
Out-of-Core Visualization of Classified 3D
Point Clouds

Rico Richter, Sören Discher and Jürgen Döllner

Abstract 3D point clouds represent an essential category of geodata used in a
variety of geoinformation applications and systems. We present a novel, interactive
out-of-core rendering technique for massive 3D point clouds based on a layered,
multi-resolution kd-tree, whereby point-based rendering techniques are selected
according to each point’s classification (e.g., vegetation, buildings, terrain). The
classification-dependent rendering leads to an improved visual representation,
enhances recognition of objects within 3D point cloud depictions, and facilitates
visual filtering and highlighting. To interactively explore objects, structures, and
relations represented by 3D point clouds, our technique provides efficient means for
an instantaneous, ad hoc visualization compared to approaches that visualize 3D
point clouds by deriving mesh-based 3D models. We have evaluated our approach
for massive laser scan datasets of urban areas. The results show the scalability of the
technique and how different configurations allow for designing task and domain-
specific analysis and inspection tools.

Keywords 3D point clouds � LiDAR � Visualization � Point-based rendering

1 Introduction

In-situ and remote sensing technology (e.g., airborne, mobile, or terrestrial laser
scanning and photogrammetric approaches) allows for efficient and automatic
creation of digital representations of spatial environments such as cities and

R. Richter (&) � S. Discher � J. Döllner
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
e-mail: rico.richter@hpi.de

S. Discher
e-mail: soeren.discher@hpi.de

J. Döllner
e-mail: juergen.doellner@hpi.de

© Springer International Publishing Switzerland 2015
M. Breunig et al. (eds.), 3D Geoinformation Science,
Lecture Notes in Geoinformation and Cartography,
DOI 10.1007/978-3-319-12181-9_14

227



landscapes (Leberl et al. 2010; Lafarge and Mallet 2012). These 3D point clouds are
commonly used as an input data for applications, systems, and workflows to derive
mesh-based 3D models (Arikan et al. 2013; Beutel et al. 2010) such as for sites,
buildings, terrain, and vegetation. These models for example, can be used to create
and maintain virtual 3D city models (Lafarge and Mallet 2012; Kolbe 2009), which
can be applied in urban planning and development, environmental monitoring,
disaster and risk management, and homeland security (Coutinho-Rodrigues et al.
2011). Applications and systems using massive 3D point clouds are faced by
increasing availability (e.g., for whole countries), density (e.g., 400 points per m2),
and capturing frequency (e.g., once a year). However, they are limited due to their
processing strategies that generally do not scale and limited storage capacities. As a
remedy they frequently have to reduce the precision and density of the data. To
process and analyze large datasets such as massive 3D point clouds out-of-core or
external memory algorithms have been designed (Livny et al. 2009; Nebiker et al.
2010; Ganovelli and Scopigno 2012; Rodríguez and Gobbetti 2013). For the
inspection and visualization of such datasets out-of-core real-time rendering sys-
tems enable an interactive exploration by using specialized spatial data structures
and Level-of-Detail (LoD) concepts (Gobbetti and Marton 2004; Wimmer and
Scheiblauer 2006; Richter and Döllner 2010; Goswami et al. 2013). These systems
generally render all points in a “uniform way” that does not take into account
characteristics of different object classes, such as vegetation, building, terrain,
street, or water. For example, building façades generally exhibit lower point density
in contrast to roofs and terrain. A uniform rendering, therefore, results in gaps
between neighboring façade points (Fig. 1), complicating their perception as a
continuous surface. If points are rendered by the point primitives of the underlying
rendering system (e.g., OpenGL’s GL_POINTS) they are not scaled according to the
camera distance making it difficult to correctly estimate depth differences and
leading to visual artifacts due to overlapping of points close to each other. In
addition, a uniform rendering does not differentiate between surface characteristics

Fig. 1 a Example of a massive 3D point cloud rendered in a uniform way by GL_POINTS
primitives and textured by aerial photography. b Same scene rendered by class-specific point-
based techniques: different object classes can be better distinguished, holes on façades are filled,
and visual clutter in the background is reduced

228 R. Richter et al.



such as planar (e.g., terrain), structured (e.g., roof structures), and fuzzy areas (e.g.,
vegetation), complicating the visual identification and categorization of objects and
structures by the user.

