
Model-Driven Design of Graph Databases

Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone

Dipartimento di Ingegneria
Università Roma Tre, Rome, Italy

{dvr,maccioni,torlone}@dia.uniroma3.it

Abstract. Graph Database Management Systems (GDBMS) are
rapidly emerging as an effective and efficient solution to the manage-
ment of very large data sets in scenarios where data are naturally rep-
resented as a graph and data accesses mainly rely on traversing this
graph. Currently, the design of graph databases is based on best prac-
tices, usually suited only for a specific GDBMS. In this paper, we propose
a model-driven, system-independent methodology for the design of graph
databases. Starting from a conceptual representation of the domain of in-
terest expressed in the Entity-Relationship model, we propose a strategy
for devising a graph database in which the data accesses for answering
queries are minimized. Intuitively, this is achieved by aggregating in the
same node data that are likely to occur together in query results. Our
methodology relies a logical model for graph databases, which makes the
approach suitable for different GDBMSs. We also show, with a number
of experimental results over different GDBMSs, the effectiveness of the
proposed methodology.

1 Introduction

Social networks, Semantic Web, geographic applications, and bioinformatics are
examples of a significant class of application domains in which data have a nat-
ural representation in terms of graphs, and queries mainly require to traverse
those graphs. It has been observed that relational database technology is usually
unsuited to manage such kind of data since they hardly capture their inherent
graph structure. In addition, graph traversals over highly connected data involve
complex join operations, which can make typical operations inefficient and ap-
plications hard to scale. This problem has been recently addressed by a new
brand category of data management systems in which data are natively stored
as graphs, nodes and edges are first class citizens, and queries are expressed in
terms of graph traversal operations. These systems are usually called GDBMSs
(Graph Database Management Systems) and allow applications to scale to very
large graph-based data sets. In addition, since GDBMSs do not rely on a rigid
schema, they provide a more flexible solution in scenarios where the organization
of data evolves rapidly.

GDBMSs are usually considered as part of the NoSQL landscape, which
includes non-relational solutions to the management of data characterized by
elementary data models, schema-free databases, basic data access operations,

E. Yu et al. (Eds.): ER 2014, LNCS 8824, pp. 172–185, 2014.
c© Springer International Publishing Switzerland 2014

Model-Driven Design of Graph Databases 173

and eventually consistent transactions [8,13]. GDBMSs are considered however
a world apart from the other NoSQL systems (e.g., key-value, document, and
column stores) since their features are quite unique in both the data model they
adopt and the data-access primitives they offer [18].

In this framework, it has been observed that, as it happens with traditional
database systems [5], the availability of effective design methodologies would be
very useful for database developers [3,8,13]. Indeed, also with NoSQL systems,
design choices can have a significant impact on the performances and the scalabil-
ity of the application under development [18]. Unfortunately however, database
design for GDBMS is currently based only on best practices and guidelines,
which are usually related to a specific system, and the adoption of traditional
approaches is ineffective [4]. Moreover, design strategies for other NoSQL sys-
tems cannot be exploited for graph databases since the underlying data models
and the systems used for their management are very different.

In this paper, we try to fill this gap by proposing a general, model-driven [19]
methodology for the design of graph databases. The approach starts, as usual,
with the construction of a conceptual representation of application data expressed
in the ERmodel. This representation is translated into a special graph in which en-
tities and relationships are suitably grouped according to the constraints defined
on the ER schema. The aim is to try to minimize the number of access operations
needed to retrieve related data of the application. This intermediate representa-
tion refers to an abstract, graph-based data model that captures the modeling fea-
tures that are common to real GDBMSs. This makes the approach independent
of the specific system that will be used to store and manage the final database.
We also provides a number of experimental results showing the advantages of our
proposal with respect to a naive approach in which a graph database is derived by
simply mapping directly conceptual to physical objects.

The rest of the paper is organized as follows. In Section 2 we introduce an
abstract model for graph database and discuss basic strategies for modeling data
with a GDBMS. Section 3 illustrates in detail our design methodology whereas
Section 4 illustrates the experimental results. In Section 5 we discuss related
works and finally, in Section 6, we sketch conclusions and future work.

