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Abstract. Group signatures allow a group member to anonymously sign
a message on behalf of the group. One of the important issues is the
revocation, and lots of revocable schemes have been proposed so far. The
scheme recently proposed by Libert et al. achieves that O(1) or O(logN)
efficiency except for the revocation list size (also the revocation cost), for
the total number of members N and the number of revoked members R.
However, since a signature is required for each subset in the used subset
difference method, the size is about 900RBytes in the 128-bit security.
In the case of R = 100,000, it amounts to about 80 MB. In this paper,
we extend the scheme to reduce the revocation list (also the revocation
cost). In the proposed scheme, an extended accumulator accumulates T
subsets, which is signed for the revocation list. The revocation list size
is reduced by 1/T , although the public key size, membership certificate
size and the cost of a witness computation needed for signing increase
related to T .

Keywords: Anonymity · Group signatures · Revocations · Accumula-
tors

1 Introduction

The group signature scheme [13] allows a group member to anonymously sign
a message on behalf of the group. In the group signature scheme, two types of
trusted parties participate: A group manager (GM) has the authority to add a
user to the own group. An opener can identify the signer from a signature. One of
important issues in the group signature schemes is a revocation that the signing
capability of a user is revoked. The revocation may happen, when the user leaves
the group voluntarily or the account is banned due to the illegal usage, etc.

Lots of revocable group signature schemes have been proposed (e.g., [6–8,10–
12,16,17,19,20]). Hereafter, let N be the total number of group members, and
R be the number of revoked members. In the early scheme [7], the signature
size is O(R) (also, the costs of signing and verification). Then, the accumulator-
based scheme has been proposed in [12], which is followed in [11], to achieve
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the constant-size signature with the constant verification costs. However, each
member has to update a secret key (a witness for the accumulator) using the
revocation data, which implies that signing costs is O(R) in the worst case.

In [19], revocable schemes with the costs of constant signing and verifica-
tion have been proposed. The demerit of the schemes is the long public key
size. The basic scheme needs O(N) size, and the extended one needs O(

√
N) in

exchange for the extra signing cost. Recently, in [17], Libert et al. proposed an
elegant scalable scheme using Naor et al.’s broadcast encryption framework [21].
This scheme achieves the constant verification cost, and the polylogarithmic
public and secret key sizes. Finally, the same authors proposed the extended
version with O(1) secret key size [16], as achieving O(1) signature size, O(1)
signing/verification costs and O(log N) public key size.

In this paper, we consider reducing the revocation list size. In [16], to indicate
the revoked members, O(R) size is needed for the revocation list. Furthermore,
in the list, a signature is required for each subset in the used subset difference
(SD) method, and the number of the signatures is bounded by 2R − 1. The
signature is an AHO signature [2], which needs 7 elements of a bilinear group.
Assuming 128-bit security, the signature size is 448 Bytes. Thus, the revocation
list size is about 900R Bytes or more. In an example of R = 10,000, the size
amounts to 8 MB or more, and in case of R = 100,000, it becomes 80 MB or
more. Note that the signer has to fetch all data of the latest revocation list every
revocation epoch, as noted in [3]. This is because fetching a part of the list can
reveal the information to trace the signer. Therefore, the large data may cause
a delay in mobile environments.

In this paper, we propose a revocable group signature scheme with a compact
revocation list as the extension of the state-of-the-art scheme [16]. In our scheme,
using an extended accumulator based on [4], GM accumulates T subsets in
the SD method, and signs the accumulated value. This is why the number of
signatures is reduced by 1/T . The revocation cost is similar. In case of R =
100,000, the size of the signature data including the accumulated value is reduced
to 1,000 KB if T = 100. The compensation is increasing the public key size, the
membership certificate size, and the cost of a witness computation needed for
signing. Nevertheless, in case of T = 100, the public key size is 2,500 KB and
the membership certificate size is 13 KB. In real applications, the public key
and the certificate are not often distributed. On the other hand, the revocation
list has to be distributed every revocation epoch. Thus, we consider that it
is sufficiently practical to decrease the revocation list size while increasing the
public key and the membership certificate sizes. The witness computation cost
is about 120 exponentiations in case of T = 100. This cost is comparable to the
computation cost of commitments in the original signing. This computation is
needed only once every revocation epoch. As shown in Sect. 5, we can reduce the
cost by computing only the modified parts from the previous epoch. Therefore,
we consider that the extra costs are not a serious issue.
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Due to the page limitation, the preliminary section reviewing the bilinear
map and utilized primitives is in AppendixA.

2 Extended Accumulator

In [11], an efficient pairing-based accumulator is proposed. The accumulator is
generated from a set of values, and we can verify that a single value is included
in the set. In [22], the extended version is proposed, where we can verify that
multiple values are included in the specified set, all at once. In [4], another
extension is proposed, where we can verify that, for a set U , for all multiple
sets V1, . . . , VT , a value from U is included in each Vt, i.e., U ∩ Vt �= ∅, all at
once. This is applied to the verification for CNF formulas on attributes in the
anonymous credential system of [4]. For a CNF formula (a1 ∈ U ∨ · · · ∨ aL′ ∈
U) ∧ (b1 ∈ U ∨ · · · ∨ bL ∈ U) · · · , setting V1 = {a1, . . . , }, V2 = {b1, . . .}, . . ., we
can verify the formula by checking U ∩ Vt �= ∅ for all t.

This paper furthermore extends the accumulator in [4], since our group signa-
ture scheme also needs the CNF-type verification. The scheme requires the ver-
ification of the logical formula as (at1 ∈ U ∧ · · · ∧ atLt

∈ U) ∧ (bt1 ∈ U ∨
· · · ∨ btL ∈ U) for some t, given Vt = {at1, . . . , atLt

}, Ṽt = {bt1, . . . , btL} for all
1 ≤ t ≤ T . The length of the AND relation is variable, but the length of the
matched AND relation has to be hidden in the group signature scheme. Thus, we
introduce a dummy parameter SP. The other point of extension is to unbind the
limitation of the number of given sets (V1, Ṽ1), . . . , (VT , ṼT ), i.e., 2T . In the previ-
ous accumulator, the number is bounded by the order p of the bilinear groups.
In our construction, for any K,D s.t. T = K · D, the target sets are divided
to ((V1,1, Ṽ1,1), . . . , (V1,D, Ṽ1,D)), . . . , ((VK,1, ṼK,1), . . . , (VK,D, ṼK,D)). Using ran-
domized public parameters (gk,1, . . .) for each 1 ≤ k ≤ K, although D is bounded
by p, T = K · D becomes unbounded.