We report how the visualization of massive 3D point clouds can be improved
based on object class information. Such information are computed with point cloud
classification approaches (Lodha et al. 2007; Carlberg et al. 2009; Richter et al.
2013), which typically analyze the 3D point cloud topology, i.e., geometric rela-
tionships between points such as connectivity, local flatness, normal distribution,
and orientation. We present a novel rendering approach that uses precomputed per-
point attributes, such as object class information, color information, and topologic
information to adapt the appearance of each point, i.e., its color, size, orientation,
and shape. Different photorealistic, non-photorealistic, and solid point-based ren-
dering techniques matching different surface characteristics are selected according
to each point’s classification. The class-specific rendering techniques can be con-
figured at runtime according to the application and aim of the presentation. To filter
and highlight points of specific object classes, focus + context visualization tech-
niques, e.g., interactive and static lenses (Vaaraniemi et al. 2012; Trapp et al. 2008)
can be applied. Interactive visualization of massive 3D point clouds, that exceed
available memory resources and rendering capabilities, is achieved by storing
points in a layered, multi-resolution kd-tree providing an object class specific
subdivision of the data.

This paper is structured as follows: Sect. 2 discusses previous work. The system
architecture is described in Sect. 3, focusing on point-based rendering techniques
and the multi-pass rendering approach. Section 4 introduces the out-of-core ren-
dering visualization based on the layered, multi-resolution kd-tree. In Sect. 5 we
evaluate the performance of our system for massive datasets of urban areas. Sec-
tion 6 gives conclusions and outlines future research directions.

2 Related Work

A general overview of point-based rendering is given by Gross and Pfister (2007).
Several rendering techniques aim for a photorealistic and, thus, solid visualization
of 3D point clouds without holes in the surface (Sibbing et al. 2013; Yu and Turk
2013). These techniques commonly represent points as splats, i.e., oriented flat
disks (Botsch et al. 2005; Zwicker et al. 2001), spheres, or particles. To visualize
closed surfaces, an adequate size and orientation have to be applied to each point
(Kim et al. 2012). These attributes can be calculated in a preprocessing step (Wu
and Kobbelt 2004) or on a per-frame basis as proposed by Preiner et al. (2012).
However, these techniques are difficult to apply for aerial 3D point clouds because
of varying point densities, e.g., on horizontal and vertical structures, as well as on
fuzzy and planar areas. In addition, it is difficult to combine these techniques with
out-of-core rendering techniques for 3D point clouds because the point density
varies depending on the LoD.

Out-of-Core Visualization of Classified 3D Point Clouds 229



Non-photorealistic rendering techniques for 3D point clouds have been proposed
by Goesele et al. (2010) and Xu et al. (2004). We extended the silhouette high-
lighting technique of Xu et al. and added it to our set of rendering techniques. Olson
et al. (2011) show how the complete set of silhouette points of a surface can be
calculated instant. However, that information comes with the cost of an additional
preprocessing step.

Out-of-core rendering systems for 3D point clouds have been presented in
Gobbetti and Marton (2004), Wimmer and Scheiblauer (2006), Richter and Döllner
(2010), Goswami et al. (2013). These systems use LoD data structures that
aggregate or generalize points solely based on spatial attributes. This is not
applicable for our purpose because we need to separate points according to their
object class at any time during rendering to apply object class specific rendering
techniques as well as to render only selected object classes.

Point cloud classification of airborne laser scans has been discussed by several
authors in recent years. Identification of building, terrain, and vegetation points is
usually achieved by computing and weighting certain features (e.g., normal dis-
tribution, surface variation, horizontality) that describe the topology of the local
neighborhood of a point (Zhou and Neumann 2008; Lodha et al. 2007). An alter-
native to that approach is to use attributes specific to the respective scanning
technology (Yunfei et al. 2008) (e.g., intensity of returning signals) or information
that can be derived from additional geodata covering the same surface area (Ka-
minsky et al. 2009) (e.g., aerial images, infrastructure maps). In this contribution we
compute object class information for each point in a preprocessing pass with a
hybrid approach introduced by Richter et al. (2013) that considers topologic fea-
tures and additional per-point attributes.

