
Hyang-Sook Lee
Dong-Guk Han (Eds.)

 123

LN
CS

 8
56

5

16th International Conference
Seoul, Korea, November 27–29, 2013
Revised Selected Papers

Information Security
and Cryptology –
ICISC 2013

Lecture Notes in Computer Science 8565

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Hyang-Sook Lee • Dong-Guk Han (Eds.)

Information Security
and Cryptology –

ICISC 2013
16th International Conference
Seoul, Korea, November 27–29, 2013
Revised Selected Papers

123

Editors
Hyang-Sook Lee
EWHA Womans University
Seoul
Korea, Republic of (South Korea)

Dong-Guk Han
Kookmin University
Seoul
Korea, Republic of (South Korea)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-12159-8 ISBN 978-3-319-12160-4 (eBook)
DOI 10.1007/978-3-319-12160-4

Library of Congress Control Number: 2014953265

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

ICISC 2013, the 16th International Conference on Information Security and Cryptol-
ogy, was held in Seoul, Korea, during November 27–29, 2013. This year’s conference
was hosted by the KIISC (Korea Institute of Information Security and Cryptology)
jointly with the NSRI (National Security Research Institute), in cooperation with the
Ministry of Science, ICT and Future Planning (MSIP).

The aim of this conference is to provide an international forum for the latest results
of research, development, and applications in the field of information security and
cryptology. This year we received 126 submissions from more than 20 countries and
were able to accept 31 papers from 14 countries, with an acceptance rate of 24.6 %. The
review and selection processes were carried out by the Program Committee (PC)
members, 86 prominent experts worldwide, via the IACR review system. Submissions
by Program Committee members received at least five reviews. The review process was
double-blind, and conflicts of interest were handled carefully.

The conference featured two invited talks: “Making NTRUEncrypt and NTRUSign
as Secure as Worst-Case Problems over Ideal Lattices” by Damien Stehlé and
“Introduction to Quantum Cryptography and Its Technology Trends” by Jeong Woon
Choi. We thank the invited speakers for their kind acceptance and nice presentations.

We would like to thank all authors who submitted their papers to ICISC 2013 and all
of the 86 PC members. It was a truly great experience to work with such talented and
hard-working researchers. We also appreciate the external reviewers for assisting the
PC members in their particular areas of expertise. Finally, we would like to thank all
attendees for their active participation and the organizing team who nicely managed
this conference. We look forward to seeing you again at next year’s ICISC.

August 2014 Hyang-Sook Lee
Dong-Guk Han

The 16th International Conference on Information
Security and Cryptology ICISC 2013

November 27–29, 2013
New Millennium Hall, Konkuk University, Seoul, Korea

Hosted by
Korea Institute of Information Security and Cryptology (KIISC)
National Security Research Institute (NSRI)

Supported by
Ministry of Science, ICT and Future Planning (MSIP)
Electronics and Telecommunications Research Institute (ETRI)
Korea Internet & Security Agency (KISA)

Organization

General Chairs

Sukwoo Kim Hansei University, Korea
Seok-Yeol Kang NSRI, Korea

Program Co-chairs

Hyang-Sook Lee Ewha Womans University, Korea
Dong-Guk Han Kookmin University, Korea

Program Committee

Gail-Joon Ahn Arizona State University, USA
Joonsang Baek Khalifa University, UAE
Yoo-Jin Baek Woosuk University, Korea
Alex Biryukov University of Luxembourg, Luxembourg
Andrey Bogdanov Technical University of Denmark, Denmark
Zhenfu Cao Shanghai Jiao Tong University, China
Aldar Chan Institute for Infocomm Research (I2R), A*STAR,

Singapore
Kefei Chen Hangzhou Normal University, China
Dooho Choi ETRI, Korea
Yongwha Chung Korea University, Korea
Nora Cuppens TELECOM Bretagne, France
Paolo D’Arco Università degli Studi di Salerno, Italy
Rafael Dowsley Karlsruhe Institute of Technology, Germany
Shaojing Fu National University of Defence Technology, China
Matthew D. Green Johns Hopkins University, USA
Johann Großschädl University of Bristol, UK
JaeCheol Ha Hoseo University, Korea
Martin Hell Lund University, Swede
Swee-Huay Heng Multimedia University, Malaysia
Dowon Hong Kongju National University, Korea
Jin Hong Seoul National University, Korea
Jiankun Hu University of New South Wales, Australia
Jung Yeon Hwang ETRI, Korea
Eul Gyu Im Hanyang University, Korea
David Jao University of Waterloo, Canada
Chong Hee Kim Brightsight, The Netherlands
Dong Kyue Kim Hanyang University, Korea

Howon Kim Pusan National University, Korea
Huy Kang Kim Korea University, Korea
Jihye Kim Kookmin University, Korea
Jongsung Kim Kookmin University, Korea
So Jeong Kim The Attached Institute of ETRI, Korea
Shinsaku Kiyomoto KDDI R&D Laboratories Inc., Japan
Taekyoung Kwon Yonsei University, Korea
Eunjeong Lee Ewha Womans University, Korea
Jonghyup Lee Korea National University of Transportation,

Korea
Jooyoung Lee Sejong University, Korea
Moon Sung Lee Seoul National University, Korea
Mun-Kyu Lee Inha University, Korea
Pil Joong Lee Pohang University of Science and Technology,

Korea
Su Mi Lee Financial Security Agency, Korea
Seongan Lim Ewha Womans University, Korea
Dongdai Lin Institute of Information Engineering, CAS, China
Hua-Yi Lin China University of Technology, Taiwan
Sjouke Mauw University of Luxembourg, Luxembourg
Florian Mendel Graz University of Technology, Austria
Atsuko Miyaji JAIST, Japan
Yutaka Miyake KDDI R&D, Japan
Abedelaziz Mohaisen Verisign Labs, USA
Jose A. Montenegro Universidad de Malaga, Spain
DaeHun Nyang Inha University, Korea
Heekuck Oh Hanyang University, Korea
Tae Oh NSSA at RIT, USA
Katsuyuki Okeya Hitachi, Japan
Rolf Oppliger eSecurity Technologies, Switzerland
Omkant Pandey UT Austin, USA
Raphael C.-W. Phan Multimedia University, Malaysia
Carla Ràfols Ruhr University of Bochum, Germany
Christian Rechberger DTU Matematik, Denmark
Bimal Roy Indian Statistical Institute, India
Kouichi Sakurai Kyushu University, Japan
Nitesh Saxena University of Alabama at Birmingham, USA
Ji Sun Shin Sejong University, Korea
Sang-Uk Shin Pukyong National University, Korea
Hong-Yeop Song Yonsei University, Korea
Rainer Steinwandt Florida Atlantic University, USA
Hung-Min Sun National Tsing Hua University, Taiwan
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Yukiyasu Tsunoo NEC Corporation, Japan
Marion Videau University of Lorraine, France

Organization IX

Jorge L. Villar Universitat Politecnica de Catalunya, Spain
Hongxia Wang Southwest Jiaotong University, China
Yongzhuang Wei Guilin University of Electronic Technology, China
Wenling Wu Institute of Software Chinese Academy

of Sciences, China
Toshihiro Yamauchi Okayama University, Japan
Wei-Chuen Yau Multimedia University, Malaysia
Ching-Hung Yeh Far East University, Taiwan
Sung-Ming Yen National Central University, Taiwan
Yongjin Yeom Kookmin University, Korea
Jeong Hyun Yi Soongsil University, Korea
Kazuki Yoneyama NTT Secure Platform Laboratories, Japan
Myungkeun Yoon Kookmin University, Korea
Dae Hyun Yum Myongji University, Korea
Aaram Yun Ulsan National Institute of Science

and Technology, Korea
Fangguo Zhang Sun Yat-sen University, China

Organization Chair

Changho Seo Kongju National University, Korea

Organizing Committee

Daesung Kwon NSRI, Korea
Daeyoub Kim Soowon University, Korea
Keecheon Kim Konkuk University, Korea
Kihyo Nam Umlogics, Korea
Heuisu Ryu Gyeongin National University of Education, Korea
Howon Kim Pusan National University, Korea
Junbeom Hur Chung Ang University, Korea
Okyeon Yi Kookmin University, Korea
Seokwon Jeong Mokpo National University, Korea
Sungbeom Pan Chosun University, Korea
Young-Ho Park Sejong Cyber University, Korea
Sanguk Shin Pukyong National University, Korea

X Organization

Contents

Secure Multiparty Computation

Privacy Assurances in Multiple Data-Aggregation Transactions. 3
Kim Le, Parmesh Ramanathan, and Kewal K. Saluja

A Secure Priority Queue; Or: On Secure Datastructures
from Multiparty Computation . 20

Tomas Toft

Towards Secure Two-Party Computation from the Wire-Tap Channel 34
Hervé Chabanne, Gérard Cohen, and Alain Patey

Proxy Re-encryption

Combined Proxy Re-encryption . 49
Sébastien Canard and Julien Devigne

Certificateless Proxy Re-Encryption Without Pairings 67
Kang Yang, Jing Xu, and Zhenfeng Zhang

Side Channel Analysis and Its Countermeasures

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 91
Sebastian Kutzner, Phuong Ha Nguyen, and Axel Poschmann

Using Principal Component Analysis for Practical Biasing of Power Traces
to Improve Power Analysis Attacks . 109

Yongdae Kim and Haengseok Ko

Cryptanalysis 1

Impossible Differential Attack on Reduced-Round TWINE. 123
Xuexin Zheng and Keting Jia

Optimal Storage for Rainbow Tables . 144
Gildas Avoine and Xavier Carpent

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 158
Xiaoqian Li, Bao Li, Wenling Wu, Xiaoli Yu, Ronglin Hao,
and Bingke Ma

http://dx.doi.org/10.1007/978-3-319-12160-4_1
http://dx.doi.org/10.1007/978-3-319-12160-4_2
http://dx.doi.org/10.1007/978-3-319-12160-4_2
http://dx.doi.org/10.1007/978-3-319-12160-4_3
http://dx.doi.org/10.1007/978-3-319-12160-4_4
http://dx.doi.org/10.1007/978-3-319-12160-4_5
http://dx.doi.org/10.1007/978-3-319-12160-4_6
http://dx.doi.org/10.1007/978-3-319-12160-4_7
http://dx.doi.org/10.1007/978-3-319-12160-4_7
http://dx.doi.org/10.1007/978-3-319-12160-4_8
http://dx.doi.org/10.1007/978-3-319-12160-4_9
http://dx.doi.org/10.1007/978-3-319-12160-4_10

Cryptanalysis 2

Rebound Attacks on Stribog . 175
Riham AlTawy, Aleksandar Kircanski, and Amr M. Youssef

Bitwise Partial-Sum on HIGHT: A New Tool for Integral Analysis
Against ARX Designs . 189

Yu Sasaki and Lei Wang

General Model of the Single-Key Meet-in-the-Middle Distinguisher
on the Word-Oriented Block Cipher . 203

Li Lin, Wenling Wu, Yanfeng Wang, and Lei Zhang

Embedded System Security and Its Implementation

Integral Based Fault Attack on LBlock . 227
Hua Chen and Limin Fan

Protecting Ring Oscillator Physical Unclonable Functions
Against Modeling Attacks . 241

Shohreh Sharif Mansouri and Elena Dubrova

Parallel Implementations of LEA. 256
Hwajeong Seo, Zhe Liu, Taehwan Park, Hyunjin Kim, Yeoncheol Lee,
Jongseok Choi, and Howon Kim

Primitives for Cryptography

Invertible Polynomial Representation for Private Set Operations 277
Jung Hee Cheon, Hyunsook Hong, and Hyung Tae Lee

On the Efficacy of Solving LWE by Reduction to Unique-SVP 293
Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert

A Family of Cryptographically Significant Boolean Functions
Based on the Hidden Weighted Bit Function . 311

Qichun Wang, Chik How Tan, and Timothy Foo

Digital Signature

Ambiguous One-Move Nominative Signature Without Random Oracles. 325
Dennis Y.W. Liu, Duncan S. Wong, and Qiong Huang

A Provably Secure Signature and Signcryption Scheme
Using the Hardness Assumptions in Coding Theory 342

K. Preetha Mathew, Sachin Vasant, and C. Pandu Rangan

XII Contents

http://dx.doi.org/10.1007/978-3-319-12160-4_11
http://dx.doi.org/10.1007/978-3-319-12160-4_12
http://dx.doi.org/10.1007/978-3-319-12160-4_12
http://dx.doi.org/10.1007/978-3-319-12160-4_13
http://dx.doi.org/10.1007/978-3-319-12160-4_13
http://dx.doi.org/10.1007/978-3-319-12160-4_14
http://dx.doi.org/10.1007/978-3-319-12160-4_15
http://dx.doi.org/10.1007/978-3-319-12160-4_15
http://dx.doi.org/10.1007/978-3-319-12160-4_16
http://dx.doi.org/10.1007/978-3-319-12160-4_17
http://dx.doi.org/10.1007/978-3-319-12160-4_18
http://dx.doi.org/10.1007/978-3-319-12160-4_19
http://dx.doi.org/10.1007/978-3-319-12160-4_19
http://dx.doi.org/10.1007/978-3-319-12160-4_20
http://dx.doi.org/10.1007/978-3-319-12160-4_21
http://dx.doi.org/10.1007/978-3-319-12160-4_21

An Anonymous Reputation System with Reputation Secrecy for Manager . . . 363
Toru Nakanishi, Tomoya Nomura, and Nobuo Funabiki

Security Protocol

Database Outsourcing with Hierarchical Authenticated Data Structures 381
Mohammad Etemad and Alptekin Küpçü

Information-Theoretically Secure Entity Authentication
in the Multi-user Setting . 400

Shogo Hajime, Yohei Watanabe, and Junji Shikata

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 418
Jaydeep Howlader, Sanjit Kumar Roy, and Ashis Kumar Mal

Revocable Group Signatures with Compact Revocation List
Using Accumulators . 435

Toru Nakanishi and Nobuo Funabiki

Cyber Security

Semantic Feature Selection for Text with Application to Phishing
Email Detection . 455

Rakesh Verma and Nabil Hossain

Who Is Sending a Spam Email: Clustering and Characterizing
Spamming Hosts . 469

Jiyoung Woo, Hyun Jae Kang, Ah Reum Kang, Hyukmin Kwon,
and Huy Kang Kim

Dark Side of the Shader: Mobile GPU-Aided Malware Delivery 483
Janis Danisevskis, Marta Piekarska, and Jean-Pierre Seifert

Industry-Wide Misunderstandings of HTTPS . 496
Stephen Bono and Jacob Thompson

Public Key Cryptography

Efficient Code Based Hybrid and Deterministic Encryptions
in the Standard Model . 517

K. Preetha Mathew, Sachin Vasant, and C. Pandu Rangan

Author Index . 537

Contents XIII

http://dx.doi.org/10.1007/978-3-319-12160-4_22
http://dx.doi.org/10.1007/978-3-319-12160-4_23
http://dx.doi.org/10.1007/978-3-319-12160-4_24
http://dx.doi.org/10.1007/978-3-319-12160-4_24
http://dx.doi.org/10.1007/978-3-319-12160-4_25
http://dx.doi.org/10.1007/978-3-319-12160-4_26
http://dx.doi.org/10.1007/978-3-319-12160-4_26
http://dx.doi.org/10.1007/978-3-319-12160-4_27
http://dx.doi.org/10.1007/978-3-319-12160-4_27
http://dx.doi.org/10.1007/978-3-319-12160-4_28
http://dx.doi.org/10.1007/978-3-319-12160-4_28
http://dx.doi.org/10.1007/978-3-319-12160-4_29
http://dx.doi.org/10.1007/978-3-319-12160-4_30
http://dx.doi.org/10.1007/978-3-319-12160-4_31
http://dx.doi.org/10.1007/978-3-319-12160-4_31

Secure Multiparty Computation

Privacy Assurances in Multiple
Data-Aggregation Transactions

Kim Le1(&), Parmesh Ramanathan2, and Kewal K. Saluja2

1 University of Canberra, Canberra, Australia
kim.le@canberra.edu.au

2 University of Wisconsin-Madison, Madison, USA
{parmesh,saluja}@ece.wisc.edu

Abstract. In this paper, we propose a privacy-preserving algorithm for
aggregating data in multiple transactions from a large number of users at a third-
party application. The aggregation is performed using the most commonly used
weighted sum function. The new algorithm has several novel features. First, we
propose a method to generate a privacy-assurance certificate that can be easily
verified by all users without significant computation effort. In particular, the
computational complexity of verification does not grow with the number of
users. Second, the proposed approach has a very desirable feature that users do
not have to directly communicate with each other. Instead, they only commu-
nicate with the application. These features distinguish our approach from the
existing research in literature.

Keywords: Secure multiparty computation � Third-party application � Privacy
data assurance �Multiple data-aggregation transactions � Cryptosystems � Social
network security

1 Introduction

With the growing popularity of mobile and social networking applications, there is
commensurate growth in the number of third-party applications (TPA) whose services
are based on the collection and aggregation of data from a large number of users.
Traditionally, the data collected by these applications were often considered so sen-
sitive that no user would have voluntarily shared them with anyone else. However, this
perception has changed dramatically over the past years. Present day users are
increasingly willing to share their sensitive information with TPA under the assurance
that their data will be kept private. The focus of this paper is on privacy-assured data
aggregation in third-party applications in multiple transactions.

This paper proposes algorithms for data aggregation through weighted sum
(WSUM), which is a key step in many interesting computations. In the WSUM
function, a third-party application A computes a weighted sum of users’ private data
without violating the following two privacy constraints: (i) each user’s data is not
revealed to either A or to other users, and (ii) the result and the weights used in the
computation are proprietary to A.

© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 3–19, 2014.
DOI: 10.1007/978-3-319-12160-4_1

At the first glance, it appears that the WSUM function can be implemented using
secure multi-party computations (SMC) [1, 6, 17]. In SMC, a group of users collab-
oratively compute a pre-agreed function of users’ private data without exposing their
data to each other. For example, in the pioneering work by Yao [18], two users
collaboratively determine whose data is larger without revealing their data to the other
user. Since then, SMC algorithms have been developed for a variety of functions and
problems such as multi-party auctions, electronic voting, insurance applications,
wireless sensor network, and secure queries on medical databases [2, 4, 7, 9, 10, 12,
16]. There is explosive growth in SMC research, especially after the recent seminal
work by Craig Gentry on fully-homomorphic encryption [5].

However, there are several key differences between SMC and the TPA scenario
considered in this paper. First, in SMC, the users are in a collaborative environment and
hence, they are willing to directly exchange messages with each other. In contrast, in
the TPA scenario, the identity of the users participating in data aggregations is pro-
prietary to the application and hence, the users are unable and/or unwilling to com-
municate directly with other users. Second, in the TPA scenario, the number of users
involved in data aggregations may be very large, e.g., could be in tens of thousands.
In contrast, SMC algorithms are typically designed for tens to hundreds of users and
they usually do not scale well with the number of users. Third, unlike in SMC, there is
no requirement for users in the TPA scenario to take on significant computation or
communication burden; in particular in TPA scenario, the per-user computation and
communication burden should not increase with the number of users. Finally, in the
TPA scenario, the application may request a user to participate in multiple data
aggregation transactions. Privacy assurances in such multiple transaction settings are
typically not considered in SMC. Due to these salient differences, the conventional
SMC algorithms are not well-suited for use in the TPA scenario. Hence, in this paper,
we propose a new algorithm for the aggregation of multiple WSUM function trans-
actions tailored for use in the TPA scenario.

More specifically, we focus on privacy assurances in settings where a user par-
ticipates in multiple WSUM function transactions. When users participate in multiple
data aggregations, a particular user’s privacy can be compromised by transactions in
which the user is not even a participant. To provide privacy assurances to all users in
this setting, we rely on a novel certification-based approach, in which an application
A generates a new verifiable certificate prior to the start of each transaction. A user
performs simple computations on information contained in the certificate to satisfy
himself/herself that the newly initiated transaction will not compromise his/her private
data. If a user detects that his/her data will be compromised, he/she raises an alarm to
stop other users from participating in the transaction. A key feature of this approach is
that the computational effort to generate a certificate rests with A and not on individual
users.

The rest of this paper is organized as follows. In Sect. 2, we first introduce a simple
motivation example, and then formulate the problem addressed in this paper. Section 3
describes the proposed solutions for WSUM computations. Related research is dis-
cussed in Sect. 4. The paper concludes with Sect. 5.

4 K. Le et al.

2 Motivation and Problem Formulation

2.1 Motivation

Statistical surveys to determine shopping habits, political opinions, E-election results,
etc. are becoming very prevalent. The following scenario explains how an insurance
company may use the results of a survey on its clients’ driving experience, and
describes the characteristics of the survey.

Scenario: An insurance company wants to collect driving statistics on its clients to set
premiums for its insurance policies, as well as to advise road authorities on optimal
traffic settings. For example, the company wants to calculate the average distance from
a traffic light at which drivers will start braking to stop their cars when the traffic light
turns amber. A client is asked to send to the application the minimum distance at which
he/she will decide to stop his/her car when he/she sees the traffic light turning amber;
otherwise he/she will continues to drive the car through the traffic light.

Characteristics: There are several interesting characteristics in this survey:

• Incentive to participate: The company is willing to give some discount to the clients
who participate in the survey. The utilitarian value of the survey results enables the
company to set its competitive policies.

• Limited computational burden: The amount of computation and communication
performed by any client does not increase with the number of involved clients.

• Privacy requirement: Clients do not want to unveil their private data. The appli-
cation considers its clients’ data differently with various weights based on the
information like ages, driving experience, etc. These weights are the company’s
proprietary, and are not exposed to the clients.

• Multiple transactions: The survey may be repeated with different weight sets.

2.2 Problem Formulation

Let U be a set of all users, and A be a third-party application that wants to initiate a
series of transactions Ti, i ¼ 1; 2; . . . k. In each transaction, A and all users cooperate in
computations of a WSUM function on the data xj of all users j 2 U:

2.2.1 Security Model
We assume that the application A and all users are honest (not malicious) i.e., they will
all faithfully and correctly follow the proposed protocols.

• Users: All users are honest. However, there are at most m users who are honest-but-
curious.

– Honest users are not willing to collaborate with each other to create a common/
shared encryption key not known to A.

– Honest users will only send messages to A and not to any other user.
– Honest-but-curious users may collude with each other and with A to collectively

deduce the data of any honest user. As part of this collusion, honest-but-curious

Privacy Assurances in Multiple Data-Aggregation Transactions 5

users may share with A their data as well as any information they have gathered
during the transactions.

• Application: The application A is honest-but-curious, i.e., although A is honest but
it may legally try to derive the private data of any honest user.

2.2.2 Problems
At the time instant of interest, assume that A has already completed (k − 1) WSUM
transactions Ti, i ¼ 1; 2; . . .; ðk � 1Þ. We then propose solutions for the following three
problems:

• Certification Challenge: At the start of the transaction Tk, A must provide every
user a privacy-assurance certificate that allows the user to verify the security of its
datum even when all the honest-but-curious users share with A any information
available to them through the transactions Ti, i ¼ 1; 2; . . .; k; i.e., even when
Transaction Tk has completed.

• Function Computation: The problem here is to devise a scheme to compute the
WSUM function of users’ data in k transactions such that: (i) the results are known
only to A, (ii) the data of each honest user remains private, (iii) A does not reveal the
weights it selects for the honest users.

Table 1. Notations used in the paper

Notation Explanation Notation Explanation

U Set of all n users j, j 2 1; n½ �.
Note: j (and other letters g, q,
z, etc.…) is used to note a
user; wherever j appears as
an index or superscript of a
parameter, it shows the
association of the parameter
to that user, e.g., xj is private
datum of User j

W = [wij] A (k × n) matrix of weights
with wij is the obfuscated
weight sent to User j in
Transaction Ti, i ¼ 1; 2; ::; k

* A wild cart for indexes; it
implies the repeat of all
possible indexes

X = [xj]
T A n� 1ð Þ column vector where

Element xj, j ∊ [1, n] is the
datum of User j, and T is the
matrix transpose operator

w*j A column of Matrix W, i.e., a
column vector of obfuscated
weights sent to User j in all
k transactions

XP A sub-matrix of X with the
elements xj of the users
j ∊ P ⊂ U

WP or
MP

A sub-matrix of W (or M) that
is composed of columns
corresponding to all users
j ∊ P ⊂ U

QUz = [qj] A (1 × n) row vector
q1 q2 . . . qj . . . qn½ �
with qj = 1 if j ¼ z; otherwise
qj = 0

wi* A row of W, which is
composed of obfuscated
weights sent to all users in
the ith transaction Ti

6 K. Le et al.

• Constrains: Since honest users do not collaborate with each other and since the
number of users may be large, the devised scheme must satisfy the following
constraint: Users are not required to perform a significant amount of computation
and communication. In particular, the amount of computation and communication
performed by a user should not increase with the total number of users.

2.3 Notations

Table 1 is a summary of notations used in the paper.

3 Proposed Solution for WSUM

3.1 Certification Challenge

Example 1: Suppose that A has obtained (k − 1) sums si; i ¼ 1; 2; . . .; k � 1ð Þ; and is
interested in having another WSUM transaction sk = ∑jwkjxj. For example, the
application already has two weighted sums of six users: s1 ¼ x1 þ x2 þ x3 þ x4 þ
x5 þ x6 and s2 ¼ 2x1 þ 0x2 þ x3 þ 2x4 þ 3x5 þ 4x6.

Now the application wants another sum with a new weight set of 3, 4, 3, 2, 1, 0.

The weight matrix for the three transactions is W ¼ wij
� � ¼

1 1 1 1 1 1
2 0 1 2 3 4
3 4 3 2 1 0

2
4

3
5.

Since the rank ofW is 3, these transactions are linearly independent of each other. With
a secure single WSUM transaction protocol, in each of these transactions, when they
are considered separately, no user’s private datum is compromised. Furthermore, no
user’s datum is exposed to the application at the end of the first two transactions.
However, if the users go ahead with the third transaction, a curious application can
derive the private datum x1; x1 ¼ s3 þ s2 � 4s1, thus the privacy of the first user’s
datum is violated. To avoid such privacy violations, at the start of a new WSUM
transaction, all honest users should verify that A cannot derive their private data from
the results of all WSUM transactions, including that of the current transaction, i.e.,
s3 ¼ 3x1 þ 4x2 þ 3x3 þ 2x4 þ x5 þ 0x6.

At the first glance, this problem appears similar to the sum query auditing problem
addressed in the database community [3], in which it was shown that when A knows
the weights of all users, the application can deduce a user’s data if and only if the
following Theorem 1 is satisfied.

Theorem 1: When the application A knows the sums S ¼ s1 s2 . . . si . . . sk½ �T
after k transactions, A can deduce the private datum of the user j if and only if there
exists k constants ai; i ¼ 1; 2; . . .; k, such that

Pk
i¼1 aiwi� ¼ QUj, where

QUj ¼ q1 q2 . . . qr . . . qn½ �, a row vector with qr = 1 if r ¼ j; otherwise qr = 0.

Proof: Given in [3] Q.E.D.

Privacy Assurances in Multiple Data-Aggregation Transactions 7

3.2 Single WSUM Transaction Protocol

Consider the transaction Ti in which the application A wants to have the weighted sum
si ¼

P
j w

0
ijxj, where xj is the private data of the user j, and w0

ij is the weight the
application assigns to the user. (Note that we reserve symbol wij for obfuscated
weights). Let us also consider that there is a small set of p users, each equipped with a
different additive cryptosystem. An additive cryptosystem has the property: E(x) ⊗
E(y) = E(x + y), where E(x) is an encrypt function on the variable x, and ⊗ is a math
operator, e.g., in Paillier’s cryptosystem system [13], E(x) × E(y) = E(x + y). Solutions
for the SUM and other data aggregations were proposed in literature [7, 9, 16]. The
following algorithm, which is similar to that of [16], will assure the security of honest
users’ private data if p > m, where m is the maximal number of colluding users.

Algorithm 1

(1) Application A sends to each user j ∊ U, where U is the set of all users,

(a) An obfuscated weight wij ¼ qiw
0
ij, where w

0
ij is the weight assigned to User j,

which is blurred by multiplying it with a common random factor qi [0.
A must assure that there are at least (m + 2) users with the weights wij ≠ 0.

(b) The public keys of all users g ∊ G ⊂ U; |G| = p.

(2) Each user j ∊ U, i.e., including the users in G, does the following:

(a) Computes the product wijxj.
(b) Divides the result product into p parts xUgj , so that

P
g2G xUgj ¼ wijxj.

(c) Encrypts each xUgj with the public key of the user ∊ G. Let yUgj ¼ EUg xUgj
� �

.

(d) Sends all yUgj to the application.

(3) Application does the following:

(a) Computes p encrypted partial sums (using the ⊗ operator).
(b) Sends each encrypted partial sum EUg sUgi

� �
to the associate user g ∊ G for

decryption.
(c) Receives p decrypted partial sums sUgi from the users g ∊ G.
(d) Computes the total weighted sum si ¼ 1

qi

P
g2G sUgi ¼ P

j w
0
ijxj:

Note that, there is at least one honest user in the group G because p > m; hence with
Algorithm 1 the private data of all honest users are secure.

Example 2: Consider an application A with four users j, j = 1, 2, 3 and 4. Suppose that
the users’ private data are x1 ¼ 10; x2 ¼ 20; x3 ¼ 30; and x4 ¼ 40. Further, let us
assume that the number of colluding users m = 2. In the 1st transaction T1, A wants to
compute the weighted sum s1 ¼ 2x1 þ 4x2 þ 3x3 þ 2x4 ¼ 270. The algorithm is per-
formed as follows.

8 K. Le et al.

(1) A chooses the obfuscating factor ρ1 = 10 and sends to each user:

(a) Obfuscated weights: w11 ¼ 20;w12 ¼ 40;w13 ¼ 30; andw14 ¼ 20.
(b) The public keys of 3 users in G ¼ 2; 3; 4f g. Note that we have p = 3 > m = 2.

(2) Each user j ∊ U does the following:

(a) Computes the product wijxj : w11x1 ¼ 20� 10 ¼ 200ð Þ; w12x2 ¼ 40�ð
20 ¼ 800Þ; w13x3 ¼ 30� 30 ¼ 900ð Þ; w14x4 ¼ 20� 40 ¼ 800ð Þ.

(b) Divides the result product into 3 parts: xU2
1 ¼ 50; xU3

1 ¼ 70; xU4
1 ¼ 80

� �
;

xU2
2 ¼ 500; xU3

2 ¼ 100; xU4
2 ¼ 200

� �
; xU2

3 ¼ 100; xU3
3 ¼ 700; xU4

3 ¼ 100
� �

;

xU2
4 ¼ 400; xU3

4 ¼ 100; xU4
4 ¼ 300

� �
:

(c) Encrypts yUgj ¼ EUg xUgj
� �

: yU2
1 ¼ EU2 50ð Þ; yU3

1 ¼ EU3 70ð Þ; yU4
1 ¼ EU4 80ð Þ� �

;

yU2
2 ¼ EU2 500ð Þ; yU3

2 ¼ EU3 100ð Þ; yU4
2 ¼ EU4 200ð Þ� �

;

yU2
3 ¼ EU2 100ð Þ; yU3

3 ¼ EU3 700ð Þ; yU4
3 ¼ EU4 100ð Þ� �

;

yU2
4 ¼ EU2 400ð Þ; yU3

4 ¼ EU3 100ð Þ; yU4
4 ¼ EU4 300ð Þ� �

:

(d) Sends all yUgj to the application.

(3) Application does the following:

(a) Computes encrypted partial sums EUg sUgi
� � ¼ Q

j2U yUgj :

EU2 sU2
1

� � ¼ yU2
1 yU2

2 yU2
3 yU2

4 ¼ EU2 xU2
1 þ xU2

2 þ xU2
3 þ xU2

4

� � ¼ EU2 1050ð Þ
Similarly, EU3 sU3

1

� � ¼ EU3 970ð Þ and EU4 sU4
1

� � ¼ EU4 680ð Þ.
(b) Sends each EUg sUgi

� �
to User g ∊ G for decryption.

(c) Receives decrypted partial sums sUgi from the associated users
g 2 G : sU2

1 ¼ 1050; sU3
1 ¼ 970; sU4

1 ¼ 680.
(d) Computes sum:

si ¼
P

j w
0
ijxj ¼ 1

qi

P
g2G sUgi ¼ 1

10 1050þ 970þ 680ð Þ ¼ 270:

3.3 WSUM Privacy Assurance Certificate

For simplicity of presentation, in the rest of this paper, we assume that the obfuscating
factor ρi = 1, i.e., wij ¼ w0

ij. Suppose that the application has obtained (k − 1) sums si,
and is interested in having another transaction sk = ∑jwkjxj. We can present the problem
in a matrix form WX = S. Without loss of generality, we assume that all transactions are
linearly independent of each other, i.e., the rank of W equals k. Our problem is how to
ensure that the application A cannot derive the value of any private datum xz.

Definition
The datum of User z remains private at the end of k WSUM transactions if the
application A cannot uniquely determine its value from the WSUM results
S ¼ s1 s2 . . . si . . . sk½ �T . That is there are at least two (n × 1) vectors X and
Y such thatWX = S,WY = S and xz ≠ yz, where xz and yz are the elements in the zth row
of X and Y, respectively; and W is the (k × n) weight matrix.

Privacy Assurances in Multiple Data-Aggregation Transactions 9

3.3.1 Certification When Only a Is Honest-But-Curious
Consider the case in which all users are honest and only A is honest-but-curious. For
this special case we first prove the following theorem.

Theorem 2: The datum xZ of the user z remains private after k WSUM transactions if
and only if rank(WN) = k, where N = U − {z}, and WN is a sub-matrix of W, which is
composed of the columns corresponding to all users j ∊ N ⊂ U.

Proof: (Only If part) We prove this by contradiction. Suppose the datum of User
z remains private but rank WNð Þ\k. Then, there are constants αi, i ¼ 1; 2; . . .; k, such

that
Pk

i¼1 aiw
N
i� ¼ o

!
, where wN

i� denotes the ith row of WN, i.e., the row vector wi� of

W without the element wiz, and o
!

is a (1 × (n − 1)) row vector with all components
equal to zero. Since W has one additional column as compared to WN, it follows thatPk

i¼1 aiwi� ¼ bQUz, where QUz is a (1 × n) row vector q1q2. . .qj. . .qn
� �

with qj = 1 if
j ¼ z; otherwise qj = 0. Furthermore, due to rank(W) = k as assumed, we have
b ¼ Pk

i¼1 aiwiz 6¼ 0. This implies that the application A can uniquely compute the

private datum xz ¼
Pk

i
aisi

b , i.e., the datum of User z does not remain private: this
contradicts the hypothesis; hence: rank(WN) = k.
(If part): Since the rank of the matrix WN is k, it must have a k � kð Þ sub-matrix C with
rank(C) = k. Let V be the set of the users that correspond to the k columns of C. Let
W1$Z is the matrix derived fromW by swapping its two columns w�1 and w�z. Let EZ is
the reduced row echelon form (RREF) of W1↔Z: Ez = rref(W1↔Z). If 9i : wiz 6¼ 0, we
have Ez(1, 1) = 1. In this RREF transform, C becomes CE. Due to rank(C) = k, every
row of CE must have at least one non-zero element. Let γq ≠ 0 be one of such elements
of the 1st row of CE, which corresponds to the user q. We can derive xz = −γqxq + f
(xj, si), where j ≠ z and j ≠ q. Hence A cannot derive a unique value for User z’ s data.
We say the secure of xz relies on xq. Q.E.D.

From Theorem 2 we can devise a certification approach as follows. At the start of
the kth WSUM transaction, the application A supplies each user z an assurance cer-
tificate C ⊂ W in the form of a (k × k) matrix with rank k. All elements of C are the
obfuscated weights of the users j of a set V that does not contain the user z, i.e., C =WV,
z ∉ V. The certificate C is called the individual assurance certificate for the user z. The
certificate can also be used for any other user not belonging to V. Another certificate is
needed for the users belonging to V. Two such certificates can be combined to make a
universal assurance certificate, i.e., a common certificate for all users. This observation
leads us to the following theorem.

Theorem 3: The data of all users remains private at the end of k transactions if and
only if there is a subset of users V ⊆ U such that: (i) k + 1 < |V| ≤ 2 k, and (ii) ∀j ∊ V, we
have rank(WN) = k where N ¼ V � jf g. The matrix C = WN, a sub-matrix of W, is
composed of the weights of all users j ∊ V. It is a universal assurance certificate.

Proof: (only if part) Since rank(W) = k as assumed, we can perform row and column
operations to transform W into E, a reduced row echelon form (RREF) matrix, such
that E ¼ rref Wð Þ ¼ Ik�kRk� n�kð Þ

� �
, where Ik×k is an identity matrix of dimensions

10 K. Le et al.

(k × k), and R is the remaining sub-matrix. Let V1 denote the set of users corresponding
to the first k columns of E, i.e., the columns of the identity matrix. Note that each row
of R has at least one non-zero element; otherwise, there exists a row vector QUj

(a vector with all zero elements except one at Column j) in E. From Theorem 1, we
know that this is not possible because the hypothesis states that the data of all users
remains private. Therefore, there must exist a subset of users V2 ⊆ U − V1 such that
every row in EV2 , a sub-matrix of R relating to all user j ∊ V2, has at least one non-zero
element, and we have 1 ≤ |V2| ≤ k.

We argue below that V = V1 ∪ V2 satisfies the two conditions in the theorem.

(i) We have |V1| = k, 1 ≤ |V2| ≤ k and V1 ∩ V2 = ø, hence k þ 1\ Vj j � 2k
(ii) For each user j ∊ V2, let N = V − {j}, we have N ⊇ V1. However, rank WV1ð Þ ¼ k;

therefore rank(WN) = k. Now consider each user j ∊ V1. With the RREF trans-
form, the column corresponding to the user j in the identity matrix Ik×k of E has
exactly one element equal to 1, and all other elements equal to 0. Suppose that
the non-zero element is in the ith row. Then the ith row of EV2 must have at least
one non-zero element. Let z ∊ V2 be the user corresponding to that non-zero
element, and Wj↔z be the matrix obtained by swapping the two columns cor-
responding to the two users j and z of W. Let Ej$z ¼ rref Wj$z

� �
, we have

Ej$z ¼ Ik�kR0
k� n�kð Þ

h i
. Let V 0

1 be the set of the users corresponding to the col-

umns of the new identity matrix in Ej↔z, we have V 0
1 ¼ V1 � jf gð Þ [zf g;V 0

2 ¼
V2 � zf gð Þ [jf g;V ¼ V1 [V2 ¼ V 0

1 [V 0
2 and N ¼ V � jf g � V 0

1. Due to
rank V 0

1

� � ¼ k, we have rank(WN) = k.

Finally, rank WNð Þ ¼ k; 8j 2 V .
Therefore, V satisfies both conditions in the theorem.

(if part): The 2nd condition rank WNð Þ ¼ k is sufficient to assure the privacy of any
user’s data based on Theorem 2. Q.E.D.

From Theorem 3, it is possible to have an universal assurance certificate Ck×h with
k + 1 < h ≤ 2 k. A user verifies its privacy assurance as follows. For any user j ∉ V, the
user needs to check the rank of the certificate C. For any user j ∊ V, the user needs to
check the rank of the matrix CN, where N = V − {j}. Since the size of an assurance
certificate C does not depend on the total number of users, a user’s computational
burden to verify its privacy assurance does not increase with the number of users.

Example 3: We now illustrate this certification approach for Example 1 given in
Sect. 3.1, with six users j, j ¼ 1; 2; . . .; 6, each with a private datum xj. The obfuscated

weight matrix is W ¼ wij
� � ¼

1 1 1 1 1 1
2 0 1 2 3 4
3 4 3 2 1 0

2
4

3
5. In this example, n = 6 and

k = 3; we consider the privacy of the users 1 and 6. Suppose that at the start of the 3rd

transaction, A supplies all users a universal assurance certificate C ¼

WV ¼
1 1 1 1 1
2 0 1 2 3
3 4 3 2 1

2
4

3
5, with V = U − {6}. We have |V| = 5 < 2 k. For User 6 ∉ V,

Privacy Assurances in Multiple Data-Aggregation Transactions 11

we have rank(C) = 3 = k: The privacy of User 6 is assured. For any user j belonging to

V, e.g., j = 1, by removing the column w�1 from C, we have CV� 1f g ¼
1 1 1 1
0 1 2 3
4 3 2 1

2
4

3
5

and rankðCV� 1f gÞ ¼ 2. The privacy of User 1 would be compromised, as shown in
Sect. 3.1, if the 3rd transaction does happen.

Certificate generation: For simplicity as well as to reduce the computation complexity
of users in assurance certificate verification, an application A will supply each user an
individual assurance certificate in the form of a square matrix Ck×k.

Certificate verification – Algorithm 2: When a user receives an individual assurance
certificate C at the start of the kth WSUM transaction, it will verify the validity of the
certificate as follows:

(1) Check the size (k × k) of the certificate.
(2) Check that it is not a member of the set V of the users that correspond to the

weights in the certificate. If necessary, confirm with the users in V the correctness
of the weights in the certificate.

(3) Check that rank(C) = k.

We will illustrate the algorithm with the following example.

Example 4: We reuse the data in Example 3, and let us consider the condition in
which the user 6 is supplied an individual certificate containing the weights of the users

1, 2 and 3: C6 ¼ w�1 w�2 w�3½ � ¼
1 1 1
2 0 1
3 4 3

2
4

3
5. We have rank(C6) = 3: Certificate

C6 successfully passes all the three steps of the algorithm: The certificate is valid for
User 6.

Quality of an individual privacy-assurance certificate: We will illustrate how to
evaluate the quality of an individual assurance certificate with the data in Example 4.

Let B6 ¼ w�6C6½ � ¼
1 1 1 1
4 2 0 1
0 3 4 3

2
4

3
5. We have E6 ¼ rref B6ð Þ ¼

1 0 0 0:25
0 1 0 0
0 0 1 0:75

2
4

3
5.

Hence, A can derive x6 = Cst_3 − 0.25x3, where Cst_3 does not depend on the value of

x3. Let rel x6=x3ð Þ ¼ ox6
ox3

���
���, we have rel(x6/x3) = 0.25. Similarly by swapping the col-

umns w�1 or w�2 with the column w�3, we have two more matrixes B0
6 and B00

6

with:B
0
6 ¼ w�6 w�3 w�2 w�1½ � ¼

1 1 1 1
4 1 0 2
0 3 4 3

2
4

3
5 and B00

6 ¼ w�6 w�1½

w�3w�2� ¼
1 1 1 1
4 2 1 0
0 3 3 4

2
4

3
5.

12 K. Le et al.

However from both B0
6 and B00

6 matrixes, we can derive only one more expression
for x6: x6 = Cst_2 + 0.33x2, where Cst_2 does not depend on the value of x2.

Let us define the reliance degree of xz in the assurance certificate C as follows:
rel xzð Þ ¼ minj2V rel xz=xj

� �
; 1

� �
. We have rel(x6) = 0.25. The reliance degree is a

measure for the quality of an individual privacy-assurance certificate: a higher reliance
degree implies a more reliable certificate. For example, if the application A knows that
the range of users’ data, e.g., xj ∊ [0, 100], then with x6 = Cst_3 − 0.25x3, A can derive
that x6 ∊ [a, b], with b − a = 25, i.e., the guess range for a user’s data is narrower when
its reliance degree is smaller. For example if x1 = 10, x2 = 20, x3 ¼ 30, x4 ¼ 40,
x5 ¼ 50 and x6 ¼ 60, we have s1 = 12, s2 ¼ 29, s3 ¼ 30 and Cst_3 = 67.5. Hence the
application can derive that x6 2 42:5; 67:5½ �. It is to be noted that this reliance degree is
over-pessimistic because the value of Cst_3 in the solution for x6 may also depend on
the values of other users’ data, e.g., x4 and x5.

3.3.2 Certification When A and m Users are Honest-But-Curious
We now extend our certification approach to the case there are m honest-but-curious
users.

Theorem 4: If A and at most m users are honest-but-curious, then all honest users’
data remain private after k WSUM transactions if rank(WN) = k, where N = U − J, for
all J ⊆ U such that |J| = m + 1.

Proof: Let D be the set of m honest-but-curious users and UH be the set of all honest
users, we have UH = U − D and |UH| = n − m = nH. Consider any honest user j ∊ UH.
Let J = D ∪ {j} ⊆ U, a special set that satisfies the condition |J| = m + 1. We have:
N = U − J = U − (D ∪ {j}) = UH − {j}. Hence N ⊆ UH. Let WH be a sub-matrix of W,
which relates to all honest users j ∊ UH. We have: (WH)N = WN. Therefore, rank
((WH)N) = rank(WN) = k. Hence from Theorem 2, the data of all honest users j ∊ UH

remain private. Q.E.D.

Certificate generation: Similar to the case with all honest users, by using Theorem 4
we can devise an assurance certification approach for the case with colluding users as
follows. At the start of the kth WSUM transaction, the application A supplies each user
z an individual assurance certificate C ⊂ W in the form of a (k × (k + m)) matrix of rank
k. All elements of Ck×(k+m) are the obfuscated weights of all users j of a set V, with
z ∉ V. Similarly, A provides another assurance certificate for the users belonging to V.

Certificate verification – Algorithm 3: When a user receives an individual assurance
certificate C at the start of the kth WSUM transaction, the user will verify the validity of
the certificate as follows:

(a) Check the size (k × (k + m)) of the certificate.
(b) Check that it is not a member of the set V associated with the certificate.

(c) Extract all kþmð Þ!
k!m! possible square sub-matrixes CE from C, each sub-matrix cor-

responding to k users selected from the (k + m) users of V.
(d) For each matrix CE, check that rank(CE) = k; if this condition is not satisfied:

Certificate is not valid. Exit.

Privacy Assurances in Multiple Data-Aggregation Transactions 13

We will illustrate the algorithm with the following example.

Example 5: We reuse the data in Example 3, but with the assumption that there are at
most two users collude with the application, i.e., m = 2. Suppose that User 6 is supplied
with the individual certificate C&m

6 containing the weights of the other users:

C&m
6 ¼

1 1 1 1 1
2 0 1 2 3
3 4 3 2 1

2
4

3
5. Because kþmð Þ!

k!m! ¼ 10, there are ten possible square sub-

matrixes, including the following square matrix: C&m
6a ¼ w�3w�4w�5½ � ¼

1 1 1
1 2 3
3 2 1

2
4

3
5,

We have rank C&m
6a

� � ¼ 2: Certificate C&m
6 is not valid.

Note that the certificate Ck×(k+m) is of minimal size (k × (k + m); however, users
need more computational time to check the ranks of all possible square sub-matrixes.
We will investigate another certification approach that generates a larger assurance
certificate but needs smaller computation effort for verification.

Theorem 5: When the application A and at most m users are honest-but-curious, the
datum xz of the honest user z remains private at the end of k transactions if there are
(m + 1) sub-sets Vr ⊂ U, r ¼ 1; 2; . . .;mþ 1; such that, ∀r: (i) j 62 Vr;
(ii) rank WVrð Þ ¼ k; (iii) 8t 2 1; 2; . . .;mþ 1f g and t 6¼ r : Vr \Vt ¼ ;.
Proof: Let V ¼ V1 [V2 [. . . [Vr [. . . [Vmþ1, and C ¼ C1 C2 . . .½ Cr . . .Cmþ1�,
where Cr ¼ WVr . We have C = WV. Let B ¼ w�zC½ � and E = rref(B). If 9i;wiz 6¼ 0 then
E will have the form: E ¼ CM

0 CM
1 CM

2 . . . CM
r . . . CM

mþ1

� �
, where

CM
0 ¼ 1 0 0 . . . 0½ �T , a column vector with all zero elements except the first one,

and all CM
r 6¼0 are square matrixes, each with at least one non-zero element in every row

because ∀r, rank(Cr) = k. Therefore, we can derive an expression for xz as follows:

xz ¼ Cst �Pmþ1
r¼1

Pk
t¼1 br;tx

M
r;t

� �
, where Cst does not depend on xz and any xj∊V; and

8r; 9br;t 6¼ 0 and xMr; t is the datum of the user corresponding to the tth column of CM
r .

Therefore xz depends on the data of at least mþ 1ð Þ other users, each belonging to a set
Vr, r ¼ 1; 2; . . .;mþ 1. In other words, there is at least one honest user whom User
z can rely on to keep the security of its private datum. Q.E.D.

Corollary 1: When the application A and at most m users are honest-but-curious, the
datum xz of the honest user z remains private at the end of k transactions if there are
(m + 2) sub-sets Vr ⊂ U, r ¼ 1; 2; . . .;mþ 2; such that, ∀r: (a) rank WVrð Þ ¼ k; (b)
8t 2 1; 2; . . .;mþ 2f g and t 6¼ r : Vt \Vr ¼ ;.
Proof: User z will belong to at most one set Vr because 8t 2 1; 2; . . .;mþ 2f g and
t 6¼ r : Vt \Vr ¼ ;. If there is such a Vr, by excluding that Vr from the hypothesis, we
return to Theorem 5. Q.E.D.

The matrix C = WV, where V ¼ Smþ2
r¼1 Vr , is a universal assurance certificate.

14 K. Le et al.

Certificate generation: By using Theorem 5 we can devise an assurance certification
approach for the case with colluding users as follows. The application A supplies each
user z an individual assurance certificate C ¼ CF

1 CF
2 . . . CF

r . . . CF
mþ1

� � 	 W ,
where CF

r , r ¼ 1; 2; ::; ðmþ 1Þ are square matrixes, with: ∀r, (i) z 62 Vr, (ii)
rank CF

r

� � ¼ k and (iii) 8t 6¼ r;Vt
T
Vr ¼ ;; where Vr and Vt are the sets of users

corresponding to the obfuscated weights in CF
r and CF

t . The certificate C with elements
being the obfuscated weights of all users j 2 V ¼ S

r Vrð Þ is a matrix with size Cð Þ ¼
k � mþ 1ð Þkð Þ
 k � k þ mð Þð Þ; however users need less time to verify C.

Certificate verification – Algorithm 4: When a user receives an individual assurance
certificate C at the start of the kth WSUM transaction, it will verify the validity of the
certificate as follows:

(a) Check the size (k × (m + 1)k) of the certificate.
(b) Check that it is not a member of the set V associated with the certificate.
(c) Partition the certificate into (m + 1) square sub-matrixes CF

r , r ¼ 1; 2; ::;mþ 1,
i.e., C ¼ CF

1 CF
2 . . . CF

r . . . CF
mþ1

� �
.

(d) For each matrix CF
r ,

i. Check that rank CF
r

� � ¼ k.
ii. If the condition is not satisfied, i.e., the certificate is not valid, Exit.

It is to be noted that, in Step (c) a user needs to extract a smaller number of square

matrixes than that in Algorithm 3 because mþ 1� kþmð Þ!
k!m! .

We will illustrate the algorithm with the following example.

Example 6: Consider an application A and seven users j, j ¼ 1; 2; . . .7. Suppose
that the number of colluding users m = 1, and at the start of the 3rd WSUM
transaction, A supplies the individual assurance certificate C ¼

w�2 w�3 w�4 w�5 w�6 w�7½ � ¼
1 2 3 4 3 2
1 3 4 2 3 1
2 4 5 8 3 0

2
4

3
5 to User 1. User 1

extracts two square sub-matrixes CF
1 ¼

1 2 3
1 3 4
2 4 5

2
4

3
5 and CF

2 ¼
4 3 2
2 3 1
8 3 0

2
4

3
5. The

ranks of these two sub-matrixes are both equal to 3, therefore the certificate is valid.

Quality of the certificate: We will compute the reliance degree for each of the two
sub-matrixes. Suppose that the column weight vector of user 1 is w�1 ¼ 3 4 5½ �T .

Let B1 ¼ w�1 CF
1

� �
. We have B1 ¼

3 1 2 3
4 1 3 4
5 2 4 5

2
4

3
5 and E1 ¼

rref B1ð Þ ¼
1 0 0 1
0 1 0 0
0 0 1 0

2
4

3
5, and then x1 ¼ Cst 4� x4, where Cst_4 does not depend

on x4. The reliance degree of x1 on x4 equals 1. With the 2nd extract matrix Cf
2, by

Privacy Assurances in Multiple Data-Aggregation Transactions 15

putting either w�5;w�6 orw�7 in the last column, we can have three different matrixes
and their RREF matrixes:

BU5
2 ¼ w�1 w�6 w�7 w�5½ � ¼

3 3 2 4
4 3 1 2
5 3 0 8

2
4

3
5;

EU5
2 ¼ rref BU5

2

� � ¼
1 0 �1 0
0 1 1:7 0
0 0 0 1

2
4

3
5;

BU6
2 ¼ w�1 w�5 w�7 w�6½ � ¼

3 4 2 3
4 2 1 3
5 8 0 3

2
4

3
5;

EU6
2 ¼ rref BU6

2

� � ¼
1 0 0 0:6
0 1 0 0
0 0 1 0:6

2
4

3
5;

BU7
2 ¼ w�1 w�5 w�6 w�7½ � ¼

3 4 3 2
4 2 3 1
5 8 3 0

2
4

3
5;

EU7
2 ¼ rref BU7

2

� � ¼
1 0 0 �1
0 1 0 0
0 0 1 1:7

2
4

3
5:

From EU5
2 and EU7

2 we derive x1 ¼ Cst 7þ x7, and ox1
ox7

���
��� ¼ 1. From EU6

2 we have

x1 ¼ Cst 6� 0:6x6 ! ox1
ox6

���
��� ¼ 0:6: Hence rel x1ð Þ ¼ min 1; 0:6ð Þ ¼ 0:6.

3.3.3 Certification in General Case
We will consider the case in which a user receives an individual assurance certificate
with the size (k × h), where k ≤ h ≤ (m + 1)k. Suppose we have an application and
numerous users that are going to be involved in the kth WSUM transaction, and we are
especially interested in the security of xz, the private datum of User z, when it receives
the individual assurance certificate Ck×h composed of the weights of a set V of h users.
Let Pr is a set of (k − 1) users selected from V; we have Ns ¼ h!

k�1ð Þ! h�kþ1ð Þ! possible
selections. For each Pr, r ¼ 1; 2; . . .;Nsf g, we find another subset Qr = V − Pr, i.e.,
Pr ∪ Qr = V and Pr \ Qr ¼ ;, and then try to find the solution for the variable xz of the
following system of k linear equations WX = S, where Wk� hþ1ð Þ ¼ w�z C½ � with
C ¼ wPr

�j
h i

wQr
�j

h ih i
, X ¼ xz xPr

j

h i
xQr
j

h ih iT
and S ¼ s1 s2 . . . si . . . sk½ �T .

From the last (k − 1) equations of WX = S, we can find (k − 1) expressions, f ri ,
i ¼ 2; . . .; k, each being the relationship from xp, the datum of a user p ∊ Pr, to xz and
the data of all users q ∊ Qr. By substituting these (k − 1) expressions f ri into the first
equation of WX = S we can derive an expression fr showing the relationship from xz to

16 K. Le et al.

the data xq of all users q ∊ Qr. Let rel xz=xq
� �

r¼ ofr
oxq

���
���. Similarly, we can define a

reliance degree of xz on xq2Qr as follows: rel xz=xq
� � ¼ minr rel xz=xq

� �
r; 1

� �
.

Example 7: We will reuse the data in Example 6. Consider the system WX = S with,

when r = 1, we have P1 = {2, 3}, Q1 ¼ 4; 5; 6; 7f g; C ¼ wPr
j

h i
wQr
j

h ih i
and

S ¼ s1 s2 s3½ �T . We have: W3�7 ¼ w�z w�2 w�3 w�4 w�5 w�6 w�7½ �, X ¼
xz x2 x3 x4 x5 x6 x7½ �T and V ¼ 2; 3; 4; 5; 6; 7f g. Suppose that

w�z ¼ 3 4 5½ �T , we have: C ¼
1 2 3 4 3 2
1 3 4 2 3 1
2 4 5 8 3 0

2
4

3
5; W ¼

3 1 2 3 4 3 2
4 1 3 4 2 3 1
5 2 4 5 8 3 0

2
4

3
5and E ¼ rref Wð Þ ¼

1 0 0 1 0 3 4
0 1 0 0 8 0 0
0 0 1 0 �2 �3 �5

2
4

3
5.

Therefore xz ¼ Cst � x4 þ 0x5 þ 3x6 þ 4x7ð Þ, where Cst does not depend on any

xj∊V. Hence rel xz=x4ð Þr¼1¼ oxz
ox4

���
��� ¼ 1, rel xz=x5ð Þr¼1¼ oxz

ox5

���
��� ¼ 0, rel xz=x6ð Þr¼1¼

min oxz
ox6

���
���; 1

� �
¼ 1 and rel xz=x7ð Þr¼1¼ min oxz

ox7

���
���; 1

� �
¼ 1. With h ¼ 6; Ns = 15. Hence

we have 15 different sets Pr. However, with the RREF transform applied on W corre-
sponding to these Pr, we have only 4 more different expressions for xz. Finally, we
derive reliance degrees of xz in Table 2. We see that the value of xz depends on the
values of at least 3 other variables (when r ¼ 1). If there are at most two users
colluding with the application, i.e., m = 2, the datum of User z is still secure when it
receives the assurance certificate C. However, its reliance degree is only equal to 0.6,
the minimum of the 3rd greatest values (when r = 5).

4 Related Research

There are some differences between traditional SMC and the TPA problem considered
in this paper. For instance, most works in SMC assume that all involved parties have
similar computational capabilities. With increasing popularity of cloud computing,
there is a growing interest in performing secure computations on confidential data on

Table 2. Reliance Degree of User z’s Data

r Expression for xz for different values of
r

oxz
ox2

���
��� oxz

ox3

���
��� oxz

ox4

���
��� oxz

ox5

���
��� oxz

ox6

���
��� oxz

ox7

���
���

1 Cst_1 − (x4 + 0x5 + 3x6 + 4x7) 1 0 3 4
2 Cst_2 − (x3 + x4 − 2x5 − x7) 1 1 2 1
3 Cst_3 − (0.8x3 + x4 − 1.6x5 + 0.6x6) 0.8 1 1.6 0.6
4 Cst_4 − (0.25x2 + x3 + x4 − x7) 0.25 1 1 1
5 Cst_5 − (0.2x2 + 0.8x3 + x4 + 0.6x6) 0.2 0.8 1 0.6

Reliance degree rel(xz/xq) 0.2 0.8 1 0 0.6 1

Privacy Assurances in Multiple Data-Aggregation Transactions 17

more powerful “cloud” computers. In [10], a solution to address data confidentiality-
privacy is proposed in the context of cloud computing. In this solution, users coop-
eratively generate a multi-user multi-key which they use to perform fully-homomorphic
encryptions [11]. Similar to our approach, the solution in [10] does not require much
computation from users. However, the computational effort involved in the generation
of the keys is proportional to the number of users, which may be very large.

Another related work in the SMC area is designed for function computations on the
Web [8], with the goal to eliminate the need for synchronous communication between
the parties during SMC. However, the solution in [8] is still based on the traditional
SMC assumption that all users involved in the computations are aware of each other,
and collaborate with each other; each user is also required to encrypt using the public
keys of all participating users. Therefore, the amount of computation increases with
number of users.

There are several specialized approaches for evaluating a specific function like
SUM [14, 15]. The approaches differ in the security threat model. One major disad-
vantage of the algorithms in [14, 15] is that it arranges the communication among all
users as a cycle. If cyclic arrangement is specified by A, then the scheme is vulnerable
to collusion between A and some users. In particular, A can arrange to have a honest-
but-curious user just before and immediately after some honest users in the cycle. By
colluding with these honest-but-curious users, A can determine the private data values
of some honest users. An alternative is for users to organize themselves into a cycle,
but this approach requires users to know each other. Although the papers [14, 15] do
not discuss weighted sum, one can extend them to weighted sum. Some other
approaches for SUM and other data aggregation are given in [7, 9, 16]. However they
are used for single transaction.

5 Conclusions

In this paper, we proposed algorithms for computing the weighted sum function on
users’ private data values. These algorithms are tailored for the scenario where a third-
party application is interested in aggregating data from a large number of users in
multiple transactions. Unlike most work in privacy-assured function computations, the
users in our scenario are not collaborating with each other. In fact, a user often does not
even know the identity of other users. This novel aspect distinguishes our work from
other schemes in literature. A key feature of our solution is a new certification-based
method for providing privacy assurance to each user. Such a method reduces the
computational burden on users to ensure that their private data will not be compro-
mised. The end result is a solution in which the computation and communication
burden for a user does not increase with the number of users. This is a significant
advantage of the solution proposed in this paper.

18 K. Le et al.

References

1. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: A system for secure multi-party
computation. In: Proceedings of the ACM Conference on Computer and Communications
Security, pp. 257–266. ACM, New York (2008)

2. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M.,
Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure
multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol.
5628, pp. 325–343. Springer, Heidelberg (2009)

3. Chin, F.: Security problems in inference control for SUM, MAX, and MIN queries. J. ACM
33(3), 451–464 (1986)

4. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-party
computation of boolean circuits with applications to privacy in on-line marketplaces. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432. Springer, Heidelberg
(2012)

5. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. Thesis, Stanford University
(2009)

6. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

7. Groat, M.M., He, W., Foreest, S.: KIPDA: k-Indistinguishable privacy-preserving data
aggregation in wireless sensor networks. In: 2010 Proceedings IEEE on INFOCOM,
pp. 2024–2032. IEEE (2011)

8. Halevi, S., Lindell, Y., Pinkas, B.: Secure Computation on the Web: Computing without
Simultaneous Interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 132–150. Springer, Heidelberg (2011)

9. He, W., et al.: PDA: Privacy-preserving data aggregation in wireless sensor networks. In:
INFOCOM 2007, 26th IEEE International Conference on Computer Communications,
pp. 2045–2053. IEEE (2007)

10. Kentapadi, K.: Models and algorithms for data privacy, Ph.D. Thesis, Stanford University
(2006)

11. L´opez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In: Proceedings of the Symposium on
Theory of Computing (STOC), pp. 1219–1234 (2012)

12. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In:
Proceedings of ACM Conference on Electronic Commerce, pp. 129–139 (1999)

13. Paillier, P.: Public-Key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

14. Sheikh, R., Kumar, B., Mishra, D.K.: Privacy preserving k-secure sum protocol. Int.
J. Comput. Sci. Inf. Secur. 6(2), 68–72 (2009)

15. Sheikh, R., Kumar, B., Mishra, D.K.: A modified k-secure sum protocol for multi-party
computation. Int. J. Comput. 2(2), 62–66 (2010)

16. Shi, J., et al.: Prisense: privacy-preserving data aggregation in people-centric urban sensing
systems. In: 2010 Proceedings IEEE on INFOCOM. IEEE (2010)

17. Toft, T.: Primitives and applications of secure multi-party computation. Ph.D. Thesis,
University of Aarhus, Denmark (2007)

18. Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of Foundations of
Computer Science (FOCS), pp. 162–167, October 1986

Privacy Assurances in Multiple Data-Aggregation Transactions 19

A Secure Priority Queue; Or: On Secure
Datastructures from Multiparty Computation

Tomas Toft(B)

Department of CS, Aarhus University, Aarhus, Denmark
ttoft@cs.au.dk

Abstract. Secure multiparty computation (MPC) – computation on dis-
tributed, private inputs – has been studied for thirty years. This includes
“one shot” applications as well as reactive tasks, where the exact com-
putation is not known in advance. We extend this line of work by explor-
ing efficient datastructures based on MPC primitives. The oblivious RAM
(ORAM) provides a completeness theorem. However, implementing the
ORAM-CPU using MPC-primitives is costly; current IT-secure construc-
tions incur a poly-log overhead on computation and memory, while com-
putationally secure constructions require MPC-evaluation of one-way
functions, which introduces considerable overhead. Using ideas radically
different from those in ORAM’s, we propose a secure priority queue. Data
accesses are deterministic, whereas ORAM’s hide the access pattern
through randomization. n priority queue operations – insertion and dele-
tion of the minimal element – require O(n log2 n) invocations of the cryp-
tographic primitives in O(n) rounds. The amortized cost of each operation
is low, thus demonstrating feasibility.

Keywords: MPC · Reactive functionalities · Datastructures

1 Introduction

Secure function evaluation considers the problem of evaluating a function f on
data held by N parties in a distributed manner. The goal is privacy : The parties
learn f (x1, . . . , xN), but do so without revealing additional information about
the xi. This problem has been rigorously studied in the cryptographic community
since it was proposed by Yao more than thirty years ago, [Yao82]. The notion can
be extended to secure multiparty computation (MPC), which considers reactive
tasks: An MPC protocol may consist of multiple sequential function evaluations,
where each one depends on – and potentially updates – a secret state.

Different notions of security have been proposed, e.g., protocols can provide
passive or active security. In the former, all parties follow the protocol, but may

Supported by the Danish Council for Independent Research via DFF Starting Grant
10-081612. Additional support from the Danish National Research Foundation and
The National Science Foundation of China (under grant 61061130540) for the Sino-
Danish Center for the Theory of Interactive Computation.

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 20–33, 2014.
DOI: 10.1007/978-3-319-12160-4 2

A Secure Priority Queue; Or: On Secure Datastructures 21

collude in an attempt to break the privacy of others. For active security, an adver-
sary controls all corrupt parties who not only pool information, but can misbe-
have arbitrarily in a coordinated manner. Classic results demonstrate that any
function can be computed with active security and polynomial overhead given
a fully connected, synchronous network with authenticated channels (authenti-
cated and secure channels when the adversary is computationally unbounded,
i.e., the information theoretic (IT) case) [GMW87,BGW88,CCD88].

Many specialized protocols for specific, well-motivated problems have also
been proposed – auctions and data mining are two popular examples. Utilizing
domain specific knowledge and focusing solely on the task at hand may allow
considerable efficiency gains. Though solutions may be reactive, this is rarely the
case for the tasks themselves. Put differently: the topic of explicit datastructures
based on MPC primitives has received surprisingly little attention.

Contribution. With the exception of realizations of the oblivious RAM (ORAM;
see related work below), to our knowledge, we consider the first datastructure
based on MPC. We construct an efficient priority queue (PQ) based on proto-
cols providing secure storage and arithmetic over a ring, ZM , and inherit their
security guarantees. Formally, protocols will be presented in a hybrid model
providing secure black-box arithmetic; this can, e.g., be based on secret sharing.

Our PQ is inspired by the bucket heap of Brodal et al. [BFMZ04] and allows
two operations: INSERT(p, x) which inserts a secret element, x, into the queue
with secret priority p; and GETMIN() which deletes and returns (in secret form)
the element with minimal priority. Each operations use O(log2 n) primitive oper-
ations – arithmetic and comparisons – in O(1) rounds (both amortized).

The overall approach taken in this paper is to construct a datastructure where
the actions performed are completely independent of the inputs. From there it
is merely a matter of implementing the operations using MPC primitives. This
strategy presents an immediate path to the present goal, however, it is not at
all clear that it is the only one, or indeed the best one.

Related Work. We find three areas of related work: incremental cryptography
(IC) of Bellare et al. [BGG94,BGG95]; history independent (HI) datastructures
introduced by Naor and Teague building on Micciancio’s oblivious datastructures
[NT01,Mic97]; and the Oblivious RAM due to Goldreich and Ostrovky [GO96].

IC considers evaluating some cryptographic function – e.g. a digital signature –
on known, changing data without recomputing that function from scratch every
time. HI datastructures on the other hand focus the problem of eliminating
unintentional information leakages when datastructures containing known data
are passed on to other parties. E.g., the shape of the structure itself may reveal
information on the operations performed. Both consider security and structuring
data, but are fundamentally different as the data is known to some party.

The closest related concept is the ORAM, where a CPU (with O(1) private
memory) runs a program residing in main memory. An adversary observes the
memory access pattern (but not the data/instructions retrieved) and attempts
to extract information. Damg̊ard et al. observed (as hinted by Goldreich and

22 T. Toft

Ostrovky) that implementing the CPU using MPC primitives provides a secure
RAM, i.e., allows arbitrary datastructures to be used in MPC.

Oblivious RAMs hide the access pattern by randomizing it. [GO96] achieved
this using a random oracle instantiated by a one-way function. In a recent
result (with security issues fixed in subsequent papers), Pinkas and Reinman
brought the computational overhead down to O(log2 n) and the memory over-
head down to O(1) [PR10]; this was further reduced to O(log2 n/ loglog n) by
Kushilevitz et al. [KLO12]. The approach used has two drawbacks when con-
sidering datastructures in MPC: The use of one-way functions implies that the
solution cannot be IT-secure. Moreover, the one-way function must be evalu-
ated using MPC; this can be done but will most likely be costly in terms of
secure computation. Independently, Ajtai [Ajt10], and Damg̊ard et al. [DMN10]
have proposed information theoretic ORAM’s. Though the solutions are dif-
ferent, both have poly-logarithmic overhead on both (secure) computation and
memory usage. Recently Lu and Ostrovsky have proposed a much more effi-
cient ORAM solution for the two party setting [LO11]. Combining their ideas
with a heap matches the theoretic complexity of the present solution. However,
recent advances by Damg̊ard et al. allow highly efficient IT-secure two-party
arithmetic, given a preprocessing phase [DPSZ12]. These are among the fastest
MPC protocols presently known, and it is unclear how to implement the shuffles
needed for the ORAM in that setting without using super-linear preprocessing
or online communication, i.e., without incurring an overhead.

Where the ORAM provides a completeness theorem, the present work focuses
on whether different strategies may provide more efficient means of reaching
specific goals. Indeed, the present approach is radically different than those used
when constructing ORAM’s: in stark contrast to the above, the access pattern
of the PQ solution presented is completely deterministic, whereas any IT secure
realization of the ORAM require at least log n bits of randomness per operation,
where n is the overall size of the memory, [DMN10]. This is possible since the
overall “program” is known: Actions may depend on the task at hand.

Despite the common ground, ORAM’s do not provide all answers regarding
MPC datastructures, at least not presently. In addition to the above, using MPC
to implement present ORAM solutions (other than [LO11]) incurs at least an
overhead of O(log2 n) on every read/write operation – this equals the cost of
our PQ operations. The sequential nature of the ORAM also implies that it
cannot provide round-efficient solutions. Further, both IT secure ORAM’s have
a poly-logarithmic overhead on memory usage, whereas the present construction
does not, thus, to our knowledge the present work contains the first IT secure
datastructure with constant memory overhead. Finally, there are no obvious
reasons why the secure PQ could not be improved, while an IT secure ORAM
with constant overhead seems less plausible.

2 The Basic Model of Secure Computation

We consider a setting where N parties, P1, . . . , PN , are pairwise connected by
authenticated channels in a synchronous network, and focus on MPC protocols

A Secure Priority Queue; Or: On Secure Datastructures 23

based on linear primitives over a ring ZM . Secure storage and arithmetic is mod-
eled using an ideal functionality – the arithmetic black-box (ABB), FABB – and
protocols are constructed in the FABB-hybrid model. This functionality was intro-
duced by Damg̊ard and Nielsen [DN03]; the benefits include abstracting away
irrelevant low-level details as well as simplifying security proofs: The underlying
primitives provides security for any the application, thus privacy can only be
lost if we explicitly output a value.

2.1 The Arithmetic Black-Box

Reference [DN03] presents FABB in the UC framework of Canetti [Can00] and
realizes it efficiently based on Paillier encryption [Pai99]. The protocols are shown
secure against an active, adaptive adversary corrupting a minority of the parties.
For simplicity, we present a modified FABB focusing on passive corruption only:

– Input: If party Pi sends “Pi : x ← v” and all other send “Pi : x ←?”, FABB

stores v under the variable name x,1 and sends “Pi : x ←?” to everyone.
– Output: If all parties send “output(x)”, then assuming that value v was

stored under x, FABB sends “x = v” to everyone as well as the adversary.
– Arithmetic: Upon receiving “x ← y +z” from all parties, FABB computes the

sum of the values stored under y and z and stores the result as x. Similarly,
upon receiving “x ← y · z” from all parties, the product is stored under x.

Input/output can be though of as secret sharing/reconstruction, in which case
linear primitives implies that addition of shares is addition of secrets; multiplica-
tion then requires interaction. Shamir sharing along with the protocols of Ben-Or
et al. fit this description [Sha79,BGW88], see Appendix A, though we can equally
well instantiate FABB using homomorphic encryption, e.g., [Pai99,CDN01].

In case of active adversaries, minor alterations must be made to FABB to ensure
that it exactly captures the possible behavior. It is stressed that such change do
not invalidate our construction below. Consider, e.g., the case of honest majority
and guaranteed termination: Adversarial parties are allowed to abort, hence FABB

should only receive �(N + 1)/2� output messages before sending “x = v”. In a
similar vein, when fairness is not ensured, the adversary receives “x = v” first,
and can decide if the honest parties should receive it as well.