2 Modeling Graph Databases

2.1 Graph Databases

The spread of application domains involving graph-shaped data has arisen the
interest on graph databases and GDBMSs. Unfortunately, due to diversity of the
various systems and of the lack of theoretical studies on them, there is no widely
accepted data model for GDBMSs and of the basic features they should provide.
However, almost all the existing systems exhibit three main characteristics.

First of all, a GDBMS stores data by means of a multigraph1, usually called
property graph [17], where both nodes and edges are labelled with data in the
form of key-value pairs.

1 A multigraph is a graph where two nodes can be connected by more than one edge.

174 R. De Virgilio, A. Maccioni, and R. Torlone

Definition 1 (Graph database). A graph database, is a directed multigraph
g = (N,E) where every node n ∈ N and every edge e ∈ E is associated with a
set of pairs 〈key, value〉 called properties.

A simple example of graph database is reported in Fig. 1: it represents a por-
tion of a database storing information about blogs, having users as administra-
tors and/or followers. Nodes n1 and n2 represent a user and a blog, respectively.
They both have an id and a name as properties. The edges between n1 and n2

represent the relationships follower and admin, respectively (in our case, the user
is both follower and admin of the blog), and are associated with properties that
simply specify these relationships.

Uname: Date
Uid: u01

Bname: Database
Bid: b02

label: follower

label: admin

n1 n2

Fig. 1. An example of property graph

Note that this notion of graph database is very flexible since no further con-
straint is imposed on graphs and their topology. In particular, nodes representing
objects of the same class (e.g., different users) can differ in the number of proper-
ties and in the data type of a specific property. This makes the data model very
general and able to capture various graph-based data models, such as RDF and
RDFS. Indeed, GDBMSs are often used in Semantic Web applications [1,14].

The second important feature of a GDBMS is the property of index-free ad-
jacency.

Definition 2 (Index Free Adjacency). We say that a graph database g sat-
isfies the index-free adjacency if the existence of an edge between two nodes of
g can be tested by visiting those nodes and does not require the existence of an
external, global, index.

In other words, each node carries the information about its neighbors and no
global index of reachability between nodes exists. As a result, the traversal of an
edge from a node is independent on the size of data and can be tested in constant
time. This guarantees that local analysis can be performed very efficiently on
GDBMS and this makes those systems suitable in scenarios where the size of
data increases rapidly.

Model-Driven Design of Graph Databases 175

The third feature common to GDBMSs is the fact that data is queried using
path traversal operations expressed in some graph-based query language, such
as Gremlin2. We will not address specific query languages in this paper.

2.2 Modeling Strategies for Graph Databases

A main goal in the design of a graph database is the minimization of data access
operations needed in graph traversals at query time. Intuitively, this can be
achieved in two different ways: (i) by adding edges between nodes or (ii) by
merging different nodes. We call these approaches dense and compact strategy,
respectively.

Basically, the dense strategy heavily relies on adding as many edges as possible
between nodes representing conceptual entities. This clearly reduces the length
of paths between nodes and so the number of data access operations needed at
run time. However, it requires to add edges that do not correspond to concep-
tual relationships in the application domain and such “semantic enrichment”
demands an additional effort of the designer.

Conversely, the compact strategy relies on aggregating in the same node data
that are related but are stored in different nodes. This clearly reduces the number
of data accesses as well but, on the other hand, it asks the designer to deal with
possible data inconsistencies. Consider for instance the case in which we decide
to merge each user node with the blog nodes he follows in the database in Fig. 1
to make more efficient queries involving both users and blogs. If the users follow
multiple blogs we have a conflict on the Bname property, which requires a suitable
renaming of keys.

Actually, some modeling approaches for graph-shaped data (e.g., in the direct
conversion of relational data into RDF graphs [20]) follow yet another strategy,
which we call sparse. Basically, in the sparse strategy the properties of an object
with n properties is decomposed into a set of n different nodes, with the goal of
minimizing the number of edges incident to the nodes of the graph. This avoids
potential conflicts between the properties of a node but it usually increases
largely the number of nodes that need to be traversed during query execution.
Moreover, it can make database updates inefficient since the simple insertion or
deletion of an object requires multiple database accesses, one for each property
of the object.