2.1 Proposed Construction

For all 1 ≤ k ≤ K and all 1 ≤ d ≤ D, define Vk,d and Ṽk,d as subsets of {1, . . . , n}.
Define V = {(Vk,d, Ṽk,d)}k=1,...,K,d=1,...,D. Let U be a subset of {1, . . . , n} satis-
fying U ∩Vk̃,d̃ = Vk̃,d̃ and U ∩ Ṽk̃,d̃ �= ∅ for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K.
In this construction, we assume that the maximum of |Vk,d| and |Ṽk,d| is ζ for all
1 ≤ k ≤ K and all 1 ≤ d ≤ D. In addition, we assume (U ∩Vk,d) = (U ∩Ṽk,d) = ∅
for all 1 ≤ k ≤ K and all 1 ≤ d ≤ D except some k′ and d′. If U ∩Vk̃,d̃ = Vk̃,d̃ and
U ∩ Ṽk̃,d̃ �= ∅, then it implies k′ = k̃ and d′ = d̃. These assumptions hold in our
application to the revocable group signatures. We introduce mutually different
special elements SPk,d ∈ N for all k, d such that SPk,d /∈ Vk′,d′ for all k′, d′. We
assume that SPk̃,d̃ ∈ U but SPk,d /∈ U for any k �= k̃, d �= d̃.

AccSetup: This is the algorithm to output the public parameters. The inputs
are the security parameter l and n,K,D, {SPk,d}1≤k≤K,1≤d≤K , ζ. Select bilin-
ear groups G, T with a prime order p > 2l and a bilinear map e. Select
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g ∈R G. Select γ, η1, . . . , ηK ∈R Zp, and compute g1 = gγ1
, . . . , gn =

gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, and gk,1 = gηk

1 , . . . , gk,n = gηk
n , gk,n+2 =

gηk

n+2, . . . , gk,2n = gηk

2n zk = e(g, g)ηkγn+1
for all 1 ≤ k ≤ K. For all 1 ≤ d ≤ D,

compute cd = (ζ+1)2d−2, c̃d = (ζ+1)2d−1 and set C = ((c1, c̃1), . . . , (cD, c̃D)).
We assume that (ζ+1)cD < p. Publish n,K,D, {SPk,d}1≤k≤K,1≤d≤K , ζ, C, p,
G, T , e, g, (g1, . . . , gn, gn+2, . . . , g2n), {gk,1, . . . , gk,n, gk,n+2, . . . , gk,2n, zk}K

k=1

as the public parameters.
AccGen: This is the algorithm to compute the accumulator using the public

parameters. The accumulator accV of V is computed as

accV =
∏

1≤k≤K

∏

1≤d≤D

((
∏

j∈Vk,d

gk,n+1−j)
cd · (

ζ−|Vk,d|∏

j=1

gk,n+1−SPk,d)cd · (
∏

j∈Ṽk,d

gk,n+1−j)
c̃d).

AccWitGen: This is the algorithm to compute the witness that U ∩Vk̃,d̃ = Vk̃,d̃

and U ∩ Ṽk̃,d̃ �= ∅ for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K, using the
public parameters. Given U , V, and the accumulator accV , the witness is
computed as

W =
∏

i∈U

∏

1≤k≤K

∏

1≤d≤D

((

j �=i∏

j∈Vk,d

gk,n+1−j+i)
cd · (

ζ−|Vk,d|,i�=SPk,d∏

j=1

gk,n+1−SPk,d+i)
cd ·

(

j �=i∏

j∈Ṽk,d

gk,n+1−j+i)
c̃d).

Furthermore, the auxiliary parameters are set as k̃, d̃, δk̃,d̃ = |U ∩ Ṽk̃,d̃|.
AccVerify: This is the algorithm to verify that U ∩Vk̃,d̃ = Vk̃,d̃ and U ∩ Ṽk̃,d̃ �= ∅

for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K, using the witness, the auxiliary
parameters, and the public parameters. Given accV , U , W k̃, d̃ and δk̃,d̃,
accept if

e(
∏

i∈U gi, accV)
e(g,W )

= zk̃
ζcd̃+δk̃,d̃c̃d̃ , 1 ≤ δk̃,d̃ ≤ ζ. (1)

2.2 Security

We can show the correctness and the security. The proofs are shown in the full
paper.

Theorem 1. Assume that AccSetup, AccGen, AccWitGen correctly com-
pute all parameters. Then, AccVerify accepts U, accV ,W, k̃, d̃ and δk̃,d̃ that they
outputs.

Theorem 2. Under the n-DHE assumption, any adversary cannot output (U,V,
W , k̃, d̃, δk̃,d̃), on inputs n,K,D, {SPk,d}1≤k≤K,1≤d≤K , ζ, C, p, G, T , e, g, (g1, . . . ,
gn, gn+2, . . . , g2n), {gk,1, . . . , gk,n, gk,n+2, . . . , gk,2n, zk}K

k=1 s.t. AccVerify
accepts U, accV ,W, k̃, d̃, δk̃,d̃ but U ∩ Vk′,d′ �= Vk′,d′ or U ∩ Ṽk′,d′ = ∅ for some
k′, d′, assuming the following preconditions.
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1. (U ∩ Vk,d) = (U ∩ Ṽk,d) = ∅ for all 1 ≤ k ≤ K and all 1 ≤ d ≤ D except
k = k′ and d = d′,

2. only SPk′,d′ is included in U (other SPk,d is not included).

3 Syntax and Security of Revocable Group Signatures

3.1 Syntax

Setup(l, N,K,D): Given the security parameter l ∈ N, the maximum number
of group members N ∈ N, and the efficiency parameters K,D ∈ N, this
algorithm outputs a group public key gpk, a GM ’s secret key gsk, and an
opener’s secret key osk. This algorithm initializes a public state St compris-
ing a set data structure Stusers = ∅ and a string data structure Sttrans = ε.

