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Abstract. TWINE, proposed at the ECRYPT Workshop on Light-
weight Cryptography in 2011, is a 64-bit lightweight block cipher con-
sisting of 36 rounds with 80-bit or 128-bit keys. In this paper, we give
impossible differential attacks on both versions of the cipher, which is
an improvement over what the designers claimed to be the best possible.
Although our results are not the best considering different cryptanalysis
methods, our algorithm which can filter wrong subkeys that have more
than 80 bits and 128 bits for TWINE-80 and TWINE-128 respectively
shows some novelty. Besides, some observations which may be used to
mount other types of attacks are given. Overall, making use of some com-
plicated subkey relations and time-memory tradeoff trick, the time, data
and memory complexity of attacking 23-round TWINE-80 are 279.09 23-
round encryptions, 257.85 chosen plaintexts and 278.04 blocks respectively.
Besides, the impossible differential attack on 24-round TWINE-128 needs
258.1 chosen plaintexts, 2126.78 24-round encryptions and 2125.61 blocks
of memory.

Keywords: TWINE · Lightweight block cipher · Impossible differential
attack

1 Introduction

Impossible differential attack is a powerful cryptanalysis method introduced by
Biham et al. [2] and Knudsen [10] independently. It is often used in cryptanalyz-
ing block ciphers with (generalized) Feistel structures and SPN structures. The
main trick of this method is to find an impossible differential path as long as
possible and then extend two truncated differentials from it. Then any candidate
subkey involved in both truncated differentials, which can lead to the impossi-
ble differential path is a wrong key and should be discarded. So long as enough
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Table 1. Summary of attacks on TWINE

Key Number Data Time Memory Attack Source

(bits) of rounds (block) (encryption) (block)

80 22 262 268.43 267 Saturation attack [15]

23 257.85 279.09 278.04 Impossible differential
attack

Section 4

36 260 279.10 28 Biclique attack [6]

128 23 262.81 2106.14 2103 Saturation attack [15]

24 258.1 2126.78 2125.61 Impossible differential
attack

Section 5

25 248 2122 2125 MITM [3]

27 262.95 2119.5 260 Key-difference invariant
bias attack

[1]

36 260 2126.82 28 Biclique attack [6]

plaintext-ciphertext pairs are collected, an attacker can eliminate all wrong keys
and recover the right key.

Due to the requirement of lightweight encryption algorithms which are used
in tiny computing devices, such as RFID and sensor network nodes, many light-
weight block ciphers have been proposed, for example PRESENT, KATAN,
KTANTAN, KLEIN, LED, HIGHT, LBlock, TWINE [4,5,7–9,11–16], and much
more. TWINE is a 64-bit lightweight block cipher designed by Suzaki,
Minematsu, Morioka and Kobayashi in [15], which has two versions supporting
80-bit and 128-bit keys respectively. Consisting of 36 rounds, TWINE employs
Type-2 generalized Feistel structure with 16 nibbles. When TWINE was pro-
posed, the designers presented security evaluation including impossible differ-
ential attacks on 23-round TWINE-80 and 24-round TWINE-128 which were
the most powerful attacks given by the designers. Unfortunately, the time com-
plexity of their impossible differential attacks may have a flaw and may lead to
a complexity of more than exhaustive key search. Besides the designers’ secu-
rity analysis, Çoban et al. gave an biclique analysis of full round TWINE [6],
Boztaş et al. gave an multidimensional meet-in-the-middle attack on reduced-
round TWINE-128 [3], Bogdanov et al. gave an key-difference invariant bias
attack on reduced-round TWINE-128 [1]. All the results are summarized in
Table 1. Note that although our results are not the best considering different
cryptanalysis methods, our algorithm which can filter wrong subkeys that have
more than 80 bits and 128 bits for TWINE-80 and TWINE-128 respectively
shows some novelty. Besides, some observations which may be used to mount
other types of attacks are given.

Our Contribution. This paper focuses on the security of TWINE against
impossible differential attack. The novelty includes the following aspects:

– Propose an algorithm to filter wrong subkeys which exceeds the master
key size;
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– Several observations on key relations and optimization of our algorithm are
given;

– Several tables are precomputed to decrease the time complexity.

This paper is organized as follows. In Sect. 2, we present the necessary nota-
tions and a simple description of the TWINE encryption algorithm and the key
schedule. Section 3 gives useful observations and the reason for our choice of
the impossible differential paths. Section 4 first explains the flaw of attacks in
[15], and then shows the impossible differential attack against 23-round TWINE-
80. The result of attacking 24-round TWINE-128 is showed in Sect. 5. Section 6
concludes the paper.

2 Preliminaries

Some notations used in this paper and a simple description of the TWINE algo-
rithm are given in this section.

2.1 Notations

0̃m: the concatenation of m 4-bit 0s. Cr
L, Cr

H : constants used in the Key Schedule of TWINE.

x||y: the concatenation of x and y. k(i, j): ki ⊕ s[kj ], where s stands for 4-bit sbox.

A[i1,...,im]: Ai1 ||...||Aim . RKr
[0,...,7]: the 32-bit round subkey of round r.

αi+1: one possible value for output difference of sbox with input difference αi.

βi+1: one possible value for output difference of sbox with input difference βi.

�s[b]: {s[x] ⊕ s[x ⊕ b]|x ∈ {0, ..., f}} the set of output differences of s with input difference b.

a ∈ �s[b]: a is one of the possible output difference of sbox with input difference b.

(Xr
0 , Xr

1 , ..., Xr
14, Xr

15): the 64-bit input value of round r.

#RKr
p : the number of possible values of RKr

p for each plaintext-ciphertext pair.

2.2 Description of TWINE

TWINE is a 64-bit block cipher with 80-bit or 128-bit key. The global structure
of TWINE is a variant of Type-2 generalized Feistel structure with 16 nibbles.
Consisting of 8 4-bit S-boxes and a diffusion permutation π as described in
Table 2, the round function of TWINE is showed in Fig. 1. Expressed in a formula
form, the round function encrypts an input value of round r to the input value
of round r + 1 in the following two steps:

Xr
2j+1 ← s[Xr

2j ⊕ RKr
j ] ⊕ Xr

2j+1(j = 0, ..., 7),

Xr+1
π(i) ← Xr

i .

For both versions of TWINE, the round function is iterated for 36 times and the
diffusion permutation is omitted in the last round.

The key schedules of TWINE-80 and TWINE-128 produce 36 32-bit round
subkeys RKr

[0,...,7] (r = 1, ..., 36) from the 80-bit master key (denoted as k0, ..., k19)
and 128-bit master key (denoted as k0, ..., k31) respectively as described in Algo-
rithmD.1. and Algorithm D.2. (AppendixD).
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Fig. 1. Round function of TWINE

Table 2. S-box and π permutation

3 Observations and 14-Round Impossible Differentials
of TWINE

This section gives several useful observations and the reason for our choice of
the impossible differential path. Observation 1 is used in [15]. For the sake of
completeness, we describe it here. Observation 2, 3, 4, 5 are about the subkeys.
We give the round subkeys of TWINE-80 from round 1 to round 5 and the round
subkeys of TWINE-128 from round 1 to round 7 in TableD.1 and Table D.2
(AppendixD).

Observation 1. For any input difference a(�= 0) and output difference b(∈
�s[a]) of the sbox in TWINE, the average number of pairs that satisfy the
differential characteristic (a → b) is 16

7 . Given an 8-bit pair (Xr
2i,X

r
2i+1) and

(Xr
2i ⊕ a,Xr

2i+1 ⊕ b), the probability that RKr
i leads to the sbox differential char-

acteristic (a → b) is 7−1.

Observation 2. The round subkeys of TWINE-80 satisfy the following equa-
tions among four adjacent rounds.

RKr+2
5 = RKr

1 ; RKr+2
3 = RKr

5 ; RKr+2
6 = s−1[RKr+1

7 ⊕ RKr
0 ] ⊕ Cr+1

L , (1 ≤ r ≤ 34);
RKr+3

4 = RKr
3 ; RKr+3

0 = RKr
4 ; RKr+3

1 = RKr
6 ⊕ Cr+2

H ; RKr+3
2 = RKr

7 , (1 ≤ r ≤ 33);
RKr+3

6 = RKr
2 ⊕ s[RKr

7 ] ⊕ Cr+2
L , (1 ≤ r ≤ 33).

Observation 3. The round subkeys of TWINE-80 satisfy the following equa-
tions among RK1, RK2, RK21, RK22 and RK23.

f1(RK2
[2,7]

, RK22
2 , RK23

1 ) = 0; f2(RK1
1 , RK2

4 , RK21
7 , RK22

[3,4,6]
, RK23

[0,4]
) = 0;

f3(RK2
6 , RK22

[2,5,6]
) = 0; f4(RK1

[5,7]
, RK21

[4,7]
, RK22

6 , RK23
[0,4]

) = 0;

f6(RK1
[1,6]

, RK23
[3,4,5]

) = 0; f5(RK1
5 , RK2

6 , RK21
4 , RK22

[1,5]
, RK23

3 ) = 0;

f7(RK1
0 , RK2

7 , RK23
[2,5,6]

) = 0; p

The precise expression of functions fi(i = 1, ..., 8) are shown in AppendixA.