2.2 Complexity

As abstract primitives are used, one can merely count the number of operations
performed by FABB. These correspond directly to the computation and commu-
nication of the underlying primitives. We focus on communication complexity of
such operations; since linear primitives are assumed, this implies that addition
(and multiplication by public values) is costless. We will not distinguish between
the complexities of the remaining operations, but remark that multiplication is
generally both the most used and the most costly one.
1 For simplicity, consider these distinct, i.e., variables are never overwritten.

24 T. Toft

Regarding instantiations of FABB, the basic operations are typically reasonably
cheap. For passive adversaries, typically only O(1) ring elements are communi-
cated per player or pair of players. E.g., performing a passively secure multipli-
cation of Shamir shared values can be done by having each party reshare the
product of its shares (plus local computation), i.e., two field elements per pair.
The dominating term of the Paillier based protocols of [DN03] – and in other
actively secure constructions – is O(N) Byzantine agreementson ring elements
(e.g., encryptions) per (non-costless) operation, i.e., O(1) Byzantine agreements
per player. Unless a broadcast channel is assumed, such an overhead is required
to guarantee robustness against actively malicious adversaries.

A second measure of complexity of protocols is the number of rounds required
(the number of message exchanges). For clarity this was left out of the presen-
tation above, however, it is easily incorporated: Assume that all operations take
the same, constant number of rounds. Now, rather than receiving one instruction
from each party, parties send lists of independent instructions to be performed by
the functionality. Each invocation of FABB then refers to one round of operations,
which in turn translates to one or more rounds of communication.

The straightline program notation used below improves readability, but has a
drawback: The description of the protocols is detached from the actual execution
in the FABB hybrid model. Hence, complexity analysis becomes slightly more
complicated, as the description does not explicitly state which operations can
be performed in parallel. Clearer descriptions easily makes up for this, though.

3 Extending the Arithmetic Black-Box

The secure priority queue is not constructed directly based on FABB. We extend
that functionality with additional operations. These are realized using nothing
more than the basic operations of FABB. This section can be viewed as containing
preliminaries in the sense that it introduces a number of known constructions.

3.1 Secure Comparison

Having priorities implies some notion of order with respect to the stored ele-
ments. Further, FABB must allow us to compare priorities to determine which is
larger. Extending the functionality with such an operation is straightforward:

– Comparison: Upon receiving “x ← y>?z” from all parties, FABB determines
if y is larger than z, and stores the result as x; 1 for true and 0 for false.

As an example, consider the “integer ordering” of ZM -elements. For prime M ,
this can be implemented using O(log M) non-costless operations in O(1) rounds,
e.g. [NO07]. When M is an RSA modulus – e.g., a public Paillier key – complex-
ity is increased to O(N log M) due to more expensive sub-protocols. In specific
settings other solutions may be preferable, e.g., [Tof11,LT13]. It is stressed that
these are merely options; any secure computation and any ordering works.

A Secure Priority Queue; Or: On Secure Datastructures 25

For simplicity of the analysis, we assume that the comparison requires only
a constant number of rounds, and count the number of comparison invocations
separately from the basic operations due to its (in general) much higher cost.
Given a specific protocol one can determine the actual cost.

3.2 Secure Conditional Swap

Based on the ability to compare, it is possible to perform conditional swaps:
Given two values, swap them if the latter is larger than the former. This can be
viewed as sorting lists of length two, and is easily constructed within the ABB
by simply computing the maximal and minimal of the two.

max ← (
a>?b

)
(a − b) + b; min ← a + b − max

These expressions easily translate to messages from parties to FABB; work is
constant – O(1) basic operations and a single comparison – and multiple swaps
may be executed in parallel. The swap computation can be generalized to multi-
element values, say pairs consisting of a priority and a data element. It is simply
a question of having a well-defined comparison operator and using its output to
choose between the two candidates on a single element basis.

3.3 Secure Merging

The main, large-scale primitive is the ability to merge sorted lists of length �
stored within FABB. This is written MERGE (X,Y), where X and Y refer to lists of
stored values. A solution is obtained from sorting networks – sorting algorithms
created directly based on conditional swaps. No branching is performed, hence
they are deterministic and oblivious to the inputs, except the problem size, �.

Any sorting network can be utilized to merge, by simply viewing the whole
input as a single unsorted list. However, for efficiency, we take the inner work-
ings of Batcher’s odd-even mergesort [Bat68]. The whole sorting network requires
O(� log2 �) conditional swaps, but merging alone requires only O(� log �) condi-
tional swaps in O(log �) rounds, and constants are low.

A primitive for merging lists of differing lengths, � �= �′, is also required. The
shorter list is simply padded – assume that some element, e∞, which is greater
than all others is reserved for this – such that they become of equal length. Now
merge the lists using the above solution and remove the padding; since these
elements are greater than any valid ones, all such elements are pushed to one side.
The size of the padding is known, so those elements can be removed by truncating
the list. Complexity is O(max(� log �; �′ log �′)) operations in O(max(log �, log �′))
rounds. We overload MERGE (·, ·) to avoid introducing additional notation.

We present a final, needed primitive which is highly related to merging: merge-
split. This operation, denoted MERGESPLIT (X,Y), takes two lists as input as
above. As the name suggests, the goal is to merge two lists into one, which is then
split (cut into two parts whose concatenation is the sorted list). The only require-
ment is that lengths of the new lists must equal the lengths of the old ones.

26 T. Toft

The effect of a merge-split is that the most significant elements end up in one
of the lists, while the least significant ones end up in the other. Naturally, both
new lists are still sorted. Clearly this operation is equivalent to a merge, as the
split merely renames variables. Hence, its complexity is the same as merging.

4 The Goal: A Secure Priority Queue

We are now ready to present the desired goal, an ideal functionality for a priority
queue, FPQ. However, the data of a datastructure is not separated from the rest
of the world in general and inputs to the datastructure may not originate from
some party, but could be the result of previous computation. Thus, the goal is
to further extend the arithmetic black-box with a priority queue. As with the
introduction of a comparison operator, we simply list all operations needed. I.e.,
FPQ contains the operations of the extended FABB in addition to the following:

– INSERT(p, x):2 Upon receiving “PQinsert(p, x)” from all parties, where p and
x are variables, FPQ stores the values associated with the pair (p, x) in an
internal, initially empty list, L. All parties then receive “PQinsert(p, x)”.

– GETMIN(): Upon receiving “y ←PQgetmin()” from all parties, FPQ determines
and deletes from L the pair with the lowest p-value. The corresponding x-value
is stored as y, and all parties receive “y ←PQgetmin()” from FPQ.

Naturally, parties engaging in a protocol may interleave these two operations
arbitrarily with other computation. This could even contain operations for other
priority queues. Note, however, that FPQ must treat the operations on a given
PQ as atomic with respect to each other. There is a small issue with the above
description: The behavior of FPQ is not specified if GETMIN() is executed on an
empty queue. In this case, FPQ may simply discard the operation. All parties
always know the exact number of elements in the queue, as they are notified
whenever operations occur, hence this has no consequences.

5 The Secure Bucket Heap

A standard binary heap is not directly implementable using MPC primitives
as one cannot traverse a tree from root to leaf by a path depending on secret
data. The realization of FPQ is instead based off of the bucket heap of Brodal
et al. [BFMZ04], though a few significant changes are made. Jumping ahead,
the original solution merges sorted lists using linear scans – we must employ
Batcher’s solution from Sect. 3.3. Secondly, we impose a rigid structure (with
respect to the priorities) of the elements of each bucket. This actually causes the
name bucket heap to be slightly misleading. Finally, we consider a simple problem
than [BFMZ04] – the decrease-key operation has been eliminated, which implies
that the actual content can be ignored.
2 This is referred to as INSERT(p) below; x, is left implicit to avoid clutter.

A Secure Priority Queue; Or: On Secure Datastructures 27

5.1 The Intuition of the Secure Bucket Heap

We stress that this section is not, strictly speaking, correct. However, it explains
the core ideas nicely: Store a list, D, containing all the data in sorted order.
Doing so naively makes inserts too costly, as a newly inserted element can end
up anywhere. Thus, rather than inserting directly into that list, elements are
placed in buffers until sufficiently many have arrived to pay for the combined
cost of all insertions. More formally, the data is split into sub-lists (buckets),
D0,D1,D2, . . ., where the elements of Di are less than those of Di+1. The size of
the Di double with each step (or level) – |Di| = 2i. In addition to this, at each
level, i, there is a buffer, Bi, of the same length as the data; see Fig. 1.

D0

B0

D1

B1

D2

B2

Di

Bi

Fig. 1. The structure of the bucket heap

Inserting new data means placing it in the uppermost buffer, B0, the intuition
being, that whenever a buffer Bi is full, its contents are processed. The elements
that “belong at this level” are moved to Di, while the rest are pushed down
to Bi+1. The Di can be viewed as a sorted list of “buckets” of elements, where
elements increase with each step. Thus, “belong at” means that an element is
smaller than some p ∈ Di. The minimal is obtained by returning the contents of
D0. Subsequent GETMIN()’s will find, D0 empty, but the desired element is found
in the top-most, non-empty bucket. The remainder of the content of its bucket
is then placed in the buckets above.

5.2 Invariants

Data is stored as specified above, but with a few additional requirements. Bucket
Di is either completely full or completely empty, |Di| ∈ {0, 2i}. Buffers are
slightly different as the Bi must contain strictly less than 2i elements. They may
temporarily exceed this limit – denoted that the buffer is full – at which point

28 T. Toft

Protocol 1. FLUSH(i) – flushing buffer Bi at level i

Require: Full buffer, Bi, at level i.
Operation: Flush Bi, moving the elements contained into data or subsequent buffers.

if |Di| = 0 and i is the lowest level then
Di ← Bi(1..2

i)
Bi ← Bi((2

i + 1)..|Bi|)
if |Bi| ≥ 2i then

5: FLUSH(i)
end if

else
(Di, Bi) ← MERGESPLIT (Di, Bi)
Bi+1 ← MERGE (Bi, Bi+1)

10: Set Bi empty
if |Bi+1| ≥ 2i+1 then

FLUSH(i + 1)
end if

end if

the contents will be processed. Finally, the elements of buffer Bi are greater than
(have higher priority than) the elements of the higher-lying buckets, Dj , j < i.
In difference to the original bucket heap, the contents of the buckets and buffers
are stored sorted by priority. This is the rigid structure referred to above. Note
that the concatenation of the Di can be viewed as one long, sorted list.

5.3 The Operations

The datastructure must be maintained using only FABB-operations. The two oper-
ations needed are the insertion of a new value and the extraction of the present
minimal. The main parts of these operations are seen as Protocols 1 and 2.

The insert operation, INSERT(p), is performed by placing p in the top buffer,
B0. This fills it and it must be flushed using Protocol 1. The GETMIN() operation
is realized by the (attempted) extraction the element stored in the top-level
bucket. This is done by executing DELMIN (0); the details are seen as Protocol 2.

5.4 Correctness

To show correctness, it suffices to show that the invariants hold and that these
imply the desired behavior. It is clear that for the starting position – an empty
priority queue – all invariants hold. All buckets are empty which is acceptable;
further, there are no elements so the required ordering between elements of
different buckets and buffers as well as the internal ordering are clearly satisfied.

An INSERT(p) operation places p in B0. Note that all invariants holds except
that B0 is full – no relationship to other elements is required of the sole element
in B0. After this, the buffer is flushed. There are two possible states, as seen
from the “outer” if-statement of Protocol 1: either this is the lowest level and
Di is empty; or there is data here or below. At the bottom we simply move the

A Secure Priority Queue; Or: On Secure Datastructures 29

Protocol 2. DELMIN(i) – return the 2i smallest elements from level i and below
(or everything if there are fewer than 2i elements)
Require: Non-empty bucket heap; all levels above the i’th are completely empty.
Operation: DELMIN(i) – determine and return the 2i minimal elements

if |Di| = 2i then
(Di, Bi) ← MERGESPLIT (Di, Bi)
Return Di and set it empty

else if i is the lowest level then
5: Return Bi and set it empty

else
Bi+1 ← MERGE (Bi, Bi+1)
Set Bi empty
if |Bi+1| ≥ 2i+1 then

10: FLUSH(i + 1)
end if
D̃ ← DELMIN (i + 1)
if |D̃| = 2i+1 then

Di ← D̃(2i + 1..2i+1)
15: Return D̃(1..2i))

else if |D̃| > 2i then
Bi ← D̃(2i + 1..|D̃|)
Return D̃(1..2i))

else
20: Return D̃

end if
end if

2i smallest elements into the bucket (buffers are only flushed when they contain
2i elements). As all the elements in the buffer are bigger than the elements in
the buckets above, then the new relationship with all buckets hold.

Alternatively, there is data in the present bucket, Di, or below. By the invari-
ant, all elements are greater than the elements of the buckets above. Thus, per-
forming the merge-split, line 8, does not violate invariants. This step ensures
that the smallest elements of the level end in Di; these are at most as big as the
previous largest element of Di, and must therefore be smaller than the elements
of the levels below. Additionally, it is guaranteed that the elements of Di are
smaller than those of Bi, so the latter can be pushed into the buffer below. All
invariant still hold, except that Bi+1 may now have become full; if so, flush it.

The minimal element is obtained using DELMIN(0). The intuition behind Pro-
tocol 2 is that the minimal element must come from a bucket. Only when no
such elements exist will a buffer-element be taken, line 5. The invariant implies
that the minimal element will be in the top-most, non-empty bucket or in a
buffer above. Starting with B0, buffers are flushed until a non-empty bucket is
found, lines 7 and 12. Note that these buffer merges do not affect the invariant.

Once a non-empty bucket is found, it is merge-split with its buffer to ensure
that it contains the 2i smallest elements, not only at this level, but overall :

30 T. Toft

buckets and buffers above are empty, and any element in the bucket is less
significant than any at a level below. The bucket is then emptied into the buckets
above, filling them and leaving one element to be returned – this task is trivial
as all buckets (and their concatenation) are sorted. It is easily verified that the
invariants hold at this point.

If all buckets are empty, then all buffers are merged until only a single non-
empty one exists (at the lowest level, i). Viewing Bi as a sorted list, its contents
may be distributed to the top buckets above, exactly as with the emptying of
a bucket above, except that there may be “excess elements.” For |Bi| = 2j + k,
with k < 2j , the minimal element can be returned and the j top-most buckets
filled. This leaves the k largest elements; these are placed in the buffer Bj+1.
The elements of Bi are easily distributed such that the invariant holds.

5.5 Complexity

Complexity of both INSERT(p) and DELMIN(0) is O(log2 n) amortized, where n
is the overall number of operations. This follows from a coin argument, where
each coin pays for a conditional swap.

When inserting an element into B0, Θ(log2 n) coins are placed on it. The
invariant is that every element in Bi has Θ(((log n) − i) log n) coins, which is
clearly satisfied for both the initial (empty) datastructure and for the newly
inserted element. These coins pay for the flushes caused by full buffers,
Protocol 1.

Moving elements from the buffer to the empty bucket at the lowest level is
costless. In the other case, the buffer Bi is merged with bucket, Di, (in the merge-
split) and with buffer Bi+1 below. Both merges require O(2i log 2i) conditional
swaps – the lists are at most a constant factor longer than 2i. This cost is
paid using Θ(2i log n) coins from the elements of Bi. The merge-split potentially
moves elements between the buffer and bucket, however, the number of elements
in the buffer remains the same. The second merge moves the contents to the level
below. As Bi was full, it contained at least 2i elements; thus, it suffices if each
one moved pays Θ(log n) coins. As the entire contents of the buffer is pushed
one level down, the elements only require Θ(((log n) − (i + 1)) log n) to ensure
that the invariant holds. Hence, the invariant holds after each element has paid
the coins needed for the flush. This implies the stated complexity for INSERT(p).

A similar argument is needed for deletion, DELMIN(0). However, rather than
placing coins on the elements themselves, the deletion coins are placed on the
buffers. Each operation places Θ(log n) coins on each of the buffers, Bi; this
requires Θ(log2 n) coins overall. The invariant is, that Bi has Ω(k log n) coins,
where k is the combined size of the empty buckets above, i.e. k =

∑i−1
j=0;|Dj |=0 2j .

Whenever DELMIN(i) is called, it implies that the buckets of all levels j < i above
are empty. Hence, the buffer Bi has Ω((2i − 1) log n) coins allowing it to pay
for a merge at level i, either with the contents of bucket Di or the buffer below.

A Secure Priority Queue; Or: On Secure Datastructures 31

Either way, all buckets above are filled,3 implying that Bi no longer needs coins to
satisfy the invariant. Thus, earlier delete operations pay for the required merge.

Regarding round complexity, the operations require at most a constant
number of merges per level, so worst-case complexity is O(log2 n). Amortized
complexity is only constant, though. Lower levels are rarely processed (Ω(2i)
operations occur between the ones “touching” level i) and upper levels are cheap
(only O(i) rounds are required to merge at level i); for n operations,

∑logn
i=0

n
2i i

2

rounds are needed overall implying O(1) rounds on average.

5.6 Security

Intuitively, security of the bucket heap follows directly from the security of FABB:
An adversary, A, can only learn information when the ideal functionality outputs
a value, i.e., when the underlying primitives explicitly reveal information. How-
ever, at no point in the present computation is an output command given by any
of the honest parties. Hence, as A does not control what amounts to a qualified
set, it cannot make FABB perform an output operation. By similar reasoning, it
can be seen that no adversary – i.e., set of parties behaving incorrectly – can
influence the computation resulting in incorrect values stored in FABB.

The above is of course only the intuitive explanation. Formally, the view of A
must be simulated in the FABB-hybrid model. The required simulator, however, is
trivial. It simply “executes” the realizing PQ computation, except that for every
operation that the basic FABB should be instructed to perform, the simulator
will simply play the role of FABB towards the corrupt players. It will receive their
commands and send the messages (acknowledgments) to the corrupt players that
they expect to receive. This is clearly indistinguishable from the point of view
of any adversary. For each PQ operation, it simply sees a fixed set of messages,
namely the ones corresponding to the secure computation implementing the
operation, which it “knows” is being executed.

5.7 Hiding Whether an Operation Is Performed

A simple variation consists of conditional operations, i.e., operations based on
secret bit, b. To achieve this, we add an additional key, e−∞, smaller than any
real key and implement conditional INSERT(p) as INSERT (b · (p − e∞) + e∞) –
this inserts p or e∞ depending on b. Similarly, we can implement a conditional
GETMIN() as INSERT (b · (e∞ − e−∞) + e−∞) ; GETMIN () . If b = 0 e−∞ is inserted
and immediately removed. Otherwise e∞ is inserted and the minimal removed.

Note that we no longer know the number of real keys in the PQ. This is
unavoidable – a conditional GETMIN() cannot decrease the number of elements
stored, while INSERT(·) must always add an element. If desired, one can keep
count of the actual size, adding (subtracting) b for every INSERT(·) (GETMIN()).

3 The only possible exception occurs when all buckets are empty and the buffers
contain too few elements to fill them all. In this case a “completely full” structure
is constructed from scratch so no coins are needed.

32 T. Toft

A An ABB Realization

Consider a passive adversary and Shamir’s secret sharing scheme over ZM = FM

for prime M , [Sha79]. Secret sharing allows one party to store a value privately
and robustly among multiple others. If and only if sufficiently many agree, the
value will be revealed. Input (respectively output) simply refers to secret shar-
ing a value (respectively reconstructing a secret shared value). To implement
arithmetic, note that Shamir’s scheme is linear, so addition is simply addition
of shares, while secure multiplication can be obtained through the protocols of
Ben-Or et al. when less than N/2 parties are corrupt [BGW88]. It can be shown
(given secure communication between all pairs of players, and assuming that all
parties agree on the secure computation being performed) that these protocols
realize FABB with perfect security in the presence of passive adversaries. Further,
the protocols of [BGW88] even realize (a variation of) the presented FABB in the
presence of active adversaries if the corruption threshold is reduced to N/3 –
this solution guarantees termination.

References

[Ajt10] Ajtai, M.: Oblivious rams without cryptogrpahic assumptions. In: 42nd
Annual ACM Symposium on Theory of Computing, pp. 181–190. ACM
Press (2010)

[Bat68] Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring
Joint Computing Conference, pp. 307–314 (1968)

[BFMZ04] Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data struc-
tures and algorithms for undirected breadth-first search and shortest paths.
In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp.
480–492. Springer, Heidelberg (2004)

[BGG94] Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the
case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 216–233. Springer, Heidelberg (1994)

[BGG95] Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and
application to virus protection. In: 27th Annual ACM Symposium on The-
ory of Computing, pp. 45–56. ACM Press (1995)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
noncryptographic fault-tolerant distributed computations. In: 20th Annual
ACM Symposium on Theory of Computing, pp. 1–10. ACM Press (1988)

[Can00] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000).
http://eprint.iacr.org/

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols. In: 20th Annual ACM Symposium on Theory of Computing, pp.
11–19. ACM Press (1988)

[CDN01] Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

[DMN10] Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious ram
without random oracles. Cryptology ePrint Archive, Report 2010/108
(2010). http://eprint.iacr.org/. (conference version to appear at TCC 2011)

http://eprint.iacr.org/
http://eprint.iacr.org/

A Secure Priority Queue; Or: On Secure Datastructures 33

[DN03] Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty
computation from threshold homomorphic encryption. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: STOC ’87: Proceedings of the Nineteenth Annual ACM Conference on
Theory of Computing, pp. 218–229. ACM Press, New York (1987)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious rams. J. ACM 43(3), 431–473 (1996)

[KLO12] Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based
oblivious ram and a new balancing scheme. In: Rabani, Y. (ed.) SODA, pp.
143–156. SIAM (2012)

[LO11] Lu, S., Ostrovsky, R.: Distributed oblivious ram for secure two-party com-
putation. Cryptology ePrint Archive, Report 2011/384 (2011). http://
eprint.iacr.org/

[LT13] Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear
online complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg,
D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 645–656. Springer,
Heidelberg (2013)

[Mic97] Micciancio, D.: Oblivious data structures: applications to cryptography. In:
STOC, pp. 456–464 (1997)

[NO07] Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg
(2007)

[NT01] Naor, M., Teague, V.: Anti-persistence: history independent data struc-
tures. In: STOC, pp. 492–501 (2001)

[Pai99] Paillier, P.: Public-Key cryptosystems based on composite degree residuos-
ity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223.
Springer, Heidelberg (1999)

[PR10] Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Tof11] Toft, T.: Sub-linear, secure comparison with two non-colluding parties. In:

Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS,
vol. 6571, pp. 174–191. Springer, Heidelberg (2011)

[Yao82] Yao, A.: Protocols for secure computations (extended abstract). In: 23th
Annual Symposium on Foundations of Computer Science (FOCS ’82), pp.
160–164. IEEE Computer Society Press (1982)

http://eprint.iacr.org/
http://eprint.iacr.org/

Towards Secure Two-Party Computation
from the Wire-Tap Channel

Hervé Chabanne1,2,3(B), Gérard Cohen2,3, and Alain Patey1,2,3

1 Morpho, Issy les Moulineaux, Paris, France
2 Télécom ParisTech, Paris, France

{herve.chabanne,gerard.cohen,alain.patey}@telecom-paristech.fr
3 Identity and Security Alliance (The Morpho and Télécom ParisTech

Research Center), Paris, France

Abstract. We introduce a new tentative protocol for secure two-party
computation of linear functions in the semi-honest model, based on cod-
ing techniques. We first establish a parallel between the second version
of the wire-tap channel model and secure two-party computation. This
leads us to our protocol, that combines linear coset coding and oblivious
transfer techniques. Our construction requires the use of binary intersect-
ing codes or q-ary minimal codes, which are also studied in this paper.

Keywords: Secure Two-Party Computation · Secure Function Evalua-
tion · Wire-Tap Channel · Oblivious transfer · Coset coding · Intersecting
codes · Minimal codewords · Minimal linear codes

1 Introduction

Secure Multi-party Computation has been introduced in the late eighties by
Yao [25] and has been subject to a lot of studies to demonstrate its feasibility
and completeness in several adversarial settings. Recently, a lot of work has
been done to make these techniques practical. We refer the reader to [9,12,14]
for overviews on the state of the art in Secure Multi-Party Computation. We
here focus on the two-party setting. In this setting, two parties P1 and P2,
holding respective inputs X and Y , wish to securely compute a function f on
their inputs. At the end of the protocol, one party (or both) learns f(X,Y),
but gains no more information about the other party’s input than what can be
deduced from this output. The seminal example given by [25] is the millionaire’s
problem: two millionaires wish to know which one of them is the richer, without
revealing their respective wealths. We here focus on the semi-honest adversarial
model, where both parties are supposed to follow the protocol but where they
try to infer more information than they should from all data exchanges. Yao [25]
gives a construction fulfilling these requirements [15], applicable to any function
expressed as binary circuit. This technique is based on garbled circuits and
oblivious transfer.
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 34–46, 2014.
DOI: 10.1007/978-3-319-12160-4 3

Towards Secure Two-Party Computation 35

Oblivious transfer, originally introduced by Rabin [18] in a slightly different
version, enables one receiver R to get one out of N secrets X1, . . . , XN held by
a sender S. The receiver chooses an index c ∈ {1, . . . , N}, gets Xc and learns
nothing about the Xj ’s, for j �= c. Symmetrically, the sender S learns nothing
about c. This is also known as Symmetric Private Information Retrieval (SPIR).
Many protocols and implementations exist for oblivious transfer, some pointers
can be found in [16].

The Wire-Tap Channel model has been introduced by Wyner [24] and later
extended by Ozarow and Wyner [17] to a second version considering an era-
sure channel for the eavesdropper. We here consider the Wire-Tap Channel II
(WTC2) [17] to establish a parallel with Secure Two-Party Computation. The
model for WTC2 is described in Fig. 1. Alice sends an encoded message to Bob.
Eve is allowed to access a bounded number of coordinates of the codeword, and
she moreover controls the erasure positions. In the original model, Eve is not
supposed to learn any information about the original message, even knowing the
coding and decoding algorithms. Later [7,23], the information gained by Eve if
she learns more than the original bound was studied. In particular, using coset
coding techniques, there exists a sequence (di) of bounds such that Alice gains
less than i information bits about the original message if she has access to less
than di coordinates of the message.

Alice Enc

erasures

Bob

Eve

m c

chosen bits of c

Fig. 1. The Wire-Tap Channel II

This is where we establish the parallel with Secure Two-Party Computation.
We see the two parties performing the secure computation as Alice and Eve in
the WTC2 model. The message that is encoded by Alice would be the input X
of Alice. We want the bits of information that Eve gets about X to be the actual
bits of f(X,Y). We will explain in this paper how to do this using linear coset
coding techniques and some classes of linear functions. The last thing we need
to achieve the parallel is a modeling of the erasure channel. This will be done
using oblivious transfers. We illustrate this parallel in Fig. 2.

In Sect. 2, we recall some results about Wire-Tap Channel II and linear coset
coding. We infer a protocol for secure two-party computation in Sect. 3. This
raises the problem of finding minimal linear codes, that we study in Sect. 4.
Finally, we conclude in Sect. 5.

36 H. Chabanne et al.

P1 Enc

oblivious transfers P2

X

c

chosen bits of c

Fig. 2. From WTC2 to Secure Two-Party Computation

2 Wire-Tap Channel II and Linear Coset Coding

In the following, an [n, k, d] linear code denotes a subspace of dimension k of
F
n
q with minimum Hamming distance d, where q = pk, for p prime and k ∈ N.

We denote by C⊥ the dual code of C. The support of c ∈ C is supp(c) = {i ∈
{1, . . . , n}|ci �= 0}. We might use bit, by abuse of language, even if q �= 2, to
denote a coordinate of a message or of a codeword.

2.1 Linear Coset Coding

Coset coding is a random encoding used for both models of Wire-Tap Channel
[17,24]. This type of encoding uses an [n, k, d] linear code C with a parity-check
matrix H. Let r = n − k. To encode a message m ∈ F

r
q, one randomly chooses

an element among all x ∈ F
n
q such that m = H · xT . To decode a codeword x,

one just applies the parity-check matrix H and obtains the syndrome of x for
the code C, which is the message m. This procedure is summed up in Fig. 3.

Given: C an [n, n − r, d] linear code with a r × n parity-check matrix H
Encode: m ∈ F

r
2 �→R x ∈ F

n
2 s.t. H · xT = m

Decode: x ∈ F
n
2 �→ m = H · xT

Fig. 3. Linear coset-coding

2.2 The Wire-Tap Channel I

The Wire-Tap Channel was introduced by Wyner [24]. In this model, a sender
Alice sends messages over a potentially noisy channel to a receiver Bob. An
adversary Eve listens to an auxiliary channel, the Wire-Tap channel, which is
a noisier version of the main channel. It was shown that, with an appropriate
coding scheme, the secret message can be conveyed in such a way that Bob has
complete knowledge of the secret and Eve does not learn anything. In the special
case where the main channel is noiseless, the secrecy capacity can be achieved
through a linear coset coding scheme.

Towards Secure Two-Party Computation 37

2.3 The Wire-Tap Channel II

Ten years later, Ozarow and Wyner introduced a second version of the WT
Channel [17]. In this model, both main and Wire-Tap channels are noiseless.
This time, the disadvantage for Eve is that she can only see messages with
erasures: she has only access to a limited number of bits per codeword. She is
however allowed to choose which bits she can learn. We summarize the Wire-Tap
Channel II in Fig. 1.

The encoding used in this model is again a coset coding based on a linear
code C, as in the Wire Tap Channel I with a noiseless main channel. Let d⊥

denote the minimum distance of the dual C⊥ of C. One can prove (see [23] for
instance) that, if Eve can access less than d⊥ bits of a codeword, then she gains
no information at all on the associated message.

2.4 Generalized Hamming Distances

Generalized Hamming distances (or generalized Hamming weights) have first
been considered by Wei [23]. The ith generalized Hamming distance, denoted
by di(C) or di is the minimum size of the union of the supports of i linearly
independent codewords in C. We have 1 ≤ d = d1 ≤ . . . ≤ dk ≤ n.

Using generalized Hamming distances, we get a more precise evaluation of
the information gained by Eve in the WTC2, depending on the linear code used
for coset coding. For i = 1, . . . , r, let d⊥

i denote the ith generalized Hamming
distance of C⊥, the dual code of C. We have the following result [23]:

Theorem 1 (WTC2 and Generalized Hamming Distances). If Eve gets
less than d⊥

i bits of the codeword c, she gains at most i−1 information bits about
the original message m.

3 Our Protocol for Secure Two-Party Computation

3.1 The Setting

We describe our setting in Fig. 4. Notice that we can also give the result to P1:
since we work in the semi-honest model, where both parties follow the protocol,
we can let P2 send f(X,Y) to P1, once he has computed it.

We consider the secure evaluation of functions of the form

f : F
r
q × S → Fq

(X,Y) �→ f(X,Y) =
r∑

i=1

fi(Y) · xi

where S is a given set, and fi : S → Fq, for i = 1, . . . , r. This class covers all
linear functions of X and Y with range Fq (i.e. giving one “bit of information”
about X to P2).

For instance, if Y ∈ F
r
q and fi(Y) = yi, f is the scalar product over F

r
q.

38 H. Chabanne et al.

Inputs:
• Party P1 inputs X ∈ F

r
q

• Party P2 inputs Y ∈ S
• Both parties know a description of f : Fr

q × S → Fq

Outputs:
• P1 learns nothing about Y
• P2 obtains f(X,Y) but learns nothing more about X than what can be
inferred from f(X,Y).

Fig. 4. Our Secure Two-Party Computation setting

Squared Euclidean distance can also be computed this way. In addition to

X, P1 also inputs xr+1 =
r∑

i=1

x2
i and fi(Y) = −2yi, for i = 1, . . . , r, fr+1(Y) = 1.

Thus, P2 obtains
r∑

i=1

x2
i − 2xiyi, which is equivalent (for P2) to the knowledge of

d(X,Y) =
r∑

i=1

(xi − yi)2: it gives no additional information.

If q = p > log(r) and inputs are binary vectors seen in Fq, it is also possible
to compute Hamming distance (take fi(Y) = 1 − 2yi).

Securely computing these functions has applications in the signal processing
and cryptographic domains, especially for privacy-preserving biometric recogni-
tion [4,19].

Privacy. We consider the usual definition of privacy in the two-party and semi-
honest setting, we refer the reader to [14] for a complete definition. In a few
words, privacy is proven if the view of party Pi during an execution of the
protocol can be simulated, given the input and the output of Pi only (but not
the input of P3−i). In particular, we consider the OT-hybrid model, where, in
the simulations, parties have access to a trusted party that computes oblivious
transfers for them.

3.2 From the Wire-Tap Channel to Secure Two-Party Computation

As discussed in the introduction and illustrated in Fig. 2, we transpose the WTC2
model to the Secure Two-party Computation setting, by assigning the role of
Alice to P1, the role of Eve to P2 and modelling the erasure channel by oblivious
transfers. We will use the notation OTn

t to denote the t-out-of-n functionality
described in Fig. 5. This can be implemented either using t OTn

1 ’s or more specific
constructions, see [16].

3.3 Choosing the Code

Let us first see how P2 can choose the coordinates of the codeword that he gets
through oblivious transfer, in order to obtain f(X,Y). Let us consider the r ×n

Towards Secure Two-Party Computation 39

Inputs:
• Sender S inputs n elements X1, . . . , Xn ∈ Fq

• Receiver R inputs t indices i1, . . . , it ∈ {1, . . . , n}
Outputs:
• S learns nothing about i1, . . . , it
• R obtains Xi1 , . . . , Xit but learns nothing about (Xi)i/∈{i1,...,it}

Fig. 5. The OTn
t functionality

matrix H that is the parity-check matrix of the code C used for coset coding, or,
equivalently, the generator matrix of its dual code C⊥. We denote by Hi the ith

row of H. Let Z be an encoding of X, i.e. such that X = H · ZT =
∑

Hizi. We
consequently have xi = Hi ·ZT and f(X,Y) =

∑
fi(Y) ·xi =

∑
fi(Y) ·Hi ·ZT =

(
∑

fi(Y) · Hi) · ZT .
Thus, P2 only needs the coordinates of Z at the positions where

∑
fi(Y) ·Hi

is nonzero, i.e. at the positions belonging to the support of V =
∑

fi(Y) · Hi.
This will ensure correctness. Let i1, . . . , it = supp(V).

Now we need to ensure privacy of P1’s data. We assume that P2 only gets
zi1 , . . . , zit . If there exists another vector W ∈ C⊥, such that V and W are
linearly independent and supp(W) ⊂ supp(V), then P2 learns at least another
bit of information (W ·ZT) about Z. To ensure P2 only learns f(X,Y), we need
to enforce that V is minimal in C⊥, i.e. that its support does not contain the
support of another linearly independent codeword W ∈ C⊥. Since we wish to
ensure a notion of completeness, i.e. to make our protocol usable with any f and
Y fitting our setting, we require every codeword of C⊥ to be minimal, i.e. we
require C⊥ to be a minimal linear code (see Sect. 4).

Now let us fix some V ∈ C⊥, let t = |supp(V)| and let us consider the
linear application φ : C⊥ → F

n−t
q ; c �→ (ci)i/∈supp(V). Due to the definition of

minimality, only the λV ’s, for λ ∈ Fq, have a support included in supp(V), thus
Kerφ = Fq.V and rank(φ) = dim(C⊥) − 1 = r − 1. Thus, if we let P2 learn the
t coordinates of Z corresponding to supp(V), the remaining coordinates lie in a
space of dimension r − 1 and P2 only learns one bit of information about X.

Consequently, using a minimal codeword ensures privacy of P1 against P2.

3.4 Our Protocol

We put together our studies of the last paragraphs and get the protocol described
in Fig. 6. Privacy against P2 is ensured thanks to the remarks of Sect. 3.3 and
privacy against P1 is ensured by the use of oblivious transfer, which is the only
data exchange from P2 to P1. Correctness is also discussed in Sect. 3.3.

Some details still need to be considered. The size t of supp(V) can reveal
information about Y to P1. Thus, either we need an oblivious transfer protocol
that hides from the sender the number of transferred items, or we require P2

to perform wmax − t dummy requests, where wmax is the maximal weight of a
codeword of C⊥. Since we work in the semi-honest model, this will not break

40 H. Chabanne et al.

Inputs:
• Party P1 inputs X = (x1, . . . , xr) ∈ F

r
q

• Party P2 inputs Y
• An [n, r] minimal linear code C with generator r × n matrix H. Let Hi be
the ith row of H.

• A function f such that f(X,Y) =
r∑

i=1

fi(Y) · xi, where fi(Y) ∈ Fq.

Protocol:
• P1 uniformly randomly picks an element Z = (z1, . . . , zn) ∈ F

n
q such that

X = H · ZT

• P2 computes V =
r∑

i=1

fi(Y) · Hi ∈ F
n
q

• Let (i1, . . . , it) = supp(V), P1 and P2 perform an OTn
t on Z and (i1, . . . , it).

P2 gets zi1 , . . . , zit .
• P2 outputs f(X,Y) = V̄ · Z̄, where V̄ = (vi1 , . . . , vit) and Z̄ = (zi1 , . . . , zit)

Fig. 6. Our protocol for Secure Two-Party Computation

the security properties (of course, a malicious (active) adversary would use real
requests instead, but that setting is out of the scope of this paper).

We would like to point out that this protocol might not only have theoretical
interest. For instance, the protocol of [4] uses coding-like techniques and oblivious
transfer only, and is one of the most efficient protocols for securely computing
functions such as Hamming distances on binary vectors, outperforming protocols
based on additively homomorphic cryptosystems or on garbled circuits. In the
case of the protocol of this paper, performance will highly rely on the rate of
the underlying code. As we explain in Sect. 4, we are lacking results in the q-ary
case.

3.5 Privacy

Theorem 2 (Privacy of our Protocol). The protocol described in Fig. 6
achieves privacy in the semi-honest setting, in the OT-hybrid model.

Proof. As explained before, we prove privacy by simulating the view of party Pi

during an execution of the protocol, given the input and output of Pi only.
Since P1 only receives oblivious transfer requests, we are guaranteed by the

OT-hybrid model that the protocol is private against P1.
Now we study the case of a corrupted P2. We are given the input Y of P2

and the output out computed by P2 at the end of the protocol. We simulate the
view of P2 as follows:

– We compute V =
r∑

i=1

fi(Y) · Hi ∈ F
n
q as in Fig. 6.

– We answer to P2’s OT requests with Z̃ = z̃i1 , . . . , z̃it , uniformly randomly
among all t-tuples such that

∑

i=i1,...,it

zi·vi = out. (For instance, take z̃i1 , . . . , z̃it−1

Towards Secure Two-Party Computation 41

uniformly randomly from F
t−1
q and compute z̃it = v−1

it
(out − ∑

i=i1,...,it−1

z̃i · vi).
Note that vit is invertible because it ∈ supp(V)).

Thus, the result of P2 is indeed out. It remains to prove that the view of P2

during the simulation and during a real execution of the protocol are indistin-
guishable. Therefore, we prove that, if V is minimal, all the t-tuples Z̃ satisfying
the output condition appear the same number of times in the possible random
coset encodings of any X such that f(X,Y) = out.

To see this, let us consider the dual [n, n− r] code C⊥ of C. The encoding of
the input X of P1 is chosen uniformly in z +C⊥, where z is such that H ·z = X.
We consider the linear application φV : C⊥ → F

t−1
q ; c �→ ci1 , . . . , cit−1 . If φV is

not of full rank, then there exists (λ1, . . . , λt−1) ∈ F
t−1
q \{0t−1} such that, for

all c ∈ C⊥,
t−1∑

j=1

λjcij = 0, thus we define a nonzero codeword with a support

strictly included in the support of V , which contradicts the minimality of V .
Consequently, φV has full rank and all possible t − 1-tuples appear at positions
supp(V)\{it} in the codewords of C⊥, and they do so the same number of times,
thanks to linearity. By translation, they also appear (the same number of times)
in all possible encodings of a given input X of P1. Then, z̃it is fully determined
by the output condition. This uniform repartition confirms that the view of P2

in our simulation is indistinguishable from his view in a real execution of the
protocol and our protocol achieves privacy. �	

3.6 Examples

We consider as an illustration the secure evaluation of scalar product over F
r
q,

i.e. f(X,Y) =
r∑

i=1

xi · yi. One can deduce how to proceed for any function

encompassed by our protocol, by replacing yi by fi(Y).

Simplex and Hamming Codes. One can easily be convinced that one-weight
codes are minimal, in the binary or the q-ary case. Indeed, if c and c′ are two
nonzero codewords of a one-weight code C such that supp(c) ⊂ supp(c′), then
supp(c) = supp(c′), by cardinality. Consider i ∈ supp(c) and define λi = ci/c′

i,
then c−λic

′ is a codeword of C, with support � supp(c). Since C is one-weight,
c − λic

′ = 0 then c and c′ are linearly dependent. Thus, C is minimal. Since
we use linear codes, one-weight codes are simplex codes (or equivalent), duals of
Hamming codes [2]. Let q = 2, r = 3, n = 7. The 3×7 matrix H can for example
be written as follows:

H =

⎛

⎝
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠

Let X = (101) and Y = (110). P1 can for instance encode X with Z =
(0000100). Y computes V = H1 + H2 = (0111100) and requests, using oblivious

42 H. Chabanne et al.

transfers, the bits z2, z3, z4, z5. P2 thus gets Z̄ = (0001). By dot-product with
V̄ , P2 gets the result f(X,Y) =

∑
xi · yi = 1.

Notice that, since the code is one-weight, P2 always requests 4 bits, we thus do
not need to hide the number of requested bits. Unfortunately, this nice property is
only enjoyed by simplex codes, that have a very bad rate, n growing exponentially
with r, the rates being even worse in the q-ary case.

A More Efficient Binary Example. In the binary case, we can easily obtain
minimal codes with better rates than simplex codes (see Sect. 4). For instance,
let r = 4, we can have n = 9 (optimal [21]), for instance using

H =

⎛

⎜
⎜
⎝

1 0 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1

⎞

⎟
⎟
⎠

Using this code, P2 will request either 4 or 6 coordinates of Z, to obtain
f(X,Y), depending on Y . For instance if Y = (1000) or Y = (0011), P2 will
only request 4 coordinates, but if Y = (0110), P2 will need 6 coordinates.

Comparison to Yao’s Protocol. Let us consider secure evaluation of scalar
product over F

r
2 using Yao’s protocol [14,20,25]. The binary circuit contains r

AND gates, we do not count XOR gates (see [20] and references therein for
known optimizations on garbled circuits). Let k be a security parameter (e.g. 80
or 128). Party P1 has to compute r garbled gates (4r hash function evaluations).
Party P2 has to evaluate r garbled gates (r hash function evaluations). They
perform k OT 2

1 ’s on k-bit inputs (P2’s input wire labels). Furthermore, P1 also
needs to send r k-bit keys (P1’s input wire labels) and r garbled gates (3rk
bits).

Now let us consider our protocol using an [n, r] minimal code with maximum
codeword Hamming weight equal to wmax. Our protocol requires linear algebra
operations and a OTn

wmax
, with 1-bit inputs. For instance, the OTn

wmax
operation

can be realized using wmaxOTn−wmax+1
1 , still with 1-bit inputs, but there might

be more efficient procedures. Using for instance the construction of [8] to build
minimal binary codes, one can have n ≈ 6.4r, for any r. This comparison in the
binary case is summed up in Table 1.

4 Intersecting Codes and Minimal Codes

In our protocol, we need linear codes where all codewords are minimal. Let
C be a linear code of length n. A codeword c is said to be minimal if ∀c′ ∈
C, (supp(c′) ⊂ supp(c)) =⇒ (c and c′ are linearly dependent). We say that a
linear code C is minimal if every nonzero codeword of C is minimal. This notion
is closely related to the notion of intersecting codes [6]. The notions are identical
in the binary case but no more in the q-ary case (a minimal code is intersecting,

Towards Secure Two-Party Computation 43

Table 1. Comparison with Yao’s protocol, in the binary case

Protocol OT (computation Add. data Add. computation Add. computation

+data exchanges) exchanges (P1) (P2)

Yao r × OT 2
1 4rk bits 4r hash function r hash function

(k-bit inputs) evaluations evaluations

Our protocol 1 × OTn
wmax

∅ Linear algebra Linear algebra

(1-bit inputs)

but the inverse is not always true). We recall that an intersecting code C is such
that for all nonzero c, c′ ∈ C, supp(c) ∩ supp(c′) �= ∅.

Interestingly, use of intersecting codes or minimal codewords has been sug-
gested for oblivious transfer [3] and for secret sharing [1,10,22], which is a tool
widely used for Secure Multi-Party Computation [9].

A very recent work [5] deepens our study on minimal linear codes.

4.1 The Binary Case

Due to the coincidence with the notion of intersecting codes, binary minimal
codes have received a lot of attention [3,6,8,11,21]. For instance, [6] gives def-
initions, some generic constructions and non-constructive bounds on rates; [21]
gives explicit constructions for small dimensions and summarizes bounds on min-
imum distance; [8] gives an explicit constructive sequence of intersecting codes
with high rate, and so on. We do not here detail these results. We only sum up
what is important for us: there exist explicit constructions of minimal binary
linear codes with good rates. Thus, our protocol of Sect. 3 can be constructed in
the binary case using codewords whose size grows linearly with the size of the
inputs.

4.2 The q-Ary Case

Finding minimal q-ary codes has received little attention [10,13,22] in the domain
of secret sharing. Reference [22] details some properties of minimal linear codes,
in particular some sufficient conditions for a code to be minimal are given. Refer-
ences [10,22] exhibit constructions of minimal codes using irreducible cyclic codes,
which unfortunately do not achieve good rates. As said before, simplex codes are
minimal, they however suffer from a very bad rate. Indeed, a simplex code of
dimension k has length (qk − 1)/(q − 1). This gives us an existential and con-
structive result about q-ary minimal linear codes, but we still need better rates.

We exhibit two bounds on the rates of minimal codes.

Theorem 3 (Maximal Bound). Let C a minimal linear [n, k, d] q-ary code,
then R ≤ logq(2).

44 H. Chabanne et al.

Proof. This bound is even true for non-linear minimal codes. Let us consider the
family F of the supports of the vectors of C. Due to the definition of minimal
codes, this is a Sperner family. It is known that |F | ≤ (

n
n/2

)
. Thus, |C| = qk ≤

1 + (q − 1)
(

n
n/2

)
then R = k/n ≤ logq(2). �	

Theorem 4 (Minimal Bound). For any R, 0 ≤ R = k/n ≤ 1
2 logq(

q2

q2−q+1),
there exists an infinite sequence of [n, k] minimal linear codes.

Proof. The proof is similar to the one of [6] in the binary case. Let us fix n and
k. For a ∈ F

n
q , such that |supp(a)| = i, there are qi − q linearly independent

vectors b such that supp(b) ⊂ supp(a). The pair (a, b) belongs to
[
n − 2
k − 2

]
linear

[n, k] codes, where
[
x
k

]
denotes the q-ary Gaussian binomial coefficient.

There are less than
n∑

i=0

(
n
i

)
(q−1)i(qi−q) = (1+(q−1)q)n−qn+1 ≤ (q2−q+1)n

such ordered “bad” (a, b) pairs. At least
[
n
k

]
−

[
n − 2
k − 2

]
(q2 − q + 1)n linear [n, k]

codes thus contain no “bad” pairs, i.e. are minimal. For k/n ≤ 1
2 logq(

q2

q2−q+1),
this quantity is positive. �	

Notice that the minimal bound exposed in Theorem 4 meets the 1
2 log2(

4
3)

bound in the binary case exhibited in [6]. We can however not use the same
techniques as in the binary case (e.g. [6,8]) to obtain explicit constructions with
high rates, which remains an open issue.

5 Conclusion

We present a theoretical protocol for performing secure two-party computation
of linear functions based on linear codes and oblivious transfer only, using a
parallel with the Wire-Tap Channel II model. Due to the efficiency of linear
algebra and current constructions of oblivious transfer, this could be a basis for
efficient protocols for secure evaluation of some classes of functions.

Several leads for future research are:

• Constructions of good q-ary minimal linear codes;
• Other encoding techniques than linear coset coding;
• Techniques to encompass secure computation of non-linear functions;
• Techniques to deal with malicious adversaries.

Acknowledgements. This work has been partially funded by the ANR SecuLar
project.

Towards Secure Two-Party Computation 45

References

1. Ashikhmin, A.E., Barg, A.: Minimal vectors in linear codes. IEEE Trans. Inf.
Theory 44(5), 2010–2017 (1998)

2. Bonisoli, A.: Every equidistant linear code is a sequence of dual hamming codes.
Ars Comb. 18, 181–186 (1984)

3. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IEEE Trans. Inf. Theory 42(6), 1769–1780 (1996)

4. Bringer, J., Chabanne, H., Patey, A.: SHADE: Secure HAmming DistancE com-
putation from oblivious transfer. In: Workshop on Applied Homomorphic Cryp-
tography (WAHC) (2013)

5. Cohen, G.D., Mesnager, S., Patey, A.: On minimal and quasi-minimal linear codes.
In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 85–98. Springer, Heidelberg
(2013)

6. Cohen, G.D., Lempel, A.: Linear intersecting codes. Discret. Math. 56(1), 35–43
(1985)

7. Cohen, G.D., Litsyn, S., Zémor, G.: Upper bounds on generalized distances. IEEE
Trans. Inf. Theory 40(6), 2090–2092 (1994)

8. Cohen, G.D., Zémor, G.: Intersecting codes and independent families. IEEE Trans.
Inf. Theory 40(6), 1872–1881 (1994)

9. Cramer, R., Damgard, I., Nielsen, J.B.: Secure multiparty computation and secret
sharing - an information theoretic approach, Book Draft (2012)

10. Ding, C., Yuan, J.: Covering and secret sharing with linear codes. In: Calude, C.S.,
Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 11–25.
Springer, Heidelberg (2003)

11. Encheva, S.B., Cohen, G.D.: Constructions of intersecting codes. IEEE Trans. Inf.
Theory 45(4), 1234–1237 (1999)

12. Goldreich, O.: The Foundations of Cryptography - vol. 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

13. Guo, Y., Li, Z., Lai, H.: A novel dynamic and verifiable secret sharing scheme
based on linear codes. J. Shaanxi Normal Univ. (Nat. Sci. Ed.), 4, 013 (2010)

14. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. Springer, Heidelberg
(2010)

15. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

16. Lipmaa, H.: Oblivious transfer or private information retrieval. http://www.cs.ut.
ee/∼lipmaa/crypto/link/protocols/oblivious.php

17. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 33–50. Springer,
Heidelberg (1985)

18. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report
TR-81, Aiken Computation Lab, Harvard University (1981)

19. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–
244. Springer, Heidelberg (2010)

20. Schneider, T.: Engineering Secure Two-Party Computation Protocols - Design,
Optimization, and Applications of Efficient Secure Function Evaluation. Springer,
Heidelberg (2012)

21. Sloane, N.J.A.: Covering arrays and intersecting codes. J. Comb. Des. 1, 51–63
(1993)

http://www.cs.ut.ee/~lipmaa/crypto/link/protocols/oblivious.php
http://www.cs.ut.ee/~lipmaa/crypto/link/protocols/oblivious.php

46 H. Chabanne et al.

22. Song, Y., Li, Z.: Secret sharing with a class of minimal linear codes. CoRR,
abs/1202.4058 (2012)

23. Wei, V.K.-W.: Generalized hamming weights for linear codes. IEEE Trans. Inf.
Theory 37(5), 1412–1418 (1991)

24. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
25. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,

pp. 162–167. IEEE Computer Society (1986)

Proxy Re-encryption

Combined Proxy Re-encryption

Sébastien Canard1(B) and Julien Devigne1,2

1 Orange Labs, Applied Crypto Group, Caen, France
sebastien.canard@orange.com

2 UCBN, GREYC, Caen, France

Abstract. Among the variants of public key encryption schemes, the
proxy re-encryption primitive (PRE) allows a user, say Alice, to decide
that a delegate, say Bob, will be able to read her private messages. This
is made possible thanks to a third party, the proxy, which is given a
re-encryption key to transform a ciphertext intended to Alice into one
intended to Bob. Different properties on PRE schemes exist. Some of
them are unidirectional and allow the proxy to translate a ciphertext
only from Alice to Bob. The other case is called bidirectional and permits
the proxy, with only one re-encryption key, to translate from Alice to Bob
but also from Bob to Alice. Most of the time, a bidirectional scheme is
multi-hop, meaning that a ciphertext can be forwarded several times, and
a unidirectional scheme is single-hop, meaning that a ciphertext can be
transformed just once. We here investigate the way to design a combined
(single/multi hop) PRE scheme which permits both unidirectional single-
hop and bidirectional multi-hop. We formalize this concept, give several
generic results and finally propose a practical construction. We argue
that this case is very interesting in practice to the design of a secure
and privacy-preserving cloud storage system, such as defined by Ateniese
et al. in 2006, and particularly when the device of a user is lost.

Keywords: Proxy re-encryption · Uni and bidirectional · Cloud storage

1 Introduction

Cloud storage. With the advent of cloud computing and mobile devices, it
is very functional to use the cloud to run all applications which can be used
in any user’s devices, as users want to have their favorite applications available
anywhere at anytime and not only from their home computer. The problem is
that some applications need user’s data to be run. There are then two possible
solutions. In the first one, each user needs to have all of his data with him at
every time, which might not be practical, even if a lot of progress has already
been done in storage devices. The other way is to consider that users/devices
are in constant connection with the Internet via all wireless networks and to
store all data on a dedicated server: we then talk of cloud storage. Cloud storage
is a secure storage system which stores users’ data in a “secure way”, with as
purpose those users to be able to access their data anywhere, at anytime, from
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 49–66, 2014.
DOI: 10.1007/978-3-319-12160-4 4

50 S. Canard and J. Devigne

any authorized devices, and only them. The most interesting case is when the
cloud storage is dynamic since it permits to control the access to the data by
adding/deleting devices/users. The idea behind cloud storage is that data are
stored as if they were in a safe, where the cloud storage plays the role of an access
control to this safe. In reality, the data are encrypted and, most of the time, the
cloud server has the decryption key and manages the rights to each user to
access or not the data. In [2], Ateniese et al. have proposed a privacy-preserving
architecture for distributed storage which makes use of a so-called PRE scheme.
A similar system has then been proposed in the case of cloud storage in [12].
With such a system, where the cloud plays the role of the proxy, the access to a
plaintext is only permitted to authorized users, while the cloud cannot derive the
plaintext from the stored ciphertext. A data can e.g. be stored on a dedicated
cloud storage using Alice’s public key. If Bob can access this document, the
proxy/cloud makes use of a re-encryption from Alice to Bob. Similarly, if Alice
owns several devices, one document encrypted with the key on one of them can
be re-encrypted for another one (without needing them to share the same secret
decryption key).

Proxy re-encryption schemes. Proxy re-encryption (PRE) [3] allows a user
to delegate its decryption capability in case of unavailability. To do so, this
user, Alice, computes a re-encryption key RA→B which is given to a proxy.
RA→B allows the proxy to transform a ciphertext intended to Alice into one
intended to Bob. While doing this, the proxy cannot learn any information
on the plaintexts nor any secret key. The cloud storage system of Ateniese
et al. [2] makes use of a unidirectional and single-hop scheme, which means
(1) that with a re-encryption key RA→B, a proxy cannot translate Bob’s cipher-
texts into ciphertexts intended to Alice and (2) that once a message has been
moved into a ciphertext intended to Bob, no more transformation on the new
ciphertext intended to Bob is possible. It also exists in the literature several
PRE schemes which are bidirectional, meaning that they allow a symmetrical
transformation, and multi-hop, meaning that several “consecutive” translations
of ciphertexts are possible.

Related work. Numerous papers on PRE schemes exist. Some of them are
unidirectional and single-hop [1,2,4,6,9,11,13] (UPRE for short) and some oth-
ers are bidirectional and multi-hop [3,5,10] (BPRE for short). Thus, even if this
is theoretically possible, both couples (unidirectional, single-hop) and (bidirec-
tional, multi-hop) seem to be indissociable in practical constructions. This can
be partially explained by the way re-encryption keys are computed. Indeed, a
bidirectional re-encryption key from Alice to Bob is a link between their secret
keys. The bidirectional re-encryption process works as if it is possible to replace
in the ciphertext each occurrence of Alice’s secret key with an occurrence of
Bob’s secret key, such that the re-encrypted ciphertext has always the same
form than the first one and can be re-encrypted again: a BPRE is most of the
time multi-hop. Regarding UPRE, the re-encryption key from Alice to Bob is a
link between Alice’s secret key and Bob’s public key and does not allow replac-
ing occurrences of Alice’s secret key in a ciphertext with occurrences of Bob’s

Combined Proxy Re-encryption 51

secret key without modifying the form of the ciphertext. A re-encrypted cipher-
text does not have the same form than a non-re-encrypted ciphertext and can
thus not be re-encrypted with the same process: a UPRE is most of the time
single-hop. Yet, in [8], Weng et al. propose a secure bidirectional single-hop PRE.
But, as far as we know, the other possibility – design of a secure unidirectional
multi-hop PRE – does not exist in practice, while corresponding to our need.

A matter of trust. In fact, using a bidirectional (and thus most of the time
multi-hop) PRE in the case of cloud storage is not really a good thing regarding
security. In fact, in the above example, Alice trusts Bob so that this latter can
access Alice’s confidential documents, but this does not necessarily mean that
Bob trusts Alice. Similarly, if Alice trusts Bob and Bob trusts Carol, it does
not necessarily mean that Alice trusts Carol: trust is thus not transitive and a
multi-hop scheme is not necessarily a good choice for such system.

However, in some cases, a multi-hop (and thus most of the time bidirectional)
scheme can be really useful, and in particular when e.g. Alice loses one of her
device: the corresponding decryption secret key is compromised and cannot be
used anymore. Thus, if a data is encrypted with the corresponding public key,
this can be a problem1. But the power of a PRE scheme (even unidirectional)
is such that the proxy can re-encrypt the ciphertext – and then delete the old
one – so that another key can be used to decrypt the ciphertext. However, the
result could not be re-encrypted anymore if a single-hop PRE scheme is used.
One possibility consists in asking the owner of the secret key related to the
new encrypting public key to decrypt and then encrypt again the data, which
leads to a very unpractical system. The second possibility is to make use of a
bidirectional multi-hop scheme but this implies the above problem regarding
trust between people. Another solution one can see is to use a unidirectional
multi-hop PRE scheme but, as said above, no practical construction exists in
the literature. Finally, one may think about a simple combination of a UPRE
and a BPRE but this implies to multiply the number of ciphertext, one for each
type of PRE.

Combined PRE. In this paper, we investigate a new approach which consists
in designing a combined (single/multi hop) scheme which can be either unidirec-
tional and single-hop or bidirectional and multi-hop (see Fig. 1). If Alice owns
several different devices, the trust she has in all her devices is similar and thus,
we can use a bidirectional and multi-hop PRE. Regarding one Alice’s device
and one Bob’s device, there is (a priori) no mutual and transitive trust and we
use a unidirectional and single-hop PRE. We thus introduce the new notion of
combined PRE. In the following, we formally introduce the concept in Sect. 2
and then give in Sect. 3 several generic results. We finally propose in Sect. 4 a
practical Combined-PRE scheme which can directly be implemented to manage
1 In fact, in [2], the system makes use of a single public key for the encryption, and

the corresponding secret key is only used to compute re-encryption keys. But if the
device containing this secret key is lost, the problem is similar.

52 S. Canard and J. Devigne

Ci

C′

Ck

C′

2

1

Cj

C′

2

1

m

m

2

1

Fig. 1. General scheme for combined PRE

the lost of devices in a privacy-preserving cloud storage system. Some details on
such system are given in Sect. 5.

2 Combined Proxy Re-encryption

In this section, we formally introduce the concept of combined proxy re-encryption
schemes by giving the different procedures and the expected security properties.

2.1 Syntactic Definition

Definition 1 (Combined-PRE). Let κ be an integer. A Combined Proxy
Re-Encryption scheme consists of the twelve algorithms defined as follows.

– Setup(κ) → P: this setup algorithm takes a security parameter κ as input and
produces a set of public parameters P shared by all parties.

– KeyGen(P) → (sk, pk): this algorithm, executed by each user, whose input is
P, outputs a pair of secret and public keys (sk, pk).

– Uni.ReKG(P, ski, pki) → Ri→i: given the public parameters, the secret key of
the user i, the public key of the user i, this algorithm produces a unidirec-
tional re-encryption key Ri→i which allows to transform second level cipher-
texts intended to i into first level ciphertexts for i.

– Bi.ReKG1(P, ski, skj) → Ri↔j,1 (resp. Bi.ReKG2(P, ski, skj) → Ri↔j,2): given
P, the secret key of the user i (resp i), the secret key of the user j (resp. j),
this algorithm produces a re-encryption key Ri↔j,1 (resp. Ri↔j,2) which allows
to transform first (resp. second) level ciphertexts intended to i (resp. i) into
first level ciphertexts for j (resp. j), and inversely.

– Enc1(P, pk,m) → C ′ (resp. Enc2(P, pk,m) → C): this first (resp. second)
level encryption algorithm takes as inputs P, a public key and a message.
It outputs a first (resp. second) level ciphertext C ′ (resp. C) that cannot be
unidirectionally re-encrypted.

– Uni.ReEnc(P, Ri→i, Ci) → C ′
i /⊥: this algorithm takes as inputs P, a re-encryption

key Ri→i and a level 2 ciphertext intended to user i. The output is a level 1
ciphertext C ′

i re-encrypted for user i or an invalid message ⊥.

Combined Proxy Re-encryption 53

– Bi.ReEnc1(P, Ri↔j,1, C
′
i) → C ′

j /⊥ (resp. Bi.ReEnc2(P, Ri↔j,2, Ci) → Cj/⊥):
this algorithm takes as inputs P, a re-encryption key Ri↔j,1 (resp. Ri↔j,2)
and a first (resp. second) level ciphertext intended to user i (resp. i). The
output is a first (resp. second) level ciphertext C ′

j (resp. Cj) re-encrypted for
user j (resp. j) or an invalid message ⊥.

– Dec1(P, sk, C) → m/⊥ (resp. Dec2(P, sk, C) → m/⊥): this first (resp. sec-
ond) level decryption algorithm takes as inputs P, a secret key and a first
(resp. second) level ciphertext and outputs a plaintext m or an error ⊥.

2.2 Security

A Combined-PRE is considered as RCCA secure (for Replayable CCA as defined
in [5]) if it verifies the IND-RCCA security of Enc1, Enc2 and Uni.ReEnc.

Oracles and notation. In the following experiments, we have neglected all
public parameters P on inputs to the algorithms for simplicity.

In the following, each experiment begins with the execution of PGen which
works as follows. It first executes P ← Setup(κ) and then, for all i ∈ [1, n], where
n is a parameter of the experiment, (ski, pki) ← KeyGen(P). The variable PK
then contains the set {pki}i=1..n of all user public key, while the corresponding
secret keys are kept secret by oracles. The procedure PGen then outputs PP =
(P,PK). All oracles used in our security model are defined as follows:

– OSecKey: when queried on pk, OSecKey answers with sk the secret key asso-
ciated to pk. The key pk becomes corrupted.

– OUni.ReKG: when queried on (pki, pki) for a unidirectional re-encryption key
from user i to user i, OUni.ReKG answers with Ri→i ← Uni.ReKG(ski, pki).

– OBi.ReKG1: when queried on (pki, pkj) for a bidirectional re-encryption key for
first level from user i to user j, OBi.ReKG1 answers with Ri↔j,1 ← Bi.ReKG1

(ski, skj). In all the experiments, re-encryption key generation queries between
a corrupted key and an uncorrupted key are not allowed, which is classical for
BPRE schemes.

– OBi.ReKG2: when queried on (pki, pkj) for a bidirectional re-encryption key
for second level from user i to user j, OBi.ReKG2 answers with Ri↔j,2 ←
Bi.ReKG2(ski, skj). Re-encryption key generation queries between a corrupted
key and an uncorrupted key are not allowed in all the experiments.

– ODec1 (resp. ODec2): when queried on (pk,C ′) (resp. (pk,C)), a first level
ciphertext C ′ (resp. second level ciphertext C) intended to pk ∈ PK, this
oracle answers with m ← Dec1(sk, C ′) (resp. m ← Dec2(sk, C)).

– OUni.ReEnc: on input (pki, pki, Ci) where Ci is a second level ciphertext
intended to pki, this oracle answers with C ′

i ← Uni.ReEnc(Ri→i, Ci).
– OBi.ReEnc1: on input (pki, pkj, C

′
i) where C ′

i is a first level ciphertext intended
to pki, this oracle answers with C ′

j ← Bi.ReEnc1(Ri↔j,1, C
′
i).

– OBi.ReEnc2: on input (pki, pkj , Ci) where Ci is a second level ciphertext
intended to pki, this oracle answers with Cj ← Bi.ReEnc2(Ri↔j,2, Ci).

54 S. Canard and J. Devigne

An adversary is then divided into two different phases. During the choose
phase, denoted Af , the adversary has access to a subset O of the above oracles
defined by the experiment. During the guess phase, denoted Ag, the adversary
has access to the same oracles but with some restrictions that are given by the
experiment. During this phase, the set of oracles is denoted Õ. These restrictions
are related to both the impossibility for the adversary to decrypt itself the chal-
lenge ciphertext and the impossibility to ask for a decryption of the challenge
ciphertext. We now distinguish the three above cases.

Security related to Enc1. We define the IND-RCCA of Enc1 for a Combined-
PRE by describing a two-stage adversary A = (Af ,Ag) having access to different
oracles O1 = {ODec1, ODec2, OUni.ReKG, OBi.ReKG1, OBi.ReKG2, OBi.ReEnc1,
OBi.ReEnc2, OSecKey}. The condition cond1 in this experiment states that the
key pki�

should be a key of an uncorrupted user (meaning that pki�
has not been

queried on input of OSecKey). Figure 2 (left part) gives the formal description
of the related experiment. The restrictions regarding Õ1 are as follows.

– Ag should not query pki�
to OSecKey.

– There should not exist a path of re-encryption keys coming from OBi.ReKG1

from pki�
to a corrupted pk∗. It implies restrictions regarding both theOSecKey

and the OBi.ReKG1 oracles.
– Ag should not query a decryption of the challenge ciphertext C ′

� using ODec1.2

– Ag is not allowed to query to ODec1 a ciphertext C ′ for an honest entity –
with associated secret key sk – such that Dec1(sk,C′) ∈ {m0,m1}

Definition 2 (IND-RCCA security of Enc1). Let κ and n be integers. Let A =
(Af ,Ag) be an adversary against the IND-RCCA of Enc1. Let Advind-rccaEnc1,A (κ, n) :=
2·Pr

[
Expind-rccaEnc1,A (κ, n) → true

]−1, with Expind-rccaEnc1,A as defined in Fig. 2. We say that
PRE has IND-RCCA security of Enc1 if for every p.p.t. adversary A = (Af ,Ag),
the advantage Advind-rccaEnc1,A (κ, n) is negligible in κ.

Enc1,A (κ, n) δ
$←− {0, 1}

PP ← (κ, n)
(m0, m1, {pki } =1..�, st) ← AO1

f (PP)
cond1 ⊥

C′
1 ← Enc1(pki1 , mδ)

∀ ∈ [2, �] C′ ← Bi.ReEnc1(R −1↔ ,1, C
′
−1)

δ′ ← A ˜O1
g (st, C′

�)
(δ′ = δ)

Enc2,A (κ, n)

PP ← (κ, n) δ
$←− {0, 1}

(m0, m1, {pkij }j=1..�, st) ← AO2
f (PP)

cond2 ⊥
C1 ← Enc2(pki1 , mδ)
∀j ∈ [2, �] Cj ← Bi.ReEnc2(Rij−1↔ij ,2, Cj−1)

δ′ ← A ˜O2
g (st, C�)
(δ′ = δ)

Fig. 2. IND-RCCA for Enc1 and Enc2

2 This restriction can be incorporated into the next one, but we prefer to keep this
separation as this first restriction is inherent for all CCA proxy re-encryption schemes
whereas the next one is inherent only for RCCA ones.

Combined Proxy Re-encryption 55

Security related to Enc2. We define the IND-RCCA of Enc2 for a Combined-
PRE scheme by describing a two-stage adversary A = (Af ,Ag) having access
to different oracles O2 = {ODec1, ODec2, OUni.ReKG, OBi.ReKG1, OBi.ReKG2,
OUni.ReEnc, OBi.ReEnc1, OBi.ReEnc2, OSecKey}. The condition cond2 in this
experiment states that the key pki�

should be a key of an uncorrupted user
(meaning that pki�

has not been queried on input of OSecKey). Figure 2 (right
part) gives the related experiment. The restrictions regarding Õ2 are as follows.

– Ag should not query pki�
to OSecKey.

– There should not exist a path of re-encryption keys coming from OBi.ReKG2,
OBi.ReKG1 and/or OUni.ReKG from pki�

to a corrupted pk∗. It implies restric-
tions on the OSecKey, OBi.ReKg2, OBi.ReKG1 and OUni.ReKG oracles.

– Ag should not query a decryption of the challenge ciphertext C� using ODec2.
– Ag is not allowed to query to ODec1 a ciphertext C ′ for an honest entity –

with associated secret key sk – such that Dec1(sk,C′) ∈ {m0,m1}
Definition 3 (IND-RCCA security of Enc2). Let κ and n be integers. Let A =
(Af ,Ag) be an adversary against the IND-RCCA of Enc2. Let Advind-rccaEnc2,A (κ, n) :=
2·Pr

[
Expind-rccaEnc2,A (κ, n) → true

]−1, with Expind-rccaEnc2,A as defined in Fig. 2. We say that
PRE has IND-RCCA security of Enc2 if for every p.p.t. adversary A = (Af ,Ag),
the advantage Advind-rccaEnc2,A (κ, n) is negligible in κ.

Security related toReEnc. We define the IND-RCCA ofReEnc for a Combined-
PRE scheme by describing a two-stage adversary A = (Af ,Ag) having access
to different oracles OR = {ODec1, ODec2, OUni.ReKG, OBi.ReKG1, OBi.ReKG2,
OSecKey}. The condition condR states that the key pki�+�′+1

should be a key of
an uncorrupted user (meaning that pki�+�′+1

has not been queried on input of
OSecKey). Figure 3 gives the related experiment. The restrictions regarding the
restricted version ÕR are here similar to the case of the IND-RCCA security
of Enc1.

Definition 4 (IND-RCCA security of ReEnc). Let κ and n be integers. Let A =
(Af ,Ag) be an adversary against the IND-RCCA of ReEnc. Let Advind-rccaReEnc,A(κ, n) :=
2·Pr

[
Expind-rccaReEnc,A(κ, n) → true

]−1, with Expind-rccaReEnc,A as defined in Fig. 3. We say that
PRE has IND-RCCA security of ReEnc if for every p.p.t. adversary A = (Af ,Ag),
the advantage Advind-rccaReEnc,A(κ, n) is negligible in κ.

3 Generic Results on Combined-PRE

In this section, we show the link between CPRE and other existing concepts.
The definition of a bidirectional PRE is given in AppendixB.

56 S. Canard and J. Devigne

PRE.ReEncrypt,A(κ, n)

PP ← (κ, n) δ
$←− {0, 1}

(m0, m1, �, �
′, {pkij }j=1..�+�′+1, st) ← AOR

f (PP)
condR ⊥

C1 ← Enc2(pki1 , mδ)
∀j ∈ [2, �] Cj ← Bi.ReEnc2(Rij−1↔ij ,2, Cj−1)
C′

�+1 ← Uni.ReEnc(rki�→i�+1 , C�)
∀j ∈ [� + 2, � + �′ + 1] C′

j ← Bi.ReEnc1(Rij−1↔ij ,1, C
′
j−1)

δ′ ← A ˜OR
g (st, C′

�+�′+1)
(δ′ = δ)

Fig. 3. IND-RCCA for ReEnc

3.1 Combined-PRE =⇒ BPRE + UPRE

The following states that the existence of a secure Combined-PRE necessarily
implies the existence of both a secure UPRE and two (possibly similar) secure
BPRE. Let C = {Setup, KeyGen, Uni.ReKG, Bi.ReKG1, Bi.ReKG2, Enc1, Enc2,
Uni.ReEnc, Bi.ReEnc1, Bi.ReEnc2, Dec1, Dec2} be a secure Combined-PRE as
defined by Definition 1.

We first define the single-hop unidirectional PRE U = {Setup, KeyGen,
Uni.ReKG, Enc1, Enc2, Uni.ReEnc, Dec1, Dec2}.

We then define two different multi-hop bidirectional PRE as B1 = {Setup,
KeyGen, Bi.ReKG1, Enc1, Bi.ReEnc1, Dec1} and B2 = {Setup, KeyGen, Bi.ReKG2,
Enc2, Bi.ReEnc2, Dec2}. We obtain the following result (the proof is given in
AppendixA).

