
Industry-Wide Misunderstandings of HTTPS

Stephen Bono(&) and Jacob Thompson(&)

Independent Security Evaluators, Baltimore, USA
{sbono,jthompson}@securityevaluators.com

Abstract. In a survey of 30 sites that serve sensitive content over an HTTPS-
protected connection, we found that over 70 % of them failed to appropriately
prevent disk caching, and left unencrypted sensitive content behind on end-
users’ machines, at risk for later exposure. Moreover, over half of the sites that
failed to prevent disk caching appeared to have attempted to do so using out-
dated, non-standard, or erroneous methods, some of which failed entirely, while
others were only successful at preventing disk caching in certain browsers, but
not all.

In an effort to explain this wide-spread failure, our research has uncovered
drastically inconsistent behavior across browsers, inconsistent support of stan-
dard and non-standard anti-disk caching directives, and even inconsistent and
incorrect recommendations from authoritative sources in the security commu-
nity. Through this history we show that web developers are not solely to blame,
and that web browser developers, web server developers, security professionals
and authors of online sources, and perhaps even the standards bodies should
share in this failure.

In this paper, we identify the disk caching behaviors of all major browsers,
and describe how to reliably prevent disk caching for each of them. We present
the results of our site survey, demonstrating wide-spread failures to prevent disk
caching of sensitive data. We introduce a tool for Firefox users to reliably
prevent disk caching of HTTPS protected content, despite failures by the web
application, and we provide an online tool to help web developers identify how
to reliably prevent disk caching across multiple browsers. Lastly, we make
recommendations to the various parties with a hand in this failure on how to
address these issues going forward.

1 Introduction

Users often visit the same web pages more than once. While some of the page contents
change, the vast majority of the page and associated resources (such as images) remain
static. To re-download this unchanged content on every visit to the page is a waste of
time and bandwidth [1]. Consequently, when a user accesses a web page, the web
browser caches most content locally on the user’s machine. This content can either be
saved in temporary memory (RAM), which is lost as soon as the user exits the browser,
or on disk, which persists even after the user exits the browser or reboots the computer.
When a user visits a page repeatedly, the content is retrieved from cache instead of over
the Internet. Memory caches are lost when the browser exits, so the browser uses the
disk cache whenever possible.

© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 496–513, 2014.
DOI: 10.1007/978-3-319-12160-4_30

Secure web sites use the HTTPS and SSL/TLS protocols to encrypt information as it
travels over the Internet, to prevent an eavesdropper or man-in-the-middle from recovering
or modifying the communication. Although there are no technical constraints preventing
content sent over an encrypted connection from being decrypted and written to disk, it is
logical to presume that if content is too sensitive to be sent over a network without
encryption, then it may also be too sensitive to store unprotected on a hard drive [2].

When HTTPS was first introduced, there was no standard, unambiguous way for a
web server to mark content as too sensitive to store in cache. As a result, web browser
authors created their own mechanisms for a web server to restrict disk caching [2].
Some browser authors chose to, by default, never write content transferred over HTTPS
to disk [3], or did not disk cache content unless a server explicitly allowed it (“opt-in”)
[4], while others chose to write this content to the disk cache, unless a server header
explicitly prohibited it (“opt-out”) [5].

We surveyed 30 sites that serve sensitive content over HTTPS, and found that 21 of
those sites failed to appropriately prevent disk caching across all browsers. Of those 21,
over half appear to have attempted to prevent disk caching using outdated, non-standard,
or erroneous methods, while the remainder simply made no attempt. The sites surveyed
included banks and other financial institutions, insurance companies, and utility com-
panies. The sites served content that we deemed sensitive such as bank account state-
ments, credit reports, check images, pay stubs, health and vehicle insurance information,
and prescription names and dosages.

Our research found that despite the existence of reliable methods to prevent disk
caching, the diversity and inconsistency across browsers in how disk caching is handled,
as well as general misunderstandings within the security community, including respected
sources such as OWASP, have led to wide-spread failure of web applications to reliably
prevent disk caching of sensitive data. In this paper, we provide a history of inconsistent
browser behavior and an understanding of that behavior as evidenced through our own
verification and online references. We identify and catalog six different behaviors and
techniques that effectively prevent disk caching for various versions of Internet Explorer,
Firefox, Chrome, and Safari, as well as obsolete browsers such as Netscape and Mozilla
(for reference purposes) – to our knowledge, no such catalog exists. We provide the best
recommended actions a web developer can make to most effectively prevent disk caching
across all browsers, as well as make recommendations to the security community,
browser developers, and standards bodies. Lastly, we introduce a Firefox extension that
end-users can install to effectively prevent disk caching, and an online resource for web
application developers to test browser behaviors.