Impossible Differential Attack on Reduced-Round TWINE 127

Observation 4. The round subkeys of TWINE-128 satisfy the following equa-
tions among six adjacent rounds.

RKr+5
7 = RKr+1

2 ⊕ s[RKr
6 ]; RKr+5

6 = RKr
4 ⊕ s[RKr+1

2 ⊕ s[RKr
6 ]], (1 ≤ r ≤ 31);

RKr+4
7 = RKr

2 ⊕ s[RKr+3
2 ]; RKr+4

3 = RKr
7 ⊕ Cr+3

L ⊕ s[RKr+1
1 ], (1 ≤ r ≤ 32);

RKr+4
4 = RKr

0 ; RKr+4
5 = RKr

1 ; RKr+4
0 = RKr

5 ; RKr+4
2 = RKr

6 , (1 ≤ r ≤ 32);
RKr+3

1 = RKr
3 ⊕ Cr+2

H , (1 ≤ r ≤ 33).

Observation 5. The round subkeys of TWINE-128 satisfy the following equa-
tions among RK1, RK2, RK3, RK4, RK21, RK22, RK23 and RK24.

g1(RK1
1 , RK22

[2,3], RK23
5 ) = 0;

g2(RK1
6 , RK2

2 , RK21
0 , RK24

[6,7]) = 0;
g3(RK3

[0,1], RK21
0 , RK22

2 , RK23
[5,7], RK24

2 ) = 0;
g4(RK1

5 , RK2
3 , RK3

1 , RK21
2 , RK22

6 , RK23
0 , RK24

[2,3]) = 0;
g5(RK1

[0,1], RK3
5 , RK4

0 , RK22
[0,2], RK23

[1,2,4], RK24
[5,7]) = 0;

g6(RK1
[0,7], RK2

[4,5], RK3
5 , RK22

[0,2], RK23
[1,2,3,4,7], RK24

[5,7]) = 0;
g7(RK1

[2,4,6], RK2
[0,2,3,7], RK3

[1,3], RK21
2 , RK22

6 , RK23
[0,3], RK24

[4,5]) = 0;
g8(RK1

[2,4,6], RK2
[0,2,6,7], RK3

[1,3,5], RK22
0 , RK23

[0,1,2,4], RK24
[4,5,7]) = 0;

g9(RK1
[2,4,5,6], RK2

[2,3,7], RK3
[0,1,3], RK21

[0,2], RK22
6 , RK23

[0,5], RK24
[1,4]) = 0.

The precise expression of functions gi(i = 1, ..., 9) are shown in AppendixA.

The 14-Round Impossible Differential Paths. Several 14-round impossible
differential paths are given in [15]. This paper uses (0||α||0̃14) 14r

� (0̃7||β||0̃8) and
(0̃5||α||0̃10) 14r

� (0̃11||β||0̃4) in attacking TWINE-80 and TWINE-128 respec-
tively. Our choice of the impossible differential paths is determined by the
following two reasons. Making use of the relations in Observation 2 and Observa-
tion 4, the truncated differential paths involve the least number of round subkeys.
What’s more, the truncated differential paths involve subkeys that have less com-
plicated equations in Observation 3 and Observation 5. Observation 6 is used in
[15]. For the sake of completeness, we give a clear description. Observation 6 and
7 are useful in selecting more accurate plaintext/ciphertext pairs for attacking
TWINE-80 and TWINE-128 respectively. Observation 8 is used in key recovery
phase of our attacking TWINE-80. Its proof gives a detailed computation and
analysis of the number of co responding subkeys that passing the differential
path.

Observation 6. If the impossible differential (0||α||0̃14) 14r
� (0̃7||β||0̃8) is

extended 4 rounds ahead and 5 rounds behind, then the input difference is of
the form

(α3, α4, 0, α2, 0̃6, α1, α
′′
2 , α

′
1, α

′
2, 0, α)

where α �= 0, α
′
2 ∈ �s[α

′
1], α

′
1 ∈ �s[α], α3 ∈ �s[α2], α

′′
2 ∈ �s[α1], α4 ∈ �s[α3],

α2 ∈ �s[α1], α1 ∈ �s[α];
and the output difference is of the form
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(0, β
′
1, 0, β3, β

′
2, β

′
3, β, x, β4, β5, β2, β

′′′
3 , β

′′
2 , β

′′
3 , 0̃2)

where β �= 0, β
′
3 ∈ �s[β

′
2], β5 ∈ �s[β4], β

′′′
3 ∈ �s[β2], β

′′
3 ∈ �s[β

′′
2 ], β

′
2 ∈

�s[β
′
1], β4 ∈ �s[β3], β3 ∈ �s[β2], β

′
1 ∈ �s[β];

Pr(αβ �= 0, and all the relations hold) = (15
16 )2 · ( 7

16 )15 = 2−18.08.

Observation 7. If the impossible differential (0̃5||α||0̃10) 14r
� (0̃11||β||0̃4) is

extended 5 rounds on the top and the bottom of it respectively, then the input
difference is of the form

(α4, α5, 0, α3, α
′
2, α

′
3, 0̃

3, α
′
1, α2, α

′′′
3 , α

′′
2 , α

′′
3 , α, y)

where α �= 0, α5 ∈ �s[α4], α
′
3 ∈ �s[α

′
2], α

′′′
3 ∈ �s[α2], α

′′
3 ∈ �s[α

′′
2 ], α

′
2 ∈

�s[α
′
1], α

′
1 ∈ �s[α], α3 ∈ �s[α2], α4 ∈ �s[α3];

and the output difference is of the form

(β
′
2, β

′
3, β4, β5, 0, β

′
1, β

′′
2 , β

′′
3 , 0, β3, 0̃2, β, x, β2, β

′′′
3 )

where β �= 0, β
′
3 ∈ �s[β

′
2], β5 ∈ �s[β4], β

′′′
3 ∈ �s[β2], β

′′
3 ∈ �s[β

′′
2 ], β

′
2 ∈

�s[β
′
1], β4 ∈ �s[β3], β3 ∈ �s[β2], β

′
1 ∈ �s[β];

Pr(αβ �= 0, and all the belonging relations holds) = (15
16 )2 · ( 7

16 )16 = 2−19.27.

Observation 8. For a plaintext-ciphertext pair satisfying the input-output dif-
ference relations in Observation 6, the following can be deduced according to the
differential path in attacking TWINE-80:

(1) Given RK1
[1,6,7], RK2

6 that pass the differential path, then 16
7 values of RK1

2

on average can pass the path and be computed;
(2) Given RK23

[2,3,4,5] that pass the differential path, then 16
7 values of RK22

0 on
average can pass the path and be computed;

(3) Given RK23
[3,6] that pass the differential path, then 16

7 values of RK22
4 on

average can pass the path and be computed;
(4) Given RK23

[1,3,4,5], RK22
[0,5] that pass the differential path, then (16

7 )2 values
of RK21

7 on average can pass the path and be computed.

Proof

(1) Compute X4
2 using RK4

1 = RK1
6 ⊕ C3

H and (�X4
2 ,�X4

3 ), where we get
#X4

2 = 16/7 for every RK1
6 . Besides, X3

11 = X2
14 is computed using RK1

7

by partial encryption. Then X3
10 is computed using RK3

5 = RK1
1 by partial

decryption, where we get #X3
10 = 16/7 for every RK1

[1,6,7]. After that,
together with the known X2

13 = X1
8 and RK2

6 , we get the values of X2
12 where

#X2
12 = 16/7 for every (RK1

[1,6,7], RK2
6 ). Finally, with the knowledge of

X1
[4,5], we can compute RK1

2 with #RK1
2 = 16/7 for every (RK1

[1,6,7], RK2
6 ).

(2) Compute X21
3 = X20

6 using RK20
3 = RK23

4 and (�X20
6 ,�X20

7 ), where we
get #X21

3 = 16/7 for every RK23
4 . Besides, X22

4 is computed using RK23
3 .

Then X22
1 is computed using RK21

1 = RK23
5 , where we get #X22

1 = 16/7 for
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every RK23
[3,4,5]. What’s more, X22

0 is computed using RK23
2 . Then together

with the known X22
0 = X23

0 , we can compute RK22
0 with #RK22

0 = 16/7
for every RK23

[2,3,4,5].
(3) Compute X22

9 = X21
10 using RK21

5 = RK23
3 and (�X21

10 ,�X21
11 ), where we

get #X22
9 = 16/7 for every RK23

3 . Besides, X22
8 is computed using RK23

6 .
Then together with X23

6 , we can compute RK22
4 with #RK22

4 = 16/7 for
every RK23

[3,6].
(4) As just mentioned, 16/7 values of X22

9 is computed for every RK23
3 . Since

X22
9 = X21

10 , we get 16/7 values of X21
10 for every RK23

3 . Besides, Compute
X20

13 = X19
8 using RK19

4 = RK22
0 and (�X19

8 ,�X19
9 ), where we get #X20

13 =
16/7 for every RK22

0 . Then X20
12 is computed using RK20

6 = RK23
1 ⊕ C22

H ,
where #X20

12 = (16/7)2 for every (RK23
[1,3], RK22

0 ). Furthermore, compute
X22

14 using RK23
5 , compute X22

10 using RK23
4 , then compute X22

11 using RK22
5 .