Join: This is an interactive protocol between the group manager GM and a
joining user Ui. The interactive Turing machines are denoted as JGM and JUi ,
respectively. After the protocol [JGM (l, St, gpk, gsk), JUi(l, gpk)] is executed,
JUi outputs a membership secret seci and a membership certificate certi. The
protocol is successful, JGM updates St by setting Stuser = Stuser ∪ {i} and
Sttrans = Sttrans‖〈i, transcripti〉.

Revoke(gpk, gsk, τ,Rτ ): Given gpk, gsk, epoch τ and Rτ ⊂ {1, . . . , N} that is
the identities of revoked members at the epoch τ , this algorithm outputs the
revocation list RLτ .

Sign(gpk, τ, RLτ , certi, seci,M): Given gpk, τ, RLτ , the signing member’s certi,
seci, and the message M to be signed, this algorithm outputs ⊥ if i ∈ Rt or
the signature σ otherwise.

Verify(gpk, τ, RLτ , σ,M): Given gpk, τ, RLτ , the signature σ and message M ,
this algorithm outputs 1 if the signature is valid and not revoked for the
revocation list RLτ , or 0 otherwise.

Open(gpk, τ, RLτ , σ,M, St, osk): Given gpk, τ, RLτ , σ,M as in Verify, the state
St in Join, and the opener’s secret key osk, this algorithm outputs i ∈
Stusers ∪ {⊥} which means the identity of the signer of σ or a symbol of an
opening failure.

3.2 Security Model

The security of the revocable group signature scheme consists of security against
misidentification attacks, security against framing attacks, and anonymity. The
security against misidentification attacks requires that the adversary cannot
forge a signature that is identified to one outside the set of corrupted and non-
revoked members. The security against framing attacks requires that a signature
of an honest member cannot be computed by other members and even GM . The
anonymity captures the anonymity and the unlinkability of signatures. The for-
mal definitions are described in the full paper.
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4 A Revocable Group Signature with Compact
Revocation List and Constant Verification Time

4.1 Construction Idea

The proposed scheme is based on the previous scheme [16]. The approach of the
previous scheme is as follows. The subset cover framework with the SD method
is used. To each member, a leaf node v in the binary tree with the height L
for N = 2L is assigned. Every node in the tree is assigned to a unique number.
In Join, to the member, a membership certificate is issued, which is an AHO
signature on a public key and an accumulated data for the node numbers on the
path from the root to v, ID1, . . . , IDL. For the accumulation, they adopt a vector
commitment [18] that is similar to the accumulators. In Revoke, GM publishes
the revocation list, where each entry consists of accumulated values for primary
and secondary nodes in each Si in the SD method, and the AHO signature on
them and the current time epoch τ . In the group signature, to show that the
signer is not a revoked member, she proves

1. an AHO signature binds between τ and the primary node with number ˜IDi,φi

of level φi and the secondary node ˜IDi,ψi
of level ψi in an Si,

2. for IDφi
with level φi and IDψi

with level ψi in the membership certificate, it
holds that IDφi

= ˜IDi,φi
and IDψi

�= ˜IDi,ψi
.

The second relation means that the primary node ˜IDi,φi
is an ancestor of v

and the secondary node ˜IDi,ψi
is not, i.e., the subset Si includes v, which implies

that the member is not revoked due to the subset cover framework. In this app-
roach, an AHO signature is needed for each subset Si. Each signature needs long
data (448 Bytes in 128-bit security), and thus the revocation list becomes long
as R increases.

In our approach, to accumulate the revocation list, we adopt the extended
accumulator in Sect. 2. Although the same tree structure in the subset cover
framework is used, a different coding is used. In the tree, for the edge to the left
(resp., right) child in the depth j, use index (j, 0) (resp, (j, 1)). Then, for the leaf
v assigned to the member, let (1, x1), . . . , (L, xL) be the path from the root to the
leaf v, where x	 ∈ {0, 1}. Similarly, for the subset Si, let (1, si,1), . . . , (φi, si,φi

)
denote the path from the root to the primary root and let (1, si,1), . . . , (ψi, si,ψi

)
denote the path to the secondary root, where φi, ψi ∈ {1, . . . , L} and si,j ∈
{0, 1}. To prove the non-revocation, the signer prove that ((1, x1) = (1, si1)) ∧
· · · ∧ ((φi, xφi

) = (φi, sφi
)) (i.e., the primary node is an ancestor v) and ((φi +

1, xφi+1) �= (φi +1, sφi+1))∨· · ·∨ ((ψi, xψi
) �= (ψi, sψi

)) (i.e., the secondary node
is not an ancestor of v). The latter relation can be rewritten as ((φi +1, xφi+1) =
(φi + 1, sφi+1)) ∨ · · · ∨ ((ψi, xψi

) = (ψi, sψi
)).

Using the accumulator, we can prove the relations. Let T be the number of
accumulated Si. For T , given K,D such that T = K · D. For all 1 ≤ t ≤ T ,
consider function It mapping {(�, b)}1≤	≤L,b∈{0,1} to {T + 1, . . . , n} such that
{It(�, b)}1≤	≤L,b∈{0,1} ∩ {It′(�, b)}1≤	≤L,b∈{0,1} = ∅ for any pair 1 ≤ t, t′ ≤ T .
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Set SPk,d = D · (k − 1) + d for all 1 ≤ k ≤ K and 1 ≤ d ≤ D. Note that
SPk,d ∈ {1, . . . , T}. The relation is required to satisfy the precondition of the
accumulator. Define Ut = {It(1, x1), . . . , It(L, xL),SPk,d} for all 1 ≤ t ≤ T ,
where k = �t/D� and d = t mod D. The accumulated Pt =

∏
i∈Ut

gi is embedded
into a membership certificate for all t. As for the revocation list, for w = �m/T �,
divide S1, . . . , Sm into w sequences:

S1 = (S1, . . . , ST ),S2 = (ST+1, . . . , S2T ), . . . ,Sw = (S(w−1)T+1, . . . , Sm),

where S1, . . . ,Sw−1 contain T elements and Sw contains T or less elements.
Here, we can connect any Si to the corresponding sequence Sω by the relation
ω = �i/T �. For each Sω, do the following. Compute t = i mod T to determine the
position of Si in Sω. Transform t to the corresponding (k, d) in the accumulator,
by k = �t/D� and d = t mod D. For all (k, d) correspondent 1 ≤ t ≤ T
in Sω (i.e., (ω − 1)T + 1 ≤ i ≤ ωT ), set Vk,d = {It(1, si,1), . . . , It(φi, si,φi

)}
and Ṽk,d = {It(φi + 1, si,φi+1), . . . , It(ψi, si,ψi

)}. As the revocation list, GM

publishes the accumulator accV for V = {(Vk,d, Ṽk,d)}k=1,...,K,d=1,...,D together
with the AHO signature. By accumulating Si’s into Sω, the number of published
signatures is reduced by 1/T .