3 Graph Database Design

This section illustrates a design methodology for graph databases. Our solution
supports the user in the design a graph database for the application on the basis
of an automatic analysis of a conceptual representation of the domain of interest.
In principle, any conceptual data model could be used and in this paper we will
consider the Entity-Relationship (ER) model.

2 https://github.com/thinkaurelius/titan/wiki/Gremlin-Query-Language

https://github.com/thinkaurelius/titan/wiki/Gremlin-Query-Language

176 R. De Virgilio, A. Maccioni, and R. Torlone

As in the compact strategy, our technique tries to reduce the number of data
access required at runtime by aggregating objects occurring in the conceptual
representation as much as possible. In addition, to preserve the semantics of
the application domain, we also try to take advantage from the benefits of the
sparse strategy discussed in Section 2.2. In fact, similarly to the sparse strategy,
the aggregation technique avoids potential inconsistencies between properties of
nodes. This is done by carefully analyzing the many-to-many relationships of
the the ER diagram, which may introduce many connections between nodes and
thus conflicting properties in their aggregation.

In our methodology human intervention is extremely reduced: in most cases
the translation between the conceptual representation and the graph database
is completely automatic and the designer does not need to introduce artificial
concepts and relationships. Indeed, all the elements of the output database origi-
nate directly from concepts appearing in the input Entity-Relationship diagram.
This is coherent with the NoSQL philosophy where the persistence layer is se-
mantically close to the design layer.

In this paper, we refer to a basic version of the ER including entities, rela-
tionships, attributes and cardinalities. However such a choice does not introduce
limitations on the generality of our approach.

User Blog Comment

follower

admin

tag

post

publish

Blog

follower

Comment

tag

(0:N) (1:1)

(0:N) (0:N)

(0:N) (1:1)

(0:N) (0:N)

(0:N) (1:1) uid

uname

bid

bname

cid

msg

date

Category
about External

Link contains

(1:1)

(1:1)

(0:N)

ctid
description eid url

date

(1:1)

Fig. 2. An example of ER diagram

In the following, we will consider, as running example, an application domain
of blogs represented in conceptual terms by the ER diagram in Fig. 2. Intuitively,
our strategy aims at building a “template” of a graph database for this initial
schema. This template describes how data have to be organized into nodes and
how nodes have to be connected to each other. The design strategy is organized
in three different phases: (i) generation of an oriented ER diagram, (ii) parti-
tioning of the elements (entities and relationships) of the obtained diagram and
(iii) definition of a template over the resulting partition.

Model-Driven Design of Graph Databases 177

3.1 Generation of an Oriented ER Diagram

In the first phase, we transform an ER diagram, which is an undirected and
labelled graph, into a directed, labelled and weighted graph, called Oriented ER
(O-ER) diagram. In O-ER diagrams, a special function w assigns a weight with
each edge of the diagram.

ENTITY 1

ENTITY 2

RELATIONSHIP

(0:1)

RELATIONSHIP : 0

a)

(0:1)

ENTITY 1

ENTITY 2

ENTITY 1

ENTITY 2

RELATIONSHIP

(0:N)

RELATIONSHIP : 1

b)

(0:1)

ENTITY 1

ENTITY 2

ENTITY 1

ENTITY 2

RELATIONSHIP

(0:N)

RELATIONSHIP : 2

c)

(0:N)

ENTITY 1

ENTITY 2

Fig. 3. Rules for generating an O-ER diagram

As illustrated in Fig. 3, the O-ER diagram is generated by applying to an ER
diagram the following transformation rules.

a) A one-to-one relationship becomes a double directed edge e such that
w(e) = 0;

b) A one-to-many relationship becomes a single-directed edge e such that
w(e) = 1 going from the entity with lower multiplicity to the entity with
higher multiplicity;

c) A many-to-many relationship becomes a double-directed edge e with
w(e) = 2.

All entities and attributes (including those of relationships) are kept in the out-
put O-ER diagram.

For instance, given the ER diagram of Fig. 2, by applying the rules discussed
above we obtain the O-ER diagram shown in Fig. 4 (in the figure, we have
omitted the attributes for the sake of readability).