With the knowledge of X20
12 , X22

14 and X22
11 , we can compute RK21

7 with
#RK21

7 = (16/7)2 for every (RK23
[1,3,4,5], RK22

[0,5]). �

4 Impossible Differential Cryptanalysis of 23-Round
TWINE-80

4.1 Analysis of Suzaki et al.’s Attack on TWINE-80

In the last paragraph of page 9 in the TWINE-80 attack [15], the authors
said that In the key elimination we need to COMPUTE some other subkeys
(64 bits in total), which is uniquely determined by the key of Eq. (5). These
keys contain RK19

4 , RK21
4 , and RK23

6 and they can cause a contradiction with
other keys. Therefore, an attacker has to compute these other subkeys using
the 80-bit (K1,K2,K3), and then check whether there is a contradiction. Unfor-
tunately, it seems that this part is omitted in their time complexity formula
250.11+10 · 220 · 22/(23 · 8) = 277.04. Because we notice that 250.11+10 means the
number of plaintext/ciphertext pairs, 220 stands for the time regarding K1, and
22/(23 · 8) is the time regarding (K2,K3). If the omitted time is considered, the
time complexity is supposed to be bigger than exhaustive key search. Take the
computation of RK23

6 = s[RK23
2 ]⊕ s[RK21

1 ]⊕ s−1[RK2
7 ⊕RK1

0 ] as an example1,
we know that the numbers of RK23

2 , RK21
1 , RK2

7 , and RK1
0 that pass the differ-

ential path are all 16/7 for one right plaintext/ciphertext pair. Hence the time for
checking whether there is a contradiction regarding RK23

6 is (16/7)4. Multiplied
by the extra (16/7)4, the time complexity is 277.04 · (16/7)4 = 281.81. It seems
that there is a similar problem in the analysis of their attack on TWINE-128.

4.2 Impossible Differential Attack on 23-Round TWINE-80

In this section, we present an impossible differential attack on 23-round TWINE-
80 using the impossible differential (0||α||0̃14) 14r

� (0̃7||β||0̃8). This paper uses
1 Reference [15] ignores some known constants Cr

H , Cr
L in their subkey relations.
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the same impossible differential as in [15] for TWINE-80, because it leads to the
least number of involved round subkeys. The 14-round impossible differential
is extended 4 rounds on the top and 5 rounds on the bottom. The extended
truncated differential paths are showed in Fig. 2. Making use of Observation 2,
eight equations RK3

3 = RK1
5 , RK3

5 = RK1
1 , RK4

1 = RK1
6 ⊕ C3

H , RK19
4 =

RK22
0 , RK20

3 = RK23
4 , RK20

6 = RK23
1 , RK21

1 = RK23
5 and RK21

5 = RK23
3

are discovered. Hence the added 9 rounds involve 44 + 68 = 112 bits round
subkeys (see Tables 3 and 4). Therefore, 112 − 80 = 32 bits subkey information
are redundant, which are described in Observation 3.

The idea of attacking is to discard these K112 which pass the truncated dif-
ferential paths under the condition that K112 is indeed generated from one 80-bit
master key according to the key schedule. Denote K0 = (RK1

[1,7], RK23
[0,1,7]), K1 =

(RK1
[0,2,3,5,6], RK2

[2,4,6,7], RK22
[1,3,5], RK23

[2,3,5]), K2 = (RK21
[4,7], RK22

[0,2,4,6], RK23
[4,6]).

The main steps of our attack are as follows. Firstly, some tables are computed in
the precomputation phase for the sake of time and memory balance. Secondly, for
every guess of K0, combine (K1, K2) which pass the truncated differentials and
all the subkeys equations. And then the K1 in the combined (K1, K2) is removed
from an initialized subkey table. After all the chosen plaintext-ciphertext pairs
are utilized, store K0 and the finally remained K1. (Notice that once (K0,K1)
is known, K2 can be computed uniquely according to the subkey equations.)
Finally, do trial encryptions for the remaining keys.

Table 3. Subkeys involved in the extended head path of attacking 23-r TWINE-80

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k1 k3 k4 k6 k14 k15 k16

Round 2 k8 k17 k19 ⊕ C1
L k(1, 0)

Round 3 k14 k3

Round 4 k15 ⊕ C3
H

Table 4. Subkeys involved in the extended tail path of attacking 23-r TWINE-80

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 19 RK19
4 =

RK22
0

Round 20 RK20
3 =

RK23
4

RK20
6 =

RK23
1 ⊕

C22
H

Round 21 RK21
1 =

RK23
5

RK21
4 RK21

5 =
RK23

3

RK21
7

Round 22 RK22
0 RK22

1 RK22
2 RK22

3 RK22
4 RK22

5 RK22
6

Round 23 RK23
0 RK23

1 RK23
2 RK23

3 RK23
4 RK23

5 RK23
6 RK23

7
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Table 5. KTi tables

Table Index Contenta

KT2 (RK1
1 , RK23

0 , RK23
4 , RK22

6 , RK21
7 , RK22

[3,4]) RK2
4

KT3 RK22
[2,5,6] RK2

6

KT4 (RK1
7 , RK23

0 , RK23
4 , RK22

6 , RK1
5 , RK21

4 ) RK21
7

KT5 (RK23
3 , RK2

6 , RK22
5 , RK1

5 , RK21
4 ) RK22

1

KT8 (RK1
7 , RK23

7 , RK22
1 , RK21

7 , RK22
0 ) RK1

2
aThe number of possible values of the subkey stored in con-
tent is 1 for each index.

Precomputation. Firstly, two tiny tables are precomputed for sbox. A differ-
ence distribution table for sbox is computed to facilitate choosing more accurate
plaintext-ciphertext pairs using Observation 6. So that α1 ∈ �s[α] can be exam-
ined by looking up the table. Besides, another tiny table is needed in computing
round subkeys, which stores the input pairs of sbox with input and output differ-
ence as index. Take the computation of RK1

0 as an example, suppose a plaintext
pair satisfies �X1

1 ∈ �s[�X1
0 ], looking up this table with index (�X1

0 , �X1
1 )

gives the input pair (In1, In2) for sbox, and then RK1
0 = In1 ⊕ X1

0 .
Secondly, in order to decrease time complexity at the cost of a little memory

in key recovery phase, five tables KTi (i = 2,3,4,5,8) are precomputed for func-
tions fi. Hence the computation of fi can be replaced by one table looking up.
A detailed description of these tables is showed in Table 5.

Data Collection. Choose 2n structures of plaintexts, and each structure con-
tains plaintexts with the following form (p0, p1, γ0, p2, γ1, γ2, γ3, γ4, γ5, γ6, p3, p4,
p5, p6, γ7, p7), where γi(i = 0, ..., 7) are constants in each structure and pi(i =
0, ..., 7) take all possible values. As a result, there are 232 plaintexts in each
structure and we can get 2n+63 plaintext pairs.

Ask for encryptions of the plaintexts in each structure and get the correspond-
ing ciphertexts. The ciphertext is denoted as (C0, C1, C2, C3, C4, C5, C6, C7, C8,
C9, C10, C11, C12, C13, C14, C15). A hash table with index C[0,2,14,15] is built to
choose the pairs that satisfy the condition �C[0,2,14,15] = 0. The pairs that do
not satisfy the condition are discarded. Hence there are 2n+63−16 = 2n+47 pairs
remained.

Furthermore, filter the pairs using the plaintext and ciphertext difference
relations listed in Observation 6. Therefore, 2n+47−18.08 = 2n+28.92 pairs are
finally obtained.

Key Recovery. A detailed key recovery procedure is showed in the follow-
ing Algorithm 1. It’s main steps are as follows. Firstly, 20-bit K0 is guessed. And
then for each plaintext-ciphertext pair, substeps (1.2.1) to (1.2.10) compute some
round subkeys that pass the differential path. And then substep (1.2.11) com-
bines all the subkeys according to f6, f7, f1, f3, f5, f4, f8 and f2 in sequence
and the differential characteristic to obtain 92-bit round subkeys. After these
done, the combined 112-bit (K0, K1, K2) pass the differential path and contains
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Fig. 2. Attack path for 23-round TWINE-80 (Input (output) values marked with short
sloping line and the round subkeys corresponding to black s-box are involved in the
attack.)

exactly 80-bit key information which can be expressed by (K0, K1). Therefore,
the obtained K1 in the combined 92-bit round Sunkeys are wrong keys and then
be discarded in substep (1.2.12). After step 1, the right round subkey is in the
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remained ones. Hence step 2 aims to recover the right key by trial encryptions.
After the candidate master key is computed in substeps (2.1.1) and (2.1.2), a
trial encryption is done in substep (2.1.3) to find the right master key.