2 A Brief History

In 19971, the first HTTP/1.1 [6] standard was published, which standardized the header
that a server must set to prevent content from being written to a disk cache. By that time,
all web browser authors had already adopted either an “opt-in” HTTPS disk caching

1 The current RFC 2616 was published in 1999, but obsoleted this older RFC 2068 which already
defined Cache-control: no store.

Industry-Wide Misunderstandings of HTTPS 497

policy, or an “opt-out” policy with multiple, non-standard ways to opt out. Despite the
new standard, web developers could continue to use the old, non-standard methods and
they would continue to work only in the browsers that recognized them [2].

Between the release of Netscape Navigator 3.0 in 1996, and 2008, when Google
Chrome was released, the only browser with a significant market share that used an
“opt-out” HTTPS disk caching policy was Internet Explorer. Internet Explorer has
always been very forgiving in determining a web server’s intention that a response not
be written to the disk cache. We identified four separate ways [2] that a web developer
can prevent a response from being cached to disk. Only one of those ways, the header
Cache-Control: no-store, is actually standard [6].

Encrypted web servers (HTTPS) have higher overhead and lower performance than
unencrypted servers due to the need to perform encryption, and in the past this overhead
was much more pronounced. For this reason, many web sites used HTTPS only when
absolutely necessary, such as for sending a password or credit card information. After
the sensitive transaction was completed, the sites would switch back to an unencrypted
connection. Two examples are Gmail, which transmitted e-mails over unencrypted
connections until 2010 [7], and Facebook, which continued to use unencrypted con-
nections until 2012 [8]. Since HTTPS was reserved for only the most sensitive infor-
mation, an “opt-in” disk caching policy was a reasonable design.

By 2011, many sites had begun using HTTPS even for non-sensitive content, and
Mozilla Corporation recognized [9] that the “opt-in” HTTPS disk caching policy in
Firefox was introducing a performance penalty compared to other browsers, including
Google Chrome, which uses an “opt-out” policy. As a result, Firefox 4.0 and all later
versions use an “opt-out” HTTPS disk caching policy [9]. A Firefox 3.6 user would be
unaffected by this issue, even when browsing HTTPS sites that fail to set the necessary
header, but would become affected as soon as that user updated to Firefox 4 or later.

Online banking, which is among the most security-sensitive uses of a web browser,
exploded in popularity in the early 2000s. At this time, Internet Explorer had over 90 %
market share, and Safari and Chrome did not exist. Internet Explorer’s only significant
competitors at the time (Netscape 3.0 and later, Mozilla, and Firefox) either did not
disk cache HTTPS content at all (unless a user manually modified a configuration
parameter), or used an “opt-in” policy, and thus required no special treatment to
prevent caching of encrypted bank pages. Many of the web sites that we tested
responded with sufficient headers to prevent caching in all versions of Internet
Explorer, all versions of Safari, and Firefox 3.6 and earlier, but not Firefox 4.0 and
later, or any version of Chrome. We believe that ensuring that sensitive content is not
cached on disk by the browser was a design goal in these web applications. While this
anti-disk cache functionality worked correctly in the past, it no longer works in two of
today’s most popular browsers: Chrome, and Firefox 4.0 and later. Since this has been
an issue in Chrome since its release in 2008, and in Firefox since 2011, the maintainers
of HTTPS sites do not appear to perform regression testing for this issue.

Today, Internet Explorer continues to follow the same HTTPS disk caching policy
as it always has: enable disk caching by default, but allow four different ways to disable
it. Google Chrome and Firefox, in contrast, enable disk caching by default, but allow
only one way to prevent it—the one given in the standard, the header Cache-
Control: no-store.

498 S. Bono and J. Thompson

Google Chrome and Mozilla Firefox, together, now have over a 60 % market share
on non-mobile devices [10], but many web sites still use antiquated, non-standard
methods to prevent disk caching of sensitive HTTPS content that only function in
Internet Explorer.

3 The Evolution of Caching Policies

Prior to HTTP/1.1 being standardized in 1997, there was no unambiguous way for a
web server to instruct a client that a response should not be cached to persistent storage.
Indeed, the HTTP/1.0 RFC noted [11]:

Some HTTP/1.0 applications use heuristics to describe what is or is not a “cacheable”
response, but these rules are not standardized.

The cache controlling mechanisms that did exist, such as the “Expires” header,
were intended to prevent a user agent from displaying stale content, and were unrelated
to security. It is unnecessary to totally block the client from retaining a copy of
sensitive content in memory for later reuse, instead, the objective is only to prevent the
information from being written to disk.