Lemma 1. If C is a secure combined Combined-PRE scheme, then U is a secure
unidirectional PRE and both B1 and B2 are secure bidirectional PRE.

3.2 BPRE + encrypted token =⇒ Combined-PRE

We present here a generic construction of a Combined-PRE from a BPRE. In
fact, we need three BPRE that can be three different instantiations of the same
BPRE, under some restrictions given below3.

The main point to create a Combined-PRE is that we need two BPRE
and one UPRE such that the message and key spaces and the different pro-
cedures are compatible one with each other. Our idea is then to use only BPRE
and to construct the UPRE from it. For this purpose, we generalize an idea
given by Chow et al. [6] and refined in [4]. Thus, for each delegate, a random
token is chosen by the delegator during the generation of the re-encryption key,
which token will play the role of the “secret key” of the delegate in the BPRE.
Then, the delegate (and only him) is allowed by the delegator to recover this

3 Using the result above, we obtain that it is possible to obtain a secure UPRE from
any secure BPRE, which is not very surprising.

Combined Proxy Re-encryption 57

token by adding to the re-encryption key an encryption of this token under the
real public key of the delegate. Moreover, during the re-encryption process, the
re-encrypted ciphertext - intended now for the random token mentioned previ-
ously - is encrypted under the public key of the delegate. To obtain a bidirectional
re-encryption at first level, we then make use for both encryption - the encryp-
tion of the re-encrypted ciphertext and the encryption of the random token - of
two encryptions of BPRE to allow it to be bidirectionally re-encrypted later.

We give the formal description of the Combined-PRE scheme in AppendixB.

4 Practical Construction

We now present a practical Combined-PRE scheme, which one can be directly
used in the cloud storage context. Our construction is based on the Libert-
Vergnaud’s UPRE scheme [9] (LV for short). In fact, we show that, contrary
to what one can believe in first, this is possible to design a Combined-PRE
scheme with the same level of efficiency as a unidirectional one. We thus obtain
a much more efficient scheme than the one described in the previous section
which complexity was similar to the one of three BPRE.

4.1 General Intuition

The LV scheme works on a bilinear group, where p is a prime number, G and Gt

are two groups of prime order p and there exists a bilinear pairing e : G×G −→
GT . It mainly corresponds to an adaptation of the bilinear variant of the ElGamal
encryption scheme and the use of a one-time signature scheme S to obtain a
RCCA security (see [9] for more details).

A second level ciphertext corresponds to the tuple C1 = svk, C2 = Xr
i ,

C3 = e(g, g)r · m, C4 = (usvk · v)r and σ = S.Sign(ssk, C3‖C4) where (svk, ssk)
is a key pair for the one-time signature scheme and g, u, v are public generators of
G. A first level ciphertext4 then corresponds to C1 = svk, D2 = gt, E2 = X

1/t
i ,

F2 = grt, C3 = e(g, g)r · m, C4 = (usvk · v)r and σ = S.Sign(ssk, C3‖C4).
In particular, a secret key xi is related to a public key Xi = gxi . A re-

encryption key from i to j is obtained by computing Ri→j = X
1/xi

j = gxj/xi .
Under the discrete logarithm assumption, this is not feasible to compute the key
Rj→i from this key, and the LV scheme is clearly unidirectional. However, we
remark that the knowledge of xi/xj , and thus xj/xi for obvious reasons, permits
to compute both Ri→j and Rj→i, which is a condition to obtain a bidirectional
system, which obviously works for the second level ciphertexts. In fact, regarding
a level 1 or a level 2 ciphertext, the secret key of the user who can decrypt it only
appears with the form gxi , which makes it easy to transform to a similar form
with gxj instead, for the one who knows xj/xi. We have thus all the ingredient
to obtain our Combined-PRE scheme.
4 As explained in [9], a first level ciphertext can be publicly re-randomized and also

we use a re-randomized version of the first level encryption given in [9] for a better
understanding of our bidirectional re-encryption at first level.

58 S. Canard and J. Devigne

4.2 Our Combined PRE

Setup and key generation. We consider a (symmetric) bilinear environ-
ment which corresponds to a prime p and two groups G and Gt of prime
order p such that there exists a pairing e : G × G −→ GT . This map is
bilinear (∀g, h ∈ G and a, b ∈ Zp, e(ga, hb) = e(g, h)ab = e(gb, ha)) and non-
degenerated (∀g ∈ G \ {1}, e(g, g) �= 1T). Let g, u, v be three generators of
G and S = (KeyGen,Sign,Verif) be a strongly unforgeable one-time signa-
ture scheme such that verification keys are in Z

∗
p (see [9] for more details). The

global parameters output by Setup are P = (p,G,GT , e, g, u, v,S). Then, using

KeyGen, each user is able to generate her own private key sk as x
$← Z

∗
p and the

corresponding public key pk as X = gx.
As said above, the unidirectional re-encryption key Ri→i (using Uni.ReKG) is

computed as Ri→i = X
1/xi

i . Then, both bidirectional re-encryption keys (coming
from Bi.ReKG1 and Bi.ReKG2) are similar5 (and thus, R∗,1 = R∗,2 = R∗). More
precisely, the re-encryption key is computed as Ri↔j = skj/ski and we obtain
Rj↔i = 1/Ri↔j = xi/xj .

Encryption phases. The description of the (re-)encryption procedures (Enc1
and Enc2, Uni.ReEnc, Bi.ReEnc1 and Bi.ReEnc2) are all given6 in Fig. 4. We only
need to detail the validity checks which are executed as follows. For a level
1, it checks if e(Di,2, Ei,2) = e(Xi, g), if e(Fi,2, u

C1 · v) = e(Di,2, C4) and if
S.Verif(C1, σ, C3‖C4) = 1. For a level 2, it checks if e(C2, u

C1 · v) = e(Xi, C4)
and if S.Verif(C1, σ, C3‖C4) = 1. Then, regarding decryption, they both begin
by a validity check as described above. The message m is obtained by m =
C3/e(Ei,2, Fi,2)1/xi for level 1 and by m = C3/e(Ci,2, g)1/xi for level 2.

We then have Theorem 1 below (its proof is given in AppendixC), which
states that our scheme has IND-RCCA security under the 3-QDBDH assump-
tion [9] in the standard model. This assumption is a variant of the Decision
Bilinear Diffie-Hellman assumption, and can be defined as follows.

Definition 5 (modified 3-QDBDH). The modified7 3-Quotient Decision Bilin-
ear Diffie-Hellman assumption (3-QDBDH) posits the hardness of distinguishing
e(g, g)b/a2

from random, given (g, ga, ga2
, ga3

, gb).

Theorem 1. The scheme has IND-RCCA security of Enc1, Enc2 and ReEnc
under the 3-QDBDH assumption in the standard model.

5 We could consider a stronger security model where an entity could be partially
corrupted – at level 1 but not at level 2. In this case, we should consider different
secret keys for each level and each entity.

6 One can remark that when � = i, D�,2 �= Di,2, E�,2 �= Ei,2 and F�,2 �= Fi,2. In other
words, a re-encrypted level 2 ciphertext is different from a directly computed level
1 ciphertext. This specificity comes from the basic scheme from [9].

7 Equivalent to the one with e(g, g)b/a, see [9].

Combined Proxy Re-encryption 59

C1

Ci,2

C3

C4
σ

Ci

C1

Cj,2

C3

C4
σ

Cj(ssk, svk) = S. ()

r ∈ Z
∗
p

Ci,2 = Xr
i

C3 = e(g, g)r · m

C4 = (usvk · v)r

C1 = svk

m

2

σ = S. (ssk, C3‖C4)

Xi

� = j

� = i k = j

2

C�,2 = C
Rk↔�
k,2

k = i

Rk↔�

D�,2 = Xt
k

E�,2 = Rk→�
1/t

F�,2 = Ct
k,2

t ∈ Z
∗
p

k = i

� =

k = j

� =

Rk→�, Xk

� =

� = k =

1

k =

Rk↔�
C′

C1

F ,2
C3
C4
σ

C′

(ssk, svk) = S. ()

r, t ∈ Z
∗
p

D ,2 = gt

C3 = e(g, g)r · m

C4 = (usvk · v)r

σ = S. (ssk, C3‖C4)

C1 = svk

m

1

E ,2 = X
1/t

F ,2 = grt

X

E ,2

D ,2

C1

F ,2
C3
C4
σ

E ,2

D ,2D�,2 = Dk,2

E�,2 = E
Rk↔�
k,2

F�,2 = Fk,2

Fig. 4. Our construction

5 Details on the Application to Cloud Storage

We now present an example of a distributed secure storage system based on our
practical solution of Sect. 4 between two users, A which has devices A1, A2, A3

and A4 and a B which has devices B1, B2 and B3.

Keys generation. A computes some bidirectional re-encryption keys between
her devices such that all bidirectional re-encryption keys from any A’s device
to any other A’s device can be computed, for example8: RA1↔A2 , RA1↔A3 and
RA2↔A4 . The user B does the same for her devices. To finish, A computes
at least one unidirectional re-encryption key from one of her devices to one
of B’s devices, for example RA3→B2 . All re-encryption keys are given to the
proxy. With such configuration, there are enough re-encryption keys for A’s
devices. For example with RA1↔A2 and RA1↔A3 , one can compute RA2↔A3 =
RA1↔A3/RA1↔A2 . Similarly, we can easily compute all re-encryptions keys from
any A’s devices to any B’s devices. Indeed RA1↔B2 = R

RA1↔A3 .RB1↔B2
A3↔B1

.

Distributed secure storage. Suppose A wants to store a message m in
her cloud, so that B can access it. She selects one of her devices, e.g. A3, and
8 In practice, when a user adds a new device to the cloud, she computes a bidirectional

re-encryption key between her new device and one of her already existing devices.

60 S. Canard and J. Devigne

encrypts the data m under the corresponding public key (with the second level
encryption algorithm), she obtains CA3 = Enc2(m, pkA3) and sends it to the
cloud. A can recover her data from any of her devices as follows. If she wants to
recover it from her device A3, the proxy sends her CA3 and A can easily decrypt
it with the device A3. If she wants to recover it from another device, e.g. A1,
the proxy can obtain from all available bidirectional re-encryption keys, the re-
encryption key from A3 to A1. With this latter, the proxy can then compute
the ciphertext CA1 = Bi.ReEnc1(CA3 , RA3↔A1) intended to A1. A1 can finally
decrypt it, using the level 2 decryption procedure of the BPRE. Suppose that B
wants to recover the message m from any of her devices (let i ∈ [1, 4]). As already
explained, the proxy can compute the re-encryption key from A3 to Bi (related
to the UPRE): RA3→Bi

. It can also re-encrypts CA3 into a level 1 ciphertext
C ′

Bi
= Uni.ReEnc(CA3 , RA3→Bi

) intended to Bi and related to the UPRE.

Case of a lost device. Our Combined-PRE permits to easily manage the
lost of a device. If A has still at least one device, then the proxy re-encrypts
all ciphertexts intended to the lost device, say A2, into ciphertexts intended
to a remaining device of A. This is possible as the proxy can compute all re-
encryptions keys between A’s devices. Then it stores all new ciphertexts and
deletes ciphertexts intended for this lost device. Moreover, to prevent the lost
device to access to data via a re-encryption, the proxy also deletes all unidirec-
tional and bidirectional re-encryption keys involving the key of the lost device.
Before doing this, the proxy has to be careful since it is necessary for it to keep
a set of minimum re-encryption keys to recover all re-encryption keys between
remaining devices. For example if the only link to compute the re-encryption key
between A1 and A3 is RA1↔A2 and RA2↔A3 , then the proxy has first to compute
RA1↔A3 and to store it before deleting RA1↔A2 and RA2↔A3 . Otherwise, if A
has no more device, the proxy does as described previously, except that the tar-
get device is one device of B. Then, the proxy can delete all re-encryption keys
involving the lost device, as they are not useful anymore. The advantage of this
solution is that it is not necessary to ask the user to use one of his devices in
order to decrypt a ciphertext, so as to encrypt it for another key. It is however
important to motivate users to have more than one device in such system.

6 Conclusion and Acknowledgments

This paper introduces the concept of combined proxy re-encryption, which can
be very useful to secure a cloud storage service. We have also provided evidence
that our concept can be efficiently implemented and that it can directly be
embedded into existing systems.

We are grateful to Fabien Laguillaumie for helpful discussions and to anony-
mous referees for their valuable comments.

Combined Proxy Re-encryption 61

A Proof of Lemma1

We recall that Lemma 1 states that if C is a secure combined Combined-PRE
scheme, then U is a secure unidirectional PRE and both B1 and B2 are secure
BPRE.

It is obvious that if C verifies the IND-CCA security of Enc1, Enc2 and ReEnc,
then the underlying PRE scheme U (resp. B1 and B2) is also secure. An adversary
against U (resp. B1 and B2) can be used to design an adversary against C. In a
nutshell, this is done by simply forwarding the parameters, requests and answers
to oracles between the adverary against U (resp. B1 and B2) and the challenger
related to C. We have the following associations: (i) IND-CCA of U related to
Enc1 (resp. Enc2) −→ IND-CCA of C related to Enc1 (resp. Enc2) with � = 0
(resp. �′ = 0); (ii) IND-CCA of U related to ReEnc −→ IND-CCA of C related to
ReEnc with � = �′ = 0; and (iii) IND-CCA of B1 (resp. B2) −→ IND-CCA of C
related to Enc1 (resp. Enc2) with � �= 0 (resp. �′ �= 0). 	

B Generic Results on Combined-PRE

B.1 Definition of a BPRE

Definition of a BPRE. A BPRE scheme consists of the algorithms (Setup,
KeyGen, ReKeyGen, Enc, ReEnc, Decrypt) defined as in Sect. 2. The IND-RCCA
experiment is given as follows, where OB = {ODec, OReKG, OReEnc, OSecKey}
(with the “Obi” oracles as defined in Sect. 2.2) and condB states that the key
pki�

should be a key of an uncorrupted user (meaning that pki�
has not been

queried on input of OSecKey). First, execute PP ← PGen(κ, n) and states δ
$←−

{0, 1}. Then, (m0, m1, {pkij
}j=1..�, st) ← AOB

f (PP). If condB , return ⊥. Else,
C1 ← Enc(pki1 ,mδ) and ∀j ∈ [2, �], Cj ← ReEnc(Rij−1↔ij , Cj−1). Finally, we
have δ′ ← A ˜OB

g (st, C�) and the experiment returns (δ′ = δ). The version ÕB is
defined such that (i) Ag should not query pki�

to OSecKey, (ii) there is no path
of re-encryption keys coming from OReKG from pki�

to a corrupted pk∗, (iii) Ag

should not query a decryption of the challenge ciphertext C� using ODec and
(iv) Ag is not allowed to query to ODec a ciphertext C ′ for an honest entity such
that Dec(sk,C′) ∈ {m0,m1}.

B.2 BPRE + UPRE �=⇒ Combined-PRE?

We point out the reasons why the reciprocity seems to be wrong in general.
Consider a UPRE U = {Setup, KeyGen, Uni.ReKG, Enc1, Enc2, Uni.ReEnc, Dec1,
Dec2} and two BPRE B1 = {Setup, KeyGen, Bi.ReKG1, Enc1, Bi.ReEnc1, Dec1}
and B2 = {Setup, KeyGen, Bi.ReKG2, Enc2, Bi.ReEnc2, Dec2}.

It is first obvious that the combination of the three above schemes does
not necessarily give a correct Combined-PRE scheme since there may be some
non compatible transitions. More precisely, ciphertexts would not necessarily
be compatible in the sense that the ciphertext formats corresponding to the

62 S. Canard and J. Devigne

two BPRE would not be compatible to level 1 ciphertext and level 2 ciphertext
(respectively) of the UPRE.

Then, regarding security, we suppose having a black-box adversary against
the Combined-PRE and we try to use it to break e.g. the IND-CCA security of
the BPRE scheme. For this purpose, we need to simulate all the oracles of the
adversary against the Combined-PRE, including the generation of re-encryption
keys. However, in some cases (mainly the case of a re-encryption key from an
uncorrupted to a corrupted user), we will not be able to create such key that
will be coherent with the unknown keys related to the BPRE scheme (we need
for the above example the secret key of an uncorrupted user). One may think
of decreasing the power of the adversary by giving it only some “relevant” keys
instead of all possible ones (such as defined in Sect. 2). But this leads to a less
powerful adversary that will not necessarily be relevant in most practical cases.
However, we show below that it exists an alternative way to design a secure
Combined-PRE using one BPRE, but with some additional work.

B.3 BPRE + encrypted token =⇒ Combined-PRE

Our generic scheme. Let κ be a security parameter. Suppose we have three
secure BPRE schemes Bif , Bis and Bir with the following algorithms: (Setup,
KeyGen, ReKeyGen, Enc, ReEnc, Decrypt) (see Appendix B.1). We moreover ask
that (i) the space of secret key of Bis is included in the space of plaintext of Bir
and (ii) the space of ciphertext of Bis is included in the space of plaintext of Bif .

– Setup(κ): run Bif .Setup(κ), Bis.Setup(κ) and Bir.Setup(κ) to create P = (Pf ,
Ps,Pr).

– KeyGen(P): this algorithm first runs Bis.KeyGen(Ps) (for the second level
ciphertexts), then Bif .KeyGen(Pf) and finally Bir.KeyGen(Pr) to obtain the
secret key sk = (skf , sks, skr) and the public one pk = (pkf , pks, pkr).

– Uni.ReKG(P, ski, pki): on input i’s private key ski and i’s public key pki,
this algorithm generates the unidirectional re-encryption key Ri→i as fol-
lows. It creates a new virtual entity “ii” and run Bis.KeyGen(κ) to obtain
(skii, pkii) and computes Ri↔ii,s = Bis.ReKG(Ps, ski,s, skii). It runs Ri,i =
Bir.Enc(Pr, pki,r, skii) as the encryption of skii and the unidirectional
re-encryption key is Ri→i = (Ri↔ii,s, Ri,i, pki,f).

– Bi.ReKG1(P, ski, skj): on input i’s secret key ski and j’s secret key skj, this
algorithm runs Bif .ReKG(Pf , ski,f , skj,f) and Bir.ReKG(P, ski,r, skj,r) to obtain
respectively Ri↔j,f and Ri↔j,r. Then it outputs Ri↔j,1 = (Ri↔j,f , Ri↔j,r).

– Bi.ReKG2(P, ski, skj): on input i’s secret key ski and j’s secret key skj , this
algorithm runs Bis.ReKG(Ps, ski,s, skj,s) to compute and output Ri↔j,2.

– Enc1(P, pk,m): on input a user public key pk and a plaintext m belonging
to the space of plaintext of the Bif scheme, this algorithm generates a first
level ciphertext of m as follows. It creates a new virtual entity tmp and run
(sktmp, pktmp) = Bis.KeyGen(κ) and then encrypts (i) m with the virtual public
key as T = Bis.Enc(Ps, pktmp,m), (ii) the above resulting ciphertext with
the user’s public key as Bif .Enc(Pf , pkr, T) to obtain C ′

1 and (iii) the virtual

Combined Proxy Re-encryption 63

secret key as R′ = Bir.Enc(Pr, pkr, sktmp). It outputs the first level ciphertext
C ′ = (C ′

1, R
′).

– Enc2(P, pk,m): on input a user public key pk and a plaintext m belong-
ing to the space of plaintext of the Bis scheme, this algorithm simply runs
Bis.Enc(Ps, pks,m) to obtain C and outputs it as a second level ciphertext of
m intended to pk.

– Uni.ReEnc(P, Ri→i, Ci): on input a unidirectional re-encryption key Ri→i =
(Ri↔ii,s, Ri,i, pki,f) and a second level ciphertext Ci, it works as follows. It
first re-encrypts Ci to obtain a ciphertext w.r.t. Ps and the virtual public key
contained in Ri→i as T = Bis.ReEnc(Ps, Ri↔ii,s, Ci). It then encrypts T (to
obtain a security without non-natural restrictions) as for the Enc1 procedure,
as C ′

1 = Bif .Enc(Pf , pki,f , T) and retrieves the encrypted virtual secret key
from the re-encryption key (R′ = Ri,i) and output the first level ciphertext
C ′ = (C ′

1, R
′).

– Bi.ReEnc1(P, Ri↔j,1, C
′
i): on input a bidirectional re-encryption key Ri↔j,1 and

a first level ciphertext C ′
i = (C ′

i,1, R
′
i), it works as follows. It computes C ′

j,1 =
Bif .ReEnc(Pf , Ri↔j,f , C ′

i,1) and R′
j = Bir.ReEnc(Pr, Ri↔j,r, R

′
i) and outputs the

first level ciphertext C ′
j = (C ′

j,1, R
′
j).

– Bi.ReEnc2(P, Ri↔j,2, Ci): on input a bidirectional re-encryption key Ri↔j,2

and a second level ciphertext Ci, it executes Bis.ReEnc(Ps, Ri↔j,2, Ci) to
obtain the second level ciphertext Cj .

– Dec1(P, sk, C ′): On input P = (Pf ,Ps,Pr) and sk = (skf , sks, skr) and a
first level ciphertext C ′ = (C ′

1, R
′), it works as follows. It retrieves T =

Bif .Dec(Pf , skf , C ′
1), computes sktmp = Bir.Dec(Pr, skr, R

′) and obtains m =
Bis.Dec(Ps, sktmp, T).

– Dec2(P, sk, C): on input the user secret key sk and a second level ciphertext
C, this algorithm runs Bis.Dec(Ps, sks, C) to retrieve m.

Remark 1. As explained in their paper, Chow et al. [6] make use, for the secret
key of the second level encryption, of a random sum of two secret keys sk1 +
H4(pk2).sk2, where H4 is a hash function. As sk1 is only used in this second
level encryption, we have decided in our generic construction to replace this sum
by a single secret key which will be used only for the second level encryption.

The two following theorems give the security of this construction.

Theorem 2. The scheme achieves the IND-RCCA security of Enc1 and
Uni.ReEnc.

Theorem 3. The scheme achieves the IND-RCCA security of Enc2.

B.4 Proof of Theorem2

In fact, a level 1 ciphertext can be seen as two ciphertexts: one related to a
random token h and the other related to the message and encrypted with the
h. Therefore both Enc1 and Uni.ReEnc securities depend on the security of those
two encryptions, which are supposed to be secure – with RCCA restrictions and
not CCA ones due to this concatenation. 	

64 S. Canard and J. Devigne

B.5 Proof of Theorem3

Let A an adversary against the Enc2 security, B the algorithm to break the
security of one of the two BPRE Bis and Bir. Due to limited space, we only give
the idea of the proof and we will provide a complete proof in the full version. Let
qsk, qu, qbf and qbs be the number of queries to the secret key generation oracle,
to the unidirectional re-encryption key generation oracle, to the bidirectional
re-encryption key for first level oracle and to the bidirectional re-encryption key
for second level oracle. We separate entities in two sets by using the Coron’s
technique [7]: for an entity, c (for an entity i, c is noted ci) is a bit set to h
with probability 1

1+qsk+qu+qbf+qbs
and to ⊥ otherwise. h is chosen to designate

entities considered as honest by B during all the simulation. Those entities are
potential challenge entities. If the adversary queries for some requests involving
such an entity - details of those queries are given in the simulation -, then B
aborts. The probability mentioned before minimizes the event “B aborts” during
different oracle’s queries. Then we separate the set of entities with ci = ⊥ into
two different sets (ci = k and ci = r) depending on different oracles’ queries.
Definition of k and r are linked and defined as follows:

– if the adversary queries for a request to obtain the secret key of an entity i,
not considered as honest by B and such that the adversary has not already
obtained a unidirectional re-encryption key from an honest entity i to this
entity i, then B returns the secret key and sets ci to k. k is helpful for B
to remember that i can not be involved in a unidirectional re-encryption key
from an entity i as this last one is potentially the challenge entity.

– if the adversary queries for a request to obtain the unidirectional re-encryption
key from an honest entity i to an entity i not considered as honest by B and
not already corrupted by the adversary, then B sets ci to r. r is helpful for
B to remember that i can not be corrupted as the entity i involved in this
re-encryption key is potentially the challenge entity.

The Coron’s trick and its different values h, r and k help B to manage the
adaptive corruption model. B maintains four lists: Klist, Rlist

Uni, Rlist
Bi1 and Rlist

Bi2

which are initially set as empty and which will store respectively public/secret
keys, unidirectional and (level 1 and 2) bidirectional re-encryption keys. The
oracle are defined as follows.

– KeyGen(κ): if c = h, then B queries for OBis.Keygen(κ) for an honest entity
and obtains pks. It runs Bif .KeyGen(κ) and Bir.KeyGen(κ) to obtain (skf , pkf)
and (skr, pkr). Then it defines pk = (pkf , pks, pkr) and sk = (skf ,⊥, skr) and
adds (pk, sk, c) to Klist. If c = ⊥, B queries for OBis.Keygen(κ) for a cor-
rupted entity and obtains (sks, pks). It runs Bif .KeyGen(κ) and Bir.KeyGen(κ)
to obtain (skf , pkf) and (skr, pkr). Then it defines pk = (pkf , pks, pkr) and
sk = (skf , sks, skr) and adds (pk, sk, c) to Klist.

– OSecKey(pk): B recovers (pk, sk, c) from Klist. If c = h or r, B aborts. If c = ⊥,
it returns sk to A, redefines c = k and updates it in Klist.

Combined Proxy Re-encryption 65

– OUni.ReKG(pki, pki): recover both entries (pki, ski, ci) and (pki, ski, ci) from
Klist. Then B proceeds as follows. If ci = h and ci = ⊥, it redefines ci = r
and updates it in Klist. Create a new virtual entity ii and run Bis.KeyGen(κ)
to obtain pkii, query OBis.ReKeygen(pki,s, pkii) to obtain Ri↔ii,s. Create a
new virtual entity ii′ and run Bis.KeyGen(κ) to obtain (skii′ , pkii′) and run
Ri,i = Bir.Enc(skii′ , pki,r). Return the unidirectional re-encryption key Ri→i =
(Ri↔ii,s,
Ri,i). B adds the tuple (pki, pki, pkii, skii′ ,⊥, Ri↔ii,s, Ri,i) to Rlist

Uni. If ci = h
and ci = k, then B aborts and outputs “failure”.

– OBi.ReKG2(pki, pkj): recover both entries (pki, ski, ci) and (pkj , skj , cj) from
Klist. If ci = cj = h then query OBis.ReKeygen(pki,s, pkj,s) to obtain Ri↔j,s

and output it as the bidirectional re-encryption key at second level. Then add
the tuple (pki, pkj , Ri↔j,s) to Rlist

Bi2.
– OBi.ReKG1(pk,i, pkj): recover both entries (pki, ski, ci) and (pkj , skj , cj) from

Klist. If ci = h and cj �= h or if cj = h and ci �= h, then B aborts and outputs
“failure”. B proceeds as in the scheme in the other cases.

– OUni.ReEnc(pki, pki, Ci) with ci = h, ci = k and C a ciphertext different from
the challenge - this last condition is unnecessary during the first phase: B
recovers ski = (ski,f , ski,s, ski,r) and pki = (pki,f , pki,s, pki,r) from Klist and
proceeds as follows. If there is an entry (pki, pki,⊥, skii′ , pkii′ ,⊥, Ri,i) in Rlist

Uni,
then it queries OBis.Decrypt(pki,s, C) to obtain m, run Bif .Enc(pki,r,Bis.Enc
(pkii′ , m)) to obtain C ′

i,1 and then outputs the first level ciphertext C ′
i =

(C ′
i,1, R

′
i,i). If there is no such entry in Rlist

Uni, then it creates a new virtual entity
ii′ and run Bis.KeyGen(κ) to obtain skii′ and pkii′ . It runs Bir.Enc(pki,r, skii′)
and add (pki, pki,⊥, skii′ , pkii′ ,⊥, Ri,i) in Rlist

Uni and then proceeds as in the
first case.

– OBi.ReEnc2(pki, pkj , Ci) with ci = cj = h: B queries OBis.ReEncrypt(pki, pkj ,
Ci) to obtain Cj and outputs it to A.

– OBi.ReEnc1(pki, pkj , Ci): B proceeds as in the scheme.
– ODec1(pk,C ′) with pk honest - c �= k: on input a first level ciphertext C ′ =

(C ′
1, R

′). Recover sk = (skf , sks, skr) from Klist. Compute T = Bif .Dec(skf , C ′
1)

and sktmp = Bir.Dec(skr, R
′). If there is an entry (pki, pki, skii, sktmp,⊥, Ri↔ii,s,

Ri,i) in Rlist
Uni, then return m = Bis.Dec(skii, T) or ⊥ if one decryption algorithm

returns ⊥. If there are any such entry, proceed as in the scheme.

Regarding the challenge phase, A outputs {pkij
}j=1..�′ and two messages m0 and

m1. If the Coron’s trick ci�
associated to pki�

– entity outputted by A during the
challenge – is different from h, then B aborts. B recovers different re-encryption
keys needed in the following execution or defined it as in different re-encryption
key generation oracles. Then, B outputs (m0,m1, {pkij ,s}j=1..l′ , st), receives the
challenge C∗

� and gives it to A. 	

C Security Proofs for Our Practical Construction

Regarding the security related to Enc2, the proof is the same as the one the
scheme [9] with some adaptations to include bidirectional re-encryption keys.

66 S. Canard and J. Devigne

The idea is to use the Coron’s trick [7] on uncorrupted keys: a public
uncorrupted key pk with a trick c = 0 (resp. c = 1) is computed as pk = (g(a

2))x

(resp. pk = (ga)x). If the two keys pki and pkj , output by the adversary, have
the same Coron’s trick (so of the form a2.x or a.x), it is possible to compute
the bidirectional re-encryption key corresponding as xi/xj (which one can be
computed). One can choose the distribution related to c = 0 or 1, so that this is
almost always the case. The value T = e(g, g)b/a2

is used in C3 = mδ · T which
is given to the adversary.

Regarding the security related to Enc1 and ReEnc, the proof is also the same
and the above adaptations can be similarely applied, except that we do not use
Coron’s trick. Indeed, all uncorrupted keys have the same form: (ga)x. 	

References

1. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer,
Heidelberg (2009)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

3. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

4. Canard, S., Devigne, J., Laguillaumie, F.: Improving the security of an efficient
unidirectional proxy re-encryption scheme. J. Internet Serv. Inf. Secur. 1(2/3),
140–160 (2011)

5. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
ACM CCS’07, pp. 185–194. ACM (2007)

6. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010)

7. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

8. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-ciphertext secure proxy re-
encryption without pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
CANS 2008. LNCS, vol. 5339, pp. 1–17. Springer, Heidelberg (2008)

9. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008)

10. Matsuda, T., Nishimaki, R., Tanaka, K.: CCA proxy re-encryption without bilinear
maps in the standard model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 261–278. Springer, Heidelberg (2010)

11. Shao, J., Cao, Z.: CCA-secure proxy re-encryption without pairings. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg
(2009)

12. Tysowski, P.K., Hasan, M.A.: Re-encryption-based key management towards
secure and scalable mobile applications in clouds. IACR ePrint 2011, 668 (2011)

13. Weng, J., Chen, M., Yang, Y.J., Deng, R., Chen, K.F., Bao, F.: Cca-secure uni-
directional proxy re-encryption in the adaptive corruption model without random
oracles. Sci. China Inf. Sci. 53, 593–606 (2010)

Certificateless Proxy Re-Encryption
Without Pairings

Kang Yang(B), Jing Xu, and Zhenfeng Zhang

Laboratory of Trusted Computing and Information Assurance,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{yangkang,xujing,zfzhang}@tca.iscas.ac.cn

Abstract. Proxy re-encryption (PRE) allows a proxy with re-encryption
keys to transform a ciphertext under a given public key into a ciphertext
of the same message under a different public key, and can not learn any-
thing about the encrypted message. Due to its transformation property,
PRE has many practical applications such as cloud storage, confidential
email, and digital right management, and so on. Certificateless proxy
re-encryption (CLPRE) provides not only the transformation property
of PRE but also the advantage of identity-based cryptography without
suffering from its inherent key escrow. Unfortunately, construction of
CLPRE schemes has so far depended on the costly bilinear pairings. In
this paper, we propose the first construction of CLPRE schemes without
the bilinear pairings whose security is based on the standard computa-
tional Diffie-Hellman (CDH) assumption in the random oracle model.
We first present a chosen-plaintext (CPA) secure CLPRE scheme, and
then convert it into a chosen-ciphertext (CCA) secure CLPRE scheme.
Compared with other CLPRE schemes, our CLPRE schemes provide the
shortest re-encryption key and do not require any pairing operation and
map-to-point hash operation, which are more efficient and more suitable
for low-power devices.

Keywords: Certificateless public key cryptography · Unidirectional
proxy re-encryption · Provable security

1 Introduction

Proxy re-encryption (PRE) was first introduced by Blaze et al. [6] and has
received much attention in recent years. In a PRE scheme, a semi-trusted proxy
with re-encryption keys can transform ciphertexts under the public key of Alice
(the delegator) into other ciphertexts for Bob (the delegatee) without seeing the
underlying plaintext. PRE schemes have many practical applications in digital
rights management (DRM) [27], encrypted email forwarding [6], cloud storage
[30], distributed file systems [1], law enforcement [18], and outsourced filtering
of encrypted spam [1]. According to the direction of transformation, PRE can
be categorized into bidirectional PRE [6,11], in which the proxy can transform
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 67–88, 2014.
DOI: 10.1007/978-3-319-12160-4 5

68 K. Yang et al.

ciphertexts from Alice to Bob and vice versa, and unidirectional PRE [1,22], in
which the proxy cannot transform ciphertexts in the opposite direction. Accord-
ing to the times of transformation, PRE can also be categorized into single-hop
PRE [1], in which the ciphertexts can only be transformed once, and multi-hop
PRE [6,11], in which the ciphertexts can be transformed from Alice to Bob and
then to Charlie and so on. In this paper, we address the problem of obtaining
single-hop unidirectional PRE schemes.

In 1998, Blaze et al. [6] proposed the first bidirectional PRE scheme based on
a simple modification of the ElGamal encryption scheme [14]. In 2005, Ateniese
et al. [1] proposed the unidirectional PRE schemes based on bilinear pairings
with the collusion-“safe” property in which the proxy cannot collude with the
delegatees in order to recover the delegator’s secret key. However, these PRE
schemes only achieve security against chosen plaintext attacks (CPA), which may
not be sufficient to guarantee security for some complex network environments.
In 2007, Canetti and Hohenberger [11] formalized definitions of security against
chosen ciphertext attacks (CCA) for PRE schemes and proposed the first CCA
secure bidirectional multi-hop PRE scheme in the standard model. Simultane-
ously with their work, Green and Ateniese [16] proposed the first identity-based
PRE (IBPRE) schemes in the random oracle model, and the first scheme is
multi-hop unidirectional against chosen plaintext attacks (CPA) and the other
scheme is single-hop unidirectional against chosen ciphertext attacks (CCA). In
2008, Libert and Vergnaud [22] proposed the first single-hop unidirectional PRE
scheme against replayable chosen-ciphertext attacks (RCCA) in the standard
model. In the same year, Deng et al. [13] proposed a bidirectional CCA secure
PRE scheme without the bilinear pairings. In 2012, Hanaoka et al. [17] pro-
posed a generic construction of CCA secure PRE scheme. Later, Isshiki et al.
[19] proposed a CCA secure PRE scheme. Both of their schemes are single-hop
unidirectional and CCA secure in the standard model.

Above all these PRE schemes are constructed based on either traditional pub-
lic key cryptography (PKC) or identity-based cryptography (IBC). However, it is
well recognized that PKC suffers from the issues associated with certificate man-
agement such as revocation and IBC has inherent key escrow problem for which
the private key generator (PKG) knows every user’s private key. To alleviate
the aforementioned problems, the concept of certificateless public key cryptog-
raphy (CLPKC) was introduced by Al-Riyami and Paterson [2], which combines
the best aspects of PKC and of IBC. They considered two types of adversary.
A Type I adversary can replace public keys of arbitrary identities with other
valid public keys of its choice, but it does not have access to master key. In
contrast, a Type II adversary is equipped with master-key but is not allowed
to replace public keys of entities. In 2005, Baek et al. [9] proposed an efficient
certificateless public key encryption (CLPKE) scheme that does not rely on the
bilinear parings. The main difference between them is that Baek et al.’s scheme
requires a user must authenticate himself/herself to the Key Generation Center
(KGC) and obtain an appropriate partial public key to create a public key, while

Certificateless Proxy Re-Encryption Without Pairings 69

the original CLPKE [2] does not require a user to contact the KGC to set up
his/her public keys. In addition, the security proof of Baek et al.’s scheme only
holds for a weaker security model in which the Type I adversary is not allowed
to replace the public key associated with the challenge identity nor allowed to
extract the partial private key of the challenge identity.

Compared with traditional PRE and IBPRE, certificateless proxy re-encry-
ption (CLPRE) provides the advantage of CLPKC (i.e., keeps the implicit certi-
fication property of IBC without suffering from its inherent key escrow problem).
In 2010, Sur et al. [26] introduced the notion of CLPRE and proposed a CCA
secure CLPRE scheme based on the Libert and Quisquater’s CLPKE [21] scheme
in the random oracle model. In 2012, Xu et al. [30] proposed a CLPRE scheme
based on the original CLPKE scheme [2], which is claimed to be CPA secure
in the random oracle model. It should be emphasized that so far all existing
CLPRE schemes are constructed based on the costly bilinear pairings. Although
the recent advances in implementation technique, the pairing computation is
still considered as expensive compared with “standard” operation such as mod-
ular exponentiations in finite fields. According to the current jPBC library [10]
implementation, a “Type a” pairing operation in [10] takes 14.65 ms when pre-
processing was used, whereas a 1024-bit prime modular exponentiation operation
takes 1.18 ms. Hence, what is clearly desirable but has not been proposed until
now, is a more efficient CLPRE scheme without the costly bilinear pairings.

1.1 Technical Contributions

Our work is aimed at filling this void. We first show that Xu et al.’s scheme [30]
can not provide the ciphertext confidentiality. The vulnerability allows a Type
I adversary to reveal any message shared between the legal users by replacing
the receiver’s public key. Then we present a simple patch which fixes the secu-
rity problem. However, possible fix further degrade efficiency for encryption and
re-encryption key generation.

As the main goal of this paper, we propose the first construction of CLPRE
schemes without the bilinear pairings. We first propose a CPA secure CLPRE
scheme, and then convert it into a CCA secure CLPRE scheme. Our
CLPRE schemes are single-hop unidirectional and gain high efficiency. Com-
pared with Xu et al.’s scheme [30] and Sur et al.’s CLPRE scheme [26], our
schemes much more efficient and more suitable for low-power devices. To sup-
port our claim of efficiency, we evaluate these schemes following the benchmark
data provided by the jPBC project [10]. As outlined in Table 2, our schemes have
the least average running time. Moreover, the bit-length of a re-encryption key
in our schemes is extremely short which is only 160 bits and the ciphertext size
in our CCA secure scheme decrease with re-encryption. Additionally, in terms
of complexity assumption, both of our schemes are proven secure under stan-
dard Computational Diffie-Hellman (CDH) assumption, while Xu et al.’s scheme
[30] is based on the Decisional Bilinear Diffie-Hellman (DBDH) assumption [5]
and Sur et al.’s scheme [26] is based on the p-Bilinear Diffie-Hellman Inversion
(p-BDHI) assumption [5].

70 K. Yang et al.

1.2 Organization

The rest of this paper is organized as follows. Section 2 gives necessary nota-
tions and security model for CLPRE schemes. Section 3 reviews and analyzes
Xu et al.’s CLPRE scheme. We then present the first construction of CLPRE
schemes without the bilinear pairings in Sect. 4, where security analysis and
performance evaluation are also included. Section 5 concludes the paper.

2 Preliminaries

2.1 Notations

For a finite set S, x
$←− S denotes sampling an element x from S according

to the uniform distribution. Let G
∗ denotes G\{1} where G is a multiplicative

group of prime order q. Except for specially illustrating, let user A denotes the
delegator and user B denotes the delegatee.

2.2 Security Model for Single-Hop Unidirectional CLPRE

The precise definition (Definition 1) of single-hop unidirectional CLPRE schemes
can be found in AppendixA. We formalize the security model of single-hop
unidirectional CLPRE schemes by taking into account both certificateless public
key encryption (CLPKE) security notion [2,9] and proxy re-encryption (PRE)
security notion [11,22]. As defined in [2,9], we consider two types of adversaries,
named Type I adversary AI and Type II adversary AII which represent an
eavesdropping third party (i.e., an honest-but-curious KGC). AI does not have
access to the master key msk, but AI may replace public keys with values of its
choice. In contrast, AII is equipped with master-key msk, but is not allowed to
replace public keys of entities. We also provide the re-encryption key extraction
oracle and re-encryption oracle for both AI and AII . In order to prove the
second level ciphertext security for our CLPRE schemes, we need to make an
additional restriction for AI which is not allowed to replace the public key of the
challenge identity ID∗. This restriction is not necessary, but we do not know how
to prove the second level ciphertext security for our CLPRE schemes without the
restriction. Indeed, it is a mild security model since the additional restriction,
but our CLPRE schemes are highly efficient under the mild security model.
Moreover, our CLPRE schemes does not rely on the bilinear pairings. The mild
security model is enough for many practical applications such as secure data
sharing with public cloud [30]. The details of the security model can be found
in AppendixB.

3 Analysis of Xu et al.’s CLPRE Scheme

3.1 Review of Xu et al.’s Scheme

Xu et al.’s CLPRE scheme [30] is reviewed as follows:

Certificateless Proxy Re-Encryption Without Pairings 71

– Setup(1λ): Let G1, G2 be two groups of prime order q, g be a random gen-
erator of G1, and e : G1 × G1 → G2 be a bilinear map. The message space
M is G2. H1 : {0, 1}∗ → G1 and H2 : G2 → G1 are two map-to-point hash
functions. Pick a random s ∈ Z

∗
q and compute g1 = gs. The public parameters

params = (q,G1, G2, e, g, g1,H1,H2) and the master-key msk = s.
– PartialPrivateKeyExtract: On input params and user A’s identifier IDA,

this algorithm returns A’s partial private key DA = gs
A where gA = H1(IDA).

– SetSecretValue: On input params and IDA, this algorithm picks xA, tA ∈
Z

∗
q at random and returns (xA, tA).

– SetPrivateKey: On input params, user A’s partial private key DA and A’s
secret value (xA, tA), this algorithm computes skA = DxA

A = gsxA

A and returns
A’s private key SKA = (skA, tA).

– SetPublicKey: On input params and user A’s secret value (xA, tA), this
algorithm returns A’s public key PKA = (gA = H1(IDA), gxA

1 = gsxA , gtA).
– Encrypt: On input params, a message m ∈ G2 and the A’s public key PKA,

this algorithm does as follows:
• To obtain a ciphertext can only be decrypted by user A, this algorithm

randomly chooses r ∈ Z
∗
q and returns

EncA(m) = (gr,m · e(gr
A, gsxA)).

• For decryption delegation, this algorithm randomly chooses r ∈ Z
∗
q and

returns a second level ciphertext

CA = Enc′
A(m) = (gtAr, gr,m · e(gr

A, gsxA)).

– SetReEncKey: On input params, user A’s private key SKA = (gsxA

A , tA)
and user B’s public key PKB , this algorithm randomly chooses X ∈ G2 and
returns a re-encryption key from user A to user B:

RKA→B = (g−sxA

A · HtA
2 (X), EncB(X))

– ReEncrypt: On input params, a re-encryption key RKA→B and a second
level ciphertext CA = (gtAr, gr,m · e(gr

A, gsxA)), this algorithm computes

c = m · e(gr
A, gsxA) · e(g−sxA

A · HtA
2 (X), gr) = m · e(HtA

2 (X), gr)

and returns a first level ciphertext C ′
B = (gtAr, c, EncB(X)).

– Decrypt1: On input params, user B’s private key SKB and a first level
ciphertext C ′

B , this algorithm decrypts EncB(X) with SKB to obtain the X
by running the decryption algorithm Decrypt2, and returns

c/e(H2(X), gtAr) = m · e(HtA
2 (X), gr)/e(H2(X), gtAr) = m.

– Decrypt2: On input params, user A’s private key SKA = (skA, tA), a cipher-
text EncA(m) = (u, v) or a second level ciphertext CA = (w, u, v), this algo-
rithm returns

v/e(skA, u) = m · e(gr
A, gsxA)/e(gsxA

A , gr) = m.

72 K. Yang et al.

3.2 Attack Against Confidentiality

In this subsection, we present a realistic attack against Xu et al.’s CLPRE scheme
[30]. In our attack, a Type I adversary AI can decrypt any re-encrypted cipher-
text by replacing the delegatee’s public key. A more detailed description of the
attack is as follows:

(1) If AI wants to reveal the message m sent to the legal user B, AI chooses
α ∈ Z

∗
q randomly and replaces the user B’s public key PKB = (gB , gsxB , gtB)

with PK ′
B = (gB , gα, gtB).

(2) The delegator A randomly chooses X ∈ G2 and generates a re-encryption
key from A to B

RK ′
A→B =

(
g−sxA

A · HtA
2 (X), EncPK′

B
(X) = (gr′

,X · e(gr′
B , gα))

)

using its private key SKA = (gsxA

A , tA) and the replaced B’s public key PK ′
B ,

and then sends RK ′
A→B to the proxy server in the public cloud.

(3) The adversary AI issues an access request for delegator A’s sharing data
by impersonating the legal user B. Then the proxy server generates a re-
encrypted ciphertext

C ′
B = (gtAr, c = m · e(HtA

2 (X), gr), EncPK′
B
(X)).

(4) The adversary AI intercepts the ciphertext C ′
B from the proxy server to B,

decrypts EncPK′
B
(X) = (u′, v′) with the stored α

v′/e(gα
B , u′) = X · e(gr′

B , gα)/e(gα
B , gr′

) = X

to obtain X, and then recovers the message m = c/e(H2(X), gtAr).

Clearly, the Type I adversary AI can reveal any message shared between the
legal users by replacing the delegatee’s public key. Thus, Xu et al.’s CLPRE
scheme can not provide the ciphertext confidentiality. Alternatively, it is easy to
see that the above attack is a legal attack under our mild security model, namely
their scheme is not secure under our mild security model. Xu et al. prove that
their scheme is CPA-secure in the random oracle model. However, their security
proof ignores the case that AI can replace the user’s public key with any public
key of its choice. That is why they do not discover the above attack. The weak-
ness of Xu et al.’s CLPRE scheme root in the fact that there is no way to check
whether the receiver’s public key is correctly-formed. A simple improvement is
to change the user’s public key PK = (H1(ID), gsx, gt) into PK = (gx, gsx, gt)
and check whether the equality e(gx, gs) = e(gsx, g) holds before using each
user’s public key. This modification effectively fixes the flaw mentioned above.
However, the modified scheme still requires expensive bilinear pairing operations

Certificateless Proxy Re-Encryption Without Pairings 73

and map-to-point hash operations, further degrades the encryption and re-
encryption key generation efficiency.

4 Our Single-Hop Unidirectional CLPRE Schemes

Certificateless proxy re-encryption (CLPRE) has very appealing features, namely
both preserves the implicit certification advantage of identity based cryptogra-
phy without suffering from its inherent key escrow problem and realizes dele-
gation of decryption rights. Unfortunately, construction of CLPRE schemes so
far depends on the costly bilinear pairings. In this paper, we focus on construct-
ing CLPRE schemes that do not depend on the bilinear pairings. In this way,
our CLPRE schemes are more efficient and more suitable for low-power devices
when compare with other CLPRE schemes [26,30]. Our CLPRE schemes are
motivated by the construction of Baek et al.’s CLPKE scheme [9]. However, we
apply their scheme non-trivially to construct our CLPRE schemes. In particular,
we use the technique of the static Diffie-Hellman sharing keys between delegator
and delegatee to delegate the decryption rights. We add a public key φ to build
the suitable static Diffie-Hellman sharing keys in order to resist possible attacks
(cf. AppendixB). In order to be able to re-encrypt a second level ciphertext
with the suitable re-encryption key, we non-trivially combine γr and μr in [9]
into γH4(μ)rμr. We first present a CPA secure CLPRE scheme, and then con-
vert it into a CCA secure CLPRE scheme by known technique. The detailed
construction of our CLPRE schemes as follows.

4.1 A Chosen Plaintext Secure Scheme (CLPRE1)

– Setup(1λ): Taking a security parameter 1λ, the algorithm works as below:
1. Generate a λ-bit prime q and a group G of order q. Pick a random generator

g ∈ G.
2. Randomly pick x ∈ Z

∗
q and compute y = gx.

3. Choose cryptographic hash functions H1 : {0, 1}∗ × G → Z
∗
q , H2 : G →

{0, 1}n for some n ∈ N, H3 : {0, 1}∗ → Z
∗
q and H4 : G → Z

∗
q .

The public parameters are params= (G, q, g, y, n,H1,H2,H3,H4) and the
master key is msk= x. The message space is M = {0, 1}n.

– PartialKeyExtract(params,msk,IDA): Pick a random sA ∈ Z
∗
q and com-

pute ωA = gsA and tA = sA + xH1(IDA, ωA) mod q. Return (PA,DA) =
(ωA, tA).

– SetSecretValue(params,IDA): Pick zA, vA ∈ Z
∗
q at random and return

SA = (zA, vA).
– SetPrivateKey(params,DA,SA): Return SKA = (DA, SA) = (tA, zA, vA).
– SetPublicKey(params,PA,SA): Let PA = ωA and SA = (zA, vA). Compute

μA = gzA and φA = gvA . Return PKA = (ωA, μA, φA).

74 K. Yang et al.

– SetReEncKey(params,SKA,IDA,PKA,IDB ,PKB): Parse PKA as (ωA,
μA, φA), SKA as (tA, zA, vA) and PKB as (ωB , μB , φB), then compute γB =
ωByH1(IDB ,ωB) and XAB = H3(γvA

B , φvA

B , IDA, PKA, IDB , PKB). Return
RKA→B = (tAH4(μA) + zA) · XAB mod q.

– Encrypt(params,IDA,PKA,m): Parse PKA as (ωA, μA, φA). Then, com-
pute γA = ωAyH1(IDA,ωA) and YA = γ

H4(μA)
A μA. Pick a random r ∈ Z

∗
q and

compute
c1 = gr, c2 = m ⊕ H2(Y r

A).

Return CA = (c1, c2).
– ReEncrypt(params,RKA→B ,CA): Parse CA as (c1, c2), compute c′

1 =
cRKA→B
1 and set c′

2 = c2. Return C ′
B = (c′

1, c
′
2)

1.
– Decrypt1(params,SKB ,C ′

B): Parse C ′
B as (c′

1, c
′
2), PKA as (ωA, μA, φA) and

SKB as (tB , zB , vB). Compute

m = c′
2 ⊕ H2

(
c′
1
1/XAB

)

where XAB = H3(φtB
A , φvB

A , IDA, PKA, IDB , PKB) and return m.
– Decrypt2(params,SKA,CA): Parse CA as (c1, c2), PKA as (ωA, μA, φA) and

SKA as (tA, zA, vA). Compute

m = c2 ⊕ H2

(
c1

(tAH4(μA)+zA)
)

and return m.

It is not hard to check the correctness of CLPRE1 scheme, we omit it here.

– Remark 1. H4(μA) is necessary for resisting the following public key replace-
ment attacks. If remove the H4(μA) from our scheme, a Type I adversary AI can
replace PKA = (ωA, μA, φA) with PK ′

A = (ω′
A, μ′

A = gz′
Aω′−1

A y−H1(IDA,ω′
A),

φ′
A). Then any other user encrypts a message m with the user A’s public key

(ω′
A, μ′

A, φ′
A) and gets a second level ciphertext CA = (gr,m ⊕ H2(Y ′r

A)) where
Y ′r

A = ω′r
AyH1(IDA,ω′

A)rμ′r
A = gz′

Ar. Thereby, AI can recover the message m with

z′
A.Analogously,AI canalso replacePKA withPK ′

A = (gs′
A , gz′

Ay−H1(IDA,gs′
A),

φ′
A). Since H4 is collision free hash function, the technique of γ

H4(μA)
A μA well

resists the above attack.
– Remark 2. Even though proxy collude with delegatees, they can only recover

the tAH4(μA) + zA for delegator A, but not the concrete value of tA or zA.
Moreover, vA is kept secret. This gives an intuition why our scheme achieves
master secret security.

– Remark 3. γvA

B = gtBvA and φvA

B = gvBvA are the static Diffie-Hellman
sharing keys between delegator A and delegatee B.

1 In the application background such as secure data sharing with public cloud [30],
IDA is omitted.

Certificateless Proxy Re-Encryption Without Pairings 75

Theorem 1. The proposed CLPRE1 scheme is CLPRE-CPA secure in the ran-
dom oracle model, if the CDH2 assumption holds in G and the Schnorr3 signature
is EUF-CMA secure.
The security proof of this theorem is provided in AppendixC.

4.2 A Chosen Ciphertext Secure Scheme (CLPRE2)

In some complex network environments such as cloud computing, CPA security
may not be sufficient to guarantee security. Therefore, certificateless proxy re-
encryption scheme with strong security (CCA) is desirable. We use a well known
technique due to Fujisaki-Okamoto transformation [15] to convert CPA secure
scheme into CCA secure scheme. The Fujisaki-Okamoto transformation [15] is
not enough to achieve CCA security. The proxy must be able to check validity
of second level ciphertexts (i.e., the validity of second level ciphertexts must be
public verifiable). We achieve the goal by resorting to the Schnorr signature [25]
technique given in [13]. We do not specify the full details of CLPRE2 scheme
and only present the different algorithm.

– We redefine H2 : G → {0, 1}n+n′
, where n and n′ denote the bit-length

of a message and a randomness respectively. In addition, we add two hash
functions H5 : {0, 1}∗ → Z

∗
q and H6 : {0, 1}∗ → Z

∗
q .

– Encrypt(params,IDA,PKA,m): Parse PKA as (ωA, μA, φA). Then, com-
pute γA = ωAyH1(IDA,ωA) and YA = γ

H4(μA)
A μA. Pick a random σ ∈ {0, 1}n′

and compute r = H5(m,σ, IDA, PKA). Pick a random r̂ ∈ Z
∗
q and compute

CA = (c1, c2, c3, c4) such that

c1 = gr̂, c2 = gr, c3 = (m||σ)⊕H2(Y r
A), c4 = r̂+rH6(c1, c2, c3) mod q.

Return CA.
– ReEncrypt(params,RKA→B ,CA): Parse CA as (c1, c2, c3, c4) and check

whether gc4 = c1 · c2
H6(c1,c2,c3) holds. If not, return ⊥. Otherwise, compute

c′
2 = cRKA→B

2 and set c′
3 = c3. Return C ′

B = (c′
2, c

′
3)

4.
– Decrypt1(params,SKB ,C ′

B): Parse C ′
B as (c′

2, c
′
3), PKA as (ωA, μA, φA) and

SKB as (tB , zB , vB). Then compute as follows:
1. Compute XAB = H3(φtB

A , φvB

A , IDA, PKA, IDB , PKB).

2. Compute m||σ = c′
3 ⊕ H2

(
c′
2
1/XAB

)
.

3. Compute r′ = H5(m,σ, IDA, PKA) and YA = γ
H4(μA)
A μA where γA =

ωAyH1(IDA,ωA).
2 Informally, we say that the CDH assumption holds for G if it is infeasible to compute

gab when is given a tuple (g, ga, gb) ∈ G
3 where a, b

$←− Z
∗
q .

3 The well known Schnorr signature [25] is existential unforgeable against chosen mes-
sage attack (EUF-CMA) under the discrete logarithm (DL) assumption [24] in the
random oracle model.

4 In the application background such as secure data sharing with public cloud [30],
IDA is omitted.

76 K. Yang et al.

4. If Y XABr′
A = c′

2 holds, return m. Otherwise, return ⊥.
– Decrypt2(params,SKA,CA): ParseCA as (c1, c2, c3, c4),PKA as (ωA, μA, φA)

and SKA as (tA, zA, vA). Then compute as follows:
1. If gc4 = c1 · c2

H6(c1,c2,c3) does not hold, return ⊥.
2. Otherwise, compute m||σ = c3 ⊕ H2

(
c2

(tAH4(μA)+zA)
)
.

3. If c2 = gH5(m,σ,IDA,PKA) holds, return m. Otherwise, return ⊥.

It is not hard to check the correctness of CLPRE2 scheme, we omit it here.

Theorem 2. The proposed CLPRE2 scheme is CLPRE-CCA secure in the ran-
dom oracle model, if the CDH assumption holds in G and the Schnorr signature
is EUF-CMA secure.
Proof. The idea of the proof is analogous to that of Theorem 1. In addition,
the challenger B needs to respond re-encryption queries and decryption queries.
Due to the space limit, the proof of this theorem will be given in the full paper.

4.3 Comparisons

In this subsection, we compare our schemes with modified Xu et al.’s scheme
[30] and Sur et al.’s scheme [26] in terms of computational cost, ciphertext size
and security level. Firstly, we consider the number of “bignum” operations that
CLPRE schemes need to perform. We then estimate the running time of these
schemes on an Intel(R) Core(TM) 2 Quad 2.40 GHz CPU desktop PC with
3 GB RAM powered by Ubuntu 10.04, by using some benchmark results in the
Java Pairing Based Cryptography Library (jPBC) [10], which is a Java port of
the PBC library [20] written in C. In our comparisons, the complexity of highly
efficient operations such as multiplication or addition in group, conventional hash
function evaluation and XOR operation is omitted, since the computational cost
of these operations is far less than that of exponentiations or pairings.

In Table 1 we summarize the comparison results. For all schemes, fast algo-
rithms for multi-exponentiation can be used in order to improve the performance.
By using simultaneous multiple exponentiation algorithm [23], the two modu-
lar exponentiations and the three modular exponentiations can be computed at
a cost of about 1.17 exponentiations and 1.25 exponentiations respectively. By
using Avanzi’s algorithm [4] based on a sliding windows method for the joint
sparse form [28], for the ECC setting, where the group inverse comes for free,
the two exponentiations in G1 can be computed at a cost of about 1.08 exponen-
tiations. Alternatively, both Xu et al.’s scheme [30] and Sur et al.’s scheme [26]
require a special hash function called map-to-point5 hash function for mapping
{0, 1}∗ into a point on the underlying elliptic curve. Since the computation time
of one admissible encoding function MapToPoint is more expensive than one
exponentiation in G1, a map-to-point hash operation is also time consuming and
cannot be treated as conventional hash operation.
5 The special map-to-point hash function is also called “hash-and-encode” function

[16] and can be constructed by a conventional hash function and an admissible
encoding function MapToPoint [7].

Certificateless Proxy Re-Encryption Without Pairings 77

Table 1. Comparison of CLPRE schemes

Schemes Modified [30] [26] Our CLPRE1 Our CLPRE2

Encrypt tp + 3te 5.08te 2.25te 3.25te

SetReEncKey 3tp + 3te 4.08te 2.17te 2.17te

ReEncrypt tp 6tp te 2.17te

Decrypt2(CA) tp 2tp + 3.08te te 3.17te

Decrypt1(C
′
B) 2tp tp + 4te 3te 4.25te

|CA| 2|G1| + |G2| 3|G1| + |m| + |σ| |G| + |m| 2|G| + |Zq| + |m| + |σ|
|RKA→B | 2|G1| + |G2| 3|G1| |Zq| |Zq|
|C′

B | 2|G1| + 2|G2| |G1| + 2|G2| + |m| + |σ| |G| + |m| |G| + |m| + |σ|
Pairing-Free × × √ √

map-to-point-Free × × √ √

Assumption DBDH p-BDHI CDH CDH

Security CPA CCA CPA CCA

The notations in Table 1 is illustrated as follows: CA, RKA→B and C ′
B denote

a second level ciphertext, a re-encryption key from A to B and a first level
ciphertext respectively. G denotes the group used in our schemes, while G1 and
G2 denote the bilinear groups used in [26,30] (i.e., the bilinear pairing is e :
G1×G1 → G2). tp and te denote the computational cost of a bilinear pairing and
an exponentiation respectively. |CA|, |RKA→B | and |C ′

B | denote the bit-length
of CA, RKA→B and C ′

B respectively. |X|, |m| and |σ| denote the bit-length of
an element in group X, a message m and a randomness σ respectively.

Next, in order to make our comparison more clear, we evaluate concrete
running time and communication cost in Table 2. We consider the case that both
modified Xu et al.’s scheme [30] and Sur et al.’s scheme [26] are implemented
on an elliptic curve defined on 512 bits prime field with a generator of order
160 bits (i.e., “Type a” in [10]), and our schemes are implemented on 1024-bit
prime finite field with a generator of order 160 bits (i.e., G = GT of “Type e” in
[10]). We also assume that the bit-length of |m| and |σ| is 1024 bits and 160 bits
respectively. Note that the computation time in Table 2 is not precise since we
only consider the computational costs of “bignum” operations. In addition, we
also ignore the computation time of map-to-point hash operations in the schemes
[26,30].

From Tables 1 and 2, we can see that both of our schemes are much more com-
putation efficient than modified Xu et al.’s scheme [30] and Sur et al.’s scheme
[26] across all phases (i.e., Encrypt, SetReEncKey, ReEncrypt and Decrypt) of
CLPRE schemes. It’s worth pointing out that the bit-length of a re-encryption
key in our schemes is only |Zq| (160 bits) which is the shortest among the CLPRE
schemes. Moreover, the ciphertext size in our CLPRE2 scheme decreases with
re-encryption, while that in [30] increases with re-encryption and that in [26]
remains unchanged. In particular, our CCA secure CLPRE2 scheme is even
more efficient than CPA secure scheme such as [30].

78 K. Yang et al.

Table 2. Concrete value comparison

Schemes Modified [30] [26] Our CLPRE1 Our CLPRE2

Encrypt 14.97 ms 25.12ms 0.74 ms 1.07 ms

SetReEncKey 52.67 ms 24.74ms 2.57 ms 2.57 ms

ReEncrypt 7.23 ms 58.24ms 1.18 ms 2.57 ms

Decrypt2(CA) 7.23 ms 22.43ms 1.18 ms 2.90 ms

Decrypt1(C
′
B) 21.89 ms 14.16ms 3.55 ms 5.03 ms

|CA| 3072 bits 4256 bits 2048 bits 3392 bits

|RKA→B | 3072 bits 3072 bits 160 bits 160 bits

|C′
B | 4096 bits 4256 bits 2048 bits 2208 bits

5 Conclusions

In this paper, we showed that Xu et al.’s scheme [30] is vulnerable to the confiden-
tiality attack, and then proposed the first construction of CLPRE schemes with-
out the costly bilinear pairings. We also prove security of our CLPRE schemes
under the CDH assumption in the random oracle model. The comparison results
show that our schemes significantly outperform Xu et al.’s scheme [30] and Sur
et al.’s scheme [26] in terms of computational and communicational efficiency.
Even though our CLPRE schemes are highly efficient, they are proven secure
under our mild security model. Thereby, we leave an interesting open problem
to devise a pairing-free efficient CLPRE scheme in a stronger security model.

Acknowledgements. This work was supported by the National Basic Research
973 Program of China under Grant No. 2013CB338003, the National Natural
Science Foundation of China under Grant No. 61170279, the 863 project under Grant
No. 2012AA01A403 and the National Natural Science Foundation of China under Grant
No. 61170278. The authors would like to thanks the anonymous reviewers for their
helpful comments.

A Single-Hop Unidirectional CLPRE

Definition 1 (CLPRE). A single-hop unidirectional CLPRE scheme consists
of the following algorithms:

– Setup(1λ): Taking security parameter 1λ as input, the Key Generation Cen-
ter (KGC) runs the algorithm to generate the public parameters params and
a master key msk. The params includes the description of message space M.
We assume throughout that params are publicly and authentically available.

– PartialKeyExtract(params,msk,IDA): Taking params, msk and a user
A’s identifier IDA as inputs, the KGC runs the algorithm to generate a partial
public key PA and a partial private key DA. PA and DA are transported to
the user A over a secure channel by KGC.

Certificateless Proxy Re-Encryption Without Pairings 79

– SetSecretValue(params,IDA): Taking params and user A’s identifier IDA

as inputs, this algorithm returns a randomly chosen secret value SA. This
algorithm and the next two are performed by the user A himself.

– SetPrivateKey(params,DA,SA): Taking params, DA and SA as inputs,
user A runs the algorithm to generate a private key SKA.

– SetPublicKey(params,PA,SA): Taking params, PA and SA as inputs, this
algorithm returns a public key PKA.

– SetReEncKey(params,SKA,IDA,PKA,IDB,PKB): Taking params, user
A’s identifier IDA and a public/private key pair (PKA,SKA), user B’s identi-
fier IDB and public key PKB as inputs, this algorithm returns a re-encryption
key RKA→B that allows converting second level ciphertexts for IDA into first
level ciphertexts for IDB .

– Encrypt(params,IDA,PKA,m): Taking params, user A’s identifier IDA

and public key PKA, a message m ∈ M as inputs, this algorithm returns
a second level ciphertext CA that can be re-encrypted into a first level one
(intended for a possibly different receiver) using the suitable re-encryption
key. A ciphertext is called first level ciphertext if it cannot be re-encrypted for
another party. In our schemes, first level ciphertexts are re-encrypted cipher-
texts.

– ReEncrypt(params,RKA→B ,CA): Taking params, a re-encryption key
RKA→B from user A to user B and a second level ciphertext CA for user
A as inputs, this algorithm returns a first level ciphertext C ′

B for user B or ⊥.
– Decrypt1(params,SKB ,C ′

B): Taking params, a user B’s private key SKB

and a first level ciphertext C ′
B as inputs, this algorithm returns either a mes-

sage m or ⊥.
– Decrypt2(params,SKA,CA): Taking params, a user A’s private key SKA

and a second level ciphertext CA as inputs, this algorithm returns either a
message m or ⊥.

Correctness. For all m ∈ M and all pair (PKA,SKA), (PKB ,SKB), these
algorithm should satisfy the following conditions of correctness:

– Decrypt2(params, SKA,Encrypt(params, IDA, PKA,m)) = m.
– Decrypt1(params, SKB ,ReEncrypt(params, RKA→B , CA)) = m.

where CA = Encrypt(params, IDA, PKA,m), RKA→B = SetReEncKey
(params, SKA, IDA, PKA, IDB , PKB).

B Security Model

Definition 2. Security of Second Level Ciphertexts (2nd-IND-CLPRE-
ATK). Let ATK ∈ {CPA,CCA}, security of second level ciphertexts is defined
according to the following two games “Game I” and “Game II”. The challenger
B maintains a public key list PublickeyList which is set of (ID, PKID, st). Let
PKID denotes the current public key for ID, st = 0 denotes the PKID is
generated honestly by B, st = 1 denotes B embed the hard problem into the
PKID and st = ⊥ denotes the public key for ID has already replaced by AI .

“Game I”: This is a game between AI and the challenger B.

80 K. Yang et al.

Setup: The challenger B takes a security parameter 1λ and runs the Setup(1λ)
algorithm to generate the system parameter params and a master key msk.
The challenger gives params to AI while keeping msk secret.
Phase 1: AI issues queries q1, · · · , qm adaptively where query qi is one of the
following:

– Partial key extraction queries: On input ID by AI , the challenger B
responds by running algorithm PartialKeyExtract to generate the par-
tial key (PID,DID) for entity ID.

– Public key request queries: On input ID by AI , the challenger B searches
whether exists a tuple (ID, PKID, st) ∈ PublickeyList. If exists, B returns
PKID to AI . Otherwise, B runs algorithm SetPublicKey to generate
the public key PKID for ID. B adds (ID, PKID, st) to the PublickeyList

where the value of st is decided by the B’s strategy and return PKID to
AI .

– Private key extraction queries: On input ID by AI , B searches a tuple
(ID, PKID, st) ∈ PublickeyList. If st �= ⊥, B responds by running algo-
rithm SetPrivateKey to generate the private key SKID for entity ID.
However, it is unreasonable to expect B to be able to respond to such a
query if AI has already replaced ID’s public key and B returns “Reject”
for this case st = ⊥.

– Replace public key queries: AI can repeatedly replace the public key PKID

for any entity ID with any valid public key PK ′
ID of its choice. PK ′

ID

is called a valid public key if PK ′
ID ∈ G∗ × G∗ × G∗ in our CLPRE

schemes. If does not exist a tuple (ID, PKID, st) ∈ PublickeyList, B adds
(ID, PK ′

ID, st = ⊥) to PublickeyList. Otherwise, B renews (ID, PKID, st)
with (ID, PK ′

ID, st = ⊥).
– Re-encryption key extraction queries: On input (ID1,ID2) by AI , B

searches a tuple (ID1, PKID1 , st1) ∈ PublickeyList. if st1 �= ⊥, B responds
by running algorithm SetReEncKey to generate the re-encryption key
RKID1→ID2 . Otherwise, return “Reject”. It is unreasonable to expect B to
be able to respond to such a query if AI has already replaced ID1’s public
key.

– Re-encryption queries: On input (ID1,ID2,CID1) by AI ,
1. If ATK = CCA, B searches a tuple (ID1, PKID1 , st1) ∈ PublickeyList.

if st1 �= ⊥, B responds by running algorithm ReEncrypt to convert
the second level ciphertext CID1 into a first level C ′

ID2
with the suit-

able re-encryption key RKID1→ID2 . Otherwise, return “Reject”. It is
also unreasonable to expect B to be able to respond to such a query if
AI has already replaced ID1’s public key.

2. If ATK = CPA, return ⊥ to AI .
– Decryption queries for first level ciphertext: On input (ID,C) by AI ,

1. ATK = CCA: If C is a first level ciphertext, B runs the algorithm
Decrypt1 using the related private key to decrypt the C and returns
the result to AI . Otherwise, return “Reject”.

2. ATK = CPA: return ⊥ to AI .

Certificateless Proxy Re-Encryption Without Pairings 81

– Decryption queries for second level ciphertext: On input (ID,C) by AI ,
1. ATK = CCA: If C is a second level ciphertext, B runs the algorithm

Decrypt2 using the related private key to decrypt the C and returns
the result to AI . Otherwise, return “Reject”.

2. ATK = CPA: return ⊥ to AI .
Challenge: Once the adversary AI decides that Phase 1 is over it outputs
the challenge identity ID∗ and two equal length plaintexts m0,m1 ∈ M. In
particular, ID∗ can not be corrupted6. Moreover, AI is restricted to choose
a challenge identity ID∗ such that trivial decryption is not possible (i.e., It
does not happen both AI has extracted the re-encryption key RKID∗→ID

and ID has been corrupted by AI). B searches a tuple (ID∗, PKID∗ , st∗) ∈
PublickeyList. B then picks a random bit β ∈ {0, 1} and computes the challenge
ciphertext C∗ = Encrypt(params,ID∗,PKID∗ , mβ). The challenger returns
C∗ to AI .
Phase 2: Almost the same as that in Phase 1, but with the following restric-
tions.

– Partial key extraction queries: On input ID by AI , if AI has already
replaced the public key for ID and exists a pair (ID,C) is a derivative
of (ID∗, C∗), the challenger B returns ⊥. Derivatives of (ID∗, C∗) [12] is
defined as follows:
1. Reflexivity: (ID∗, C∗) is a derivative of itself.
2. Derivation by re-encryption: If the adversary has issued a re-encryption

query on input (ID∗, ID,C∗) and obtained the resulting re-encryption
ciphertext C, then (ID,C) is a derivative of (ID∗, C∗).

3. Derivation by re-encryption key: If the adversary has issued a re-
encryption key extract query on input (ID∗, ID) and obtained the re-
encryption key RKID∗→ID, then (ID,C) is a derivative of (ID∗, C∗)
where C = ReEncrypt(params, RKID∗→ID, C∗).

– Private key extraction queries: On input ID by AI if exists a pair (ID,C)
is a derivative of (ID∗, C∗) or ID = ID∗, B returns ⊥.

– Re-encryption key extraction queries: On input (ID1,ID2) by AI , if ID1 =
ID∗ and the entity ID2 has been corrupted by AI , B returns ⊥.

– Re-encryption queries: On input (ID1,ID2,CID1) by AI , if (ID1, CID1) is
a derivative of (ID∗, C∗) and ID2 has been corrupted by AI , B returns ⊥.

– Decryption queries for first level ciphertext: On input (ID,C) by AI , if
(ID,C) is a derivative of (ID∗, C∗), the challenger returns ⊥.

– Decryption queries for second level ciphertext: On input (ID,C) by AI , if
(ID,C) = (ID∗, C∗), the challenger returns ⊥.

Guess: Finally, the adversary AI outputs a guess β′ ∈ {0, 1} and wins the
game if β′ = β.