Note that our methodology can refer to other data modeling formalisms, such
as UML, by just adapting this phase.

178 R. De Virgilio, A. Maccioni, and R. Torlone

User Blog Comment

tag:2

post:1

User Blog omment

tag:2

U

publish:1

admin:1

g

follower:2

External
Link Category Coal C

contains:0 about:1

Fig. 4. An example of O-ER diagram

3.2 Partitioning of an Oriented ER Diagram

The second phase consists in the partitioning of the O-ER diagram we have
obtained in the first phase. It is based on a set of rules for grouping together
elements of the O-ER diagram so that every element of the diagram belongs
to one and only one group. The aim of this step is to identify entities whose
instances are likely to occur together in the same query results. Intuitively, this
reduces the number of accesses to the database needed for query answering.

Let us consider an O-ER diagram in terms of a graph 〈N,E,w〉, where N is
the set of nodes (entities), E is the set of edges, and w the weighting function.
Then let in(n) = {(m,n) |(m,n) ∈ E} and out(n){(n,m)|(n,m) ∈ E} be the
sets of incoming and outcoming edges of a node n, respectively. Then consider
the following weight functions for nodes of an O-ER diagram:

w+(n) =
∑

e∈out(n)

w(e)

w−(n) =
∑

e∈in(n)

w(e)

The functions w−(n) and w+(n) compute the sum of the weights of the incoming
and outcoming edges of a node n, respectively. For instance, referring to Fig. 4,
the weights associated with the node Comment are the following

w+(Comment) = w(post)+w(tag)+w(publish)+w(contains) = 1+2+1+0 = 4

w−(Comment) = w(tag) + w(contains) = 2 + 0 = 2

The partitioning is then based on the following rules for grouping nodes of an
O-ER diagram.

– Rule 1: if a node n is disconnected then it forms a group by itself;
– Rule 2: if a node n has w−(n) > 1 and w+(n) � 1 then n forms a group

by itself. Intuitively, in this case the node n represents an entity involved
with high multiplicity in many-to-many relationships. Therefore we do not
aggregate n with other nodes having a similar weight. This rule applies for
example to the nodes User, Comment and Blog in the diagram of Fig. 4;

Model-Driven Design of Graph Databases 179

– Rule 3: if a node n has w−(n) � 1 and w+(n) � 1 then n is added to
the group of a node m such that there exists the edge (m,n) in the O-ER
diagram. In this case, the node n corresponds to an entity involved in a
one-to-one relationship or in a one-to-many relationships in which n has the
lower multiplicity. This rule applies for example to the nodes Category and
External Link in the diagram of Fig. 4: Category is aggregated with Blog and
External Link with Comment.

Note that these rules can be applied either recursively or iteratively. An iterative
procedure would analyze once every node of the O-ER diagram. By applying
these rules to the diagram in Fig. 4, we obtain the partition shown in Fig. 5.

User Blog Comment

tag:2

post:1

User Blog omment

tag:2

U

publish:1

admin:1

g

follower:2

External
Link Category Coal C

contains:0 about:1

Fig. 5. An example of partitioning.

3.3 Definition of a Template over a Graph Database

Once the groups are formed, the third phase generates a template for the final
graph database.While it is improper to speak of a schema for graph databases (as
usually data do not strictly adhere to any schema), there are always similar nodes
in a graph database, that is, nodes that share many attributes and are connected
by the same kind of edges. Therefore we can say that homogeneous nodes identify
a “data type”. Basically, a template describes the data types occurring in a graph
database and the ways they are connected. Thus, it represents a logical schema
of the graph database that can be made transparent to the designer and to the
user of the target database.

Indeed, the database instance is not forced to conform the template in a rigid
way. Rather, it is the initial structure of the graph database that can be later
extended or refined. In addition, it is a valid mean to address the impedance
mismatch between the persistence layer and the application layer.

