to gain control
over the client-side context. Since included JavaScript code tends to run within the
security context of the including page, it suffices for the attacker to compromise
any of the included scripts. One example that achieves this goal is to compromise
a popular JavaScript library, hosted on a third-party server and included by many
Web applications. Note that while a compromised script inclusion yields a similar
result as an XSS attack, the required attacker capabilities are vastly different. While
an XSS attack can be carried out by a forum poster, compromising a script inclusion
requires a network-level attacker, or a server-side attacker who has gained control
over a third-party script provider.

Since included scripts can come from a variety of sources, such as a third-party
provider, a remote server, or the local storage facility within the browser, an at-
tacker can compromise such a script inclusion in different ways. Target applications
that depend on third-party script providers, such as libraries or advertisements, are
vulnerable to a compromise of the third-party code. An attacker can compromise a
remote machine or attempt to provide malicious content to be distributed, such as
an advertisement [16]. Alternatively, an attacker that can monitor and manipulate
network traffic, for example, on a publicly accessible wifi network, can manipu-
late requests and responses that include remote scripts. Manipulation of script files
on the network is particularly dangerous for mixed content applications, which are
deployed over HTTPS but include scripts from HTTP resources. These scripts are
vulnerable to network attackers, violating the security guarantees offered by the se-
cure deployment. Finally, target applications that load script code from a storage
facility within the browser, such as the Web Storage API [12], are vulnerable to an
attacker that compromises the stored data.

In essence, the inclusion of compromised JavaScript is a problem of code integrity,
where the browser lacks the ability to verify that the included code corresponds to
the expected code and delivers precisely the required functionality without malicious
additions.

8.3.2 Mitigation Techniques

The key to mitigating the compromise of script files stored on the server lies in
protecting the server and its application against potential adversaries. For applications
that require a high degree of control over these script files, it can be useful to copy
the third-party script files to their own environment, where they can be optimally
protected. Naturally, the copy is only a snapshot of the third-party code and should
be kept up-to-date with new versions as they are released.

Mitigating the manipulation of script files on the network can be achieved by
deploying the application over HTTPS, and only including remote files received

8.3 Compromised Script Inclusions 91

over secure connections. Mixed content Web pages, where a secure page includes
content over insecure HTTP connections, should be avoided at all times, since they
would allow total compromise of the secure application context.

Controlled integration of potentially untrusted JavaScript has been extensively
researched, resulting in several proposals. Fine-grained control over the behavior
of the included script can be achieved using an inline reference monitor through
security wrappers in JavaScript [20, 28], using sandboxing techniques that enforce
a policy through a traditional reference monitor [1, 15, 24, 26, 38] and the use of a
security-enhanced browser [23, 39].

8.3.3 State of Practice

Research focusing on the exploration of current practices offers valuable information
on the State of Practice. A study of the JavaScript inclusion behavior of the top
10,000 Alexa sites [27] reveals that 88.45 % of these sites include at least one
remote JavaScript library, and some sites trust as many as 295 remote hosts. The
study also attempts to characterize the security of both, including Web applications
and third-party script providers, showing that about 12 % of Web applications with
a high security classification include content from at least one provider with a low
security classification.

Another study of the client-side caching of script code on the top 500,000 Alexa
sites [18] shows that 386 Web applications use local storage facilities to cache
JavaScript, HTML, and CSS code, as well as 68 entries of remote URIs, used to
fetch resources during execution. In addition, a mitigation technique for attacks on
locally cached code is proposed, based on cryptographic checksums of the stored
code.

Unfortunately, many sites use mixed content, violating the security guarantees
of HTTPS pages. A recent study shows that 26 % of the TLS-protected Alexa Top
100,000 Web sites included JavaScript over HTTP [7]. A positive evolution is that
browsers are all deciding to effectively block the loading of insecure content on
secure pages, which has in turn led to standardization activities on the blocking of
mixed content [41]. Blocking mixed content has been introduced in Internet Explorer
9, Firefox 23, and Chrome 14, but unfortunately, mobile browsers, which make up
16.68 % of the browser market share, mostly allow mixed content to be loaded [7].

8.3.4 Best Practices

Best practices to prevent the compromise of included scripts focus on limiting the
number of trusted third-party hosts, as well as securing the remote host containing
the scripts, potentially copying third-party scripts to a controlled server. In addition,
deploying your application over HTTPS and ensuring that scripts are only included
over HTTPS connections can thwart a network adversary.

92 8 Attacks on the Client-Side Context

When storing any code fragment at the client side, the application needs to ensure
its integrity before loading it into its execution environment. This can be achieved by
using checksums, which are stored and computed independently from the potentially
untrusted code.

In the near future, we expect sandboxing technologies, such as Google Caja [26],
Secure ECMAScript [25], JS and [1], etc., to improve in performance and become
more developer-friendly, making them a viable candidate for isolating potentially
untrusted scripts in a fine-grained, controlled manner.

References

1. Agten, P., VanAcker, S., Brondsema,Y., Phung, P.H., Desmet, L., Piessens, F.: JSand: complete
client-side sandboxing of third-party JavaScript without browser modifications. In: Proceedings
of the 28th Annual Computer Security Applications Conference (ACSAC), pp. 1–10 (2012)

2. Alcorn, W.: Browser exploitation framework (BeEF). http://beefproject.com (2013)
3. Barth, A., Veditz, D., West, M.: Content security policy level 2. W3C Working Draft (2014)
4. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-side xss

filters. In: Proceedings of the 19th International Conference on World wide W (WWW),
pp. 91–100 (2010)

5. Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S., Hickson, I.:
HTML 5.1 specification — the sandbox attribute. W3C Working Draft (2014)

6. Center, I.E.D.: Making HTML safer: details for toStaticHTML (Windows Store apps using
JavaScript and HTML). http://msdn.microsoft.com/en-us/library/ie/hh465388.aspx (2012)

7. Chen, P., Nikiforakis, N., Desmet, L., Huygens, C.: A dangerous mix: large-scale analysis of
mixed-content websites. In: Proceedings of the 16th Information Security Conference (ISC)
(2013)

8. De Ryck, P., Desmet, L., Philippaerts, P., Piessens, F.: A security analysis of next generation
web standards. Tech. rep., European Network and Information Security Agency (ENISA)
(2011)

9. Fergal Glynn, V.: Static code analysis. http://www.veracode.com/security/static-code-analysis
(2013)

10. Guarnieri, S., Livshits, V.B.: GATEKEEPER: mostly static enforcement of security and relia-
bility policies for JavaScript code. In: Proceedings of the 18th USENIX Security Symposium,
pp. 151–168 (2009)

11. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks: stealing
the pie without touching the sill. In: Proceedings of the 19th ACM Conference on Computer
and Communications Security (CSS), pp. 760–771 (2012)

12. Hickson, I.: Web storage. W3C Recommendation (2013)
13. Ichnowski, J., Manico, J.: Owasp’s java xml templates. http://code.google.com/p/owasp-jxt/