In general, object class information is used to extract mesh-based 3D models
(Zhou and Neumann 2012) for specific categories such as vegetation, building, or
terrain models. However, it is rarely used to enhance the visual quality of a 3D
point cloud directly—aside from adapting the colorization of the points. A more
advanced rendering approach that does take semantics into account was presented
by Gao et al. (2012). They aim for a solid, hole-free visualization of airborne laser
scans by resampling terrain segments and by applying a solid rendering style. The
purpose of this approach is quite similar to ours. However, our approach supports a
larger variety of rendering styles that may be applied to arbitrary object classes at
runtime. In addition, the preprocessing in our system is less demanding because we
do not differentiate between roof and building points.

3 Class-Specific Point-Based Rendering

Our point-based rendering approach uses object class, color, and topologic infor-
mation on a per-point basis to individualize the appearance of each point. Different
point-based techniques are integrated by a multi-pass rendering technique respon-
sible for the final image synthesis.

230 R. Richter et al.



3.1 Data Characteristics

For a given raw 3D point cloud we compute per-point attributes in a preprocessing
step. These attributes include the following:

• Color. Color or color-infrared values can be extracted from aerial images,
ideally captured at the same point in time as the 3D point cloud. These values
are generally used for a colorization, e.g., when a photorealistic and natural
appearance of the points is required.

• Object class information. This attribute denotes towhich surface category a point
belongs. Typical object classes are vegetation, building, terrain, and water, which
can be derived by analyzing the 3D point cloud topology, i.e., local neighborhood
of a point. A more detailed subdivision of terrain (e.g., infrastructure, land use) or
building points (e.g., commercial, residence) can be made by taking into account
additional map data (e.g., infrastructure maps) (Richter et al. 2013).

• Surface normal. Per-point normals approximate the surface of the local point
proximity. They can be computed efficiently by analyzing the local neighbor-
hood of a point (Mitra and Nguyen 2003) and are used to orientate the point
primitive according to the represented surface.

• Horizontality. This attribute indicates how vertical the surface normal of a point
is oriented, i.e., points representing horizontal surfaces (e.g., flat building roofs)
feature higher values than points on vertical surfaces (e.g., building façades)
(Zhou and Neumann 2008). The horizontality can be used for a colorization to
accentuate detailed object structures (e.g., roof elements).

• Global height. This attribute describes the height of a point in relation to all
other points that belong to the same object class. Colorizing points based on
their global height emphasizes height differences for different objects belonging
to the same object class (e.g., trees with different heights).

• Local height. The local height describes the height of a point in relation to all
points belonging to the same object class in the point’s proximity. Using local
heights for a colorization allows highlighting edges and differences in the
structure of an object (e.g., roof ridges and smokestacks).

All attributes can be used to adapt the appearance of a point, i.e., its color, size,
orientation and shape, at run-time. The color of a point can be chosen based on its color
value, object class, topology attributes (i.e., surface normal, horizontality, global, or
local height), or a combination of these. The orientation of a point can either corre-
spond to its surface normal, the current view direction or a defined uniform vector. In
addition, size and shape type of a point can be set dependent on its object class.

3.2 Point-Based Rendering Techniques

To efficiently render 3D point clouds, the Graphics Processing Unit (GPU) supports
point primitives, such as GL_POINTS in OpenGL. However, these primitives have

Out-of-Core Visualization of Classified 3D Point Clouds 231



a fixed size in pixels (Shreiner et al. 2013) (e.g., Fig. 1a uses a size of 3 pixel), i.e., their
size in object space varies according to their perspective depth. Depending on the view
position undersampling, i.e., holes between neighboring points (Fig. 1a—bottom), or
oversampling, i.e., visual clutter due to overlapping points (Fig. 1a—top), occurs.

3.2.1 Point Splats

To avoid undersampling and oversampling due to changing view positions, the
point splats technique renders each point as an opaque disk defined in object space
that can be oriented alongside the surface normal (Rusinkiewicz and Levoy 2000;
Botsch et al. 2005). The on-screen size depends on the current view position and
angle, ensuring a perspective correct visualization (Fig. 2a–f, i). However, the
perception of depth differences between overlapping points that are colored
homogeneously (e.g., points belonging to the same object class), is generally
limited.