Then, a template works as a “schema” for a graph database where each node
and each edge is equipped with the names (i.e., the keys) of the involved prop-
erties. The names of properties originate from the attributes of the entities oc-
curring in the same group. Every attribute determines a property name of the
instance of an entity. In a template, a property name is composed by the name
of the entity concatenated to the name of the attribute it originates from (e.g.,
User.uname). In the same way, the attributes of the relationships between entities
determine the names of the property of the edges connecting the corresponding

180 R. De Virgilio, A. Maccioni, and R. Torlone

ExternalLink.eid
ExternalLink.url

Comment.cid
Comment.msg

User.uid
User.uname Blog.bid

Blog.bname
Category.ctid

Category.description

date
label

label

label label

label

Fig. 6. An example of template.

nodes in the graph database (e.g., date for the relationship post). In addition,
for each relationship r with label l we introduce the property name label that
will be associated with the value l in the graph database.

As an example, the template produced from the partitioning shown in Fig. 5 is
illustrated in Fig. 6. Note as the template adheres perfectly to the input domain
without “artificial” concepts that are not present in the conceptual representa-
tion. Using the template, we can generate different instances. For example, Fig. 7
illustrates an instance of graph database conforming to the template in Fig. 6.
In this case we have three instances of User, three instances of Blog (with the
corresponding Category) and one instance of Comment (with the corresponding
External Link).

4 Experimental Results

In order to evaluate the effectiveness of our methodology, we have implemented a
tool that aggregates data using the technique illustrated in Section 3. In particu-
lar, we have extended a system, called R2G, that we have developed for migrating
relational to graph databases [11].

With this tool, we have compared the query performances of graph databases
obtained with our strategy with those obtained with the sparse strategy, which
is adopted by the most common GDBMSs: Neo4J [22], ArangoDB3, Infinite-
Graph4, Oracle NoSQL5, OrientDB6 and Titan7. Our system makes use of the
Blueprints framework8, a general, open-source API for graph databases adopted
by all GDBMS. Blueprints, as JDBC, allows developers to plug-and-play their

3 https://www.arangodb.org/
4 http://www.objectivity.com/infinitegraph
5 http://www.oracle.com/technetwork/database/database-technologies/

nosqldb/overview/index.html
6 http://www.orientechnologies.com/orientdb/
7 http://thinkaurelius.github.io/titan/
8 https://github.com/tinkerpop/blueprints/wiki

https://www.arangodb.org/
http://www.objectivity.com/infinitegraph
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/overview/index.html
http://www.orientechnologies.com/orientdb/
http://thinkaurelius.github.io/titan/
https://github.com/tinkerpop/blueprints/wiki

Model-Driven Design of Graph Databases 181

User.uname : Date
User.uid : u01

Category.ctid : ct01
Category.description : A

Blog.bname : Inf. Systems
Blog.bid : b01

User.uname : Hunt
User.uid : u02

Category.ctid : ct02
Category.description : B
Blog.bname : Database

Blog.bid : b02

ExternalLink.eid : el1
ExternalLink.url : http://link.com

Comment.cid : c01
Comment.msg : Good news!

Category.ctid : ct02
Category.description : B

BG.bname : Computer Science
BG.bid : b03

label:admin

date:25/02/2013
label:post

label:follower

label:admin

label:admin

label:follower

n1
n2

n3

n4

n5 n6

label:follower

label:follower

label:tag

label:publish

Fig. 7. The final graph database

graph database back-end. In this way, R2G is able to connect to each GDBMS
and import data by using both the proprietary strategy (sparse-like) and our
strategy.

Experiments were conducted on a dual core 2.66GHz Intel Xeon, running
Linux RedHat, with 4 GB of memory and a 2-disk 1Tbyte striped RAID array.

Aggregate data sources. In a first experiment we considered, as in [11], ag-
gregate datasets with different sizes. Such data sources present data highly cor-
related where the sparse strategy fits nicely (i.e. graph traversal operations are
performed over quite short paths). We used a relational representation of Mon-
dial (17.115 tuples and 28 relations) and of two ideal counterpoints (due to the
larger size): IMDb (1.673.074 tuples in 6 relations) and Wikipedia (200.000
tuples in 6 relations), as described in [9]. The authors in [9] defined a benchmark
of 50 keyword search queries for each dataset. We used the tool in [7] to generate
SQL queries from the keyword-based queries defined in [9]. The SQL queries are
then mapped to the Gremlin language supported by the Blueprints framework.