When Netscape 1 introduced SSL and HTTPS in 1995, the browser never wrote
HTTPS content to the disk cache [3]. A web server could not override this for non-
sensitive content, nor could a user alter this behavior in the preferences.

This behavior changed in Netscape 2, which introduced an “opt-out” policy.
Whether content was delivered over HTTP or HTTPS no longer factored into the
caching decision; instead, the browser introduced a non-standard Pragma: no-
cache response header allowing a server to prohibit the disk caching of a response.
In the standard [11], Pragma was originally intended to be a request header, allowing
a client to override any cached copies stored on intermediate proxy servers; nonethe-
less, introducing it as a response header at least created a way to prevent disk storage of
sensitive data. However, Netscape also allowed the Pragma: no-cache header to be
specified as a meta http-equiv HTML tag in the document. This was a bad design
choice for two reasons: first, caching code must read the response and parse the HTML
before the caching decision can be made, lowering performance; second, the tag can
only be used in HTML files, and not images, JavaScript files, and so on. This “opt-out”
HTTPS caching policy was incorporated by Microsoft into Internet Explorer 3 as
well [2].

Possibly recognizing the potential security issue of web developers neglecting to
mark sensitive data with the Pragma header, Netscape 3 reverted to the previous
behavior of never caching HTTPS responses to disk; We verified this behavior
by testing Netscape Navigator 3.04 Gold. Disk caching of HTTPS data could be
re-enabled by the user in the preferences dialog, but there was still no way for a server
to explicitly “opt-in” to caching of non-sensitive HTTPS content. In contrast to Net-
scape 3, Microsoft continued to use “opt-out” HTTPS caching in later Internet Explorer
versions. Thus Netscape 3 marked the beginning of inconsistent HTTPS disk caching
policies between browsers, which remains unresolved even today.

Industry-Wide Misunderstandings of HTTPS 499

In addition to the non-standard Pragma header introduced by Netscape, Microsoft
added support for new, standardized caching headers to Internet Explorer as they came
into existence. Internet Explorer 4 added support for the Cache-Control: no-
store header introduced in the HTTP/1.1 standard. But it also added new quirks:

• IE 4 through 9 treated the Cache-Control: no-cache header, intended to
prevent stale responses and not a security measure, identically to the Cache-
Control: no-store header. In version 10, Cache-Control: no-cache
no longer prevents disk caching.

• If IE 4 through 8 made a request using HTTP/1.1, and the server responded using
HTTP/1.0, any Cache-Control headers in the server’s response would be ignored.
This was resolved in version 9, where Cache-Control headers are recognized even
when sent by an HTTP/1.0 server. Despite the fix, all Windows XP and 2003
systems contain version 8 or earlier of Internet Explorer, and are affected by this
issue.

• The above HTTP/1.0 behavior is triggered by a configuration change introduced in
Apache mod_ssl in 2000 (version 2.6.5) that forces a downgrade from HTTP/1.1 to
HTTP/1.0 whenever the server responds to Internet Explorer over HTTPS. This
configuration was intended to work around a bug in IE 5’s handling of HTTP/1.1
keep-alive connections. In 2010, long after the Internet Explorer bug was patched in
version 6, Apache finally updated the workaround to exclude unaffected relea-
ses [12]. However, this configuration change has not yet percolated to all Linux
distributions’ standard branches of Apache, including the latest version of CentOS2

as of this writing, 6.4.

Netscape continued with the policy of not disk caching HTTPS content by default
throughout versions 3 and 4 of their browser, the last release of which occurred in
2002. Despite this, Netscape retained vestigial support for the Pragma: no-cache
header introduced in version 2—in case the user modified the preferences to enable
persistent HTTPS caching. This support was dropped when the Mozilla project began a
browser rewrite in 1998, but with little consequence at the time, since the rewritten
browser never cached HTTPS content by default [13].3

After these changes in the mid-1990s, browser caching policies, while still
inconsistent and only partially following standards, did stabilize. Apple released Safari
in 2003, which to this day never writes HTTPS content to the disk cache. The iOS
version also follows this policy.

The stability came to an end in 2008, when Google released the Chrome browser.
Chrome, and its mobile variant, Android Browser, have the most aggressive HTTPS
disk caching policy ever created at the time. Content is always written to the disk cache
unless one of two conditions are met: (1) the response includes the header Cache-
Control: no-store, or (2) the server has an invalid certificate [14]. No support is
included for non-standard headers supported by Internet Explorer (i.e., Pragma:

2 http://mirror.umd.edu/centos/6.4/updates/i386/Packages/mod_ssl-2.2.15-28.el6.centos.i686.rpm
3 This page [13] shows that browser.cache.disk_cache_ssl was set to false in revision 1.1
when Netscape first released source.