Algorithm 1. TWINE-80 Key Recovery

Input: chosen plaintext-ciphertext pairs, functions fi (i = 1,...,8), differential characteristic

Output: right key used in TWINE-80

1: For every possible value of K0 = (RK1
[1,7], RK23

[0,1,7]), do

(1.1): Initialize a table Γ of 260 all possible values of K1;

(1.2): For each chosen plaintext-ciphertext pair, do

(1.2.1): Compute X2
[4,14] using RK1

[1,7] by partial encryption of plaintext;

(1.2.2): Compute X22
[2,6,12] using RK23

[0,1,7] by partial decryption of ciphertext;

(1.2.3): Compute RK1
[0,5,6], (RK23

2 , X22
0 ), (RK23

4 , X22
10 ), (RK23

5 , X22
14 ), (RK23

6 , X22
8 ) using the

plaintext-ciphertext pair and differential characteristic;

(1.2.4): Compute RK2
7 using X2

14 and (�X2
14, �X2

15);

(1.2.5): Compute RK22
3 using X22

6 and (�X22
6 , �X23

8 );

/∗ each 4-bit subkey computed above has 16
7

values ∗/

(1.2.6): For every possible value of RK23
3 , do /∗ 24 loops ∗/

Compute X22
4 using partial decryption for the ciphertext pair;

If �X22
4 ∈ �s[�X23

6 ], �X23
10 ∈ �s[�X22

4 ] and �X23
12 ∈ �s[�X22

4 ] all holds, /∗ Pr = ( 7
16

)3 ∗/

then store (RK23
3 , X22

4 )

(1.2.7): Compute RK1
2 using Observation 8, and then store RK1

2 in Q0 with index (RK1
6 , RK2

6 );

(1.2.8): Compute RK22
4 using Observation 8, and then store RK22

4 in Q1 with index RK23
[3,6];

(1.2.9): Compute RK22
0 using Observation 8, and then store RK22

0 in Q2 with index RK23
[2,3,4,5];

(1.2.10): Compute RK21
7 using Observation 8, and then store RK21

7 in Q3 with index (RK23
[3,4,5], RK22

[0,5]);

(1.2.11): Combine all the involved subkeys using Algorithm 2 to obtain (K1, K2) with known K0;

(1.2.12): Remove K1 in the combined (K1, K2) from Γ ;

(1.3): Store K0 and the finally remained K1 from Γ .

2: After the above steps, suppose there are 2m (K0, K1).

(2.1): For each value of (K0, K1), do

(2.1.1): compute the value of K2 using fi (i = 1,...,8);

(2.1.2): and then compute the 9 partial master keys k2, k5, k7, k9, k10, k11, k12, k13, k18 using (K0, K1, K2);

/∗ the other 11 partial master keys are known in (K0, K1) ∗/

(2.1.3): And then do a trial encryption. If it is correct, then return the right key and abort the loop.

Complexity Analysis. As can be seen from Fig. 2, there are 36 active sboxes.
Among these sboxes, 17 sboxes with zero input difference let the correspond-
ing subkey pass the truncated differential with probability 1. Any of the 15
sboxes whose input and output difference appeared in the plaintext/ciphertext
difference make the corresponding subkey pass the truncated differential with
probability 7−1. The subkey RK23

3 passes the truncated differential with prob-
ability ( 7

16 )3 as described in substep (1.2.6). After RK23
3 passing, any of the 3

sboxes who has �X22
4 as its input(output) difference and nonzero output(input)

difference let the corresponding subkey pass the truncated differential with prob-
ability 7−1. Therefore, the proportion of removing wrong subkeys for each pair
is 7−18 · ( 7

16 )3 = 2−54.11. Hence the number of remained 80-bit subkey after
analyzing all 2n+28.92 pairs is σ = 280(1 − 2−54.11)2

n+28.92
= 2m.
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Algorithm 2. Subkeys Combining Procedure

Input: a plaintext-ciphertext pair, K0 = (RK1
[1,7], RK23

[0,1,7]), tables {KTj}(j = 2, 3, 4, 5, 8), {Qi}(i = 0, ..., 3),

and the already computed subkeys RK1
[0,5,6], RK23

[2,3,4,5,6], RK2
7 , RK22

3

Output: combined 92-bit subkeys (K1, K2) which pass the path and all the subkey equations

1: For (RK1
6 , RK23

[3,4,5]) do: /∗ l1 = ( 16
7

)3 · (24 · ( 7
16

)3) = 24 loops ∗/

Compute f6 with the above subkeys;

If the result is zero, then store RK = (RK1
6 , RK23

[3,4,5] /;) ∗ holds with Pr = 2−4 ∗/

otherwise, try next (RK1
6 , RK23

[3,4,5]);

2: For every obtained (RK1
0 , RK2

7 , RK23
2 ), do: /∗ l2 = ( 16

7
)3 loops ∗/

Compute RK23
6 using f7; and then compute X22

8 using RK23
6 by partial decryption;

If �X22
8 = 0, then add (RK1

0 , RK2
7 , RK23

[2,6]) to RK; /∗ Pr = 16
7

· 2−4 ∗/

otherwise, try next (RK1
0 , RK2

7 , RK23
2 );

compute RK22
2 using the obtained X22

4 and (�X22
4 , �X23

12 ); /∗ 16
7

values ∗/

3: For every obtained RK22
2 , do: /∗ l3 = 16

7
loops ∗/

Compute RK2
2 using f1; and then compute X3

12 using RK2
2 by partial encryption;

If �X3
12 = 0, then add (RK2

2 , RK22
2 ) to RK /; ∗ Pr = 16

7
· 2−4 ∗/

otherwise, try next RK22
2 ;

4: For every guessed RK22
[5,6], do: /∗ l4 = 28 loops ∗/

Look up KT3 to get the value of RK2
6 , then add (RK2

6 , RK22
[5,6]) to RK;

Compute X21
8 using RK22

6 and X23
[10,15] by partial decryption, and then compute RK21

4 ;

5: For every obtained (RK1
5 , RK21

4 ), do: /∗ l5 = ( 16
7

)2 loops ∗/

Look up KT5 to obtain RK22
1 , and then compute X21

6 using RK22
1 by partial decryption;

If �X21
6 = 0, then add (RK1

5 , RK21
4 , RK22

1 ) to RK /; ∗ Pr = 16
7

· 2−4 ∗/

otherwise, try next (RK1
5 , RK21

4 );

6: Look up KT4 to get the value for RK21
7 ;

For every RK22
0 in Q2, do: /∗ l6 = 16

7
loops ∗/

If RK21
7 appears in Q3 with index (RK23

[1,3,4,5], RK22
[0,5]), /∗ Pr = ( 16

7
)2 · 2−4 ∗/

then add (RK21
7 , RK22

0 ) to RK; otherwise, try next RK22
0 ;

7: Look up KT8 to get the value for RK1
2 ;

If it appears in Q0 with index (RK1
6 , RK2

6 ), then add RK1
2 to RK; /∗ Pr = 16

7
· 2−4 ∗/

otherwise, try next RK22
0 ;

8: For every RK22
4 (from Q1) and RK22

3 , do: /∗ l8 = ( 16
7

)2 loops ∗/

Look up KT2 to get the value for RK2
4 ;

compute X3
6 using RK3

3 = RK1
5 and (�X3

6 , �X3
7 ),

and then X2
8 is computed using RK2

4 by partial decryption, and then RK1
3 is computed using

the plaintext pair and X2
8 ; and then add (RK22

[3,4], RK2
4 , RK1

3 ) to FK.

9: Return the combined RK = (RK1
6 , RK23

[3,4,5], RK1
0 , RK2

7 , RK23
[2,6], RK2

2 , RK22
2 ,

RK2
6 , RK22

[5,6], RK1
5 , RK22

1 , RK21
4 , RK21

7 , RK22
0 , RK1

2 , RK22
[3,4], RK2

4 , RK1
3 ).

The time complexity of data collection contains: 2n+32 to build the hash
table, and 2n+47( 15

16 ·
∑7

i=0(
7
16 )i + (15

16 )2 ·
∑14

i=8(
7
16 )i) = 2n+47.737 looking up dif-

ference distribution table to choose the pairs with required ciphertext/plaintext
difference, which is 2n+38.628 encryptions.

The time complexity of computing the tables in precomputation phase can
be omitted compared to the time in key recovery phase.