In the group signature, for some t̃, the signer proves that Ut̃ ∩Vk̃,d̃ = Vk̃,d̃ and
Ut̃ ∩ Ṽk̃,d̃ �= ∅ for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K, using the accumulator
verification. The former relation means the AND relation ((1, x1) = (1, si1))∧· · ·
and the latter means that OR relation ((φi + 1, xφi+1) = (φi + 1, sφi+1)) ∨
· · · . In the verification relations (1) of the accumulator, the right hand reveals
the indexes k̃, d̃ via zk̃, cd̃, c̃d̃. To hide the indexes, we utilize the technique of
membership proof using signatures [9]. Also, we utilize the technique to prove
1 ≤ δk̃,d̃ ≤ ζ in the accumulator.

4.2 Proposed Construction

Setup. The inputs are the security parameter l, the maximum number of group
members N , and the efficiency parameters K,D.

1. Select bilinear groups G, T with the same order p > 2l and the bilinear map
e, and g ∈R G.

2. Set parameter T = K · D.
3. Generate public parameters of the extended accumulator: Set ζ = L. Set

SPk,d = D · (k − 1) + d for all 1 ≤ k ≤ K and 1 ≤ d ≤ D. Note
that SPk,d ∈ {1, . . . , T}. Select γ, η1, . . . , ηK ∈R Zp, and compute g1 =
gγ1

, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, and gk,1 = gηk

1 , . . . , gk,n =
gηk

n , gk,n+2 = gηk

n+2, . . . , gk,2n = gηk

2n zk = e(g, g)ηkγn+1
for all 1 ≤ k ≤ K.

For all 1 ≤ d ≤ D, compute cd = (ζ + 1)2d−2, c̃d = (ζ + 1)2d−1 and set
C = ((c1, c̃1), . . . , (cD, c̃D)). Set

pkacc = ({SPk,d}1≤k≤K,1≤d≤D, ζ, C, (g1, . . . , gn, gn+2, . . . , g2n),
{gk,1, . . . , gk,n, gk,n+2, . . . , gk,2n, zk}K

k=1).
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4. Define n1 = n3 = n4 = 2, n2 = 1. Generate four key pairs for the AHO
signature:

pk
(d)
AHO = (G(d)

r ,H(d)
r , G(d)

z ,H(d)
z , {G

(d)
i ,H

(d)
i }nd

i=1, A
(d), B(d)),

sk
(d)
AHO = (α(d)

a , α
(d)
b , μ(d)

z , ν(d)
z , μ, ν),

where d ∈ {1, 2, 3, 4}.
5. Generate a CRS for the GS NIWI proof: select f = (f1,f2,f3), where

f1 = (f1, 1, g), f2 = (1, f2, g), f3 = f ξ1
1 · f ξ2

2 for ξ1, ξ2, y1, y2 ∈R Z∗
p and

f1 = gy1 , f2 = gy2 . Set f̃ = f3 · (1, 1, g).
6. Define set Φ = {(gcd

k,1, g
c̃d

k,1)|1 ≤ k ≤ K, 1 ≤ d ≤ D}, where |Φ| = K · D = T .
For every (gcd

k,1, g
c̃d

k,1) ∈ Φ, generate the AHO signature on two messages

(gcd

k,1, g
c̃d

k,1), using sk
(1)
AHO. The signature is denoted as σ̃t = (θ̃t1, . . . , θ̃t7),

where t = D · (k − 1) + d.
7. For every 1 ≤ δ ≤ ζ, generate the AHO signature on message gδ

n, using
sk

(2)
AHO. The signature is denoted as σ̂δ = (θ̂δ1, . . . , θ̂δ7).

8. Select U ,V ∈R G for a pubic encryption.
9. Select a strongly unforgeable one-time signature ΣOTS = (SetupOTS,

SignOTS, VerifyOTS).
10. Output the group public key gpk=(K,D, p,G, T , e, g, pkacc, {pk

(i)
AHO}i=1,2,3,4,

f , f̃ , {σ̃t}t∈Φ, {σ̂δ}1≤δ≤ζ , (U ,V), ΣOTS), the GM ’s secret key gsk =
({sk

(i)
AHO}i=1,2,3,4) and the opener’s secret key osk = (y1, y2).

Join. The common inputs of JGM and JUi are l, gpk. The additional inputs of
JGM are St, gsk.

1. JUi selects x ∈R G, computes X = gx and send X to JGM . If X is already
registered in database Sttrans, JGM halts and returns ⊥ to JUi .

2. JGM assigns to the user a leaf v in the tree. Let (1, x1), . . . , (L, xL) be the path
from the root to the leaf v. Define Ut = {It(1, x1), . . . , It(L, xL),SPk,d} for all
1 ≤ t ≤ T , where k = �t/D� and d = t mod D. JGM computes Pt =

∏
i∈Ut

gi

for all 1 ≤ t ≤ T .
3. JGM generates an AHO signature σt = (θt,1, . . . , θt,7) on (X,Pt) for all 1 ≤

t ≤ T , using sk
(3)
AHO.

4. JGM sends v, {Pt}1≤t≤T to JUi . JUi checks the correctness of Pt’s. If these are
incorrect, JUi aborts. Otherwise, JUi sends JGM the ordinary digital signature
sigi on (X, v).