500 S. Bono and J. Thompson

http://mirror.umd.edu/centos/6.4/updates/i386/Packages/mod_ssl-2.2.15-28.el6.centos.i686.rpm

no-cache and Cache-Control: no-cache), which at the time of Chrome’s
release, was the only other web browser that even cached HTTPS content at all by
default.

Concurrent with the release of Chrome, Mozilla began loosening the Firefox
HTTPS disk caching policy as well. In Firefox 3, Mozilla introduced a unique caching
policy, that in our opinion represented the best trade-off between security and per-
formance. HTTPS continued to be treated as an indicator that content should not be
disk cached, but Firefox now allowed servers to explicitly “opt-in” to caching, by
including the header Cache-Control: public [3]. While originally intended for
multiuser caching proxies, Cache-Control: public is defined as:

Indicates that the response is cacheable by any cache, even if it would normally be
non-cacheable or cacheable only within a non-shared cache.

Thus the presence of this header is a good indicator that content is non-sensitive
and safe to cache.

Still, Mozilla modified the HTTPS caching policy once again in Firefox 4, this time
to cache all HTTPS content unless it is explicitly labeled as sensitive using Cache-
Control: no-store, effectively reversing the behavior of Firefox 3. Paradoxically,
this meant that the original functionality of the Pragma: no-cache header intro-
duced by Firefox’s ancestral Netscape browser was now only supported by Internet
Explorer.

All of the different ways we found to control disk caching of HTTPS content are
shown in Table 1.

4 Current Caching Policies by Browser

Disk caching of HTTPS-delivered web pages varies by web browser. Here, we discuss
the policies of four browsers that we tested.

Internet Explorer. Microsoft Internet Explorer caches HTTPS-delivered content to
disk, unless one or more of the following are present [2]:

• The HTTP header Cache-Control: no-store.
• In version 9 and earlier only, The HTTP header Cache-Control: no-cache.
• The HTTP header Pragma: no-cache.

Table 1. Variants of headers or HTML meta tags used to enable or prevent disk caching of
HTTPS content, and listings of browsers that support each one.

Header or tag Supporting browsers

None needed—No HTTPS disk caching by default Netscape 1, 3 + , Firefox 1-3.5, Safari
Pragma: no-cache header (opt-out) Netscape 2, IE 3+
Pragma: no-cache meta tag (opt-out) Netscape 2, IE 3+
Cache-Control: no-cache header (opt-out) IE 4-9
Cache-Control: no-store header (opt-out) IE 4 + , Firefox 4 + , Chrome 1+
Cache-Control: public header (opt-in) Firefox 3-3.5

Industry-Wide Misunderstandings of HTTPS 501

• The HTML tag <META HTTP-EQUIV=“Pragma” CONTENT=“no-cache”>.
Microsoft discourages the use of this method; it may not work properly for pages
larger than 32 kb [13].

Note that the Cache-Control header cannot be set using an HTML <META HTTP-
EQUIV> tag. Additionally, Internet Explorer interprets some of these headers differ-
ently, depending upon whether the page was delivered using HTTPS or HTTP [2].

We verified that using the 32-bit version of Internet Explorer 10.0.9200.16635 on
64-bit Windows 7, HTTPS content is disk cached unless the server sends the Pragma:
no-cache header or Cache-Control: no-store header, or the document
contains the Pragma: no-cache header in an HTML meta http-equiv tag. We
verified that using the 32-bit version of Internet Explorer 9.0.8112.16421, HTTPS
content is disk cached unless the server sends the Cache-Control: no-cache
header, or the response employs either of the two methods described for IE 10.

Firefox. Prior to version 4.0, Mozilla Firefox (and its predecessors, including Mozilla
and Netscape) either never cache HTTPS pages to disk at all [3] or cache only pages
sent with:

• The HTTP header Cache-Control: public.

Firefox contains a hidden browser preference, browser.cache.dis-
k_cache_ssl, that when set to true, switches Firefox from the previous, cautious
policy above, to a new policy that strictly follows the HTTP standard, disk caching all
content unless specifically instructed not to do so by the server. In 2011, the default
value of this preference was switched from false to true [9]. As a result, Firefox
4.0 and all later versions cache HTTPS-delivered content to disk, unless the following
is present:

• The HTTP header Cache-Control: no-store.