Notice that the time for substep (1.2.11) dominates the time of step (1.2).
Hence the complexity of step (1.2) is l1 · (11 + 2−4 · l2 · (9 + 16

7 + 1 + 7−1 · (1 +
16
7 + l3 · (7 + 3 + 1 + 7−1 · l4 · (1 + 3 + 16

7 + l5 · (1 + 1 + 16
7 + 1 + 7−1 · (1 + l6 · (1 +

( 16
7 )2 ·2−4 · (2+7−1 · l8(2+ 16

7 ·7)))))))))) = 212.73 xor, where the computation of
f6, f7, f1 needs 11, 9, 7 xor or looking up sbox respectively. (The computation
of values li (i = 1,...,10) and time estimation for substeps (1.2.7) to (1.2.10) is
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showed in AppendixB.) Hence the time complexity of step 1 in Key Recovery is
T1 = 220+n+28.92+12.73 · 1

23·24 23-round encryptions = 2n+52.54 encryptions.
The time complexity of step 2 in Key Recovery is T2 = 2m encryptions,

because the time of computing K2 and nine partial master key (k2, k5, k7,
k9, k10, k11, k12, k13, k18) is much less than one encryption for each K1 (see
AppendixA). Let n = 25.85, m = 77.72, then the time complexity of this attack
is T1 + T2 = 279.09 encryptions. Hence, the data complexity is 257.85 blocks and
the memory complexity is 2m · 80/64 + 260/64 = 278.04 blocks.

5 Impossible Differential Attack on 24-Round
TWINE-128

Attack on 24-round TWINE-128 uses the impossible differential (0̃5||α||0̃10) 14r
�

(0̃11||β||0̃4), because it involves the least number of round subkeys. What’s
more, subkeys involved in the truncated differential paths have less compli-
cated equations which are showed in Observation 5. We extend 5 rounds on the
top and the bottom of the 14-round impossible differential respectively. Table 6
and Table 7 show that the top 5 rounds involve 80-bit subkey information and
the bottom 5 rounds involve 84-bit subkey information respectively. Therefore,
80 + 84 − 128 = 36 bits subkey information are redundant, which are described
in Observation 5.

Attacking TWINE-128 is similar to attack on TWINE-80. Suppose 2n struc-
tures are used in this attack, and each structure contains plaintexts with the form
(p0, p1, γ0, p2, p3, p4, γ1, γ2, γ3, p5, p6, p7, p8, p9, p10, p11), where γi(i = 0, ..., 3)

Table 6. Subkeys involved in the extended head path of attacking TWINE-128

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k2 k3 k12 k15 k17 k18 k28 k31

Round 2 k6 k16 k19 ⊕ C1
L k21 k22 k(1, 0) k0

Round 3 k10 k11 ⊕ C2
H k(23, 30) ⊕ C2

L k26

Round 4 k14 k15 ⊕ C3
H

Round 5 k18

Table 7. Subkeys involved in the extended tail path of attacking TWINE-128

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 20 RK20
1 = RK24

5

Round 21 RK21
0 RK21

2

Round 22 RK22
0 RK22

2 RK22
3 RK22

6

Round 23 RK23
0 RK23

1 RK23
2 RK23

3 RK23
4 RK23

5 RK23
7

Round 24 RK24
0 RK24

1 RK24
2 RK24

3 RK24
4 RK24

5 RK24
6 RK24

7



136 X. Zheng and K. Jia

are constants and pi(i = 0, ..., 11) take all possible values in each structure.
As a result, there are 248 plaintexts in each structure and 2n+95 pairs are
obtained. And then select the pairs that satisfy Observation 7, 2n+95−16−19.27 =
2n+59.73 pairs are finally obtained. The complexity of data collection is 2n+70.6278

encryptions.
Let K0 = (RK1

[1,4], RK24
[2,4,5]), K1 = (RK1

[0,2,3,5,6,7], RK2
[0,2,3,4,5,6,7], RK3

[0,1,3,5],
RK4

0 , RK21
2 , RK22

6 , RK23
[0,1,2,4], RK24

[0,6,7]), K2 = (RK21
0 , RK22

[0,2,3], RK23
[3,5,7],

RK24
[1,3]), Since the main idea of key recovery is similar to that in TWINE-80, we

give the detailed description of key recovery algorithm in AppendixC. Combining
(K0, K1, K2) that pass the truncated differentials and the equations in Observa-
tion 5 can be done in 245.48 xor operations according to g1, g2, g3, g4, g9, g7, g8, g5,
g6 in sequence (see Appendix C).

Therefore, the time for filtering wrong keys is T1 = 220+n+59.73+45.48 · 1
24·24

24-round encryptions = 2n+116.04 encryptions, followed by T2 = 2m encryptions
to do trial encryptions. Since the probability of differential path is Pr= (7−11 ·
( 7
16 )3)2 = 2−68.92, let σ = 2128 · (1 − 2−68.92)2

n+59.73
= 2m. Take n = 10.1,

m = 125.29, then the time complexity is T1 + T2 = 2126.78 encryptions. And
the memory complexity and data complexity are 2m · 80/64 + 2108/64 = 2125.61

blocks and 258.1 blocks respectively.

6 Conclusion

This paper gives an impossible differential cryptanalysis of reduced-round
TWINE-80 and TWINE-128. In the attacks, we present some key relations, and
then an optimal algorithm is proposed to recovery subkeys using these relations,
which may be used in other types of attacks. According to the known results, it
seems that TWINE currently remains immune to impossible differential attack.

A

The following equations are deduced from the TWINE-80 key schedule.

f1 = RK
2
2 ⊕ s[RK

2
7 ] ⊕ RK

22
2 ⊕ s[RK

23
1 ⊕ C

22
H ⊕ C

19
L ] ⊕ C

7
H ⊕ C

4
L = 0

f2 = RK
22
4 ⊕ RK

2
4 ⊕ C

14
H ⊕ C

11
L ⊕ s[C

9
H ⊕ C

6
L ⊕ RK

21
7 ⊕ s[RK

22
6 ⊕ C

21
L ]] ⊕ s[RK

22
3 ⊕ C

17
H ⊕ C

14
L

⊕ s[RK
23
0 ⊕ C

12
H ⊕ C

9
L] ⊕ s[RK

1
1 ⊕ s[RK

23
4 ⊕ C

15
H ⊕ C

12
L ]] ⊕ s[RK

23
0 ⊕ C

12
H ⊕ C

9
L]] = 0

f3 = RK
2
6 ⊕ C

4
H ⊕ C

1
L ⊕ C

21
L ⊕ RK

22
6 ⊕ s[RK

22
5 ⊕ C

19
H ⊕ C

16
L ] ⊕ s[RK

22
2 ] = 0

f4 = RK
23
0 ⊕ RK

23
4 ⊕ C

15
H ⊕ C

12
L ⊕ s[RK

1
5 ⊕ s[C

13
H ⊕ C

10
L ⊕ RK

21
4 ]] ⊕ C

12
H ⊕ C

9
L

⊕ s
−1

[RK
1
7 ⊕ C

9
H ⊕ C

6
L ⊕ RK

21
7 ⊕ s[RK

22
6 ⊕ C

21
L ]] = 0

f5 = RK
23
3 ⊕ RK

1
5 ⊕ C

18
H ⊕ C

15
L ⊕ s[RK

21
4 ⊕ C

13
H ⊕ C

10
L ]

⊕ s[RK
22
1 ⊕ s[RK

2
6 ⊕ C

4
H ⊕ C

1
L ⊕ s[RK

22
5 ⊕ C

19
H ⊕ C

16
L ]] ⊕ C

21
H ⊕ C

18
L ] = 0

f6 = RK
23
5 ⊕ s[C

15
H ⊕ C

12
L ⊕ RK

23
4 ] ⊕ C

20
H ⊕ C

17
L ⊕ RK

1
1 ⊕ s[RK

1
6 ⊕ C

3
H ⊕ s[C

18
H ⊕ C

15
L ⊕ RK

23
3 ]] = 0

f7 = RK
23
6 ⊕ s[C

20
H ⊕ C

17
L ⊕ RK

23
5 ] ⊕ s[RK

23
2 ] ⊕ s

−1
[RK

2
7 ⊕ RK

1
0 ] ⊕ C

5
H ⊕ C

2
L ⊕ C

22
L = 0

f8 = s
−1

[RK
23
7 ⊕ RK

22
0 ] ⊕ s[RK

21
7 ] ⊕ s[C

21
H ⊕ C

18
L ⊕ RK

22
1 ] ⊕ RK

1
2 ⊕ C

6
H ⊕ C

3
L ⊕ s[RK

1
7 ] = 0
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Ascanbe seen fromtheabove equations,K2 = (RK21
[4,7], RK22

[0,2,4,6], RK23
[4,6]) canbe

computed from (K0,K1) = (RK1
[0,1,2,3,5,6,7], RK2

[2,4,6,7], RK22
[1,3,5], RK23

[0,1,2,3,5,7])
successively according to equations f1, f3, f5, f6, f7, f4, f8, f2 in 87/(23 · 24)
Xor = 2−2.67 encryptions.