“Game II”: This is a game between AII and the challenger B. We merely
describe the difference between “Game I” and “Game II” as follows:
6 In “Game I”, an entity ID is called corrupted if AI has extracted the private key for
ID, or AI has both replaced the public key for ID and extracted the partial private
key for ID.

82 K. Yang et al.

– AII knows the master-key but is disallowed to replace public keys during the
“Game II”. Hence, AII does not need partial key extraction oracle and is not
provided the public key replacement oracle.

– In “Game II”, an entity ID is called corrupted if AII has already extracted
the private key for ID.

– For public key request queries issued by AII , B additionally needs to return
a randomness sID with respect to the partial public key PID such that AII

can compute the partial private key by itself.

We define Ai’s advantage in “Game i” at level 2 where i ∈ {I, II} as

Adv2nd−IND−CLPRE−ATK
Game i, Ai

(λ) = |Pr[β′ = β] − 1
2
|

A single-hop unidirectional CLPRE scheme is said to be (t, ε)-2nd-IND-CLPRE-
ATK secure if for any t-time 2nd-IND-CLPRE-ATK adversary Ai we have
Adv2nd−IND−CLPRE−ATK

Game i, Ai
(λ) < ε for both i = I and i = II. We simply say that

a single-hop unidirectional CLPRE scheme is 2nd-IND-CLPRE-ATK secure if t
is polynomial with respect to security parameter λ and ε is negligible.

Definition 3. Security of First Level Ciphertexts (1st-IND-CLPRE-
ATK). We merely describe the difference between Definitions 2 and 3 as follows:

– Since first level ciphertexts cannot be re-encrypted, Ai (i ∈ {I, II}) is granted
access to all re-encryption keys. The re-encryption oracle becomes useless since
all re-encryption keys are available to Ai.

– Derivatives of the challenge ciphertext are simply defined as (ID∗, C∗) is a
derivative of itself.

– For challenge query issued by Ai, Ai is required to provide the delegator ĨD,
the delegatee ID∗ and two equal length plaintexts m0,m1 ∈ M. The challenge
ciphertext is then generated by the re-encryption process. Specifically, C∗ =
ReEncrypt(params, RK

˜ID→ID∗ ,Encrypt(params, ĨD, P̃K,mβ)) where

β
$←− {0, 1}. Note that Type I adversary AI disallows replace the public

key of ĨD before the challenge phase, otherwise the challenge ciphertext C∗

can not be generated correctly. We also require that Ai for both i = I and
i = II cannot issue the private key extract query for ĨD. Since the construc-
tion of our CLPRE schemes (cf. Sect. 4) has the original access [1] property,
the restriction is necessary. Obviously, ID∗ is uncorrupted.

A single-hop unidirectional CLPRE scheme is said to be (t, ε)-1st-IND-CLPRE-
ATK secure if for any t-time 1st-IND-CLPRE-ATK adversary Ai we have
Adv1st−IND−CLPRE−ATK

Game i, Ai
(λ) = |Pr[β′ = β] − 1

2 | < ε for both i = I and i = II.

Definition 4 (CLPRE-ATK Security). We say a CLPRE scheme is CLPRE-
ATK secure where ATK ∈ {CPA,CCA} if the scheme is 1st-IND-CLPRE-ATK
secure and 2nd-IND-CLPRE-ATK secure.

Certificateless Proxy Re-Encryption Without Pairings 83

C Security Proof of Theorem 1

We shall accomplish our proof with two following lemmas. Lemmas 1 and 2
show that the proposed CLPRE1 scheme is 2nd-IND-CLPRE-CPA secure and
1st-IND-CLPRE-CPA secure respectively.
Lemma 1. The proposed CLPRE1 scheme is 2nd-IND-CLPRE-CPA secure in
the random oracle model, if the CDH assumption holds in G and the Schnorr
signature is EUF-CMA secure.

Firstly, we prove that the proposed CLPRE1 scheme is 2nd-IND-CLPRE-
CPA secure against Type I adversary AI in the random oracle model. In partic-
ular, if there exists a 2nd-IND-CLPRE-CPA Type I adversary AI against our
CLPRE1 scheme with advantage ε when running in time t, making qpk pub-
lic key request queries, qpak partial key extract queries, qprk private key extract
queries, qpr public key replacement queries, qrk re-encryption key extract queries
and qHi

random oracle queries to Hi (1 � i � 4). Then, for any 0 < υ < ε, there
exists

– either an algorithm B to solve the (t′, ε′)-CDH problem in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qpk + qpak + qprk + qpr + qrk)O(1)
+ (2qpk + qpak + 2qprk + 3qrk)te

ε′ ≥ 1
qH2

(
2(ε − υ)

e(1 + qprk + qrk)
− τ

)

where te denotes the running time of an exponentiation in group G, e denotes
the base of the natural logarithm and τ denotes the advantage that AI can
distinguish the incorrectly-formed re-encryption keys in our simulation from
all correctly-formed re-encryption keys in a “real world” interaction.

– or an attacker who breaks the EUF-CMA security of the Schnorr signature
with advantage υ within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, υ)-
EUF-CMA secure. Suppose there exists a t-time 2nd-IND-CLPRE-CPA Type I
adversary AI who can break the 2nd-IND-CLPRE-CPA security of our CLPRE1
scheme with advantage ε − υ. Then we show how to construct an algorithm B
which can solve the (t′, ε′)-CDH problem in group G.

Suppose B is given a CDH challenge tuple (g, ga, gb) ∈ G
3 with unknown a, b

$←−
Z

∗
q as input. The goal of B is to compute the gab. B can act as the challenger

and play the 2nd-IND-CLPRE-CPA “Game I” with AI as follows.
Setup.B computes y = gx where x

$←− Z
∗
q and gives (G, q, g, y, n,H1,H2,H3,H4)

to AI as params, where H1,H2,H3,H4 are random oracles controlled by B.

Random Oracle Queries. Algorithm B maintains four hash lists HList
1 , HList

2 ,
HList

3 and HList
4 which are initially empty, and responds as follows:

84 K. Yang et al.

– H1 queries: On receiving a query (ID, ω) to H1:
1. If 〈(ID, ω), e〉 has appeared in the HList

1 , return e as answer.
2. Otherwise, pick a random e ∈ Z

∗
q , add 〈(ID, ω), e〉 to HList

1 and return e
as answer.

– H2 queries: On receiving a query K to H2:
1. If 〈K,R〉 has appeared in the HList

2 , return R as answer.
2. Otherwise, pick a random R ∈ {0, 1}n, add 〈K,R〉 to HList

2 and return R
as answer.

– H3 queries: On receiving a query (k1, k2, ID1, PK1, ID2, PK2) to H3:
1. If 〈(k1, k2, ID1, PK1, ID2, PK2),X〉 has appeared in the HList

3 , return X
as answer.

2. Otherwise, pick a random X ∈ Z
∗
q , add 〈(k1, k2, ID1, PK1, ID2, PK2),X〉

to HList
3 and return X as answer.

– H4 queries: On receiving a query μ to H4:
1. If 〈μ, δ〉 has appeared in the HList

4 , return δ as answer.
2. Otherwise, pick a random δ ∈ Z

∗
q , add 〈μ, δ〉 to HList

4 and return δ as
answer.

Phase 1: B responds a series of AI ’s queries as follows:

– Partial key extraction queries: On input ID by AI , the challenger B responds
as below:
1. If 〈ID, (ω, t), s〉 has appeared in PartialkeyList, return (ω, t) as answer.
2. Otherwise, pick a random s ∈ Z

∗
q and compute ω = gs. Run the random

oracle query (ID, ω) to H1 and obtain 〈(ID, ω), e〉 ∈ HList
1 . Compute t =

s + ex mod q, add 〈ID, (ω, t), s〉 to PartialkeyList and return (ω, t) as
answer.

– Public key request queries: On input ID by AI , the challenger B responds as
below:
1. If 〈ID, (ω, μ, φ), coin〉 has appeared in PublickeyList, return PKID =

(ω, μ, φ) as answer.
2. Otherwise, pick a coin ∈ {0, 1} such that Pr[coin = 0] = θ (θ will be

determined later).
3. The challenger B runs the above simulation algorithm for partial key

extraction taking ID as input to get a partial key (ω, t).
4. If coin = 0, pick z, v ∈ Z

∗
q at random and compute μ = gz and φ = gv. Add

〈ID, (t, z, v)〉 to PrivatekeyList and 〈ID, (ω, μ, φ), coin〉 to PublickeyList.
Return PKID = (ω, μ, φ) as answer.

5. Otherwise, pick z, v ∈ Z
∗
q at random and compute μ = (ga)z and φ = gv.

Add 〈ID, (t, ?, v), z〉 to PrivatekeyList and 〈ID, (ω, μ, φ), coin〉 to
PublickeyList. Return PKID = (ω, μ, φ) as answer.

– Private key extraction queries: On input ID by AI , the challenger B can
respond as below:
1. The challenger B runs the above simulation algorithm for public key request

taking ID as input to get a tuple 〈ID, (ω, μ, φ), coin〉 ∈ PublickeyList.
2. If coin = 0, search PrivatekeyList for a tuple 〈ID, (t, z, v)〉 and return

SKID = (t, z, v) as answer.

Certificateless Proxy Re-Encryption Without Pairings 85

3. If coin = ⊥, B returns “Reject”. By coin = ⊥ we denote the case that the
public key for ID has been replaced by AI .

4. Otherwise, B aborts the simulation.
– Replace public key queries: AI can repeatedly replace the public key PKID =

(ω, μ, φ) for any ID with any valid public key PK ′
ID = (ω′, μ′, φ′) of its

choice. On input (ID, PK ′
ID), B checks whether (ω′, μ′, φ′) ∈ G

∗ × G
∗ ×

G
∗. If not, return “Reject”. Otherwise B searches PublickeyList for a tuple

〈ID, (ω, μ, φ), coin〉. If the tuple exists, B sets (ω, μ, φ) = (ω′, μ′, φ′) and
coin = ⊥. Otherwise, add 〈ID, (ω′, μ′, φ′), coin = ⊥〉 to PublickeyList.

– Re-encryption key extraction queries: On input (ID1,ID2) by AI , B runs the
above simulation algorithm for public key request taking ID1 as input to get
a tuple 〈ID1, (ω1, μ1, φ1), coin1〉 ∈ PublickeyList.
1. If coin1 = ⊥, return “Reject”.
2. If coin1 = 0, B searches PrivatekeyList for a tuple 〈ID1, (t1, z1, v1)〉 and

runs the above simulation algorithm for public key request taking ID2 as
input to get a public key (ω2, μ2, φ2). B computes γ2 = ω2y

H1(ID2,ω2) and
X12 = H3(γv1

2 , φv1
2 , ID1, PK1, ID2, PK2). Return RKID1→ID2 =

(t1H4(μ1) + z1) · X12 mod q.

3. Otherwise, return RKID1→ID2

$←− Z
∗
q .

Challenge: On receiving a challenge query (ID∗, (m0,m1)), B responds AI ’s
query as follows:

1. The challenger B runs the above simulation algorithm for public key request
taking ID∗ as input to get a tuple 〈ID∗, (ω∗, μ∗, φ∗), coin∗〉 ∈ PublickeyList.

2. If coin∗ = 0, B aborts the simulation.
3. Otherwise (i.e., coin∗ = 1 since the additional restriction for AI), ω∗ =

gs∗
, μ∗ = (ga)z∗

, B does as follows:
(a) Compute γ∗ = ω∗ye∗

= gs∗+xe∗
where e∗ = H1(ID∗, ω∗) and Y ∗ =

γ∗H4(μ
∗)μ∗.

(b) Set c∗
1 = gb, pick c∗

2 ∈ {0, 1}n and β ∈ {0, 1} at random.
(c) Implicitly define H2(Y ∗b) = H2((gb)(s

∗+xe∗)H4(μ
∗) · (gab)z∗

) = c∗
2 ⊕ mβ

4. Return C∗ = (c∗
1, c

∗
2) as the challenge ciphertext.

Phase 2: Adversary AI continues to issue the rest of queries with the restrictions
described in the 2nd-IND-CLPRE-CPA “Game I”. B responds AI ’s queries as
in Phase 1.
Guess: Finally, AI outputs a guess β′ ∈ {0, 1}. Algorithm B randomly picks a
tuple (K,R) from the list HList

2 . Since we make an additional restriction that
AI cannot replace the public key for ID∗, B knows s∗ and z∗ with respect to

PKID∗ . Thereby, B can compute K ′ =
(

K
(gb)(s

∗+xe∗)H4(µ∗)

)1/z∗

and outputs K ′

as the solution to the given CDH instance.
[Analysis] The main idea of the analysis is borrowed from [9]. Firstly, we eval-
uate the simulations of the random oracles given above. From the construction
of H1, H3 and H4, it’s clear that the simulations of H1, H3 and H4 are perfect.

86 K. Yang et al.

As long as AI does not query Y ∗b to H2, the simulation of H2 is perfect. By
AskH∗

2 we denote the event that Y ∗b has been queried to H2.
Next, we analyse the conditions for abort as follows:

1. The value coin∗ corresponding to ID∗ is 1.
2. For each of AI ’s private key extraction queries on input ID �= ID∗, the coin

corresponding to ID is 0.
3. For each of AI ’s re-encryption key extraction queries on input (ID1,ID2), if

ID1 �= ID∗, the coin1 corresponding to ID1 is 0.

If any of the above conditions are false, B aborts the simulation. Let Abort
denotes the event that B aborts during the simulation. Then Pr[¬Abort] ≥
(1 − θ) · θqprk · θqrk = (1 − θ)θqprk+qrk which is maximized at θ = qprk+qrk

1+qprk+qrk
.

Hence, Pr[¬Abort] ≥ 1
e(1+qprk+qrk)

where e denotes the base of the natural
logarithm.

Next, one can notice that the simulated challenge ciphertext is identically dis-
tributed as the real one from the construction. The simulation of re-encryption
key extraction queries is perfect other than these re-encryption keys RKID∗→ID

where ID is uncorrupted. By F we denote the event that there exists a prob-
abilistic polynomial time (p.p.t.) 2nd-IND-CLPRE-CPA Type I adversary A′

I

which can distinguish the incorrectly-formed re-encryption keys in our simula-
tion from all correctly-formed re-encryption keys in a “real world” interaction.
By τ denotes the probability that the event F occurs. We make a separate argu-
ment if Pr[F] = τ is non-negligible, then we can construct an algorithm B′

who can solve the CDH problem in G with a non-negligible probability. Due to
the space limit, the separate argument will be given in the full paper. By the
separate argument, we can obtain that Pr[F] = τ is negligible under the CDH
assumption.

Now we define an event E to be (AskH∗
2 ∨F)|¬Abort. If E does not happen, it

is clear that AI does not gain any advantage in guessing β due to the randomness
of the output of the random oracle H2. Namely, we have Pr[β′ = β|¬E] = 1

2 .
Hence, by splitting Pr[β′ = β], we have Pr[β′ = β] = Pr[β′ = β|¬E]Pr[¬E] +
Pr[β′ = β|E]Pr[E] ≤ 1

2Pr[¬E]+Pr[E] = 1
2+ 1

2Pr[E] and Pr[β′ = β] ≥ Pr[β′ =
β|¬E]Pr[¬E] = 1

2 − 1
2Pr[E].

By the definition of advantage (ε − υ) for the 2nd-IND-CLPRE-CPA Type
I adversary AI , we have ε − υ = |Pr[β′ = β] − 1

2 | ≤ 1
2Pr[E] = 1

2Pr[(AskH∗
2 ∨

F)|¬Abort] ≤ 1
2Pr[¬Abort] (Pr[AskH∗

2] + Pr[F]).
Since Pr[¬Abort] ≥ 1

e(1+qprk+qrk)
and Pr[F] = τ , we obtain Pr[AskH∗

2] ≥
2(ε−υ)

e(1+qprk+qrk)
− τ .

If AskH∗
2 happens then B will be able to solve the CDH instance.

Hence, we obtain ε′ ≥ 1
qH2

(
2(ε−υ)

e(1+qprk+qrk)
− τ

)
. �

The security proof against Type II adversary AII is analogous. Due to the space
limit, we omit the details. The probability loss of the reduction is the same as
the security proof against AI . Note that the Type II adversary AII has the
master-key and can not replace public keys of entities.

Certificateless Proxy Re-Encryption Without Pairings 87

Lemma 2. The proposed CLPRE1 scheme is 1st-IND-CLPRE-CPA secure in
the random oracle model, if the CDH assumption holds in G and the Schnorr
signature is EUF-CMA secure.
Due to lack of space, the proof of this lemma will be given in the full paper. We
re-write C ′

B = 〈gXAB r̃,m ⊕ H2(gr̃)〉 where r̃ = (tAH4(μA) + zA)r mod q. Then,
1st-IND-CLPRE-CPA security of the proposed CLPRE1 scheme is following the
fact that the first level ciphertext C ′

B is indeed a “hashed” CPA-secure ElGamal
encryption where the associated secret key XAB can merely be computed by the
delegator A or delegatee B.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: a generic construction and
efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415.
Springer, Heidelberg (2005)

4. Avanzi, R.M.: The complexity of certain multi-exponentiation techniques in cryp-
tography. J. Cryptology 18(4), 357–373 (2005)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

6. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

7. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. Proc. ACM CCS 1993, 62–73 (1993)

9. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without
pairing. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol.
3650, pp. 134–148. Springer, Heidelberg (2005)

10. De Caro, A.: jPBC Library - The Java Pairing Based Cryptography Library (2013).
http://gas.dia.unisa.it/projects/jpbc/. Accessed May 2013

11. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. Proc.
ACM CCS 2007, 185–194 (2007)

12. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010)

13. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-ciphertext secure proxy re-
encryption without pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
CANS 2008. LNCS, vol. 5339, pp. 1–17. Springer, Heidelberg (2008)

14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

http://gas.dia.unisa.it/projects/jpbc/

88 K. Yang et al.

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

16. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

17. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R.,
Zhao, Y.: Generic construction of chosen ciphertext secure proxy re-encryption. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer,
Heidelberg (2012)

18. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: Proceedings of NDSS’03.
The Internet Society (2003)

19. Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger security
model extended from CT-RSA2012. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 277–292. Springer, Heidelberg (2013)

20. Lynn, B.: PBC Library - The Pairing-Based Cryptography Library (2013). http://
crypto.stanford.edu/pbc/. Accessed May 2013

21. Libert, B., Quisquater, J.-J.: On constructing certificateless cryptosystems from
identity based encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 474–490. Springer, Heidelberg (2006)

22. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inf. Theory 57(3), 1786–1802 (2011)

23. Menezes, A., van Oorschot, P.C., Vanstone, S.: Handbook of Applied Cryptogra-
phy, 1st edn. CRC Press, Boca Raton (1997)

24. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

25. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

26. Sur, C., Jung, C.D., Park, Y., Rhee, K.H.: Chosen-ciphertext secure certificateless
proxy re-encryption. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS 2010.
LNCS, vol. 6109, pp. 214–232. Springer, Heidelberg (2010)

27. Smith, T.: DVD jon: Buy DRM-less tracks from Apple iTunes, January 2005.
http://www.theregister.co.uk/2005/03/18/itunes pymusique

28. Solinas, J.: Low-weight binary representations for pairs of integers. Technical report
CORR 2001–41 (2001). http://cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

29. Sun, Y., Zhang, F.T., Baek, J.: Strongly secure certificateless public key encryption
without pairing. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.)
CANS 2007. LNCS, vol. 4856, pp. 194–208. Springer, Heidelberg (2007)

30. Xu, L., Wu, X., Zhang, X.: CL-PRE: a certificateless proxy re-encryption scheme
for secure data sharing with public cloud. In: Proceedings of the 7th ACM Sym-
posium on Information, Computer and Communications Security, pp. 1–10 (2012)

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://www.theregister.co.uk/2005/03/18/itunes_pymusique
http://cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

Side Channel Analysis
and Its Countermeasures

Enabling 3-Share Threshold Implementations
for all 4-Bit S-Boxes

Sebastian Kutzner1,2, Phuong Ha Nguyen1,2(B), and Axel Poschmann1,2

1 PACE Temasek Laboratories, Nanyang Technological University,
Singapore, Singapore

2 Division of Mathematical Sciences, SPMS, Nanyang Technological University,
Singapore, Singapore

{skutzner,aposchmann}@ntu.edu.sg, phuongha.ntu@gmail.com

Abstract. Threshold Implementation (TI) is an elegant and promis-
ing lightweight countermeasure for hardware implementations to resist
first order Differential Power Analysis (DPA) in the presence of glitches.
Unfortunately, in its most efficient version with only three shares, it
can only be applied to 50% of all 4-bit S-boxes so far. In this paper, we
introduce a new approach, called factorization, that enables us to protect
all 4-bit S-boxes with a 3-share TI. This allows—for the first time—to
protect numerous important ciphers to which the 3-share TI counter-
measure was previously not applicable, such as CLEFIA, DES, DESL,
GOST, HUMMINGBIRD1, HUMMINGBIRD2, LUCIFER, mCrypton,
SERPENT, TWINE, TWOFISH among others. We verify the security
and correctness with experiments on simulations and real world power
traces and finally provide exemplary decompositions of all those S-boxes.

1 Introduction

In 1996, Paul Kocher [13] showed that although a cryptographic algorithm is
theoretically secure, when implemented on ordinary digital circuits, the physical
side-effect observed during the processing of the algorithm, such as the timing,
power [14], or electromagnetic emanation [10], could potentially leak information
if properly analyzed. Though the existence of these so-called side-channels have
been known since 1943 [23], Kocher’s work marks the beginning of the (pub-
lic) research in the field of side-channel analysis, and powerful attacks, such as
Simple Power Analysis (SPA) [14], Differential Power Analysis (DPA) [14], Cor-
relation Power Analysis (CPA) [6], and Mutual Information Analysis (MIA) [11]
have been developed since. At the same time ever more sophisticated coun-
termeasures have been proposed. Most countermeasures aim at decreasing the
signal-to-noise ratio (SNR) [17] by balancing the leakage, that is hiding the
information processed [27] and/or breaking the link between the processed data
and the secret, which is called masking [7]. However, in [18,19] it was shown that
masking is still vulnerable to DPA due to the presence of glitches in hardware

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 91–108, 2014.
DOI: 10.1007/978-3-319-12160-4 6

92 S. Kutzner et al.

implementations. For that reason, a secret-sharing based countermeasure called
Threshold Implementation (TI) [24] was proposed in 2006, that is provably secure
against first-order DPA even in the presence of glitches. A few follow-up papers
have discussed mostly applications to 4-bit S-boxes [5,24–26] and implementa-
tions of TI have been reported for PRESENT [28], AES [20] and KECCAK [2,3].

In its most resource-efficient form the TI countermeasure needs only 3 shares,
which implies the function that is to be shared can have at most an alge-
braic degree of 2. In order to apply a 3-share TI to a function with a larger
degree (4-bit S-boxes typically have a degree of 3), this function, for minimal
area requirements,1 should be represented as a composition of quadratic func-
tions [28]. According to [25,28] there are two stages in applying the 3-share
TI: the decomposition stage, during which a given S-box is decomposed into
quadratic permutations, and the sharing stage, during which all those quadratic
permutations are shared into 3 shares in a way that we obtain 12-bit permu-
tations. According to [5], all 4-bit S-boxes that can be protected by a 3-share
TI using the sequential structure, belong to the alternating group A16 of the
symmetric group S16. This result implies that we cannot apply a 3-share TI to
those 50 % of all 4-bit S-boxes which do not belong to A16.

Our main contribution is the introduction of the factorization structure which
is an extension of the sequential structure. This idea allows to decompose any
4-bit S-box into quadratic vectorial Boolean functions and, hence, enables to
protect any given 4-bit S-box with the TI countermeasure using only 3 shares.

To support our claims we show how to apply the 3-share TI to SERPENT
and many other 4-bit S-boxes, what, up to now, was believed to be not possible.

The remainder of this article is organized as follows. In Sect. 2, we recall the
basics of the Threshold Implementation countermeasure. Then we will discuss
how to decompose any 4-bit S-box into quadratic decompositions, i.e., studying
the decomposition stage in Sect. 3. Subsequently, we show how to share each
quadratic decomposition in a way that the uniformity property is fulfilled, i.e.,
being a 12-bit permutation, in Sect. 4. We verify our claims by successfully apply-
ing the 3-share TI countermeasure to the S-box S5 of SERPENT, which does not
belong to A16. Our experimental results, provided in Sect. 5, verify that the pro-
tected S5 implementation is secure against first-order DPA attacks. The paper
is concluded in Sect. 6 and in the appendix we list 3-share TIs for S-boxes and
important permutations which are not in A16, and thus, previously could not
have been protected by 3-share TIs.

2 Threshold Implementation

In this section we recall the preliminaries of the Threshold Implementation coun-
termeasure and the results of [28] describing a 3-share TI of PRESENT.

1 See Sect. 5 for our detailed line of argumentation.

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 93

2.1 Threshold Implementation Countermeasure

In [24], the Threshold Implementation (TI) was introduced as a side-channel
analysis countermeasure. It is based on secret sharing and multi-party com-
putation and provably secure against first order DPA, even in the presence of
glitches. Let denote by small characters x, y, ... stochastic variables and by cap-
itals X, Y , ... samples of these variables. The probability that x takes the value
X is denoted by Pr(x = X). The variable x is divided into s shares xi, 1 ≤
i ≤ s, such that x =

⊕s
i=1 xi. Denote x̄ = (x1, . . . , xi−1, xi, xi+1, . . . , xs), x̄i =

(x1, . . . , xi−1, xi+1, . . . , xs) (or the vector x̄i does not contain the share xi) and
denote by Pr(x̄ = X̄|x = X) the conditional probability of an event that
x̄ = X̄ under condition x = X. The method can be described as follows. Let
F(x, y, z, . . .) be a vectorial Boolean function which needs to be shared. A shar-
ing of F is a set of s functions Fi which it must fulfill the following properties:

1. Non-completeness: All functions Fi must be independent of at least one
share of the input variables x, y, z, . . . This can be translated to Fi should
be independent of xi, yi, zi, . . . , i.e., the inputs of Fi does not have xi, yi, zi,
. . . or Fi = Fi(x̄i, ȳi, z̄i, . . .).

2. Correctness: F(x, y, z, . . .) =
⊕s

i=1 Fi(x̄i, ȳi, z̄i, . . .).

According to Theorems 2 and 3 of [24–26], if the inputs satisfy the following
condition

Pr(x̄ = X̄, ȳ = Ȳ , . . .) = q × Pr(x =
s⊕

i

Xi, y =
s⊕

i

Yi, . . .), (1)

where q is a constant or Pr(x̄ = X̄, ȳ = Ȳ , . . . |x =
⊕s

i Xi, y =
⊕s

i Yi, . . .) is a
constant, then the sharing of F can resist first order DPA even in the presence
of glitches.

In general, F is a round function (or a nonlinear function) and its output
is the input of next round (or of next nonlinear function). Hence, the following
property for the output of F is required in order to make the cipher resistant
against first order DPA in the presence of glitches. Assume that (u, v, . . . , w) =
F (x, y, . . . , z) and u =

⊕s
i=1 ui, ū = (u1, u2, . . . , us), . . ., w =

⊕s
i=1 wi, w̄ =

(w1, w2, . . . , ws), then the third property is defined as follows:
3. Uniformity: A shared version of (u, v, . . . , w) = F (x, y, . . . , z) is uniform, if

Pr(ū = Ū , . . . , w̄ = W̄) = q × Pr(u =
⊕s

i Ui, . . . , w =
⊕s

i Wi) where q is a
constant or Pr(ū = Ū , . . . , w̄ = W̄ |u =

⊕s
i Ui, . . . , w =

⊕s
i Wi) is a constant.

If the function u = F (x) is invertible, then every vector ū is reached for
exactly one input vector x̄. In this paper, the function F is a 4-bit S-box which
is a 4-bit permutation. Hence, its 3-share TI is required to be 12-bit permutation.

All 4-bit permutations constitute the symmetric group S16 [12]. The identity
permutation is an even permutation. An even permutation can be obtained as
the composition of an even number and only an even number of exchanges (called
transpositions) of two elements, while an odd permutation can be obtained by

94 S. Kutzner et al.

(only) an odd number of transpositions [12]. All 4-bit even permutations in S16

constitute a subgroup which is called the alternating group A16. Let B16 be the
set of all 4-bit odd permutations or B16 = S16\A16.

Assume that the degree of F is d, then the number of shares s required is
computed as follows:

Theorem 1. [25] The minimum number of shares required to implement a prod-
uct of d variables satisfying Properties 1 and 2 is given by

s ≥ 1 + d.

Since the minimum degree of a nonlinear vectorial Boolean function is 2,
the number of shares s is at least 3. The more shares are needed, the bigger
the hardware implementation. Therefore, a 3-share TI is the most efficient—and
thus, most desirably–case.

2.2 3-Share TI for Cubic 4-Bit S-Boxes

In this section we revisit the results of [28] describing a 3-share TI of PRESENT.
Since the PRESENT S-box S(·) is a cubic 4-bit permutation, the minimum
number of shares is 4 [25]. To apply 3-share TI, the S-box is decomposed into
two quadratic permutations S(·) = F (G(·)) as shown in Fig. 1, i.e., transforming
it into a sequential structure.

Fig. 1. Composition of the PRESENT S-box [28].

According to [25,28] there are two stages in applying 3-share TI to a 4-bit
S-box when using a sequential structure:

1. Decomposition: Finding the decompositions of a given S-box, which are
required to be quadratic permutations.

2. Sharing: Constructing the 3-share TIs for those quadratic permutations.
Their shared versions should fulfill all three requirements, most importantly
uniformity, i.e., the shared versions must be 12-bit permutations.

Note 1. In the sharing stage, constructing a 3-share TI satisfying non-
completeness property and correctness property to any 4-bit at most quadratic
permutation is not difficult. Unfortunately it does not guarantee that its 3-share
TI is a 12-bit permutation, i.e., it is not guaranteed that the uniformity prop-
erty is satisfied. For that purpose, the so-called remasking technique [25] may
be applied, which remasks the input(s) of next round or the input(s) of the next
function with fresh (and uniformly distributed) random bits.

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 95

In this paper, we discuss how to decompose an arbitrary 4-bit S-box first
(decomposition stage), before we show how to obtain its 3-share TIs of decom-
positions which are 12-bit permutations. It means that these 3-share TIs satisfy
the uniformity without using the remasking method, which is a significant advan-
tage, as the generation of random bits suitable for cryptographic masking can
be very expensive on embedded devices.

Note 2. In order to apply 3-share TI to any arbitrary 4-bit S-box, we have
to extend the decomposition and the sharing stages. Those extensions yield the
factorization structure, our main contribution in this article. We will detail these
extensions in Sect. 3.2.

3 The Decomposition Stage

In this section we investigate the decomposability of 4-bit S-boxes. In Sect. 3.1,
we will recall the results from [5]. If a 4-bit S-box can be decomposed in a
sequential structure then it must belong to the alternating group A16. In order
to apply a 3-share TI to the remaining 50 % of 4-bit S-boxes which are in B16,
we extend the sequential structure by using our new idea: Factorization, which
yields the factorization structure. Our contribution allows to decompose any
4-bit S-box.

3.1 Decomposition of 4-Bit S-Boxes Using a Sequential Structure

Assume that S(·) = F (. . . G(H(·))) and if S is a permutation then all its
decompositions H,G, . . . , F have to be permutations as well. Hence, if S is a
4-bit permutation then H,G, . . . , F are also 4-bit permutations. We recall the
following important result about permutations in S16.

Theorem 2. [5] If a permutation F (·) is a composition of quadratic permuta-
tions, then F (·) is in A16.

However, 50 % of all 4-bit S-boxes are not decomposable using a sequential
structure, i.e., all those S-boxes belong to B16. Hence, there is no method known
so far on how to apply 3-share TIs to those S-boxes. We now introduce a new
methodology to solve this open problem.

3.2 Decomposition of 4-Bit S-Boxes Using a Factorization Structure

We start with a very simple example, i.e., decomposing a cubic term. The Alge-
braic Normal Form (ANF) of a cubic 4-bit S-box contains at least one cubic
term. Without loss of generality, we first assume that the ANF contains only
one cubic term T (w, z, y, x) = (d, c, b, a) = (xyz, 0, 0, 0). The input bits of T are
x, y, z, w and the output bits of T are a, b, c, d. The left most bit represents the

96 S. Kutzner et al.

most significant bit and the right most bit represents the least significant bit,
respectively. The ANF of T is:

d = xyz

c = 0
b = 0
a = 0.

We can also write T as follows:

T (·) = F (G(·)) ⊕ V (·),

where F , G and V are the following quadratic vectorial Boolean functions:

G :

d = xy ⊕ w
c = z
b = y
a = x.

F :

d = zw
c = 0
b = 0
a = 0.

V :

d = zw
c = 0
b = 0
a = 0.

As one can see, using this approach, it is possible to represent a cubic term
of an ANF by a set of quadratic vectorial Boolean functions. By applying this
approach term-by-term, it is possible to decompose any cubic vectorial Boolean
function, including odd permutations. This observation results in the following
theorem.

Theorem 3. For any given 4-bit S-box S we can always find a set of quadratic
vectorial Boolean functions Fi, Gi, 1 ≤ i ≤ n, and V such that:

S(·) =
n⊕

i=1

Fi(Gi(·)) ⊕ V (·).

We call the format above factorization structure and we summarize the idea for
the decomposition stage in Fig. 2.

In order to make our idea clear, we provide another example, the 4-bit odd
permutation M = [0, 1, 2, 3, 4, 5, 6, 15, 8, 9, 10, 11, 12, 13, 14, 7]. Its ANF is:

d = w ⊕ xyz

c = z

b = y

a = x.

Please note that the example above is only one out of many choices for M .
We chose M for its simplicity and implementation efficiency. The permutation
M can be factorized as follows:

M(·) = M2(M1(·)) ⊕ M3(·).

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 97

Fig. 2. Flowchart of the decomposition stage for a given 4-bit S-box.

Where the ANFs of M1, M2, and M3 are:

M1 :

d = xy ⊕ w
c = z
b = y
a = x.

M2 :

d = zw
c = 0
b = 0
a = 0.

M3 :

d = zw ⊕ w
c = z
b = y
a = x.

3.3 Decomposition of 4-Bit S-Boxes Using a Hybrid Structure

We will discuss the sharing stage in Sect. 4 where we ensure that the 3-share TI
of a 4-bit S-box is a 12-bit permutation, i.e., the 3-share TI fulfills the uniformity
property. Please note that the sharing stage for sequential structures is not
complicated, and we will show how to solve this problem in Sect. 4.1.

Sharing a factorization structure, however, without using the remasking
method to fulfill the uniformity is a challenge, and it is extremely difficult for
4-bit S-boxes which have many cubic terms. In order to make the workload in
the sharing stage easier, we propose the following approach:

98 S. Kutzner et al.

Fig. 3. Hybrid structure.

1. If a given S-box S is in A16 (S is an even permutation) then we use the
method in Sect. 4.1.

2. If a given S-box S is in B16 (S is an odd permutation) then:
(a) Construct a 4-bit odd permutation M that can be shared into a 12-bit

permutation, for example M = [0, 1, 2, 3, 4, 5, 6, 15, 8, 9, 10, 11, 12, 13, 14, 7].
This permutation is decomposed by using a factorization structure and it
can be ensured that its 3-share TI is a 12-bit permutation, i.e., permutation
M satisfies uniformity. This will be shown in Sect. 4.2.

(b) Since M and S are odd permutations, the permutation S
′
such that S(·) =

M(S
′
(·)) is an even permutation, i.e., S

′
is in A16 [12]. Then we apply the

result in Sect. 4.1 to share the decompositions of S
′
.

Actually, the method above is a hybrid structure between a sequential struc-
ture and a factorization structure. This hybrid structure is very useful, because
it can help us to fulfill the uniformity property without using remasking, thus
we will work with the hybrid structure instead of a plain factorization structure.
Figure 3 depicts the hybrid structure.

So far, we already presented how to decompose a given 4-bit S-box. If the
given S-box is in A16 we use a sequential structure, otherwise we use a hybrid
structure which is a mixture of a sequential and a factorization structure.

Now that the decomposition stage is done, we can move on to the sharing
stage, which will be treated in the next section. It is interesting to see how
to construct the 3-share TIs of these decompositions such that they are 12-
bit permutations, i.e., they fulfill the uniformity property without using the
remasking method.

3.4 Application to Important S-Boxes in B16

In the appendix we list decompositions of S-boxes in B16, that are used by the
following algorithms: CLEFIA [32], DES [22], DESL [15], GOST [35], HUM-
MINGBIRD1 [9], HUMMINGBIRD2 [8], LUCIFER [33], mCrypton [16], SER-
PENT [4], TWINE [34], TWOFISH [31], and the Inversion (x−1) function in
GF (24) which is used in mCrypton [16] or in [20]. Previously, all of these algo-
rithms could not have been protected by a 3-share TI.

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 99

4 The Sharing Stage

In this section, we discuss how to make 3-share TIs of decompositions of a
given 4-bit S-box being 12-bit permutations. Since the given S-box can belong
to A16 or B16, we have two structures: a sequential structure, which is treated in
Sect. 4.1, and a hybrid structure, which is composed of a sequential structure and
a factorization structure. Consequently, in Sect. 4.2 we will treat the factorization
structure, and we will also discuss its security, i.e., why it resists first order DPA
in the presence of glitches and why it satisfies uniformity.

4.1 Sharing Stage Using a Sequential Structure

In this subsection, we discuss how to share the decompositions of a given S-box
S in A16. We adopt the sharing in [24,25,28]. For a given function F (w, z, y, x)
and inputs x, y, z, w, they are split into 3 shares F1, F2, F3, x1, . . ., w3. For
monomials involving two indices, it is obvious which Fi to place them in. For
example, we must place monomials y1w2 and z2w1 in F3. For monomials involv-
ing just one index, e.g., x1 or y2w2, we adopt the convention that terms with
index 1 (resp. 2, 3) are placed in F3 (resp. F1, F2). The constant term is placed in
F1. In [5], this approach is called direct sharing. For example a given Boolean
function f = xy ⊕ z ⊕ 1 then the 3-share TI by using the direct sharing is as
follows:

f1 = z2 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2 ⊕ 1
f2 = z3 ⊕ x3y3 ⊕ x1y3 ⊕ x3y1

f3 = z1 ⊕ x1y1 ⊕ x1y2 ⊕ x2y1

According to [5], all 4-bit permutations in A16 can be decomposed by using
a sequential structure and their 3-share TIs satisfy uniformity by simply using
direct sharing.

4.2 Sharing Stage Using a Factorization Structure

The sharing stage for S-boxes in B16 is detailed here. As we have already pointed
out, it is better to use a hybrid structure to decompose an S-box in B16. In
the previous section, based on [5], we already saw that all 3-share TIs of 4-bit
permutations in A16 can be made being 12-bit permutations by using direct
sharing. Hence, we only focus on the 3-share TI of M , i.e., the 3-share TIs of the
quadratic vectorial Boolean functions M1, M2, M3. Let denote Ms, Ms1 , Ms2 ,
Ms3 as 3-share TIs of M , M1, M2, M3, respectively.

The ANF of the 12-bit Ms1 of M1 is:

d1 = w2 ⊕ y2x2 ⊕ y2x3 ⊕ y3x2

d2 = w3 ⊕ y3x3 ⊕ y1x3 ⊕ y3x1

d3 = w1 ⊕ y1x1 ⊕ y1x2 ⊕ y2x1

100 S. Kutzner et al.

c1 = z2

c2 = z3

c3 = z1

b1 = y2

b2 = y3

b3 = y1

a1 = x2

a2 = x3

a3 = x1.

The ANF of the 12-bit Ms2 of M2 is:

d1 = z2w2 ⊕ z2w3 ⊕ z3w2

d2 = z3w3 ⊕ z1w3 ⊕ z3w1

d3 = z1w1 ⊕ z1w2 ⊕ z2w1

c1 = 0
c2 = 0
c3 = 0
b1 = 0
b2 = 0
b3 = 0
a1 = 0
a2 = 0
a3 = 0.

The ANF of the 12-bit Ms3 of M3 is:

d1 = w2 ⊕ z3w3 ⊕ z2w3 ⊕ z3w2

d2 = w3 ⊕ z1w1 ⊕ z1w3 ⊕ z3w1

d3 = w1 ⊕ z2w2 ⊕ z1w2 ⊕ z2w1

c1 = z2

c2 = z3

c3 = z1

b1 = y2

b2 = y3

b3 = y1

a1 = x2

a2 = x3

a3 = x1.

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 101

Then Ms = Ms2(Ms1(·))⊕Ms3(·) is a 12-bit permutation and thus M fulfills
uniformity. Note that all the sharings of all decompositions of M are found by
hand due to the simplicity of their ANF.

Note 3. Studying Fig. 3 allows to observe the following:

1. Among three quadratic vectorial Boolean functions M1, M2, M3, only M1 is
a 4-bit permutation and Ms1 is a 12-bit permutation. Hence, M1 satisfies the
uniformity property.

2. It is obvious that Ms2 and Ms3 do not fulfill the uniformity property. However,
both functions are not required to satisfy uniformity, only their XOR sum has
to (as this will potentially be the input to a subsequently shared function).
Instead both functions Ms2 and Ms3 only need to satisfy non-completeness
and correctness, and their inputs need to fulfill Eq. 1, in order to resist first
order DPA in the presence of glitches (Theorems 2 and 3 in [24–26]).

3. The output of Ms is the result of XORing the outputs of Ms2 and Ms3 .
Since an XOR is a linear operation (i.e., having degree 1), only outputs from
the same share are combined together. This means, this operation is first
order DPA resistant in the presence of glitches, as potential leakage will only
depend on a single share, but information of all three shares are required for
a successful DPA.

4. Since M is in B16 and Ms is a 12-bit permutation, the 3-share TI of M
satisfies uniformity. It means our proposed hybrid structure is secure.

5. We will present experimental results for supporting our theoretical arguments
about the security of our proposed structure in the next section.

5 Experiments

To verify the correctness and security of our new scheme we decomposed and
shared the SERPENT S-box S5 as described in the previous sections. The decom-
position formulas for all stages can be found in the Appendix. We ensured that
every stage of the shared S-box fulfills all requirements given in [24], especially
the uniformity property. It should also be noted that a register has to be inserted
in between every decomposition stage. Figure 5 shows a schematic of the hard-
ware implementation.

First, several attacks were mounted on noise-free simulated power traces
(assuming a HW leakage), i.e., CPA attacks on all (intermediate) registers. Nei-
ther of the attacks revealed the correct key hypothesis, hence supporting our
claims. For testing purposes we also attacked a non-uniform implementation of
S5, i.e., M3 was varied such that the XOR-output is not uniform. Here, a CPA
attack on the output register was successful, proving (again) the importance of
the uniformity property.

Next, we implemented the (uniform) shared S-box as shown in Fig. 5 on
an FPGA, i.e., a SASEBO-GII. To synthesize the design we used Xilinx ISE
Webpack 13.3. The FPGA hosting the S-box ran at 2 MHz derived from the
24 MHz on-board oscillator. 20,000,000 measurements were taken at 1.25 GS/s

102 S. Kutzner et al.

(a) CPA results attacking the SERPENT
S-box S5.

(b) Correlation-enhanced collision attack

Fig. 4. Attack Results

(625 samples per clock cycle) and a CPA was performed, using the Hamming
distance between the outputs of two consecutive S-box lookups as the attack
model. Furthermore, we mounted a correlation-enhanced collision attack [21] to
test the resistance against glitches, as failing attacks on registers do not nec-
essarily prove the security of a scheme [19]. Figure 4 shows the results of both
attacks. The first clock edge is at sample 125. One S-box computation takes four
clock cycles, thus the computation is finished at sample 2625. As we can see, in
neither of both attacks does the correct hypothesis yield the highest correlation.

Efficiency of 3-share TI for 4-bit Sboxes based on hybrid structure:
One of important factors in masking countermeasure is randomness. Generating
a random number used for cryptographic purpose is very expensive in terms of
time and power consumption because at least one full encryption of a cipher
should be processed (hash function, block cipher, ...) [1,30]. Therefore, the num-
ber of random numbers used should be as small as possible in crypto system. In
lightweight crypto designs the serialized implementation and 4-bit S-boxes are
preferred due to their hardware compactness. Reference [5] has provided 3-share
TIs of all 4-bit S-boxes in A16 and 4- and 5-share TIs for the other in B16. Some
of the 4- and 5-share TIs require less area than the corresponding 3-share TI
with hybrid structure. Thus, the authors concluded that a 3-share realization
may not be the optimal case in terms of hardware. However, it should be noted
that all shares need to be maintained (i.e. stored) throughout the whole encryp-
tion process. In a lightweight setting, i.e. serialized implementation, the S-box
layer contributes only 15 % to the whole area [28], while the registers take the
lion’s share. Thus any reduction of the number of shares will reduce the overall
gate count significantly at the potential cost of a slightly larger S-box. Hence, in
all cases (with or without using remasking method) a 3-share TI is much more
efficient than 4- and 5-share TI in terms of hardware and randomness (or time
and power consumption).

It is well-known that the number of shares can be reduced to 2 for the lin-
ear layer to reduce the storage overhead for the shares. However, this approach
requires extensive use of fresh randomness which is an expensive resource espe-
cially in embedded systems for the remasking step. The more shares are used
in the non-linear part, the more randomness is required. Thus this approach

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 103

nullifies the elegance of TI as a lightweight DPA countermeasure (only needing
randomness once in the beginning), and consequently it is convinced the 3-share
case is the most optimal in all aspects.

6 Conclusion

Threshold Implementation (TI) [24] is an elegant and promising lightweight
countermeasure for hardware implementations to resist first order Differential
Power Analysis (DPA) in the presence of glitches. The most challenging part in
applying TI to ciphers are the non-linear functions, e.g., the S-boxes for block
ciphers. To implement TI in its most efficient version, namely with only three
shares, the functions to be shared have to have a degree smaller than three. For
50 % of all S-boxes this requirement can be fulfilled by decomposing an S-box of
degree three to several functions with a smaller degree [5,28]. After decomposi-
tion, the quadratic and linear functions can now be split into three shares.

Unfortunately, for the other 50 % of the S-boxes, said method can not be
applied. Therefore, we introduced the factorization structure which enables us
to decompose those functions of degree three, which previously were deemed
to be not decomposable, to several quadratic and linear functions. It should be
noted that the shared version of a function has to fulfill certain properties to be
secure, namely correctness, non-completeness and uniformity. Using the factor-
ization structure exacerbates fulfilling those requirements; especially the unifor-
mity property is a very challenging task. Therefore, we introduced
the hybrid structure combining the previous method and our factorization struc-
ture, enabling us to decompose cubic functions into quadratic and linear func-
tions which subsequently can be easily shared and simultaneously fulfill all
requirements of TI.

A Appendix: 3-Share TIs of S-Boxes in B16

In this section, we present the 3-share TIs of some S-boxes or important permu-
tations which are in B16 by using a hybrid structure. All examples use the odd
permutation M = [0, 1, 2, 3, 4, 5, 6, 15, 8, 9, 10, 11, 12, 13, 14, 7] which is also used
in previous sections. Recall, that M can be any odd permutation of which the
shared version is a 12-bit permutation, i.e., satisfying the uniformity property
without using remasking.

For the sake of convenience, a given permutation is described in hexadecimal
representation. For example, if a permutation F = [15, 5, 6, 14, 13, 7, 2, 10, 8, 0, 11,
1, 12, 4, 9, b], then F is written as follows: F = f56ed72a80b1c493. All S-boxes in
this section can be found in [5,29] or from their respective specifications.

All S-boxes below belong to B16 and they can be decomposed in two different
ways (see Fig. 5):

– type 1: S(·) = M(F (G(G(·))))
– type 2: S(·) = M(F (G(·)))

104 S. Kutzner et al.

Fig. 5. Decompositions of S-boxes.

In fact nearly all S-boxes belong to type 1 and only two S-boxes (iS4 of
HUMMINGBIRD2 and S5 of SERPENT) belong to type 2. The 3-share TIs of
all F and G by using direct sharing are 12-bit permutations.

CLEFIA [32]

1. SS0: F = e6ca89d24b10537f, G = 021346fda89bce57;
2. SS1: F = 6f29a5e3781cd4b0, G = 053f8db72694ae1c;
3. SS2: F = b56e7302da981cf4, G = 094c187f2b6e3a5d;
4. SS3: F = a6d295c37bf048e1, G = 02319b8a57ec46df;

DES [22]. Actually, the i-th DES S-box (DESi) contains a set of four 4-bit
S-boxes. Notation DESij means the j-th row (i.e., 4-bit S-box) of the i-th DES
S-box.

1. DES20: F = f986bda42c710e35, G = 4c28a0f7d539b16e;
2. DES21: F = acd1265b97403fe8, G = 1c593a7f0d482b6e;
3. DES22: F = d3f0c481b596a2e7, G = 9d26a78503cf4e1b;
4. DES23: F = dc8b37421f6a5e09, G = 0b1a46579382decf;
5. DES30: F = d69e75a410f2b3c8, G = 168c079d24be35af;
6. DES31: F = 803a46ed952f17bc, G = 17069a8b5243dfce;
7. DES32: F = df47ae50b921c836, G = 0d861c972ea53fb4;
8. DES33: F = 9716fac0b8e4d532, G = fb647ec318a59d02;
9. DES40: F = fd3402cb75168ae9, G = 419b03c8de62fa57;

10. DES41: F = 3edf68ba70c41592, G = 125ac68e9bd34f07;
11. DES42: F = abc4fd928375e610, G = 094b6a285d1f3e7c;
12. DES43: F = 36dea581b2f047c9, G = 02d64f135e8a9bc7;
13. DES50: F = 28fc1b569a7d304e, G = 0e1f869725bcad34;
14. DES60: F = 792bd3c54a81e06f, G = 4e396f18a0d7c5b2;
15. DES63: F = 48ac537b2e9f601d, G = 0a7c1e68295f3d4b;

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 105

16. DES70: F = 6b3d719c2e5a8f40, G = 21e74da903c56f8b;
17. DES71: F = 68f143bc970ead52, G = be364f290c1d57a8;
18. DES72: F = abd4c93e671805f2, G = 1a084e5c293b7d6f;
19. DES80: F = d572c908143be6af, G = 0eb4962c1da7853f;
20. DES81: F = fd963b2745c01ae8, G = 1c0d3a2b59487f6e;
21. DES82: F = fa41e5830b6d72c9, G = 048c9d152f6b3e7a;

DESL [15]

1. Row0: F = e6a3d4197f2b5c80, G = 091d7f6b5c482a3e;
2. Row1: F = 51ebc9378d6204af, G = 02cf1b5e93d68a47;
3. Row2: F = 15dbef74c2a63809, G = 17ad358f269c04be;
4. Row3: F = dae51379f80b64c2, G = af53269e8d7104bc;

GOST [35]

1. k3: F = 52840cadb79e613f, G = 063d1f24acb5978e;
2. k4: F = f93457dec1a62b08, G = 0e7d1b4a2c5f3968;
3. k7: F = d7954f6b2c08e1a3, G = 0a6f384c1b7e295d;
4. k8: F = 5b79d3f104ae62c8, G = 179fda52e46cb038;

HUMMINGBIRD1 [9]

1. S0: F = 82f7e639c40ab1d5, G = 0f1e9687bd24ac35;
2. S1: F = 063b7f42d1eca895, G = 0f861e97ad24bc35;
3. S2: F = 21430895dbeca76f, G = 0ad7b16c92e54f38;
4. S3: F = 0f2e7d5c4a6b3819, G = 0a7f295c6e1b4d38;

HUMMINGBIRD2 [8]

1. S1: F = f56ed72a80b1c493, G = 0a5bd38217ce469f;
2. S2: F = a8034ce7b61d52f9, G = 14860d9fae3cb725;
3. S3: F = 2f6e5d1c4a380b79, G = 0f5bc78293d64a1e;
4. S4: F = 0819ae37c4d562fb, G = 853b29a47ed1f06c;

The inverse S-boxes of HUMMINGBIRD2:

1. iS1: F = 0d42ca8597eb631f, G = 3c4b21de56a9780f;
2. iS2: F = de8c94b162305f7a, G = 14a69d2fcbe05378;
3. iS3: F = c36740b18e5d2fa9, G = 0c6f2a583b491d7e;
4. iS4: F = f5ac403b16927ed8, G = 209a8b3164fced75; (type 2)

Inversion (x−1) in GF (24). The function x−1 = 019edb76f2c5a438 which is
defined over GF (2)/(x4 ⊕ x ⊕ 1).
F = 843dae67f25bc91 and G = 059dbf278e3416ac.

106 S. Kutzner et al.

LUCIFER [33]

1. S0: F = a2fde8b7906534c1, G = 1e482c6b0f593d7a;
2. S1: F = f21deb047c93658a, G = 068f9e174bd3c25a;

mCrypton [16]

1. S0: F = 4af0827c3516b9de, G = 0a7c5e28396d4f1b;
2. S1: F = 19df3b647580cea2, G = 06d71fce8a5b9342;
3. S2: F = 31078f46ec25ad9b, G = 2b5f097d4e186c3a;
4. S3: F = b420af918c7e3d65, G = 041d3f26ac97b58e;

SERPENT [4]

1. S3: F = 072e351c9db4af86, G = 0c792f5a3e4b1d68;
2. S4: F = 53bd19f708e6ca24, G = ea5d69cf0873214b;
3. S5: F = 7c4b259a3e6f01d8, G = 05432761c89feabd; (type 2)
4. S7: F = 18679d3f5acb024e, G = 0d87961c3fa4b52e;

The inverse S-boxes of S3, S4, S5, S7:

1. iS3: F = 09dacef3b1624578, G = 0c483e7a6f2b195d;
2. iS4: F = 98b7406fac5e21d3, G = 1a0bc2d34e5f8796;
3. iS5: F = 87f6dc43b915e2a0, G = 0eb63c95842da71f;
4. iS7: F = 35f921edc60a874b, G = 0c489d5173bfa6e2;

TWINE [34]

1. S: F = d2305ebc7a98f614, G = bda5e92c0687431f;

TWOFISH [31]

1. q1, t1: F = a0f2d785c139b64e, G = 0c483e7a6f2b195d;
2. q1, t0: F = 2847ba6e1c9d350f, G = 069c8d1734aebf25;
3. q0, t0: F = 50d87b3fa6e29c14, G = b4ace16058732f9d;
4. q0, t2: F = 456f09ba23e781dc, G = 0d841cb73e952fa6;

References

1. NIST Special Publication 800-90A.: Recommendation for random number gener-
ation using deterministic random bit generators. Technical report (2012). http://
csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

2. Bertoni, G., Daemen, J., Debande, N., Le, T.-H., Peeters, M., Van Assche, G.:
Power analysis of hardware implementations protected with secret sharing. Cryp-
tology ePrint Archive, Report 2013/067 (2013). http://eprint.iacr.org/

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://eprint.iacr.org/

Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes 107

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis
resistant implementations of KECCAK. In: Second SHA-3 Candidate Conference
(2010)

4. Biham, E., Anderson, R., Knudsen, L.R.: SERPENT: a new block cipher pro-
posal. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer,
Heidelberg (1998)

5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 s-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Coron, J.-S., Goubin, L.: On Boolean and arithmetic masking against differential
power analysis. In: Koç, Ç.K., Paar, C., et al. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 231–237. Springer, Heidelberg (2000)

8. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The HUMMINGBIRD-
2 lightweight authenticated encryption algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

9. Fan, X., Hu, H., Gong, G., Smith, E.M., Engels, D.: Lightweight implementation
of HUMMINGBIRD cryptographic algorithm on 4-bit microcontroller. In: ICITST
2009 (2009)

10. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

12. Jacobson, N.: Basic Algebra, vol. 1, 2nd edn. Dover, Mineola (2009). ISBN 978-0-
486-47189-1

13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

15. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

16. Lim, C.H., Korkishko, T.: mCrypton – a lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Advances in Information Security. Springer, New York (2007)

18. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

19. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

20. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

108 S. Kutzner et al.

21. Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: On the power
of fault sensitivity analysis and collision side-channel attacks in a combined set-
ting. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 292–311.
Springer, Heidelberg (2011)

22. U.S. Department of Commerce National Bureau of Standards.: Data encryption
standard. Technical report (1977). http://csrc.nist.gov/publications/fips/fips46-3/
fips46-3.pdf

23. National Security Agency.: TEMPEST: a signal problem. Cryptologic Spectrum,
vol. 2(3) (1972) (declassified 2007)

24. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

25. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

26. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

27. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without
routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 172–186. Springer, Heidelberg (2005)

28. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wee, C., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)

29. Saarinen, M.-J.O.: Cryptographic analysis of all 4 × 4-bit s-boxes. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118–133. Springer, Heidelberg
(2012)

30. Schindler, W.: Random number generators for cryptographic applications. In: Koç,
Ç.K. (ed.) Cryptographic Engineering. Springer, New York (2009)

31. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The
TWOFISH encryption algorithm. Technical report (1998)

32. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

33. Sorkin, A.: LUCIFER, a cryptographic algorithm. Cryptologia 8(1), 22–41 (1984)
34. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight

block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

35. Zabotin, I.A., Glazkov, G.P., Isaeva, V.B.: Cryptographic protection for informa-
tion processing systems, Government Standard of the USSR, GOST 28147-89.
Government Committee of the USSR for Standards. Technical report (1989)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

Using Principal Component Analysis
for Practical Biasing of Power Traces
to Improve Power Analysis Attacks

Yongdae Kim(B) and Haengseok Ko

The Attached Institute of Electronics and Telecommunications Research Institute,
P.O.Box 1, Yuseong, Daejeon 305-600, Korea

{kimyd,hsko}@ensec.re.kr

Abstract. Researchers have focused significant attention on side-
channel attacks since the first power analysis attack was introduced.
To date, several ideas have been introduced to efficiently analyze cryp-
tographic modules. A power trace selection method for improving attack
efficiency was recently presented; however, applying it involves many
restrictions. Therefore, we propose a new selection method to improve
power analysis attacks using principal component analysis. Our method
is a practical one for biasing power traces. Our experimental results show
that the proposed method improves attack efficiency in terms of the num-
ber of traces used for finding the secret key.

Keywords: Power analysis attack · Principal component analysis · Cor-
relation power analysis · AES · DES

1 Introduction

In the past, cryptanalysis aimed at defeating cryptographic techniques had been
focused on mathematical or algorithmic weaknesses. In 1999, however, P. Kocher
et al. introduced a new class of attacks involving cryptographic modules [1]. They
demonstrated that secret information, such as secret keys, can be retrieved by
analyzing of the physical information leakages, including power consumption
and electromagnetic emanation, from cryptographic modules as they processed
encryption/decryption tasks. Because side-channel attacks are more accessible
to the general public, these types of techniques have become the focus of many
researchers. As a results, cryptographic modules are now scrutinized much more
thoroughly, using an increasing array of methods for identifying physical vulner-
abilities.

Side-channel attacks are classified by what side-channel information they
exploit. For example, power analysis attacks and timing attacks exploit power
consumption and timing information, respectively. Among these attacks, power
analysis attacks have received considerable attention because they are very effec-
tive and can be conducted with relative ease and low cost with basic tools, such
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 109–120, 2014.
DOI: 10.1007/978-3-319-12160-4 7

110 Y. Kim and H. Ko

as a PC and a digital oscilloscope [1]. Moreover, this attack does not leave evi-
dence that an attack was performed on the cryptographic module.

In a power analysis attack, the adversary analyzes power consumption, which
is directly measured from the target cryptographic module while it performs
encryption (or decryption) computations. Several statistical distinguishers have
been reported to analyze the leakages since the first difference-of-means distin-
guisher was proposed by P. Kocher et al. [1]. F.-X. Standaert et al. proposed
a developed distinguisher using the variance test [2], and E. Brier et al. intro-
duced a distinguisher that uses the Pearson correlation coefficient [3], to examine
a linear relationship between the power consumption and a given power model.
The correct key can be retrieved by finding the highest correlation peaks. Based
on the assumption that an adversary can utilize a reference cryptographic mod-
ule that has identical physical properties as the target module, S. Chari et al.
proposed template attacks that utilize a multivariate model created from refer-
ence cryptographic modules [4]. This type of attacks is referred to as a profiling
attack; several profiling attack techniques have been published [5].

Many researchers in this area are focusing on finding a more efficient dis-
tinguisher. This approach is based on the assumption that acquired power con-
sumptions has distinguishable statistical distributions with respect to the power
model. However, Y. Kim et al. proposed the novel idea of changing the distribu-
tions of power traces to improve conventional distinguishers [6]. They suggested
that the Pearson correlation coefficient can be improved by biasing power traces.
However, the specific point should be determined before the method is applied.
They assert that the point can be heuristically determined, such as with sim-
ple power analysis or using a reference module; however, that is under a strong
assumption.

To address the above issues, we propose a new method for selecting power
traces, based on principal component analysis (PCA). Though similar in intent to
the method described by [6], our method is also meant to provide a practical and
systematic technique for making biasing power traces using PCA. To apply our
method with this technique, an adversary does not have to determine the specific
point in the measured power traces; only an approximate range of multiple points
where the target computation is processed would need to be identified. Even
data-independent points are included, our proposed method has less impact on
performance; however, if an adversary finds wrong single specific point in traces
when applying the conventional method [6], it is not able to improve the power
analysis attack. We demonstrate this characteristic in our experimental results
using the FPGA implementation of the Advanced Encryption Standard (AES)
and the ASIC implementation of the Data Encryption Standard (DES).

2 Principal Component Analysis

This section describes the theoretical basis of principal component analysis
(PCA) and introduces several related works that use PCA for side-channel
attacks.

Using PCA for Practical Biasing of Power Traces 111

2.1 Theoretical Basis of PCA

Principal component analysis is a statistical technique for analyzing high-
dimensional data. It is possible to reduce the data dimensionality by finding
a new set of variables that retain most of the original information. The variables
(i.e., principal components) are ordered by the fraction of the total information
that each retains. For example, given a p-dimensional data set, x, and the new
set of variables, z is represented by

z = Ax, (1)

where A is standard linear combination matrix consisting of the eigenvectors as
A = (e1,e2, · · · ,em)T . For example, the first principal component is calculated
using the first eigenvector as

z1 = eT
1 x

T . (2)

zi(1 ≤ i ≤ m) is the i-th principal component containing as much of the
variability in the data as possible in descending order. The variance of the
i-th component corresponds to the i-th eigenvalue denoted by λi. Therefore,
the eigenvalues can measure the proportional amount, Rλi

, of variance of each
components as

Rλi
=

λi∑p
k=1 λk

, (3)

where p is the number of eigenvalues.

2.2 Side-Channel Attacks Using PCA

Principal component analysis has been adapted in many fields, including image
processing, facial recognition, economic trend analysis, and many others. In addi-
tion, PCA can be applied in side-channel attacks as pre-processing methods,
distinguishers, etc.

Profiling attacks, such as the template attack, are based on multivariate
normal distribution [4,5]. Therefore, it needs data-dependent points (known as
interesting points) to create templates using a reference device. However, it con-
tains an extremely large number of variables (time instants) to be considered.
Therefore, profiling attacks are able to employ PCA to reduce the number of
data dimensions in the profiling phase [7,8].

In 2010, Y. Souissi et al. suggested a new distinguisher using PCA [9]. In
their approach, the measured traces are classified into several groups based on
the corresponding power model, such as the Hamming distance value, after which
PCA is applied to the mean (or variance) of each group. The eigenvalue is higher
than others when the key candidate is correct.

PCA has also been used in a pre-processing technique for non-profiling
attacks. Proposed by L. Batina et al., the technique improves the results of
DPA by first using PCA to reduce noise [10]. In addition, they proposed a new
distinguisher by calculating the absolute average value of the correlation on the
PCA transformed traces.

112 Y. Kim and H. Ko

As another approach to the side-channel attack, we deploy PCA as a pre-
processing technique to increase the correlation coefficient. Details are provided
in the next section.

3 Power Traces Selection Method

3.1 Conventional Method

To measure the performance of a power analysis attack, most researchers count
the minimum number of power traces required to find a key [5,11]. Known as
MTD (measurements to disclosure), this number also forms the basis of our
comparative evaluation. The biasing traces technique enhances CPA in terms
of MTD [6]. This is not a pre-processing technique like the others. Rather than
considering noise reduction from power traces, its main idea is biasing statistical
distributions by selecting a set of power traces. This is the first approach used
to enhance CPA by selecting power traces.

Note that in order to apply this technique, an adversary must determine the
most data-dependent point in the power trace. The point is typically acquired
by calculating the correlation coefficient. This approach is the same as an attack
by CPA on the target module. It is possible to obtain the point only if the
adversary can employ a reference module. The authors argue that an adversary
can determine the point by observing one trace; that is, by using simple power
analysis (SPA). The author’s assumption is feasible if there is only one sample
point per clock cycle. However, the traces are typically captured from the target
module at a higher sampling rate than the running frequency of the device. This
means that there are several sample points per clock cycle. Furthermore, if the
signal-to-noise ratio is extremely low in the captured traces, trace patterns will
tend to be very similar, so it will be difficult to choose among the multiple sample
points in practice.

Clearly, what is needed is a more practical means of selecting the traces.
We propose a practical selection method for biasing traces using PCA. Our
contribution is not based on a heuristic approach, such as SPA; rather, it is a
systematic method. We demonstrate that PCA can also be utilized to bias the
distribution of traces.

3.2 Proposed Method

We denote the number of traces and sample points per trace as n and p, respec-
tively. The measured trace (denoted by tij(1 ≤ i ≤ n, 1 ≤ j ≤ p)) is centered by
subtracting the means across all time instants, and expressed as

X =

⎡

⎢
⎣

(t1,1 − t1) · · · (t1,p − tp)
...

. . .
...

(tn,1 − t1) · · · (tn,p − tp)

⎤

⎥
⎦ , (4)

Using PCA for Practical Biasing of Power Traces 113

where tj is the mean value, which is calculated by

tj =
1
n

n∑

i=1

tij . (5)

We then, calculate the covariance matrix, C with p dimensions of the mean
centered data, X. Eigenvalues and eigenvectors are calculated for the covariance.
Finally, the first component is derived by selecting the eigenvector that is the
largest eigenvalue of the eigenvector (the first one). The computed components
for each of the traces (total n traces with p sample points) are represented as
follows:

z1 = eT
1 X

T , (6)

where z1 = (z11, z21, · · · , zn1).
We assume that biasing the first component is equivalent to carrying out the

original data for each of the time instants, because each principal component is
calculated by a linear transformation, and the coefficients (i.e., eigenvectors) are
fixed. In other words, if we choose a subset from traces to increase the component
variance, the variance of the original data is also increased by the subset. This
is the main concept of our proposed method.

We have PCA transformed data with one dimension since we selected only
one principal component. In [7], they assumed that the transformed data follows
a Gaussian noise model. However, we do not use this assumption: therefore,
we cannot use the conventional method as described in [6], even though the
data has only one dimension. Instead, we sort the data by alternately choos-
ing as the maximum and minimum values of the component. For example,
if we have z1 = (z11, z21, z31, z41, z51, z61) = (4, 5, 9, 8, 1, 2), then we have the
new order is (9, 1, 8, 2, 5, 4), and the corresponding trace number order changes
to (z31, z51, z41, z61, z21, z11) from (z11, z21, z31, z41, z51, z61). The adversary then
select corresponding n′(n′ < n) traces from the first one in the new order. In the
example, if the adversary choose 3 out of 6, then 3, 5, 4-th traces are selected for
analysis. This method can also create a truncated distribution if the component
distribution follows the same normal distribution as the one proposed in [6].

The advantage of this approach is that an adversary does not have to choose
a single time index that is the most relevant to the processed data. Instead,
multiple time instants (sample points) can be employed to bias the power trace
from the first principal component. Therefore, the subset of traces is more sys-
tematically determined by our method. We will show our experimental results
in the next section.

4 Experimental Results

In this section, we present our experimental results using two different cryp-
tographic algorithms and platforms. The first one is DES on an ASIC imple-
mentation provided by the DPA Contest 2008/2009 [12]; the second one is AES
on an FPGA implementation. We used a SASEBO-GII platform for the second
experiment [13].

114 Y. Kim and H. Ko

(a) (b)

0 0.4 0.8 1.2 1.6 2
x 104

−40

0

40

80
V

ol
ta

ge
(m

V
)

Time Instants
100 300 500 700 900

−40

0

40

80

V
ol

ta
ge

(m
V

)

Time Instants

Fig. 1. Power consumption on the DES implementation (a) All rounds, and (b) The
first round (our target trace)

4.1 DES Implementation Result

We applied our proposed method on power consumption traces from the DES
implementation. The traces are available in the DPA Contest 2008/2009. Each
trace had a very high signal-to-noise ratio (because an averaging technique was
used to reduce the noise). In addition, DES was implemented on ASIC without
any countermeasures [12].

We selected a subset of 200 traces from a set of 30,000 measured traces.1

In addition, the total number of sample points in a trace is 20,000. Our target
round was the first round; therefore, we designated a range of points 5,001 to
6,000 during which the first round encryption was processed. This rage was easily
identified by observing the measured trace and counting the 16 distinct patterns
(corresponding to the 16 rounds of DES). The first pattern corresponded to
the first round of DES encryption. Figure 1 (a) and (b) show the DES power
consumption trace for all rounds and the first round of encryption, respectively.
Using the traces, we selected 200 traces by our proposed method. For comparison,
we also randomly chose 200 out of the 30,000 traces. Without having selected
this method, the power analysis attack would have used random traces because
traces are typically captured using random plaintext (or ciphertext).

For our distinguisher, we employed the Pearson correlation coefficient [3].
Figure 2 (a) and (b) show the first DES S-Box key retrieving result using ran-
domly selected traces and our proposed method, respectively. The y-axis repre-
sents the maximum absolute value of the correlation coefficient, and the
x-axis indicates the number of traces for calculating the correlation coefficient.
As shown in the figures, we successfully improved the correlation coefficient with
our proposed method.
1 Originally, the number of entire provided traces was 80,000. However, we downloaded

30,000 traces out of it for computational and storage space reasons.

Using PCA for Practical Biasing of Power Traces 115

(a) (b)

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

Number of traces

M
ax

im
um

 o
f C

or
re

la
tio

n

Wrong Key

Correct Key

Wrong Key

Correct Key

0 40 80 120 160 200
0

Number of traces

0.2

0.4

0.6

0.8

1

M
ax

im
um

 o
f C

or
re

la
tio

n

Fig. 2. DES key retrieving result using CPA: (a) Random traces, and (b) Proposed
method

0 40 80 120 160 200
0

20

40

60

80

100

Number of traces

C
la

ss
ifi

ca
tio

n
ra

te
(%

)

Random

Proposed Method

Fig. 3. Classification rate of the DES implementation

We define a classification rate, Ri as follows:

Ri(%) =
N ck

i

Skeys
× 100, (7)

where N ck
i , Skeys denote the number of correctly estimated keys using i traces,

and all keys, respectively. For DES, Skeys = 8. Figure 3 indicates the classifica-
tion rate using two different subsets of traces. The measurements to disclosure for
all keys are significantly improved as shown in Fig. 3. We could obtain all S-Boxes
keys at 40 traces if we employed our proposed method. In this experiment, we
demonstrated only CPA as a distinguisher; however, other distinguishers, such as
difference-of-means, can also be improved using our method. Most distinguishers
are essentially based on finding different statistical distributions between power
model and captured traces. Our method modifies the distribution of captured
traces to easily find the statistical differences.

116 Y. Kim and H. Ko

(a) (b)

0 2000 4000

−10

0

10

Time instant

V
ol

ta
ge

(m
V

)

6000 0 100 200 300 400 500

−10

0

10

Time instant

V
ol

ta
ge

(m
V

)

Fig. 4. Power consumption on the AES implementation (a) All rounds, and (b) The
last round (our target trace)

(a) (b)

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

Number of traces

M
ax

im
um

 o
f C

or
re

la
tio

n

Wrong Key

Correct Key

0
0

0.1

0.2

0.3

0.4

0.5
M

ax
im

um
 o

f C
or

re
la

tio
n

1000 2000 3000 4000 5000
Number of traces

Wrong Key

Correct Key

Fig. 5. AES key retrieving result using CPA: (a) Random traces, and (b) Proposed
method

4.2 AES Implementation Result

We utilized the SASEBO-GII platform for our experiment on the AES hard-
ware implementation [13]. For cryptographic operation, Xilinx Virtex-5 LX30 is
embedded in the SASEBO-GII. We implemented straightforward AES with a
128-bit key length on the device. Countermeasures were not supported.

During encryption of randomly generated plaintext, we captured 100,000
power consumption traces from the SASEBO-GII board, without the aid of
filters or amplifiers (see Fig. 4 (a)). Our target round was the last round in AES,
so we pulled all sample points from the range of points 5401 to 5900, during
which the last round of encryption operated. The truncated traces are shown
in Fig. 4 (b).