(2013)
14. Ichnowski, J., Manico, J., Long, J.: Owasp java encoder project. https://www.owasp.org/

index.php/OWASP_Java_Encoder_Project (2013)
15. Ingram, L., Walfish, M.: Treehouse: Javascript sandboxes to help web developers help

themselves. In: Proceedings of the USENIX Annual Technical Conference (ATC) (2012)
16. Jacobs, F.: How reuters got compromised by the syrian electronic army. https://medium.com/

@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b
(2014)

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b
https://medium.com/@FredericJacobs/the-reuters-compromise-by-the-syrian-electronic-army-6bf570e1a85b

References 93

17. Kirk, J.: Yahoo’s malware-pushing ads linked to larger malware scheme. http://www.pcworld.
com/article/2086700/yahoo-malvertising-attack-linked-to-larger-malware-scheme.html
(2014)

18. Lekies, S., Johns, M.: Lightweight integrity protection for web storage-driven content caching.
Web 2.0 Security and Privacy (W2SP) (2012)

19. Lekies, S., Stock, B., Johns, M.: 25 million flows later: large-scale detection of dom-based
xss. In: Proceedings of the 20th ACM Conference on Computer and Communications Security
(CCS), pp. 1193–1204 (2013)

20. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self protecting
javascript. In: Proceedings of the 15th Nordic Conference on Secure IT Systems (NordSec),
pp. 239–255 (2010)

21. Maone, G.: NoScript - JavaScript/Java/Flash blocker for a safer Firefox experience!
http://noscript.net/ (2013)

22. Martin, B., Brown, M., Paller, A., Kirby, D.: Cwe/sans top 25 most dangerous programming
errors. http://cwe.mitre.org/top25/ (2011)

23. Meyerovich, L., Livshits, B.: ConScript: specifying and enforcing fine-grained security policies
for Javascript in the browser. In: Proceedings of the 31st IEEE Symposium on Security and
Privacy (SP), pp. 481–496 (2010)

24. Mickens, J.: Pivot: fast, synchronous mashup isolation using generator chains. In: Proceedings
of the 35th IEEE Symposium on Security and Privacy (SP), pp. 261–275 (2014)

25. Miller, M.S.: Secure EcmaScript 5. http://code.google.com/p/es-lab/wiki/SecureEcmaScript
(2011)

26. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: safe active content in sanitized
javascript. http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf (2008)

27. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel, C.,
Piessens, F., Vigna, G.: You are what you include: large-scale evaluation of remote javascript
inclusions. In: Proceedings of the 19th ACM Conference on Computer and Communications
security, pp. 736–747 (2012)

28. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting Javascript. In: Proceed-
ings of the 4th ACM Symposium on Information, Computer and Communications Security
(ASIACCS), pp. 47–60 (2009)

29. Rapid7: Metasploit. http://www.metasploit.com/ (2013)
30. Ross, D.: IE 8 XSS Filter Architecture / Implementation. http://blogs.technet.com/b/srd/

archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx (2008)
31. Samuel, M., Saxena, P., Song, D.: Context-sensitive auto-sanitization in web templating lan-

guages using type qualifiers. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS), pp. 587–600 (2011)

32. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution
framework for JavaScript. In: Proceedings of the 31st IEEE Symposium on Security and Privacy
(SP), pp. 513–528 (2010)

33. Saxena, P., Molnar, D., Livshits, B.: SCRIPTGARD: automatic context-sensitive sanitization
for large-scale legacy Web applications. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS), pp. 601–614 (2011)

34. Security, H.E.: HP fortify static code analyzer (SCA). http://www.hpenterprisesecurity.com/
products/hp-fortify-software-security-center/hp-fortify-static-code-analyzer (2013)

35. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security policy. In:
Proceedings of the 19th International Conference on World wide web (WWW), pp. 921–930
(2010)

36. Sterne, B., Barth, A.: Content security policy 1.0. W3C Candidate Recommendation (2012)
37. Stock, B., Lekies, S., Mueller, T., Spiegel, P., Johns, M.: Precise client-side protection against

dom-based cross-site scripting. In: Proceedings of the 23rd USENIX Security Symposium,
pp. 655–670 (2014)

http://www.pcworld.com/article/2086700/yahoo-malvertising-attack-linked-to-larger-malware-scheme.html
http://www.pcworld.com/article/2086700/yahoo-malvertising-attack-linked-to-larger-malware-scheme.html
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://www.hpenterprisesecurity.com/products/hp-fortify-software-security-center/hp-fortify-static-code-analyzer
http://www.hpenterprisesecurity.com/products/hp-fortify-software-security-center/hp-fortify-static-code-analyzer

94 8 Attacks on the Client-Side Context

38. Ter Louw, M., Ganesh, K.T., Venkatakrishnan, V.: AdJail: practical enforcement of confi-
dentiality and integrity policies on Web advertisements. In: Proceedings of the 19th USENIX
Security Symposium, pp. 371–388 (2010)

39. Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: WebJail: least-privilege
integration of third-party components in web mashups. In: Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC), pp. 307–316 (2011)

40. Weinberger, J., Barth, A., Song, D.: Towards client-side html security policies. In: Proceedings
of the 6th USENIX Workshop on Hot Topics on Security (HotSec) (2011)

41. West, M.: Mixed content. W3C Working Draft (2014)
42. Wichers, D.: Owasp top 10. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_

Project (2013)
43. XSSed: XSS Archive. http://www.xssed.com/archive/ (2014)
44. Yang, E.Z.: HTML Purifier. http://htmlpurifier.org/ (2013)
45. Zalewski, M.: Postcards from the post-xss world. http://lcamtuf.coredump.cx/postxss/ (2011)
46. Zalewski, M.: The Tangled Web: A Guide to Securing Modern Web Applications. San

Francisco, No Starch Press (2012)

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Chapter 9
Attacks on the Client Device

Previous chapters have covered attacks that have come closer and closer to the victim
and increased in impact. In this final attack chapter, we cover attack vectors that lead
to a compromise of the user’s device. Such a compromise has a high impact, as
many of the previously covered countermeasures depend on a trusted environment
at the client side, which can no longer be guaranteed if the browser or device is
compromised.

We cover two important attack vectors against the user’s device. The first one uses
drive-by download techniques, where the victim is served malware. The malware in
turn exploits a vulnerability in the browser or a plugin such as the Flash player, Java
runtime environment, or anything else the user has installed. The second technique
uses malicious browser extensions, which commonly have a high degree of control
over the client device.

9.1 Drive-By Downloads

Rendering a simple Web page involves a lot of client-side components, such as
the browser, the rendering engine, plugins, extensions, all of which can contain
vulnerabilities. An attacker looking to compromise a client system can carefully
craft specific Web content to exploit such a memory corruption vulnerability, for
example, by using a malicious PDF to exploit a buffer overflow in the PDF reader
plugin. By putting the exploit software online, and tricking the user into visiting it,
the attacker can gain ground on the client machine, allowing him to install malware
and further compromise the machine.