3.2.2 Point Spheres

We implemented this point-based rendering technique to emphasize the three-
dimensional character of a point. The proposed point spheres extend the original
splat concept by rendering points as hemispheres instead of flat disks that are
always facing the view position and, thus, look like spheres (Rusinkiewicz and
Levoy 2000). These hemispheres are created by (1) adding an offset to each depth
value of the rendered fragment and by (2) shading each fragment. The depth offset
as well as the shading color can be determined by projecting the fragment onto a
plane defined by the corresponding splat and by calculating the projected distance
of the fragment to the center of the splat. Point spheres are well suited for non-
planar and fuzzy surfaces, such as vegetation (Fig. 2g).

3.2.3 Silhouette Rendering

Point-based silhouettes highlight and abstract silhouettes and distinctive surface
structures (e.g., depth differences). This technique extends the splat rendering
approach and was originally proposed by Xu et al. (2004). Similar to the rendering
of point spheres, color and depth of each fragment depend on its projected distance
to the center of the splat. In addition, the splat is divided into an inner and an outer
part. Fragments in the outer part represent the silhouette and are rendered with an
increased depth value and a distinct color. As a result, depth discontinuities between
overlapping points exceeding a given depth offset are highlighted (Fig. 2h, j, l).

232 R. Richter et al.



Fig. 2 Examples of massive 3D point clouds rendered with different rendering setups for vegetation
(left), buildings (middle), and terrain (right). a Point splats; aerial image colors. b Point splats; aerial
image colors. c Point splats; aerial image colors. d Points splats; global height. e Point splats; aerial
image colors and object class information. f Point splats; global height. g Point spheres; local height.
h Silhouette rendering; horizontality. i Point splats; object class information. j Silhouette rendering;
local height. k Solid rendering; horizontality. l Silhouette rendering; global height

Out-of-Core Visualization of Classified 3D Point Clouds 233



3.2.4 Solid Rendering

We developed this point-based rendering technique to render buildings with solid and
hole-free façades. As the point density on façades in airborne laser scans is very low in
contrast to horizontal structures, the efficient identification of building segments is
limited because other structures behind a building are visible through the façade (Gao
et al. 2012). To overcome this, we use a second rendering pass to fill the area below
roof points with new primitives. The geometry shader is used to render (1) a point-
based splat, sphere or silhouette equal to the rendering techniques presented above
and (2) a quad that imitates the façade below a point. The quad width is equal to the
point size used in (1) whereas the height depends on the point’s distance to the terrain
level. All quads are aligned to the view direction and have the same color or height-
based color gradient to create a solid façade look (Fig. 2k).

3.3 Image Compositing

To combine different point-based rendering techniques, we use multi-pass render-
ing utilizing G-Buffers for image-based compositing (Saito and Takahashi 1990)
(Fig. 3). G-buffers are specialized frame buffer objects (FBO) that store multiple 2D

Fig. 3 Schematic overview of our class-specific point-based rendering system. Categorized by
object classes, points are transferred to GPU memory and rendered into separate G-Buffers that are
composed to synthesize the final image

234 R. Richter et al.



textures for color, depth or normal values. Per object class we have one rendering
pass. The results are stored in G-Buffers that are combined by the final rendering
pass. This compositing pass allows implementing rendering techniques for
focus + context visualization (Vaaraniemi et al. 2012; Trapp et al. 2008) such as
interactive lenses (Fig. 4b). Moreover, object class specific visibility masks, i.e.,
static lenses, can be computed and applied during the rendering to highlight
occluded structures (Fig. 4c). Point-based rendering techniques can be indepen-
dently selected, combined and configured at run-time to adjust the appearance of
each object class.

4 Out-of-Core Rendering

The interactive visualization of massive 3D point clouds exceeding available
memory resources and rendering capabilities and demands for out-of-core rendering
techniques that combine LoD concepts, spatial data structures, and external memory
algorithms. We developed a layered, multi-resolution kd-tree for massive 3D point
clouds that have been attributed with object class information. It is characterized by
the following properties:

• Object class specific subdivision of the data to enable a selective access and
visualization (e.g., only building points).

• Adaptive multi-resolution LoDs to preserve a defined rendering budget (e.g., 30
frames per second).

• Efficient and adaptive memory management (e.g., by using equal-sized LoD
chunks).

• Object class specific LoD selection to fulfill different requirements for specific
rendering techniques (e.g., varying point densities).