We verified that using the 32-bit version of Mozilla Firefox 3.6.28 on 64-bit
Windows 7 (and earlier), HTTPS content is not disk cached unless the server sends the
Cache-Control: public header. We verified that using the 32-bit version of
Mozilla Firefox 21.0 on 64-bit Windows 7, Mozilla Firefox 21.0 on Mac OS X 10.7.5,
and Mozilla Firefox 21.0 on Android 2.3.6, HTTPS content is disk cached unless the
server sends the Cache-Control: no-store header.

Chrome. Google Chrome caches HTTPS-delivered content to disk, unless the fol-
lowing is present:

• The HTTP header Cache-Control: no-store.

We verified that when using Google Chrome 27.0.1453.94 m on Windows 7, or the
Browser app in Android 2.3.6 (which is based on Chrome), HTTPS content is disk
cached unless the server sends the Cache-Control: no-store header.

Safari. Apple Safari does not cache HTTPS-delivered content to disk, regardless of any
headers sent by the server. We tested the mobile version of Safari on an iPad 2, and the
HTTPS caching behavior was identical to the desktop version.

502 S. Bono and J. Thompson

We verified that using Safari 6.0 (7536.25) on Mac OS X 10.7.5, and Mobile Safari
on iOS 5.1.1, HTTPS content is never disk cached.

A word about private browsing modes. Virtually all web browsers now include a
“private browsing” mode, that in addition to preventing browsing history from being
retained, disables the disk cache entirely. While sufficient for a user to avoid this issue,
we do not consider advising users to use private browsing to be a reasonable solution
for several reasons. First, private browsing modes are not the default, and must man-
ually be enabled by a user. Second, other aspects of private browsing, such as not
retaining persistent cookies, break useful functionality in web sites, such as remem-
bering usernames or remembering the computer to avoid answering security questions
on each login. Third, since private browsing disables the disk cache entirely, it has
negative side effects on the performance of the Internet as a whole, since even unen-
crypted HTTP content must be re-downloaded if the browser has been closed.

5 Reliably Preventing Disk Caching

Due to the historical inconsistency and confusion surrounding HTTPS and disk
caching, it is worth briefly mentioning how to most reliably prevent disk caching of an
HTTPS response. To do so, the web server should be configured to send the following:

• The response header Pragma: no-cache.
• The response header Cache-Control: no-store.

The Pragma header covers the special case of HTTP/1.0 servers and Internet
Explorer 8. The Cache-Control header, as specified in the HTTP standard, covers all
other cases, including standards-compliant browsers that may begin caching HTTPS
content in the future (e.g., Safari). As both older Apache servers and IE 8 browsers are
decommissioned over time, the Pragma header will no longer be needed.

6 Site Survey

Methodology. We tested thirty secure, password-protected sites that displayed sensi-
tive personal information in a web browser. This involved accessing SSL-protected
websites as an authorized user, logging out of the site, and closing the browser. Then,
we reopened the browser, placed it in offline mode, and checked the disk cache for
entries containing sensitive data.

Initial Results. As of April 25, 2013, twenty-one of the thirty sites tested were not
sending the Cache-Control: no-store header required by the HTTPS standard
to prevent disk caching of sensitive data. Some were not sending any caching-related
headers at all, while others were sending caching headers that prevent disk caching
only in Internet Explorer, or other headers not relevant to web browser caches.

Industry-Wide Misunderstandings of HTTPS 503

The sites shown in Table 2 sent sensitive information with both of the headers
Cache-Control: no-cache, and Pragma: no-cache, which together, prevent
disk caching in Internet Explorer, but not Firefox or Chrome.

The sites shown in Table 3 sent sensitive information with the header Cache-
Control: no-cache which prevents disk caching in Internet Explorer 9 and earlier,
but not Internet Explorer 10, Firefox or Chrome.

The sites shown in Table 4 sent sensitive information with the header Cache-
Control: private, which has no effect on whether or not a web browser caches
the information to disk.

Lastly, the sites shown in Table 5 sent sensitive information without any cache-
related HTTP headers at all.

Figures 1, 2, 3, 4, 5, and 6 in Appendix A show screenshots of some of the sensitive
data we recovered from the disk cache.

Table 2. Sites sending sensitive data with the headers Pragma: no-cache and Cache-Control:
no-cache.

Site Sensitive data

ADP Partial SSN, name, address, financial data
BGE Name, address, account number, account balance
M&T Bank Wealthcare Name, account number, account balance
Scottrade Account number, account balance
TreasuryDirect Partial SSN, name, address, phone number
Verizon Wireless Call details

Table 3. Sites sending sensitive data with the header Cache-Control: no-cache.

Site Sensitive data

BB&T Name, partial account numbers, account balances
Liberty Mutual Name, policy number, policy limits, account balances
PayPal Name, address, phone number

Table 4. Sites sending sensitive data with the header Cache-Control: private.