Then, we evaluated the performance of query execution. For each dataset,
we ran the 50 queries ten times and measured the average response time. We
performed cold-cache experiments (i.e. by dropping all file-system caches be-
fore restarting the various systems and running the queries) and warm-cache
experiments (i.e. without dropping the caches). Fig. 8 shows the performance
for cold-cache experiments. Due to space constraints, in the figure we report
times only on IMDb and Wikipedia, since their much larger size poses more

182 R. De Virgilio, A. Maccioni, and R. Torlone

Fig. 8. Performance on aggregate data sources: black bars refer to the sparse strategy
and white bars refer to our strategy

challenges. In the figure, for each GDBMS we consider the time to perform a
query on the graph database generated by using the sparse strategy (i.e. black
bar) and the time to perform the same query on the graph database generated
by using our strategy (i.e. white bar).

Our methodology allows to each system to perform consistently better for
most of the queries. This is due to our strategy reducing the space overhead and
consequently the time complexity of the overall process w.r.t. the competitors
strategy that spends much time traversing a large number of edges. Warm-cache
experiments follow a similar trend.

A significant result is the speed-up between the two strategies. For each dataset
D, we computed the speed-up for all systems P as the ratio between the average
execution time over the graph database generated by the sparse strategy of
P, and that of our strategy in R2G, or briefly SD = tP/tR2G: SIMDb = 2, 03,
SWikipedia = 1, 97, and SMondial = 2, 01.

Disaggregate data sources. In a second experiment we used a different bench-
mark for path-traversal queries. In particular, we have considered disaggregate
datasets with a large number of nodes sparsely connected and long paths be-
tween nodes. To this aim, we used the graphdb-benchmarks project9 that involves

9 https://github.com/socialsensor/graphdb-benchmarks

https://github.com/socialsensor/graphdb-benchmarks

Model-Driven Design of Graph Databases 183

Fig. 9. Performance on disaggregate data sources: black bars refer to the sparse strat-
egy and white bars refer to our strategy

social data from Amazon, Youtube and LiveJournal. This benchmark in-
volves different path-traversal queries: (i) to find the neighbors of a node, (ii) to
find the nodes of a edge and (iii) to find the shortest path between two nodes.

As in the first experiment, for each dataset we ran the queries ten times and
measured the average response time. The final results are depicted in Fig. 9
(times are in seconds and the scale is logarithmic). Due to space constraints
we omitted the results for LiveJournal since they are quite similar to the
other datasets. In this case our strategy generates databases that perform sig-
nificantly better in each system. In this context, the aggregation at the basis of
our methodology reduces significantly the number of nodes to traverse, contrary
to the sparse strategy, as shown by the following speed-up: SAmazon = 9, 97,
SYoutube = 10, 01, SLiveJournal = 9, 98. In words, our strategy allows us to per-
form queries 10 times better than the proprietary strategy of each system.

5 Related Work

The idea of storing and managing graph-based data natively is quite old (see [2]
for an extensive survey on this topic) and is recently re-born with the advent
of the Semantic Web and other emerging application domains, such as social

184 R. De Virgilio, A. Maccioni, and R. Torlone

networks and bioinformatics. This new interest has led to the development of a
number of GDBMSs that are becoming quite popular in these scenarios.

In spite of this trend, the approach presented in this paper is, to our knowl-
edge, the first general methodology for the design of graph databases and so
the related bibliography is very limited. Batini et al. [6] introduce a logical de-
sign for the Network model [21] that follows a sparse-like strategy for mapping
an ER schema into a Network schema. Current approaches mainly rely on best
practices and guidelines based on typical design patterns, published by practi-
tioners in blogs [15] or only suited for specific systems [16]. In [12], the author
gathers different design patterns for various NoSQL data stores, including one
for graph databases called application side joins. This design pattern is based
on the join operations that need to be performed over the database. Conversely,
we do not make any assumption on the way in which the database under devel-
opment is accessed and our approach relies only on the knowledge of conceptual
constraints that can be defined with the ER model. Moreover, it provides a
system-independent intermediate representation that makes it suitable for any
GDBMS.