Fig. 4 Examples of focus + context visualization for classified 3D point clouds. a Regular
visualization with buildings partially occluded by vegetation. b Interactive focus + context lens.
c Static focus + context lenses positioned around building points

Out-of-Core Visualization of Classified 3D Point Clouds 235



4.1 Layered Multi-resolution Kd-tree

Most spatial data structures use kd-tree, quadtree, or octree derivations to arrange
3D point clouds in a preprocessing step (Rusinkiewicz and Levoy 2000; Gobbetti
and Marton 2004; Wimmer and Scheiblauer 2006; Richter and Döllner 2010;
Goswami et al. 2013). The construction of quadtrees and octrees can be performed
faster in contrast to kd-trees because there is no need to sort the points. However,
the use of quadtrees and octrees for irregular and sparse distributed data, e.g.,
airborne laser scans, results in tree nodes with a varying number of points. Out-of-
core memory management has to implement efficient caching and memory swap-
ping mechanisms that benefit from equal-sized data chunks. For that reason, we
decided to use kd-trees to arrange the data. All points belonging to the same object
class are arranged in a sub-tree consisting of nodes with an equal number of points
(Fig. 5). Each of these nodes corresponds to a LoD for a spatial area with the root
node representing the overall expansion of the 3D point cloud and child nodes
subdividing the area of their parent node. Each point is stored only once in the tree,
and all nodes together are equal to the input 3D point cloud.

4.1.1 Construction

The layered, multi-resolution kd-tree is constructed in a preprocessing step. It can be
stored on secondary storage and therefore applied for arbitrary sized 3D point clouds.
First, the given 3D point cloud is subdivided based on object classes. Second, for each
object class the corresponding points are arranged in a multi-resolution kd-tree.

Fig. 5 Schematic overview showing the structure of our layered, multi-resolution kd-tree. For
each object class a separate multi-resolution kd-tree is maintained

236 R. Richter et al.



The construction of a kd-tree with an equal number of points per node, i.e., a balanced
kd-tree, is implemented by a multi-pass histogram-based approach that avoids a time-
consuming sorting of the entire data for each tree level. In a first pass, we iterate over
the 3D point cloud to fill a histogram that describes the spatial distribution and extent
of the data. Similar to a voxel grid, the histogram organizes points into a number of
equal-sized spatial chunks. For each chunk, the number of points belonging to the
respective area and a representative point are stored (Fig. 6). Based on the number of
points per chunk and the spatial extent of the histogram, a median chunk can be
determined that contains the median point required to construct the kd-tree. A second
iteration over the 3D point cloud is used to fill up the current node with representative
points (i.e., to create a LoD) and to assign all points to the left or right part of the tree.
Only points belonging to the median chunk need to be sorted to determine the exact
median element. The median element for the split is chosen so that the number of
points to the left is a multiple of the number of the points stored per node. This is
important to construct a balanced kd-tree with equal sized nodes with exception of
one leaf node. The out-of-core construction process subdivides point data on the file
system until data chunks can be processed in main memory.

4.2 Layered Kd-tree Rendering

The rendering process can be divided into three stages that are performed per frame.
The first stage is responsible for the data provision, caching, and transferring of
points from secondary storage to main memory as well as from main memory to
GPU memory using the layered, multi-resolution kd-tree. The second stage applies
one of our point-based rendering techniques (Sect. 3) to all points belonging to the

Fig. 6 Illustration of the histogram-based construction of the kd-tree to reduce preprocessing
times for massive 3D point clouds

Out-of-Core Visualization of Classified 3D Point Clouds 237



respective object class. The last stage seamlessly combines all class-specific ren-
dering results into one final image (Sect. 3.3).

At first, the root nodes of all class-specific sub-trees are loaded into main
memory. Each chunk is equal to a LoD node and is mapped into a vertex buffer
object (VBO) resident in GPU memory. The VBO is divided into equal sized
chunks that can store exactly one LoD node. The layered, multi-resolution kd-tree is
used to determine LoD nodes that need to be transferred to or can be removed from
the VBO. The decision to add or remove a LoD node from memory depends on the
projected node size (PNS). Therefore, the bounding sphere of the node is projected
into screen space, and the number of covered pixels is compared to the number of
points per node (Richter and Döllner 2010). The threshold applied to the PNS
depends on the point-based rendering technique, available memory, and computing
capability of the GPU. Each object class has its own memory budget (Fig. 7) and is
balanced permanently during the rendering process because the amount of memory
required by an object class may vary due to the following reasons:

• Only a small number of points belonging to an object class is visible during the
exploration.