Site Sensitive data

Allstate Auto insurance policies
eBillity Worker summary reports
eRenterPlan Name, address, phone number

504 S. Bono and J. Thompson

7 Updates

We notified each company in April, 2013, by email to the security- or phishing-related
email address, or when email was not available, using a web-based contact form. The
following companies acknowledged our advisories with a non-automated response:

• Argus Health.
• M & T Bank.
• PayPal.

Only BB&T has made any identifiable progress in over four months since notification
toward implementing proper cache control behavior. The account summary page is
now sending Cache-Control: no-store, but check images are still sent with
inadequate protections.

8 Observations and Concerns

We believe that the amount of personal data that is currently being written to the disk
cache when visiting these sites is alarming. It is important to note the distinction
between a user consciously selecting a “save to disk” option, e.g., to save a bank
statement, and content silently being written to the disk cache without users’ knowl-
edge. Non-technical users likely believe that if, after visiting a site and viewing per-
sonal data, they logout and close their browsers, that their data will be purged. Our
findings prove this assumption incorrect in 70 % of the cases tested.

Based on the quantity of sites (twelve of twenty-one) that sent at least one cache-
related header, even if it was not the one mandated by the standard to prevent disk
caching, we do not believe that it is intended by these industries that this content be
written to the disk cache. More significantly, the maintainers of these sites may erro-
neously believe that they have set the required headers to prevent disk caching, based
on outdated and incorrect information published on the Internet. One tutorial [14]
correctly states the purpose of all of these headers, but does not put them in the proper
context with regard to HTTPS, stating “SSL pages are not cached (or decrypted) by

Table 5. Sites sending sensitive information without cache-related headers.

Site Sensitive data

Argus Health Prescription claims
Boscov’s Charge Card Statements, full account numbers
Equifax Full credit reports
GEICO Partial SSN, DOB, name, address
MetLife Name, policy number, policy amount, beneficiaries
PNC Bank Check images
T. Rowe Price 401(k) balances
Toyota Financial Name, address, account number, VIN
Trade King Account number, balance

Industry-Wide Misunderstandings of HTTPS 505

proxy caches,” which, while true for proxies, does not address the behavior of
browsers. An OWASP page [15] incorrectly asserts that “If a web page is delivered
over SSL, no content can be cached.” When even the security community makes
outdated and incorrect assumptions about this issue, it is unrealistic that more gener-
ally-focused web developers will do better.

Web browser authors, with the most striking example being Mozilla, seem to
dismiss the current reality of servers sending sensitive information without the header
needed to prevent it from being cached to disk. A comment on the bug report involving
the change to Firefox 4’s SSL caching policy by a member of Mozilla Corporation’s
security team stated [9]:

Among sites that don’t use cache-control:no-store, the correlation between “SSL” and
“sensitive” is very low.

Our findings show that this assertion does not hold when real-world sites are
examined, even two years after the change.

The fact that the unencrypted, disk cached data is only stored on the user’s personal
machine should not be discounted. The possibilities for this information to be exposed
are numerous: malware infections, theft of laptops and mobile devices, theft of physical
backup media or compromise of “cloud” backup services, shared machines and user
accounts [17], and of course, shared computers in libraries, hotels, and Internet cafes. An
Intel-sponsored Ponemon Institute study estimated the cost of recovering from the loss
or theft of a single laptop as $49,246 [16], and a Lookout Mobile Security study
estimated that lost and stolen phones cost consumers more than $30 billion in 2012 [17].

9 Recommendations

To Web Developers and Web Framework Authors. Developers of web applications
and web frameworks should audit all existing code to ensure that sensitive data is
labeled with the appropriate caching directives. Professionals in these fields must
become more familiar with the fine details of the HTTP standard, and assume that
browser software will always make performance vs. security trade-offs against security.
Proper security assessments of sites containing sensitive information should be con-
ducted regularly, and an examination of disk cached content across all supported
browsers should be part of that assessment process.

To the Security Community. All existing guidance and advice in regard to the HTTPS
caching issue should be revised to reflect the reality of the HTTP standard. Security
professionals should be cautious in making assertions or recommendations based on
working knowledge alone, and be sure to consult the relevant standards and perform
testing to back up their beliefs.

To Web Browser Authors. In a time where security threats and identity theft are
rampant, all browsers should adopt an “opt-in” only policy for caching sensitive data to
disk; and further, users should have an easily accessible option to refuse any or all “opt-
in” directives. At the very least, we recommend that browsers with a very strict “opt-
out” HTTPS disk caching policy, such as Firefox and Chrome, consider interpreting the

506 S. Bono and J. Thompson

Pragma HTTP header and meta tag supported by Internet Explorer, as well. Internet
Explorer has been disk caching HTTPS content for far longer than either of these
browsers, so many sites seem to have been developed with IE-centric security
assumptions in mind.