5. JGM verifies sig. If it is incorrect, JGM aborts. Otherwise, JGM sends the
AHO signature σt to JUi , and stores 〈i, transcripti = (v,X, {Pt, σt}1≤t≤T , sigi)〉
in the database Sttrans.

6. JUi outputs the membership certificate certi = (v,X, {Ut, Pt, σt}1≤t≤T ) and
the membership secret seci = x.
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Revoke. The inputs are gpk, gsk, the epoch τ and the revocation members Rτ .

1. By the subset covering of the SD scheme, find a cover of the unrevoked users,
S1, . . . , Sm. Set w = �m/T �. Divide S1, . . . , Sm into w sequences:

S1 = (S1, . . . , ST ),S2 = (ST+1, . . . , S2T ), . . . ,Sw = (S(w−1)T+1, . . . , Sm),

where S1, . . . ,Sw−1 contain T elements and Sw contains T or less elements.
Here, we can connect any Si to the corresponding sequence Sω by the relation
ω = �i/T �. For the sub-tree Si, let (1, si,1), . . . , (φi, si,φi

) denote the path from
the root to the primary root and let (1, si,1), . . . , (ψi, si,ψi

) denote the path
to the secondary root, where φi, ψi ∈ {1, . . . , L} and each si,j ∈ {0, 1}.

2. For Sω with all 1 ≤ ω ≤ w, do the following.
(a) To determine the position of Si in Sω, compute t = i mod T . Transform

t to the corresponding (k, d) in the accumulator, by k = �t/D� and d =
t mod D. For all (k, d) correspondent 1 ≤ t ≤ T in Sω (i.e., (ω−1)T +1 ≤
i ≤ ωT ), set Vk,d = {It(1, si,1), . . . , It(φi, si,φi

)} and Ṽk,d = {It(φi +
1, si,φi+1), . . . , It(ψi, si,ψi

)}, where si,	 is the negation of si,	.
(b) Compute accω =

∏
1≤k≤K

∏
1≤d≤D((

∏
j∈Vk,d

gk,n+1−j)cd ·
(
∏ζ−|Vk,d|

j=1 gk,n+1−SPk,d
)cd · (

∏
j∈Ṽk,d

gk,n+1−j)c̃d).
3. For all 1 ≤ ω ≤ w, compute the AHO signature on pair (gτ , accω): Θω =

(Θω,1, . . . , Θω,7), using sk
(4)
AHO.

4. Output the revocation list: RLτ = (τ,Rτ , {Si}m
i=1, {accω, Θω}w

ω=1).

Sign. The inputs are gpk, τ, RLτ , certi, seci and the message M .

1. Using SetupOTS, generate a key pair (SK,VK) of the one-time signature.
2. Using RLτ , find the set Sı̃ including the signing user. For the subset Sı̃, let

(1, sı̃,1), . . . , (φı̃, sı̃,φı̃
) denote the path from the root to the primary root and

let (1, sı̃,1), . . . , (ψı̃, sı̃,ψı̃
) denote the path to the secondary root. Then, find

Sω̃ including Sı̃ by ω̃ = �ı̃/T �. To determine the position of Sı̃ in Sω̃, compute
t̃ = ı̃ mod T . Furthermore, find the corresponding (k̃, d̃) by k̃ = �t̃/D� and
d̃ = t̃ mod D satisfying t̃ = D · (k̃ − 1) + d̃ − 1.

3. Pick up accω̃, Θω̃ = (Θω̃,1, . . . , Θω̃,7) from RLτ , and Ut̃, Pt̃, σt̃ = (θt̃,1, . . . , θt̃,7)

from certi. For t̃, k̃, d̃, pick up the AHO signature on (Jt̃1, Jt̃2) = (gcd̃

k̃,1
, g

c̃d̃

k̃,1
),

i.e., σ̃t̃ = (θ̃t̃1, . . . , θ̃t̃7) from gpk. In the same way to Revoke, set Vk,d and
Ṽk,d for all (k, d) in Sω̃. Compute δk̃,d̃ = |Ut̃ ∩ Ṽk̃,d̃|. Pick up the AHO signa-

ture on Qδk̃,d̃
= g

δk̃,d̃
n , i.e., σ̂δk̃,d̃

= (θ̂δk̃,d̃1
, . . . , θ̂δk̃,d̃7

) from gpk.
4. Compute the witness of Ut̃ ∩ Vk̃,d̃ = Vk̃,d̃ and Ut̃ ∩ Ṽk̃,d̃ �= ∅, as follows.

W =
∏

i∈U

∏
1≤k≤K

∏
1≤d≤D((

∏j �=i
j∈Vk,d

gk,n+1−j+i)cd · (
∏ζ−|Vk,d|,i �=SPk,d

j=1

gk,n+1−SPk,d+i)cd · (
∏j �=i

j∈Ṽk,d
gk,n+1−j+i)c̃d).

5. Compute GS commitments comPt̃
, comaccω̃

, comW , comJt̃1
, comJt̃2

, comQδ
k̃,d̃

,

comX to Pt̃, accω̃,W , Jt̃1, Jt̃2, Qδk̃,d̃
,X. Then, re-randomize the AHO signa-

tures σt̃, σ̃t̃, σ̂δk̃,d̃
, Θω̃ to obtain σ′

t̃
= {θ′

1, . . . , θ
′
7}, σ̃′

t̃ = {θ̃′
1, . . . , θ̃′

7}, σ̂′
δk̃,d̃

=



444 T. Nakanishi and N. Funabiki

{θ̂′
1, . . . , θ̂′

7}, Θ′
ω̃ = {Θ′

1, . . . , Θ
′
7}, and compute GS commitments

{comθ′
i
}i∈{1,2,5}, {comθ̃′

i
}i∈{1,2,5}, {comθ̂′

i
}i∈{1,2,5}, {comΘ′

i
}i∈{1,2,5} to

{θ′
i}i∈{1,2,5}, {θ̃′

i}i∈{1,2,5}, {θ̂′
i}i∈{1,2,5}, {Θ′

i}i∈{1,2,5}.
6. Generate {πi}9i=1 s.t.