Drive-by downloads are a common attack vector on the Web, driven by an entire
underground economy of organized crime. Every compromised computer is worth
money, or can be used for other criminal activities, such as joining botnets, con-
cealing traffic, etc. The same approach is followed by the National Security Agency
(NSA), in their FOXACID program [26], where they aim at compromising client ma-
chines for intelligence gathering. Technically, the user is redirected to a FOXACID
server, where an algorithm determines the technical skills of the user. Based on their

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 95
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_9

96 9 Attacks on the Client Device

score, they get served a certain kind of malware. Technically savvy users get dumb
malware, while the less technically capable users get served the advanced malware.
The reasoning behind this decision is that the latter will be less likely to detect the
malware, which is an asset that is costly to develop.

9.1.1 Description

In a drive-by download attack, also known as a drive-by exploit attack, a user’s
computer becomes infected with malware, delivered through the Web platform. By
exploiting a client-side memory corruption vulnerability, for example, a buffer over-
flow vulnerability in the browser, a rendering engine or a browser plugin, an attacker
can install malware on the user’s machine, giving him full control over the client ma-
chine and all the user’s actions. Drive-by download attacks are generally executed
in such a way that they are completely undetectable by the user. Alternatively, an
attacker can attempt to trick the user into explicitly installing malicious software, for
example, by masquerading the malware as an antivirus package.

A drive-by download attack happens in several steps. First, the attacker puts the
JavaScript code that will trigger the drive-by download on aWeb server. He can use his
own server, or he can compromise another server through another vulnerability, such
as cross-site scripting (XSS), or by using a server-side attack vector, such as structured
query language (SQL) injection, command injection, malicious upload, etc. When
this JavaScript code is loaded in the victim’s browser, it will contact a redirection
service that will guide the user towards an appropriate exploit server, depending on
the detected operating system, browser version, and available plugins. If the exploit
server succeeds in delivering a matching exploit for the targeted vulnerability, the
actual malware will be downloaded from a malware server, and installed on the user’s
machine. Once installed, the malware is generally controlled using a command and
control system.

Technically, exploiting a vulnerability at the client side can be as simple as serving
a specially crafted image, aiming to abuse a vulnerability in the rendering engine [6],
or exploiting a vulnerability in a plugin [30]. Using a memory corruption vulnera-
bility, the attacker can jump to the payload in memory, triggering the malicious code
to be executed. A common tactic for exploiting a vulnerability is a heap spraying
attack [14], where the memory is filled with the malicious payload, smoothing out
memory alignment issues when jumping to the payload.

In essence, drive-by download attacks are a distributed variant of traditional native
code attacks, such as buffer overflow attacks [12]. The exploited code is responsible
for processing Web content, which comes from various sources, making it easy to
insert malicious content somewhere along the way, thereby exploiting the vulnerable
client-side code.

9.1 Drive-By Downloads 97

9.1.2 Mitigation Techniques

One technical mitigation technique consists of isolating the plugin execution en-
vironment in a process-level sandbox, making it significantly harder to gain full
system-level access with a successful exploit against a plugin. This mitigation tech-
nique has currently been deployed by all major browsers to sandbox the Flash player,
which has a rocky security history on the Web.

A non-technical mitigation technique is to frequently update the installed plugins,
in order to benefit from security updates. A significant improvement [11] in this area
is the automatic update processes, either deployed by the plugins themselves, or
by integrating them into the browser. An example of the former is the Java plugin,
which installs its own auto-update mechanism, and an example of the latter is Google
Chrome in combination with the Flash plugin, which are bundled and automatically
updated when necessary. Automatic updates help mitigate newly developed exploits,
often reverse-engineered from the latest security update [27].

The detection and analysis of Web-based malware is an expanding research field,
covering the detection and prevention of drive-by download attacks, heap spraying
attacks, or the underlying economic models of the malware industry. One line of
research focuses on static detection of malware [9, 19], while another relies on
feature extraction and classification [8, 25]. Alternative ideas focus on supportive
tasks for detection, such as de-cloaking malware [18] or automated collection and
replay of malware scenarios [7].

Next to traditional mitigation techniques against native code attacks [32], such
as address space layout randomization (ASLR) or data execution prevention (DEP),
researchers also investigate these traditional attacks and defenses in the context of the
Web, for example, by introducing a new way to execute a heap spraying attack with
HTML5 [22]. Runtime monitoring infrastructures are able to detect heap spraying
attacks [24], and a modification of the JavaScript engine can completely prevent heap
spraying attacks [14].

In addition, security researchers also investigate the underlying economic models
of the malware industry. The underground malware economy has evolved quickly,
with pay-per-install services being offered as a commodity. An extensive study [4]
investigates the different families of malware, repacking strategies to avoid detection,
and the targeting of specific countries. Another study examining the underground
economy of fake antivirus software [29] reveals that three large-scale businesses
earned a combined revenue of $ 130 million. Fake antivirus businesses even go a
step further, and actively monitor credit card chargebacks of their duped customers.
When the number of chargebacks increases, the businesses will grant more refunds
without triggering a complaint with the credit card companies, to avoid anomaly
detection and remain undetected.

98 9 Attacks on the Client Device

9.1.3 State of Practice

Drive-by download attacks are still on the rise, and are considered an important
threat to user’s security on the Web. An emerging trend is the shift to single uniform
resource identifiers (URIs) that distribute the malicious software, instead of using
an entire underlying botnet infrastructure [13]. This shift in distribution mechanism
makes lawful takedowns more difficult, as URIs are not that easily blocked, and
quickly changed after takedown.

9.1.4 Best Practices

The best practice for Web users is to reduce the number of plugins installed to
its absolute minimum and keep all client software up-to-date, including operating
system, drivers, browsers, plugins, etc. In addition, the use of browser’s click-to-play
features can reduce the attack surface significantly. In corporate environments, the
software on client machines should be controlled, and be kept up-to-date as much as
possible.

Web developers should ensure that their applications are well-protected, especially
against injection attacks, preventing the leverage of their Web site as a malware
distribution platform. Third-party libraries and their providers should be selected
carefully, as a compromise of a library provider can also lead to a compromise of all
depending Web applications.

9.2 Malicious Browser Extensions

Browser extensions provide additional code that runs within the browser, and has
significantly more privileges than traditional Web code. Attackers who are able to
compromise legitimate extensions, or trick users into installing malicious extensions,
potentially gain the power to inspect and manipulate all the Web applications running
within the compromised browsers, and might even be able to compromise the host
system of the victim.

Browser extensions have become very common, and almost every Firefox and
Chrome user uses them. The official Firefox and Chrome repositories contain thou-
sands of extensions, of which some may be malicious [23], or may turn malicious
afterwards. One real-life example of how browser extensions can become malicious
was uncovered in 2014 [1]. Adware vendors bought several Chrome extensions for
“a four figure number,” giving them full control over the extension. They modified
the code to publish ads all over the place and pushed an update through the Chrome
Web Store, reaching about 30,000 users.