k9 = s
−1

[RK
1
7 ⊕ C

9
H ⊕ C

6
L ⊕ RK

21
7 ⊕ s[RK

22
6 ⊕ C

21
L ]] ⊕ s[RK

2
2 ⊕ s[RK

2
7 ]]

k10 = RK
22
3 ⊕ C

17
H ⊕ C

14
L ⊕ s[RK

23
0 ⊕ C

12
H ⊕ C

9
L] ⊕ s[RK

1
1 ⊕ s[RK

23
4 ⊕ C

15
H ⊕ C

12
L ]]

k5 = RK
22
0 ⊕ C

11
H ⊕ C

8
L ⊕ s[RK

1
2 ⊕ s[RK

1
7 ]] ⊕ s[RK

2
4 ⊕ s[RK

1
7 ⊕ s[k9 ⊕ s[RK

2
2 ⊕ s[RK

2
7 ]]]]]

k11 = RK
23
1 ⊕ C

2
H ⊕ C

22
H ⊕ C

19
L ⊕ s[RK

22
3 ⊕ C

17
H ⊕ C

14
L ] ⊕ s[s

−1
[RK

2
7 ⊕ RK

1
0 ]

⊕ C
5
H ⊕ C

2
L ⊕ s[RK

23
5 ⊕ C

20
H ⊕ C

17
L ]]

k18 = RK
22
5 ⊕ C

19
H ⊕ C

16
L ⊕ s[RK

22
4 ⊕ C

14
H ⊕ C

11
L ] ⊕ s[k11 ⊕ C

2
H ⊕ s[RK

22
3 ⊕ C

17
H ⊕ C

14
L ]]

k7 = RK
22
1 ⊕ C

1
H ⊕ C

21
H ⊕ C

18
L ⊕ s[RK

1
3 ⊕ s[RK

22
0 ⊕ C

11
H ⊕ C

8
L] ⊕ s[k18 ⊕ s[RK

22
4

⊕ C
14
H ⊕ C

11
L ]]] ⊕ s[RK

2
6 ⊕ C

4
H ⊕ s[RK

22
5 ⊕ C

19
H ⊕ C

16
L ]]

k2 = RK
23
4 ⊕ C

15
H ⊕ C

12
L ⊕ s[RK

2
7 ⊕ s[RK

21
4 ⊕ C

13
H ⊕ C

10
L ⊕ s[RK

1
3 ⊕ s[RK

22
0

⊕ C
11
H ⊕ C

8
L]]]] ⊕ s[RK

1
5 ⊕ s[RK

21
4 ⊕ C

13
H ⊕ C

10
L ]]

k12 = RK
23
2 ⊕ C

8
H ⊕ C

5
L ⊕ s[k5 ⊕ s[RK

1
2 ⊕ s[RK

1
7 ]]] ⊕ s[RK

1
6 ⊕ C

3
H ⊕ s[RK

23
3

⊕ C
18
H ⊕ C

15
L ] ⊕ s[RK

1
2 ⊕ C

6
H ⊕ C

3
L ⊕ s[RK

1
7 ] ⊕ s[RK

22
1 ⊕ C

21
H ⊕ C

18
L ]]]

k13 = RK
21
4 ⊕ C

13
H ⊕ C

10
L ⊕ s[k12 ⊕ s[k5 ⊕ s[RK

1
2 ⊕ s[RK

1
7 ]]]] ⊕ s[RK

1
3 ⊕ s[RK

22
0 ⊕ C

11
H ⊕ C

8
L]]

As can be seen from the above equations, the nine partial master key (k2, k5, k7,
k9, k10, k11, k12, k13, k18) can be computed in 114/(23·24) encryptions = 2−2.276

encryptions.
The following equations are deduced from the TWINE-128 key schedule.

g1 = RK
22
3 ⊕ s[RK

23
5 ] ⊕ C

21
L ⊕ s

−1
[RK

22
2 ⊕ RK

1
1 ] = 0

g2 = RK
21
0 ⊕ s[RK

24
6 ⊕ s[RK

24
7 ]] ⊕ C

12
H ⊕ C

9
L ⊕ RK

2
2 ⊕ s[RK

1
6 ] = 0

g3 = s
−1

[RK
3
1 ⊕ RK

24
2 ] ⊕ s[RK

23
7 ⊕ s[RK

22
2 ]] ⊕ RK

3
0 ⊕ s[RK

23
5 ⊕ C

18
H ⊕ C

15
L ⊕ s[RK

21
0 ]] = 0

g4 = C
20
H ⊕ C

17
L ⊕ s[RK

23
0 ] ⊕ s

−1
[s

−1
[RK

24
2 ⊕ RK

3
1 ] ⊕ C

23
L ⊕ RK

24
3 ] ⊕ s

−1
[RK

1
5 ⊕ s

−1
[RK

22
6

⊕ C
4
H ⊕ RK

2
3 ] ⊕ s[RK

21
2 ]] = 0

g5 = RK
1
0 ⊕ s

−1
[RK

1
1 ⊕ RK

22
2 ] ⊕ s[RK

4
0 ⊕ s[RK

24
5 ⊕ C

19
H ⊕ C

16
L ⊕ s[RK

22
0 ]]] ⊕ s[C

16
H ⊕ C

13
L ⊕ s[RK

23
4 ]

⊕ s
−1

[RK
23
1 ⊕ C

22
H ⊕ C

19
L ⊕ s

−1
[RK

24
7 ⊕ RK

3
5 ⊕ s[RK

23
2 ]]]] = 0

g6 = RK
2
4 ⊕ s[RK

22
0 ⊕ C

13
H ⊕ C

10
L ⊕ s[C

7
H ⊕ C

4
L ⊕ RK

1
7 ⊕ s[RK

23
2 ⊕ s[RK

23
3 ⊕ C

22
L ⊕ s[RK

24
5 ]]]]]

⊕ s[RK
1
0 ⊕ s[C

16
H ⊕ C

13
L ⊕ s[RK

23
4 ] ⊕ s

−1
[RK

23
1 ⊕ C

22
H ⊕ C

19
L ⊕ s

−1
[RK

24
7 ⊕ RK

3
5 ⊕ s[RK

23
2 ]]]]]

⊕ s
−1

[RK
23
7 ⊕ RK

2
5 ⊕ s[RK

22
2 ]] = 0

g7 = C
22
L ⊕ RK

2
0 ⊕ RK

23
3 ⊕ s[RK

24
5 ] ⊕ s[s

−1
[RK

22
6 ⊕ C

4
H ⊕ RK

2
3 ] ⊕ s[RK

21
2 ]] ⊕ s[s

−1
[RK

23
0 ⊕ C

14
H

⊕ C
11
L ⊕ s

−1
[RK

24
4 ⊕ C

11
H ⊕ C

8
L ⊕ RK

1
2 ⊕ s[C

5
H ⊕ RK

3
3 ]] ⊕ s[C

8
H ⊕ C

5
L ⊕ RK

2
7 ⊕ s[RK

3
1 ]]]

⊕ s[RK
1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6 ]]]] = 0
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g8 = s
−1

[RK
3
5 ⊕ RK

24
7 ⊕ s[RK

23
2 ]] ⊕ s

−1
[RK

24
5 ⊕ C

19
H ⊕ C

16
L ⊕ s

−1
[RK

2
6 ⊕ C

16
H ⊕ C

13
L ⊕ s[RK

23
4 ]

⊕ s
−1

[RK
23
1 ⊕ C

22
H ⊕ C

19
L ⊕ s

−1
[RK

24
7 ⊕ RK

3
5 ⊕ s[RK

23
2 ]]]] ⊕ s[RK

22
0 ]] ⊕ s[RK

2
0 ⊕ s[

s
−1

[RK
23
0 ⊕ C

14
H ⊕ C

11
L ⊕ s

−1
[RK

24
4 ⊕ C

11
H ⊕ C

8
L ⊕ RK

1
2 ⊕ s[C

5
H ⊕ RK

3
3 ]] ⊕ s[C

8
H ⊕ C

5
L

⊕ RK
2
7 ⊕ s[RK

3
1 ]]] ⊕ s[RK

1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6 ]]]]] = 0

g9 = s
−1

[RK
1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6 ]] ⊕ s

−1
[RK

1
5 ⊕ s

−1
[RK

22
6 ⊕ C

4
H ⊕ RK

2
3 ] ⊕ s[RK

21
2 ]]] ⊕ s[RK

3
0 ⊕ s[

RK
23
5 ⊕ C

18
H ⊕ C

15
L ⊕ s[C

12
H ⊕ C

9
L ⊕ RK

21
0 ⊕ C

12
H ⊕ C

9
L]]] ⊕ s[C

17
H ⊕ C

14
L ⊕ s

−1
[RK

23
0 ⊕ C

14
H ⊕ C

11
L

⊕ s
−1

[RK
24
4 ⊕ C

11
H ⊕ C

8
L ⊕ RK

1
2 ⊕ s[C

5
H ⊕ RK

3
3 ]] ⊕ s[C

8
H ⊕ C

5
L ⊕ RK

2
7 ⊕ s[RK

3
1 ]]]