Figure 5 (a) and (b) indicate results of the first S-Box key retrieving using
random traces and biased traces selected by our proposed method. As with the
DES implementation, the correlation could also be improved using our selected
power traces. By increasing the correlation, CPA could easily discriminate the
correct key candidates among other wrong keys using approximately 1,500 traces.

Using PCA for Practical Biasing of Power Traces 117

Number of traces

C
la

ss
ifi

ca
tio

n
ra

te
(%

)

0 1000 2000 3000
0

20

40

60

80

100

Random

Proposed Method

Fig. 6. Classification rate of the AES implementation

(a) (b)

1 2 3 4 5 6 73

4

5

6

7

8

9

Principal component number

P
ro

po
rti

on
 o

f t
he

 e
ig

en
va

lu
e(

%
)

0 40 80 120 160 200
0

20

40

60

80

100

Number of traces

C
la

ss
ifi

ca
tio

n
ra

te
(%

)

PC1
PC2

PC3

PC4

Fig. 7. Results using DES Implementation (a) Classification rate using the 1st (PC1)
to 4th (PC4) components, and (b) The proportion of corresponding eigenvalues

Figure 6 represents the classification rate used both subsets of traces. Note
that, in terms of MTD, the attack efficiency appears to improve under the pro-
posed method, though the margin of improvement is lower than that of the DES
implementation, likely due to the lower SNR in the AES power traces. In some
cases, it is difficult to describe original data using only one component. There-
fore, we then must focus on other principal components rather than on only
the first component. In this case, it is assumed that other principal components
could explain more of the data. The classification rate using other principal
components is described in the next section.

4.3 Utilize Different Principal Components

To investigate the influence of the each principal component on the attack per-
formance, we conducted our proposed method using four different principal

118 Y. Kim and H. Ko

(a) (b)
Principal component number

P
ro

po
rti

on
 o

f t
he

 e
ig

en
va

lu
e(

%
)

Number of traces

C
la

ss
ifi

ca
tio

n
ra

te
(%

)

PC1
PC2

PC3

PC4

1 3 5 70

4

8

12

16

0 1000 2000 3000
0

20

40

60

80

100

PC1
PC2

PC3

PC4

Fig. 8. Results using AES Implementation (a) Classification rate using the 1st (PC1)
to 4th (PC4) components, and (b) The proportion of corresponding eigenvalues

components from the first to the fourth component in order of associated eigen-
value. The result is shown in Fig. 7 (a). In addition, Fig. 7 (b) represents the pro-
portion of variance of the corresponding eigenvalues. From the results,
we confirmed that the highest variance in the measured trace was observed in
the PCA transformed data with the first eigenvector. However, the classification
rate using the third component is lower than that when using the fourth compo-
nent. This result indicates that the fourth component retained more information
than the third one, but less than the first and second components, as expected.

Even in the AES implementation, we have the same result, as shown in
Fig. 8 (a). The MTD is decreased by taking the eigenvector associated with
the higher eigenvalue. Figure 8 (b) indicates the proportion of variance in order
of decreasing eigenvalue. Interestingly, in the AES implementation, the third
component shows a higher the classification rate than the second component. We
found that, except for the first component, the proportion of the eigenvalue is not
sufficient to determine the influence of the partial principal components. This
phenomenon was also observed by [10], who found that their noise reduction by
PCA did not always perform better by removing up to the higher eigenvalue. The
principal component to be removed is variable according to the implementation.

4.4 Variance of the Measured Trace

In this section, we examine the variance of the subset of measured traces using
our proposed method. Figure 9 (a) shows the first S-Box CPA results on the
DES implementation using the biased traces by the first principal component.
The figure is trimmed for legibility to include the highest absolute value of the
correlation. The variance of all traces, and each subset of measured traces using
the corresponding principal components, is represented in Fig. 9 (b). Although we
did not determine one specific sample point, we could obtain biased traces using
our proposed method. The same observation can be found in the result of the
AES implementation (see, Fig. 10). Contrary to the DES results, the variance

Using PCA for Practical Biasing of Power Traces 119

(a) (b)

720 760 800 840
−0.8

−0.4

0

0.4

0.8

Time instant

C
or

re
la

tio
n

Wrong Key

Correct Key

720 760 800 840
0

20

40

60

80

Time instant

V
ar

ia
nc

e(
m

V
)2

all
PC1
PC2
PC3

Fig. 9. Results of the DES Implementation (a) CPA Result using the biased traces by
PC1, and (b) The variance of the subsets of traces

(a) (b)
Time instant

C
or

re
la

tio
n

Time instant

V
ar

ia
nc

e(
m

V
)2

45 55 65 75 85 95

−0.1

0

0.1
Wrong Key

Correct Key

45 55 65 75 85 95
0

100

200

300

all
PC1
PC2
PC3

Fig. 10. Results of the AES Implementation (a) CPA Result using the biased traces
by PC1, and (b) The variance of the subsets of traces

of traces using the first component is not always higher than the others. As
illustrated in Fig. 10 (b), the variance of traces using the second component is
the highest value at approximately the 48th sample point. However, around the
point has a lower correlation than other points as shown in Fig. 10 (a). Therefore,
it does not affect its performance.

5 Conclusion

In this paper, we proposed a new method for selecting biased power traces to
improve the performance of power analysis attacks using principal component
analysis. Unlike conventional biasing methods, the proposed method can be used
without prior knowledge of the targeted module. Experimental results, using two
different platforms and cryptographic algorithms, demonstrate that our app-
roach is more systematic and practical. Other target modules and algorithms

120 Y. Kim and H. Ko

should be investigated in future works. In addition, reducing the computation
time for calculating covariance of traces is also investigated for the future.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-
channel distinguishers: an empirical evaluation of statistical tests for univariate
side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

5. Kim, Y., Homma, N., Aoki, T., Choi, H.: Security evaluation of cryptographic
modules against profiling attacks. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 383–394. Springer, Heidelberg (2013)

6. Kim, Y., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Biasing power traces to
improve correlation in power analysis attacks. In: International Workshop on Con-
structive Side-Channel Analysis and Secure Design (COSADE), pp. 77–80 (2012)

7. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

8. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

9. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First principal
components analysis: a new side channel distinguisher. In: Rhee, K.-H., Nyang,
D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011)

10. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA:
first results of using principal component analysis for extensive power analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012)

11. Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Power and electromagnetic analy-
sis: improved model, consequences and comparisons. J. Integr. VLSI J. (Special
Issue: Embedded Cryptographic Hardware) 40, 52–60 (2007)

12. DPA Contest (2008/2009). http://www.dpacontest.org
13. Research Center for Information Security: Side-channel Attack Standard Evalua-

tion BOard (SASEBO). http://www.rcis.aist.go.jp/special/SASEBO

http://www.dpacontest.org
http://www.rcis.aist.go.jp/special/SASEBO

Cryptanalysis 1

Impossible Differential Attack
on Reduced-Round TWINE

Xuexin Zheng1 and Keting Jia2(B)

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, School of Mathematics, Shandong University, Jinan, China

zhxuexin@mail.sdu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
ktjia@mail.tsinghua.edu.cn

Abstract. TWINE, proposed at the ECRYPT Workshop on Light-
weight Cryptography in 2011, is a 64-bit lightweight block cipher con-
sisting of 36 rounds with 80-bit or 128-bit keys. In this paper, we give
impossible differential attacks on both versions of the cipher, which is
an improvement over what the designers claimed to be the best possible.
Although our results are not the best considering different cryptanalysis
methods, our algorithm which can filter wrong subkeys that have more
than 80 bits and 128 bits for TWINE-80 and TWINE-128 respectively
shows some novelty. Besides, some observations which may be used to
mount other types of attacks are given. Overall, making use of some com-
plicated subkey relations and time-memory tradeoff trick, the time, data
and memory complexity of attacking 23-round TWINE-80 are 279.09 23-
round encryptions, 257.85 chosen plaintexts and 278.04 blocks respectively.
Besides, the impossible differential attack on 24-round TWINE-128 needs
258.1 chosen plaintexts, 2126.78 24-round encryptions and 2125.61 blocks
of memory.

Keywords: TWINE · Lightweight block cipher · Impossible differential
attack

1 Introduction

Impossible differential attack is a powerful cryptanalysis method introduced by
Biham et al. [2] and Knudsen [10] independently. It is often used in cryptanalyz-
ing block ciphers with (generalized) Feistel structures and SPN structures. The
main trick of this method is to find an impossible differential path as long as
possible and then extend two truncated differentials from it. Then any candidate
subkey involved in both truncated differentials, which can lead to the impossi-
ble differential path is a wrong key and should be discarded. So long as enough

This work is partially supported by the National 973 Program of China (Grant No.
2013CB834205), and the National Natural Science Foundation of China (Grant No.
61133013).

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 123–143, 2014.
DOI: 10.1007/978-3-319-12160-4 8

124 X. Zheng and K. Jia

Table 1. Summary of attacks on TWINE

Key Number Data Time Memory Attack Source

(bits) of rounds (block) (encryption) (block)

80 22 262 268.43 267 Saturation attack [15]

23 257.85 279.09 278.04 Impossible differential
attack

Section 4

36 260 279.10 28 Biclique attack [6]

128 23 262.81 2106.14 2103 Saturation attack [15]

24 258.1 2126.78 2125.61 Impossible differential
attack

Section 5

25 248 2122 2125 MITM [3]

27 262.95 2119.5 260 Key-difference invariant
bias attack

[1]

36 260 2126.82 28 Biclique attack [6]

plaintext-ciphertext pairs are collected, an attacker can eliminate all wrong keys
and recover the right key.

Due to the requirement of lightweight encryption algorithms which are used
in tiny computing devices, such as RFID and sensor network nodes, many light-
weight block ciphers have been proposed, for example PRESENT, KATAN,
KTANTAN, KLEIN, LED, HIGHT, LBlock, TWINE [4,5,7–9,11–16], and much
more. TWINE is a 64-bit lightweight block cipher designed by Suzaki,
Minematsu, Morioka and Kobayashi in [15], which has two versions supporting
80-bit and 128-bit keys respectively. Consisting of 36 rounds, TWINE employs
Type-2 generalized Feistel structure with 16 nibbles. When TWINE was pro-
posed, the designers presented security evaluation including impossible differ-
ential attacks on 23-round TWINE-80 and 24-round TWINE-128 which were
the most powerful attacks given by the designers. Unfortunately, the time com-
plexity of their impossible differential attacks may have a flaw and may lead to
a complexity of more than exhaustive key search. Besides the designers’ secu-
rity analysis, Çoban et al. gave an biclique analysis of full round TWINE [6],
Boztaş et al. gave an multidimensional meet-in-the-middle attack on reduced-
round TWINE-128 [3], Bogdanov et al. gave an key-difference invariant bias
attack on reduced-round TWINE-128 [1]. All the results are summarized in
Table 1. Note that although our results are not the best considering different
cryptanalysis methods, our algorithm which can filter wrong subkeys that have
more than 80 bits and 128 bits for TWINE-80 and TWINE-128 respectively
shows some novelty. Besides, some observations which may be used to mount
other types of attacks are given.

Our Contribution. This paper focuses on the security of TWINE against
impossible differential attack. The novelty includes the following aspects:

– Propose an algorithm to filter wrong subkeys which exceeds the master
key size;

Impossible Differential Attack on Reduced-Round TWINE 125

– Several observations on key relations and optimization of our algorithm are
given;

– Several tables are precomputed to decrease the time complexity.

This paper is organized as follows. In Sect. 2, we present the necessary nota-
tions and a simple description of the TWINE encryption algorithm and the key
schedule. Section 3 gives useful observations and the reason for our choice of
the impossible differential paths. Section 4 first explains the flaw of attacks in
[15], and then shows the impossible differential attack against 23-round TWINE-
80. The result of attacking 24-round TWINE-128 is showed in Sect. 5. Section 6
concludes the paper.

2 Preliminaries

Some notations used in this paper and a simple description of the TWINE algo-
rithm are given in this section.

2.1 Notations

0̃m: the concatenation of m 4-bit 0s. Cr
L, Cr

H : constants used in the Key Schedule of TWINE.

x||y: the concatenation of x and y. k(i, j): ki ⊕ s[kj], where s stands for 4-bit sbox.

A[i1,...,im]: Ai1 ||...||Aim . RKr
[0,...,7]: the 32-bit round subkey of round r.

αi+1: one possible value for output difference of sbox with input difference αi.

βi+1: one possible value for output difference of sbox with input difference βi.

�s[b]: {s[x] ⊕ s[x ⊕ b]|x ∈ {0, ..., f}} the set of output differences of s with input difference b.

a ∈ �s[b]: a is one of the possible output difference of sbox with input difference b.

(Xr
0 , Xr

1 , ..., Xr
14, Xr

15): the 64-bit input value of round r.

#RKr
p : the number of possible values of RKr

p for each plaintext-ciphertext pair.

2.2 Description of TWINE

TWINE is a 64-bit block cipher with 80-bit or 128-bit key. The global structure
of TWINE is a variant of Type-2 generalized Feistel structure with 16 nibbles.
Consisting of 8 4-bit S-boxes and a diffusion permutation π as described in
Table 2, the round function of TWINE is showed in Fig. 1. Expressed in a formula
form, the round function encrypts an input value of round r to the input value
of round r + 1 in the following two steps:

Xr
2j+1 ← s[Xr

2j ⊕ RKr
j] ⊕ Xr

2j+1(j = 0, ..., 7),

Xr+1
π(i) ← Xr

i .

For both versions of TWINE, the round function is iterated for 36 times and the
diffusion permutation is omitted in the last round.

The key schedules of TWINE-80 and TWINE-128 produce 36 32-bit round
subkeys RKr

[0,...,7] (r = 1, ..., 36) from the 80-bit master key (denoted as k0, ..., k19)
and 128-bit master key (denoted as k0, ..., k31) respectively as described in Algo-
rithmD.1. and Algorithm D.2. (AppendixD).

126 X. Zheng and K. Jia

Fig. 1. Round function of TWINE

Table 2. S-box and π permutation

3 Observations and 14-Round Impossible Differentials
of TWINE

This section gives several useful observations and the reason for our choice of
the impossible differential path. Observation 1 is used in [15]. For the sake of
completeness, we describe it here. Observation 2, 3, 4, 5 are about the subkeys.
We give the round subkeys of TWINE-80 from round 1 to round 5 and the round
subkeys of TWINE-128 from round 1 to round 7 in TableD.1 and Table D.2
(AppendixD).

Observation 1. For any input difference a(�= 0) and output difference b(∈
�s[a]) of the sbox in TWINE, the average number of pairs that satisfy the
differential characteristic (a → b) is 16

7 . Given an 8-bit pair (Xr
2i,X

r
2i+1) and

(Xr
2i ⊕ a,Xr

2i+1 ⊕ b), the probability that RKr
i leads to the sbox differential char-

acteristic (a → b) is 7−1.

Observation 2. The round subkeys of TWINE-80 satisfy the following equa-
tions among four adjacent rounds.

RKr+2
5 = RKr

1 ; RKr+2
3 = RKr

5 ; RKr+2
6 = s−1[RKr+1

7 ⊕ RKr
0] ⊕ Cr+1

L , (1 ≤ r ≤ 34);
RKr+3

4 = RKr
3 ; RKr+3

0 = RKr
4 ; RKr+3

1 = RKr
6 ⊕ Cr+2

H ; RKr+3
2 = RKr

7 , (1 ≤ r ≤ 33);
RKr+3

6 = RKr
2 ⊕ s[RKr

7] ⊕ Cr+2
L , (1 ≤ r ≤ 33).

Observation 3. The round subkeys of TWINE-80 satisfy the following equa-
tions among RK1, RK2, RK21, RK22 and RK23.

f1(RK2
[2,7]

, RK22
2 , RK23

1) = 0; f2(RK1
1 , RK2

4 , RK21
7 , RK22

[3,4,6]
, RK23

[0,4]
) = 0;

f3(RK2
6 , RK22

[2,5,6]
) = 0; f4(RK1

[5,7]
, RK21

[4,7]
, RK22

6 , RK23
[0,4]

) = 0;

f6(RK1
[1,6]

, RK23
[3,4,5]

) = 0; f5(RK1
5 , RK2

6 , RK21
4 , RK22

[1,5]
, RK23

3) = 0;

f7(RK1
0 , RK2

7 , RK23
[2,5,6]

) = 0; p

The precise expression of functions fi(i = 1, ..., 8) are shown in AppendixA.

Impossible Differential Attack on Reduced-Round TWINE 127

Observation 4. The round subkeys of TWINE-128 satisfy the following equa-
tions among six adjacent rounds.

RKr+5
7 = RKr+1

2 ⊕ s[RKr
6]; RKr+5

6 = RKr
4 ⊕ s[RKr+1

2 ⊕ s[RKr
6]], (1 ≤ r ≤ 31);

RKr+4
7 = RKr

2 ⊕ s[RKr+3
2]; RKr+4

3 = RKr
7 ⊕ Cr+3

L ⊕ s[RKr+1
1], (1 ≤ r ≤ 32);

RKr+4
4 = RKr

0 ; RKr+4
5 = RKr

1 ; RKr+4
0 = RKr

5 ; RKr+4
2 = RKr

6 , (1 ≤ r ≤ 32);
RKr+3

1 = RKr
3 ⊕ Cr+2

H , (1 ≤ r ≤ 33).

Observation 5. The round subkeys of TWINE-128 satisfy the following equa-
tions among RK1, RK2, RK3, RK4, RK21, RK22, RK23 and RK24.

g1(RK1
1 , RK22

[2,3], RK23
5) = 0;

g2(RK1
6 , RK2

2 , RK21
0 , RK24

[6,7]) = 0;
g3(RK3

[0,1], RK21
0 , RK22

2 , RK23
[5,7], RK24

2) = 0;
g4(RK1

5 , RK2
3 , RK3

1 , RK21
2 , RK22

6 , RK23
0 , RK24

[2,3]) = 0;
g5(RK1

[0,1], RK3
5 , RK4

0 , RK22
[0,2], RK23

[1,2,4], RK24
[5,7]) = 0;

g6(RK1
[0,7], RK2

[4,5], RK3
5 , RK22

[0,2], RK23
[1,2,3,4,7], RK24

[5,7]) = 0;
g7(RK1

[2,4,6], RK2
[0,2,3,7], RK3

[1,3], RK21
2 , RK22

6 , RK23
[0,3], RK24

[4,5]) = 0;
g8(RK1

[2,4,6], RK2
[0,2,6,7], RK3

[1,3,5], RK22
0 , RK23

[0,1,2,4], RK24
[4,5,7]) = 0;

g9(RK1
[2,4,5,6], RK2

[2,3,7], RK3
[0,1,3], RK21

[0,2], RK22
6 , RK23

[0,5], RK24
[1,4]) = 0.

The precise expression of functions gi(i = 1, ..., 9) are shown in AppendixA.

The 14-Round Impossible Differential Paths. Several 14-round impossible
differential paths are given in [15]. This paper uses (0||α||0̃14) 14r

� (0̃7||β||0̃8) and
(0̃5||α||0̃10) 14r

� (0̃11||β||0̃4) in attacking TWINE-80 and TWINE-128 respec-
tively. Our choice of the impossible differential paths is determined by the
following two reasons. Making use of the relations in Observation 2 and Observa-
tion 4, the truncated differential paths involve the least number of round subkeys.
What’s more, the truncated differential paths involve subkeys that have less com-
plicated equations in Observation 3 and Observation 5. Observation 6 is used in
[15]. For the sake of completeness, we give a clear description. Observation 6 and
7 are useful in selecting more accurate plaintext/ciphertext pairs for attacking
TWINE-80 and TWINE-128 respectively. Observation 8 is used in key recovery
phase of our attacking TWINE-80. Its proof gives a detailed computation and
analysis of the number of co responding subkeys that passing the differential
path.

Observation 6. If the impossible differential (0||α||0̃14) 14r
� (0̃7||β||0̃8) is

extended 4 rounds ahead and 5 rounds behind, then the input difference is of
the form

(α3, α4, 0, α2, 0̃6, α1, α
′′
2 , α

′
1, α

′
2, 0, α)

where α �= 0, α
′
2 ∈ �s[α

′
1], α

′
1 ∈ �s[α], α3 ∈ �s[α2], α

′′
2 ∈ �s[α1], α4 ∈ �s[α3],

α2 ∈ �s[α1], α1 ∈ �s[α];
and the output difference is of the form

128 X. Zheng and K. Jia

(0, β
′
1, 0, β3, β

′
2, β

′
3, β, x, β4, β5, β2, β

′′′
3 , β

′′
2 , β

′′
3 , 0̃2)

where β �= 0, β
′
3 ∈ �s[β

′
2], β5 ∈ �s[β4], β

′′′
3 ∈ �s[β2], β

′′
3 ∈ �s[β

′′
2], β

′
2 ∈

�s[β
′
1], β4 ∈ �s[β3], β3 ∈ �s[β2], β

′
1 ∈ �s[β];

Pr(αβ �= 0, and all the relations hold) = (15
16)2 · (7

16)15 = 2−18.08.

Observation 7. If the impossible differential (0̃5||α||0̃10) 14r
� (0̃11||β||0̃4) is

extended 5 rounds on the top and the bottom of it respectively, then the input
difference is of the form

(α4, α5, 0, α3, α
′
2, α

′
3, 0̃

3, α
′
1, α2, α

′′′
3 , α

′′
2 , α

′′
3 , α, y)

where α �= 0, α5 ∈ �s[α4], α
′
3 ∈ �s[α

′
2], α

′′′
3 ∈ �s[α2], α

′′
3 ∈ �s[α

′′
2], α

′
2 ∈

�s[α
′
1], α

′
1 ∈ �s[α], α3 ∈ �s[α2], α4 ∈ �s[α3];

and the output difference is of the form

(β
′
2, β

′
3, β4, β5, 0, β

′
1, β

′′
2 , β

′′
3 , 0, β3, 0̃2, β, x, β2, β

′′′
3)

where β �= 0, β
′
3 ∈ �s[β

′
2], β5 ∈ �s[β4], β

′′′
3 ∈ �s[β2], β

′′
3 ∈ �s[β

′′
2], β

′
2 ∈

�s[β
′
1], β4 ∈ �s[β3], β3 ∈ �s[β2], β

′
1 ∈ �s[β];

Pr(αβ �= 0, and all the belonging relations holds) = (15
16)2 · (7

16)16 = 2−19.27.

Observation 8. For a plaintext-ciphertext pair satisfying the input-output dif-
ference relations in Observation 6, the following can be deduced according to the
differential path in attacking TWINE-80:

(1) Given RK1
[1,6,7], RK2

6 that pass the differential path, then 16
7 values of RK1

2

on average can pass the path and be computed;
(2) Given RK23

[2,3,4,5] that pass the differential path, then 16
7 values of RK22

0 on
average can pass the path and be computed;

(3) Given RK23
[3,6] that pass the differential path, then 16

7 values of RK22
4 on

average can pass the path and be computed;
(4) Given RK23

[1,3,4,5], RK22
[0,5] that pass the differential path, then (16

7)2 values
of RK21

7 on average can pass the path and be computed.

Proof

(1) Compute X4
2 using RK4

1 = RK1
6 ⊕ C3

H and (�X4
2 ,�X4

3), where we get
#X4

2 = 16/7 for every RK1
6 . Besides, X3

11 = X2
14 is computed using RK1

7

by partial encryption. Then X3
10 is computed using RK3

5 = RK1
1 by partial

decryption, where we get #X3
10 = 16/7 for every RK1

[1,6,7]. After that,
together with the known X2

13 = X1
8 and RK2

6 , we get the values of X2
12 where

#X2
12 = 16/7 for every (RK1

[1,6,7], RK2
6). Finally, with the knowledge of

X1
[4,5], we can compute RK1

2 with #RK1
2 = 16/7 for every (RK1

[1,6,7], RK2
6).

(2) Compute X21
3 = X20

6 using RK20
3 = RK23

4 and (�X20
6 ,�X20

7), where we
get #X21

3 = 16/7 for every RK23
4 . Besides, X22

4 is computed using RK23
3 .

Then X22
1 is computed using RK21

1 = RK23
5 , where we get #X22

1 = 16/7 for

Impossible Differential Attack on Reduced-Round TWINE 129

every RK23
[3,4,5]. What’s more, X22

0 is computed using RK23
2 . Then together

with the known X22
0 = X23

0 , we can compute RK22
0 with #RK22

0 = 16/7
for every RK23

[2,3,4,5].
(3) Compute X22

9 = X21
10 using RK21

5 = RK23
3 and (�X21

10 ,�X21
11), where we

get #X22
9 = 16/7 for every RK23

3 . Besides, X22
8 is computed using RK23

6 .
Then together with X23

6 , we can compute RK22
4 with #RK22

4 = 16/7 for
every RK23

[3,6].
(4) As just mentioned, 16/7 values of X22

9 is computed for every RK23
3 . Since

X22
9 = X21

10 , we get 16/7 values of X21
10 for every RK23

3 . Besides, Compute
X20

13 = X19
8 using RK19

4 = RK22
0 and (�X19

8 ,�X19
9), where we get #X20

13 =
16/7 for every RK22

0 . Then X20
12 is computed using RK20

6 = RK23
1 ⊕ C22

H ,
where #X20

12 = (16/7)2 for every (RK23
[1,3], RK22

0). Furthermore, compute
X22

14 using RK23
5 , compute X22

10 using RK23
4 , then compute X22

11 using RK22
5 .

With the knowledge of X20
12 , X22

14 and X22
11 , we can compute RK21

7 with
#RK21

7 = (16/7)2 for every (RK23
[1,3,4,5], RK22

[0,5]). �

4 Impossible Differential Cryptanalysis of 23-Round
TWINE-80

4.1 Analysis of Suzaki et al.’s Attack on TWINE-80

In the last paragraph of page 9 in the TWINE-80 attack [15], the authors
said that In the key elimination we need to COMPUTE some other subkeys
(64 bits in total), which is uniquely determined by the key of Eq. (5). These
keys contain RK19

4 , RK21
4 , and RK23

6 and they can cause a contradiction with
other keys. Therefore, an attacker has to compute these other subkeys using
the 80-bit (K1,K2,K3), and then check whether there is a contradiction. Unfor-
tunately, it seems that this part is omitted in their time complexity formula
250.11+10 · 220 · 22/(23 · 8) = 277.04. Because we notice that 250.11+10 means the
number of plaintext/ciphertext pairs, 220 stands for the time regarding K1, and
22/(23 · 8) is the time regarding (K2,K3). If the omitted time is considered, the
time complexity is supposed to be bigger than exhaustive key search. Take the
computation of RK23

6 = s[RK23
2]⊕ s[RK21

1]⊕ s−1[RK2
7 ⊕RK1

0] as an example1,
we know that the numbers of RK23

2 , RK21
1 , RK2

7 , and RK1
0 that pass the differ-

ential path are all 16/7 for one right plaintext/ciphertext pair. Hence the time for
checking whether there is a contradiction regarding RK23

6 is (16/7)4. Multiplied
by the extra (16/7)4, the time complexity is 277.04 · (16/7)4 = 281.81. It seems
that there is a similar problem in the analysis of their attack on TWINE-128.

4.2 Impossible Differential Attack on 23-Round TWINE-80

In this section, we present an impossible differential attack on 23-round TWINE-
80 using the impossible differential (0||α||0̃14) 14r

� (0̃7||β||0̃8). This paper uses
1 Reference [15] ignores some known constants Cr

H , Cr
L in their subkey relations.

130 X. Zheng and K. Jia

the same impossible differential as in [15] for TWINE-80, because it leads to the
least number of involved round subkeys. The 14-round impossible differential
is extended 4 rounds on the top and 5 rounds on the bottom. The extended
truncated differential paths are showed in Fig. 2. Making use of Observation 2,
eight equations RK3

3 = RK1
5 , RK3

5 = RK1
1 , RK4

1 = RK1
6 ⊕ C3

H , RK19
4 =

RK22
0 , RK20

3 = RK23
4 , RK20

6 = RK23
1 , RK21

1 = RK23
5 and RK21

5 = RK23
3

are discovered. Hence the added 9 rounds involve 44 + 68 = 112 bits round
subkeys (see Tables 3 and 4). Therefore, 112 − 80 = 32 bits subkey information
are redundant, which are described in Observation 3.

The idea of attacking is to discard these K112 which pass the truncated dif-
ferential paths under the condition that K112 is indeed generated from one 80-bit
master key according to the key schedule. Denote K0 = (RK1

[1,7], RK23
[0,1,7]), K1 =

(RK1
[0,2,3,5,6], RK2

[2,4,6,7], RK22
[1,3,5], RK23

[2,3,5]), K2 = (RK21
[4,7], RK22

[0,2,4,6], RK23
[4,6]).

The main steps of our attack are as follows. Firstly, some tables are computed in
the precomputation phase for the sake of time and memory balance. Secondly, for
every guess of K0, combine (K1, K2) which pass the truncated differentials and
all the subkeys equations. And then the K1 in the combined (K1, K2) is removed
from an initialized subkey table. After all the chosen plaintext-ciphertext pairs
are utilized, store K0 and the finally remained K1. (Notice that once (K0,K1)
is known, K2 can be computed uniquely according to the subkey equations.)
Finally, do trial encryptions for the remaining keys.

Table 3. Subkeys involved in the extended head path of attacking 23-r TWINE-80

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k1 k3 k4 k6 k14 k15 k16

Round 2 k8 k17 k19 ⊕ C1
L k(1, 0)

Round 3 k14 k3

Round 4 k15 ⊕ C3
H

Table 4. Subkeys involved in the extended tail path of attacking 23-r TWINE-80

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 19 RK19
4 =

RK22
0

Round 20 RK20
3 =

RK23
4

RK20
6 =

RK23
1 ⊕

C22
H

Round 21 RK21
1 =

RK23
5

RK21
4 RK21

5 =
RK23

3

RK21
7

Round 22 RK22
0 RK22

1 RK22
2 RK22

3 RK22
4 RK22

5 RK22
6

Round 23 RK23
0 RK23

1 RK23
2 RK23

3 RK23
4 RK23

5 RK23
6 RK23

7

Impossible Differential Attack on Reduced-Round TWINE 131

Table 5. KTi tables

Table Index Contenta

KT2 (RK1
1 , RK23

0 , RK23
4 , RK22

6 , RK21
7 , RK22

[3,4]) RK2
4

KT3 RK22
[2,5,6] RK2

6

KT4 (RK1
7 , RK23

0 , RK23
4 , RK22

6 , RK1
5 , RK21

4) RK21
7

KT5 (RK23
3 , RK2

6 , RK22
5 , RK1

5 , RK21
4) RK22

1

KT8 (RK1
7 , RK23

7 , RK22
1 , RK21

7 , RK22
0) RK1

2
aThe number of possible values of the subkey stored in con-
tent is 1 for each index.

Precomputation. Firstly, two tiny tables are precomputed for sbox. A differ-
ence distribution table for sbox is computed to facilitate choosing more accurate
plaintext-ciphertext pairs using Observation 6. So that α1 ∈ �s[α] can be exam-
ined by looking up the table. Besides, another tiny table is needed in computing
round subkeys, which stores the input pairs of sbox with input and output differ-
ence as index. Take the computation of RK1

0 as an example, suppose a plaintext
pair satisfies �X1

1 ∈ �s[�X1
0], looking up this table with index (�X1

0 , �X1
1)

gives the input pair (In1, In2) for sbox, and then RK1
0 = In1 ⊕ X1

0 .
Secondly, in order to decrease time complexity at the cost of a little memory

in key recovery phase, five tables KTi (i = 2,3,4,5,8) are precomputed for func-
tions fi. Hence the computation of fi can be replaced by one table looking up.
A detailed description of these tables is showed in Table 5.

Data Collection. Choose 2n structures of plaintexts, and each structure con-
tains plaintexts with the following form (p0, p1, γ0, p2, γ1, γ2, γ3, γ4, γ5, γ6, p3, p4,
p5, p6, γ7, p7), where γi(i = 0, ..., 7) are constants in each structure and pi(i =
0, ..., 7) take all possible values. As a result, there are 232 plaintexts in each
structure and we can get 2n+63 plaintext pairs.

Ask for encryptions of the plaintexts in each structure and get the correspond-
ing ciphertexts. The ciphertext is denoted as (C0, C1, C2, C3, C4, C5, C6, C7, C8,
C9, C10, C11, C12, C13, C14, C15). A hash table with index C[0,2,14,15] is built to
choose the pairs that satisfy the condition �C[0,2,14,15] = 0. The pairs that do
not satisfy the condition are discarded. Hence there are 2n+63−16 = 2n+47 pairs
remained.

Furthermore, filter the pairs using the plaintext and ciphertext difference
relations listed in Observation 6. Therefore, 2n+47−18.08 = 2n+28.92 pairs are
finally obtained.

Key Recovery. A detailed key recovery procedure is showed in the follow-
ing Algorithm 1. It’s main steps are as follows. Firstly, 20-bit K0 is guessed. And
then for each plaintext-ciphertext pair, substeps (1.2.1) to (1.2.10) compute some
round subkeys that pass the differential path. And then substep (1.2.11) com-
bines all the subkeys according to f6, f7, f1, f3, f5, f4, f8 and f2 in sequence
and the differential characteristic to obtain 92-bit round subkeys. After these
done, the combined 112-bit (K0, K1, K2) pass the differential path and contains

132 X. Zheng and K. Jia

Fig. 2. Attack path for 23-round TWINE-80 (Input (output) values marked with short
sloping line and the round subkeys corresponding to black s-box are involved in the
attack.)

exactly 80-bit key information which can be expressed by (K0, K1). Therefore,
the obtained K1 in the combined 92-bit round Sunkeys are wrong keys and then
be discarded in substep (1.2.12). After step 1, the right round subkey is in the

Impossible Differential Attack on Reduced-Round TWINE 133

remained ones. Hence step 2 aims to recover the right key by trial encryptions.
After the candidate master key is computed in substeps (2.1.1) and (2.1.2), a
trial encryption is done in substep (2.1.3) to find the right master key.

Algorithm 1. TWINE-80 Key Recovery

Input: chosen plaintext-ciphertext pairs, functions fi (i = 1,...,8), differential characteristic

Output: right key used in TWINE-80

1: For every possible value of K0 = (RK1
[1,7], RK23

[0,1,7]), do

(1.1): Initialize a table Γ of 260 all possible values of K1;

(1.2): For each chosen plaintext-ciphertext pair, do

(1.2.1): Compute X2
[4,14] using RK1

[1,7] by partial encryption of plaintext;

(1.2.2): Compute X22
[2,6,12] using RK23

[0,1,7] by partial decryption of ciphertext;

(1.2.3): Compute RK1
[0,5,6], (RK23

2 , X22
0), (RK23

4 , X22
10), (RK23

5 , X22
14), (RK23

6 , X22
8) using the

plaintext-ciphertext pair and differential characteristic;

(1.2.4): Compute RK2
7 using X2

14 and (�X2
14, �X2

15);

(1.2.5): Compute RK22
3 using X22

6 and (�X22
6 , �X23

8);

/∗ each 4-bit subkey computed above has 16
7

values ∗/

(1.2.6): For every possible value of RK23
3 , do /∗ 24 loops ∗/

Compute X22
4 using partial decryption for the ciphertext pair;

If �X22
4 ∈ �s[�X23

6], �X23
10 ∈ �s[�X22

4] and �X23
12 ∈ �s[�X22

4] all holds, /∗ Pr = (7
16

)3 ∗/

then store (RK23
3 , X22

4)

(1.2.7): Compute RK1
2 using Observation 8, and then store RK1

2 in Q0 with index (RK1
6 , RK2

6);

(1.2.8): Compute RK22
4 using Observation 8, and then store RK22

4 in Q1 with index RK23
[3,6];

(1.2.9): Compute RK22
0 using Observation 8, and then store RK22

0 in Q2 with index RK23
[2,3,4,5];

(1.2.10): Compute RK21
7 using Observation 8, and then store RK21

7 in Q3 with index (RK23
[3,4,5], RK22

[0,5]);

(1.2.11): Combine all the involved subkeys using Algorithm 2 to obtain (K1, K2) with known K0;

(1.2.12): Remove K1 in the combined (K1, K2) from Γ ;

(1.3): Store K0 and the finally remained K1 from Γ .

2: After the above steps, suppose there are 2m (K0, K1).

(2.1): For each value of (K0, K1), do

(2.1.1): compute the value of K2 using fi (i = 1,...,8);

(2.1.2): and then compute the 9 partial master keys k2, k5, k7, k9, k10, k11, k12, k13, k18 using (K0, K1, K2);

/∗ the other 11 partial master keys are known in (K0, K1) ∗/

(2.1.3): And then do a trial encryption. If it is correct, then return the right key and abort the loop.

Complexity Analysis. As can be seen from Fig. 2, there are 36 active sboxes.
Among these sboxes, 17 sboxes with zero input difference let the correspond-
ing subkey pass the truncated differential with probability 1. Any of the 15
sboxes whose input and output difference appeared in the plaintext/ciphertext
difference make the corresponding subkey pass the truncated differential with
probability 7−1. The subkey RK23

3 passes the truncated differential with prob-
ability (7

16)3 as described in substep (1.2.6). After RK23
3 passing, any of the 3

sboxes who has �X22
4 as its input(output) difference and nonzero output(input)

difference let the corresponding subkey pass the truncated differential with prob-
ability 7−1. Therefore, the proportion of removing wrong subkeys for each pair
is 7−18 · (7

16)3 = 2−54.11. Hence the number of remained 80-bit subkey after
analyzing all 2n+28.92 pairs is σ = 280(1 − 2−54.11)2

n+28.92
= 2m.

134 X. Zheng and K. Jia

Algorithm 2. Subkeys Combining Procedure

Input: a plaintext-ciphertext pair, K0 = (RK1
[1,7], RK23

[0,1,7]), tables {KTj}(j = 2, 3, 4, 5, 8), {Qi}(i = 0, ..., 3),

and the already computed subkeys RK1
[0,5,6], RK23

[2,3,4,5,6], RK2
7 , RK22

3

Output: combined 92-bit subkeys (K1, K2) which pass the path and all the subkey equations

1: For (RK1
6 , RK23

[3,4,5]) do: /∗ l1 = (16
7

)3 · (24 · (7
16

)3) = 24 loops ∗/

Compute f6 with the above subkeys;

If the result is zero, then store RK = (RK1
6 , RK23

[3,4,5] /;) ∗ holds with Pr = 2−4 ∗/

otherwise, try next (RK1
6 , RK23

[3,4,5]);

2: For every obtained (RK1
0 , RK2

7 , RK23
2), do: /∗ l2 = (16

7
)3 loops ∗/

Compute RK23
6 using f7; and then compute X22

8 using RK23
6 by partial decryption;

If �X22
8 = 0, then add (RK1

0 , RK2
7 , RK23

[2,6]) to RK; /∗ Pr = 16
7

· 2−4 ∗/

otherwise, try next (RK1
0 , RK2

7 , RK23
2);

compute RK22
2 using the obtained X22

4 and (�X22
4 , �X23

12); /∗ 16
7

values ∗/

3: For every obtained RK22
2 , do: /∗ l3 = 16

7
loops ∗/

Compute RK2
2 using f1; and then compute X3

12 using RK2
2 by partial encryption;

If �X3
12 = 0, then add (RK2

2 , RK22
2) to RK /; ∗ Pr = 16

7
· 2−4 ∗/

otherwise, try next RK22
2 ;

4: For every guessed RK22
[5,6], do: /∗ l4 = 28 loops ∗/

Look up KT3 to get the value of RK2
6 , then add (RK2

6 , RK22
[5,6]) to RK;

Compute X21
8 using RK22

6 and X23
[10,15] by partial decryption, and then compute RK21

4 ;

5: For every obtained (RK1
5 , RK21

4), do: /∗ l5 = (16
7

)2 loops ∗/

Look up KT5 to obtain RK22
1 , and then compute X21

6 using RK22
1 by partial decryption;

If �X21
6 = 0, then add (RK1

5 , RK21
4 , RK22

1) to RK /; ∗ Pr = 16
7

· 2−4 ∗/

otherwise, try next (RK1
5 , RK21

4);

6: Look up KT4 to get the value for RK21
7 ;

For every RK22
0 in Q2, do: /∗ l6 = 16

7
loops ∗/

If RK21
7 appears in Q3 with index (RK23

[1,3,4,5], RK22
[0,5]), /∗ Pr = (16

7
)2 · 2−4 ∗/

then add (RK21
7 , RK22

0) to RK; otherwise, try next RK22
0 ;

7: Look up KT8 to get the value for RK1
2 ;

If it appears in Q0 with index (RK1
6 , RK2

6), then add RK1
2 to RK; /∗ Pr = 16

7
· 2−4 ∗/

otherwise, try next RK22
0 ;

8: For every RK22
4 (from Q1) and RK22

3 , do: /∗ l8 = (16
7

)2 loops ∗/

Look up KT2 to get the value for RK2
4 ;

compute X3
6 using RK3

3 = RK1
5 and (�X3

6 , �X3
7),

and then X2
8 is computed using RK2

4 by partial decryption, and then RK1
3 is computed using

the plaintext pair and X2
8 ; and then add (RK22

[3,4], RK2
4 , RK1

3) to FK.

9: Return the combined RK = (RK1
6 , RK23

[3,4,5], RK1
0 , RK2

7 , RK23
[2,6], RK2

2 , RK22
2 ,

RK2
6 , RK22

[5,6], RK1
5 , RK22

1 , RK21
4 , RK21

7 , RK22
0 , RK1

2 , RK22
[3,4], RK2

4 , RK1
3).

The time complexity of data collection contains: 2n+32 to build the hash
table, and 2n+47(15

16 · ∑7
i=0(

7
16)i + (15

16)2 · ∑14
i=8(

7
16)i) = 2n+47.737 looking up dif-

ference distribution table to choose the pairs with required ciphertext/plaintext
difference, which is 2n+38.628 encryptions.

The time complexity of computing the tables in precomputation phase can
be omitted compared to the time in key recovery phase.

Notice that the time for substep (1.2.11) dominates the time of step (1.2).
Hence the complexity of step (1.2) is l1 · (11 + 2−4 · l2 · (9 + 16

7 + 1 + 7−1 · (1 +
16
7 + l3 · (7 + 3 + 1 + 7−1 · l4 · (1 + 3 + 16

7 + l5 · (1 + 1 + 16
7 + 1 + 7−1 · (1 + l6 · (1 +

(16
7)2 ·2−4 · (2+7−1 · l8(2+ 16

7 ·7)))))))))) = 212.73 xor, where the computation of
f6, f7, f1 needs 11, 9, 7 xor or looking up sbox respectively. (The computation
of values li (i = 1,...,10) and time estimation for substeps (1.2.7) to (1.2.10) is

Impossible Differential Attack on Reduced-Round TWINE 135

showed in AppendixB.) Hence the time complexity of step 1 in Key Recovery is
T1 = 220+n+28.92+12.73 · 1

23·24 23-round encryptions = 2n+52.54 encryptions.
The time complexity of step 2 in Key Recovery is T2 = 2m encryptions,

because the time of computing K2 and nine partial master key (k2, k5, k7,
k9, k10, k11, k12, k13, k18) is much less than one encryption for each K1 (see
AppendixA). Let n = 25.85, m = 77.72, then the time complexity of this attack
is T1 + T2 = 279.09 encryptions. Hence, the data complexity is 257.85 blocks and
the memory complexity is 2m · 80/64 + 260/64 = 278.04 blocks.

5 Impossible Differential Attack on 24-Round
TWINE-128

Attack on 24-round TWINE-128 uses the impossible differential (0̃5||α||0̃10) 14r
�

(0̃11||β||0̃4), because it involves the least number of round subkeys. What’s
more, subkeys involved in the truncated differential paths have less compli-
cated equations which are showed in Observation 5. We extend 5 rounds on the
top and the bottom of the 14-round impossible differential respectively. Table 6
and Table 7 show that the top 5 rounds involve 80-bit subkey information and
the bottom 5 rounds involve 84-bit subkey information respectively. Therefore,
80 + 84 − 128 = 36 bits subkey information are redundant, which are described
in Observation 5.

Attacking TWINE-128 is similar to attack on TWINE-80. Suppose 2n struc-
tures are used in this attack, and each structure contains plaintexts with the form
(p0, p1, γ0, p2, p3, p4, γ1, γ2, γ3, p5, p6, p7, p8, p9, p10, p11), where γi(i = 0, ..., 3)

Table 6. Subkeys involved in the extended head path of attacking TWINE-128

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k2 k3 k12 k15 k17 k18 k28 k31

Round 2 k6 k16 k19 ⊕ C1
L k21 k22 k(1, 0) k0

Round 3 k10 k11 ⊕ C2
H k(23, 30) ⊕ C2

L k26

Round 4 k14 k15 ⊕ C3
H

Round 5 k18

Table 7. Subkeys involved in the extended tail path of attacking TWINE-128

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 20 RK20
1 = RK24

5

Round 21 RK21
0 RK21

2

Round 22 RK22
0 RK22

2 RK22
3 RK22

6

Round 23 RK23
0 RK23

1 RK23
2 RK23

3 RK23
4 RK23

5 RK23
7

Round 24 RK24
0 RK24

1 RK24
2 RK24

3 RK24
4 RK24

5 RK24
6 RK24

7

136 X. Zheng and K. Jia

are constants and pi(i = 0, ..., 11) take all possible values in each structure.
As a result, there are 248 plaintexts in each structure and 2n+95 pairs are
obtained. And then select the pairs that satisfy Observation 7, 2n+95−16−19.27 =
2n+59.73 pairs are finally obtained. The complexity of data collection is 2n+70.6278

encryptions.
Let K0 = (RK1

[1,4], RK24
[2,4,5]), K1 = (RK1

[0,2,3,5,6,7], RK2
[0,2,3,4,5,6,7], RK3

[0,1,3,5],
RK4

0 , RK21
2 , RK22

6 , RK23
[0,1,2,4], RK24

[0,6,7]), K2 = (RK21
0 , RK22

[0,2,3], RK23
[3,5,7],

RK24
[1,3]), Since the main idea of key recovery is similar to that in TWINE-80, we

give the detailed description of key recovery algorithm in AppendixC. Combining
(K0, K1, K2) that pass the truncated differentials and the equations in Observa-
tion 5 can be done in 245.48 xor operations according to g1, g2, g3, g4, g9, g7, g8, g5,
g6 in sequence (see Appendix C).

Therefore, the time for filtering wrong keys is T1 = 220+n+59.73+45.48 · 1
24·24

24-round encryptions = 2n+116.04 encryptions, followed by T2 = 2m encryptions
to do trial encryptions. Since the probability of differential path is Pr= (7−11 ·
(7
16)3)2 = 2−68.92, let σ = 2128 · (1 − 2−68.92)2

n+59.73
= 2m. Take n = 10.1,

m = 125.29, then the time complexity is T1 + T2 = 2126.78 encryptions. And
the memory complexity and data complexity are 2m · 80/64 + 2108/64 = 2125.61

blocks and 258.1 blocks respectively.

6 Conclusion

This paper gives an impossible differential cryptanalysis of reduced-round
TWINE-80 and TWINE-128. In the attacks, we present some key relations, and
then an optimal algorithm is proposed to recovery subkeys using these relations,
which may be used in other types of attacks. According to the known results, it
seems that TWINE currently remains immune to impossible differential attack.

A

The following equations are deduced from the TWINE-80 key schedule.

f1 = RK
2
2 ⊕ s[RK

2
7] ⊕ RK

22
2 ⊕ s[RK

23
1 ⊕ C

22
H ⊕ C

19
L] ⊕ C

7
H ⊕ C

4
L = 0

f2 = RK
22
4 ⊕ RK

2
4 ⊕ C

14
H ⊕ C

11
L ⊕ s[C

9
H ⊕ C

6
L ⊕ RK

21
7 ⊕ s[RK

22
6 ⊕ C

21
L]] ⊕ s[RK

22
3 ⊕ C

17
H ⊕ C

14
L

⊕ s[RK
23
0 ⊕ C

12
H ⊕ C

9
L] ⊕ s[RK

1
1 ⊕ s[RK

23
4 ⊕ C

15
H ⊕ C

12
L]] ⊕ s[RK

23
0 ⊕ C

12
H ⊕ C

9
L]] = 0

f3 = RK
2
6 ⊕ C

4
H ⊕ C

1
L ⊕ C

21
L ⊕ RK

22
6 ⊕ s[RK

22
5 ⊕ C

19
H ⊕ C

16
L] ⊕ s[RK

22
2] = 0

f4 = RK
23
0 ⊕ RK

23
4 ⊕ C

15
H ⊕ C

12
L ⊕ s[RK

1
5 ⊕ s[C

13
H ⊕ C

10
L ⊕ RK

21
4]] ⊕ C

12
H ⊕ C

9
L

⊕ s
−1

[RK
1
7 ⊕ C

9
H ⊕ C

6
L ⊕ RK

21
7 ⊕ s[RK

22
6 ⊕ C

21
L]] = 0

f5 = RK
23
3 ⊕ RK

1
5 ⊕ C

18
H ⊕ C

15
L ⊕ s[RK

21
4 ⊕ C

13
H ⊕ C

10
L]

⊕ s[RK
22
1 ⊕ s[RK

2
6 ⊕ C

4
H ⊕ C

1
L ⊕ s[RK

22
5 ⊕ C

19
H ⊕ C

16
L]] ⊕ C

21
H ⊕ C

18
L] = 0

f6 = RK
23
5 ⊕ s[C

15
H ⊕ C

12
L ⊕ RK

23
4] ⊕ C

20
H ⊕ C

17
L ⊕ RK

1
1 ⊕ s[RK

1
6 ⊕ C

3
H ⊕ s[C

18
H ⊕ C

15
L ⊕ RK

23
3]] = 0

f7 = RK
23
6 ⊕ s[C

20
H ⊕ C

17
L ⊕ RK

23
5] ⊕ s[RK

23
2] ⊕ s

−1
[RK

2
7 ⊕ RK

1
0] ⊕ C

5
H ⊕ C

2
L ⊕ C

22
L = 0

f8 = s
−1

[RK
23
7 ⊕ RK

22
0] ⊕ s[RK

21
7] ⊕ s[C

21
H ⊕ C

18
L ⊕ RK

22
1] ⊕ RK

1
2 ⊕ C

6
H ⊕ C

3
L ⊕ s[RK

1
7] = 0

Impossible Differential Attack on Reduced-Round TWINE 137

Ascanbe seen fromtheabove equations,K2 = (RK21
[4,7], RK22

[0,2,4,6], RK23
[4,6]) canbe

computed from (K0,K1) = (RK1
[0,1,2,3,5,6,7], RK2

[2,4,6,7], RK22
[1,3,5], RK23

[0,1,2,3,5,7])
successively according to equations f1, f3, f5, f6, f7, f4, f8, f2 in 87/(23 · 24)
Xor = 2−2.67 encryptions.

k9 = s
−1

[RK
1
7 ⊕ C

9
H ⊕ C

6
L ⊕ RK

21
7 ⊕ s[RK

22
6 ⊕ C

21
L]] ⊕ s[RK

2
2 ⊕ s[RK

2
7]]

k10 = RK
22
3 ⊕ C

17
H ⊕ C

14
L ⊕ s[RK

23
0 ⊕ C

12
H ⊕ C

9
L] ⊕ s[RK

1
1 ⊕ s[RK

23
4 ⊕ C

15
H ⊕ C

12
L]]

k5 = RK
22
0 ⊕ C

11
H ⊕ C

8
L ⊕ s[RK

1
2 ⊕ s[RK

1
7]] ⊕ s[RK

2
4 ⊕ s[RK

1
7 ⊕ s[k9 ⊕ s[RK

2
2 ⊕ s[RK

2
7]]]]]

k11 = RK
23
1 ⊕ C

2
H ⊕ C

22
H ⊕ C

19
L ⊕ s[RK

22
3 ⊕ C

17
H ⊕ C

14
L] ⊕ s[s

−1
[RK

2
7 ⊕ RK

1
0]

⊕ C
5
H ⊕ C

2
L ⊕ s[RK

23
5 ⊕ C

20
H ⊕ C

17
L]]

k18 = RK
22
5 ⊕ C

19
H ⊕ C

16
L ⊕ s[RK

22
4 ⊕ C

14
H ⊕ C

11
L] ⊕ s[k11 ⊕ C

2
H ⊕ s[RK

22
3 ⊕ C

17
H ⊕ C

14
L]]

k7 = RK
22
1 ⊕ C

1
H ⊕ C

21
H ⊕ C

18
L ⊕ s[RK

1
3 ⊕ s[RK

22
0 ⊕ C

11
H ⊕ C

8
L] ⊕ s[k18 ⊕ s[RK

22
4

⊕ C
14
H ⊕ C

11
L]]] ⊕ s[RK

2
6 ⊕ C

4
H ⊕ s[RK

22
5 ⊕ C

19
H ⊕ C

16
L]]

k2 = RK
23
4 ⊕ C

15
H ⊕ C

12
L ⊕ s[RK

2
7 ⊕ s[RK

21
4 ⊕ C

13
H ⊕ C

10
L ⊕ s[RK

1
3 ⊕ s[RK

22
0

⊕ C
11
H ⊕ C

8
L]]]] ⊕ s[RK

1
5 ⊕ s[RK

21
4 ⊕ C

13
H ⊕ C

10
L]]

k12 = RK
23
2 ⊕ C

8
H ⊕ C

5
L ⊕ s[k5 ⊕ s[RK

1
2 ⊕ s[RK

1
7]]] ⊕ s[RK

1
6 ⊕ C

3
H ⊕ s[RK

23
3

⊕ C
18
H ⊕ C

15
L] ⊕ s[RK

1
2 ⊕ C

6
H ⊕ C

3
L ⊕ s[RK

1
7] ⊕ s[RK

22
1 ⊕ C

21
H ⊕ C

18
L]]]

k13 = RK
21
4 ⊕ C

13
H ⊕ C

10
L ⊕ s[k12 ⊕ s[k5 ⊕ s[RK

1
2 ⊕ s[RK

1
7]]]] ⊕ s[RK

1
3 ⊕ s[RK

22
0 ⊕ C

11
H ⊕ C

8
L]]

As can be seen from the above equations, the nine partial master key (k2, k5, k7,
k9, k10, k11, k12, k13, k18) can be computed in 114/(23·24) encryptions = 2−2.276

encryptions.
The following equations are deduced from the TWINE-128 key schedule.

g1 = RK
22
3 ⊕ s[RK

23
5] ⊕ C

21
L ⊕ s

−1
[RK

22
2 ⊕ RK

1
1] = 0

g2 = RK
21
0 ⊕ s[RK

24
6 ⊕ s[RK

24
7]] ⊕ C

12
H ⊕ C

9
L ⊕ RK

2
2 ⊕ s[RK

1
6] = 0

g3 = s
−1

[RK
3
1 ⊕ RK

24
2] ⊕ s[RK

23
7 ⊕ s[RK

22
2]] ⊕ RK

3
0 ⊕ s[RK

23
5 ⊕ C

18
H ⊕ C

15
L ⊕ s[RK

21
0]] = 0

g4 = C
20
H ⊕ C

17
L ⊕ s[RK

23
0] ⊕ s

−1
[s

−1
[RK

24
2 ⊕ RK

3
1] ⊕ C

23
L ⊕ RK

24
3] ⊕ s

−1
[RK

1
5 ⊕ s

−1
[RK

22
6

⊕ C
4
H ⊕ RK

2
3] ⊕ s[RK

21
2]] = 0

g5 = RK
1
0 ⊕ s

−1
[RK

1
1 ⊕ RK

22
2] ⊕ s[RK

4
0 ⊕ s[RK

24
5 ⊕ C

19
H ⊕ C

16
L ⊕ s[RK

22
0]]] ⊕ s[C

16
H ⊕ C

13
L ⊕ s[RK

23
4]

⊕ s
−1

[RK
23
1 ⊕ C

22
H ⊕ C

19
L ⊕ s

−1
[RK

24
7 ⊕ RK

3
5 ⊕ s[RK

23
2]]]] = 0

g6 = RK
2
4 ⊕ s[RK

22
0 ⊕ C

13
H ⊕ C

10
L ⊕ s[C

7
H ⊕ C

4
L ⊕ RK

1
7 ⊕ s[RK

23
2 ⊕ s[RK

23
3 ⊕ C

22
L ⊕ s[RK

24
5]]]]]

⊕ s[RK
1
0 ⊕ s[C

16
H ⊕ C

13
L ⊕ s[RK

23
4] ⊕ s

−1
[RK

23
1 ⊕ C

22
H ⊕ C

19
L ⊕ s

−1
[RK

24
7 ⊕ RK

3
5 ⊕ s[RK

23
2]]]]]

⊕ s
−1

[RK
23
7 ⊕ RK

2
5 ⊕ s[RK

22
2]] = 0

g7 = C
22
L ⊕ RK

2
0 ⊕ RK

23
3 ⊕ s[RK

24
5] ⊕ s[s

−1
[RK

22
6 ⊕ C

4
H ⊕ RK

2
3] ⊕ s[RK

21
2]] ⊕ s[s

−1
[RK

23
0 ⊕ C

14
H

⊕ C
11
L ⊕ s

−1
[RK

24
4 ⊕ C

11
H ⊕ C

8
L ⊕ RK

1
2 ⊕ s[C

5
H ⊕ RK

3
3]] ⊕ s[C

8
H ⊕ C

5
L ⊕ RK

2
7 ⊕ s[RK

3
1]]]

⊕ s[RK
1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6]]]] = 0

138 X. Zheng and K. Jia

g8 = s
−1

[RK
3
5 ⊕ RK

24
7 ⊕ s[RK

23
2]] ⊕ s

−1
[RK

24
5 ⊕ C

19
H ⊕ C

16
L ⊕ s

−1
[RK

2
6 ⊕ C

16
H ⊕ C

13
L ⊕ s[RK

23
4]

⊕ s
−1

[RK
23
1 ⊕ C

22
H ⊕ C

19
L ⊕ s

−1
[RK

24
7 ⊕ RK

3
5 ⊕ s[RK

23
2]]]] ⊕ s[RK

22
0]] ⊕ s[RK

2
0 ⊕ s[

s
−1

[RK
23
0 ⊕ C

14
H ⊕ C

11
L ⊕ s

−1
[RK

24
4 ⊕ C

11
H ⊕ C

8
L ⊕ RK

1
2 ⊕ s[C

5
H ⊕ RK

3
3]] ⊕ s[C

8
H ⊕ C

5
L

⊕ RK
2
7 ⊕ s[RK

3
1]]] ⊕ s[RK

1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6]]]]] = 0

g9 = s
−1

[RK
1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6]] ⊕ s

−1
[RK

1
5 ⊕ s

−1
[RK

22
6 ⊕ C

4
H ⊕ RK

2
3] ⊕ s[RK

21
2]]] ⊕ s[RK

3
0 ⊕ s[

RK
23
5 ⊕ C

18
H ⊕ C

15
L ⊕ s[C

12
H ⊕ C

9
L ⊕ RK

21
0 ⊕ C

12
H ⊕ C

9
L]]] ⊕ s[C

17
H ⊕ C

14
L ⊕ s

−1
[RK

23
0 ⊕ C

14
H ⊕ C

11
L

⊕ s
−1

[RK
24
4 ⊕ C

11
H ⊕ C

8
L ⊕ RK

1
2 ⊕ s[C

5
H ⊕ RK

3
3]] ⊕ s[C

8
H ⊕ C

5
L ⊕ RK

2
7 ⊕ s[RK

3
1]]]

⊕ s[RK
1
4 ⊕ s[RK

2
2 ⊕ s[RK

1
6]]] ⊕ s[RK

24
4]] ⊕ C

23
H ⊕ C

20
L ⊕ RK

24
1 = 0

B

It is obvious that the value of #RK1
0 , #RK1

5 , #RK1
6 , #RK23

2 , #RK23
4 , #RK23

5 ,
#RK23

6 , #RK22
1 are all 16

7 for each plaintext-ciphertext pair when these subkeys
pass the differential path with known RK23

0 . Besides, RK23
3 passes the truncated

differential with probability (7
16)3, so #RK23

3 = 24 · (7
16)3 for each accurate

plaintext-ciphertext pair. Furthermore, once RK1
7 that pass the differential path

is known, #RK2
7 = 16

7 ; once RK1
1 that pass the differential path is known,

#RK2
2 = 16

7 ; once RK23
3 that pass the differential path is known, #RK22

2 = 16
7 ;

once RK22
6 that pass the differential path is known, #RK21

4 = 16
7 with the known

RK23
7 ; once RK23

1 that pass the differential path is known, #RK22
3 = 16

7 .
Therefore, it is easy to compute the value of loops li with the above knowledge

and Observation 8.
The following is a time estimation for substep (1.2.7) to substep (1.2.10) in

key recovery algorithm.
As showed in the proof of Observation 8, the computation of RK1

2 for each
(RK1

6 , RK2
6) can be done in much less than one encryption. Therefore, #RK1

6 =
16
7 and #RK2

6 = 24 indicate that the time for computing RK1
2 is less than 16

7 ·24

encryptions.
Similarly, since #RK23

3 = 24 · (7
16)3, #RK23

6 = 16
7 , the time for computing

RK22
4 is less than 24 · (7

16)2 encryptions. Because #RK23
2 , #RK23

4 and #RK23
5

are all 16
7 , and #RK23

3 = 24 · (7
16)3, the time for computing RK22

0 is less than
24 encryptions. Known from Observation 8, the number of values of RK22

0 is
16
7 for each RK23

[2,3,4,5]. Hence the time for computing RK21
7 is less than 16

7 · 24

encryptions.

C

This appendix gives a detailed description of the Key Recovery algorithm for
TWINE-128. Before introducing the algorithm, an observation similar to Obser-
vation 8 used in attacking TWINE-80 is given, followed by some precomputed
tables for gi functions.

Impossible Differential Attack on Reduced-Round TWINE 139

Observation C.1. For a plaintext-ciphertext pair satisfying the input-output
difference relations in Observation 7, the following can be deduced according to
the differential path in attacking TWINE-128.

(1) Given RK21
2 , RK22

3 , RK24
0 , RK24

6 that pass the differential path, then 16
7 val-

ues of RK23
1 on average can pass the path and be computed;

(2) Given RK24
[1,5,7], RK23

3 , RK22
2 , RK21

0 that pass the differential path, then (16
7)2

values of RK22
0 on average can pass the path and be computed; and then if

RK24
3 is also known, then 16

7 values of RK23
2 on average can pass the path

and be computed;
(3) Given RK1

0 , RK2
0 , RK3

0 , RK1
5 , RK3

1 that pass the differential path, then (16
7)2

values of RK4
0 on average can pass the path and be computed;

(4) Given RK1
6 , RK3

1 that pass the differential path, then 16
7 values of RK2

5 on
average can pass the path and be computed;

(5) Given RK1
2 , RK1

7 , RK2
6 , RK3

5 that pass the differential path, then 16
7 values

of RK1
3 on average can pass the path and be computed; and then if RK3

3 is
also known, then (16

7)2 values of RK2
4 on average can pass the path and be

computed;

Proof. Making use of the differential path and the equations RK4
1 = RK1

3 ,
RK5

0 = RK1
5 and RK20

1 = RK24
5 , it is easy to prove the above observation

similarly to the proof in Observation 8.
The following tables KT

′
i (i = 3, ..., 9) are precomputed for equations gi

respectively.

Table Index Content

KT
′
3 (RK3

[0,1], RK21
0 , RK22

2 , RK23
5 , RK24

2) RK23
7

KT
′
4 (RK1

5 , RK2
3 , RK3

1 , RK22
6 , RK23

0 , RK24
[2,3]) RK21

2

KT
′
5 (RK1

[0,1], RK3
5 , RK22

[0,2], RK23
[1,2,4], RK24

[5,7]) RK4
0

KT
′
6 (RK1

[0,7], RK2
[4,5], RK3

5 , RK22
[0,2], RK23

[1,2,3,4,7], RK24
[5,7]) RK2

4

KT
′
7 (RK1

[2,4,6], RK2
[0,2,3,7], RK3

[1,3], RK21
2 , RK22

6 , RK23
[0,3], RK24

[4,5]) RK23
3

KT
′
8 (RK1

[2,4,6], RK2
[0,2,6,7], RK3

[1,3,5], RK22
0 , RK23

[0,1,2,4], RK24
[4,5,7]) RK3

5

KT
′
9 (RK1

[2,4,5,6], RK2
[2,3,7], RK3

[0,1,3], RK21
[0,2], RK22

6 , RK23
[0,5], RK24

[1,4]) RK3
3

As can be seen from Algorithm C.2, the time for combining all the subkeys
involved in attacking TWINE-128 is l1 ·(5+l2 ·(13+l3 ·(1+3+1+ 16

7 +l4 ·(1+l5.1 ·
(1+ 16

7 +l5.2·(1+l6·(1+1+ 16
7 +1+l7.1·(1+l7.2·(1+l8·(2+(16

7)2·2−4·l9·2)))))))))) =
245.48 xor = 236.31 24-round encryptions.

140 X. Zheng and K. Jia

Algorithm C.1. TWINE-128 Key Recovery

Input: chosen plaintext-ciphertext pairs, functions gi (i = 1, ..., 9), differential characteristic

Output: right key used in TWINE-128

1: For every possible value of K0 = (RK1
[1,4], RK24

[2,4,5]), do

(1.1): Initialize a table Γ of 2108 all possible values of K1;

(1.2): For each chosen plaintext-ciphertext pair, do

(1.2.1): Compute X2
[4,6] using RK1

[1,4] by partial encryption of plaintext;

(1.2.2): Compute X23
[0,10,14] using RK24

[2,4,5] by partial decryption of ciphertext;

(1.2.3): Compute (RK1
0 , X2

0), (RK1
2 , X2

12), (RK1
5 , X2

2), (RK1
6 , X2

10), (RK24
0 , X23

2), (RK24
1 , X23

6),

(RK24
3 , X23

4), (RK24
7 , X23

12) using the plaintext-ciphertext pair and differential characteristic;

(1.2.4): Compute RK2
2 using X2

4 and (�X2
4 , �X2

5); Compute RK2
3 using X2

6 and (�X2
6 , �X2

7);

(1.2.5): Compute RK23
0 using X23

0 and (�X23
0 , �X23

1); Compute RK23
5 using X23

10 and (�X23
10 , �X23

11);

/∗ each 4-bit subkey computed above has 16
7

values ∗/

(1.2.6): For every possible value of RK1
7 , do /∗ 24 loops ∗/

Compute X2
14;

If �X2
15 ∈ �s[�X2

14], �X1
10 ∈ �s[�X2

14] and �X2
14 ∈ �s[�X1

14] all holds, /∗ Pr = (7
16

)3 ∗/

then store (RK1
7 , X2

14);

(1.2.7): For every possible value of RK24
6 , do /∗ 24 loops ∗/

Compute X23
8 ;

If �X23
8 ∈ �s[�X24

12], �X24
6 ∈ �s[�X23

8] and �X24
14 ∈ �s[�X23

8] all holds, /∗ Pr = (7
16

)3 ∗/

then store (RK24
6 , X23

8);

(1.2.8): Compute RK23
1 using Observation C.1, and then store it in Q0 with index (RK21

2 , RK22
3 , RK24

0 , RK24
6);

(1.2.9): Compute (RK22
0 , RK23

2) using Observation C.1, and then store it in Q1

with index (RK24
[1,3,5,7], RK23

3 , RK22
2 , RK21

0);

(1.2.10): Compute RK4
0 using Observation C.1, and then store it in Q2 with index (RK1

0 , RK2
0 , RK3

0 , RK1
5 , RK3

1);

(1.2.11): Compute RK2
5 using Observation C.1, and then store it in Q3 with index (RK1

6 , RK3
1);

(1.2.12): Compute (RK2
4 , RK1

3) using Observation C.1, and then store it in Q4

with index (RK1
2 , RK1

7 , RK2
6 , RK3

[3,5]);

(1.2.13): Combine all the involved subkeys using Algorithm C.2 to obtain (K1, K2) with known K0;

(1.2.14): Remove K1 in the combined (K1, K2) from Γ ;

(1.3): Store K0 and the finally remained K1 from Γ .

2: After the above steps, suppose there are 2m (K0, K1).

(2.1): For each value of (K0, K1), do

(2.1.1): compute the value of K2 using gi (i = 1,...,9);

(2.1.2): and then compute the 12 partial master keys k4, k5, k7, k8, k9, k13, k20, k23, k24, k25, k27, k29

using (K0, K1, K2 /;) ∗ the other 20 partial master keys are known in (K0, K1) ∗/

(2.1.3): And then do a trial encryption. If it is correct, then return the right key and abort the loop.

Impossible Differential Attack on Reduced-Round TWINE 141

Algorithm C.2. Subkeys Combining Procedure for TWINE-128

Input: a plaintext-ciphertext pair, K0 = (RK1
[1,4], RK24

[2,4,5]), functions gi (i = 1, 2), tables KT
′
i (i = 3, ..., 9),

{Qi}(i = 0, ..., 4), and the already computed subkeys RK1
[0,2,5,6,7], RK24

[0,1,3,6,7], RK2
[2,3], RK23

[0,5]

Output: combined 144-bit subkeys (K1, K2) which pass the path and all the subkey equations

1: For every (RK23
5 , RK22

2) do: /∗ l1 = 16
7

· 24 loops ∗/

Compute RK22
3 using g1; and then store RK = (RK23

5 , RK22
[2,3]);

2: For every (RK1
6 , RK2

2 , RK24
[6,7]), do: /∗ l2 = (16

7
)3 · (24 · (7

16
)3) = 24 loops ∗/

Compute RK21
0 using g2; and then add (RK1

6 , RK2
2 , RK24

[6,7], RK21
0) to RK;

3: For every RK3
[0,1], do: /∗ l3 = 28 loops ∗/

Look up KT
′
3 to get the value of RK23

7 ; and then add (RK3
[0,1], RK23

7) to RK;

Compute X23
15 using RK23

7 , and then compute RK22
6 using X23

15 and (�X23
15 , �X23

10);

4: For every (RK1
5 , RK2

3 , RK22
6 , RK23

0 , RK24
3), do: /∗ l4 = (16

7
)5 loops ∗/

Look up KT
′
4 to get the value of RK21

2 , then add (RK1
5 , RK2

3 , RK22
6 , RK23

0 , RK24
3 , RK21

2) to RK;

5: For every (RK1
7 , X2

14), do: /∗ l5.1 = 24 · (7
16

)3 loops ∗/

Compute RK2
7 using X2

14 and (�X2
14, �X2

15);

For every (RK1
2 , RK2

7 , RK24
1), do: /∗ l5.2 = (16

7
)3 loops ∗/

Look up KT
′
9 to obtain RK3

3 , and then add (RK1
[2,7], RK2

7 , RK24
1 , RK3

3) to RK;

6: For every RK2
0 , do: /∗ l6 = 24 loops ∗/

Look up KT
′
7 to get the value for RK23

3 ; and then add (RK2
0 , RK23

3) to RK;

7: Compute RK23
4 using X23

8 and (�X23
8 , �X23

9); Look up Q1 to obtain (RK22
0 , RK23

2);

For every RK24
0 , do: /∗ l7.1 = 16

7
loops ∗/

Look up Q0 to obtain RK23
1 ;

For every (RK23
[1,2,4], RK22

0 , RK2
6), do: /∗ l7.2 = (16

7
)5 · 24 loops ∗/

Look up KT
′
8 to get RK3

5 ; and then add (RK24
0 , RK23

[1,2,4], RK22
0 , RK2

6 , RK3
5) to RK;

8: For every RK1
0 , do: /∗ l8 = 16

7
loops ∗/

Look up KT
′
5 to get the value for RK4

0 ;

If it appears in Q2 with index (RK1
0 , RK2

0 , RK3
0 , RK1

5 , RK3
1), /∗ Pr = (16

7
)2 · 2−4 ∗/

then add (RK1
0 , RK4

0) to RK; otherwise, try next RK1
0 ;

9: For every RK2
5 from Q3, do: /∗ l9 = 16

7
loops ∗/

Look up KT
′
6 to get the value for RK2

4 ;

If it appears in Q4 with index (RK1
2 , RK1

7 , RK2
6 , RK3

5), /∗ Pr = (16
7

)2 · 2−4 ∗/

then add RK2
5 , RK2

4 together with RK1
3 (from Q3) to RK; otherwise, try next RK2

5 ;

10: Return the combined RK = (RK23
5 , RK22

[2,3], RK1
6 , RK2

2 , RK24
[6,7], RK21

0 , RK3
[0,1], RK23

7 , RK1
5 , RK2

3 , RK22
6 , RK23

0 ,

RK24
3 , RK21

2 , RK1
[2,7], RK2

7 , RK24
1 , RK3

3 , RK2
0 , RK23

3 , RK24
0 , RK23

[1,2,4], RK22
0 , RK2

6 , RK3
5 , RK1

0 , RK4
0 , RK2

5 , RK2
4 , RK1

3).