9.2 Malicious Browser Extensions 99

9.2.1 Description

The goal of controlling a browser extension is to have attacker-controlled, privileged
code running within the browser. This may give an attacker access to the browser’s in-
ternal state, and can be an enabling factor allowing escalation of the attack towards full
compromise of the client machine. Since browser extensions run on a higher privilege
level, outside of the traditional browser security policies, and are able to inspect and
manipulate multiple sites, they are an attractive, high-powered target for attackers.

Compromising legitimate browser extensions becomes possible when the exten-
sion treats untrusted content carelessly. Since extensions are commonly written in
JavaScript, an attacker can perform a script injection attack by manipulating the input,
for example, when the extension inspects a page loaded in the browser. Handling such
input carelessly results in a script injection attack vector, allowing the attacker to exe-
cute arbitrary code within the extension’s context (similar to XSS attacks in Chap. 8).

Tricking the user into installing a malicious extension can be done in various
ways. The simplest way is to simply provide the extension on a Web site, hoping to
trick the user into installing it manually. Another approach is to offer the extension
through the official download channels, such as the browser vendor’s extension store.
Finally, a powerful attacker can spoof the entire extension store, allowing him to have
a malicious extension masquerade as a legitimate, popular extension.

In essence, extensions can be compromised when the privileged extension code
fails to adequately sanitize untrusted content, allowing an attacker to inject malicious
code into the privileged runtime context. The core problem of malicious extensions
is social engineering, where users can be tricked into installing an extension from
potentially untrusted sources.

9.2.2 Mitigation Techniques

The techniques for mitigating compromised extensions or preventing the installation
of malicious extensions are rather limited, and are part of the browser’s architecture
and the extension store’s platform. In general, the consequences of the compromise
of a legitimate extension can be addressed by a thorough extension architecture,
where code is strictly separated and application programming interface (APIs) are
restricted by permissions. Preventing the installation of malicious extensions is not
trivial, and can be addressed by preventing installations through unofficial channels,
and performing code reviews on the extensions published through the official channel.
Each of these techniques is covered in more detail in the State of Practice.

Research of the early extension systems and the gaps between required and granted
permissions has led to the proposal of an extension system based on the principles of
least-privilege, isolated worlds, and permission systems [3], a model that has been
adopted as the Google Chrome extension system. Follow-up research [5] investigates
the actual Google Chrome extension security architecture in detail, concluding that
even with these restrictions in place, many extensions can be compromised by an

100 9 Attacks on the Client Device

attacker. As a result, additional defenses have been proposed and deployed, such as
the default enforcement of Content Security Policy [28] on Chrome extensions.

Another line of research uses formal systems to verify security properties, often
finding and fixing security vulnerabilities in the process. Most research focuses on
existing extension systems and extensions, using, for example, information flow
analysis to determine whether extensions suffer from privilege escalation [2, 10],
or employing type systems to check whether extensions violate the properties of
private browsing mode [20]. Other research concludes that the current systems grant
too many privileges to an extension, and therefore propose a new extension security
model, underpinned by a verification methodology to check an extension’s safety
[15]. The feasibility of this new extension model has been demonstrated by imple-
menting extensions for popular browsers, including Firefox, Chrome, and Internet
Explorer. Finally, in recent research results, an automated way of eliciting malicious
behavior in browser extensions is proposed in [17]. The technique uses honeypages
and fuzzing to discover malicious behavior and finds several classes of malicious
extensions, of which some have over 5.5 million installations.

9.2.3 State of Practice

The state of practice in protecting an extension against compromise, or protecting
the users from installing malicious extensions, is defined by the currently available
browsers. We cover two modern browsers, Mozilla Firefox and Google Chrome,
both of which have extensive support for extensions, and offer a large number of
extensions through an official channel.

Firefox’s architecture supports privileged extensions, which have access to a large
set of browser-provided APIs, offering numerous services, as well as access to the
browser’s internals and operating system resources, such as reading/writing files,
spawning new processes, etc. In Firefox, extensions can define core components,
which can be exposed through anAPI, as well as scripts that interact directly withWeb
content. In the recently introduced JetPack model [21], extensions can also choose
to adopt a more modular model, offering some isolation and restrictions. Concretely,
extensions in Firefox are subject to very few limitations, and can easily share their
functionality among core components and scripts interacting with Web content.

Mozilla’s extension platform, called Mozilla Add-Ons, is the official channel to
offer extensions to users. Published extensions are guaranteed to have undergone
a review by an editor, who is tasked with checking the functionality and behavior
of the extension. Firefox also supports the installation of unofficial extensions from
arbitrary sites but not without the explicit approval of the user.

Chrome’s architecture is based on the principles of least privilege, isolated worlds,
and permissions. Extensions have a core component, which runs separately from
content scripts, which interact with actual Web content. Communication between
both contexts is available through the Web Messaging API [16]. In addition, all
extensions have a distinct namespace and are isolated from each other. The browser

References 101

APIs offered by Chrome are more limited than the Firefox APIs, especially for reach-
ing out of the browser sandbox, into the OS. Furthermore, Chrome extensions have to
explicitly request a set of permissions for a determined set of Web sites (wildcards are
allowed) upon installation. Without the necessary permissions, several APIs become
inaccessible, preventing an extension from escalating its power within the browser.

Chrome’s extension platform, called the Chrome Web Store, is Chrome’s official
channel for distributing extensions. Chrome does not perform any reviews, mak-
ing the Web Store a reputation-based system, where users are expected to file abuse
reports in case of a misbehaving extension. Chrome does not support unofficial exten-
sions, except from local folders in developer mode. Chrome also disables extensions
by default in private browsing mode, called incognito mode, since they might be a
risk for a user’s privacy. They can, however, be explicitly enabled in private browsing
mode, if desired.

We conclude with discussing Greasemonkey, essentially an extensible extension.
Greasemonkey is a Firefox extension that allows users to run custom scripts on any
Web page, allowing them to remove unwanted features from Web applications, or
add additional, desired features. Greasemonkey has an associated community-driven
script market, hosting more than 140,000 scripts, which was analyzed in a recent
study [31]. A malware analysis of 592 scripts labeled as harmful shows that 126 do in
fact attempt to steal private data. Further security analysis of 86,358 scripts uncovers
1,736 scripts with document object model (DOM)-based XSS vulnerabilities. In
944 cases, these vulnerabilities could be used by an attacker to trigger an XSS
vulnerability on any site, simply by sending the victim a crafted URI.

9.2.4 Best Practices

A best practice for any Web user is to limit the number of extensions to the minimum,
and uninstall, or disable those that are not or infrequently needed. In addition, when
using a form of private browsing mode, it can be useful to disable extensions, since
they can potentially compromise the private nature of the browsing mode [20]. In
a corporate environment, it makes sense to prevent the installation of extensions
altogether.