1T = e(Pt̃, accω̃) · e(g,W )−1 · e(Jt̃1, g
ζ
n)−1 · e(Jt̃2, Qδk̃,d̃

)−1, (2)

A(1) · e(θ̃′
3, θ̃

′
4)

−1 = e(G(1)
z , θ̃′

1) · e(G(1)
r , θ̃′

2) · e(G(1)
1 , Jt̃1) · e(G(1)

2 , Jt̃2), (3)

B(1) · e(θ̃′
6, θ̃

′
7)

−1 = e(H(1)
z , θ̃′

1) · e(H(1)
r , θ̃′

5) · e(H(1)
1 , Jt̃1) · e(H(1)

2 , Jt̃2), (4)

A(2) · e(θ̂′
3, θ̂

′
4)

−1 = e(G(2)
z , θ̂′

1) · e(G(2)
r , θ̂′

2) · e(G(2)
1 , Qδk̃,d̃

), (5)

B(2) · e(θ̂′
6, θ̂

′
7)

−1 = e(H(2)
z , θ̂′

1) · e(H(2)
r , θ̂′

5) · e(H(2)
1 , Qδk̃,d̃

), (6)

A(3) · e(θ′
3, θ

′
4)

−1 = e(G(3)
z , θ′

1) · e(G(3)
r , θ′

2) · e(G(3)
1 ,X) · e(G(3)

2 , Pt̃), (7)

B(3) · e(θ′
6, θ

′
7)

−1 = e(H(3)
z , θ′

1) · e(H(3)
r , θ′

5) · e(H(3)
1 ,X) · e(H(3)

2 , Pt̃), (8)

A(4) · e(Θ′
3, Θ

′
4)

−1 · e(G(4)
1 , gτ )−1 = e(G(4)

z , Θ′
1) · e(G(4)

r , Θ′
2) · e(G(4)

2 , accω̃), (9)

B(4) · e(Θ′
6, Θ

′
7)

−1 · e(H(4)
1 , gτ )−1 = e(H(4)

z , Θ′
1) · e(H(4)

r , Θ′
5) · e(H(4)

2 , accω̃). (10)

In the GS proofs, the Eq. (2) shows the accumulator verification, the Eqs. (3),
(4) shows the AHO signature verification on (Jt̃1, Jt̃2), the Eqs. (5), (6) shows
the AHO signature verification on Qδk̃,d̃

, the Eqs. (7), (8) shows the AHO
signature verification on (X,Pt̃), and the Eqs. (9), (10) shows the AHO sig-
nature verification on (gτ , accω̃).

7. The remaining process is as the same as in [16]. Using VK as a tag, compute
a tag-based encryption [15] of X. Namely, select z1, z2 ∈ Zp, and compute

(Γ1, Γ2, Γ3, Γ4, Γ5) = (fz1
1 , fz2

2 ,X · gz1+z2 , (gVK · U)z1 , (gVK · V)z2).

8. Generate NIZK proofs that comX = (1, 1,X) · frX,1
1 · frX,2

2 · frX,3
3 and

(Γ1, Γ2, Γ3) is a BBS ciphertext of X, as in [16]. For f3 = (f3,1, f3,2, f3,3),
we can write comX = (frX,1

1 · frX,3
3,1 , f

rX,2
2 · frX,3

3,2 ,X · grX,1+rX,2 · frX,3
3,3 ). Thus,

we have

comX · (Γ1, Γ2, Γ3)−1 = (fχ1
1 · fχ3

3,1, fχ2
2 · fχ3

3,2, gχ1+χ2 · fχ3
3,3), (11)

where χ1 = rX,1 − z1, χ2 = rX,2 − z2, χ3 = rX,3. Compute GS commitments
comχi

to the exponent χi for i = 1, 2, 3 using f̃ , and generate the NIZK
proofs π10, π11, π12 satisfying the three linear relations (11).

9. Compute a weakly secure BB signature σVK = g1/(x+VK) on VK and the
commitment comσVK

to σVK. Next, generate the NIZK proof π13 satisfying
e(σVK,X · gVK) = e(g, g).

10. Compute a one-time signature

σOTS = SignOTS(SK, (M,RLτ , {Γi}5i=1, {θ′
i, θ̃

′
i, θ̂′

i, Θ
′
i}i=3,4,6,7, com,Π)),

where com = (comPt̃
, comaccω̃

, comW , comJt̃1
, comJt̃2

, comQδ
k̃,d̃

, comX ,

{comχi
}3i=1, {comθ′

i
}i∈{1,2,5}, {comθ̃′

i
}i∈{1,2,5}, {comθ̂′

i
}i∈{1,2,5},
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{comΘ′
i
}i∈{1,2,5}, comσVK

), Π = {πi}13i=1. Output the signature σ =
(VK, {Γi}5i=1, {θ′

i, θ̃
′
i, θ̂′

i, Θ
′
i}i=3,4,6,7, com,Π, σOTS).

Verify. The input are gpk, τ, RLτ , σ,M . If

VerifyOTS(VK, (M,RLτ , {Γi}5i=1, {θ′
i, θ̃

′
i, θ̂′

i, Θ
′
i}i=3,4,6,7, com,Π)) = 0

or {Γi}5i=1 is not a valid tag-based encryption, output 0. Then, output 1 if all
proofs are accepted. Otherwise, output 0.

Open. The inputs are gpk, τ, RLτ , σ,M, St, osk. If Verify on σ and M outputs
0, output ⊥. Otherwise, using osk = (y1, y2), decrypt X̃ = Γ3 · Γ

−1/y1
1 · Γ

−1/y2
2 .

Search the database Sttrans to find a record 〈i, (transcripti, v,X, {Pt, σt}1≤t≤T ,

sigi)〉 with X = X̃. If the search fails, output ⊥. Otherwise, output i.

4.3 Security

The proofs of the security are in the full paper.

5 Efficiency

We compare the efficiency of our scheme to the previous scheme [16]. In addition
to parameters N,R, the efficiency of our system depends on n, T,K,D, where
T = K · D, and n ≈ T log N . Here, as in [16], we consider the 128-bit security
level, and we assume that the element in G can be represented by 512 bits.