D

Algorithm D.1. Algorithm 2.3: TWINE.KeySchedule-80((k0, ..., k19),
RKr

[0,...,7]) in [15]

1: (WK0||WK1||...||WK18||WK19) ← (k0, ..., k19)
2: for r ← 1 to 35 do
3: RKr

[0,...,7] ← (WK1||WK3||WK4||WK6||WK13||WK14||WK15||WK16)
4: WK1 ← WK1 ⊕ s[WK0], WK4 ← WK4 ⊕ s[WK16],
5: WK7 ← WK7 ⊕ Cr

H , WK19 ← WK19 ⊕ Cr
L,

6: (WK0||WK1||WK2||WK3) ← (WK1||WK2||WK3||WK0)
7: (WK0||...||WK19) ← (WK4||...||WK19||WK0||WK1||WK2||WK3)
8: end for
9: RK36

[0,...,7] ← (WK1||WK3||WK4||WK6||WK13||WK14||WK15||WK16)

142 X. Zheng and K. Jia

Algorithm D.2. Algorithm A.1: TWINE.KeySchedule-128((k0, ..., k31),
RKr

[0,...,7]) in [15]

1: (WK0||WK1||...||WK18||WK31) ← (k0, ..., k31)
2: for r ← 1 to 35 do
3: RKr

[0,...,7] ← (WK2||WK3||WK12||WK15||WK17||WK18||WK28||WK31)
4: WK1 ← WK1 ⊕ s[WK0], WK4 ← WK4 ⊕ s[WK16], WK23 ← WK23 ⊕

s[WK30],
5: WK7 ← WK7 ⊕ Cr

H , WK19 ← WK19 ⊕ Cr
L,

6: (WK0||WK1||WK2||WK3) ← (WK1||WK2||WK3||WK0)
7: (WK0||...||WK31) ← (WK4||...||WK31||WK0||WK1||WK2||WK3)
8: end for
9: RK36

[0,...,7] ← (WK2||WK3||WK12||WK15||WK17||WK18||WK28||WK31)

Table D.1. Subkeys of round 1–5 in TWINE-80

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k1 k3 k4 k6 k13 k14 k15 k16

Round 2 k5 k7 ⊕ C1
H k8 k10 k17 k18 k19 ⊕ C1

L k(1, 0)

Round 3 k9 k11 ⊕ C2
H k12 k14 k2 k3 k0⊕ k

C2
L (5, (4, 16))

Round 4 k13 k15⊕ k16 k18 k6 k7 ⊕ C1
H k(4, 16)⊕ k

C3
H C3

L (9, (8, (1, 0)))

Round 5 k17 k19⊕ k(1, 0) k3 k10 k11⊕ k(8, (1, 0))⊕ k

C4
H ⊕ C1

L C2
H C4

L (13, (12, (5, (4, 16))))

Table D.2. Subkeys of round 1–7 in TWINE-128

Round r RKr
0 RKr

1 RKr
2 RKr

3 RKr
4 RKr

5 RKr
6 RKr

7

Round 1 k2 k3 k12 k15 k17 k18 k28 k31

Round 2 k6 k7 ⊕ C1
H k16 k19 ⊕ C1

L k21 k22 k(1, 0) k0

Round 3 k10 k11 k20 k(23, 30) k25 k26 k k

⊕C2
H ⊕C2

L (5, (4, 16)) (4, 16)

Round 4 k14 k15 k24 k(27, 3) k29 k30 k k

⊕C3
H ⊕C3

L (9, (8, 20)) (8, 20)

Round 5 k18 k19⊕ k28 k31⊕ k2 k3 k k

C4
H ⊕ C1

L s[k7 ⊕ C1
H] ⊕ C4

L (13, (12, 24)) (12, 24)

Round 6 k22 k(23, 30)⊕ k(1, 0) k0⊕ k6 k7⊕ k k

C2
L ⊕ C5

H s[k11 ⊕ C2
H] ⊕ C5

L C1
H (17, (16, 28)) (16, 28)

Round 7 k26 k(27, 3)⊕ k k(4, 16)⊕ k10 k11⊕ k k

C3
L ⊕ C6

H (5, (4, 16)) s[k15 ⊕ C3
H] ⊕ C6

L C2
H (21, (20, (1, 0))) (20, (1, 0))

Impossible Differential Attack on Reduced-Round TWINE 143

References

1. Bogdanov, A., Boura, C., Rijmen, V., Wang, M., Wen, L., Zhao, J.: Key difference
invariant bias in block ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 357–376. Springer, Heidelberg (2013)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Boztaş, Ö., Karakoç, F., Çoban, M.: Multidimensional meet-in-the-middle attacks
on reduced-round TWINE-128. In: Avoine, G., Kara, O. (eds.) LightSec 2013.
LNCS, vol. 8162, pp. 55–67. Springer, Heidelberg (2013)

4. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

5. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

6. Çoban, M., Karakoç, F., Boztaş, Ö.: Biclique cryptanalysis of TWINE. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712,
pp. 43–55. Springer, Heidelberg (2012)

7. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

8. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

9. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

10. Knudsen, L.R.: DEAL - a 128-bit block cipher. Technical report, Department of
Informatics, University of Bergen, Norway (1998)

11. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

12. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

13. Mace, F., Standaert, F.X., Quisquater, J.J.: ASIC implementations of the block
cipher SEA for constrained applications. In: Proceedings of the Third Interna-
tional Conference on RFID Security (2007). http://www.rfidsec07.etsit.uma.es/
confhome.html

14. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

15. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight, ver-
satile block cipher. In: ECRYPT Workshop on Lightweight Cryptography, Louvain-
la-Neuve, Belgium, 28–29 November 2011

16. Wu, W., Zhang, L.: LBLOCK: a lightweight block cipher. In: Lopez, J., Tsudik,
G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://www.rfidsec07.etsit.uma.es/confhome.html
http://www.rfidsec07.etsit.uma.es/confhome.html

Optimal Storage for Rainbow Tables

Gildas Avoine1,2 and Xavier Carpent1(B)

1 Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
xavier.carpent@uclouvain.be

2 INSA de Rennes, IRISA UMR 6074, 35043 Rennes, France

Abstract. Cryptanalytic time-memory trade-offs were introduced by
Martin Hellman in 1980, and they have since had a major impact on
practical cryptanalysis. Hellman’s technique has been studied as well
as improved significantly, most notably by Philippe Oechslin who intro-
duced the rainbow tables. As it has been highlighted in various papers,
the way the memory is handled is extremely important. In this paper,
we analytically describe how rainbow tables are currently stored, and
we introduce a new structure that considerably reduces the memory
requirement. We mathematically analyze these techniques, provide opti-
mal parameterization, and show that our structure is extremely close to
the theoretical lower bound. Using our optimized storage for rainbow
tables realizes the equivalent of a speedup of three with respect to the
naive approach.

Keywords: Time-memory trade-offs · Implementation · Compression

1 Introduction

Cryptanalytic time-memory trade-offs are a tool to make brute-force attacks on
hash functions or ciphers more practical. As their name suggest, they consist
in a trade-off between online time and required memory to invert a one-way
function. They were first introduced by Hellman in [7], and were later refined
and improved. Time-memory trade-offs have been used in many practical attacks
such as against A5/1 (used for GSM communications) in 2000 [3], or other stream
ciphers like LILI-128 in 2002 [14].

Arguably, the most important of the algorithmic improvements is the rainbow
tables, introduced by Oechslin in [11]. Rainbow tables have been illustrated by
the very efficient cracking of Windows LM Hash passwords in 2003 [11] or Unix
passwords (using FPGA) in 2005 [10].

Algorithmic advances in time-memory trade-offs therefore have an important
impact in the field of cryptanalysis. Implementation optimizations are also very
valuable: while it is stated in [11] that rainbow tables present a gain of a factor
2 in time with respect to Hellman tables, a gain of 3 can be gained through
implementation optimizations, as introduced in this article. Despite some imple-
mentation optimizations having been discussed [1–3,9], they have never been
the focus of a rigorous analysis and the optimal parameters have consequently
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 144–157, 2014.
DOI: 10.1007/978-3-319-12160-4 9

Optimal Storage for Rainbow Tables 145

never been investigated. Endpoint truncation, such as described in [9] has other
implications than simple storage optimizations and is complementary to the
techniques described in this paper.

This paper presents a revision of the techniques used to optimize the imple-
mentations of time-memory trade-offs and introduces new ones. A rigorous analy-
sis of their behavior is done, using a mathematical approach. In particular,
the contributions are the following: a lower bound for endpoints compression
(Sect. 3); an analysis and optimal configuration for the already-known prefix-
suffix decomposition method (Sect. 4); a new way to store the endpoints that we
name compressed delta encoding, along with optimal parameterization (Sect. 5);
evidence that startpoints can not be compressed further than what is known
today (Sect. 6); and finally, evidence that compressed delta encoding fares bet-
ter than the prefix-suffix decomposition, and that it gets very close to the lower
bound (Sect. 7).

2 Time-Memory Trade-Offs

Section 2 describes the context and the algorithms of time-memory trade-offs.
For a more detailed description, see for instance [2] or [9].

2.1 Context

Let h : A → B be a one-way function, with |A| = N . Given y ∈ B, the problem
consists in finding x ∈ A such that h(x) = y. The common way to solve it
is to perform a brute-force: computing h(x) for each possible x until one that
matches y is found. The brute-force can be performed for every new instance
of the problem. In such a case, it is memory-less but it requires N calculations
(worst case) for every instance. The other option consists in carrying out an
exhaustive brute force once and storing the N pairs (x, h(x)). A lookup in the
memory is then enough to solve a problem instance. None of these approaches are
satisfying due to the practical computation and memory constraints. Hellman
introduced in [7] a trade-off between those two approaches. It is composed of a
precomputation phase performed once, and an online phase achieved for every
new problem instance.

2.2 Precomputation Phase

In the precomputation phase, a series of chains of hashes1 is constructed by
alternating the h function, and r : B → A a reduction function. The purpose
of the reduction function is to map a point in B to a point in A in a uniform
and efficient way. Typically, it is implemented with a modulo: r(y) = y mod N .
A chain j starts at an arbitrarily chosen startpoint Xj,1 ∈ A, and it is iteratively

1 The technique works for inverting any one-way function, but we use the vocabulary
of hash functions liberally.

146 G. Avoine and X. Carpent

built with Xj,i+1 = h(r(Xj,i)) until the endpoint Xj,t, where the length of
the chain t is a fixed parameter. Once m chains are computed this way, the
startpoint/endpoint pairs are sorted according to their endpoints, and stored in
a table2. Figure 1 is a representation of the structure of such a table.

Fig. 1. Structure of a Hellman table. The framed columns, respectively the startpoints
and the endpoints, are the parts stored in memory.

2.3 Online Phase

Given y ∈ B, the online phase aims to retrieve x ∈ A such that y = h(x). For
that, r(y) is computed and a lookup is performed in the table to check whether
it matches a stored endpoint3. Assuming it matches Xj,t for some 1 ≤ j ≤ m,
the chain j is rebuilt from Xj,1 up to Xj,t−1. If h(Xj,t−1) = y, then the problem
is solved given that Xj,t−1 is the expected value. If they are not equal or if no
match was found in the first place, the process moves up to the next step by
computing r(h(r(y))) and repeating the same procedure. This goes on until a
solution is found, or until the table is completely searched through (t steps).

2.4 Rainbow Tables

Rainbow tables [11] are an important improvement over Hellman tables, even
though the difference is subtle. Instead of a single reduction function within one
table, a different one per column is used. An example of a typical reduction
function family is ri(y) = r(y+ i), with r a reduction function such as a modulo.
The drawback is that, during the online phase, the chain rt−1(h(rt−2(h(. . .))))
must be recomputed entirely at each step rather than just computing r ◦ h of
the previous result. However, it is much easier in rainbow tables to build clean4

2 We actually need to build several tables this way. The reason for this is that the
coverage quickly saturates in Hellman tables. See [7]. Also note that with rainbow
tables, although 3 or 4 tables are generally required for a good probability of success,
the number of Hellman tables required is usually much bigger.

3 Since the endpoints are sorted, this lookup is inexpensive.
4 Although the word “perfect” is usually attributed to tables without merges in the

literature, we find this terminology more intuitive and more adapted.

Optimal Storage for Rainbow Tables 147

tables, which are tables without merges. A merge is a situation in which two
chains contain an identical point in a given column. The two chains “merge”
because the series of values obtained afterwards are the same. A merge appear-
ing in rainbow tables therefore always results in identical endpoints, but it is
generally not the case with Hellman tables, in which merges are the cause of
a drastic decrease in performances. At the end of the precomputation phase,
duplicate endpoints are thus filtered out of rainbow tables. This results in much
more efficient tables. In this paper, we focus on rainbow tables for these reasons,
although the results are in theory applicable to Hellman tables as well.

2.5 Memory in Time-Memory Trade-Offs

It has been showed [7,11] that the efficiency of both the Hellman tables and
rainbow tables follows the rule T ∝ N2/M2, with T the average time during an
online search, and M the amount of memory required for the table5. This means
that optimizing storage has a great impact on the online time. This will be the
focus of the discussion in the rest of the paper.

To summarize the notations, we note N = |A| the size of the searching space;
m1 is, in accordance with the literature, the amount of chains generated during
the precomputation phase to compute a rainbow table; and m is the amount of
chains that remain after the duplicates have been filtered out.

3 Bounds for Endpoint Storage

The memory available for the tables is a very important factor. More memory
means faster inversion and/or bigger searching space. It is therefore an inter-
esting objective to reduce the memory required to store the tables. Note that,
because of the nature of the search process, an efficient random access to the
chains is necessary. This means that one can not simply compress the tables
using a regular entropy compression technique (e.g. deflate, lzw).

In the following, we first discuss the storage of endpoints, and then move on
to the storage of startpoints. Their analysis may be done separately, as motivated
in Sect. 6.

In the naive algorithm, each endpoint is stored on �log2 N� bits. Therefore,
the total memory for endpoints Mep is:

Morig
ep = m�log2 N�. (1)

We first mention here a theoretical lower bound for endpoint storage.
A natural assumption that is usually made is that the endpoints are uniformly
distributed in A. Indeed, we assume that the output of h is uniformly distributed
in B and that therefore the output of ri ◦ h is uniformly distributed in A (i.e.,
expected to behave like a random oracle). This is the case with cryptographic
hash functions which are the focus of time-memory trade-offs such as rainbow
5 As said above, the constant factor greatly favors rainbow tables [11].

148 G. Avoine and X. Carpent

tables. Work has been done on more general (but less efficient) time-memory
trade-offs for any function [4]. A second point is that, since the endpoints are
free of duplicates, the number of possible sets of endpoints is

(
N
m

)
(they are all

equiprobable). Therefore, the average minimal number of bits to store one such
set of endpoints is:

Mopt
ep = log2

(
N

m

)
. (2)

Indeed, if we could index each possible endpoint set by an integer, this would be
the size of one such index. In the following, we discuss how to get close to this
bound.

4 Decomposition of the Endpoints in Prefix and Suffix

4.1 Description

The technique that is used in current implementations (see e.g. Ophcrack [12]) for
storing endpoints efficiently is the prefix-suffix decomposition of the endpoints.
It is discussed in [1,2]. The technique takes advantage of the fact that endpoints
are sorted to store them more efficiently. In the following, it is assumed that
N = 2n for the sake of simplicity, but the technique also works if N is not a
power of two (see e.g. [1]).

The endpoints are sorted and divided in two parts: the p most significant bits
form the prefix, and the s = n−p least significant ones the suffix of an endpoint.
They are then stored in two separate files: the prefix file and the suffix file.
The suffix file simply contains all the suffixes, in the order of the sorted whole
endpoints. The suffix file will also typically contain the startpoints corresponding
to each suffix. The prefix file contains a list of indices relating to the suffix file.
Each index indicates up to which suffix the corresponding prefix maps to.

Let us illustrate this with an example with n = 32, p = 12 and s = 20.
Figure 2 represents a possible list of sorted endpoints in binary format. The first
entry of the prefix table is 62, because the prefix 000000000000 is used up to
chain 62; the next entry is 198 because prefix 000000000001 is used up to there,
and so on. Whenever a prefix actually does not appear in the list of endpoints
(this is possible although unlikely if p is adequate), the index put in the prefix
table is simply the same as the previous one. If we take our example again, the
index related to prefix 000000000010 is also 198 because it does not appear in
the list of endpoints.

For the online phase, what needs to be specified is the operation that gives the
startpoint corresponding to some point x, or nothing if x is not in the endpoint
list. For that we again decompose x in a prefix and suffix (with the same p and s
parameters). We look at the prefix of x, let’s say 011101011100, and go fetch that
entry in the prefix table. We get a number, let’s say 11152, and we also look at
the value just before this one, let’s say 10440 (note: if the entry is the first, then
the previous is simply 0). So, by construction, we know that if x appears in the
list of endpoints, it must lie between entry 10441 and entry 11152 of the suffix

Optimal Storage for Rainbow Tables 149

chain 0

p
︷ ︸︸ ︷
000000000000

s
︷ ︸︸ ︷
00001011010100110110

chain 1 000000000000 00001100110101101001
chain 2 000000000000 00010001010101001010
chain 3 000000000000 00010111110001010011

... ...
chain 62 000000000000 10010101010111011100
chain 63 000000000001 00000010110101101001

... ...
chain 198 000000000001 11010101111101101011
chain 199 000000000011 00000100010011110111

... ...
chain m − 1 111111111111 11010100110000011110

⇓

(implicit prefix 0) 62
(implicit prefix 1) 198
(implicit prefix 2) 198

... ...
(implicit prefix 2p − 1) m − 1

+

chain 0 00001011010100110110
chain 1 00001100110101101001
chain 2 00010001010101001010
chain 3 00010111110001010011

...
chain m − 1 11010100110000011110

Fig. 2. Prefix-suffix decomposition example.

table (included). A simple binary search (or linear for that matter, the range
should be very small anyway) in that area of the suffix table is then carried out
to find the right entry. The fetching operation is therefore very comparable to
the naive approach in terms of speed.

Finally, note that both prefix-suffix decomposition and compressed delta
encoding (described in Sect. 5) add negligible overhead in time in the precom-
putation and online phases. Indeed, the added cost consists in a handful of sim-
ple operations (shifts, additions, ...) versus typically thousands of cryptographic
hashes to compute a chain.

4.2 Analysis and Optimality

Let us again note p the size in bits of the prefix, and s = n − p the size in bits
of the suffix. The total memory used for endpoints is therefore:

Mps
ep = 2p�log2 m� + ms. (3)

The first term is for the prefix file, with each possible prefix having an index
in the suffix file. Since the latter has m entries, the size of this index is �log2 m�.
The second term is for the suffix file and its size is straightforward.

150 G. Avoine and X. Carpent

Theorem 1. The optimal parameter popt for the prefix-suffix decomposition is
one of 	p∗
 or �p∗�, where

p∗ = log2
m

�log2 m� log 2
. (4)

Proof. First note that (3) is convex, because:

∂2Mps
ep

∂p2
= 2p�log2 m� log2 2 > 0.

A simple way to find the optimal value is thus to find the minimum of the
relaxed optimization problem, where p is a real-valued parameter, and test the
two neighboring integer values. We have:

∂Mps
ep

∂p
= 2p�log2 m� log 2 − m.

Therefore,
p∗ = log2

m

�log2 m� log 2
,

and the two neighboring integers are 	p∗
 and �p∗�. Finding which of the two is
best may be done by evaluating (3).

5 Compressed Delta Encoding of the Endpoints

5.1 Description

We introduce in this paper a new technique to store the endpoints. Given a clean
table, the endpoints are stored using a delta encoding. The technique consists in
computing the vector of differences between each consecutive endpoint6, which
is then compressed using Rice coding [13] (this choice is argued in Sect. 5.2).

The online phase requires to efficiently perform random accesses on the ele-
ments stored in the table. In order to make the encoding efficient, an additional
index table is computed and stored. Let us divide the space A into L blocks
of the same size. The start of each block is indexed in a dedicated area of the
memory, which size should be small compared to the compressed endpoints. The
index table contains L pairs of values that each indicate the starting (bit) posi-
tion of the corresponding block and the number of the chain. The former is used
to jump into the right block, and the latter is used to know what startpoint to
use in case the point is found.

When the differences are computed during the offline phase, at the start of
each i-th block, the first difference is computed with respect to

⌊
iN
L

⌋
, and not

the last endpoint encoded. The reason is that if the difference was computed
with respect to the previous endpoint instead, one would need to decompress all
6 Note that endpoints are unique meaning that a zero difference is not possible. One

can therefore also decrease the differences by one.

Optimal Storage for Rainbow Tables 151

the endpoints from the beginning. The resulting gain in space due to the smaller
differences is negligible.

During the online phase, given x, we find the corresponding block by com-
puting

⌊
xL
N

⌋
, go to the address pointed by that block, and start recomputing the

sum of the differences with the offset
⌊⌊

xL
N

⌋
N
L

⌋
(i.e. the start of the correspond-

ing block). Once the sum is bigger or equal to x, the search is over. On average,
m
2L decodings are required for each search (each block contains on average m

L
compressed endpoints). Experiences show that a value of about L =

⌊
m
28

⌋
is

reasonable for practical applications, as we show in Sect. 7.1.
We now describe the technique quantitatively. A complete example of com-

pressed delta encoding is given in Sect. 5.3.

5.2 Analysis and Optimality

Let Ei denote the ith sorted endpoint and Di := Ei+1 − Ei − 1. We have:

Pr(Di = d) =

⎧
⎪⎨

⎪⎩

(
N−d−1
m−1

)

(
N
m

) if 0 ≤ d ≤ N − m,

0 else.

Indeed this corresponds, among all possible choices for m endpoints in A, to
choosing the other m − 1 endpoints among the N − d − 1 values left. Since the
probability does not depend on i, we simply note D := Di.

Theorem 2. The expected value of the difference (diminished by one) D between
two consecutive endpoints is:

E[D] =
N − m

m + 1
(5)

Proof. We have E[D] =
∑∞

d=0 d Pr(D = d). This is the expression that is
addressed in pp. 175–177 of [6].

One can observe that this probability mass function has a striking similarity
with a geometric distribution. Let us denote by D′ a geometrically distributed
random variable having the same average as D, that is:

Pr(D′ = d) =
(

N − m

N + 1

)d
m + 1
N + 1

.

Geometrically distributed data is best compressed when using schemes known
as exponential codes such as Rice coding [13]. Rice coding of parameter k is a
special case of Golomb coding of parameter m = 2k. It works as follows (see [13]
for a thorough description). Given an integer x, it outputs 	x/2k
 ones followed
by one zero, and then the k least significant bits of x. It has been shown (see [5])
that Golomb codes are optimal to compress a geometrically distributed source.
In order to select the parameter k that minimizes the rate, we can use the results
of [8]. In the case of compressing endpoints, this gives:

152 G. Avoine and X. Carpent

chain 0 1
chain 1 7
chain 2 17
chain 3 31
chain 4 32
chain 5 52
chain 6 54

...
chain 248 4090
chain 249 4099
chain 250 4115

...

(1)⇒

chain 0 1
chain 1 5
chain 2 9
chain 3 13
chain 4 0
chain 5 19
chain 6 1

...
chain 248 14

chain 249 3
chain 250 15

...

(2)⇒

(bit 0) 0001
(bit 4) 0101
(bit 8) 10001
(bit 13) 10101
(bit 18) 0000
(bit 22) 110011
(bit 28) 0001

...
(bit 1412) 10110

(bit 1417) 0011
(bit 1421) 10111

...

+

(bit 0) 0 0
(bit 35) 1417 249

...

Fig. 3. Compressed delta encoding example with parameters N = 220, m = 216, L =
m
28

= 28, and k = kopt = 3. Step (1) is delta encoding (minus one) and step (2) is Rice
compression and index construction.

Theorem 3. The optimal parameter kopt for the Rice coding of the differences
(diminished by one) of the endpoints is:

kopt = 1 +

⌊

log2

(
log(ϕ − 1)
log N−m

N+1

)⌋

, (6)

with ϕ the golden ratio (1 +
√

5)/2. The rate of the corresponding code is:

Rkopt = kopt +
1

1 −
(

N − m

N + 1

)2k
opt (7)

Proof. See Sect. 3.A in [8], with μ = N−m
m+1 (from Eq. (5)).

Finally, we now address the memory usage of compressed delta encoding.
Each compressed endpoint requires on average Rkopt bits as showed in Theo-
rem 3. Additionally, each index entry comprises the position in bits of the begin-
ning of its block, which requires �log2 mRkopt� bits, and the chain number for
possible chain reconstruction, which requires �log2 m� bits. The total memory
follows easily:

M cde
ep = mRkopt + L (�log2 mRkopt� + �log2 m�) . (8)

Optimal Storage for Rainbow Tables 153

5.3 Example

Figure 3 presents an example of compressed delta encoding. The parameters are
N = 220, m = 216, L = m

28 = 28, and k = kopt = 3. The first step consists in
computing the delta encoding of the sorted endpoints (left box) minus one. The
list is divided in L blocks, with the beginning of each block marked (these are
the framed numbers in Fig. 3). For instance, the second block should begin right
after N

L = 4096, which corresponds in this case to chain 249. The difference
is computed with respect to 4096 rather than the previous endpoint 4090, in
order to make the reconstruction possible. In the second step, Rice compression
is applied to these differences (top right box), and the index is built (bottom
right box). In the index, we map each block with its corresponding starting bit
as well as the corresponding chain number. Each entry in the index is 35 bits
long, �log2 mRkopt� = 19 for the bit address of the block and �log2 m� = 16 for
the chain number.

6 Compressing the Startpoints

In this section, we focus on the other data that must be stored: the startpoints.
The main difference with the endpoints is that startpoints are not sorted. Nev-
ertheless, there is some slack in their choice. In particular, the startpoints have
been chosen in {0, . . . , m1−1} in [1,2] (with m1 being the total number of chains
generated during the offline phase). They are, as far as we know, chosen in the
same way in modern implementations, and are therefore stored on �log2 m1� bits
rather than n.

One might try to somehow compress this further, but we have found that the
possible gain is very small. Indeed the startpoints and endpoints may be seen as
a choice of m couples in {0, . . . , m1−1}×A, of which there are

(
Nm1
m

)
. Therefore,

using the same reasoning as in Sect. 3, one finds that the size of startpoints and
endpoints together is lower-bounded by:

Mopt
tot = log2

(
Nm1

m

)
. (9)

If one only focuses on compressing endpoints, the total memory is lower-bounded
by (and close to):

Mtot = m�log2 m1� + log2

(
N

m

)
. (10)

Let’s take the following practical example: N = 240, m = 224, m1 = 25 × m.
In this case, the theoretical lower bound for the total memory (from Eq. (9))
is a mere 0.59% lower than the theoretical lower bound for startpoints and
compressed endpoints (from Eq. (10)).

This tells us that it is not possible to do significantly better than com-
pressing the endpoints as explained in Sect. 5, and adding the startpoints on
�log2 m1� bits. Nevertheless, recall that we have fixed the startpoints to be in
{0, . . . , m1 − 1}. Whether other choices allowing them to be compressed more
exist is an open question.

154 G. Avoine and X. Carpent

7 Experiments and Comparison

We made some theoretical and practical experiments in order to compare the
two techniques (prefix-suffix decomposition and compressed delta encoding), and
evaluate the gain realized with respect to the naive implementation. We also
discuss on the value of L for compressed delta encoding.

7.1 Choice of the L Parameter

Recall from Sect. 5 that the compressed delta encoding technique separates the
endpoints into L blocks, and requires them to be indexed. The choice of the
parameter L is a trade-off between memory and online time. Indeed, if L is too
big, the index part is large and the memory increases too much. If it is too small,
the online time is impacted in a noticeable way.

Let us note q = m
L , that is the average number of compressed endpoints per

block. As mentioned in Sect. 5.2, the average overhead to recover a point in the
endpoint list is m

2L = q
2 . This overhead should be negligible compared to the work

done by computing the online chain and verifying the false alarms at each step.
However, note that this additional cost is highly implementation-dependant,
since the hash function can be more or less expensive to compute.

Considering that the decoding procedure relies on other computations than
cryptographic hash operations, it is difficult to have a reliable point of com-
parison other than measured time. We implemented the decoding procedure in
C, and observed in our experimental setup7 that the decoding speed is about
18 ns/entry. What we suggest here is that recovering an endpoint should take
about the time of a cryptographic hash operation. This fixes q ≈ 28 in our case.
For instance with N = 240 and m = 224, this results in a negligible 0.006%
increase in online time, and in a memory overhead of about 0.6%.

7.2 Measure of the Gain

Endpoint Compression. Figure 4 shows the ratios Mps
ep/Morig

ep and M cde
ep /

Morig
ep , which are a measure of the gain realized with respectively prefix-suffix

decomposition and compressed delta encoding on the memory required to store
the endpoints. The two measures are contrasted with Mopt

ep /Morig
ep , the optimal

gain. The original method consists in storing the endpoints on �log2 N� bits. In
both cases, the optimal configurations are assumed, and for compressed delta
encoding, a value of L =

⌊
m
28

⌋
is considered. In this example, we use N = 240,

which corresponds to a medium-sized search space for today’s hardware. Using
a small or bigger searching space retains the same overall picture, with similar
conclusions. The horizontal axis is the number of chains m.
7 This experiment has been done on a laptop with an i5 Intel Processor, with the

encoded differences in RAM. We used SHA-1 as a point of comparison for a hash
function.

Optimal Storage for Rainbow Tables 155

216 218 220 222 224 226 228 230 232
0

0.2

0.4

0.6

0.8

1

Number of chains (m)

R
el

at
iv

e
m

em
or

y

Mopt
ep /Morig

ep

Mps
ep/M

orig
ep

M cde
ep /Morig

ep

Fig. 4. Endpoints relative memory for the two techniques (N = 240).

216220224228232
236

240
244

248

0.5

0.6

0.7

Number of chains (m) Problem size (N)

R
el

at
iv

e
m

em
or

y

Mopt
tot /M

orig
tot

M cde
tot /M

orig
tot

Mps
tot/M

orig
tot

Fig. 5. Total relative memory for the two techniques.

One can observe that compressed delta encoding offers a significantly better
compression than prefix-suffix decomposition, showing a 10 to 15 % improve-
ment in terms of memory. Figure 4 also clearly indicates that compressed delta
encoding is very close to the lower bound.

Total Compression. As discussed in Sect. 6, startpoints can not be compressed
significantly better than when encoded on �log2 m1� bits. When one includes the
startpoints in the memory (assuming m1 = 25 × m), the relative gain appears
a bit smaller, as shown in Fig. 5. It shows that compressed delta encoding is
5 to 7 % better than prefix-suffix decomposition assuming optimal configura-
tion. However, it is hard to tell if this number is very relevant because prefix-
suffix decomposition might have been used with non-optimal parameters in past
implementations.

156 G. Avoine and X. Carpent

Table 1. Improvements in terms of memory and time for the two methods discussed
in the paper compared to the naive approach.

M (fixed time) T (fixed memory)

Naive approach – –

Prefix-suffix decomposition 63.44 % 40.24 %

Compressed delta encoding 58.44 % 34.15 %

Finally, Table 1 shows the gain brought by the two techniques (optimal para-
meters assumed) with respect to the naive approach, on a problem with parame-
ters m = 224, m1 = 25×m and N = 240. The startpoint compression is assumed
for the two latter cases. The memory for the naive approach, the prefix-suffix
decomposition, and compressed delta encoding are computed using respectively:

Morig
tot = 2mn (11)

Mps
tot = m�log2 m1� + 2p�log2 m� + ms (12)

M cde
tot = m�log2 m1� + mRkopt + L (�log2 mRkopt� + �log2 m�) (13)

In any case, the impact of good storage optimizations on the overall memory
is clearly illustrated, showing a gain of about 42% in memory. Recall that, since
time-memory trade-offs follow the rule T ∝ N2/M2 as described in Sect. 2, a
reduction of 42 % (as it is the case for instance with m = 224, N = 240 in Fig. 5)
is about the same as a speedup of 3 in time.

8 Conclusion

In this article, we have discussed several implementation optimizations for stor-
age in rainbow tables. In particular, we have analyzed the prefix-suffix decompo-
sition method, and show that there is room for improvement. We have proposed
the compressed delta encoding method and we show that it gets very close to the
theoretical lower bound in memory usage, which contrasts with the prefix-suffix
decomposition. We finally show that compressing startpoints together with end-
points can not significantly lower the memory usage further, making the com-
pression of the startpoints (on �log2 m1� bits) coupled with compressed delta
encoding optimal for rainbow tables.

We emphasize that memory reduction is of utmost importance for time-
memory trade-offs due to their nature. For instance, a reduction of 42% in
memory, which is brought by compressed delta encoding on a typical problem
sizes compared to the naive approach, corresponds to a speedup of 3 in time.

Optimal Storage for Rainbow Tables 157

References

1. Avoine, G., Junod, P., Oechslin, P.: Time-memory trade-offs: false alarm detection
using checkpoints. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 183–196. Springer, Heidelberg (2005)

2. Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur. 11(4),
1–22 (2008)

3. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

4. Fiat, A., Naor, M.: Rigorous time/space tradeoffs for inverting functions. In: ACM
Symposium on Theory of Computing - STOC’91, pp. 534–541. ACM, ACM Press,
New Orleans, Louisiana, USA, May 1991

5. Gallager, R., Van Voorhis, D.: Optimal source codes for geometrically distributed
integer alphabets. IEEE Trans. Inf. Theory 21(2), 228–230 (1975)

6. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley, Reading (1989)

7. Hellman, M.: A cryptanalytic time-memory trade off. IEEE Trans. Inf. Theory
IT-26(4), 401–406 (1980)

8. Kiely, A.: Selecting the Golomb parameter in Rice coding. IPN progress report,
vol. 42(159), November 2004

9. Lee, G.W., Hong, J.: A comparison of perfect table cryptanalytic tradeoff algo-
rithms. Cryptology ePrint Archive, Report 2012/540 (2012)

10. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Cracking UNIX passwords
using FPGA platforms. In: SHARCS - Special Purpose Hardware for Attacking
Cryptographic Systems, February 2005

11. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

12. Oechslin, P.: The ophcrack password cracker (2013). http://ophcrack.sourceforge.
net/

13. Rice, R., Plaunt, J.: Adaptive variable-length coding for efficient compression of
spacecraft television data. IEEE Trans. Commun. Technol. 19(6), 889–897 (1971)

14. Saarinen, M.-J.O.: A time-memory tradeoff attack against LILI-128. In: Daemen,
J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 231–236. Springer, Heidelberg
(2002)

http://ophcrack.sourceforge.net/
http://ophcrack.sourceforge.net/

First Multidimensional Cryptanalysis
on Reduced-Round PRINCEcore

Xiaoqian Li1,2(B), Bao Li1,2, Wenling Wu3, Xiaoli Yu3, Ronglin Hao1,2,
and Bingke Ma1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

xqli@is.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract. In this paper we present the first multidimensional linear
attack on PRINCEcore, which uses an identical round-key for each round.
Traditional one-dimensional and multidimensional linear cryptanalysis
based their theoretical foundation on the independent-key assumption,
so that they cannot be evaluated accurately in the case of ciphers with
identical round-key. In this paper we propose a new classification tech-
nique to overcome this obstacle. In our new technique, we classify the
linear trails into different subsets indexed by the XOR sum of their trail
masks, deal with their correlations in each subset, and get the accu-
rate capacity for our target linear approximation. By this technique,
we build an 8-round multidimensional linear distinguisher with capac-
ity of 2−57.99, and exhibit a key-recovery attack on 9 out of 12 round
of PRINCEcore. This attack requires a data complexity of 263.84 known
plaintexts and time complexity of 260 encryptions. We also present a
key-recovery attack on 10-round PRINCEcore with data complexity of
263.84 known plaintexts and time complexity of 275.68 encryptions.

Keywords: Linear cryptanalysis · Multidimensional cryptanalysis · Block
cipher · Lightweight · PRINCE

1 Introduction

Linear cryptanalysis [2] is one of the two most prominent attacks against block
ciphers, the other being differential cryptanalysis [1]. The resistance against lin-
ear cryptanalysis is usually expected in new cipher designs. Linear cryptanalysis

This work was supported by the National Basic Research Program of China (973
Project, No.2013CB338002), the National High Technology Research and Develop-
ment Program of China (863 Program, No.2013AA014002), the IIE’s Cryptography
Research Project (No.Y3Z0027103), and the Strategic Priority Research Program of
Chinese Academy of Sciences under Grant XDA06010702.

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 158–172, 2014.
DOI: 10.1007/978-3-319-12160-4 10

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 159

was introduced by Matsui in 1992 which exploits a particular linear approxi-
mation on the parity of plaintexts and ciphertexts involved by specific input
masks and output masks. The idea of multidimensional linear cryptanalysis [3]
is firstly suggested by Matsui in 1994. In 2010, Hermelin summarized the the-
ory of multidimensional linear attacks on block ciphers and presented the basic
attack algorithms and their complexity estimates [12].

PRINCE [14] is a lightweight block cipher proposed by Borghoff et al. at
Asiacrypt 2012. It is designed with respect to low-latency when implemented
in hardware. PRINCE is designed symmetric around the middle round, which
contributes to the α-reflection property of its core function PRINCEcore: one
can implement decryption by reusing the encryption implementation with a
related key, so that the overhead for decryption on top of encryption is negligible.
Because PRINCEcore uses the identical round-key instead of almost independent
round-keys, it is difficult to evaluate its resistance against one-dimensional and
multidimensional cryptanalysis which are based on the independent round-key
assumption.

The publishing of PRINCE did bring in a bunch of research from the per-
spective of its Even-Mansour construction and α-reflection property. At FSE
2013, Soleimany et al. introduced new generic distinguishers [17] on PRINCE-
like ciphers due to their α-reflection property, and proposed a key-recovery attack
on the full 12-round cipher for a chosen α parameter with 257.95 known plain-
texts and 272.37 encryptions. At the same time, Jean et al. proposed several
attacks on PRINCE and PRINCEcore in [18], which included an integral attack
on 6-round PRINCEcore with data complexity of 216 and time complexity of
230, a related-key boomerang attack on full PRINCEcore with data complexity
of 239 and time complexity of 239. They also presented a single-key boomerang
attack on the full cipher for a chosen α parameter with 241 plaintexts and 241

encryptions.
In this paper, we successfully present a multidimensional linear attack that

does not suffer from the limitation of independent round-key assumption with the
application of a new classification technique. In our new technique, first we set a
target linear approximation, next we classify the corresponding linear trails into
subsets indexed by the XOR sum of trail masks. Then, for each subset, we calculate
the sum of the correlation of every trail in it, and square the sum. Finally we obtain
the capacity of the target approximation by adding up all the squared values.
Using this technique, we build an 8-round multidimensional linear distinguisher
with capacity of 2−57.99, and recover the full key of 9-round PRINCEcore with
data complexity of 263.84 known plaintexts and time complexity of 260 encryp-
tions. The same distinguisher is also used in a key-recovery attack on 10-round
PRINCEcore with data complexity of 263.84 known plaintexts and time complex-
ity of 275.68 encryptions. To the best of our knowledge, this is the first multidi-
mensional linear attack on PRINCE using the original α chosen by the designers.

The paper is organized as follows. In Sect. 2 the notation and the structure
of PRINCE are briefly described. Section 3 presents the framework of multidi-
mensional linear cryptanalysis, the computation of capacity, and the convolution

160 X. Li et al.

method for marking the key candidates. Section 4 introduces the new classification
technique in one-dimensional linear cryptanalysis without the independent-key
assumption. In Sect. 5, our new technique is applied to construct a multidimen-
sional linear distinguisher for 8-round PRINCEcore. Section 6 describes the attack
on 9-round and 10-round PRINCEcore using the distinguisher built in previous
section. In Sect. 7, we present a multidimensional linear distinguisher for 1-step
LED. Section 8 concludes this paper.

2 Preliminaries

2.1 Notations

In this paper, we use the same notations as in [5].
– xT denotes the transposition of vector x.
– x ⊕ y denotes the exclusive or (XOR) of two strings x and y.
– x · y denotes the inner product of two vectors x and y.
– x ‖ y denotes the concatenation of two strings x and y.
– x � r denotes the bitwise right shift by r bits on the string x.
– x ≫ r denotes the bitwise right rotation by r bits on the string x.
– p ∗ q denots the convolution of two probability distributions p and q.
– EK(x) = E(K,x) denotes a block cipher encryption of a plaintext x ∈ Z

n
2 with

key K ∈ Z
l
2.

2.2 Brief Description of PRINCE

PRINCE [14] is a block cipher with block-length of 64-bit and key-length of 128-
bit. The 128-bit key is split into two 64-bit keys, i.e., k = k0 ‖ k1. k0 and k′

0 are used
as the input and output whitening keys respectively, where k′

0 = (k0 ≫ 1)⊕(k0 �
63). And k1 is used as the identical round-key of its internal function PRINCEcore

as illustrated in Fig. 1. PRINCEcore is a 12-round SPN block cipher. Each round
of PRINCEcore consists of a round-key addition (AK), a round-constant addition
(AC), an Sbox-layer (SC), and a linear layer (M). The Sbox-Layer is a 64-bit
nonlinear transformation using a single 4×4 S-box 16 times in parallel. The linear

Fig. 1. The encryption scheme of PRINCE

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 161

layer M is denoted by SR◦MC, where MC is a multiplication with a linear matrix
M ′ which has a branch number of four and SR is a shifting-row permutation.

The constants of PRINCE satisfy RCi ⊕ RC11−i = α for all i = 0, 1, · · · , 11,
where α is a specific constant. It allows PRINCE to decrypt a ciphertext by simply
encrypting it with the key k0 ‖ k1 ⊕ α. This is the so-called α-reflection property.

3 Multidimensional Linear Cryptanalysis

3.1 Estimated Correlation of One-Dimensional Linear
Approximation

In classic linear cryptanalysis proposed by Matsui [2], a one-dimensional linear
approximation of a block cipher EK with mask (u, v, w) ∈ Z

2n+l
2 is a Boolean

function defined as

f : Zn
2 × Z

l
2 → Z2, f(x,K) = u · x ⊕ v · K ⊕ w · EK(x).

The correlation of approximation f is

c(f) = c(u ·x⊕v ·K ⊕w ·EK(x)) = 2−n(#{x ∈ Z
n
2 : f(x) = 0}−#{x ∈ Z

n
2 : f(x) �= 0}).

Fig. 2. Key-alternating block cipher

For a key-alternating block cipher shown in Fig. 2, the correlation can be cal-
culated as in Theorem 1, which we call the Correlation Theorem [5–7].

Theorem 1 [5–7]. Let g be the round function of an R-round key-alternating iter-
ated block cipher EK with round keys (K0,K1, · · · ,KR). Then for any u ∈ Z

n
2 , v ∈

Z
l
2 and w ∈ Z

n
2 , it holds that

c(u·x⊕v ·K⊕w ·EK(x)) =
∑

u1,··· ,uR−1
u0=u,uR=w

(−1)u0·K0⊕···⊕uR·KR⊕v·K
R∏

i=1

c(ui−1 ·x⊕ui ·gi(x)).

In Matsui’s Algorithm 1 [2], a linear approximation with large correlation is
needed. Under the assumption that the round-keys are independent, i.e., K =
K0 ‖ K1 ‖ · · · ‖ KR, the average correlation of a target linear approximation
can be calculated in Theorem 2, where only one linear trail (u0, u1, · · · , uR) = v
contributes to the average correlation.

162 X. Li et al.

Theorem 2 [6]. Let g be the round function of an R-round key-alternating iterated
block cipher EK with independent round-keys K0,K1, · · · ,KR. Then for any u ∈
Z

n
2 , v ∈ Z

l
2 and w ∈ Z

n
2 , it holds that

EK [c(u · x ⊕ v · K ⊕ w · EK(x))] =
R∏

i=1

c(ui−1 · x ⊕ ui · gi(x)),

where (u0, u1, · · · , uR) = v.

In Matsui’s Algorithm 2 [2], the strength of the linear approximation is evalu-
ated in terms of the squared correlation. Under the key-independent assumption,
the average squared correlation can be deduced in Theorem 3, which is often called
as the “linear hull effect” [4–6].

Theorem 3 [4–6]. Let g be the round function of an R-round key-alternating iter-
ated block cipher EK with independent round-keys K0,K1, · · · ,KR. Then for any
u ∈ Z

n
2 , v ∈ Z

l
2 and w ∈ Z

n
2 , it holds that

EK [c(u · x ⊕ v · K ⊕ w · EK(x))2] = EK [c(u · x ⊕ w · EK(x))2]

=
∑

u1,··· ,uR
u0=u,uR−1=w

R∏

i=1

c(ui−1 · x ⊕ ui · gi(x))2.

3.2 Multidimensional Linear Approximation for Key-Alternating
Block Cipher

Multidimensional linear cryptanalysis, which is an extension of one-dimensional
linear cryptanalysis, was proposed by Matsui in 1994 [3]. Instead of one linear
approximation, multiple linear approximations are exploited. An m-dimensional
linear approximation can be considered as a vector boolean function

F : Zn
2 × Z

l
2 → Z

m
2 , F (x,K) = U · x ⊕ V · K ⊕ W · EK(x),

where U = (u0, u1, · · · , um−1)T ,W = (w0, w1, · · · , wm−1)T are m × n matrix,
V = (v0, v1, · · · , vm−1)T are m × l matrix. In our multidimensional linear crypt-
analysis, we set V = 0. We denote by p the probability distribution of U · x ⊕ W ·
EK(x), and p can be obtained by its correlations c(a · f), a ∈ Z

m
2 , which is known

as the Cramér-Wold theorem [8]. The strength of multidimensional linear approx-
imations is evaluated in terms of the capacity of p [5], which can be calculated in
Theorem 4.

Theorem 4 [8]. For any F : Zn
2 × Z

l
2 → Z

m
2 , with probability distribution p, the

capacity of p and the uniform distribution q can be calculated as

Cp =
2n−1∑

a=1

c(a · F)2.

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 163

In the same setting as in [15], the space of the input mask and the space of the
output mask can be split into two subspaces so that U ∈ {(us, ut) | us ∈ Z

s
2, ut ∈

Z
t
2} and W ∈ {(wq, wr) | wq ∈ Z

q
2, wr ∈ Z

r
2}. Without loss of generality, we

consider (s + q)-dimensional approximations of the form

(us, 0) · x ⊕ (wq, 0) · EK(x), us ∈ Z
s
2, wq ∈ Z

q
2.

It is easy to derive the capacity as follows:

Cp =
2s+q−1∑

(us,wq)=1

c(us · xs ⊕ (wq, 0) · EK(xs, xt))2.

3.3 The Convolution Method

In 2009, Hermelin et al. described two statistical methods [10] in multidimensional
linear cryptanalysis: LLR (log-likelihood) method and χ2 method. In 2010, they
presented the other convolution method [11] which has the same data complexity
as the LLR-method but less time complexity. In our work, we apply the convolu-
tion method to PRINCEcore.

Given m-dimensional linear approximations, let p = (p0, p1, · · · , p2m−1)
denote the probability distribution, and the capacity Cp can be calculated using
the method explained in Sect. 3.2 Suppose l is the length of the guessed key can-
didate, then for each k ∈ Z

l
2, one can obtain the empirical distributions qk =

(qk
0 , qk

1 , · · · , qk
2m−1). Then we can sort the key candidates by the convolution Gk =

p∗qk which can be computed using FFT (Fast Fourier Transform) with time com-
plexity of m2m. We decide the key candidates k the right key if and only if Gk ≥ τ ,
where τ is the threshold that depends on the success probability Ps.

If the right key is ranked in the position of d from the top out of 2l key candi-
dates, we say that the attack has the advantage a = l− log2d [9]. The relationship
among the data complexity N , success probability Ps, capacity C, dimension of
linear approximations m and the advantage a is derived in [11] as

N = (
√

2(a + m) + Φ−1(Ps))2/C,

where Φ(x) =
∫ x

−∞
1√
2π

e−t2/2dt.

4 NewMethodologies for Linear Cryptanalysis

4.1 Classification of Linear Trails

The fundamental theory of linear cryptanalysis depends on the assumption that
the round-keys are independent. Clearly, PRINCEcore does not have independent
round-keys, since all the round-keys are identical to one specific key, i.e., K = k ‖
k ‖ · · · ‖ k. The classic method appears to be invalid. In this section, we dig deep
into the original definition of the correlation of linear approximations and gain
Theorem 6, which is the key for our new technique.

164 X. Li et al.

Theorem 5. Let g be the round function of an R-round key-alternating iterated
block cipher Ek with identical round-key k ∈ Z

n
2 . Then for any u, v, w ∈ Z

n
2 , it holds

that

Ek[c(u · x ⊕ v · k ⊕ w · Ek(x))] =
∑

u1,··· ,uR−1
u0=u,uR=w

u0⊕···⊕uR=v

R∏

i=1

c(ui−1 · x ⊕ ui · gi(x)).

Proof. According to Theorem 1, the correlation of approximation u · x ⊕ v · k ⊕
w · Ek(x) can be calculated as follows.

Ek[c(u · x ⊕ v · k ⊕ w · Ek(x))]

= Ek[
∑

u1,··· ,uR−1
u0=u,uR=w

(−1)u0·k⊕···⊕uR·k⊕v·k
R∏

i=1

c(ui−1 · x ⊕ ui · gi(x))]

=
∑

u1,··· ,uR−1
u0=u,uR=w

(2−n
∑

k

(−1)(u0⊕···⊕uR⊕v)·k)
R∏

i=1

c(ui−1 · x ⊕ ui · gi(x))

=
∑

u1,··· ,uR−1
u0=u,uR=w

u0⊕···⊕uR=v

R∏

i=1

c(ui−1 · x ⊕ ui · gi(x))

�

As shown in Theorem 2 with independent-key assumption, only one trail
(u0, u1, · · · , uR) = v contributes to the average correlation for the target linear
approximation. By contrast, in our new technique, linear trails whose XOR sum
of trail masks is v all contribute to the average correlation. Therefore, in the case
of ciphers with identical round-key, the upper bound for correlation of single trail
does not imply the upper bound for correlation of any linear approximation. Fur-
thermore, the limitation for correlation of single linear trail does not always thwart
the linear attack using Matsui’s Algorithm 1 [2].

Theorem 6. Let g be the round function of an R-round key-alternating iterated
block cipher Ek with identical round-key k ∈ Z

n
2 . Then for any u ∈ Z

n
2 and w ∈ Z

n
2 ,

it holds that

Ek[c(u · x ⊕ w · Ek(x))2] =
2n−1∑

θ=0

(
∑

u1,··· ,uR−1
u0=u,uR=w

u0⊕···⊕uR=θ

R∏

i=1

c(ui−1 · x ⊕ ui · gi(x)))2.

Proof. According to Theorem 1, the squared correlation of approximation u · x ⊕
w · Ek(x) can be calculated as follows, where cui,ui−1 denotes c(ui−1 ·x⊕ui ·gi(x))
for simplicity.

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 165

c(u · x ⊕ w · Ek(x))2

= (
∑

u1,··· ,uR−1
u0=u,uR=w

(−1)u0·k⊕···⊕uR·k
R∏

i=1

c(ui−1 · x ⊕ ui · gi(x)))2

=
∑

u1,··· ,uR−1
u0=u,uR=w

∑

u′
1,··· ,u′

R−1
u′
0=u,u′

R
=w

(−1)(u0⊕···⊕uR⊕u′
0⊕···⊕u′

R)·k
R∏

i=1

cui,ui−1

R∏

j=1

cu′
i,u

′
i−1

.

Then we can compute the average squared correlation accordingly.

Ek[c(u · x ⊕ w · Ek(x))2]

= 2−n
∑

k

∑

u1,··· ,uR−1
u0=u,uR=w

∑

u′
1,··· ,u′

R−1
u′
0=u,u′

R
=w

(−1)(u0⊕···⊕uR⊕u′
0⊕···⊕u′

R)·k
R∏

i=1

cui,ui−1

R∏

j=1

cu′
i,u′

i−1

=
∑

u1,··· ,uR−1
u0=u,uR=w

∑

u′
1,··· ,u′

R−1
u′
0=u,u′

R
=w

(2−n
∑

k

(−1)(u0⊕···⊕uR⊕u′
0⊕···⊕u′

R)·k)

R∏

i=1

cui,ui−1

R∏

j=1

cu′
i,u′

i−1

=
∑

u1,··· ,uR−1,u′
1,··· ,u′

R−1
u0=u′

0=u,uR=u′
R

=w

u0⊕···⊕uR=u′
0⊕···⊕u′

R

R∏

i=1

cui,ui−1

R∏

j=1

cu′
i,u′

i−1

=

2n−1∑

θ=0

(
∑

u1,··· ,uR−1
u0=u,uR=w

u0⊕···⊕uR=θ

R∏

i=1

cui,ui−1)
2.

�
As shown in Theorem 3, in classic linear attack with independent round-

keys, squared correlation of each trails were added together as the correlation
of the target one-dimensional approximation u · x ⊕ w · EK(x). On the basis
of Theorem 6, in our new technique for linear attack with identical round-key,
we first classify the linear trails into subsets indexed by the XOR sum of the
linear masks θ =

∑

i

ui. For each subset indexed by θ, we calculate the sum

of the correlation of every trail in this subset and get Sθ =
∑

∑

i

ui=θ

c(u · x ⊕

w · Ek(x)). Then we square each sum Sθ, and add all the squared values up.
Finally we obtain the average correlation as

∑

θ

S2
θ . We refer to this technique

as classification technique.

4.2 Classification Technique in Calculating Capacity
for Multiple Linear Approximations

Classification technique is then used to calculate the capacity of multiple appro-
ximations. For each one-dimensional approximation, we calculate its average

166 X. Li et al.

squared correlation by Theorem 6. Then according to Theorem 4, we get the
average capacity by simply summing up the average squared correlation of mul-
tiple approximations.

Furthermore, by applying this technique, we can perform a multidimensional
linear attack on any key-alternating cipher with identical round-key, such as
PRINCE [14] and LED [13].

5 A Multidimensional Linear Distinguisher
on 8-Round PRINCEcore

In this section we apply the classification technique described in Sect. 4 to
PRINCEcore.

5.1 Pattern Successions for 8-Round PRINCEcore

Set the linear mask u ∈ Z
64
2 in terms of 16 nibbles u = u[0]u[1] · · · u[15]. The

selection pattern [16] of u is P = P [0]P [1] · · · P [15], and u[i] �= 0 implies P [i] =
∗ while u[i] = 0 implies P [i] = 0. Furthermore, a linear trail (u0, u1, · · · , uR−1)
corresponds to a succession of a selection pattern P = (P0, P1, · · · , PR−1).

The matrix M ′ used in PRINCE on the diffusion round has a branch num-
ber of four so that is not MDS (Maximum Distance Separable). In our mul-
tidimensional linear attack, we use the multiple approximations following the
PRINCE Super-Box principle similar to AES [7], i.e., each of our 8-round lin-
ear trails contains 32 active S-boxes. There is another interesting property
with M ′: if the input pattern of M ′ has a hamming weight of 1 (resp. 3)
and the output pattern has a hamming weight of 3 (resp. 1), then each pat-
tern maps to an unique linear trail with non-zero correlation, what’s more,
the trail’s non-zero component mask has only one active bit. Therefore, each
of our succession patterns corresponds to only one linear trail with non-zero
correlation.

In our distinguisher for 8-round PRINCEcore, we find an input-output pattern
and the multiple approximations satisfying this pattern have a capacity of 2−57.99.
The input pattern is P0 = [0∗00 0000 0000 0000] and output pattern is P8 =
[∗∗0∗ 0000 0000 0000]. There are 389 pattern successions with non-zero correlation
satisfying (P0, P8), i.e., 389 non-trivial linear trails covering 32 active S-boxes. We
present one of the pattern successions in Appendix A.

For each of the pattern succession we find, there exists another inverse pattern
succession starting from the output pattern and generating backwards. Due to the
α-reflection property, the encryption of PRINCE is simply done just by decryption
with a related key. Since the capacity is averaged over entire key space, the pattern
generated backwards has the same average capacity.

5.2 Capacity Estimates of Multiple Linear Approximations
for PRINCEcore

Set input-output pattern (P0, PR), the corresponding m-dimensional linear
approximations are U · x ⊕ W · Ek(x), where U = (u0, u1, · · · , um−1)T ,

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 167

W = (w0, w1, · · · , wm−1)T satisfy ui ∈ P0, wi ∈ PR for all i = 0, 1, · · · ,m − 1.
In the case of 8-round PRINCEcore where P0 = [0∗00 0000 0000 0000] and P8 =
[∗∗0∗ 0000 0000 0000], we have m = 16, since there are total of 16 active bits in
(P0, P8). By Theorem 6 we can get average squared correlation Ek[c(ui · x ⊕ wi ·
Ek(x))2] for each one-dimensional approximation. Then according to Theorem 4,
the capacity of m-dimensional approximations is

Ek[C] =
m−1∑

i=0

Ek[c(ui · x ⊕ wi · Ek(x))2].

See also Algorithm 1 in Appendix B, which describes how to compute the average
capacity of the multidimensional linear approximations for R-round PRINCEcore.

Algorithm 1 provides a general method for linear attacks against key-
alternating ciphers with identical round-key. Compared to the classic linear
attacks for calculating the capacity [5], not only do we store the correlations
indexed by current linear mask, but also the XOR sum of previous linear masks,
which increases the memory requirement. Both of the computation and storage
complexity depend on the number of valid linear trails, i.e., the linear trails with
non-zero correlation. Luckily, in PRINCEcore there are not many of them, since
each pattern succession results in only one valid linear trail. Otherwise both the
computation complexity and the memory requirement will grow at an exponential
rate as the number of rounds increases.

It is worth mentioning that the estimated capacity calculated by Algorithm
1 is NOT always smaller than the accurate capacity. That is determined by the
accurate capacity formula in Theorem 6. When we abandon many trivial trails
which have negligible correlations, the sum before squaring is biased and we can-
not predict whether it is larger or smaller. Thus it leads to the estimated capacity
biased in an ambiguous direction.

6 Multidimensional Linear Cryptanalysis of PRINCEcore

6.1 Break 10-Round PRINCEcore Using Matsui’s Algorithm 2

Assuming the attacked rounds are the intermediate 8 rounds from Rounds 1 to 9
of PRINCEcore, we use the 8-round distinguisher to break 8-round PRINCEcore.
We denote the ith nibble of the input to round r by xr−1[i](1 ≤ r ≤ 9, 0 ≤ i ≤
15), and the output of round 9 by x9. The nibble x1[1] is affected by the 1th col-
umn of plaintext x0, and x8[0], x8[1], x8[3] is affected by the 0th, 1th, 2th column
of ciphertext x9 respectively. The partial encryption function of x1[1] admits the
form x1[1] = e(x0[4, 5, 6, 7] ⊕ k[4, 5, 6, 7]), then it suffices to compute only the
216 encryptions e(a), a ∈ Z

16
2 , which can be done off-line. So in the off-line phase,

for each a ∈ Z
16
2 , we computed x1[1] = e(a) and stored it in an array T

x1[1]
e (a).

Given a key candidate k[4, 5, 6, 7], the table T x1[1] is permuted to obtain T
x1[1]
k[4,5,6,7]

s.t. T
x1[1]
k[4,5,6,7](a) = T x1[1](a ⊕ k[4, 5, 6, 7]). For the same purpose, we constructed

three other tables T x8[0], T x8[1], T x8[3] by partial decryption.

168 X. Li et al.

The dimension of our multidimensional linear approximation is m = 16. Set
Ps = 0.95, given the desired advantage a = 4, by the convolution method of
Sect. 3.3, we require N ≈ 263.84 known plaintexts to recover 64-bit identical round-
key k.

1. Collect N plaintexts with corresponding ciphertexts.
2. Allocate a 8-bit counter N0(s0, s09, s

1
9, s

3
9) for each of 264 possible values of

(s0, s09, s
1
9, s

3
9), where s0 = x0[4, 5, 6, 7] and s09 = x9[0, 1, 2, 3], s19 = x9[4, 5, 6, 7],

s39 = x9[12, 13, 14, 15], and initialize them by zero. Calculate the numbers of
pairs of plaintext-ciphertext with given value (s0, s09, s

1
9, s

3
9) and save it in

N0(s0, s09, s
1
9, s

3
9). In this step, N plaintext-ciphertext pairs are divided into 264

different state. The number of expected pairs for each state is less than 1. So a
memory space of 8-bit for each counter N0 is sufficient.

3. Guess the 4 nibbles k[4, 5, 6, 7] of the identical round-key, obtain T
x1[1]
k[4,5,6,7],

T
x8[3]
k[4,5,6,7] by permutation of table T x1[1], T x8[3] respectively. Allocate a counter

N1(s1, s09, s
3
8, s

3
9) for each of 240 possible values of (s1, s09, s

3
8, s

3
9), where s1 =

x1[2] and s38 = x8[3], and initialize them by zero. For all 264 possible values of
(s0, s09, s

1
9, s

3
9), obtain s1 = T

x1[1]
k[4,5,6,7](s0), s

3
8 = T

x8[3]
k[4,5,6,7](s

1
9), and update the

counter N1(s1, s09, s
3
8, s

3
9) = N1(s1, s09, s

3
8, s

3
9) + N0(s0, s09, s

3
8, s

3
9).

4. Guess the 4 nibbles k[0, 1, 2, 3] of the identical round-key, obtain T
x8[0]
k[0,1,2,3] by

permutation of table T x8[0]. Allocate a counter N2(s1, s08, s
3
8, s

3
9) for each of 228

possible values of (s1, s08, s
3
8, s

3
9), where s08 = x8[0], and initialize them by zero.

For all 240 possible values of (s0, s09, s
3
8, s

3
9), obtain s08 = T

x8[0]
k[0,1,2,3](s

0
9) by a

table access, and update the counter N2(s1, s08, s
3
8, s

3
9) = N2(s1, s08, s

3
8, s

3
9) +

N1(s0, s09, s
3
8, s

3
9).

5. Guess the 4 nibbles k[12, 13, 14, 15] of the identical round-key, obtain
T

x8[1]
k[12,13,14,15] by permutation of table T x8[1]. Allocate a counter N3(s1, s08, s

3
8, s

1
8)

for each of 212 possible values of (s1, s08, s
3
8, s

1
8), where s18 = x8[1], and

initialize them by zero. For all 228 possible values of (s1, s08, s
3
8, s

3
9), obtain s18 =

T
x8[1]
k[12,13,14,15](s

3
9) by a table access, and update the counter N3(s1, s08, s

3
8, s

1
8) =

N3(s1, s08, s
3
8, s

1
8) + N2(s1, s08, s

3
8, s

3
9).

6. Allocate a counter N(z) for each of 216 possible values of z where z denotes
the pairwise concatenating of s1 and (s08, s

1
8, s

3
8), and initialize them by zero.

For all 212 possible values of (s1, s08, s
3
8, s

1
8), obtain z, and update the counter

N(z) = N(z) + N3(s08, s
3
8, s

1
8). Compute the convolution mask Gkg

where kg

denotes the guess key, if Gkg
is in the top 244, then the kg is a possible key

candidate.
7. Search the rest of 16-bit key from the top of the possible key candidates.

Attack Complexity: The memory complexity of the attack is dominated by
step 2 which needs 264 bytes. Step 3 requires 264×216×2 = 281 table look-up, step
4 requires 240 × 216 = 256 table look-up, and step 5 requires 228 × 216 = 244 table
look-up. Step 7 requires 244 × 216 = 260 encryptions of 10-round PRINCEcore.

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 169

If we consider one table look-up as a quarter of one round encryption, the time
complexity of this attack is (281 + 256 + 244) × 1

4 × 1
10 + 260 ≈ 275.68 of 10-round

PRINCEcore.

6.2 Break 9-Round PRINCEcore Using 8-Round Distinguisher

The 8-round multidimensional linear distinguisher enables us to break 9-round
PRINCEcore, and the attack is basically the version of the above 10-round attack
when the last round is removed. With Ps = 0.95, a = 4, the attack requires N ≈
263.84 known plaintexts. To recover k[4, 5, 6, 7], a memory space of 228 × 8 = 231

bytes and a time complexity of 228 × 216 × 1
4 × 1

9 ≈ 238.83 is needed. Finally, we
get the remaining 48 bits of the identical round key by exhaustive search. So the
overall time complexity is 238.83 + 212 × 248 ≈ 260 9-round PRINCEcore.

7 A Multidimensional Linear Distinguisher
on 1-Step LED

Furthermore, this technique can be applied to all the other key-alternating ciphers
with identical round-key. For example, we find several multidimensional linear
approximations for 1-step LED [13], which has two identical whitening keys before
the first round and after the last round. We fix the number of active S-boxes to 25
for four rounds of LED and find 16 multidimensional linear approximations with
non-zero capacity. The one of maximum capacity 2−41.65 is with input pattern
P0 = [0000 0∗00 0000 0000] and output pattern P1 = [0000 0000 0000 00∗0].

8 Conclusion

Due to its identical round-key property, block cipher PRINCE did not provide evi-
dence on its resistance against multidimensional linear cryptanalysis which bases
on round-key independent assumption. We propose a new classification technique
and solve the problem. Using this new technique, we build an 8-round multidi-
mensional linear distinguisher with capacity 2−57.99, and exhibit a key-recovery
attack on 9 out of 12 round of PRINCEcore. This attack requires a data complex-
ity of 263.84 known plaintexts and time complexity of 260 encryptions. We also
present a key-recovery attack on 10-round PRINCEcore with data complexity of
263.84 known plaintexts and time complexity of 275.68 encryptions.

Due to the links between multidimensional linear and multi-differential crypt-
analysis [15], we hope our results will motivate the evaluation of the resistance of
PRINCE and LED against multi-differential attack.

170 X. Li et al.

Appendix

A An Example of a Pattern Succession
over 8-Round PRINCEcore

(See Fig. 3).

Fig. 3. A pattern succession satisfying P0 = [0∗00 0000 0000 0000], P8 =
[∗∗0∗ 0000 0000 0000]

First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore 171

B Compute the Average Capacity for R-Round
Key-Alternating Cipher

Algorithm 1. Compute the average capacity for R-round key-alternating cipher
Require:

input pattern P0 and output pattern PR.
Ensure:

capacity of multiple linear approximations corresponding to input-output pattern.
1: search all the pattern successions P = (P1, · · · , PR−1) connected to the given pat-

tern (P0, PR);
2: set sum ← 0;
3: for each u ∈ P0, w ∈ PR do
4: set sum[θ] ← 0 for all θ;
5: for each P do
6: set ΓthisRnd[u][λ] ← 1 for λ = u;
7: for r ← 2 to R do
8: lastRnd ← thisRnd;
9: for each w ∈ Pr do

10: for each u ∈ Pr−1, λ do
11: θ ← λ ⊕ w;
12: ΓthisRnd[w][θ] ← ΓthisRnd[w][θ] + ΓlastRnd[u][λ] · cw,u;
13: end for
14: end for
15: end for
16: for each θ do
17: sum[θ] ← sum[θ] + ΓR[w][θ];
18: end for
19: end for
20: sum ← sum +

∑
θ sum[θ]2;

21: end for
22: return sum;

References

1. Eli, B., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryp-
tology 4(1), 3–72 (1991)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

3. Matsui, M.: The first experimental cryptanalysis of the data encryption stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

4. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

172 X. Li et al.

5. Hermelin, M., Nyberg, K.: Linear crypranalysis Using Multiple Linear Approxima-
tion. IACR Cryptology ePrint Archive 2011.93

6. Nyberg, K.: Correlation theorems in cryptanalysis. Discrete Appl. Math. 111(1),
177–188 (2001)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

8. Hermelin, M., Nyberg, K.: Multidimensional linear distinguishing attacks and
Boolean functions. In: Fourth International Workshop on Boolean Functions: Cryp-
tography and Applications (2008)

9. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptology 21(1), 131–147 (2008)

10. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s Algo-
rithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227. Springer,
Heidelberg (2009)

11. Hermelin, M., Nyberg, K.: Dependent linear approximations: the algorithm of
Biryukov and others revisited. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 318–333. Springer, Heidelberg (2010)

12. Hermelin, M.: Multidimensional linear cryptanalysis. Ph.D. thesis, Aalto University
School of Science and Technology (2010)

13. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

14. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R.,
Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S.,
Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing appli-
cations. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012)

15. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388–404. Springer, Heidelberg (2013)

16. Hakala, R.M., Kivelä, A., Nyberg, K.: Estimating resistance against multidimen-
sional linear attacks: an application on DEAN. In: Kuty�lowski, M., Yung, M. (eds.)
Inscrypt 2012. LNCS, vol. 7763, pp. 246–262. Springer, Heidelberg (2013)

17. Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L.,
Wang, Y.: Reflection cryptanalysis of PRINCE-like ciphers. In: Moriai, S. (ed.) FSE
2013. LNCS, vol. 8424, pp. 71–91. Springer, Heidelberg (2013)

18. Jean, J., Nikolić, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 92–111. Springer, Heidelberg
(2013)

Cryptanalysis 2

Rebound Attacks on Stribog

Riham AlTawy(B), Aleksandar Kircanski, and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC H4B 1R6, Canada

r altaw@encs.concordia.ca

Abstract. In August 2012, the Stribog hash function was selected as
the new Russian hash standard (GOST R 34.11–2012). Stribog is an
AES-based primitive and is considered as an asymmetric reply to the new
SHA-3. In this paper we investigate the collision resistance of the Stribog
compression function and its internal cipher. Specifically, we present a
message differential path for the internal block cipher that allows us to
efficiently obtain a 5-round free-start collision and a 7.75 free-start near
collision for the internal cipher with complexities 28 and 240, respectively.
Finally, the compression function is analyzed and a 7.75 round semi free-
start collision, 8.75 and 9.75 round semi free-start near collisions are
presented along with an example for 4.75 round 50 out of 64 bytes near
colliding message pair.

Keywords: Cryptanalysis · Hash functions · Meet in the middle ·
Rebound attack · GOST R 34.11-2012 · Stribog

1 Introduction

Wang et al. attacks on MD5 [21] and SHA-1 [20] followed by the SHA-3 compe-
tition [3] have led to a flurry in the area of hash function cryptanalysis where
different design concepts and various attack strategies were introduced. Many of
the proposed attacks were not only targeting basic properties but they also stud-
ied any non-ideal behaviour of the hash function, compression function, internal
cipher, or the used domain extender.

Stribog was proposed in 2010 [10]. It has an output length of 512/256-bit
and its compression function employs a 12-round AES-like cipher with 8 × 8-
byte internal state preceded with one round of nonlinear whitening of the chain-
ing value. The compression function operates in Miyaguchi-Preneel mode and is
plugged in Merkle-Damg̊ard domain extender with a finalization step [6]. Stri-
bog officially replaces the previous standard GOST R 34.11-94 which has been
theoretically broken in [13,14] and recently analyzed in [11].

The rebound attack [15] is a differential attack proposed by Mendel et al. dur-
ing the SHA-3 competition to construct differential paths for AES-based hash
functions. Previous literature related to the rebound attack includes Mendel
et al. first proposal on the ISO standard Whirlpool and the SHA-3 finalist
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 175–188, 2014.
DOI: 10.1007/978-3-319-12160-4 11

176 R. AlTawy et al.

Grøstl [15,16]. In particular, Mendel et al. presented a 4.5-round collision, 5.5-
round semi free-start collision and 7.5-round near collision attacks on the
Whirlpool compression function. As for Grøstl-256, a 6-round semi free-start
collision is given. Subsequently, rebound attacks have been applied to other
AES-based hash functions such as LANE [9], JH [17], and Echo [5]. Various
tweaks have been applied to the basic rebound attack in order to construct
differential paths that cover more rounds such as merging multiple in-bounds
[8], super Sbox cryptanalysis [4], extended 5-round inbound [8], and linearized
match-in-the-middle and start-from-the-middle techniques [12]. Lastly, Sasaki et
al. [18] presented a free-start collision and near collision attacks on Whirlpool by
inserting difference in the intermediate keys to cancel the difference propagation
in the message and thus creating local collisions every 4 rounds.

In this work, we investigate the security of the Stribog hash function primi-
tives, assessing their resistance to rebound attacks. We efficiently produce free-
start collision and near collision for the internal cipher (E) reduced to 5 and 7.75
rounds by employing the concept of local collisions. Specifically, we present a
message differential path such that a local collision is enforced every 2 rounds.
Thus we bypass the complexity of the rebound matching in the message in-
bounds by using the same differentials as in the key path. Consequently, in con-
trast to [18], finding one key satisfying the key path is practically sufficient for
finding a message pair following the message path. Finally, we present a practical
4.75 round 50 (out of 64) bytes near colliding message pair for the compression
function and show that it is vulnerable to semi free-start 7.75 round collision, 8.75
and 9.75 round near collision attacks. Examples for the internal cipher attacks
and the 4.75 round compression function near-collision attack are provided to
validate our results.