⊕ s[RK
1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6 ]]] ⊕ s[RK

24
4 ]] ⊕ C

23
H ⊕ C

20
L ⊕ RK

24
1 = 0

B

It is obvious that the value of #RK1
0 , #RK1

5 , #RK1
6 , #RK23

2 , #RK23
4 , #RK23

5 ,
#RK23

6 , #RK22
1 are all 16

7 for each plaintext-ciphertext pair when these subkeys
pass the differential path with known RK23

0 . Besides, RK23
3 passes the truncated

differential with probability ( 7
16 )3, so #RK23

3 = 24 · ( 7
16 )3 for each accurate

plaintext-ciphertext pair. Furthermore, once RK1
7 that pass the differential path

is known, #RK2
7 = 16

7 ; once RK1
1 that pass the differential path is known,

#RK2
2 = 16

7 ; once RK23
3 that pass the differential path is known, #RK22

2 = 16
7 ;

once RK22
6 that pass the differential path is known, #RK21

4 = 16
7 with the known

RK23
7 ; once RK23

1 that pass the differential path is known, #RK22
3 = 16

7 .
Therefore, it is easy to compute the value of loops li with the above knowledge

and Observation 8.
The following is a time estimation for substep (1.2.7) to substep (1.2.10) in

key recovery algorithm.
As showed in the proof of Observation 8, the computation of RK1

2 for each
(RK1

6 , RK2
6 ) can be done in much less than one encryption. Therefore, #RK1

6 =
16
7 and #RK2

6 = 24 indicate that the time for computing RK1
2 is less than 16

7 ·24

encryptions.
Similarly, since #RK23

3 = 24 · ( 7
16 )3, #RK23

6 = 16
7 , the time for computing

RK22
4 is less than 24 · ( 7

16 )2 encryptions. Because #RK23
2 , #RK23

4 and #RK23
5

are all 16
7 , and #RK23

3 = 24 · ( 7
16 )3, the time for computing RK22

0 is less than
24 encryptions. Known from Observation 8, the number of values of RK22

0 is
16
7 for each RK23

[2,3,4,5]. Hence the time for computing RK21
7 is less than 16

7 · 24

encryptions.

C

This appendix gives a detailed description of the Key Recovery algorithm for
TWINE-128. Before introducing the algorithm, an observation similar to Obser-
vation 8 used in attacking TWINE-80 is given, followed by some precomputed
tables for gi functions.
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Observation C.1. For a plaintext-ciphertext pair satisfying the input-output
difference relations in Observation 7, the following can be deduced according to
the differential path in attacking TWINE-128.

(1) Given RK21
2 , RK22

3 , RK24
0 , RK24

6 that pass the differential path, then 16
7 val-

ues of RK23
1 on average can pass the path and be computed;

(2) Given RK24
[1,5,7], RK23

3 , RK22
2 , RK21

0 that pass the differential path, then (16
7 )2

values of RK22
0 on average can pass the path and be computed; and then if

RK24
3 is also known, then 16

7 values of RK23
2 on average can pass the path

and be computed;
(3) Given RK1

0 , RK2
0 , RK3

0 , RK1
5 , RK3

1 that pass the differential path, then ( 16
7 )2

values of RK4
0 on average can pass the path and be computed;

(4) Given RK1
6 , RK3

1 that pass the differential path, then 16
7 values of RK2

5 on
average can pass the path and be computed;

(5) Given RK1
2 , RK1

7 , RK2
6 , RK3

5 that pass the differential path, then 16
7 values

of RK1
3 on average can pass the path and be computed; and then if RK3

3 is
also known, then ( 16

7 )2 values of RK2
4 on average can pass the path and be

computed;

Proof. Making use of the differential path and the equations RK4
1 = RK1

3 ,
RK5

0 = RK1
5 and RK20

1 = RK24
5 , it is easy to prove the above observation

similarly to the proof in Observation 8.
The following tables KT

′
i (i = 3, ..., 9) are precomputed for equations gi

respectively.

Table Index Content

KT
′
3 (RK3

[0,1], RK21
0 , RK22

2 , RK23
5 , RK24

2 ) RK23
7

KT
′
4 (RK1

5 , RK2
3 , RK3

1 , RK22
6 , RK23

0 , RK24
[2,3]) RK21

2

KT
′
5 (RK1

[0,1], RK3
5 , RK22

[0,2], RK23
[1,2,4], RK24

[5,7]) RK4
0

KT
′
6 (RK1

[0,7], RK2
[4,5], RK3

5 , RK22
[0,2], RK23

[1,2,3,4,7], RK24
[5,7]) RK2

4

KT
′
7 (RK1

[2,4,6], RK2
[0,2,3,7], RK3

[1,3], RK21
2 , RK22

6 , RK23
[0,3], RK24

[4,5]) RK23
3

KT
′
8 (RK1

[2,4,6], RK2
[0,2,6,7], RK3

[1,3,5], RK22
0 , RK23

[0,1,2,4], RK24
[4,5,7]) RK3

5

KT
′
9 (RK1

[2,4,5,6], RK2
[2,3,7], RK3

[0,1,3], RK21
[0,2], RK22

6 , RK23
[0,5], RK24

[1,4]) RK3
3

As can be seen from Algorithm C.2, the time for combining all the subkeys
involved in attacking TWINE-128 is l1 ·(5+l2 ·(13+l3 ·(1+3+1+ 16

7 +l4 ·(1+l5.1 ·
(1+ 16

7 +l5.2·(1+l6·(1+1+ 16
7 +1+l7.1·(1+l7.2·(1+l8·(2+(16

7 )2·2−4·l9·2)))))))))) =
245.48 xor = 236.31 24-round encryptions.
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Algorithm C.1. TWINE-128 Key Recovery

Input: chosen plaintext-ciphertext pairs, functions gi (i = 1, ..., 9), differential characteristic

Output: right key used in TWINE-128

1: For every possible value of K0 = (RK1
[1,4], RK24

[2,4,5]), do

(1.1): Initialize a table Γ of 2108 all possible values of K1;

(1.2): For each chosen plaintext-ciphertext pair, do

(1.2.1): Compute X2
[4,6] using RK1

[1,4] by partial encryption of plaintext;

(1.2.2): Compute X23
[0,10,14] using RK24

[2,4,5] by partial decryption of ciphertext;

(1.2.3): Compute (RK1
0 , X2

0 ), (RK1
2 , X2

12), (RK1
5 , X2

2 ), (RK1
6 , X2

10), (RK24
0 , X23

2 ), (RK24
1 , X23

6 ),

(RK24
3 , X23

4 ), (RK24
7 , X23

12 ) using the plaintext-ciphertext pair and differential characteristic;

(1.2.4): Compute RK2
2 using X2

4 and (�X2
4 , �X2

5 ); Compute RK2
3 using X2

6 and (�X2
6 , �X2

7 );

(1.2.5): Compute RK23
0 using X23

0 and (�X23
0 , �X23

1 ); Compute RK23
5 using X23

10 and (�X23
10 , �X23

11 );

/∗ each 4-bit subkey computed above has 16
7

values ∗/

(1.2.6): For every possible value of RK1
7 , do /∗ 24 loops ∗/

Compute X2
14;

If �X2
15 ∈ �s[�X2

14], �X1
10 ∈ �s[�X2

14] and �X2
14 ∈ �s[�X1

14] all holds, /∗ Pr = ( 7
16

)3 ∗/

then store (RK1
7 , X2

14);

(1.2.7): For every possible value of RK24
6 , do /∗ 24 loops ∗/

Compute X23
8 ;

If �X23
8 ∈ �s[�X24

12 ], �X24
6 ∈ �s[�X23

8 ] and �X24
14 ∈ �s[�X23

8 ] all holds, /∗ Pr = ( 7
16

)3 ∗/

then store (RK24
6 , X23

8 );

(1.2.8): Compute RK23
1 using Observation C.1, and then store it in Q0 with index (RK21

2 , RK22
3 , RK24

0 , RK24
6 );

(1.2.9): Compute (RK22
0 , RK23

2 ) using Observation C.1, and then store it in Q1

with index (RK24
[1,3,5,7], RK23

3 , RK22
2 , RK21

0 );

(1.2.10): Compute RK4
0 using Observation C.1, and then store it in Q2 with index (RK1

0 , RK2
0 , RK3

0 , RK1
5 , RK3

1 );

(1.2.11): Compute RK2
5 using Observation C.1, and then store it in Q3 with index (RK1

6 , RK3
1 );

(1.2.12): Compute (RK2
4 , RK1

3 ) using Observation C.1, and then store it in Q4

with index (RK1
2 , RK1

7 , RK2
6 , RK3

[3,5]);

(1.2.13): Combine all the involved subkeys using Algorithm C.2 to obtain (K1, K2) with known K0;

(1.2.14): Remove K1 in the combined (K1, K2) from Γ ;

(1.3): Store K0 and the finally remained K1 from Γ .

2: After the above steps, suppose there are 2m (K0, K1).