• Visualization of certain object classes is disabled.
• Close up views require a high point density for an object class (e.g., for

buildings).

Object classes can be rendered with different LoDs because the required number
of points for an appropriate rendering result depends on the structure. For example,
buildings may require to be rendered with more points due to detailed roof struc-
tures in contrast to terrain or vegetation that can be rendered with fewer points. To
ensure a hole-free surface, the lower point density can be compensated by using
larger primitives, e.g., splats for terrain or spheres for vegetation.

Fig. 7 Illustration of an exemplary GPU memory usage that is balanced during rendering
according to memory requirements of LoD nodes that belong to different object classes. a,
b Illustrate how unused memory is assigned to other object classes. b, c Illustrate the balancing
process when the visualization of one object class (e.g., building) is disabled

238 R. Richter et al.



5 Results and Applications

We have evaluated the presented system and all implemented point-based rendering
techniques with three massive 3D point clouds containing up to 80 billion points
(Table 1). For implementation we used C++, OpenGL, GLSL, and OpenScene-
Graph. Measurements and tests were performed on an Intel Xeon CPU with
3.20 GHz, 12 GB main memory, and a NVIDIA GeForce GTX 770 with 2 GB
device memory.

As shown in Fig. 8, interactive frame rates can be achieved for each rendering
technique as long as the overall number of rendered points does not exceed a certain
threshold (e.g., 6 million points for the solid rendering approach). The highest
frame rate could be observed for GL_POINTS, which was expected since these
primitives are supported natively by the GPU. Point Spheres as well as our solid
and silhouette rendering approach extends the concept of Point Splats and increase
the computational effort during rendering. Consequently, lower frame rates were
achieved when using these techniques for rendering as opposed to Point Splats.
Furthermore, the performance for Point Spheres is higher than for Point Silhouettes
due to a more hardware demanding shading implementation (e.g., conditional
branching). Since the proposed out-of-core rendering approach limits the number of
rendered points by dynamically selecting them, arbitrarily large datasets with
varying point densities can be rendered in real-time as well (Table 2).

Table 1 Characteristics of the datasets used to evaluate the performance of the presented point-
based rendering approach

Dataset 1 Dataset 2 Dataset 3

Point density (pts/m2) 10 28 100

Number points (billion) 5 7.1 80

Data size (GB) 112 159 1,788

Fig. 8 Rendering performance in frames per second (fps) using different sized subsets of the
datasets from Table 1

Out-of-Core Visualization of Classified 3D Point Clouds 239



6 Conclusions and Future Work

We have shown that out-of-core rendering for massive 3D point clouds can be
improved by using point-specific attributes such as topologic or semantic infor-
mation. In particular, object class information can be used to select specialized
point-based rendering techniques that take into account class-specific surface
characteristics (e.g., solid, planar, non-planar, fuzzy). In addition, it enables
focus + context techniques, e.g., lenses for filtering and highlighting. This way we
can improve the visual appearance and facilitate recognition of objects within 3D
point clouds. Furthermore, our approach offers many degrees of freedom for
graphics and interaction design. This approach also allows us to dissolve occlusion
and enable a task-specific interactive exploration. The proposed layered, multi-
resolution kd-tree enables in addition to a spatial data selection an object class
specific selection of LoDs. Hence, memory and processing resources can be used
economically and adaptively. In future work, we plan to integrate point-based
rendering techniques that enable a per-frame reconstruction of object surfaces
(Preiner et al. 2012), e.g., for terrain or roof points. In addition, we want to combine
3D point clouds from aerial scans with data from mobile and terrestrial scans to
increase the number of available object classes.

Acknowledgements This work was funded by the Federal Ministry of Education and Research
(BMBF), Germany within the InnoProfile Transfer research group “4DnD-Vis” (www.4dndvis.de)
and the Research School on ‘Service-Oriented Systems Engineering’ of the Hasso Plattner Insti-
tute. We would like to thank virtualcitySYSTEMS for providing datasets.