In earlier works [10,11], we have designed and developed a tool for migrating
data from a relational to a graph database management system. In this work, we
consider a different scenario where the database needs to be built from scratch.

6 Conclusion and Future Work

In this paper we have presented a design methodology for graph databases. Our
approach involves a preliminary conceptual design phase followed by a strategy
for translating the conceptual representation into a intermediate representation
that is still independent of the specific target system. The goal is to try to keep
together data that are likely to occur together in query results while keeping
separate independent concepts. An evaluation study shows that our methodology
provides considerable advantages in terms of query performance with respect to
naive approaches.

In the future work we will consider more aspects for driving the design process
such as transaction requirements and query operation loads for the application
at hand. This information can improve the effectiveness of the methodology by
helping to disambiguate between different, possible decisions. We also intend
to verify if a similar approach is also possible for other NoSQL data stores, in
particular to key-value and document stores.

References

1. Angles, R., Gutierrez, C.: Querying RDF data from a graph database perspective.
In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 346–360.
Springer, Heidelberg (2005)

2. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1), 1–39 (2008)

Model-Driven Design of Graph Databases 185

3. Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L., Torlone, R.: The relational
model is dead, SQL is dead, and i don’t feel so good myself. SIGMOD Record 42(2),
64–68 (2013)

4. Badia, A., Lemire, D.: A call to arms: revisiting database design. SIGMOD
Record 40(3), 61–69 (2011)

5. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-
Relationship Approach. Benjamin/Cummings (1992)

6. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-
Relationship Approach. Benjamin/Cummings (1992)

7. Bergamaschi, S., Domnori, E., Guerra, F., Lado, R.T., Velegrakis, Y.: Keyword
search over relational databases: A metadata approach. In: SIGMOD Conference,
pp. 565–576 (2011)

8. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Record 39(4), 12–27
(2010)

9. Coffman, J., Weaver, A.C.: An empirical performance evaluation of relational key-
word search techniques. TKDE 26(1), 30–42 (2014)

10. De Virgilio, R., Maccioni, A., Torlone, R.: Converting relational to graph databases.
In: SIGMOD Workshops - GRADES (2013)

11. De Virgilio, R., Maccioni, A., Torlone, R.: R2G: A tool for migrating relations to
graphs. In: EDBT (2014)

12. Katsov, I.: NoSQL data modeling techniques (2012), http://highlyscalable.

wordpress.com/2012/03/01/nosql-data-modeling-techniques

13. Mohan, C.: History repeats itself: sensible and NonsenSQL aspects of the NoSQL
hoopla. In: EDBT, pp. 11–16 (2013)

14. Ovelgönne, M., Park, N., Subrahmanian, V.S., Bowman, E.K., Ogaard, K.A.: Per-
sonalized best answer computation in graph databases. In: Alani, H., et al. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 478–493. Springer, Heidelberg (2013)

15. Parastatidis, S.: On graph data model design (2013), http://savas.me/2013/03/
on-graph-data-model-design-relationships/

16. Robinson, I.: Designing and building a graph database application with neo4j. In:
Graph Connect (2013)

17. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. CoRR
abs/1006.2361 (2010)

18. Sadalage, R.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional (2012)

19. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

20. Sequeda, J., Arenas, M., Miranker, D.P.: On directly mapping relational databases
to RDF and OWL. In: WWW, pp. 649–658 (2012)

21. Taylor, R.W., Frank, R.L.: Codasyl data-base management systems. ACM Com-
put. Surv. 8(1), 67–103 (1976)

22. Webber, J.: A programmatic introduction to neo4j. In: SPLASH, pp. 217–218
(2012)

http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://savas.me/2013/03/on-graph-data-model-design-relationships/
http://savas.me/2013/03/on-graph-data-model-design-relationships/

	Model-Driven Design of Graph Databases
	1 Introduction
	2 Modeling Graph Databases
	2.1 Graph Databases
	2.2 Modeling Strategies for Graph Databases

	3 Graph Database Design
	3.1 Generation of an Oriented ER Diagram
	3.2 Partitioning of an Oriented ER Diagram
	3.3 Definition of a Template over a Graph Database

	4 Experimental Results
	5 Related Work
	6 Conclusion and Future Work
	References