(2.1): For each value of (K0, K1), do

(2.1.1): compute the value of K2 using gi (i = 1,...,9);

(2.1.2): and then compute the 12 partial master keys k4, k5, k7, k8, k9, k13, k20, k23, k24, k25, k27, k29

using (K0, K1, K2 /;) ∗ the other 20 partial master keys are known in (K0, K1) ∗/

(2.1.3): And then do a trial encryption. If it is correct, then return the right key and abort the loop.
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Algorithm C.2. Subkeys Combining Procedure for TWINE-128

Input: a plaintext-ciphertext pair, K0 = (RK1
[1,4], RK24

[2,4,5]), functions gi (i = 1, 2), tables KT
′
i (i = 3, ..., 9),

{Qi}(i = 0, ..., 4), and the already computed subkeys RK1
[0,2,5,6,7], RK24

[0,1,3,6,7], RK2
[2,3], RK23

[0,5]

Output: combined 144-bit subkeys (K1, K2) which pass the path and all the subkey equations

1: For every (RK23
5 , RK22

2 ) do: /∗ l1 = 16
7

· 24 loops ∗/

Compute RK22
3 using g1; and then store RK = (RK23

5 , RK22
[2,3]);

2: For every (RK1
6 , RK2

2 , RK24
[6,7]), do: /∗ l2 = ( 16

7
)3 · (24 · ( 7

16
)3) = 24 loops ∗/

Compute RK21
0 using g2; and then add (RK1

6 , RK2
2 , RK24

[6,7], RK21
0 ) to RK;

3: For every RK3
[0,1], do: /∗ l3 = 28 loops ∗/

Look up KT
′
3 to get the value of RK23

7 ; and then add (RK3
[0,1], RK23

7 ) to RK;

Compute X23
15 using RK23

7 , and then compute RK22
6 using X23

15 and (�X23
15 , �X23

10 );

4: For every (RK1
5 , RK2

3 , RK22
6 , RK23

0 , RK24
3 ), do: /∗ l4 = ( 16

7
)5 loops ∗/

Look up KT
′
4 to get the value of RK21

2 , then add (RK1
5 , RK2

3 , RK22
6 , RK23

0 , RK24
3 , RK21

2 ) to RK;

5: For every (RK1
7 , X2

14), do: /∗ l5.1 = 24 · ( 7
16

)3 loops ∗/

Compute RK2
7 using X2

14 and (�X2
14, �X2

15);

For every (RK1
2 , RK2

7 , RK24
1 ), do: /∗ l5.2 = ( 16

7
)3 loops ∗/

Look up KT
′
9 to obtain RK3

3 , and then add (RK1
[2,7], RK2

7 , RK24
1 , RK3

3 ) to RK;

6: For every RK2
0 , do: /∗ l6 = 24 loops ∗/

Look up KT
′
7 to get the value for RK23

3 ; and then add (RK2
0 , RK23

3 ) to RK;

7: Compute RK23
4 using X23

8 and (�X23
8 , �X23

9 ); Look up Q1 to obtain (RK22
0 , RK23

2 );

For every RK24
0 , do: /∗ l7.1 = 16

7
loops ∗/

Look up Q0 to obtain RK23
1 ;

For every (RK23
[1,2,4], RK22

0 , RK2
6 ), do: /∗ l7.2 = ( 16

7
)5 · 24 loops ∗/

Look up KT
′
8 to get RK3

5 ; and then add (RK24
0 , RK23

[1,2,4], RK22
0 , RK2

6 , RK3
5 ) to RK;

8: For every RK1
0 , do: /∗ l8 = 16

7
loops ∗/

Look up KT
′
5 to get the value for RK4

0 ;

If it appears in Q2 with index (RK1
0 , RK2

0 , RK3
0 , RK1

5 , RK3
1 ), /∗ Pr = ( 16

7
)2 · 2−4 ∗/

then add (RK1
0 , RK4

0 ) to RK; otherwise, try next RK1
0 ;

9: For every RK2
5 from Q3, do: /∗ l9 = 16

7
loops ∗/

Look up KT
′
6 to get the value for RK2

4 ;

If it appears in Q4 with index (RK1
2 , RK1

7 , RK2
6 , RK3

5 ), /∗ Pr = ( 16
7

)2 · 2−4 ∗/

then add RK2
5 , RK2

4 together with RK1
3 (from Q3) to RK; otherwise, try next RK2

5 ;

10: Return the combined RK = (RK23
5 , RK22

[2,3], RK1
6 , RK2

2 , RK24
[6,7], RK21

0 , RK3
[0,1], RK23

7 , RK1
5 , RK2

3 , RK22
6 , RK23

0 ,

RK24
3 , RK21

2 , RK1
[2,7], RK2

7 , RK24
1 , RK3

3 , RK2
0 , RK23

3 , RK24
0 , RK23

[1,2,4], RK22
0 , RK2

6 , RK3
5 , RK1

0 , RK4
0 , RK2

5 , RK2
4 , RK1

3 ).

D

Algorithm D.1. Algorithm 2.3: TWINE.KeySchedule-80((k0, ..., k19),
RKr

[0,...,7]) in [15]

1: (WK0||WK1||...||WK18||WK19) ← (k0, ..., k19)
2: for r ← 1 to 35 do
3: RKr

[0,...,7] ← (WK1||WK3||WK4||WK6||WK13||WK14||WK15||WK16)
4: WK1 ← WK1 ⊕ s[WK0], WK4 ← WK4 ⊕ s[WK16],
5: WK7 ← WK7 ⊕ Cr

H , WK19 ← WK19 ⊕ Cr
L,

6: (WK0||WK1||WK2||WK3) ← (WK1||WK2||WK3||WK0)
7: (WK0||...||WK19) ← (WK4||...||WK19||WK0||WK1||WK2||WK3)
8: end for
9: RK36

[0,...,7] ← (WK1||WK3||WK4||WK6||WK13||WK14||WK15||WK16)
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Algorithm D.2. Algorithm A.1: TWINE.KeySchedule-128((k0, ..., k31),
RKr

[0,...,7]) in [15]

1: (WK0||WK1||...||WK18||WK31) ← (k0, ..., k31)
2: for r ← 1 to 35 do
3: RKr

[0,...,7] ← (WK2||WK3||WK12||WK15||WK17||WK18||WK28||WK31)
4: WK1 ← WK1 ⊕ s[WK0], WK4 ← WK4 ⊕ s[WK16], WK23 ← WK23 ⊕

s[WK30],
5: WK7 ← WK7 ⊕ Cr

H , WK19 ← WK19 ⊕ Cr
L,

6: (WK0||WK1||WK2||WK3) ← (WK1||WK2||WK3||WK0)
7: (WK0||...||WK31) ← (WK4||...||WK31||WK0||WK1||WK2||WK3)
8: end for
9: RK36

[0,...,7] ← (WK2||WK3||WK12||WK15||WK17||WK18||WK28||WK31)

Table D.1. Subkeys of round 1–5 in TWINE-80

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k1 k3 k4 k6 k13 k14 k15 k16

Round 2 k5 k7 ⊕ C1
H k8 k10 k17 k18 k19 ⊕ C1

L k(1, 0)

Round 3 k9 k11 ⊕ C2
H k12 k14 k2 k3 k0⊕ k

C2
L (5, (4, 16))

Round 4 k13 k15⊕ k16 k18 k6 k7 ⊕ C1
H k(4, 16)⊕ k

C3
H C3

L (9, (8, (1, 0)))

Round 5 k17 k19⊕ k(1, 0) k3 k10 k11⊕ k(8, (1, 0))⊕ k

C4
H ⊕ C1

L C2
H C4

L (13, (12, (5, (4, 16))))

Table D.2. Subkeys of round 1–7 in TWINE-128

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k2 k3 k12 k15 k17 k18 k28 k31

Round 2 k6 k7 ⊕ C1
H k16 k19 ⊕ C1

L k21 k22 k(1, 0) k0

Round 3 k10 k11 k20 k(23, 30) k25 k26 k k

⊕C2
H ⊕C2

L (5, (4, 16)) (4, 16)

Round 4 k14 k15 k24 k(27, 3) k29 k30 k k

⊕C3
H ⊕C3

L (9, (8, 20)) (8, 20)

Round 5 k18 k19⊕ k28 k31⊕ k2 k3 k k

C4
H ⊕ C1

L s[k7 ⊕ C1
H ] ⊕ C4

L (13, (12, 24)) (12, 24)

Round 6 k22 k(23, 30)⊕ k(1, 0) k0⊕ k6 k7⊕ k k

C2
L ⊕ C5

H s[k11 ⊕ C2
H ] ⊕ C5

L C1
H (17, (16, 28)) (16, 28)

Round 7 k26 k(27, 3)⊕ k k(4, 16)⊕ k10 k11⊕ k k

C3
L ⊕ C6

H (5, (4, 16)) s[k15 ⊕ C3
H ] ⊕ C6

L C2
H (21, (20, (1, 0))) (20, (1, 0))
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