The rest of the paper is organized as follows. In the next section, the specifi-
cation of the Stribog hash function along with the notation used throughout the
paper are provided. A brief overview of the rebound attack is given in Sect. 3.
Afterwards, in Sects. 4 and 5, we provide detailed description of our attacks,
differential patterns, and the complexities of the attacks. Finally, the paper is
concluded in Sect. 6.

2 Specification of Stribog

Stribog outputs a 512 or 256-bit hash value and can process up to 2512-bit mes-
sage. The compression function iterates over 12 rounds of an AES-like cipher
with an 8 × 8 byte internal state and a final round of key mixing. The com-
pression function operates in Miyaguchi-Preneel mode and is plugged in Merkle-
Damg̊ard domain extender with a finalization step. The input message M is
padded into a multiple of 512 bits by appending one followed by zeros. Given
M = mn‖..‖m1‖m0, the compression function gN is fed with three inputs: the
chaining value hi−1, a message block mi−1, and the number of bits hashed so
far Ni−1 = 512 × i. (see Fig. 1). Let hi be a 512-bit chaining variable. The first
state is loaded with the initial value IV and assigned to h0. The hash value of
M is computed as follows:

Rebound Attacks on Stribog 177

Fig. 1. Stribog’s compression function gN

hi ← gN (hi−1,mi−1, Ni−1) for i = 1, 2, .., n + 1
hn+2 ← g0(hn+1, |M |, 0)

h(M) ← g0(hn+2,
∑

(m0, ..,mn), 0),

where h(M) is the hash value of M . As depicted in Fig. 1, the compression
function gN consists of:

– KN : a nonlinear whitening round of the chaining value. It takes a 512-bit
chaining variable hi−1 and the number of bits hashed so far Ni−1 and outputs
a 512-bit key K.

– E: an AES-based cipher that iterates over the message for 12 rounds in addi-
tion to a finalization key mixing round. The cipher E takes a 512-bit key K
and a 512-bit message block m as a plaintext. As shown in Fig. 2, it consists
of two similar parallel flows for the state update and the key scheduling.

Fig. 2. The internal block cipher (E)

Both KN and E operate on an 8 × 8 byte key state K. E updates an additional
8 × 8 byte message state M . In one round, a given state is updated by the
following sequence of transformations

– AddKey(X): XOR with either a round key, a constant, or the number of bits
hashed so far (N).

– SubBytes (S): A nonlinear byte bijective mapping.
– Transposition (P): Byte permutation.
– MixRows (L): Left multiplication by an MDS matrix in GF(2).

178 R. AlTawy et al.

Initially, state K is loaded with the chaining value hi−1 and updated by KN as
follows:

k0 = L ◦ P ◦ S ◦ X[Ni−1](K)

Now K contains the key k0 to be used by the cipher E. The message state M is
initially loaded with the message block m and E(k0,m) runs the key scheduling
function on state K to generate 12 round keys k1, k2, .., k12 as follows:

ki = L ◦ P ◦ S ◦ X[Ci−1](ki−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦ X[ki−1](Mi−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0,m) = M12 ⊕ k12. The output of gN
in the Miyaguchi-Preneel mode is E(KN (hi−1, Ni−1),mi−1) ⊕ mi−1 ⊕ hi−1 as
shown in Fig. 1. For further details, the reader is referred to [1].

2.1 Notation

Let M and K be (8×8)-byte states denoting the message and key state, respec-
tively. The following notation will be used throughout the paper:

– Mi: The message state at the beginning of round i.
– MU

i : The message state after the U transformation at round i, where U ∈
{X,S, P, L}.

– Mi[r, c]: A byte at row r and column c of state Mi.
– Mi[row r]: Eight bytes located at row r of Mi state.
– Mi[col c]: Eight bytes located at column c of Mi state.
– m

ri−→ n: A transition from an m active bytes state at round i to an n active
bytes state at round i + 1.

– m
ri←− n: A transition from an n active bytes state at round i + 1 to an m

active bytes state at round i.

Same notation applies to K.

3 The Rebound Attack

The rebound attack [15] is proposed by Mendel et al. for the cryptanalysis of
AES-based hash functions. It is a differential attack that follows the inside-
out or start from the middle approach which is used in the boomerang attack
[19]. The rebound attack is composed of three phases, one inbound and two
outbounds. The compression function, internal block cipher or permutation of
a hash function is divided into three parts. If C is a block cipher, then C is
expressed as C = Cfw ◦ Cin ◦ Cbw. The middle part is the inbound phase and
the forward and backward parts are the two outbound phases. In the inbound
phase, a low probability XOR differential path is used and all possible degrees

Rebound Attacks on Stribog 179

of freedom are used to satisfy the inbound path. In the two outbound phases,
high probability truncated paths [7] are used. In other words, one starts from
the middle satisfying Cin, then hash forward and backward to satisfy Cfw and
Cbw probabilistically. For an 8 × 8 byte state, the basic rebound attack finds
two states satisfying an inbound phase over two rounds 8 ri−→ 64

ri+1−→ 8. The
main idea is to pick random differences at each of the two eight active bytes
sates, then propagate both backward and forward until the output and input of
the full active state Sbox, respectively. Using the Sbox differential distribution
table (DDT), find values that satisfy input and output differentials. This process
is further illustrated in Fig. 3. The last step of the attack is called the Sbox
matching phase and its complexity depends on the Sbox DDT. If the probability
of differentials that have solutions is p, then the matching probability is given
by p8. In the following, we analyze the Sbox used in Stribog and investigate how
it affects the complexity of the rebound attack. The Stribog Sbox DDT has the
following properties:

Fig. 3. The rebound attack.

– Out of the 65536 differentials, there are 27300 possible non trivial differentials,
i.e., nonzero (input, output) difference pairs that have solutions. Thus the
probability that a randomly chosen differential is possible ≈ 0.42 = 2−1.3.

– Each possible differential can have 2, 4, 6, or 8 solutions.
– A given input difference has a minimum of 98 and a maximum of 114 output

differences.
– A given output difference has a minimum of 90 and a maximum of 128 input

differences.
– For a given input (output) difference the average number of output (input)

difference is 107.

From the analysis of the Sbox DDT, one can estimate the complexity of the
inbound matching part of the rebound attack. Let us consider the basic inbound
path 8 r1−→ 64 r2−→ 8. One can find a pair of states satisfying this path as follows:

1. Compute the Sbox DDT.
2. Choose a random 8 differences for ML

2 active bytes.
3. Propagate the differences in ML

2 backwards until MS
2 (output difference).

4. For each row in MP
1

a. Choose a random difference for one active byte, propagate it forward to
MX

2 (input difference). Propagating one active byte in MP
1 through the L

transformation results in full active row in MX
2 .

180 R. AlTawy et al.

b. Using the Sbox DDT, determine if the corresponding row differences in
MX

2 and MS
2 have solutions. If one byte differential pair is not possible,

go to step 4.a.

One can repeat step (4.a) at most 28 times since we variate only one byte.
However, the success probability of step 4.b. (finding solutions for the whole
active row) is 2−1.3×8 ≈ 2−10 which cannot be easily satisfied by randomizing
one byte difference. One would often have to restart at step 2, i.e., pick another
output difference. The same situation takes place when we move to the next row
and pick a new output difference. In this case we have to start from row 0. As
a result, the complexity of finding solutions to the 8 rows is not purely added
[15]. Based on our experimental results, the complexity of this inbound path is
in the order of 218. However finding this match means finding at least 264 actual
state values for MX

2 , such that both MX
2 and MX

2 ⊕ (input difference) follow the
inbound path. Each value out of the 264 values is a new starting point to satisfy
the two outbound paths. In the following section, we present our attack on the
internal block cipher of the Stribog compression function.

4 Attacks on the Internal Block Cipher (E)

Verifying the ideal behaviour of the internal primitives of a hash function is
important to evaluate its resistance to distinguishing attacks [2]. In this section
we investigate the internal block cipher (E) and, by employing the idea of suc-
cessive local collisions, we present a message differential path that collides every
two rounds. This message differential path enables us to efficiently produce 5-
round semi free-start collision and 7.75-round 40 bytes (out of 64) semi free-start
near collision. The main idea of our approach is to first find a pair of keys that
follows a given differential path and then use it to search for a pair of messages
satisfying the message path. The approach of creating local collisions works per-
fectly if the key and the message flows are identical and the initial key is the
input chaining value. To this end, one can keep similar differential patterns and
the state message difference is cancelled after the X transformation. However,
in the compression function of Stribog the key used in the internal cipher is the
result of applying the KN transformation on the input chaining value. Similar
differential patterns can be obtained when considering the internal block cipher.
In our attack on the Stribog internal cipher, we present a message differential
path such that a local collision is enforced every two rounds. Specifically, we first
search for a pair of keys that satisfies the key differential path, then we use the
Sbox differentials in the key path for the message path. Consequently, we bypass
the complexity caused by the Sbox DDT matching in the message differential
path and only one key pair is required to search for a message pair. In [18],
Sasaki et al. presented a message differential path that creates local collisions
every four rounds for the Whirlpool compression function and reported that they
had to try 109 key pairs to search for a message pair that collides every 4 round.
Furthermore, they estimated an increase in the message search complexity by
a factor of 27 and attributed this to the imbalance of the Sbox DDT. Given

Rebound Attacks on Stribog 181

the Stribog Sbox DDT, finding one key pair that follows the 8-round differen-
tial path takes up to two hours on an 8-core Intel i7 CPU running at 2.6 GHz.
Accordingly, it is important that the message differential path requires only one
key pair to be satisfied. In what follows, we give the details of our approach.

4.1 5-Round Free-Start Collision

Since the Stribog’s Sbox DDT is biased with possible differential probability
≈ 0.42, we bypass the Sbox matching phase by using a message differential path
such that local collisions are created every two rounds. The used key and message
paths are given by:

Key: 64 r1−→ 8 r2−→ 1 r3−→ 8 r4−→ 64

Message: 64 r1−→ 0 r2−→ 1 r3−→ 0 r4−→ 64 r5−→ 0

This message differential path allows us to bypass the rebound matching
part completely in our message search because the same input and output Sbox
differences in the key path are used for the message path. Thus the matching
probability is 1. Unlike the differential paths in [18], our message differential path

Fig. 4. 7.75 round differential path. Active bytes are coloured grey. Ellipses mark the
row and column restricted by the two inbounds.

182 R. AlTawy et al.

is satisfied practically using only one key pair. In this attack, we do not use the
matching part of the rebound attack in either the key or the message; we only
search for one byte value in the message to find a common solution between two
rounds which can be considered as a meet in the middle approach. As depicted
in Fig. 4, the steps for finding a key pair can be summarized as follows:

1. Choose a random difference and a random value for byte KL
2 [3, 3].

2. Hash backward until K1.
3. Hash forward until K5.

Accordingly, we have a key pair following the given key path. Let the differences
in MX

2 , MS
2 , MX

4 , and MS
4 be the same as the differences in KX

2 , KS
2 , KX

4 ,
and KS

4 , respectively. Having the same differences in the message states as in
the key states implies that no differential matching is needed at the Sboxes
of rounds 2 and 4, and guarantees that the differences in K3 and M3 cancel
out. Similar observation applies to K5 and M5. To search for a conforming
message pair, we need to find a common solution between the Sboxes of rounds
2 and 4 possible solutions. This can be achieved as follows. Since MX

2 [col 3]
and MS

2 [col 3] differentials are possible, then from the Sbox DDT there are at
least 28 values for MX

2 [col 3] that satisfy the path until MS
3 . For all solution

MX
2 [col 3], hash forward until MS

3 . Because MX
2 [col 3] is one column after the

P , L, X, and S transformations, its transformed value becomes MS
3 [row 3] as

indicated by the ellipse in Fig. 4. We store all possible values of MS
3 [row 3] in a list

L. As for MX
4 [row 3], and MS

4 [row 3], hashing all possible solutions backwards
restricts the values of MS

3 [col 3]. However we do not store the results in a another
list. Because the two restricted results intersect in only one byte MS

3 [3, 3] (the
intersection of the two ellipses in Fig. 4), we compare byte [3, 3] of each backward
result against byte [3, 3] from each entry in list L. The success probability for
finding a one byte match is 2−8 which can be easily fulfilled by the number of
entries in L. Once a match is found, we assign the matching list row to MS

3 [row 3]
and the backwards column to MS

3 [col 3]. The rest of the 49 unrestricted bytes
are free and can be used to satisfy a longer outbound.

4.2 8-Round Collision and 7.75-Round Near Collision Attacks

Extending the 5 round path to 8 rounds adds complexity to the key search part
because we need to use an improved version of the rebound attack to get a key
pair following a longer differential path. We employ the following message and
key differential paths:

Key: 64 r1−→ 8 r2−→ 1 r3−→ 8 r4−→ 64 r5−→ 8 r6−→ 8 r7−→ 64

Message: 64 r1−→ 0 r2−→ 1 r3−→ 0 r4−→ 64 r5−→ 0 r6−→ 8 r7−→ 64 r8−→ 0

and use the start form the middle technique [12] to solve the key inbound phase
between rounds 3 and 5. This approach finds states following a 1 −→ 8 −→
64 −→ 8 transition. Unlike the basic inbound that yields 264 solutions, using this

Rebound Attacks on Stribog 183

approach on Stribog results in only one solution. For AES Sboxes, a solution is
expected in a time complexity of 28 and memory complexity of 28. However, for
Stribog’s biased Sbox DDT, one practical solution is found between 33 min to
2 h on an 8-core Intel i7 CPU running at 2.67 GHz. Accordingly, it is crucial
that the key outbound phase has high probability if one is aiming for practical
results and no rebound matching is used in the message search so that one key
is enough to get a conforming message pair. In the following steps, we briefly
describe the procedure we used for solving the 1 −→ 8 −→ 64 −→ 8 key inbound
phase. Figure 5 further illustrates the process.

1. Solve the basic inbound 8 −→ 64 ←− 8 as explained in Sect. 3.
2. From the DDT, each byte difference in KX

5 has at least 2 and at most 8
values, such that any value satisfies the path from KX

4 to K6.
3. To enforce the transition from 8 active bytes in KX

4 to 1 active byte in KP
3 ,

do the following:
a. Create a table TL of all possible 255 byte difference values d3 (candidates

for KP
3 [3, 3]) and their corresponding 8 byte difference values L(d3) (can-

didates for KX
4 [row 3]). These values are the result of applying the linear

transformation L to a difference at column 3.
b. Each candidate difference for KX

4 [row 3] has 8 active bytes that can
be manipulated independently. More precisely, to change the difference
value of byte i in KX

4 [row 3], one has to switch between 28 or more pos-
sible values of KX

5 [row i]. As illustrated by the ellipses in Fig. 5, a change
in the values of KX

5 [row 0] is reflected on the difference value of byte 0 in
KX

4 [row 3].
c. Go through the entries in table TL and change the values of KX

5 rows one
by one until a match is found, if not, restart from step 1.

Fig. 5. Start from the middle approach.

Finally, by hashing the obtained key pair two rounds backward and two
rounds forward, we get a conforming key pair that follows the key differential
path. Once we have the key, we can directly get a message pair in the same
way as explained in the previous section for the 5-round collision. This message
pair satisfies the message differential path up until ML

6 . However, to have an
8-round collision, we need the difference in K8 to cancel the difference in M8

after the X transformation in round 8. Since both L and P transformations are
linear, then this condition is satisfied if the 8 byte differences in KS

7 and MS
7

are equal. The difference in KS
7 is already set from the key search stage, so we

randomize the 49 unrestricted bytes in MS
3 , hash forward till MS

7 and compare

184 R. AlTawy et al.

the resulting 8 differences with KS
7 . The probability that the 8 byte differences

are equal is 2−64. To verify the applicability of this attack, we have implemented
a 7.75-round near collision attack where we were checking if only 5 out of 8
byte differences are equal in MS

7 and KS
7 . In Fig. 4, the implemented 7.75-round

differential pattern, with 240 time and 28 state memory complexities is given.
Table 2 shows an example for a free-start 5-round collision and 7.75-round near
collision for the internal cipher (E). Both the 5-round semi free-start collision
and the 7.75 semi free-start near collision are demonstrated by one example
because the 7.75 semi free-start near collision path collides at round 5.

5 Attacks on Stribog Compression Function

As depicted in Fig. 1, the compression function of Stribog employs a nonlinear
whitening round KN of the chaining value. This extra round randomizes the
chaining value before being introduced as a key for the block cipher E. As long
as there is no difference in the chaining value, most of the differential trails
proposed for Whirlpool are also applicable on the Stribog compression function.

In what follows, we consider semi free-start collision attacks on the compres-
sion function. Several approaches are used to extend the inbound phase can be
used to construct collision paths for the compression function. The extended 5
round inbound presented in [8] finds a pair of states satisfying the 8 r1−→ 64 r2−→
8 r3−→ 8 r4−→ 64 r5−→ 8 transition in 264 time and 28 memory. The main idea is to
solve two independent 8 r1−→ 64 r2−→ 8 and 8 r4−→ 64 r5−→ 8 inbounds and use the
freedom to choose key values that connect the resulting 8 differences and 64 byte
values. However, unlike the basic inbound, it provides only one solution or start-
ing point for the outbound paths. Using different outbounds with the extended
inbound, a semi free-start 7.75-round collision, and 7.75-round, 8.75-round, and
9.75-round near collisions are obtained.

7.75 Round Semi Free-Start Collision. This is obtained by using two out-
bounds in the form of 8 −→ 1. The probability of a transition from 8 active
bytes to 1 active byte through L is 2−8×7 = 2−56. Given the following path:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 1,

one can produce a semi free-start collision. We need two transitions from 8 to
1 in both the forward and backward directions, and the one active byte in the
first and last states to be equal so that they cancel out after the feedforward.
Thus, one needs to try 256+56+8 times to satisfy the outbound phase. In other
words, we need 2120 inbound solutions. If the complexity of one inbound solution
is 264, then the time complexity of 7.75 rounds semi free-start collision is 2184

and the memory complexity is 28, as we can pass one active byte through X, S
and P transformations with probability one.

Rebound Attacks on Stribog 185

7.75 Round Semi Free-Start Near Collision. While aiming for collision
requires both differences in the first and last states to be exactly in the same
place so that they cancel out after the feedforward, near collision requires only
few differences to cancel out. A 50-byte near collision is obtained by extending
the 5-round inbound with two transitions from 8 to 8 in both directions with no
additional cost. Using the following path:

8 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 8

one active byte would cancel out with probability 2−8 after feedforward. Con-
sequently, The complexity of 7.75 rounds semi free-start 50-byte collision is 272.
To demonstrate the correctness of the above concept, we have implemented a
4.75-round 50-byte near collision with a shorter practical inbound 8 r2−→ 64 r3−→ 8
as shown in Fig. 6. A 4.75-round near colliding pair is given in Table 1 using the
IV = 0 and N = 0.

Fig. 6. 4.75 round near collision path

8.75 Round Semi Free-Start Near Collision. Using one transition from 8
to 1 in the forward outbound has a complexity of 256 and results in the following
path:

8 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 1 r8−→ 8

The probability that one active byte is cancelled by the feedforward is 2−8.
Consequently the complexity of 8.75 rounds semi free-start 50-byte collision is
264+56+8 = 2128.

9.75 Round Semi Free-Start Near Collision. With a complexity of 2196,
a 9.75-round 50-byte near collision can be obtained with a lower complexity of
2184. By adding two 8 to 1 transitions in both the forward and the backward
directions for a complexity of 2112 and two 1 to 8 transitions in rounds one
(backward) and nine (forward) for no additional cost, the following path:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64 r7−→ 8 r8−→ 1 r9−→ 8

results in a 50-byte near collision. Additional complexity of 28 is needed for a
one byte cancellation after the feedforward.

186 R. AlTawy et al.

Table 1. Example of a 4.75-round near collision for the compression function.

m m′ Difference at M4

cd ed 17 46 d8 d7 f0 f3 cd ed 17 59 d8 d7 f0 f3 00 00 00 1f 00 00 00 00

3e d6 22 7a 99 4a c9 ea 3e d6 22 0c 99 4a c9 ea 00 00 00 76 00 00 00 00

cc 5d e2 f0 14 4f f0 3c cc 5d e2 ea 14 4f f0 3c 00 00 00 1a 00 00 00 00

4b bc 31 41 dd 99 68 0d 4b bc 31 4d dd 99 68 0d ba 38 7a 00 6f 93 95 37

b4 d1 27 0f 2d ed 55 28 b4 d1 27 58 2d ed 55 28 00 00 00 57 00 00 00 00

d8 ca c8 79 22 fa c8 14 d8 ca c8 f6 22 fa c8 14 00 00 00 8f 00 00 00 00

9f 06 fe 94 b3 3d 20 6a 9f 06 fe 80 b3 3d 20 6a 00 00 00 14 00 00 00 00

5a d6 10 10 51 4c a3 7a 5a d6 10 2b 51 4c a3 7a 00 00 00 3b 00 00 00 00

Table 2. Example of a 5-round collision and 7.75-round near collision for the internal
block cipher (E).

m m′ Difference at MP
7

ba aa da d1 92 9e 95 f5 3b 16 1b b0 76 fe 1e 78
3a 4a 35 2c 61 a8 84 f1 4c 03 4f 12 d1 a3 b4 bd
44 38 38 e2 d2 fa 5e ec c6 a7 81 ff 3a c7 3e 36
27 00 09 05 4f 53 05 f2 6c 76 3e 0a d6 92 72 00
cd 02 30 bb 3e b4 54 df 47 7e c6 e0 a4 6e 23 1a
fc c6 de 98 54 4e 5c b6 28 a4 20 68 ee e1 01 11 d7 4d 00 c8 00 00 00 00
60 dc 52 73 dc c9 5d f1 43 20 0a 43 12 ba fe a0 ff 60 00 60 00 00 00 00
72 99 45 8d 9b c8 73 f2 8a d2 ff b3 19 f4 e4 25 15 3c 00 c9 00 00 00 00

1b 49 00 ae 00 00 00 00
k k′ 03 81 00 42 00 00 00 00

1a ed 00 ea 00 00 00 00
f4 d7 d6 42 05 a4 b9 7a 75 6b 17 23 e1 c4 32 f7 37 8e 00 60 00 00 00 00
2f 70 68 1a 2c 59 f4 4e 59 39 12 24 9c 52 c4 02 61 b8 00 f2 00 00 00 00
8b 7b 44 12 38 36 84 87 09 e4 fd 0f d0 0b e4 5d
63 04 2f 7d de 3d b9 9f 28 72 18 72 47 fc ce 6d
78 db 37 55 73 39 f7 30 f2 a7 c1 0e e9 e3 80 f5
3f f2 8d fb 23 a9 6a 8a eb 90 73 0b 99 06 37 2d
20 18 3a e4 63 85 3a 81 03 e4 62 d4 ad f6 99 d0
b5 58 8a e7 d3 34 20 4d 4d 13 30 d9 51 08 b7 9a

6 Conclusion

In this paper, we have analyzed the Stribog compression function and its internal
cipher. As for the internal cipher, we have proposed a new message differential
path such that a local collision is enforced every two rounds. Accordingly, the
Sbox matching complexity caused by its DDT bias is bypassed. As a result,
we have efficiently produced free-start 5-round collision and 7.75-round near
collision examples for the internal cipher. Moreover, the compression function
is investigated and we have noted that the Stribog compression function key
whitening round KN enhances its resistance to free-start collision attacks. How-
ever, we have showed that the Stribog compression function is vulnerable to
semi free-start 7.75 round collision, 8.75 and 9.75 round near collision attacks
and presented an example for a 4.75 round 50-byte near colliding message pair.

Rebound Attacks on Stribog 187

Acknowledgement. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions that helped improve the quality of the paper.
This work is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

1. The National Hash Standard of the Russian Federation GOST R 34.11-2012.
Russian Federal Agency on Technical Regulation and Metrology report (2012).
https://www.tc26.ru/en/GOSTR34112012/GOST R 34 112012 eng.pdf

2. Canteaut, A., Fuhr, T., Naya-Plasencia, M., Paillier, P., Reinhard, J.-R., Videau,
M.: A unified indifferentiability proof for permutation- or block cipher-based hash
functions. Cryptology ePrint Archive, Report 2012/363 (2012). http://eprint.iacr.
org/2012/363

3. Chang, S., Perlner, R., Burr, W.E., Turan, M., Kelsey, J., Paul, S., Bassham,
L.E.: Third-round report of the SHA-3 cryptographic hash algorithm competition
(2012). http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf

4. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

5. Jean, J., Fouque, P.-A.: Practical near-collisions and collisions on round-reduced
ECHO-256 compression function. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733,
pp. 107–127. Springer, Heidelberg (2011)

6. Kazymyrov, O., Kazymyrova, V.: Algebraic aspects of the russian hash standard
GOST R 34.11-2012. Cryptology ePrint Archive, Report 2013/556 (2013). http://
eprint.iacr.org/

7. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B.I. (ed.)
FSE 1995. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

8. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

9. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
attack on the full Lane compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

10. Matyukhin, D., Rudskoy, V., Shishkin, V.: A perspective hashing algorithm. In:
RusCrypto (2010). (In Russian)

11. Matyukhin, D.: Some methods of hash functions analysis with application to the
GOST P 34.11-94 algorithm. Mat. Vopr. Kriptogr. 3(4), 71–89 (2012)

12. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
the reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16–35. Springer, Heidelberg (2009)

13. Mendel, F., Pramstaller, N., Rechberger, C.: A (second) preimage attack on the
GOST hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224–234.
Springer, Heidelberg (2008)

14. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis
of the GOST hash function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 162–178. Springer, Heidelberg (2008)

https://www.tc26.ru/en/GOSTR34112012/GOST_R_34_112012_eng.pdf
http://eprint.iacr.org/2012/363
http://eprint.iacr.org/2012/363
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

188 R. AlTawy et al.

15. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

16. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound attacks on the
reduced Grøstl hash function. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol.
5985, pp. 350–365. Springer, Heidelberg (2010)

17. Rijmen, V., Toz, D., Varıcı, K.: Rebound attack on reduced-round versions of JH.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 286–303. Springer,
Heidelberg (2010)

18. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on whirlpool: improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

19. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999)

20. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

21. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

Bitwise Partial-Sum on HIGHT: A New Tool
for Integral Analysis Against ARX Designs

Yu Sasaki1(B) and Lei Wang2

1 NTT Secure Platform Laboratories, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

2 Nanyang Technological University, Singapore, Singapore
Wang.Lei@ntu.edu.sg

Abstract. In this paper, we present a new cryptanalytic tool that can
reduce the complexity of integral analysis against Addition-Rotation-
XOR (ARX) based designs. Our technique is based on the partial-sum
technique proposed by Ferguson et al. at FSE 2000, which guesses sub-
keys byte to byte in turn, and the data to be analyzed is compressed for
each key guess. In this paper, the technique is extended to ARX based
designs. Subkeys are guessed in bitwise, and the data is compressed with
respect to the sum of the guessed bit position and carry values to the
next bit position. We call the technique bitwise partial-sum. We demon-
strate this technique by applying it to reduced-round HIGHT, which
is one of the ISO standard ciphers. Another contribution is an indepen-
dent improvement specific to HIGHT which exploits more linearity inside
the round function. Together with the bitwise partial-sum, the integral
analysis on HIGHT is extended from previous 22 rounds to 26 rounds.

Keywords: Integral analysis · Partial-sum · Bitwise partial-sum · HIGHT

1 Introduction

Integral analysis was firstly proposed by Daemen et al. for the Square cipher [1],
and was later unified as integral analysis by Knudsen and Wagner [2]. It consists
of two phases; an integral distinguisher construction and a key recovery. For the
first phase, an attacker prepares a set of chosen plaintexts. For these plaintexts,
the corresponding states after a few encryption rounds have a certain property,
e.g. the XOR sum of all states in the set is 0 with a probability 1 (balance). Then
for the second phase, after the attacker obtains the corresponding ciphertexts
of the set of chosen plaintexts, she guesses subkeys and performs the partial
decryption up to the balanced state. If the guess is correct, the XOR sum of the
results always becomes 0. Otherwise, the XOR sum becomes random.

Cryptanalysts are continuously developing new techniques to enhance the
integral analysis. Several results improved the integral distinguisher construc-
tion, e.g., multi-set analysis [3], subword multi-set [4], and bit-pattern based
analysis [5]. The analysis for the ARX based structure can be seen in saturation
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 189–202, 2014.
DOI: 10.1007/978-3-319-12160-4 12

190 Y. Sasaki and L. Wang

attack [6] and tuple analysis [7]. At the same time, techniques for the key recov-
ery phase have been improved, which is the main motivation of this paper. We
briefly illustrate two previous techniques, which are related to this paper.

Ferguson et al. proposed a technique called partial-sum [8]. It reduces the
complexity of the partial decryption up to the balanced state by guessing each
subkey byte one after another. We use a toy example to show its procedure and
significance. Let us consider the computation,

⊕
S

(
S(c0 ⊕ k0) ⊕ S(c1 ⊕ k1) ⊕

S(c2 ⊕ k2)
)
, where c0, c1, c2 are 8-bit variables and k0, k1, k2 are 8-bit keys, and

there are about 224 data of (c0, c1, c2). With a straightforward method, 24-bit
key is exhaustively guessed and the equation is computed for all (c0, c1, c2). It
takes 224+24 = 248 computations. The partial-sum technique firstly guesses k0
and k1 and computes the sum of the first two terms c′, which takes 216+24 = 240

computations. Then, 224 data for 2-byte tuple (c′, c2) are generated. This causes
many overlaps of the data; roughly 28 overlaps for each (c′, c2). The attacker
only picks the values that appear odd times. This reduces the data size into 216.
Finally, the entire sum is computed by guessing k2, which takes 216 ·28 ·216 = 240.

Sasaki and Wang introduced meet-in-the-middle technique for the key recov-
ery phase against Feistel ciphers [9]. It exploits the property that the balanced
state is represented by an XOR of two variables. Then, the XOR sum of each
variable are computed independently, and the attacker checks the match of their
values like a meet-in-the-middle attack. It separates the partial decryption into
two independent parts, and thus the complexity can be reduced.

Our Contributions. In this paper, we extend the partial-sum technique to
ARX designs, beyond the mere application to byte-oriented ciphers. We also
use a toy example to illustrate our new tool. “⊕” represents the bitwise XOR
and “�” represents the modular addition.What is the best strategy to compute⊕

[(c0 ⊕ k0) � (c1 ⊕ k1) � (c2 ⊕ k2)]? We observe that the computation can be
much faster than the partial-sum technique [8] by guessing key values bit-by-
bit and compressing the data for each guess. For example, let us consider the
computation of the first two terms; c′ = (c0 ⊕ k0) � (c1 ⊕ k1). We guess two key
bits, which are the LSB of k0 and the LSB of k1. Then, we can compute the
LSB of c′ and the carry bit to the second LSB. After this computation, 2-bit
information, which are the LSB of c0 and the LSB of c1 are discarded. At this
state, we newly obtain 2-bit information and discard 2-bit information. Hence,
no advantage is generated. We then guess two key bits, which are the second
LSB of k0 and the second LSB of k1. Then, we can compute the second LSB of
c′ and the carry bit to the third LSB. After this computation, 3-bit information,
which are the second LSB of c0 and c1 and the carry value to the second LSB
are discarded. In this time, we newly obtain 2-bit information, but discarded
3-bit information. Hence, the data is compressed by 1 bit. With this approach,
the complexity is minimized. We call the technique bitwise partial-sum.

The bitwise partial-sum leads to more advantages. We focus on the computa-
tion for the MSB. As shown above, the bitwise partial-sum computes the carry

Bitwise Partial-Sum on HIGHT 191

Table 1. Comparison of attack results on HIGHT

Model Approach #Rounds Data Time Memory (bytes) Reference

Single-key Integral 18 262 236 220 [13]

Integral 22 262 2118.71 264 [14]

Integral 22 262 2102.35 264 [9]

Integral 22 258.32 259.56 255 This paper

Integral 26 257 2120.55 299.58 This paper

Imp. Diff. 18 246.8 2109.2 N/A [10]

Imp. Diff. 25 260 2126.78 N/A [15]

Imp. Diff. 26 261 2119.53 2109 [16]

Imp. Diff. 26 261.6 2114.35 287.6 [12]

Imp. Diff. 27 258 2126.6 2120 [12]

Related-key Rectangle 26 251.2 2120.41 N/A [15]

Imp. Diff. 28 260 2125.54 N/A [15]

Imp. Diff. 31 264 2127.28 2117 [16]

Differential 32 257.84 2125.83 N/A [17]

value to the MSB when we analyze the second MSB. Therefore, the analysis on
the MSB is completely linear because we do not need to compute the carry value
from the MSB. Therefore, in the above equation, 3 bits for the MSBs of c0, c1, c2
can be compressed into 1 bit of c0 ⊕ c1 ⊕ c2 with respect to the MSB at the very
beginning stage of the analysis. Moreover, for 3 bits of the MSBs of k0, k1, k2,
guessing only 1-bit information for their XOR relation is enough.

In this paper, we demonstrate the bitwise partial-sum technique for HIGHT
[10],which was standardized by ISO as a 64-bit block-cipher [11]. As an indepen-
dent improvement, we show an observation specific to HIGHT, which exploits
more linearity inside the round function. By combining these two techniques, we
extend the integral analysis to 26 rounds, while previous work attacked only 22
rounds. Although the best single-key attack on HIGHT breaks 27 rounds with
an impossible differential attack [12], this is a significant improvement regarding
the integral analysis. The attack results are summarized in Table 1.

2 Bitwise Partial-Sum

In this section, we describe our new technique called bitwise partial-sum, which
improves the complexity of the partial-sum technique for ARX designs. Sup-
pose that an n-bit variable Z is computed with n-bit variables X,Y and n-bit
unknown keys K,K ′.1 Also suppose that 22n pairs of (X,Y) is given to the
attacker and the goal of the attacker is computing Z for the exhaustive guess of
1 For HIGHT, the value of n is 8. Here, we describe the analysis in a general form.

192 Y. Sasaki and L. Wang

K and K ′. As computations of Z, we consider the following four operations:

Z = (X ⊕ K) � Y, Z = (X � K) ⊕ Y,

Z = (X ⊕ K) � (Y ⊕ K ′), Z = (X � K) ⊕ (Y � K ′).

We describe X in bitwise with Xn−1‖Xn−2‖ · · · ‖X1‖X0. The similar notations
are used for Y,Z,K, and K ′. We denote the carry value to bit position i by pi.

To compute Z in each of the above operations, in the previous work, the key
values K (and K ′) are exhaustively guessed, and for each guess, the equation is
computed for all 22n pairs of (X,Y). Therefore, the complexity is 22n · 2n = 23n

operations for the single-key cases, and 22n · 22n = 24n operations for the two-
key cases. The bitwise partial-sum can reduce the complexity to n ·22n+1 for the
single-key cases and 23n+2 for the two-key cases by computing Z bit by bit.

Single-Key Cases. We start with explaining the complexity to compute Z =
(X ⊕K) � Y and Z = (X �K) ⊕ Y. The procedure and the complexity for two
cases are almost the same. Hence, we only explain the case for Z = (X ⊕K)�Y
in details. The overview is shown in Fig. 1. The analysis starts from 22n texts of
(X,Y). The procedure is divided into three parts; LSB, middle bits, and MSB.

Fig. 1. Bitwise partial-sum for case 1. Each cell represents each bit. Cells with a cross
are the discarded bits. Cells with red characters are the newly obtained bits.

LSB: Guess the 1-bit value K0. For each of 22n texts, compute (X0 ⊕K0)�Y 0

to obtain 2-bit information Z0 and p1. After that 2-bit information X0 and
Y 0 is no longer used, and thus we can remove those 2-bit information for
the further procedure. Hence, 22n texts of (Xn−1‖ · · · ‖X0, Y n−1‖ · · · ‖Y 0)
are updated to 22n texts of (Xn−1‖ · · · ‖X1, Y n−1‖ · · · ‖Y 1, p1, Z0).

Middle bits (bit position i for i = 1, 2, . . . , n− 2): Guess the 1-bit value Ki.
For each text, compute (Xi⊕Ki)�Y i�pi to obtain 2-bit information Zi and
pi+1 and then discard 3-bit information Xi, Y i, pi. Hence, 22n−(i−1) texts of
(Xn−1‖ · · · ‖Xi, Y n−1‖ · · · ‖Y i, pi, Zi−1‖ · · · ‖Z0) are updated to 22n−i texts
of (Xn−1‖ · · · ‖Xi+1, Y n−1‖ · · · ‖Y i+1, pi+1, Zi‖ · · · ‖Z0). Count how many
times each tuple of (Xn−1‖ · · · ‖Xi+1, Y n−1‖ · · · ‖Y i+1, pi+1, Zi‖ · · · ‖Z0)
appears, and only pick the ones that appear odd times. The size of the
texts will be reduced from 22n−(i−1) to 22n−i.

Bitwise Partial-Sum on HIGHT 193

MSB: Guess the 1-bit value Kn−1. For each text, compute (Xn−1 ⊕ Kn−1 ⊕
Y n−1 ⊕pn−1) to obtain 1-bit information Zn−1 and then discard 3-bit infor-
mation Xn−1, Y n−1, pn−1. Hence, 2n+2 texts of (Xn−1, Y n−1, pn−1, Zn−2

‖ · · · ‖Z0) are updated to 2n texts of (Zn−1‖ · · · ‖Z0). Count how many times
each tuple of (Zn−1‖ · · · ‖Z0) appears, and only pick the ones that appear
odd times. The size of the texts will be reduced from 2n+2 to 2n.

The complexity for the LSB (bit position 0) is 2 ·22n XOR operations and 2 ·22n
addition operations, then 22n texts will remain. The complexity for bit position
1 is 22 · 22n XOR operations and 22 · 22n addition operations, then 22n−1 texts
will remain. The complexity for bit position 2 is 23 · 22n−1 XOR operations and
23 · 22n−1 addition operations, then 22n−2 texts will remain. The complexity for
bit position i where i = 3, 4, . . . , n − 2 is 2i+1 · 22n−(i−1) XOR operations and
2i+1 ·22n−(i−1) addition operations, then 22n−i texts will remain. The complexity
for the MSB is 2n · 2n+2 XOR operations, and 2n texts will remain. Because the
complexity for each bit is about 22n+2 XOR operations and addition operations,
the total complexity is about n · 22n+2 XOR operations and addition operation.
This is faster than the previous analysis which requires 23n operations. For n = 8,
the previous analysis requires 224 while the bitwise partial-sum requires 221. The
advantage becomes bigger for a bigger n. Three-fish block-cipher adopts a 64-bit
ARX design. For n = 64, the previous analysis requires 2192 while the bitwise
partial-sum only requires 2136.

Optimization of the Single-Key Case. The computation of the MSB is lin-
ear, and thus the MSBs of two variables Xn−1 and Y n−1 are only used in the
linear computation. Hence, at the very beginning of the procedure, we can com-
pute Xn−1⊕Y n−1, and 22n texts of (X,Y) can be compressed into 22n−1 texts of
(Xn−1 ⊕ Y n−1,Xn−2‖ · · · ‖X0, Y n−2‖ · · · ‖Y 0) This halves the complexity, and
thus the total complexity is about n · 22n+1 XOR and addition operations.

Two-Key Cases. We explain the two-key cases, i.e., the complexity to compute
Z = (X ⊕ K) � (Y ⊕ K ′) and Z = (X � K) ⊕ (Y � K ′). The basic procedure
for the two-key cases are the same as the one for the single-key case. First, we
explain the case for Z = (X ⊕ K) � (Y ⊕ K ′).

LSB: Guess the 2-bit values K0 and K ′0. For each 22n texts, compute 2-bit
information Z0 and p1 and then discard 2-bit information X0 and Y 0. The
text size after the analysis is 22n.

Middle bits (bit position i for i = 1, 2, . . . , n− 2): Guess the 2-bit values Ki

and K ′i. For each texts, compute 2-bit information Zi and pi+1 and then dis-
card 3-bit information Xi, Y i, pi. Only pick the tuples of (Xn−1‖ · · · ‖Xi+1,
Y n−1‖ · · · ‖Y i+1, pi+1, Zi‖ · · · ‖Z0) which appears odd times, The size of the
texts will be reduced from 22n−(i−1) to 22n−i.

194 Y. Sasaki and L. Wang

MSB: Guess the 2-bit values Kn−1 and K ′n−1. For each texts, compute
1-bit information Zn−1 and then discard 3-bit information Xn−1, Y n−1, pn−1.
Only pick the tuples of (Zn−1‖ · · · ‖Z0) which appears odd times. The size
of the texts will be reduced from 2n+2 to 2n.

The complexity for the LSB (bit position 0) is (2)2 · 22n operations, and 22n

texts will remain. The complexity for bit position 1 is (22)2 · 22n operations,
and 22n−1 texts will remain. The complexity for bit position 2 is (23)2 · 22n−1

operations, and 22n−2 texts will remain. The complexity for bit position i where
i = 3, 4, . . . , n − 2 is (2i+1)2 · 22n−(i−1) operations, and 22n−i texts will remain.
The complexity for the MSB is (2n)2 ·2n+2 operations, and 2n texts will remain.
Therefore, the total complexity is about

(2)2 · 22n + [(22)2 · 22n + (23)2 · 22n−1 + · · · + (2n−1)2 · 2n+3] + (2n)2 · 2n+2.

The first term is smaller than 22n+3, thus the equation is smaller than

22n+3 + 22n+4 + · · · + 22n+(n+2) = 22n+3(1 + 21 + 22 + · · · + 2n−1) < 23n+3.

This is faster than the previous analysis which requires 24n operations.

Optimization of the Two-Key Case. Regarding the MSBs of two variables
Xn−1 and Y n−1, the same technique as the one for the single-key case can be
exploited, namely, take the XOR of Xn−1 and Y n−1 and compress the data by
1 bit at the very beginning of the analysis. This reduces the total complexity by
1 bit, and thus the total complexity becomes about 23n+2 operations.

Moreover, the MSBs of two keys Kn−1 and K ′n−1 are only used in the lin-
ear operation. Therefore, instead of guessing these two key bits, guessing 1-bit
relation of these bits, i.e., Kn−1 ⊕K ′n−1, is enough. This reduces the total com-
plexity by 1 bit, and thus the total complexity becomes about 23n+1 operations.

Evaluation for Z = (X � K) ⊕ (Y � K′). The complexity for Z = (X �
K) ⊕ (Y �K ′) is a little bit worse than the complexity for Z = (X ⊕K) � (Y ⊕
K ′). This is because the equation (X � K) ⊕ (Y � K ′) contains two additions,
and thus we need to store 2-bit carry values in the analysis of each bit. Compared
to the case of Z = (X⊕K)�(Y ⊕K ′), the size of texts to be analyzed is doubled.
This increases the final complexity from 23n+1 to 23n+2 operations.

Summary of the Bitwise Partial-Sum. The comparison of the complexities
to compute each of 4 equations with the previous method (bytewise partial-
sum) and ours is given in Table 2. It indicates that the advantage of the bitwise
partial-sum increases as n increases. In the next section, we apply the bitwise
partial-sum to HIGHT, where the size of n is 8. The impact is relatively small
because the advantage is at most a factor of 27. Some ARX-based block-ciphers
adopt a bigger n, e.g., XTEA [18] adopts n = 32 and Threefish [19] adopts
n = 64. In such cases, the impact becomes much bigger.

Bitwise Partial-Sum on HIGHT 195

Table 2. Summary of the complexity of the bitwise partial-sum

Target equation Previous partial-sum Bitwise partial-sum

Z = (X ⊕ K) � Y 23n n · 22n+1

Z = (X � K) ⊕ Y 23n n · 22n+1

Z = (X ⊕ K) � (Y ⊕ K′) 24n 23n+1

Z = (X � K) ⊕ (Y � K′) 24n 23n+2

3 Improved Integral Analysis on HIGHT

3.1 Specification of HIGHT

HIGHT is a block-cipher proposed at CHES 2006 by Hong et al. [10]. The
block size is 64 bits and the key size is 128 bits. It adopts the type-2 gener-
alized Feistel structure with 8 branches and 32 rounds. The plaintext is loaded
into an internal state X0,7‖X0,6‖ · · · ‖X0,0 where the size of each Xi,j is 8 bits.
At first, X0,7‖X0,6‖ · · · ‖X0,0 is updated by the pre-whitening. Then, the state
Xi,7‖Xi,6‖ · · · ‖Xi,0 is updated by the following operation. For i = 0, 1, . . . , 31

Xi+1,0 = Xi,7 ⊕ (
F0(Xi,6) � SK4i+3), Xi+1,1 = Xi,0,

Xi+1,2 = Xi,1 �
(
F1(Xi,0) ⊕ SK4i), Xi+1,3 = Xi,2,

Xi+1,4 = Xi,3 ⊕ (
F0(Xi,2) � SK4i+1), Xi+1,5 = Xi,4,

Xi+1,6 = Xi,5 �
(
F1(Xi,4) ⊕ SK4i+2), Xi+1,7 = Xi,6,

where F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7), F1(x) = (x ≪ 3) ⊕ (x ≪
4) ⊕ (x ≪ 6), and “≪ s” denotes the s-bit left rotation. The swap of the byte
positions is not executed in the last round. We denote the internal state between
F and the key addition by Yi,1, Yi,3, Yi,5, Yi,7 and the internal state right after
the key addition by Zi,1, Zi,3, Zi,5, Zi,7. Finally, the post-whitening is performed.
In this paper, we denote the k-th bit of a byte Xi,j by Xk

i,j .
Subkeys and whitening keys consist of a part of the master key K and a

constant value. K is divided into each byte K15‖K14‖ · · · ‖K0 and WKi and
SKj are derived by one of K15, . . . ,K0. Please refer to [10] for details. Note that
[10] showed a figure with an incorrect subkey order, and the designers later fixed
the problem [20]. The previous work [9,14] attacked the incorrect one though
they can also be applied to the correct one. We attack the correct one, hence
the subkey order is different from the previous work [9,14].

3.2 Previous Integral Analysis on 22-Round HIGHT

Zhang et al. presented a 17-round integral distinguisher on HIGHT [14]. For a
set of 256 plaintexts with the form of (A,A,A,A,A,A,A,C), the state after 17
rounds, (X17,7‖X17,6‖ · · · ‖X17,0), has the form of (?, ?, ?, ?, B0, ?, ?, ?), where B0

196 Y. Sasaki and L. Wang

Fig. 2. Key recovery phase for 22-
round HIGHT

Fig. 3. Improved key recovery phase
with exploiting more linearity

stands for the balanced state with respect to the 0-th bit. By appending 5 rounds
after this distinguisher, Zheng et al. showed a 22-round key recovery attack.

The key recovery phase was later improved by Sasaki and Wang [9]. In their
attack, the condition for

⊕
X0

17,3 = 0 is written as
⊕

X0
18,4 =

⊕
Z0
17,3. They

compute each side of the condition independently, and later check the match
like the meet-in-the-middle attack. Their key recovery phase is illustrated in
Fig. 2.The red color describes the computation for Z0

17,3. The blue color describes
the computation for X0

18,4. The purple color describes the overlapped part.

3.3 Exploiting Linearly for Optimizing Matching Position

The observation of Sasaki and Wang [9] is based on the fact that the balanced
bit X0

17,3 can be written as a linear combination of two variables X0
18,4 and

Z0
17,3. We extend this concept by exploiting more linearity inside the round

function. The complexity for computing
⊕

Z0
17,3 is much bigger than the one for⊕

X0
18,4. Therefore, we aim to reduce the number of subkeys used to compute⊕

Z0
17,3.
Z0
17,3 is computed by SK0

69 � Y 0
17,3. Because we only focus on the LSB, the

computation is linear, i.e., Z0
17,3 = SK0

69 ⊕Y 0
17,3. Therefore, SK0

69 can be moved
to the computation of

⊕
X0

18,4, namely
⊕

(X0
18,4 ⊕ SK0

69) =
⊕

Y 0
17,3. Further-

more, by utilizing the linearity of F0, i.e., Y 0
17,3 = X1

18,3 ⊕ X2
18,3 ⊕ X7

18,3 we can
move more subkey bits, and finally get the following equation.

⊕
(X0

18,4 ⊕ SK0
69 ⊕ X1

19,4 ⊕ X2
19,4 ⊕ X7

19,4) =
⊕

(Z1
18,3 ⊕ Z2

18,3 ⊕ Z7
18,3). (1)

The entire structure is shown in Fig. 3. This reduces the number of subkey bits
in the dominant part by 17 bits and the number of ciphertexts by 8 bits, thus
the complexity of the attack can be reduced roughly by a factor of 225.

Bitwise Partial-Sum on HIGHT 197

3.4 Improved Integral Analysis on 22-Round HIGHT

We explain the details of the computation of
⊕

(Z1
18,3 ⊕Z2

18,3 ⊕Z7
18,3), which is

shown in Fig. 4. With the previous method in [9], the complexity is 232 ·256 = 288,
while our method computes it only with 264.02.

We first compute C ′
2 ← F0(C2) and WK ′

5 ← F0(WK5) to exclude the F0

function. Hence, we recover WK ′
5 instead of WK5. Then, the partial decryption

up to X21,3 is written as X21,3 ← C3⊕(
SK85�(C ′

2⊕WK ′
5)

)
. The equation is not

exactly the same as 4 equations analyzed in Sect. 2, but the similar procedure
can be applied. Namely, the partial-sum is updated bit by bit from the LSB to
MSB. Moreover, we use the linear relations in the MSB, thus the data can be
compressed with respect to the value of C7

3 ⊕ C ′7
2 before the analysis starts and

1-bit guess of SK7
85 ⊕ WK ′7

5 is enough for these two MSBs.
After we obtain the value of X21,3 and the corresponding Y20,3, another

pattern of the bitwise partial-sum appears for X20,3 = (C4 � WK6) ⊕ (Y20,3 �
SK81). However, the analysis is not simple in this time because C4 is also used
to compute X21,5 and thus we cannot eliminate the value of C4 after X20,3 is
computed. Such a structure makes the attack complicated. In the following, we
give the detailed attack procedure to compute

⊕
(Z1

18,3 ⊕ Z2
18,3 ⊕ Z7

18,3).

1. Precompute two look-up tables which return F0(x) and F1(x) for a given x.
2. Query 256 plaintexts of the form (A,A,A,A,A,A,A,C). Count how many

times each 4-byte tuple (C2, C3, C4, C5) appears and pick the ones that
appear odd times. Hence, the number of texts to be analyzed is 24∗8 = 232.

3. Convert (C2, C3, C4, C5) into (C ′
2, C3, C4, C5) with the look-up table.

4. Compress the data with respect to t1 = C ′7
2 ⊕ C7

3 and obtain 231 data of
(C ′0−6

2 , C0−6
3 , t1, C4, C5).

5. For each 15-bit guess of (SK0−6
85 ,WK ′0−6

5 , (SK7
85 ⊕WK ′7

5)), compute X21,3

with the bitwise partial-sum. The data is compressed to 224 of the form
(X21,3, C4, C5). Convert them into (Y20,3, C4, C5) with the look-up table.

6. For each 8-bit guess ofWK6, update 224 data (Y20,3, C4, C5) into (Y20,3,X21,4,
C5). Then, compute Y21,5 and add it to the data to be analyzed. Hereafter, we
regard X21,4 and Y21,5 are independent.2 Thus the data size increases to 232.

7. Compress the data with respect to t2 = C7
5 ⊕ Y 7

21,5 and t3 = X7
21,4 ⊕ Y 7

20,3,
and obtain 230 data of (C0−6

5 , Y 0−6
21,5 , t2,X

0−6
21,4 , Y

0−6
20,3 , t3).

8. For each 8-bit guess of SK81, computeX20,3 with the bitwise partial-sum tech-
nique and compress the data to 223 data of the form (C0−6

5 , Y 0−6
21,5 , t2,X20,3).

Then, convert the set into (C0−6
5 , Y 0−6

21,5 , t2, Y19,3) with the look-up table.
9. Compress the data with respect to t4 = t2 ⊕Y 7

19,3 and obtain 222 data of the
form (C0−6

5 , Y 0−6
21,5 , Y

0−6
19,3 , t7).

2 By doing this, we have additional noise (wrong subkey guesses). We never miss the
right key candidate and noise is later filtered out.

198 Y. Sasaki and L. Wang

Fig. 4. Computation of
⊕

(Z1
18,3 ⊕

Z2
18,3 ⊕ Z7

18,3) in 22-round attack
Fig. 5. Computation of left-hand side
of Eq. (1) in 22-round attack

10. For each 15-bit guess of (SK0−6
84 , SK0−6

77 , (SK7
84 ⊕ SK7

77)), compute X19,3

with the bitwise partial-sum technique and compress the data to 28 data of
the form X19,3. Then, convert the set into Y18,3 with the look-up table.

11. For 8-bit guess of SK73, compute
⊕

(Z1
18,3 ⊕Z2

18,3 ⊕Z7
18,3) with the bitwise

partial-sum technique. Store the result in a table T .

We evaluate the complexity of each step. Step 1 requires 28 F0 and F1 computa-
tions. Step 2 requires 256 memory access. The memory requirement is 232 ·4 = 234

bytes. Step 3 requires 232 table look-ups. Step 4 requires 232 1-bit XOR oper-
ations. and the data is compressed to 231. In Step 5, because 2 subkeys and
1 modular addition are involved, the complexity of the bitwise partial-sum is
231+n+1, where n = 8. Hence, the complexity is 240 round functions. The data
is compressed to 224 and then 224 table look-ups are performed. Step 6 requires
215+8+24 modular additions and table look-ups, which is less than 247 round
functions. The data size increases to 232. Step 7 requires 215+8+32 2-bit XOR
operation and table look-ups, which is less than 215+8+32+1 = 256 round func-
tions. The data is compressed to 230. In Step 8, because 1 subkey is involved, the
complexity of the bitwise partial-sum is 8·215+8+30+1 = 257 round functions. The
data is compressed to 223. Step 9 requires 215+8+8+23 1-bit XOR computations,
which is less than 254 round functions. The data is compressed to 222. In Step 10,
because 2 subkeys and 2 modular additions are involved, the complexity of the
bitwise partial-sum is 215+8+8+22+(n+2) = 263 round functions for n = 8. The
data is compressed to 28. In Step 11, because 1 subkey and 1 modular addition
are involved, the complexity is 28+15+8+8+15+8+1 = 263 round functions.

The complexities for steps 1 to 5 are negligible but for 256 memory access in
Step 2. The complexity for the remaining part is 247+256+257+254+263+263 ≈
264.02 round functions. After the analysis, we obtain 254 values in T . Note that
besides the 1-bit value of

⊕
(Z1

18,3 ⊕Z2
18,3 ⊕Z7

18,3), we also store 15-bit values of
WK0−6

6 , SK ′0−6
84 , SK ′7

84 ⊕ WK7
6 , which are later used for the match. Hence, the

memory requirement to construct T is 254 ∗ 16 bits, which is 255 bytes.

Left-hand-side of Eq. (1). The entire computation structure is shown in
Fig. 5. Due to the limited space, we omit the detailed analysis. The left-hand-
side of Eq. (1) is computed with a negligible cost compared to the other part.

Bitwise Partial-Sum on HIGHT 199

Fig. 6. Partial decryption for
⊕

(Z1
18,7 ⊕ Z2

18,7 ⊕ Z7
18,7) in 26-round attack

Remaining Part. The right-hand-side of Eq. (1) involves 54 subkey bits and
the left-hand-side of Eq. (1) involves 30 subkey bits. We can check the match of
1 bit of the state with Eq. (1) and 15 bits of the guessed keys (WK0−6

6 , SK ′0−6
84 ,

SK ′7
84⊕WK7

6), in total 16 bits. Hence, the key space for 54+30−15 = 69 bits are
reduced by 16 bits after the analysis of 1 plaintext set. By iterating the analysis
5 times, these 69 subkey bits are recovered. The other 11 bits are exhaustively
checked.

To sum up, the data complexity is 5 ∗ 256 ≈ 258.32 chosen plaintexts. The
computational complexity is 5∗260.09 ≈ 264.02 round functions and 258.32 memory
access, which is equivalent to 264.02/22 ≈ 259.56 22-round HIGHT computations
and 258.32 memory access. The memory requirement is 255 bytes.

3.5 New Integral Analysis on 26-Round HIGHT

In [14], Zhang et al. presented another 17-round integral distinguisher. For a
set of 256 plaintexts with the form of (A,A,A,C,A,A,A,A), the state after 17
rounds, (X17,7‖ · · · ‖X17,0), has the form of (B0, ?, ?, ?, ?, ?, ?, ?). Considering the
subkey relations, we use this integral distinguisher. With the same transforma-
tion as for obtaining Eq. (1),

⊕
X0

17,7 = 0 can be transformed as

⊕
(X0

18,0 ⊕ SK0
71 ⊕ X1

19,0 ⊕ X2
19,0 ⊕ X7

19,0) =
⊕

(Z1
18,7 ⊕ Z2

18,7 ⊕ Z7
18,7). (2)

The computation for the right-hand side of Eq. (2) requires much more com-
plexity than the left-hand side. Due to the limited space, we only explain how
to obtain the right-hand side of Eq. (2). The partial decryption for obtaining⊕

(Z1
18,7 ⊕Z2

18,7 ⊕Z7
18,7) is shown in Fig. 6. We first describe a relatively simple

procedure with the bytewise partial-sum. Firstly, the analysis stars from at most

200 Y. Sasaki and L. Wang

264 ciphertexts of (C0, . . . , C7). Secondly, (K1,K3) are guessed and the data is
compressed into 256 texts of (Y24,7, C5, . . . , C0). The remaining procedure and
its complexity evaluation is summarized in Table 3.

The dominant part is Step 6, which requires 2128 round function computa-
tions with the bytewise partial-sum. We apply the bitwise partial-sum to Step 6 to
reduce the complexity. Step 6 starts from 232 texts of (Z20,7,X24,4,X24,3,X23,1),
and the goal is obtaining 224 texts of (Z20,7,X22,2,X22,1) with guessing two sub-
keys (K8,K11). At first, we update 232 texts into (Z20,7,X24,4,X24,3, Y22,1), and
we guess 1-byte key K8 and update 232 texts into (Z20,7,X22,2,X24,3, Y22,1). Up to
here, the complexity for the guess of K8 is less than 280 ·28 ·232 = 2120 round func-
tions. We then apply the bitwise partial-sum to guessK11. First of all, by exploiting
the MSB, 232 texts is compressed into 231 texts of (Z20,7,X22,2,X

0−6
24,3 , Y

0−6
22,1 , t

7),
where t7 is X7

24,3 ⊕Y 7
22,1. Then, compute X22,1 bit-by-bit from the LSB to MSB to

obtain 224 texts of (Z20,7,X22,2,X22,1). This is a single-key case with 1 modular
addition. The complexity is about n · (288+31+1) = 2123 round functions, where
n = 8.

Finally, for a single set of chosen plaintexts, the sum of the complexity for
all steps is 264 memory access and 280 +296 +2112 +2120 +(2120 +2124)+2120 +
2112 + 2104 ≈ 2124.25 round functions, which is 2124.25/26 ≈ 2119.55 26-round
HIGHT computations. The data complexity is 256 chosen plaintexts. For each
296 guess, we store guessed 12 bytes and 1-bit information for the match of the
sum. Hence, the memory requirement is about 12 · 296 ≈ 299.58 bytes.

With one plaintext set, the left-hand side of Eq. (2) provides 289 candidates
and the right-hand side of Eq. (2) provides 296 candidates. Hence, we check the
match of 2185 pairs. Two computations include 72 bits in common. Therefore,
together with the 1-bit of the state, we can match 73 bits. If we analyze two
plaintext sets, only 2185−(73·2) = 239 candidates will remain for the guessed key
space. Because the entire guessed key space is 113 bits (all subkeys but for the
7 bits of K9 and 8 bits of K13), we need to search for the other 15 bits. This
requires 239+15 = 254 26-round HIGHT operations.

Table 3. Summary of the computation for
⊕

(Z1
18,7⊕Z2

18,7⊕Z7
18,7). MA and RF stand

for memory access and round function, respectively.

Step Guessed keys Data size Texts to be analyzed Complexity

1 - 264 (C0, . . . , C7) 264 MA

2 (K1,K3) 256 (Y24,7, C5, . . . , C0) 216 · 264 = 280 RF

3 (K0,K5,K6) 248 (Y23,7, C5, . . . , C2, X25,1) 216 · 224 · 256 = 296 RF

4 (K2,K7,K10) 240 (Y22,7, C5, X25,4, X25,3, X24,1) 240 · 224 · 248 = 2112 RF

5 (K14,K15) 232 (Z20,7, X24,4, X24,3, X23,1) 264 · 216 · 240 = 2120 RF

6 (K8,K11) 224 (Z20,7, X22,2, X22,1) 280 · 216 · 232 = 2128 RF

7 - 216 (Y19,7, X21,1) 296 · 20 · 224 = 2120 RF

8 - 28 (Y18,7) 296 · 20 · 216 = 2112 RF

9 - 1
⊕

(Z1
18,7 ⊕ Z2

18,7 ⊕ Z7
18,7) 296 · 20 · 28 = 2104 RF

Bitwise Partial-Sum on HIGHT 201

In the end, two executions of the computation of the right-hand side of Eq. (2)
has the overwhelming complexity, which is 2 · 2119.55 = 2120.55 26-round HIGHT
computations. The analysis requires 2 · 256 = 257 chosen plaintexts, and the
memory requirement is 299.58 bytes.

4 Concluding Remarks

In this paper, we presented the bitwise partial-sum technique that reduces the
complexity of the integral analysis for ARX based designs. It computes equations
bit-by-bit and compresses the data with respect to the computed value and the
carry to the next bit position. We applied it to HIGHT. With an improvement
specific to HIGHT, the number of attacked rounds is extended to 26.

Acknowledgment. Lei Wang is supported by the Singapore National Research Foun-
dation Fellowship 2012 (NRF-NRFF2012-06).

References

1. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

2. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

3. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

4. Nakahara Jr., J., de Freitas, D.S., Phan, R.C.-W.: New multiset attacks on Rijndael
with large blocks. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol.
3715, pp. 277–295. Springer, Heidelberg (2005)

5. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008)

6. Lucks, S.: The saturation attack - a bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

7. Aumasson, J.P., Leurent, G., Meier, W., Mendel, F., Mouha, N., Phan, R.C.W.,
Sasaki, Y., Susil, P.: Tuple cryptanalysis of ARX with application to BLAKE and
Skein. In: ECRYPT II Hash Workshop (2011)

8. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.L.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

9. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013)

10. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

11. ISO/IEC 18033–3:2010: Information technology-Security techniques-Encryption
Algorithms-Part 3: Block ciphers (2010)

202 Y. Sasaki and L. Wang

12. Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the light-
weight block ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay, S.
(eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer, Heidelberg
(2012)

13. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

14. Zhang, P., Sun, B., Li, C.: Saturation attack on the block cipher HIGHT. In:
Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 76–
86. Springer, Heidelberg (2009)

15. Lu, J.: Cryptanalysis of block ciphers. Ph.D. thesis, Royal Holloway, University of
London, England (2008)

16. Özen, O., Varici, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited:
cryptanalysis of reduced round PRESENT and HIGHT. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009)

17. Koo, B., Hong, D., Kwon, D.: Related-key attack on the full HIGHT. In: Rhee,
K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer,
Heidelberg (2011)

18. Needham, R.M., Wheeler, D.J.: TEA extensions. Technical report, Computer Lab-
oratory, University of Cambridge (1997)

19. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (Round 2)
(2009)

20. Korea Internet and Security Agency: HIGHT Algorithm Specification (2009)

General Model of the Single-Key
Meet-in-the-Middle Distinguisher

on the Word-Oriented Block Cipher

Li Lin1,2(B), Wenling Wu1, Yanfeng Wang1, and Lei Zhang1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{linli,wwl,wangyanfeng,zhanglei1015}@is.iscas.ac.cn
2 Graduate University of Chinese Academy of Sciences, Beijing 100190, China

Abstract. The single-key meet-in-the-middle attack is an efficient
attack against AES. The main component of this attack is a distin-
guisher. In this paper, we extend this kind of distinguisher to the word-
oriented block cipher, such as the SPN block cipher and the Feistel-SP
block cipher. We propose a general distinguisher model and find that
building a better distinguisher is equivalent to a positive integer opti-
mization problem. Then we give a proper algorithm to solve this prob-
lem. Furthermore, we analyse the limitation of the distinguisher using
the efficient tabulation and give a method to search the special differen-
tial trail we need in this distinguisher. Finally, we apply the distinguisher
to Crypton, mCrypton and LBlock, and give distinguishers on 4-round
Crypton, 4-round mCrypton and 9-round LBlock. We also give 7-round
attacks on Crypton-128 and mCrypton-96.

Keywords: Single-key MIMT · Genel distinguisher model · Word-
oriented · SPN · Feistel-SPN

1 Introduction

The Rijndael block cipher was designed by Daemen and Rijmen in 1997 and
accepted as the AES (Advanced Encryption Standard). Various of attacks has
been proposed against AES, the single-key meet-in-the-middle attack1 was an
efficient one. The idea of this attack first came from the square attack [3], it
used the δ-set to build the distinguisher. After that, Gilbert and Miner showed
in [11] that this property could be used more precise to build a collisions attack
on 7-round Rijndael. At FSE 2008, Demirci and Selçuk had generalized this idea
using the meet-in-the-middle technique [6]. More specifically, they showed that
the value of each byte of the ciphertext could be described by a function of the
δ-set parameterized by 25 8-bit parameters. This function was used to build a
distinguisher on 4-round AES. At ASIACRYPT 2010, Dunkelman, Keller and
1 In this paper, we call this kind of attack the single-key meet-in-the-middle attack.

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 203–223, 2014.
DOI: 10.1007/978-3-319-12160-4 13

204 L. Lin et al.

Shamir reduced the number of parameters from 25 to 24 [9]. Meanwhile, they
developed many new ideas to solve the memory problems of the Demirci and
Selçk attacks. By using the differential enumeration technique, the number of
parameters was reduced largely from 24 to 16. At EUROCRYPT 2013, Derbez,
Fouque and Jean developed the efficient tabulation [8] to further reduce the num-
ber of parameters from 16 to 10 which resulted in a lower memory complexity.
At FSE 2013, Derbez and Fouque used the automatic search tool [1] to balance
the cost of time, memory and data of the online phase and off-line phase [7].

However, the single-key meet-in-the-middle attack is rarely applied to block
ciphers except AES. In this paper, we focus on the single-key meet-in-the-middle
distinguisher which plays an important role in building the attack. This kind of
distinguisher is extended to the word-oriented block cipher, such as the SPN
block cipher and the Fetstel-SP block cipher (including the Generalized Feis-
tel block cipher). We first define the T -δ-set which is a special set of states
and the S-multiset which is a multiset of S cells, then use these definitions to
get the least spread T -δ-set which has the least number of active cells and the
least affected-cell-set which is affected by the least number of active cells. After
that, we build a basic distinguisher model on the SPN block cipher and find that
building a better distinguisher is equivalent to a positive integer optimization
problem. Then a proper algorithm is given to solve this problem. Furthermore,
this basic distinguisher model is applied to the Feistel-SP block cipher and the
Generalized Feistel block cipher. Moreover, we analyse the limitation of the dis-
tinguisher using the efficient tabulation [8] and give a method to search the spe-
cial differential trail needed in this distinguisher. We also show some viewpoints
that Derbez et al don’t consider in [8] about the AES distinguisher started from
a 2-δ-set and the 5-round AES distinguisher. Finally we apply the distinguishers
to Crypton [12,13], mCrypton [14] and LBlock [16]. We build the 4-round dis-
tinguishers on Crypton and mCrypton , then use these distinguishers to attack
7-round Crypton-128 and mCrypton-96. For Crypton, it takes a time complexity
of 2113, a data complexity of 2113 chosen plaintexts and a memory complexity
of 291. For mCrypton, it takes a time complexity of 277, a data complexity of
249 chosen-plaintexts and a memory complexity of 252.44. And we give a 9-round
distinguisher on LBlock with 14 guessed-nibbles.

The organization of this paper is as follows: Sect. 2 gives some definitions and
a basic single-key meet-in-the-middle attack scheme. Section 3 gives the basic
distinguisher model and the model using the efficient tabulation. In Sect. 4 and
Sect. 5, we apply the distinguisher to Crypton, mCrypton and LBlock.

2 Definitions and Attack Scheme

In this section, we first give the definitions of the SPN block cipher, the T -δ-set
and the S-multiset, then use these definitions to give a basic single-key meet-in-
the-middle attack scheme. We also give the way to calculating the total number
of S-multisets and the way to get the proper values of S and T . Section 2.1
gives the definition of the SPN block cipher. In Sect. 2.2, we give the definitions

General Model of the Single-Key Meet-in-the-Middle Distinguisher 205

of the T -δ-set and S-multiset, the way to calculate the number of S-multisets
and the definition of the proper parameters. In Sect. 2.3, we give the basic attack
scheme.

2.1 The SPN Block Cipher

To keep our reasoning as general as possible, we give in this subsection a generic
description of Substitution-Permutation Network (SPN) cipher. One round i is
itself composed of three layers: a key schedule transformation layer (KS) where
we can get the key used in this round, a block cipher permutation layer (BC)
that updates the current state of the block cipher, a key-addition layer (AK)
where a n-cell round-key rki is extracted from ki and XORed to xi.

The size of plaintext or ciphertext is n cells, and the size of key is nK cells,
each cell consist of b bits. A state means a set of n cells before or after one oper-
ation. The cipher is consist of Rtotal successive applications of a round function,
and we denote xi and ki the successive internal states of the encryption and the
key schedule, respectively. The state x0 is initialized with the input plaintext
and k0 with the input key. We count the round-number from 0.

Definition 1 (SPN cipher [10]). Let a block cipher E whose internal state is
viewed as an n-cell vector, each cell representing a b-bit word, and the key sched-
ule as an nK-cell vector. The block cipher E is called an SPN cipher when its
round function BC is made up of a linear function P and a non-linear permu-
tation S, with BC=P◦S, the latter applying one or distinct b-bit Sboxes to every
cell.

The SPN cipher considered here needs to have the following properties: all
operations are based on cells; if we know the input differences, we can get the
output differences after the linear function, and vice versa.

2.2 Definitions

In [4], Daemen et al first proposed the definition of δ-set. After that, δ-set was
used in the attacks on AES and other ciphers. In the former single-key meet-
in-the-middle attacks [6–9,11], the attackers use the state structure that there
is only one active byte in the first round of the distinguisher to attack AES.
However, we should choose two or more all-active cells for the lightweight block
cipher or other kinds of the SPN ciphers.

Definition 2 (T -δ-set). Let a T -δ-set be a set of 2T×b states that are all differ-
ent in T cells (the all-active cells)2 and all equal in the other cells (the inactive
cells), where b is the number of bits in a cell and T ≤ n.

In [9], Dunkelman, Keller and Shamir introduced the multiset and use the
differences instead of the real values to reduce the number of guessed-cells (cells

2 All-active cell: take all the values of this cell once. The active cell: the probability
that the difference isn’t zero is greater than 0.

206 L. Lin et al.

need to be guessed). However, they only consider the multiset of one cell. We
should consider the multiset of two or more cells for lightweight block ciphers
or other kinds of the SPN ciphers.

Definition 3 (S-Multiset). An S-multiset is an unordered set in which ele-
ments can occur many times, and every element of the S-multiset consists of S
cells, S ≤ n.

Next, we will show the number of possible S-multisets3

Proposition 1 (Number of S-Multisets). If one S-multiset has 2T×b ele-
ments, the size of each element is S cells, then the number of possible S-multisets

is
(
2T×b+2S×b−1

2S×b−1

)
.

The chosen of S and T have a great influence on the distinguisher. We give
the method to choose the proper number of S and T as follows:

Definition 4 (Proper Parameters). The definition of the proper parameters
is as follows: we choose the integer parameters S and T satisfy that

(
2T×b+2S×b−1

2S×b−1

)

� 2nK×b. It means that we have a set W of size
(
2T×b+2S×b−1

2S×b−1

)
and its subset

W ′ of size 2nK×b. If we randomly choose an element from W , the probability that
it is also from W ′ is almost zero, we call (T,S) the proper parameters (S ≤ n,
T ≤ n).

2.3 Attack Scheme

In this section, we present a unified view of the single-key meet-in-the-middle
attack, where R rounds of the block cipher can be split into three consecutive
parts of r1, r, and r2.