References

1. Amadeo, R.: Adware vendors buy Chrome extensions to send ad- and malware-filled up-
dates. http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-extensions-to-
send-adware-filled-updates/ (2014)

2. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vex: vetting browser extensions for
security vulnerabilities. In: Proceedings of the 19th USENIX Security Symposium, pp. 339–
354 (2010)

3. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnerabil-
ities. In: Proceedings of the 17th Annual Network and Distributed System Security Conference
(NDSS) (2010)

102 9 Attacks on the Client Device

4. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the commoditiza-
tion of malware distribution. In: USENIX Security Symposium (2011)

5. Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the Google Chrome extension security
architecture. In: Proceedings of the 21st USENIX Security Symposium (2012)

6. CERT: Microsoft Internet Explorer buffer overflow in PNG image rendering component.
Vulnerability Note VU#189754 (2005)

7. Chen, K.Z., Gu, G., Zhuge, J., Nazario, J., Han, X.: Webpatrol: automated collection and replay
of web-based malware scenarios. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), pp. 186–195 (2011)

8. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and
malicious javascript code. In: Proceedings of the 19th International Conference on World Wide
Web (WWW), pp. 281–290 (2010)

9. Curtsinger, C., Livshits, B., Zorn, B.G., Seifert, C.: Zozzle: fast and precise in-browser
javascript malware detection. In: Proceedings of the 20th USENIX Security Symposium,
pp. 33–48 (2011)

10. Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based browser ex-
tensions. In: Proceedings of the 25th Annual Computer Security Applications Conference
(ACSAC), pp. 382–391 (2009)

11. Duebendorfer, T., Frei, S.: Why silent updates boost security. Tech. rep., TIK, ETH Zurich
(2009)

12. Erlingsson, Ú.,Younan,Y., Piessens, F.: Low-level software security by example. In: Handbook
of Information and Communication Security, pp. 633–658 (2010)

13. European Union Agency for Network and Information Security (ENISA): ENISA threat
landscape, mid-year 2013. https://www.enisa.europa.eu/activities/risk-management/evolving-
threat-environment/enisa-threat-landscape-mid-year-2013/ (2013)

14. Gadaleta, F.,Younan,Y., Joosen, W.: Bubble: A JavaScript engine level countermeasure against
heap-spraying attacks. In: Proceedings of the 2nd International Symposium on Engineering
Secure Software and Systems (ESSoS), pp. 1–17 (2010)

15. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser extensions.
In: Proceedings of the 32nd IEEE Symposium on Security and Privacy (SP), pp. 115–130
(2011)

16. Hickson, I.: HTML5 web messaging. W3C Candidate Recommendation (2012)
17. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk: eliciting

malicious behavior in browser extensions. In: Proceedings of the 23rd USENIX Security
Symposium, pp. 641–654 (2014)

18. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-cloaking internet malware. In:
Proceedings of the 33rd IEEE Symposium on Security and Privacy (SP), pp. 443–457 (2012)

19. Laskov, P., Šrndić, N.: Static detection of malicious javascript-bearing pdf documents.
In: Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC),
pp. 373–382 (2011)

20. Lerner, B., Elberty, L., Poole, N., Krishnamurthi, S.: Verifying Web Browser Extensions
Compliance with Private-Browsing Mode. In: Proceedings of the 18th European Symposium
on Research in Computer Security (ESORICS), pp. 57–74 (2013)

21. Mozilla: Jetpack. https://wiki.mozilla.org/Jetpack (2014)
22. Muttis, F., Sacco, A.: HTML5 heap sprays. http://exploiting.files.wordpress.com/2012/10/htm

l5-heap-spray.pdf (2012)
23. Nguyen, N.: Please read: security issue on AMO. http://blog.mozilla.org/addons/2010/02/04/

please-read-security-issue-on-amo/ (2010)
24. Ratanaworabhan, P., Livshits, V.B., Zorn, B.G.: Nozzle: a defense against heap-spraying code

injection attacks. In: Proceedings of the 18th USENIX Security Symposium, pp. 169–186
(2009)

25. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of drive-
by-download attacks. In: Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC), pp. 31–39 (2010)

http://exploiting.files.wordpress.com/2012/10/html5-heap-spray.pdf
http://exploiting.files.wordpress.com/2012/10/html5-heap-spray.pdf
http://blog.mozilla.org/addons/2010/02/04/please-read-security-issue-on-amo/
http://blog.mozilla.org/addons/2010/02/04/please-read-security-issue-on-amo/

References 103

26. Schneier, B.: How the nsa attacks tor/firefox users with QUANTUM and FOXACID.
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html (2013)

27. Schwartz, M.: Hackers target Java 6 with security exploits. http://www.informationweek.com/
security/vulnerabilities/hackers-target-java-6-with-security-expl/240160443 (2013)

28. Sterne, B., Barth, A.: Content security policy 1.0. W3C Candidate Recommendation (2012)
29. Stone-Gross, B., Abman, R., Kemmerer, R.A., Kruegel, C., Steigerwald, D.G., Vigna, G.: The

underground economy of fake antivirus software. In: Proceedings of the 12th Workshop on the
Economics of Information Security (WEIS), pp. 55–78 (2013)

30. US-CERT: Oracle Java contains multiple vulnerabilities. Alert (TA13-064A) (2013)
31. Van Acker, S., Nikiforakis, N., Desmet, L., Piessens, F., Joosen, W.: Monkey-in-the-browser:

malware and vulnerabilities in augmented browsing script markets. In: Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security (ASIACCS),
pp. 525–530. ACM (2014)

32. Younan, Y., Joosen, W., Piessens, F.: Runtime countermeasures for code injection attacks
against c and c++ programs. ACM Comput. Surv. 44(3), 17 (2012)

http://www.informationweek.com/security/vulnerabilities/hackers-target-java-6-with-security-expl/240160443
http://www.informationweek.com/security/vulnerabilities/hackers-target-java-6-with-security-expl/240160443

Chapter 10
Improving Client-Side Web Security

In previous chapters of this book, we explained the importance of Web security in
general, and more specifically, client-side Web security. We have presented several
threat models, each with different capabilities, and have extensively discussed how
these attackers threaten the security of Web applications. We have given an overview
of the relevant mitigation techniques and highlighted the current state-of-the-art
research results. Finally, we have provided details on the current state of practice and
formulated best practices to defend Web applications against numerous attacks.

This chapter summarizes the best practices covered earlier in this book, and boils
them down to a “must-have” list of security technologies of the modern age. Ad-
ditionally, we discuss the role of research in client-side Web security, and identify
important areas for future research.

10.1 Overview of Best Practices

As most Web security issues are not new, numerous mitigation techniques have been
proposed and many of them are supported by mainstream browsers. Unfortunately,
the Web has always suffered from legacy software with a slow update cycle, even for
extremely critical vulnerabilities. For example, the server-side Heartbleed vulnera-
bility [32], which is considered to be one of the worst Web problems ever, has been
patched almost immediately, and as of this writing, 4 months after its disclosure,
SSL Pulse [27] still reports 777 popular sites to be vulnerable. A similar story goes
for the HttpOnly cookie flag, an effective countermeasure with virtually no impact
on a Web application, which only sees a 54 % adoption rate among the Alexa top
10,000 sites, 12 years after its introduction.