Table 2 Rendering performance in frames per second (fps) using the proposed out-of-core
rendering approach. Each dataset is evaluated for a close and a far perspective

Dataset 1 Dataset 2 Dataset 3

Far Close Far Close Far Close

#Rendered points in million 2.32 0.50 3.42 0.85 4.85 1.04

GL_POINTS 86.39 378.07 60.02 246.12 40.24 194.35

Point splats 51.84 214.32 32.27 138.67 23.01 108.63

Point spheres 49.57 203.81 28.31 133.72 22.35 107.07

Silhouette rendering 46.07 195.65 26.66 127.38 22.18 106.97

Solid rendering 27.32 100.13 20.22 63.78 18.74 59.45

Combination 1 (Fig. 2, row 3) 40.51 200.97 27.33 128.73 22.45 107.75

Combination 2 (Fig. 2, row 4) 33.28 126.31 22.21 80.80 19.90 68.47

240 R. Richter et al.

http://www.4dndvis.de


References

Arikan M, Schwärzler M, Flöry S, Wimmer M, Maierhofer S (2013) O-snap: optimization-based
snapping for modeling architecture. ACM Trans Graph 32(1):6:1–6:15

Beutel A, Mølhave T, Agarwal P (2010) Natural neighbor interpolation based grid DEM
construction using a GPU. In: 18th SIGSPATIAL international conference on advances in
geographic information systems, pp 172–181

Botsch M, Hornung A, Zwicker M, Kobbelt L (2005) High-quality surface splatting on today’s
GPUs. In: Eurographics symposium on point-based graphics, pp 17–24

Carlberg M, Gao P, Chen G, Zakhor A (2009) Classifying urban landscape in aerial lidar using 3D
shape analysis. In: 16th IEEE international conference on image processing, pp 1701–1704

Coutinho-Rodrigues J, Simão A, Antunes C (2011) A GIS-based multicriteria spatial decision
support system for planning urban infrastructures. Decis Support Syst 51(3):720–726

Ganovelli F, Scopigno R (2012) OCME: out-of-core mesh editing made practical. Comput Graph
Appl 32(3):46–58

Gao Z, Nocera L, Neumann U (2012) Visually-complete aerial LiDAR point cloud rendering. In:
20th international conference on advances in geographic information systems, pp 289–298

Gobbetti E, Marton F (2004) Layered point clouds: a simple and efficient multiresolution structure
for distributing and rendering gigantic point-sampled models. Comput Graph 28(6):815–826

Goesele M, Ackermann J, Fuhrmann S, Haubold C, Klowsky R, Steedly D, Szeliski R (2010)
Ambient point clouds for view interpolation. ACM Trans Graph 29(4):95:1–95:6

Goswami P, Erol F, Mukhi R, Pajarola R, Gobbetti E (2013) An efficient multiresolution
framework for high quality interactive rendering of massive point clouds using multi-way kd-
trees. Visual Comput 29(1):69–83

Gross M, Pfister H (2007) Point-based graphics. Morgan Kaufmann Publishers Inc., Los Altos, CA
Kaminsky R, Snavely N, Seitz S, Szeliski R (2009) Alignment of 3D point clouds to overhead

images. Computer vision and pattern recognition workshops, pp 63–70
Kim HJ, Öztireli AC, Gross M, Choi SM (2012) Adaptive surface splatting for facial rendering.

Comput Animation Virtual Worlds 23(3–4):363–373
Kolbe TH (2009) Representing and exchanging 3D city models with CityGML. In: 3D geo-

information sciences, chap 2, pp 15–31. Springer, Berlin
Lafarge F, Mallet C (2012) Creating large-scale city models from 3D-point clouds: a robust

approach with hybrid representation. Int J Comput Vision 99(1):69–85
Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A (2010) Point clouds:

lidar versus 3D vision. Photogram Eng Remote Sens 76(10):1123–1134
Livny Y, Kogan Z, El-Sana J (2009) Seamless patches for GPU-based terrain rendering. Visual

Comput 25(3):197–208
Lodha SK, Fitzpatrick DM, Helmbold DP (2007) Aerial lidar data classification using AdaBoost.

In: sixth international conference on 3-D digital imaging and modeling (3DIM), pp 435–442
Mitra NJ, Nguyen A (2003) Estimating surface normals in noisy point cloud data. In: 19th annual

symposium on computational geometry, pp 322–328
Nebiker S, Bleisch S, Christen M (2010) Rich point clouds in virtual globes—a new paradigm in

city modeling? Comput Environ Urban Syst 34(6):508–517
Olson M, Dyer R, Zhang H, Sheffer A (2011) Point set silhouettes via local reconstruction.