To Standards Committees. We recommend that standards bodies incorporate sound
security principles, such as secure-by-default, defense-in-depth, and fail safe, into
future standards. Traditionally, standards authors have attempted to maintain the lay-
ered architecture of Internet standards, and avoid tightly coupling an application-layer
protocol like HTTP to the layers below. Indeed, RFC 2616 [put back ref?], the latest
version of HTTP/1.1, mentions “SSL” once and does not mention “HTTPS” at all.
While avoiding any consideration of whether an encrypted or unencrypted connection
is used might make for a cleaner design with fewer special cases, it has practical
security consequences. If HTTP/1.1 had simply specified that persistent caching was
disabled by default on encrypted connections, and specified a header allowing a server
to mark content as non-sensitive, then this entire issue could have been avoided.

To End-Users. Users should make the following configuration changes, depending on
each browser, keeping in mind there may be performance trade-offs associated with
these actions:

Internet Explorer. Internet Explorer already abides by most web application attempts to
prevent disk caching. To further restrict what can be cached, a user can open Internet
Options, choose the “Advanced” tab, and under “Security,” check “Do not save encrypted
pages to disk.” This option may have unwanted side effects, such as interfering with file
downloads from HTTPS sites. Alternatively, use “InPrivate Browsing” mode.

Firefox. Install our “HTTPS Caching Controller” Firefox add-on,4 which adds a toolbar
button allowing disk caching of SSL content to be disabled or enabled at any time. This
add-on works only on the desktop version of Firefox. Manually, or on the mobile
version, navigate to about:config, locate the preference browser.cache.
disk_cache_ssl, and set the value to false. Alternatively, use “Private
Browsing” mode.

Chrome. Google Chrome does not appear to have configurable functionality to limit the
disk caching of HTTPS content (without affecting HTTP content) without modifying
the source code. A workaround is to use “Incognito” mode, which prevents all disk
caching.

The mobile Android Browser is similar. Android users can switch to another
browser, such as the mobile version of Firefox, or use “Incognito” mode.

Safari. Safari users (both desktop and mobile) need not take any action, since, as of this
writing, Safari does not cache any content transferred over HTTPS.

General. In addition to taking these precautions, never log into account-related or other
security-sensitive sites from a computer or other device you do not own and control.

4 http://securityevaluators.com/content/case-studies/caching/extension.jsp

Industry-Wide Misunderstandings of HTTPS 507

http://securityevaluators.com/content/case-studies/caching/extension.jsp

10 Conclusions and Future Work

We have shown here, through direct verification and through online investigation, that
the history of web browser caching behavior is a complicated one. The inconsistency
across browser platforms and even across individual browser versions, has caused
security and development communities much confusion, as evidenced by online
sources and the alarming results of our study: that over 70 % of HTTPS-protected sites
containing highly sensitive data fail to properly prohibit disk caching, and of them over
50 % appear to desire such prohibition.

We have identified the actual disk caching behavior of the four most popular web
browsers, and suggest to web developers the most effective ways to prevent disk
caching of sensitive content across all browsers.

For end-users, we have provided a Firefox extension that effectively prohibits disk
caching of user-chosen sensitive data, rather than relying on the web application itself
to make the appropriate decisions.

Moving forward, standards bodies should consider updating the HTTP standard so
that the persistent caching of HTTPS data follows an “opt-in” policy, that is, the
standard should recommend never caching HTTPS-protected content unless the web
application specifically indicates that data is safe to cache.

Our data set consisted of 30 web sites, and additional statistical study could be
performed to determine how many sites fail to properly prohibit the disk caching of
sensitive data. Furthermore, given the lack of response to our disclosure of this
information, it would be interesting to statistically gauge the response time of these
organizations.

Appendix A

Fig. 1. Check image from PNC.

508 S. Bono and J. Thompson

Fig. 2. Full credit report from Equifax.

Industry-Wide Misunderstandings of HTTPS 509

Fig. 4. Credit card account statement from Boscov’s

Fig. 3. Prescription information from Argus

510 S. Bono and J. Thompson

Fig. 5. Paystub from ADP.