In order to improve the current state of practice, we give an overview of the most
important best practices, which are essential for improving the security of modern
Web applications. All of these technologies are widely supported, as can be verified
using the helpful Can I Use site [7]. While many of the techniques covered below and
explained in detail in this book, are applicable for both new and legacy applications;
deploying them for legacy applications may be more challenging.

© Philippe De Ryck, Lieven Desmet, Frank Piessens, Martin Johns 2014 105
P. De Ryck et al., Primer on Client-Side Web Security,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-12226-7_10

106 10 Improving Client-Side Web Security

10.1.1 Secure Communication Channel

The lack of a secure communication channel is an enabling factor for numerous other
attacks, such as session hijacking, compromising script inclusions, etc. Therefore, the
most important best practice is deployingWeb applications over a properly configured
Transport Layer Security (TLS) channel, a measure not only useful for new Web
applications but also for legacy applications. Several resources offer detailed insights
into a proper TLS configuration [28, 29, 33], of which the following attention points
are most relevant for Web applications:

• Deploy the latest version of TLS, using good cipher suites that offer perfect
forward secrecy.

• Avoid using mixed Hypertext Transfer Protocol (HTTP) and Hypertext Transfer
Protocol Secure (HTTPS) content, as HTTP content is easily manipulated on the
network.

• Use Strict Transport Security [12] for HTTPS-only deployments, to prevent a
potentially forged HTTP request from ever leaving the browser.

• Mark all cookies that are used over an HTTPS connection as Secure, to prevent
cookies from being leaked over (forged) HTTP requests.

A very useful tool for verifying the configuration of a TLS deployment is Qualys’
SSL Labs Web site [26], which checks your deployment for common vulnerabilities,
insecure ciphers, and misconfiguration.

The technologies listed above are currently available in modern browsers, but
several promising technologies are still in active development and are worth keeping
track of. The most promising technologies aim to address the forging of TLS certifi-
cates, using either public key pinning [9], or by using DNSSEC records to certify
the key associated with the certificate (DANE) [13].

10.1.2 Application-level Techniques

Many of the attacks discussed in previous chapters can be mitigated on the application
level. These mitigation techniques are often supported by popular Web application
frameworks or offered by useful libraries. We identify two classes of techniques:
design-level techniques that prevent vulnerabilities by design and locally applicable
code-level techniques that actively mitigate specific attacks.

On the design level, an important best practice is the use of a multifactor authenti-
cation system. Such systems significantly increase the security of the authentication
process, largely mitigating phishing scams, brute-forcing attacks, or the theft of
credentials. By using an authentication provider, multifactor authentication can be
integrated into your own authentication process, or the whole authentication process
can be outsourced. Additionally, several well-known providers allow traditional au-
thentication on trusted machines and only enable multifactor authentication in other

10.1 Overview of Best Practices 107

scenarios. A second, related, design-level best practice is to protect sensitive opera-
tions with a reauthentication request. This practice prevents a user from performing
unintended operations, for example when misdirected in a clickjacking attack.

On the code level, a developer can take several countermeasures to tighten an
application’s security, effectively mitigating many attack scenarios. We give a brief
overview of the most common code-level countermeasures that should be applied in
any Web application:

• Context-sensitive sanitization of outputs is crucial in preventing injection vul-
nerabilities. This should be the first line of defense against cross-site scripting
and scriptless injection attacks, potentially supplemented with a strict Content
Security Policy (CSP), as discussed in the next section.

• In order to prevent forged requests, token-based approaches are an effective mit-
igation technique. Every sensitive operation should be authorized by a token, to
ensure its authenticity. Additionally, Web applications should reject cross-origin
requests when they are unexpected, which can be checked using the Origin
header.

• By renewing the session identifier after a change in privilege, session fixation
attacks can be effectively mitigated, and the scope of session hijacking attacks
can be limited.

• Web application developers should be aware that when they include third-party
scripts, they implicitly trust the third party to be non-malicious, and remain free
of compromise. The risk of a compromise of a third party automatically spreading
to your Web application can be reduced by placing the third-party code within the
origin of the Web application.

10.1.3 Security Policies

Server-driven, browser-enforced policies inform the browser about the application’s
behavior, enabling the browser to block any deviating action, which are potentially
malicious. As a best practice, we recommend the use of three widely supported
policies, discussed below: the HttpOnly restriction on cookies, the use of a strict
framing policy, and the use of a strict CSP.

Every cookie issued by a Web application, that is not used by JavaScript within the
browser, should be flagged as HttpOnly. This applies to most cookies issued today,
and should especially be true for cookies holding sensitive tokens, such as session
identifiers or authentication tokens.

Framing policies restrict the origins that are allowed to frame the application that
defines the policy. By doing so, an application can prevent framing by a malicious
Web page, which may be trying to misdirect the user, for example using a clickjacking
attack. Modern browsers support two framing policies, the X-Frame-Options policy
[31] and the frame-ancestors directive in CSP [36], of which the latter is the more
expressive. Restricting the set of origins that is allowed to frame a page may not

108 10 Improving Client-Side Web Security

always be possible. In that case, the application should restrict framing on all possible
pages and ensure that only non-sensitive pages can be framed by any origin. In
the near future, the upcoming UI Security specification [20] will offer fine-grained
heuristics to determine the legitimacy of the user’s interactions.

CSP [36] mainly aims at preventing actions triggered by an attacker who injects
content into the application page, of which cross-site scripting is a well-known
example. A CSP policy is not meant as a primary defense mechanism against injection
attacks but merely aims at restraining an attacker that manages to break through the
existing injection defenses. To effectively prevent injection attacks, CSP needs to
disable inline scripting, a practice many applications depend on, for example, when
defining JavaScript handlers in attributes. Due to this dependency, CSP may be
less suited to retrofit to legacy applications but is certainly a viable option for newly
developed applications, which can take this into account. Additionally, the upcoming
version of CSP [2] will support script nonces, which allow predefined script blocks
to be executed, even when placed inline.

10.2 Research-driven Security Technology

Many of the technologies recommended above as a best practice and discussed
earlier in this book have resulted from security research. These technologies are
an important valorization and dissemination trajectory for research results as they
are adopted by mainstream browsers and are essentially deployed on almost all
Web-connected machines throughout the world. Finding the right synergy between
research results and mainstream is not trivial. Success stories are CSP [35] and Strict
Transport Security [16], which went from research proposal to deployment in about
a year. On the other side, research results can take several years before being picked
up [4] or do not make it at all, as illustrated by the numerous proposals for improving
session management [3, 5, 6, 11, 24].

On the other hand, research on currently adopted mechanisms is important to
determine the feasibility of certain techniques, especially when deploying them for
legacy applications. One example is research on the use of CSP [41], providing
insights in the shortcomings of CSP for legacy applications, which in turn drives the
next version of the specification [2].