Comput Graph 35(3):500–509
Preiner R, Jeschke S, Wimmer M (2012) Auto splats: dynamic point cloud visualization on the

GPU. In: Proceedings of eurographics symposium on parallel graphics and visualization,
pp 139–148

Richter R, Döllner J (2010) Out-of-core real-time visualization of massive 3D point clouds. In: 7th
international conference on computer graphics, virtual reality, visualisation and interaction in
Africa, pp 121–128

Richter R, Behrens M, Döllner J (2013) Object class segmentation of massive 3D point clouds of
urban areas using point cloud topology. Int J Remote Sens 34(23):8408–8424

Out-of-Core Visualization of Classified 3D Point Clouds 241



Rodríguez M, Gobbetti E (2013) Coarse-grained multiresolution structures for mobile exploration
of gigantic surface models. In: SIGGRAPH Asia symposium on mobile graphics and
interactive applications, pp 4:1–4:6

Rusinkiewicz S, Levoy M (2000) QSplat: a multiresolution point rendering system for large
meshes. In: ACM SIGGRAPH, pp 343–352

Saito T, Takahashi T (1990) Comprehensible rendering of 3-D shapes. SIGGRAPH computer
Graph 24(4):197–206

Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM (2013) OpenGL programming guide: the
official guide to learning OpenGL, version 4.3, 8th edn. Addison-Wesley, Reading

Sibbing D, Sattler T, Leibe B, Kobbelt L (2013) SIFT-realistic rendering. In: International
conference on 3D vision, pp 56–63

Trapp M, Glander T, Buchholz H, Döllner J (2008) 3D Generalization lenses for interactive
focus + context visualization of virtual city models. In: 12th international conference on
information visualisation, pp 356–361

Vaaraniemi M, Freidank M, Westermann R (2012) Enhancing the visibility of labels in 3D
navigation maps. Lecture notes in geoinformation and cartography, pp 23–40

Wimmer M, Scheiblauer C (2006) Instant points: fast rendering of unprocessed point clouds. In:
Eurographics symposium on point-based graphics, pp 129–137

Wu J, Kobbelt L (2004) Optimized sub-sampling of point sets for surface splatting. Comput Graph
Forum 23(3):643–652

Xu H, Nguyen MX, Yuan X, Chen B (2004) Interactive silhouette rendering for point-based
models. In: Eurographics symposium on point-based graphics, pp 13–18

Yu J, Turk G (2013) Reconstructing surfaces of particle-based fluids using anisotropic kernels.
ACM Trans on Graph 32(1):5:1–5:12

Yunfei B, Guoping L, Chunxiang C, Xiaowen L, Hao Z, Qisheng H, Linyan B, Chaoyi C (2008)
Classification of LIDAR point cloud and generation of DTM from LIDAR height and intensity
data in forested area. In: International society for photogrammetry and remote sensing
congress, pp 313–318

Zhou QY, Neumann U (2008) Fast and extensible building modeling from airborne lidar data. In:
16th ACM SIGSPATIAL international conference on advances in geographic information
systems, pp 1–8

Zhou QY, Neumann U (2012) 2.5D building modeling by discovering global regularities. In:
Computer vision and pattern recognition, pp 326–333

Zwicker M, Pfister H, van Baar J, Gross MH (2001) Surface splatting. In: ACM SIGGRAPH,
pp 371–378

242 R. Richter et al.


	14 Out-of-Core Visualization of Classified 3D Point Clouds
	Abstract
	1 Introduction
	2 Related Work
	3 Class-Specific Point-Based Rendering
	3.1 Data Characteristics
	3.2 Point-Based Rendering Techniques
	3.2.1 Point Splats
	3.2.2 Point Spheres
	3.2.3 Silhouette Rendering
	3.2.4 Solid Rendering

	3.3 Image Compositing

	4 Out-of-Core Rendering
	4.1 Layered Multi-resolution Kd-tree
	4.1.1 Construction

	4.2 Layered Kd-tree Rendering

	5 Results and Applications
	6 Conclusions and Future Work
	Acknowledgements
	References