We compare the constant signature size. The signature in the previous scheme
needs 144 G-elements and the size is 9 KB. In our scheme, the signature needs
143 G-elements, whose size is also 9 KB.

In the proposed scheme, we have the trade-off: Decreasing the revocation
list size leads to increasing the sizes of public key and membership certifi-
cate. Consider the revocation list size. The revocation list consists of a non-
cryptographic part related to IDs of revoked members (i.e., Rτ , {Si}m

i=1) and
a cryptographic part of accumulators and the signatures (i.e., {accω, Θω}w

ω=1).
The non-cryptographic part is bounded by 5 · log N · R bits. The cryptographic
part in our scheme is bounded by 512 · 8�(2R − 1)/T � bits, while the part needs
at most 512 · 7�(2R − 1)� bits in [16]. Thus, by increasing T , this part is greatly
reduced. However, the other efficiency becomes worse as follows. The public key
size of our scheme is approximately 2K · T · log N · 512 bits. The membership
certificate size is approximately 8 · 512 · T bits.

Next, we compare the signing costs. The computational cost of signing is
comparable except for the computation of W . As discussed in AppendixB, T
exponentiations (and 2D exponentiations) are the extra cost compared to [16].
However, note that the computation of W is required once every revocation
epoch in practice. Namely, after W is computed in an epoch, the following signing
does not need the extra cost during the same epoch. Furthermore, we can reduce
the computation of W by using W in the previous epoch. Thus, we consider that
the extra costs are not a serious issue.
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Now we consider concrete examples. We assume N/R = 10. To balance K
and D, we set K = D ≈

√
T . Table 1 shows the comparisons of the revocation

list size between the previous scheme [16] and the proposed scheme using T =
49, T = 100, in cases of N = 10,000, N = 100,000, N = 1,000,000. As for the
cryptographic part ({accω, Θω}w

ω=1), the size is greatly reduced, as T is increased.
Since the non-cryptographic part cannot be reduced, we ignore cases of T > 100.
Similarly, for N � 1,000,000, due to the huge data of the non-cryptographic part,
any revocable group signatures are essentially impractical.

Table 1. Comparisons of the revocation list size.

Rτ , {Si}m
i=1 {accω, Θω}w

ω=1

[16] Proposed (T = 49) Proposed (T = 100)

N = 10,000(R = 1,000) 6.8KB 880KB 21KB 10KB

N = 100,000(R = 10,000) 83KB 8,800KB 210KB 100KB

N = 1,000,000(R = 100,000) 980KB 88,000KB 2,100KB 1,000KB

Table 2 shows the comparisons of the public key size and the membership
certificate size, where N = 1,000,000 and R = 100,000. Since the public key size
depends on only log N , the size in cases of the other N,R is similar to this table.
The membership certificate size is the same when N,R are changed. Compared
to [16], the extra sizes in public key and membership certificate are needed, and
are increased when T is increased. In real applications, the public key and the
certificate are not often distributed. On the other hand, the revocation list has
to be distributed every revocation epoch. Thus, we consider that it is sufficiently
practical to decrease the revocation list size while increasing the public key and
the membership certificate sizes.

As for the signing cost, in our scheme, the extra cost of about 120 expo-
nentiations is required in case of T = 100. The extra cost is comparable to the
computations of commitments com with about 140 exponentiations. As shown
above, the cost can be reduced in the implementation.

Table 2. Public key size and membership certificate size for T (N = 1,000,000, R =
100,000).

[16] Proposed (T = 49) Proposed (T = 100)

Public key size (gk,j ’s) 2.6 KB 860 KB 2,500 KB

Membership certificate size 0.20 KB 25 KB 50 KB

A Preliminaries

A.1 Bilinear Groups

Our scheme utilizes the following bilinear groups:
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1. G and T are multiplicative cyclic groups of prime order p,
2. g is a randomly chosen generator of G,
3. e is an efficiently computable bilinear map: G×G → T , i.e., (1) for all u, v ∈ G

and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g, g) �= 1T .

A.2 Assumptions

As in the underlying scheme [16], the security of our system is based on the
DLIN (Decision LINear) assumption [6], the SDH (Strong DH) assumption [5],
and the q-SFP (Simultaneous Flexible Pairing) assumption [2]. We also adopt
n-DHE (DH Exponent) assumption [11] for the accumulator.

Definition 1 (DLIN assumption). For all PPT algorithm A, the probability

|Pr[A(g, ga, gb, gac, gbd, gc+d) = 1] − Pr[A(g, ga, gb, gac, gbd, gz) = 1]|

is negligible, where g ∈R G and a, b, c, d, z ∈R Zp.

Definition 2 (q-SDH assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(g, ga, . . . , gaq

) = (b, g1/(a+b)) ∧ b ∈ Zp]

is negligible, where g ∈R G and a ∈R Zp.

Definition 3 (q-SFP assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(gz , hz , gr, hr, a, ã, b, b̃, {(zj , rj , sj , tj , uj , vj , wj)}q
j=1) = (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7

∧e(a, ã) = e(gz , z
∗)e(gr, r

∗)e(s∗, t∗) ∧ e(b, b̃) = e(hz , z
∗)e(hr, u

∗)e(v∗, w∗)

∧z∗ �= 1G ∧ z∗ �= zj for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj , rj , sj , tj , uj,
vj , wj)}q

j=1) satisfy the above relations.

Definition 4 (n-DHE assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(g, ga, . . . , gan

, gan+2
, . . . , ga2n

) = gan+1
]

is negligible, where g ∈R G and a ∈R Zp.

A.3 Structure-Preserving Signatures (AHO Signatures)

We utilize the structure-preserving signatures, since the knowledge of the sig-
nature can be proved by Groth-Sahai proofs. As in [16], we adopt the AHO
signature scheme in [1,2]. Using the AHO scheme, we can sign multiple group
elements to obtain a constant-size signature.
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AHOKeyGen: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g,Gr,Hr ∈R G, and μz, νz, μ, ν, αa, αb ∈R Zp. Compute Gz =
Gμz

r ,Hz = Hνz
r , G = Gμ

r ,H = Hν
r , A = e(Gr, g

αa), B = e(Hr, g
αb). Output

the public key as pk = (G, T , p, e, g, Gr,Hr, Gz,Hz, G,H,A,B), and the
secret key as sk = (αa, αb, μz, νz, μ, ν).