Apart from determining the impact of current security technologies on legacy
applications, other research areas are also worth exploring. One ongoing research
problem is the integration of potentially untrusted JavaScript into a Web application.
Numerous proposals have been made in the past 6 years [1, 15, 19, 21–23, 25, 38, 40],
but as of this writing, there is no practical solution ready for deployment. Bringing
these valid but often complex proposals towards the modal developer is crucial for
ensuring adoption.

Similar toWeb technologies and security mechanisms, research is shifting towards
the client side. Recent papers aim to detect vulnerable Web sites in the browser [34],

References 109

focus on vulnerabilities that only exist at the client side, such as DOM-based cross-
site scripting [37] or exploits of new HTML5 APIs [39], and investigate the security
of browser extensions [17].

Finally, as TLS becomes more important every day, it receives a significant amount
of focus from the research community. Research does not only focus on the crypto-
graphical properties of TLS [8, 10, 30] but also investigates current deployments [14]
and proposes countermeasures to prevent attacks such as man-in-the-middle [18]. As
TLS currently offers an all-or-nothing solution, cutting out any intermediaries out of
the communication channel, interesting research challenges lie in the controlled in-
tegration of these intermediaries. Example scenarios are enabling Web caches when
using TLS, allowing certain parties to embed content in designated parts of Web
pages, and allowing perimeter security solutions to inspect TLS traffic.

10.3 Conclusion

A result from the evolution towards client-enforced security policies is that we
now have multiple defensive technologies against specific Web attacks, enabling
a defense-in-depth strategy. For example, by deploying several mitigations against
cross-site scripting attacks, the harm of a successful cross-site scripting exploit can
be severely limited, or even prevented altogether. As the complexity of Web ap-
plications grows, legacy systems will need to be protected, such defense-in-depth
strategies will become increasingly important.

A final conclusion to draw from this book is that Web security is a continuous race
between attackers and defenders, similar to the security of other complex systems.
On one hand, we see regular discoveries and disclosures of new attacks, on the
other hand, we have a strong research community working on new defenses, as well
as security-aware browser vendors incorporating state-of-the-art technologies. Due
to this fast pace, it is more important than ever to stay up-to-date with the latest
technology, which is precisely the goal of this book.

References

1. Agten, P., VanAcker, S., Brondsema,Y., Phung, P.H., Desmet, L., Piessens, F.: JSand: complete
client-side sandboxing of third-party JavaScript without browser modifications. In: Proceedings
of the 28th Annual Computer Security Applications Conference (ACSAC), pp. 1–10 (2012)

2. Barth, A., Veditz, D., West, M.: Content security policy level 2. W3C Working Draft (2014)
3. Bortz, A., Barth, A., Czeskis, A.: Origin cookies: session integrity for Web applications. Web

2.0 Security and Privacy (W2SP) (2011)
4. Chen, E.Y., Bau, J., Reis, C., Barth, A., Jackson, C.: App isolation: get the security of

multiple browsers with just one. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS), pp. 227–238 (2011)

5. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-time cookies: preventing session
hijacking attacks with stateless authentication tokens. ACM Trans. Internet Technol. (TOIT)
12(1), 31 (2012)

110 10 Improving Client-Side Web Security

6. De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: Eradicating bearer tokens for session
management. W3C/IAB Workshop on Strengthening the InternetAgainst Pervasive Monitoring
(STRINT) (2014)

7. Deveria, A.: Can i use . . . support tables for HTML5, CSS3, etc. http://caniuse.com (2014)
8. Duong, T., Rizzo, J.: BEAST - Here Come The XOR Ninjas. http://nerdoholic.org/

uploads/dergln/beast_part2/ssl_jun21.pdf (2011)
9. Evans, C., Palmer, C., Sleevi, R.: Public Key Pinning Extension for HTTP. IETF Internet Draft

(2014)
10. Gluck, Y., Harris, N., Prado, A.: BREACH: reviving the CRIME Attack. http://breachat-

tack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf (2013)
11. Hallam-Baker, P.: Http integrity header. IETF Internet Draft (2012)
12. Hodges, J., Jackson, C., Barth, A.: HTTP strict transport security (HSTS). RFC Proposed

Standard (RFC 6797) (2012)
13. Hoffman, P., Schlyter, J.: The DNS-based authentication of named entities (DANE) transport

layer security (TLS) protocol: TLSA. RFC Proposed Standard (RFC 6698) (2012)
14. Huang, L.S., Rice, A., Ellingsen, E., Jackson, C.: Analyzing forged ssl certificates in the wild.

In: Proceedings of the 35th IEEE Symposium on Security and Privacy (SP) (2014)
15. Ingram, L., Walfish, M.: Treehouse: Javascript sandboxes to help web developers help

themselves. In: Proceedings of the USENIX annual technical conference (ATC) (2012)
16. Jackson, C., Barth, A.: ForceHTTPS: protecting high-security web sites from network attacks.

In: Proceedings of the 17th international conference on World Wide Web (WWW), pp. 525–534
(2008)

17. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk: eliciting
malicious behavior in browser extensions. In: Proceedings of the 23rd USENIX Security
Symposium, pp. 641–654 (2014)

18. Karapanos, N., Capkun, S.: On the effective prevention of tls man-in-the-middle attacks in
Web applications. In: Proceedings of the 23rd USENIX Security Symposium, pp. 671–686
(2014)

19. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self protecting
javascript. In: Proceedings of the 15th Nordic Conference on Secure IT Systems (NordSec),
pp. 239–255 (2010)

20. Maone, G., Huang, D.L.S., Gondrom, T., Hill, B.: User interface safety directives for content
security policy. W3C Last Call Working Draft (2014)

21. Meyerovich, L., Livshits, B.: ConScript: specifying and enforcing fine-grained security policies
for Javascript in the browser. In: Proceedings of the 31st IEEE Symposium on Security and
Privacy (SP), pp. 481–496 (2010)

22. Mickens, J.: Pivot: fast, synchronous mashup isolation using generator chains. In: Proceedings
of the 35th IEEE Symposium on Security and Privacy (SP), pp. 261–275 (2014)

23. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: safe active content in sanitized
javascript. http://google-caja.googlecode.com/files/caja-spec-2008-01-15. pdf (2008)

24. Murdoch, S.J.: Hardened stateless session cookies. Security Protocols XVI, pp. 93–101 (2011)
25. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In: Proceed-

ings of the 4th ACM Symposium on Information, Computer and Communications Security
(ASIACCS), pp. 47–60 (2009)

26. Qualys: Qualys SSL labs. https://www.ssllabs.com/ (2014)
27. Qualys: Trustworthy internet movement—ssl pulse. https://www.trustworthyinternet.org/ssl-

pulse/ (2014)
28. Ristić, I.: OpenSSL cookbook. Feisty Duck (2013)
29. Ristić, I.: Bulletproof SSL and TLS. Feisty Duck (2014)
30. Rizzo, J., Duong, T.: The CRIME attack. https://docs.google.com/presentation/d/11eBmGiHb-

YcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222 (2012)
31. Ross, D., Gondrom, T.: HTTP Header Field X-Frame-Options. RFC Informational (RFC 7034)

(2013)

http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit?pli=1#slide=id.g1d134dff_1_222

References 111

32. Schneier, B.: Hearbleed. https://www.schneier.com/blog/archives/2014/04/heartbleed.html
(2014)

33. Sheffer, Y., Holz, R., Saint-Andre, P.: Recommendations for Secure Use of TLS and DTLS.
IETF Internet Draft (2014)

34. Soska, K., Christin, N.:Automatically detecting vulnerable websites before they turn malicious.
In: Proceedings of the 23rd USENIX Security Symposium, pp. 625–640 (2014)

35. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security policy. In:
Proceedings of the 19th international conference on World wide web (WWW), pp. 921–930
(2010)

36. Sterne, B., Barth, A.: Content security policy 1.0. W3C Candidate Recommendation (2012)
37. Stock, B., Lekies, S., Mueller, T., Spiegel, P., Johns, M.: Precise client-side protection against

dom-based cross-site scripting. In: Proceedings of the 23rd USENIX Security Symposium,
pp. 655–670 (2014)

38. Ter Louw, M., Ganesh, K.T., Venkatakrishnan, V.: AdJail: practical Enforcement of Confi-
dentiality and Integrity Policies on Web Advertisements. In: Proceedings of the 19th USENIX
Security Symposium, pp. 371–388 (2010)

39. Tian, Y., Liu, Y.C., Bhosale, A., Huang, L.S., Tague, P., Jackson, C.: All your screens are
belong to us: attacks exploiting the html5 screen sharing api. In: Proceedings of the 35th IEEE
Symposium on Security and Privacy (SP), pp. 34–48 (2014)

40. Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: WebJail: least-privilege
integration of third-party components in web mashups. In: Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC), pp. 307–316 (2011)

41. Weinberger, J., Barth, A., Song, D.: Towards client-side html security policies. In: Proceedings
of the 6th USENIX Workshop on Hot Topics on Security (HotSec) (2011)

	Preface
	Contents
	Chapter 1 The Relevance of Client-Side Web Security
	1.1 The Web at a Glance
	1.2 Client-Side Web Security
	1.3 Purpose of this Book
	References

	Chapter 2 Traditional Building Blocks of the Web
	2.1 Traditional Web Technology
	2.1.1 Loading Web Content
	2.1.2 Authentication and Authorization
	2.1.3 Cookies and Session Management

	2.2 Browser Security Policies
	2.2.1 Same-Origin Policy
	2.2.2 Security Model for Third-Party Content Inclusion
	2.2.3 Context Navigation Policy

	2.3 Extending the Client-Side Features
	2.3.1 Plugins for Arbitrary Content
	2.3.2 Browser Extensions

	2.4 Enhancing the User's Window on the Web
	References

	Chapter 3 The Browser as a Platform
	3.1 The Synergy Between Browsers and Devices
	3.2 From Rendering Engine to Feature-Rich Platform
	3.2.1 Client-Side Storage
	3.2.2 Communication Mechanisms
	3.2.3 Mobile Features
	3.2.4 Registering Default Applications

	3.3 Transforming the Browser into an Operating System
	References

	Chapter 4 How Attackers Threaten the Web
	4.1 Threat Models in Literature
	4.1.1 Forum Poster
	4.1.2 Web Attacker
	4.1.3 Gadget Attacker
	4.1.4 Related-Domain Attacker
	4.1.5 Related-Path Attacker
	4.1.6 Passive Network Attacker
	4.1.7 Active Network Attacker

	4.2 Threat Models as Concrete Attacker Capabilities
	4.2.1 Send Requests to an Application
	4.2.2 Register Own Domain
	4.2.3 Host Content Under Own Domain
	4.2.4 Respond to Requests from Own Domain
	4.2.5 Register a Valid TLS Certificate for Own Domain
	4.2.6 Manipulate Target's Domain-based Data
	4.2.7 Manipulate Target's Client-Side Context
	4.2.8 Eavesdrop on Network Traffic
	4.2.9 Generate Network Traffic
	4.2.10 Intercept and Manipulate Network Traffic

	4.3 Conclusion
	References

	Chapter 5 Attacks on the Network
	5.1 Eavesdropping Attacks
	5.1.1 Description
	5.1.2 Mitigation Techniques
	5.1.3 State of Practice
	5.1.4 Best Practices

	5.2 Man-in-the-Middle Attacks (MitM)
	5.2.1 Description
	5.2.2 Mitigation Techniques
	5.2.3 State of Practice
	5.2.4 Best Practices

	5.3 Protocol-level Attacks on HTTPS
	5.3.1 Overview of Attacks
	5.3.2 State of Practice

	References

	Chapter 6 Attacks on the Browser's Requests
	6.1 Cross-Site Request Forgery
	6.1.1 Description
	6.1.2 Mitigation Techniques
	6.1.3 State of Practice
	6.1.4 Best Practices

	6.2 UI Redressing
	6.2.1 Description
	6.2.2 Mitigation Techniques
	6.2.3 State of Practice
	6.2.4 Best Practices

	References

	Chapter 7 Attacks on the User's Session
	7.1 Session Hijacking
	7.1.1 Description
	7.1.2 Mitigation Techniques
	7.1.3 State of Practice
	7.1.4 Best Practices

	7.2 Session Fixation
	7.2.1 Description
	7.2.2 Mitigation Techniques
	7.2.3 State of Practice
	7.2.4 Best Practices

	7.3 Authenticating With Stolen Credentials
	7.3.1 Description
	7.3.2 Mitigation Techniques
	7.3.3 State of Practice
	7.3.4 Best Practices

	References

	Chapter 8 Attacks on the Client-Side Context
	8.1 Cross-Site Scripting
	8.1.1 Description
	8.1.2 Mitigation Techniques
	8.1.3 State of Practice
	8.1.4 Best Practices

	8.2 Scriptless Injection Attacks
	8.2.1 Description
	8.2.2 Mitigation Techniques
	8.2.3 Best Practices

	8.3 Compromised Script Inclusions
	8.3.1 Description
	8.3.2 Mitigation Techniques
	8.3.3 State of Practice
	8.3.4 Best Practices

	References

	Chapter 9 Attacks on the Client Device
	9.1 Drive-By Downloads
	9.1.1 Description
	9.1.2 Mitigation Techniques
	9.1.3 State of Practice
	9.1.4 Best Practices

	9.2 Malicious Browser Extensions
	9.2.1 Description
	9.2.2 Mitigation Techniques
	9.2.3 State of Practice
	9.2.4 Best Practices

	References

	Chapter 10 Improving Client-Side Web Security
	10.1 Overview of Best Practices
	10.1.1 Secure Communication Channel
	10.1.2 Application-level Techniques
	10.1.3 Security Policies

	10.2 Research-driven Security Technology
	10.3 Conclusion
	References