Industry-Wide Misunderstandings of HTTPS 511

References

1. Barish, G., Obraczke, K.: World Wide Web caching: trends and techniques. Commun. Mag.
38(5), 178–184 (2000)

2. Microsoft: How to prevent caching in Internet Explorer, Microsoft. http://support.microsoft.
com/kb/234067. Accessed 26 July 2013

3. Appel, S.: Secure sockets layer discussion list FAQ v1.1.1, faqs.org, 16 November 1998.
http://www.faqs.org/faqs/computer-security/ssl-talk-faq/. Accessed 26 July 2013

4. Mozilla: Firefox ignores “Cache-control: public” header on TLS connections, Mozilla, 19
July 2006. https://bugzilla.mozilla.org/show_bug.cgi?id=345181. Accessed 26 July 2013

5. Microsoft: Cannot open files on secure servers, Microsoft. http://support.microsoft.com/kb/
254324. Accessed 26 July 2013

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext Transfer Protocol
– HTTP/1.1 (RFC 2068), IETF (1997)

7. Schillace, S.: Default https access for Gmail, Google, 12 January 2010. http://gmailblog.
blogspot.com/2010/01/default-https-access-for-gmail.html. Accessed 25 July 2013

8. Rice, A.: Keeping users safe, Facebook, 13 May 2011. https://developers.facebook.com/
blog/post/499/. Accessed 26 July 2013

Fig. 6. Account information from Treasury Direct.

512 S. Bono and J. Thompson

http://support.microsoft.com/kb/234067
http://support.microsoft.com/kb/234067
http://www.faqs.org/faqs/computer-security/ssl-talk-faq/
https://bugzilla.mozilla.org/show_bug.cgi?id=345181
http://support.microsoft.com/kb/254324
http://support.microsoft.com/kb/254324
http://gmailblog.blogspot.com/2010/01/default-https-access-for-gmail.html
http://gmailblog.blogspot.com/2010/01/default-https-access-for-gmail.html
https://developers.facebook.com/blog/post/499/
https://developers.facebook.com/blog/post/499/

9. Mozilla: Should cache SSL content to disk even without Cache-Conrol: public, Mozilla, 30
November 2009. https://bugzilla.mozilla.org/show_bug.cgi?id=531801. Accessed 26 July
2013

10. Everyone: Usage share of web browsers, Wikipedia. http://en.wikipedia.org/wiki/Browser_
market_share. Accessed 25 July 2013

11. Berners-Lee, T., Fielding, R., Frystyk, H.: Hypertext transfer protocol - HTTP/1.0 (RFC
1945), IETF (1996)

12. The Apache Software Foundation: Revision 966055, The Apache Software Foundation, 20
July 2010. http://svn.apache.org/viewvc?view=revision&revision=966055. Accessed 26
July 2013

13. Microsoft: “Pragma: No-cache” tag may not prevent page from being cached, Microsoft.
http://support.microsoft.com/kb/222064. Accessed 26 July 2013

14. Nottingham, M.: Caching tutorial for web authors and webmasters, 06 May 2013. http://
www.mnot.net/cache_docs. Accessed 26 July 2013

15. OWASP: OWASP Application Security FAQ, OWASP, 22 April 2007. https://www.owasp.
org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_
directives.3F. Accessed 26 July 2013

16. Ponemon Institute: The billion dollar lost laptop problem, Ponemon Institute, (2010)
17. Lookout: Lookout projects lost and stolen phones could cost U.S. consumers over $30

billion in 2012, 21 March 2012
18. Chromium: Contents of /releases/1.0.154.53/src/net/http/http_cache.cc, Chromium, 26 July

2008. http://src.chromium.org/viewvc/chrome/releases/1.0.154.53/src/net/http/http_cache.
cc?revision=14. Accessed 26 July 2013

Industry-Wide Misunderstandings of HTTPS 513

https://bugzilla.mozilla.org/show_bug.cgi?id=531801
http://en.wikipedia.org/wiki/Browser_market_share
http://en.wikipedia.org/wiki/Browser_market_share
http://svn.apache.org/viewvc?view=revision&revision=966055
http://support.microsoft.com/kb/222064
http://www.mnot.net/cache_docs
http://www.mnot.net/cache_docs
https://www.owasp.org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_directives.3F
https://www.owasp.org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_directives.3F
https://www.owasp.org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_directives.3F
http://src.chromium.org/viewvc/chrome/releases/1.0.154.53/src/net/http/http_cache.cc?revision=14
http://src.chromium.org/viewvc/chrome/releases/1.0.154.53/src/net/http/http_cache.cc?revision=14

	Industry-Wide Misunderstandings of HTTPS
	Abstract
	1 Introduction
	2 A Brief History
	3 The Evolution of Caching Policies
	4 Current Caching Policies by Browser
	5 Reliably Preventing Disk Caching
	6 Site Survey
	7 Updates
	8 Observations and Concerns
	9 Recommendations
	10 Conclusions and Future Work
	Appendix A
	References