AHOSign: Given message M together with sk, choose β, ε, η, ι, κ ∈R Zp, and
compute θ1 = gβ , and θ2 = gε−μzβM−μ, θ3 = Gη

r , θ4 = g(αa−ε)/η, θ5 =
gι−νzβM−ν , θ6 = Hκ

r , θ7 = g(αb−ι)/κ. Output the signature σ = (θ1, . . . ,
θ7).

AHOVerify: Given the message M and the signature σ = (θ1, . . . , θ7), accept
these if
A = e(Gz, θ1)·e(Gr, θ2)·e(θ3, θ4)·e(G,M), B = e(Hz, θ1)·e(Hr, θ5)·e(θ6, θ7)·
e(H,M).

This signature is existentially unforgeable against chosen-message attacks
under the q-SFP assumption [2]. Using the re-randomization algorithm in [2], this
signature can be publicly randomized to obtain another signature (θ′

1, . . . , θ
′
7) on

the same message. As a result, in the following Groth-Sahai proof, (θ′
i)i=3,4,6,7

can be safely revealed, while (θ′
i)i=1,2,5 have to be committed.

A.4 Groth-Sahai (GS) Proofs

To prove the secrets in relations of the bilinear maps, we utilize Groth-Sahai
(GS) proofs [14]. As in [16], we adopt the instantiation based on DLIN assump-
tion. For the bilinear groups, the proof system needs a common reference string
(f1,f2,f3) ∈ G3 for f1 = (f1, 1, g),f2 = (1, f2, g) for some f1, f2 ∈ G. The
commitment to an element X is computed as C = (1, 1,X) · fr

1 · fs
2 · f t

3 for
r, s, t ∈R Z∗

p . In case of the CRS setting for perfectly sound proofs, f3 = f ξ1
1 ·f ξ2

2

for ξ1, ξ2 ∈R Z∗
p . Then, the commitment C = (fr+ξ1t

1 , fs+ξ2t
2 ,Xgr+s+t(ξ1+ξ2)) is

the linear encryption in [6]. On the other hand, in the setting of the witness
indistinguishability, f1,f2,f3 are linearly independent, and thus C is perfectly
hiding. The DLIN assumption implies the indistinguishability of the CRS.

The commitment to an exponent x ∈ Zp is computed as C = f̃x · fr
1 · fs

2 for
r, s ∈R Z∗

p , for a CRS f̃ ,f1,f2. In the setting of perfectly sound proofs, f̃ ,f1,f2

are linearly independent (As in [16], for example, we can set f̃ = f3 · (1, 1, g)
with f3 = f ξ1

1 ·f ξ2
2 ). In the WI setting, f̃ = f ξ1

1 ·f ξ2
2 provides a perfectly hiding

commitment.
To prove that the committed variables satisfy the pairing relations, the prover

prepares the commitments, and replaces the variables in the pairing relations by
the commitments. An NIWI (non-interactive witness indistinguishable) proof
allows us to prove the set of pairing product equations:

n∏

i=1

e(Ai,Xi) ·
n∏

i=1

n∏

j=1

e(Xi,Xj)aij = t,
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for variables X1, . . . , Xn ∈ G and constants A1, . . . , An ∈ G, aij ∈ Zp, t ∈ T .
NIWI proofs also exist for multi-exponentiation equations:

m∏

i=1

Ayi

i ·
n∏

j=1

X
bj

j ·
m∏

i=1

n∏

j=1

X
yiγij

j = T,

for variables X1, . . . , Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . , Am ∈ G,
b1, . . . , bn, γij ∈ Zp. For the multi-exponentiation equations, we can obtain the
NIZK (non-interactive zero-knowledge) proofs with no additional cost.

A.5 Subset Cover Framework for Broadcast Encryption

As in [16], we adopt the subset cover framework for broadcast encryption in
[21]. In this framework, a binary tree is used, where each leaf is assigned to each
receiver (its secret key). Namely, for N = 2L receivers, the height of the tree is
L. Let N be the universe of users and R ⊂ N be the set of revoked receivers.
In this framework, the set of non-revoked users is partitioned into m disjoint
subsets S1, . . . , Sm such that N\R = S1 ∪ · · · ∪ Sm.

In the framework, there are mainly the complete subtree (CS) method and
the subset difference (SD) method. In the revocable group signature scheme of
[16], the SD method is adapted to achieve O(|R|) revocation list. In this method,
the disjoint set Si is determined by two nodes in the tree, primary node vi,φi

and secondary node vi,ψi
that is a descendant node of vi,φi

, and Si consists of
the leaves of the subtree rooted by vi,φi

that are not in the subtree rooted by
vi,ψi

. The number of subsets is bounded by m = 2 · |R| − 1, as proved in [21].

B Evaluation of Witness Computation

In Sect. 5, the efficiency of our scheme is compared to the underlying scheme [16].
Here, we show the detailed efficiency discussion of the witness computation. The
computation of W can be replaced:

W =
∏

1≤d≤D

((
∏

i∈U

∏

1≤k≤K

(
j �=i∏

j∈Vk,d

gk,n+1−j+i) · (
ζ−|Vk,d|,i �=SPk,d∏

j=1

gk,n+1−SPk,d+i))cd

·(
∏

i∈U

∏

1≤k≤K

j �=i∏

j∈Ṽk,d

gk,n+1−j+i)c̃d).

Then, the number of exponentiations by cd, c̃d is 2D. The number of multipli-
cations is T · log2 N . As discussed in [16], log2 N multiplications is bounded
by the cost of a single exponentiation. This is why T exponentiations (and 2D
exponentiations) are the extra cost compared to [16].

As mentioned in Sect. 5, the witness computation can be reduced by using
W in the previous epoch. In the case that the modification to the revocation
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list does not influence Sω̃ including Sı̃ (i.e., revocations happens in the other
covers), the signer does not need to compute W . In the other cases, we can also
reduce the cost: For only modified covers Si correspondent (k, d), divide W by
the old terms for (k, d) and multiply it by the new terms. Thus, we consider that
the extra costs are not a serious issue.
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