The general attack uses three successive steps as shown in Fig. 1:

Precomputation phase

1. Suppose we have built an r-round distinguisher from a T -δ-set to an S-
multiset by guessing some internal cells, we build a lookup table T containing
all the possible S-multisets;

Online phase

2. We need to identify a T -δ-set in the online phase (for the distinguisher using
the efficient tabulation, the T -δ-set need to contain a pair of messages veri-
fying the desired differential trail);

3. Finally, we partially decrypt the associated T -δ-set through the last r2 rounds
and check whether it belongs to T .

From the statement above, if we want to make this kind of attack more
efficient, a distinguisher with more rounds and less cells to be guessed need to
be built. So in this paper, we focus on the distinguisher.

Since the size of T is less than 2nK × b, for the wrong key guess, the proper
parameters can guarantee the S-multiset we get in the online phase not to be
one of T .
3 We refer to [8] the number of cells nS we need to store an S-multiset.

General Model of the Single-Key Meet-in-the-Middle Distinguisher 207

Fig. 1. The single-key meet-in-the-middle attack procedure

3 General Model of the Single-Key Meet-in-the-Middle
Distinguisher

In this section, we will give a basic distinguisher model on the SPN block cipher
and the Feistel-SP block cipher. In Sect. 3.1, we first define the least spread
T -δ-set and the least affected-cell-set, then use these definitions to build a
basic distinguisher model on the SPN block cipher. We find that building a dis-
tinguisher with more rounds and less cell to be guessed is equivalent to a positive
integer optimization problem. Section 3.2 gives a proper algorithm to solve this
problem. In Sect. 3.3, we apply the basic distinguisher model to the Feistel-SP
block cipher and the Generalized Feistel block cipher. In Sect. 3.4, we analyse
the limitation of the distinguisher using the efficient tabulation, then give the
method to search the special differential trail we need in this distinguisher.

3.1 Distinguisher on the SPN Block Cipher

In this section, we will build a basic distinguisher model on the SPN block cipher.
Firstly, we propose some definitions.

Since the propagation of T -δ-set increases the number of guessed-cells, we
define the least spread T -δ-set to minimize it. Here we denote χi the number of
active cells before the non-linear permutation of round i.

For a T -δ-set Λ, we define Ft as follows:

Ft(Λ) =
{

(
∑�−1

i=1 χi, � − 1) if
∑�−1

i=1 χi ≤ t

(
∑r

i=1 χi, r) if
∑r

i=1 χi ≤ t ,
∑r+1

i=1 χi > t and r < � − 1

where � satisfies that χ� = n and χ�−1 < n. It means that before the non-linear
permutation of round �, all the cells just become active; but at round � − 1,
there are still inactive cells.

We denote the total number of active cells before the non-linear permutation
from round 1 to round r as Nr. For a given t, if N� ≤ t, then the output of Ft

is N� and � − 1; if N� > t, the output is NR and R that R satisfies NR ≤ t and
NR+1 > t.

Definition 5 (Least Spread T -δ-set). The least spread T -δ-set (short for the
least spread T -δ-set for Ft) is the T -δ-set that maximizes the second output of
Ft before minimizing the first output.

208 L. Lin et al.

We can loop through each T -δ-set Λ to find all the least spread T -δ-sets. In
the rest of this paper, the T -δ-set means the positions of the T active cells at the
same time. In this paper we only concern about the truncated-difference-form
(TDF) of a state, i.e. each cell only has 2 forms—active4 and inactive.

Next, we will define the least Affected-Cell-Set. It gets rid of some guessed-
cells. Oppose to the least spread T -δ-set, we start from the last round. Suppose
we have an R-round encrypt procedure starting from a T -δ-set, only S cells
are needed at the final round to build the S-multiset4. The definition of the
affected-cells-set is as follows:

Definition 6 (Affected-Cell-Set A (r′)). Suppose we have an R-round encrypt
procedure starting from a T -δ-set, for one active cell π before the non-linear
permutation of round i + 1, its value is affected by a set of active cells before the
non-linear permutation of round i, i.e. the affected-cell-set A (1)(π). For an S-
multiset Ω, its affected-cell-set A (1)(Ω) is the union of the S affected-cell-sets.
And

A (r′)(Ω) = A (r′−1)(A (1)(Ω)) = · · · = A (1) . . .A (1)(Ω)
︸ ︷︷ ︸

r′

where r’ is the number of rounds. The number of the affected-cell-set is denoted
by |A (r′)(Ω)|.

For an S-multiset Ω, we define Gs as follows:

Gs(Ω) =
{

(
∑ς−1

i=1 |A (i)(Ω)|, ς − 1) if
∑ς−1

i=1 |A (i)(Ω)| ≤ s

(
∑r

i=1 |A (i)(Ω)|, r) if
∑r

i=1 |A (i)(Ω)| ≤ s,
∑r+1

i=1 |A (i)(Ω)| > s

where ς satisfies that for an S-multiset Ω, |A (ς)(Ω)| = n but |A (ς−1)(Ω)| < n.
It means that suppose we have an R-round encrypt procedure, Ω is affected by
all the cells before the non-linear permutation of round R − ς, but not affected
by some cells of round R − (ς − 1).

We denote the total number of active cells that affect Ω from round R − r
to round R − 1 by N ′

r. For a given s, if N ′
ς ≤ s, the output of Gs is N ′

ς and ς − 1;
if Nς > s, the output is N ′

r and r where r satisfies N ′
r ≤ s and N ′

r+1 > s.

Definition 7 (Least Affected-Cell-Set). The least affected-cell-set (short for
the least affected-cell-set for Gs) is the S-multiset that maximizes the second
output of Gs before minimizing the first output.

We can loop through each S-multiset Ω to find all the least affected-cell-
sets.

Our goal is to build a distinguisher of as many rounds as possible under the
condition that the time and memory complexity are both less than the exhaustive
search. Distinguisher of r rounds can be split into three consecutive parts of r1,

4 S-multiset also means the positions of the S cells in a state.

General Model of the Single-Key Meet-in-the-Middle Distinguisher 209

r2, and r3, the number of guessed-cells of each part is n1, n2 and n3. It is easy
to see that n1 + n2 + n3 < nK .

We choose one state of the T -δ-set as the standard state, and denote it as
0. The differences mentioned below means the XORing between the states in
the T -δ-set and the standard state. The main method of this distinguisher is
that we can guess values of active cells in the standard state to go through the
non-linear permutation. If we know the input differences of the linear function
or the key-addition layer, we can get the output differences. The distinguisher
can be built as follows:

1. (The former part) For a given n1, get the least spread T -δ-set Λ and
Fn1(Λ) = (χ, r1). After that we can get the differences of all cells after r1
rounds of encryption by guessing χ cells as follows:

i. At round 0, we can get all the differences of the active cells after the
non-linear permutation because we know all the values of the T active
cells. Since the other cells are inactive, we can get all the differences at
the beginning of round 1;

ii. At round i (i > 0), by guessing the values of the active cells in the
standard state and knowing the differences before the non-linear permu-
tation, we can get the differences after the non-linear permutation. Also
by the linearity, we can get all the differences at the beginning of round
i + 1. As a result, we can get the differences at the beginning of round
r1 + 1 by guessing χ =

∑r1
i=1 χi cells.

2. (The middle part) The middle part is the full-guessed part. Since all the n
cells become active in this part, we should guess all the values of cells in the
standard state before the non-linear permutation, then get all the differences
at the beginning of the next round. The number of rounds and guessed-cells
in this part are r2 = �n2

n � and n2 = �n2
n � × n, respectively.

3. (The latter part) For a given n3, get the least affected-cell-set Ω and
Gn3(Ω) = (ω, r3). After that we can get the S-multiset from the output
differences of the middle part (through r3 rounds of encryption) by guessing
ω state cells as follows:

i. If we want to get the S-multiset Ω, we need to guess its affected-cell-set
A (1)(Ω) of the standard state;

ii. If we want to get A (i−1)(Ω), we need to guess its affected-cell-set
A (i)(Ω) of the standard state. As a result, the total number of cells
need be to guessed in the latter part is ω =

∑r3
i=1 |A (i)(Ω)|.

Since our goal is to build a distinguisher with more rounds and less guessed-
cells, the statement above is equivalent to a positive integer optimization problem
as follows:

Problem 1.

Max r = r1 + r2 + r3 Then Min M = χ + �n2

n
� × n + ω (1)

s.t.

⎧
⎨

⎩

n1 + n2 + n3 < nK

Fn1(Λ) = (χ, r1), where Λ is the least spead T − δ − set
Gn3(Ω) = (ω, r3), where Ω is the least affected − cell − set

(2)

210 L. Lin et al.

If we solve Problem 1, we can build a single-key meet-in-the-middle distinguisher
of at least r rounds with a memory complexity of 2M .5 So we will give a proper
algorithm to solve Problem1.

3.2 Algorithm To Solve Problem 1

In this section, we will give the algorithm to solve Problem1. Although we can
loop through each possible value of n1, n2 and n3, there is a better solution
with the pruning method. In the algorithm below, the former part and the
middle part will be combined into one part—the former part. This part will
take the responsibility of propagating the T -δ-set. The latter part will take the
responsibility of pruning the guessed-cells.

1. (The former part) Let χi be the number of active cells before the non-linear
permutation of round i as before. We can define the function of one-round
encryption — OneRound(x)=(χ, y), where x is a state in TDF, χ is the
number of active cells of x, y is the output of x after one-round encryption.

Next, we will define the function of r1-round encryption—Propagate(Λ, r1),
where Λ is a T -δ-set. The output of this algorithm is the number of guessed-
cells and a set of r1 internal states in TDF. This function is shown in Algo-
rithm 1 of AppendixC.

2. (The latter part) The latter part is for pruning the guessed-cells. For an S-
multiset Ω, the meaning of A (j)(Ω) is the same as Definition 6. The pruning
function — Pruning(StateSet, χ,Ω, FormerR) is given in Algorithm 2 of
AppendixC, where (χ, StateSet) is the output of the former part, FormerR
is the number of rounds in the former part and Ω is an S-multiset in TDF.

In Algorithm 3 of AppendixC, we will give a proper solution to Problem1
combining the former part and the latter part.

Since the total number of T -δ-set is at most
(

n
T

)
and the total number of

S-multiset is at most
(

n
S

)
, the maximum time complexity of Algorithm 3 is

Rtotal × (
n
T

) × (
n
S

)
. And we can build an r-round distinguisher on this cipher

with memory complexity of 2χ×b (r and χ are the output of MinRoundGuess()
and MinNumber(R), respectively). We can use this distinguisher in the online
phase to recover the right-key.

3.3 Applied to the Feistel Structure

The algorithm above can be also applied to the Fiestel-SP block cipher and
Generalized Feistel block cipher which use the SPN structure as round functions.

The main methods and algorithms of the distinguisher are quite the same
as the SPN block cipher. We give an example of the distinguisher on LBlock in
Sect. 5.

5 By [9], we can build a distinguisher with less guessed-cells.

General Model of the Single-Key Meet-in-the-Middle Distinguisher 211

3.4 The Distinguisher Using Efficient Tabulation

At [8], Derbez et al. proposed the efficient tabulation to reduce the memory
complexity and made this kind of attack against 7-round AES-128 possible. The
new component of the distinguisher using this technique is a special truncated
differential trail. With a pair of messages satisfying this trail, we can reduce the
memory complexity of the distinguisher. We call this pair the T -S right pair.

However, this technique doesn’t work for all the SPN block ciphers because
it uses the differential-property of S. AES has a special 4-round truncated
differential trail 1 → 4 → 16 ← 4 ← 1, so the two states on the both sides of
the nonlinear-permutation in the third round are all active with the probability
equals to 1. However, since the branch number of the mixcolumn operation [5]
isn’t the maximum (such as Crypton and mCrypton), there are more than 1
active cells before the mixcolumn operation (such as the 5-round AES distin-
guisher [8]) and so on, the states on the both sides of the non-linear permutation
may have inactive cells. If it happens, the inactive cells can take all the 2b values
rather than 1. This will increase the memory complexity.

The algorithm of the distinguisher using efficient tabulation is shown in
AppendixA.4. An example of distinguisher using the efficient tabulation and
the computation process of memory complexity considering the limitation are
shown in Sect. 4.3 and AppendixA, respectively. We also show some viewpoints
on the 4-round AES distinguisher starting from a 2-δ-set and the 5-round dis-
tinguisher [8] in AppendixA.3.

4 Distinguishers and Attacks on Crypton and mCrtpton

In this section, we describe our basic distinguishers and the distinguishers using
the efficient tabulation on Crypton6 [12,13] and mCrypton [14]. In Sects. 4.1 and
4.2, we introduce the basic distinguishers on Crypton and mCrypton. Section 4.3
gives the distinguishers on Crypton and mCrypton using the efficient tabulation.
Then we introduce the attacks on 7-round Crypton-128 and mCrypton-96 in
AppendixB.

In this section, we use the notation as follows: x[i] denote the i-th byte/nibble
of an internal state, and x[i, . . . , j] for bytes/nibbles between i-th and j-th. In
the i-th round, we denote the internal state after the key-addition layer by
xi, after the nonlinear-permutation by yi, after the bit permutation by
zi, after the column-to-row by wi.

4.1 Basic Distinguisher on Crypton

The following proposition gives a 4-round distinguisher on Crypton.

6 Both V0.5 and V1.0 since we don’t use the property of the key-schedule.

212 L. Lin et al.

Proposition 2. Consider the encryption of a (1−)δ-set (of byte) {x0
i , x

1
i , . . . ,

x255
i } through four full Crypton rounds. For each (1-)multiset

[
x0
4 [0] ⊕ x0

4 [0], x1
4 [0] ⊕ x0

4 [0], . . . , x0
4 [0] ⊕ x255

4 [0]
]

is fully determined by the following 24 bytes:

x0
i+1 [0, 4, 8, 12] , x0

i+2 [0, . . . , 15] , x0
i+3 [0, . . . , 3.]

The proof procedure is shown in Fig. 2 and the same as the procedure of
Sect. 3.1. The first and second rounds are the former part, the third round is the
middle part and the last round is the latter part.

Since the multisets of xi+4 [0] are totally determined by 24 bytes, it can
take as many as 224×8 = 2192 values (out of the 2507.6 “theoretically possible”
values). As a result, we treat the cipher with wrong key guess as a random
function, the probability that a random value is one member of the “right set”
is 2192−507.6 = 2−315.6. It is almost impossible.

Fig. 2. The 4-rounds distinguisher of Crypton and mCrypton

4.2 Basic Distinguisher on mCrypton

Since mCrypton is a lightweight block cipher, the distinguisher on mCrypton is
a little different from Crypton. mCrypton uses the 2-δ-set to build the distin-
guisher and gets a 2-muliset. The following proposition gives a 4-round distin-
guisher on mCrypton.

General Model of the Single-Key Meet-in-the-Middle Distinguisher 213

Proposition 3. Consider the encryption of a 2-δ-set {x0
i [0, 1], x1

i [0, 1], . . . , x255
i

[0, 1]} through four full mCrypton rounds. For each 2-multiset
[
x0
4 [0, 4] ⊕ x0

4 [0, 4], x1
4 [0, 4] ⊕ x0

4 [0, 4], . . . , x0
4 [0, 4] ⊕ x255

4 [0, 4]
]

is fully determined by the following 24 nibbles:

x0
i+1 [0, 4, 8, 12] , x0

i+2 [0, . . . , 15] , x0
i+3 [0, . . . , 3] .

The proof procedure is shown in Fig. 2.

4.3 Distinguishers on Crypton and mCrypton Using Efficient
Tabulation

If there exists a (1-1) right pair among the δ-set of Crypton and a (2-2) right
pair among the 2-δ-set of mCrypton, we can reduce the requirement for memory.

Proposition 4 ((1-1) right pair property of Crypton). If a state x0
i belongs

to a right pair of states conforming to the truncated differential trail, then the
multisets of Δxi+4[0] obtains from the δ-set constructed from x0

i as the standard
state can take only 289 values. More precisely, the 24 bytes parameters can take
only 289 values and determined by 10 bytes. The 10 bytes are:

Δyi[0], x0
i+1[0, 4, 8, 12],Δzi+3[0], y0

i+3[0, . . . , 3].

The proof is shown in Fig. 3 and the same as the method in AppendixA.4.

Proposition 5 ((2-2) right pair property of mCrypton). If a state x0
i

belongs to a (2-2) right pair of states conforming to the truncated differential
trail, then the 2-multisets of Δxi+4[0, 1] obtains from the 2-δ-set constructed
from x0

i as the standard state can take only 249.44 values. More precisely, the 24
nibble parameters take only 249.44 values and determined by 12 nibbles. The 12
nibbles are:

Δyi[0, 1], x0
i+1[0, 4, 8, 12],Δzi+3[0, 1], y0

i+3[0, . . . , 3].

The proof procedure is the same as that of Crypton and shown in Fig. 3. The
number of possible multisets is 249.44. The way to calculate the exact number
of 2-multisets is shown in AppendixA.2.

4.4 Basic Attack on Crypton and mCrypton Using Efficient
Tabulation

Using the distinguisher of Sect. 4.3, the attacks on 7-round Crypton-128 and
mCrypton-96 can be built. For Crypton, it takes a time complexity of 2113, a
data complexity of 2113 chosen plaintexts and a memory complexity of 291. For
mCrypton, it takes a time complexity of 277, a data complexity of 249 chosen-
plaintexts and a memory complexity of 252.44.

The attacks are made up of 2 phase: the precomputation phase and the
online phase. The online phase is also made up of three parts: finding the
right pair, creating and checking the δ-set and finding the secret key.
The detail of these attacks is shown in AppendixB.

214 L. Lin et al.

5 Basic Distinguisher on LBlock

We give a 9-round distinguisher on LBlock [16] of 14 guessed-nibbles in Fig. 4. We
choose the active nibbles at positions 8 and 9 of R0 as the 2-δ-set, and the active
nibbles at positions 8 and 9 of R9 to build the 2-multiset. The guessed-nibbles
(a, b) of round i are marked by Li(a, b).

6 Conclusion and Further Works

In this paper, we proposed the basic single-key meet-in-the-middle distinguisher
model on the word-oriented block cipher and showed that building a better
distinguisher is equivalent to a positive integer optimization problem. Then we
gave a proper algorithm to solve this problem. Furthermore, we analyzed the
limitation of the distinguisher using the efficient tabulation and the method to
search the special differential trail needed in this distinguisher. What’s more,
we applied the distinguisher model to Crypton, mCrypton and LBlock. We gave
4-round basic distinguishers on Crypton and mCrypton. After that we gave the
distinguishers with the efficient tabulation and used these distinguishers to build
the attacks on 7-round Crypton-128 and mCrypton-96. For Crypton, the attack
cost a time complexity of 2113, a data complexity of 2113 chosen plaintext and
a memory complexity of 291. For mCrypton, it cost a time complexity of 277,
a data complexity of 249 chosen-plaintexts and a memory complexity of 252.44.
For LBlock, we gave a 9-round distinguisher of 14 guessed-cells.

The research community has still a lot to learn on the way to build better
distinguishers and there are many future works possible: the model to build
better distinguishers of this kind with more rounds and less guessed-cells, how
to apply the efficient tabulation to the Feistel-SP cipher and give a formal proof
of security against this kind of distinguishers.

Acknowledgements. We would like to thank the anonymous reviewers for providing
valuable comments. The research presented in this paper is supported by the National
Basic Research Program of China (No. 2013CB338002) and National Natural Science
Foundation of China (No. 61272476, No.61232009 and No. 61202420).

A The Number of δ-Sets

A.1 The Number of δ-Sets for Crypton

For Crypton, since the branch number of the bit permutation is 4, in Fig. 3, the
first column of zi may not be all active. If there is one inactive byte, the result
is that one column of zi+1 is inactive. Even if the j-th byte of the first column
is active, the j-th column of zi+1 may have one inactive byte, and vice versa.
However, the i-th byte of xi+2 and yi+2 must be both active or inactive.

If one byte at the same position of xi+2 and yi+2 is inactive, then that position
can take all the 256 values out of the average 256

255 values [8].

General Model of the Single-Key Meet-in-the-Middle Distinguisher 215

Fig. 3. The 4-rounds distinguisher of Crypton and mCrypton using efficient tabulation

We can count the exact number of multisets even though the maximum
number of inactive bytes of xi+2 is 7. We find that if the input difference is {1,
2, 3, 4, 8, 12, 16, 32, 48, 64, 128, 192} then the output difference has one inactive
byte.

Next we will calculate the probabilities that there are i inactive bytes in xi+2,
i = 0, 1, . . . , 7.

0. In Fig. 3, if the active bytes of yi, yi+1, zi+2 and zi+3 don’t take the 12 differ-
ences above, then the 16 bytes of xi+2 and yi+2 are all active, the probability
of this happen is:

(
255 − 12

255
)5×2 ≈ 0.6157

1. If the active bytes of yi and zi+3 don’t take the 12 differences, but one of
the active bytes of yi+1 and zi+2 take the 12 differences, then 15 bytes of
xi+2 and yi+2 are active(the inactive byte must be at the same position), the
probability is:

16 × (
3

255
)2 × (

243
255

)8 ≈ 0.0015

2. If the active bytes of yi and zi+3 don’t take the 12 differences above, but
two of the active bytes of yi+1 and zi+2 take the 12 differences above, then
14 bytes of xi+2 and yi+2 are active, the probability is:

(
4
2

)
× 4 × 3 × (

3
255

)4 × (
243
255

)6 ≈ 1.0329 × 10−6

216 L. Lin et al.

Using the same method above, we can get: p3 = 2.0990×10−10, p4 = 1.4868×
10−9, p7 = 5.8718×10−15. Since the branch number of Crypton is 4, p5 = 0, p6 =
0.

Then the total number of δ-sets is:

280 ×
∑7

i=0
pi × s16−i × ti ≈ 289

Here s = 256
255 , t = 256 and the probability of i inactive bytes is pi.

Fig. 4. The 9-rounds distinguisher of LBlock

A.2 The Number of 2-δ-Sets for mCryptonp

For mCrypton, since the branch number is also 4, in Fig. 3, the first column of zi

may not be all active, and the inactive nibbles can be as many as 2. As a result,
there are two columns of zi+1 being all inactive. Even if the j-th nibble of the

General Model of the Single-Key Meet-in-the-Middle Distinguisher 217

first column of zi is active, the j-th column of zi+1 may not be all active and
vice versa.

If one nibble at the same position of xi+2 and yi+2 is inactive, that position
can take all the 16 values out of the average 16

15 values.
We can exactly count the number of 2-multisets even though the maximum

number of inactive nibbles of xi+2 is 10. If the input differences of zi have two
active nibbles, and take the values {(1,1), (2,2), (4,4), (8,8)}, then the output
differences have two inactive nibbles. Else if the differences of the two active
nibbles taking 52 particular values will result in 1 inactive nibble. If there is
only one active nibble in a column and the difference is 1,2,4,8, after the bit
permutation, the output difference of that column has 1 inactive nibble. Since
the branch number of mCrypton is 4, the maximal number of inactive nibbles
is 7.

The way to calculate the probability that there are i inactive nibble in xi+2

is the same as Crypton, we just show the probabilities of i inactive nibbles in
Table 1.

Table 1. The probability of the number of inactive nibbles in xi+2

i 0 1 2 3 4 7

pi 0.0509 0.0067 2.5049 × 10−4 2.7603 × 10−6 2.4851 × 10−6 3.6507 × 10−9

Then the total number of 2-multisets is:

248 ×
∑10

i=0
pi × s16−i × ti ≈ 249.44

Here s = 16
15 , t = 16 and the probability of i inactive bytes is pi.

A.3 The Number of Multisets of the AES � Distinguisher and
5-Round Distinguisher in [8]

In [8], Derbez, Fouque and Jean proposed the attacks on reduced-round AES
using the efficient tabulation. In Sect. 3.3 of their paper, they used a special
differential trail � to reduce the time complexity of the online phase, i.e.

2 Ri−→ 4
Ri+1−→ 16

Ri+2−→ 4
Ri+3−→ 1 (�)

Since � has 2 active bytes comparing to the original distinguisher, they simply
calculated the memory requirement 28 times more than the original one.

However the branch number of AES mixcolumn operation is 5, it may have
one inactive byte after the mixcolumn operation of round i, and it lead to
one inactive column at xi+2. From the other direction, one active byte in xi+4

can result in yi+2 being all active, this is a mismatch. The number of pairs of

218 L. Lin et al.

(Δxi[0],Δxi[2]) which will lead to a mismatch is 1020, so we have the memory
they use to store the multisets is:

282 × 28 × 216 − 1020
216

≈ 0.98 × 280

128-bit blocks.
At Sect. 4.2 of their attack, they present an attack on 9-round AES 256, they

add one round in the middle of the distinguisher, and they simply calculate the
memory requirement 2128 times more than the original one.

They add the extra round after xi+2 by guessing all the values of the standard
state, and use the differential property of S between xi+3 and yi+3. Since xi+2

is active at all bytes, after the mixcolumn operation of round i + 2, it may have
inactive bytes at xi+3. Since one active byte at xi+5 will lead to all active at
yi+3 this will lead to a mismatch. One column which includes of 4 active bytes
will result in 1, 2 or 3 inactive bytes, the number of active column for each case
is 6.52953 × 107, 384030, 1020. So the memory to store the multisets is:

282 × 2128 × 232 − 6.52953 × 107 − 384030 − 1020
232

≈ 0.98 × 2208

128-bit blocks.

A.4 The Basic Model of Distinguisher using Efficient Tabulation

With the limitation, the search algorithm for the special truncated differential
trail with the least guessed-cells is a meet-in-the-middle procedure. For the SPN
cipher, we denote the pair with T active cells at the beginning of the truncated
differential trail by ET and the state with S active cells at the end by DS .
Also from the encrypt direction, the number of active cells before the non-linear
permutation of round i is denoted by χE

i . From the decrypt direction, the number
of active cells after the non-linear permutation of the i-th round from the bottom
is denoted by χD

i . One state of the pair is dennonted by the standard state. The
algorithm is as follows:

1. From the encrypt direction, starting from an ET , we can get all the differences
at the end of round 0 by guessing the differences of the active cells after the
non-linear permutation. By guessing the active cells of the standard state
before the non-linear permutation, we can get all the differences at the end of
the i-th round. So after guessing

∑rE

i=0 χE
i cells, we can get all the differences

before the non-linear permutation of round rE + 1;
2. From the decrypt direction, starting from a DS , we can get all the differences

at the beginning of the last round by guessing the differences of the active cells
before the non-linear permutation. By guessing the active cells of the standard
state after the non-linear permutation, we can get all the differences at the
beginning of the i-th round from the bottom. So after guessing

∑rD

i=0 χD
i cells

we can get all the differences after the non-linear permutation of round rE +1;

General Model of the Single-Key Meet-in-the-Middle Distinguisher 219

3. The two pairs on the both sides of the non-linear permutation must be perfect
match7. Then by the differential property of S [8], we can get one value in
average for the active cells and 2b values for the inactive cells.

4. Taken the limitation into account, we can use the guessed-cells and the
retrieved values to get the S-multisets from the T -δ-set and calculate the
memory complexity. If the memory complexity is greater than exhaustive
search, we give up this (ET ,DS) pair.

The goal of the algorithm is to maximize rE + rD under the condition that
the memory complexity (considering the guessed-cells and the limitation of this
kind of distinguisher) is less than the exhaustive search. After that, we make the
memory complexity to be the least. We can try all the possible combination of
(rE , rD) and (ET ,DS) to find the best distinguisher.

B Basic Attacks on Crypton and mCrypton Using
Efficient Tabulation

In this section, we will show the basic attacks on Crypton and mCrypton using
the distinguishers in Sect. 4.3. The attacks are made up of 2 phases: the precom-
putation phase and the online phase. The online phase is also made up of three
parts: finding the right pair, creating and checking δ-set and finding secret key.

B.1 Attacks on Crypton

1. Precomputation phase. In the precomputation phase of the attack, we
build a lookup table containing 289 multisets for Δx5[0] following the method
of Sect. 4.3 and AppendixA.1.

The lookup table of the 289 possible multisets uses about 291 128-bit blocks
to store [8]. To construct the table, we have to perform 289 partial encryptions
on 256 messages, which we estimate to 293 encryptions.

2. Online Phase. The attack procedure is shown in Fig. 5. The online phase
is made up of three parts: finding the right pair, creating and checking the
δ-set and finding the secret key.
(a) Finding the Right Pair:

i. We prepare a structure of 232 plaintexts where the first column takes
all 232 values, and the remaining 12 bytes are fixed to some constants.
Hence, each of the 232 × (232 − 1)/2 ≈ 263 pairs we can generate
satisfies the plaintext difference. Choose 281 structures and get the
corresponding ciphertext. Among the 263+81 = 2144 corresponding
ciphertext pairs, we expect 2144×2−96 = 248 to verify the truncated-
difference trail where only the third column has non-zero difference
as shown in Fig. 5. Since only the third column of the ciphertext has

7 The cells in the same position must be both active or inactive. If not, we give up
this (ET ,DS) pair.

220 L. Lin et al.

0x

NS

0y

BP C2R

0z 0w

ARK

1x 4w

4 Round Distinguisher

NS BP C2R

5x 5y 5z 5w

ARK

ARK

6x

NS

6y

BP C2R

6z 6w

P

ARK

ARK

7x C

C2RBPC2R

7y 7z

Pro.

Pro.

0x

NS

0y

BP C2R

0z 0w

ARK

1x 4w

4 Round Distinguisher

NS BP C2R

5x 5y 5z 5w

ARK

ARK

6x

NS

6y

BP C2R

6z 6w

P

ARK

ARK

7x C

C2RBP

7y 7z

Pro.

Pro.

C2R

Inactive cells

Active cells from the encrypt direction

Active cells from the decrypt direction

The cells need to be guessed

Fig. 5. The 7-rounds basic attack of Crypton and mCrypton

non-zero difference, by Observation 2 of [15], we have that only the
first row of y6 has non-zero difference. Store the leaving 248 pairs in
a hash table. This step requires 281+32 = 2113 chosen plaintexts and
their corresponding ciphertexts.

ii. Guess the values of k−1[0, . . . , 3], using the guessed values to encrypt
the first column of the remaining pairs to y0. After the bit permu-
tation operation, we choose the pairs that have non-zero difference
only in byte position 0, there are 248−24 = 248−24 pairs left.

iii. Guess the values of y6[0, 4, 8, 12]. Since we can yield the first column
of Δy6 from the third column of Δz7, we can use the guessed val-
ues to encrypt the first row of the remaining pairs to z5. After the
bit permutation operation, we choose the pairs that have non-zero
difference only in byte position 0, there are 224−24 = 1 pairs left.

(b) Creating and Checking the Multiset:
i. For each guess of the eight bytes made in Phase (a) and for the

corresponding pair, take one of the members of the pair, denote it
by P 0, and find its δ-set using the knowledge of k−1[0, . . . , 3]. (This
is done by using the knowledge of k−1[0, . . . , 3], we can encrypt P 0

to w0, then XOR it with the 28−1 possible values which are different

General Model of the Single-Key Meet-in-the-Middle Distinguisher 221

only in byte 0. Decrypt the 28 − 1 obtained value through round 0
using the known subkey bytes. The resulting plaintexts are the other
members of the δ-set.)

ii. Using P 0 as the standard plaintext, the other 255 plaintexts are
denoted as P 1 to P 255, and the corresponding ciphertexts as C0

to C255. By Observation 2 of [15], knowing the knowledge of the
third column in [C0 ⊕ C0, C1 ⊕ C0, . . . , C255 ⊕ C0], we can yield the
knowledge of the third row of [y0

6 ⊕ y0
6 , y

1
6 ⊕ y1

6 , . . . , y
255
6 ⊕ y0

6]. By the
knowledge of y0

6 [0, 4, 8, 12], we can yield the values of y0
6 [0, 4, 8, 12]

to y255
6 [0, 4, 8, 12]. By the linearity of key addition, column-to-row

and bit permutation, we can yield the knowledge of byte 0 in [y0
5 ⊕

y0
5 , y

1
5 ⊕ y0

5 , . . . , y
255
5 ⊕ y0

5]. Guess byte 0 of y0
5 [0], we can obtain the

multiset [x0
5[0] ⊕ x0

5[0], x0
5[1] ⊕ x0

5[0], . . . , x255
5 [0] ⊕ x0

5[0]].
iii. Checking whether the multiset exists in the hash table made in the

Precomputation Phase. If not, discard the guessing.
(c) Exhaustive Search the Rest of the Key: For each remaining key

guess, find the remaining key bytes by exhaustive search.

It is clear that time complexity of the online phase of the attack is dominated
by encrypting 2113 plaintexts, and hence, the data and time complexity of this
part is 2113. The memory complexity is about 291 128-bit blocks, since each
multiset contains about 512 bits. The time complexity of the preprocessing phase
of the attack is approximately 293 encryptions.

B.2 Attacks of mCrypton

The attack procedure of mCrypton is quite the same as Crypton and shown in
Fig. 5.

The time complexity of the online phase is 28 × 232 × 240 = 280 one-round
mCrypton encryptions, it equals 277 7-round mCrypton encryption. The data
complexity of the online phase is 249. The memory complexity of the precompu-
tation phase is 252.44 64-bit blocks, since each multiset contains about 512 bits.

C Algorithms

Algorithm 1. Function of r1-Round Encryption
1: function PROPAGATE(Λ, r1)
2: StateSet of size r1, χ ← 0
3: (χ′, Λ) ←ONEROUND(Λ) � The first round without guessing any cells
4: for i = 1 to r1 − 1 do
5: StateSet[i − 1] ← Λ � Recording the guessed-cells
6: (χ′, Λ) ←ONEROUND(Λ)
7: χ ← χ + χ′ � The total number of guessed-cells
8: return (StateSet, χ)

222 L. Lin et al.

Algorithm 2. Function of Pruning
1: function LOCALPRUNING(StateSet[i], Ω, χ) � StateSet[i] is one element of

StateSet
2: for k = 0 to n − 1 do
3: if (StateSet[i][k] is active) and (Ω[k] is inactive) then
4: χ ← χ − 1 � StateSet[i][k] doesn’t affect Ω
5: if (StateSet[i][k] is inactive) and Ω[k] is active then
6: Ω[k] ← inactive � Local pruning for Ω
7: return (Ω, χ)

1: function ENDINGCONDITION(StateSet[i], Ω)
2: for k = 0 to n − 1 do
3: if (StateSet[i][k] �= Ω[k] then � One is active, the other is inactive
4: return false
5: return true � Return true when totally match

1: function PRUNING(StateSet, Ω, χ, r1) � r1 is number of round of the former part
2: for i = r1 − 2 to 0 do � Start from the last rounds of the former part
3: Ω ← A (1)(Ω) � Go back one round
4: (Ω, χ) ←LOCALPRUNING(StateSet[i], Ω, χ) � Local pruning
5: if ENDINGCONDITION(StateSet[i], Ω)=true then
6: return χ
7: return χ

Algorithm 3. A Proper Solution to Problem 1
1: function MINROUNDNUMBER() � The output is Max{r1 + r2 + r3} of Problem 1
2: RoundNum ← 0
3: RoundNum ← RoundNum + 1 � Attack more round
4: for all T -δ-set Λ do
5: (StateSet, χ) ←PROPAGATE(χ, RoundNum)
6: for all S-Multiset Ω do
7: χ ←PRUNING(StateSet, Ω, χ, RoundNum)
8: if χ < nK then
9: return to line 3 � χ < nK means more round is possible

10: return RoundNum − 1 � Can’t build a distinguisher of RoundNum rounds

1: function MINGUESS(R) � R is the output of MaxRoundNumber()
2: MinGuess ← ∞
3: for all T -δ-set Λ do
4: (StateSet, χ) ←PROPAGATE(χ, R)
5: for all S-Multiset Ω do
6: χ ←PRUNING(StateSet, Ω, χ, R)
7: if χ < MinGuess then � (Λ, Ω) is a better choice
8: MinGuess ← χ
9: BestT -δ-set ← Λ

10: BestS-multiset ← Ω
11: return MinGuess, BestT -δ-set, BestS-multiset

General Model of the Single-Key Meet-in-the-Middle Distinguisher 223

References

1. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks on round-
reduced aes and applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 169–187. Springer, Heidelberg (2011)

2. Cheon, J.H., Kim, M.J., Kim, K., Lee, J.-Y., Kang, S.W.: Improved impossible
differential cryptanalysis of rijndael and crypton. In: Kim, K. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

3. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

4. Daemen, J., Rijmen, V.: Aes proposal: Rijndael. In: First Advanced Encryption
Standard (AES) Conference (1998)

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Berlin (2002)

6. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

7. Derbez, P., Fouque, P.-A.: Exhausting Demirci-Selçuk Meet-in-the-Middle Attacks
Against Reduced-Round AES. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 2013, pp.
541–560. Springer, Heidelberg (2013)

8. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

9. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

10. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

11. Gilbert, H., Minier, M.: A Collisions Sttack on the 7-Rounds Rijndael (2000)
12. Lim, C.H.: Crypton: A New 128-bit Block Cipher. NIsT AEs Proposal (1998)
13. Lim, C.H.: A revised version of CRYPTON - CRYPTON V1.0. In: Knudsen, L.R.

(ed.) FSE 1999. LNCS, vol. 1636, p. 31. Springer, Heidelberg (1999)
14. Lim, C.H., Korkishko, T.: mCrypton – a lightweight block cipher for security of

low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

15. Mala, H., Shakiba, M., Dakhilalian, M.: New impossible differential attacks on
reduced-round crypton. Comput. Stand. Interface 32(4), 222–227 (2010)

16. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

Embedded System Security
and Its Implementation

Integral Based Fault Attack on LBlock

Hua Chen(B) and Limin Fan

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{chenhua,fanlimin}@tca.iscas.ac.cn

Abstract. LBlock is a 32-round lightweight block cipher presented at
ACNS2011. In this paper, the fault attack on LBlock is explored. The
first fault attack on LBlock was presented at COSADE2012, which can
reveal the master key when faults are respectively induced at the end of
the round from 24th to 31st round. When faults were injected at the end
of the round from 25th to 31st round, the random bit fault model was
adopted. While when the fault was induced into the right part of the end
of 24th round encryption, the attack only worked under the semi-random
model, which means the adversary must know the induce position. In this
paper, we firstly applied fault attack on LBlock successfully with faults
induced into the right part at the end of 24th round encryption under
random nibble fault model. In our attack, eight 8-round integral distin-
guishers of LBlock are fully utilized to help determine the exact induce
positions of faulty ciphertexts. Moreover, we also firstly apply fault attack
with faults induced into the right part at the end of 23th round encryp-
tion under semi-random nibble model. Finally, the computer simulation
results verify the efficiency of our attack.

Keywords: Fault attack · Integral distinguisher · Induce position

1 Introduction

In EUROCRYPT’97, the idea of fault attack was first proposed by Boneh,
DeMillo and Lipton [1]. Under the idea, the attack was first successfully exploited
to break an RSA CRT with both a correct and a faulty signature of the same
message. Shortly after, Biham and Shamir combined the ideas of fault attack
and differential attack and successfully proposed an attack on secret key cryp-
tosystems which was called Differential Fault Analysis (DFA)[2]. Since the pre-
sentation of fault attack, a large number of fault analysis results have been
published on various cryptosystems, mainly including ECC [3], 3DES [4], AES
[5–9], CLEFIA [10,11], RC4 [12], Trivium [13] and so on [14–16].

LBlock is a lightweight block cipher designed by Wu et al. [17]. LBlock is
a 32-round iterated block cipher with 64-bit block size and 80-bit key size.
Some analysis results were originally given by the designers including differen-
tial attack, linear attack, integral attack, related-key attack and so on [17]. After

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 227–240, 2014.
DOI: 10.1007/978-3-319-12160-4 14

228 H. Chen and L. Fan

that, some other analysis work were presented, including related key impossible
differential attack, biclique attack and so on [18–21].

The first fault attack on Lblock was provided at COSADE2012 [22]. By means
of the differential analysis technique, fault attacks were respectively applied when
faults were injected at the end of the round from 24th to 31st round. When faults
were injected at the end of the round from 25th to 31st round, the random bit
fault model was adopted and the last three 32-bit subkeys can be revealed. Then,
through analyzing key scheduling, the master key can be recovered. However,
when faults were injected at the end of the 24th round, random bit fault model
failed to work. Instead, semi-random bit fault model had to be adopted, under
which the attacker must know the position of the corrupted 4 bits. Whether or
not random fault model can be adopted was left as an interesting open problem
by the author for future work. Moreover, how to apply fault attack with faults
injected at the end of the 23th round was also left as an open problem.

Our Contributions. In this paper, we successfully solve the problems left in
[22], and firstly apply fault attack when faults were injected at the end of the
24th round under random fault model. In our attack, differential fault analysis is
combined with integral analysis. Eight 8-round integral characteristics are fully
utilized to determine the exact induce position under random fault model, based
on which an effective algorithm is presented. So we call our attack “integral
based fault attack”. Moreover, we also firstly apply fault attack successfully
when faults were injected at the end of the 23th round under semi-random fault
model. Finally, the computer simulation results verify the efficiency of our attack
algorithm.

The organization of this paper is as follows. In Sect. 2, some preliminary
knowledge is presented. Section 3 provides the detailed FA on 24th round of
LBlock and the description of algorithm DistinFClist. In Sect. 4, the detailed
FA on 23th round of LBlock is presented. Then the data complexity analysis and
the computer simulation results are provided in Sect. 5. Finally, the conclusions
and future works are presented in Sect. 6.

2 Preliminaries

In this section, some notations are firstly listed, which will be used in this paper.
Then a brief description of LBlock is provided. Finally, some properties of LBlock
are explored, which are helpful in the following attack.

2.1 Notations

– M,C : 64-bit plaintext and ciphertext
– C(.) : a faulty ciphertext by inducing a fault into the encryption process
– Xi : Intermediate 32-bit output value of encryption procedure
– X

(.)
i : Intermediate 32-bit output value corresponding to C(.) :

– Xi,j : the j-th nibble of Xi from the left, i ∈ {0, 1, ..., 33}, j ∈ {0, 1, ..., 7},
e.g. Xi,0 corresponds to 31-28 bits of Xi

Integral Based Fault Attack on LBlock 229

– X
(.)
i,j : the j-th nibble of X

(.)
i from the left, i ∈ {0, 1, ..., 33}, j ∈ {0, 1, ..., 7}

– K,Ki,Ki,j : 80-bit master key, 32-bit round key and the j-th nibble of round
key from the left

– F (.) : Round function in LBlock
– Sj(.) : 4 × 4 S-box, j ∈ {0, 1, ..., 7}
– ⊕, <<<: Bitwise exclusive-OR operation and Left cyclic shift operation
– ||, [v]2 : Concatenation operation and Binary form of an integer v
– Nsj (Δα,Δβ) : the number of x which satisfies Sj(x) ⊕ Sj(x ⊕ Δα) = Δβ

2.2 Brief Description of LBlock

LBlock has 32-round variant Feistel structure with 64-bit block size and 80-bit
key size. Denote M as a 64-bit plaintext, and the encryption procedure can be
expressed as follows (Figs. 1 and 2).

Step 1. M = X1||X0

Step 2. For i = 2 to 33 do
Xi = F (Xi−1,Ki−1) ⊕ (Xi−2 <<< 8)

Step 3. C = X32||X33

F (X,K) can be described as follows.
F : {0, 1}32 × {0, 1}32 → {0, 1}32

Step 1. Y = X ⊕ K
Step 2. Let Y = Y7||Y6||Y5||Y4||Y3||Y2||Y1||Y0

Step 3. Let Z = Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0

Z7 = S7(Y7), Z6 = S6(Y6), Z5 = S5(Y5), Z4 = S4(Y4),
Z3 = S3(Y3), Z2 = S2(Y2), Z1 = S1(Y1), Z0 = S0(Y0),

Fig. 1. Encryption process of LBlock

230 H. Chen and L. Fan

Fig. 2. Round function F

Step 4. Let U = U7||U6||U5||U4||U3||U2||U1||U0

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5,
U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1,

We use the same figures provided in [17] to depict the encryption procedure
of LBlock and round function F. Due to the lack of space, the descriptions of
decryption and key schedule of LBlock are both omitted, which does not affect
the following reading.

2.3 Properties of LBlock

In [17], the designer of LBlock gives a class of 15-round integral distinguisher
whose input has fifteen active nibbles. However, we only consider the inputs
with one active nibble related to the fault model of our attack. Next, a class of
8-round integral characteristics is presented.

Lemma 1. If 16 plaintexts satisfy (CCCC,CCCC,ACCC,CCCC), the out-
puts of 8-round encryption must satisfy (B?AA,BBAA,B?B?, B?B?). Denote
C as a constant nibble, A as an active nibble, B as a balanced nibble, and ? as an
unknown nibble respectively. For convenience, we also denote C as a ciphertext
in the later section.

Proof. When the left part of plaintexts enters into the F-function, the status of
(CCCC,CCCC) remains invariant, and the status of (ACCC,CCCC) changes
into (CCCC,CCAC) after the operation <<< 8. So the status of one round’s
output is (CCCC,CCAC, CCCC,CCCC). Table 1 illustrates the detailed process
of the 8-round distinguisher. Note that by changing the position of A in plaintext,
we can obtain similar integral distinguishers easily. Table 2 illustrates 8 kinds of
8-round integral distinguishers, which will be used in the following attack process.

Proposition 1. If a nibble fault is induced into the leftmost nibble position
of the right part at the end of the 24th round, and C(i) = X

(i)
32 ||X(i)

33 is the
corresponding ciphertext, Ns3(Δα,Δβ) > 0. (Δα = X32,4 ⊕ X

(i)
32,4 and Δβ =

X33,6 ⊕ X
(i)
33,6).

Integral Based Fault Attack on LBlock 231

Table 1. Detailed descrption of a 8-round integral distinguisher

Rounds Integral Distinguisher

0 (CCCC, CCCC, ACCC, CCCC)

1 (CCCC, CCAC, CCCC, CCCC)

2 (CCCC, CCCA, CCCC, CCAC)

3 (CCCC, AACC, CCCC, CCCA)

4 (CCCC, AAAC, CCCC, AACC)

5 (CCAA, ACAA, CCCC, AAAC)

6 (CAAB, AAAA, CCAA, ACAA)

7 (B?AA, BBAA, CAAB, AAAA)

8 (?B?B, ?B?B, B?AA, BBAA)

Table 2. Eight 8-round integral distinguishers

Ordinal Input integral Output integral

1 (CCCC, CCCC, ACCC, CCCC) (B?AA, BBAA, ?B?B, ?B?B)

2 (CCCC, CCCC, CACC, CCCC) (?BAA, BBAA, ?B?B, ?B?B)

3 (CCCC, CCCC, CCAC, CCCC) (AABB, AAB?, B?B?, B?B?)

4 (CCCC, CCCC, CCCA, CCCC) (AABB, AA?B, B?B?, B?B?)

5 (CCCC, CCCC, CCCC, ACCC) (BBAA, B?AA, ?B?B, ?B?B)

6 (CCCC, CCCC, CCCC, CACC) (BBAA, ?BAA, ?B?B, ?B?B)

7 (CCCC, CCCC, CCAC, CCAC) (AAB?, AABB, B?B?, B?B?)

8 (CCCC, CCCC, CCCA, CCCA) (AA?B, AABB, B?B?, B?B?)

Proof. From Table 1 we can see that, if a set of plaintexts satisfy (CCCC,CCCC,
ACCC,CCCC), the outputs of 7-round encryption must satisfy (B?AA,BBAA,
CAAB,AAAA). So if a nibble fault is induced into the leftmost nibble position
(31-28 bits) of the right part at the end of the 24th round, X

(i)
31,0=X31,0. Here,

X31,0 and X
(i)
31,0 are respectively denoted as the leftmost nibble of X31 and X

(i)
31 ,

which have the inverse order compared with the denotations of S-boxes. In the
32th round encryption process, X

(i)
31 is rotated left 8 bit, and the invariant nibble

position is changed into the 6th nibble of the 32-bit word. Since the output of 32th

round’s F-function equals to X33 ⊕ (X31,8 <<< 8), apparently, the difference of
the 6th nibble of the output of F-function equals to X33,6⊕X

(i)
33,6. After the inverse

transformation of P permutation, X33,6 ⊕ X
(i)
33,6 corresponds to the output of s3.

And the corresponding input difference of s3 is X32,4 ⊕ X
(i)
32,4. So the proposition

holds. Note that by changing the induce position of faults at the end of the 24th

round, we can obtain similar conclusions easily.

232 H. Chen and L. Fan

Table 3. Corresponding position relation of Δαj , Δβj

Δαj Δβj

X32,0 ⊕ X
(i)
32,0 X33,2 ⊕ X

(i)
33,2

X32,1 ⊕ X
(i)
32,1 X33,0 ⊕ X

(i)
33,0

X32,2 ⊕ X
(i)
32,2 X33,3 ⊕ X

(i)
33,3

X32,3 ⊕ X
(i)
32,3 X33,1 ⊕ X

(i)
33,1

X32,4 ⊕ X
(i)
32,4 X33,6 ⊕ X

(i)
33,6

X32,5 ⊕ X
(i)
32,5 X33,4 ⊕ X

(i)
33,4

X32,6 ⊕ X
(i)
32,6 X33,7 ⊕ X

(i)
33,7

X32,7 ⊕ X
(i)
32,7 X33,5 ⊕ X

(i)
33,5

Proposition 2. For a faulty ciphertext C(i) = X
(i)
32 ||X(i)

33 achieved by inducing a
fault into the right part at the end of the 24th round, if Ns3(Δα,Δβ) > 0 and for
all the other Nsj(0≤j≤7,j �=3), Nsj (Δαj ,Δβj) = 0, the fault must be induced into
the leftmost nibble position.(The nibble position of Δβj is uniquely determined
by the position of Δαj. Table 3 illustrates their relations.)

Proof. The proposition can be deduced very easily from Proposition 1. Note
that by changing the position of nonzero S-box in the 32th round, we can obtain
similar conclusions easily.

Proposition 3. If two different faults are induced into the leftmost nibble posi-
tion of the right part at the end of the 24th round, the following expressions
hold:

X
(i)
32,t �= X

(j)
32,t,X32,t /∈ {X

(i)
32,t,X

(j)
32,t}, t ∈ {2, 3, 6, 7} (1)

where X
(i)
32 and X

(j)
32 denote the corresponding left 32-bit part of ciphertexts.

Proof. The proof can be easily achieved from Lemma 1. If plaintexts satisfy
(CCCC,CCCC,ACCC,CCCC), the outputs of 8-round encryption satisfy
(B?AA,BBAA,B?B?, B?B?). That means if two plaintexts differ from the left-
most nibble position of the right part, the 8-round outputs must differ from
the 2th, 3th, 6th, and 7th nibble positions of the left 32-bit part. Note that by
changing the induce position at the end of the 24th round, we can obtain similar
conclusions easily.

Proposition 4. If two different faults are induced into the leftmost nibble posi-
tion of the right part at the end of the 23th round, the following expressions hold.
The sets {X

(i)
31 ,X(i)

30 ,X(i)
29 } and {X

(j)
31 ,X(j)

30 ,X(j)
29 } are respectively the correspond-

ing right parts at the end of the 31st, 30th and 29th round.

Integral Based Fault Attack on LBlock 233

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X
(i)
31,t �= X

(j)
31,t,X31,t /∈ {X

(i)
31,t,X

(j)
31,t}, t ∈ {2, 3, 6, 7}

X30,0 = X
(i)
30,0 = X

(j)
30,0,X

(i)
30,t �= X

(j)
30,t,X30,t /∈ {X

(i)
30,t,X

(j)
30,t}, t ∈ {1, 2, 4, 5, 6, 7}

X29,t = X
(i)
29,t = X

(j)
29,t, t ∈ {0, 1, 5}

X
(i)
29,t �= X

(j)
29,t,X29,t /∈ {X

(i)
29,t,X

(j)
29,t}, t ∈ {2, 3, 4, 6, 7}

(2)

Proof. From Table 1, it is easily deduced that, when faults are induced into
the leftmost nibble position of the right part at the end of the 23th round, the
integral statuses of the right parts at the end of 31st round, 30th round and
round are respectively (B?AA,BBAA), (CAAB,AAAA) and (CCAA,ACAA).
Apparently, the conclusion holds.

When we change the induce position into 23 − 20 bit of the right part at the
end of the 23th round, the following expressions also hold. The proof is similar,
in which the second integral distinguisher in Table 2 is used.
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X
(i)
31,t �= X

(j)
31,t,X31,t /∈ {X

(i)
31,t,X

(j)
31,t}, t ∈ {0, 1, 4, 5}

X30,1 = X
(i)
30,1 = X

(j)
30,0,X

(i)
30,t �= X

(j)
30,t,X30,t /∈ {X

(i)
30,t,X

(j)
30,t}, t ∈ {0, 2, 3, 4, 5, 7}

X29,t = X
(i)
29,t = X

(j)
29,t, t ∈ {0, 1, 2, 4, 5}

X
(i)
29,t �= X

(j)
29,t,X29,t /∈ {X

(i)
29,t,X

(j)
29,t}, t ∈ {2, 3, 4, 6, 7}

(3)

3 Fault Attack on 24th round of LBlock

In this section, the fault attack on 24th round of LBlock under random nibble
fault model is presented. Under the fault model, only one nibble fault can be
induced into the register storing the intermediate results. The adversary knows
neither the location of the fault nor its concrete value. The detailed attack pro-
cedure is presented as follows.

(1) Select randomly a plaintext M , and obtain the right ciphertext C under the
secret key K.

(2) Repeat inducing an unknown nibble into an unknown position of the right part
at the end of the 24th round to get a set of faulty ciphertexts TotalFCList =
{C(i)|0 ≤ i ≤ 119}.

(3) Call algorithmDistinFClist to divide TotalFCList into FCList7, FCList6,
FCList5,..., and FCList0 through step (3.1)-(3.8), which respectively con-
tains all 15 faulty ciphertexts achieved by inducing faults at 31−28 bits, 27−24
bits, 23−20 bits,..., and 3−0 bits of the right part at the end of the 24th round.
(3.1) FCList7←DistinFClist (TotalFCList, 4, 6, 2, 3, 6, 7); TotalFCList←

TotalFCList − FCList7
(3.2) FCList6←DistinFClist (TotalFCList, 5, 4, 2, 3, 6, 7); TotalFCList←

TotalFCList − FCList6

234 H. Chen and L. Fan

(3.3) FCList5←DistinFClist (TotalFCList, 6, 7, 0, 1, 4, 5); TotalFCList←
TotalFCList − FCList5

(3.4) FCList4←DistinFClist (TotalFCList, 7, 5, 0, 1, 4, 5); TotalFCList←
TotalFCList − FCList4

(3.5) FCList3←DistinFClist (TotalFCList, 0, 2, 2, 3, 6, 7); TotalFCList←
TotalFCList − FCList3

(3.6) FCList2←DistinFClist (TotalFCList, 1, 0, 2, 3, 6, 7); TotalFCList←
TotalFCList − FCList2

(3.7) FCList1←DistinFClist (TotalFCList, 2, 3, 0, 1, 4, 5); TotalFCList←
TotalFCList − FCList1

(3.8) FCList0← TotalFCList
(4) For C(i) ∈ FCList7, Ns3(Δα,Δβ) > 0. Δα = (X32,4 ⊕ K32,4) ⊕ (X(i)

32,4 ⊕
K32,4) and Δβ = X33,6 ⊕ X

(i)
33,6. By means of differential analysis technique,

Δα = (X32,4 ⊕ K32,4) can be determined. So K32,4 can be revealed immedi-
ately. Similarly, by use of the faulty ciphertexts from FCList6,FCList5,...,
FCList0, the remaining bytes of K32 can be respectively recovered.

(5) Decrypt C and C(i) with K32, and get the input difference and output dif-
ference of the S-boxes of 31st round. Through using the difference analysis
technique, K31 can be recovered.

(6) With the similar procedure as (4) and (5), K30 can also be recovered.
(7) Since K32, K31 and K30 are known, K can be recovered by analyzing the

key scheduling. The detailed analysis of key scheduling is already provided
in [22], which is not described here any more.

In the description of algorithm DistinFClist, step 2 preliminarily picks out
possible faulty ciphertexts with the help of Proposition 1 and Proposition 3,
which respectively corresponds to the condition 2.a and the condition 2.b − 2.e.
In the condition 2.a, the corresponding Sbox of Ns is actually different, but for
simplicity of description, only Ns is used as an unified representation.

Step 3 firstly determines some ciphertexts which must belong to the final set
of faulty ciphertexts we want to find out with the help of Proposition 2, which
corresponds to the condition 3.a. In the condition 3.a, the position value j1 has
a corresponding relation with i1, which can refer to Table 3 in Sect. 2.

The basic idea of step 4 is, if the number of candidate ciphertexts whose
values of corresponding position equal to a special value is only one, the candidate
ciphertext must belong to the final set of faulty ciphertexts we want to find out.
For convenience of description, let N32(i, j, L) =|{C(k)|C(k) ∈ L,X

(k)
32,i = j, 0 ≤

i ≤ 7, 0 ≤ j ≤ 15}|. Step 6 further filters the wrong faulty ciphertexts with the
help of Proposition 3 which corresponds to the condition 4.a-4.d.

Through repeating the steps 4–6, the 15 faulty ciphertexts achieved by induc-
ing faults into the same nibble position can be found out one by one.

4 Fault Attack on 23th round of LBlock

In this section, the fault attack on 23th round LBlock is presented under semi-
random fault model, which differs from random fault model in that the adversary

Integral Based Fault Attack on LBlock 235

Algorithm DistinFClist

Input

TotalFCList : a set of faulty ciphertexts

Pos1,Pos2,...Pos6 : the position values

Output

FCList : the special faulty ciphertexts distinguished from TotalFCList

Step 1. L ← ∅, FCList ← ∅

Step 2. For all C(i) ∈ TotalFCList, if conditions (2.a)–(2.e) are all satisfied,

L ← L ∪ {C(i)}
(2.a) NS(X32,Pos1 ⊕ X

(i)
32,Pos1, X33,Pos2 ⊕ X

(i)
33,Pos2) > 0

(2.b) X32,Pos3 �= X
(i)
32,Pos3

(2.c) X32,Pos4 �= X
(i)
32,Pos4

(2.d) X32,Pos5 �= X
(i)
32,Pos5

(2.e) X32,Pos6 �= X
(i)
32,Pos6

Step 3. For all C(k) ∈ L do

Step 3.1. if for all i1 �= Pos1(0 ≤ i1 ≤ 7), condition (3.a) is satisfied,

FCList ← FCList ∪ {C(k)} and update L ← L − {C(k)}
(3.a) NS(X32,i1 ⊕ X

(i)
32,i1

, X33,j1 ⊕ X
(i)
33,j1

) = 0

Step 4. For all C(k) ∈ L, execute step 4.1

Step 4.1. For j=0 to 15 do

if one of conditions (4.a)-(4.d) is satisfied, FCList ← FCList ∪ {C(k)}
and update L ← L − {C(k)}
(4.a) N32(Pos3, j, L) = 1

(4.b) N32(Pos4, j, L) = 1

(4.c) N32(Pos5, j, L) = 1

(4.d) N32(Pos6, j, L) = 1

Step 5. If |FCList| = 15, return FCList and exit.

Step 6. For all C(k) ∈ L do

If there exists C(t) ∈ FCList which satisfies one of conditions (6.a)-(6.d),

update L ← L − {C(k)}
(6.a) X

(k)
32,Pos3 = X

(t)
32,Pos3

(6.b) X
(k)
32,Pos4 = X

(t)
32,Pos4

(6.c) X
(k)
32,Pos5 = X

(t)
32,Pos5

(6.d) X
(k)
32,Pos6 = X

(t)
32,Pos6

Step 7. goto step 4

knows the location of the fault, but does not know its concrete value. The basic
principle of the attack is derived from Proposition 4 and the detailed attack
procedure is as follows.

236 H. Chen and L. Fan

(1) Select randomly a plaintext M , and obtain the right ciphertext C under
the secret key K.

(2) Respectively induce num1, num2 different nibble fault values into the 31−
28 and 23 − 20 bits of the right part at the end of the 23th round, and get
the corresponding faulty ciphertext sets FCList7, FCList5.

(3) Recover K32,1, K32,3, K32,5 and K32,7 with FCList7 through step (3.1)–
(3.5).
(3.1) Guess K32,1, and for GuessKey = 0 to 15 repeat step (3.2)–(3.4)
(3.2) temp[0] = S(6)(X32,1 ⊕ GuessKey) ⊕ X33,0

(3.3) For all C(i) ∈ FCList7, compute temp[i] =S(6)(X(i)
32,1⊕GuessKey)⊕

X
(i)
33,0

(3.4) If for any pair of (temp[i], temp[j]), (temp[i] �= temp[j]) is satisfied,
reserve the GuessKey; else discard GuessKey.

(3.5) With the similar procedure as step (3.1)–(3.4), K32,3, K32,5, K32,4 can
be respectively recovered.

(4) With the similar procedure as step 3, K32,0, K32,2, K32,4 and K32,6 can be
recovered with FCList5. Now the whole value of K32 is recovered.

(5) Decrypt C, FCList5 and FCList7 with recovered K32 and get the corre-
sponding X31 and X

(i)
31 .

(6) Recover K31,0, K31,1, K31,2, K31,4, K31,5, K31,6 and K31,7 with FCList7.
(6.1) Guess K31,0, and for GuessKey = 0 to 15 repeat step (6.2)-(6.4)
(6.2) temp[0] = S(7)(X31,0 ⊕ GuessKey) ⊕ X32,2

(6.3) for all C(i) ∈ FCList7, compute temp[i] = S(7)(X(i)
31,0⊕GuessKey)⊕

X
(i)
32,2

(6.4) If for any pair of (temp[i], temp[j]), (temp[i] �= temp[j]) is satisfied,
reserve the GuessKey; else discard GuessKey

(6.5) With the similar procedure as step (6.1)-(6.4), K31,1, K31,2, K31,5,
K31,6 and K31,7 can be recovered. Specially, for K31,4, the condition
(temp[i] �= temp[j]) in step (6.4) should be changed into (temp[i] =
temp[j])

(7) With the similar procedure as step 6, K31,0, K31,1, K31,2, K31,3, K31,4,
K31,6 and K31,7 can be recovered with FCList5. Apparently, the final can-
didate values of K31,0, K31,1, K31,2,K31,4, K31,6 and K31,7 is respectively
the intersection of the sets achieved from step 6 and the ones from step 7.
Now the whole value of K31 is recovered.

(8) Decrypt C, FCList5 and FCList7 with recovered K32, K31 and get the
corresponding X30 and X

(i)
30 .

(9) With the similar procedure as step 6, all the nibbles of K30 can be recov-
ered with FCList7. Specially, for K30,2, K30,4 and K32,6, the condition
(temp[i] �= temp[j]) should be changed into (temp[i] = temp[j]).

(10) With the similar procedure as step 6, all the nibbles of K30 also can be
recovered with FCList5. Specially, for K30,3, K30,5 and K32,7, the condition
(temp[i] �= temp[j]) should be changed into (temp[i] = temp[j]). Appar-
ently, the final candidate values of K30 is the intersection of the candidate
sets achieved from step 9 and the ones from step 10.

Integral Based Fault Attack on LBlock 237

Table 4. Computer simulation with faults induced at the end of 24th round

Ordinal actual number of distinguished faulty ciphertexts

15 10 6 4

1 73 90 94 96

2 83 93 96 98

3 80 84 96 97

4 77 85 94 100

5 73 84 96 95

6 78 90 96 100

7 80 88 94 99

8 79 86 93 98

9 77 86 96 94

10 74 92 97 98

Table 5. Computer simulation with faults induced at the end of 23th round

Ordinal The value of K induce number

1 0x47996621380c720d8729 20

2 0x435666234501421d8427 24

3 0x780906299591473d6417 22

4 0x12675421005123301110 25

5 0x13272451035222371213 24

6 0x15271457335499001614 23

7 0x34119063348044061920 23

8 0x13153376128342161221 25

9 0x00183586108592195201 21

10 0x03488922118444113309 22

(11) Since K32, K31 and K30 are known, K can be recovered by analyzing the
key scheduling.

5 Data Complexity and Computer Simulation

In our attack on 24th round of LBlock, eight integral distinguishers are all used,
so all possible nibble values must be induced into every nibble position. The num-
ber of possible induce positions is 8, so the total induce number is 15 × 8 = 120.
Moreover, literature [22] explored the difference distribution properties of S-
boxes and got the conclusion that about three faults on average were needed
to reveal the 4-bit subkey input of each S-box. Therefore, for each of the eight
subsets of faulty ciphertexts, only about three faults on average are needed to

238 H. Chen and L. Fan

reveal the 4-bit subkey input of each S-box. So the total number of faulty cipher-
texts needed to reveal the master key is about 3 × 8 = 24. It means that, during
the actual running procedure of algorithm DistinFCList, it is not necessary
to find out all possible fifteen faulty ciphertexts, which can further increase the
efficiency and success probability of the algorithm. In order to verify our attack
algorithm, we conducted a number of experiments with the actual number of
faulty ciphertexts found out by DistinFCList as a parameter. For each para-
meter, 10×100 fault attacks are conducted and the numbers of successful attacks
are recorded, which are listed in Table 4.

In our attack on 23th round of LBlock, since only two nibble positions are
induced, the maximum induce number is Num1 + Num2 = 16 × 2 = 32. The
experimental results listed in in Table 5 show that the actual induce number is
commonly smaller than 32 to determine the unique master key.

6 Conclusion and Future Work

In this paper, an effective fault attack on LBlock is proposed. Under the attack,
if faults are randomly induced into the right part at the end of 24th round
encryption procedure, the master key can be recovered. Our work solves the
problem left in [22], which can not recover the master key under random fault
model according to the last eight rounds’ encryption. In our attack, the key
problem we need to solve is how to distinguish the induce position from the given
faulty ciphertexts. In order to solve the problem, some integral distinguishers are
explored and utilized. Based on the integral properties of LBlock, an effective
algorithm is provided which can judge which position is induced from a set of
faulty ciphertexts. Moveover, the same integral distinguishers also help us apply
faulty attack successfully on the 23th round under semi-random fault model.
The computer simulation results verify the efficiency of our attack. Our attack
also provides an idea to determine the fault induce position for other similar
lightweight block cipher.

In the future, there still exists some research work to be further explored.
Firstly, in order to decrease the induce number of faults, it may be considered to
combine the integral characteristics and key-guessing technique. Secondly, the
fault attack on the 23th round under random fault model is still an interesting
work in the future.

Acknowledgements. The authors would like to thank the anonymous reviewers for
many helpful comments and suggestions. This work is supported by the National Basic
Research Program of China (No.2013CB338002) and the National Natural Science
Foundation of China (No.91118006).

References

1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

Integral Based Fault Attack on LBlock 239

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

3. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000)

4. Hemme, L.: A differential fault attack against early rounds of (Triple-)DES. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

5. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on AES. In: Zhou,
J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer,
Heidelberg (2003)

6. Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption
standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

7. Chen, C.N., Yen, S.M.: Differential fault analysis on AES key schedule and some
countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol.
2727. Springer, Heidelberg (2003)

8. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

9. Derbez, P., Fouque, P.-A., Leresteux, D.: Meet-in-the-middle and impossible differ-
ential fault analysis on AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 274–291. Springer, Heidelberg (2011)

10. Chen, H., Wu, W., Feng, D.: Differential fault analysis on CLEFIA. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer,
Heidelberg (2007)

11. Takahashi, J., Fukunaga, T.: Improved differential fault analysis on CLEFIA. In:
Fault Diagnosis and Tolerance in Cryptography-FDTC 2008, pp. 25–39. IEEE
Computer Society Press, Los Alamitos (2008)

12. Biham, E., Granboulan, L., Nguyên, P.Q.: Impossible fault analysis of RC4 and
differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

13. Hojśık, M., Rudolf, B.: Differential fault analysis of trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008)

14. Kircanski, A., Youssef, A.M.: Differential fault analysis of HC-128. In: Bernstein,
D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 261–278.
Springer, Heidelberg (2010)

15. Esmaeili Salehani, Y., Kircanski, A., Youssef, A.: Differential fault analysis of
Sosemanuk. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS,
vol. 6737, pp. 316–331. Springer, Heidelberg (2011)

16. Gu, D.-W., Li, J.-R., Li, S., Ma, Z.-Q., Guo, Z., Liu, J. -R: Differential fault analysis
on lightweight blockciphers with statistical cryptanalysis techniques. In: Bertoni,
G., Gierlichs, B. (Eds.): FDTC 2012, pp. 27–33. IEEE Computer Society Press,
Washington, DC (2012)

17. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

18. Minier, M., Naya-Plasencia, M.: Some Preliminary Studies on the Differential
Behavior of the Lightweight Block Cipher LBlock. In: Leander, G., Standaert,
F.-X. (eds.) ECRYPT Workshop on Lightweight Cryptography, pp. 35–48 (2011)

240 H. Chen and L. Fan

19. Minier, M., Naya-Plasencia, M.: A related key impossible differential attack against
22 rounds of the lightweight block cipher LBlock. Inf. Process. Lett. 112(16), 624–
629 (2012)

20. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against biclique crypt-
analysis. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 1–14.
Springer, Heidelberg (2012)

21. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible differential attacks on reduced-round
LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 97–108. Springer, Heidelberg (2012)

22. Zhao, L., Nishide, T., Sakurai, K.: Differential fault analysis of full LBlock. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 135–150.
Springer, Heidelberg (2012)

Protecting Ring Oscillator Physical Unclonable
Functions Against Modeling Attacks

Shohreh Sharif Mansouri(B) and Elena Dubrova

Department of Electronic Systems, School of ICT,
KTH - Royal Institute of Technology, Stockholm, Sweden

{shsm,dubrova}@kth.se

Abstract. One of the most common types of Physical Unclonable Func-
tions (PUFs) is the ring oscillator PUF (RO-PUF), a type of PUF in
which the output bits are obtained by comparing the oscillation fre-
quencies of different ring oscillators. One application of RO-PUFs is to
be used as strong PUFs: a reader sends a challenge to the RO-PUF
and the RO-PUF’s response is compared with an expected response to
authenticate the PUF. In this work we introduce a method to choose
challenge-response pairs so that a high number of challenge-response
pairs is provided but the system has a good tolerance to modeling attacks,
a type of attacks in which an attacker guesses the response to a new chal-
lenge by using his knowledge about the previously-exchanged challenge-
response pairs. Our method targets tag-constrained applications, i.e.
applications in which there are strong limitations of cost, area and power
on the system in which the PUF has to be implemented.

1 Introduction

Physical Unclonable Functions (PUFs) are a set of circuits that exploit the
physical characteristics of devices to generate an instance-dependent behaviour,
i.e. the behaviour of a PUF is unknown before the chip is manufactured, because
it is influenced by the manufacturing tolerances of the technology [1]. Only after
manufacturing, the PUF can be tested to extract its behaviour during a phase
called PUF enrollment. It is hard (ideally impossible) to build two PUFs that
behave identically. In a good PUF, once manufactured, the behavior is fixed. In
practice, however, no PUF is 100 % reliabile, the behaviour of all PUFs is partly
influenced by environmental conditions such as temperature variations, etc., and
it is possible sometimes to have slightly different outputs corresponding to the
same inputs [2]. It is sometimes possible for an attacker to decapsulate a chip
containing a PUF and inspect it to extract its behavior [3–5]. However, in a good
PUF, any such operation inevitably and irreversibly alters the behavior of the
PUF, rendering the system unusable [2].

1.1 Types of PUFs

PUF circuits can be classified in the three main groups of strong, weak and
controlled PUFs, based on their application and security features [6].
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 241–255, 2014.
DOI: 10.1007/978-3-319-12160-4 15

242 S.S. Mansouri and E. Dubrova

Weak PUFs are used to derive the standard secret key for cryptographic
algorithms and their outputs are never meant to be given and seen outside the
chip in which the PUF is implemented. A weak PUF is a “secure storage”, it
has the same function as a read-only memory but is harder to attack [6–9].

Strong PUFs are used for authentication of a tag by a reader and are circuits
in which the PUF, implemented on the tag, processes an input (the challenge)
and generates an output (the response). To authenticate the PUF, the reader
provides a challenge to the tag and compares the response with the expected
response, obtained during PUF enrollment [6]. If an attacker manages to predict
the expected response to a challenge, the system is broken because the attacker
can “impersonate” the PUF. Strong PUFs are sensitive to modeling attacks,
i.e. attacks in which an attacker listens to the challenge-response pairs (CRPs)
exchanged between the reader and the PUF, records a database of previously-
exchanged CRPs, uses it to build a model of the PUF and uses his model to
predict the response to new challenges [6]. To avoid modeling attacks, the reader
must choose carefully which CRPs he will provide: he cannot give twice the same
challenge, for example, because the second time an attacker having observed the
first CRP will guess the correct response. An ordered CRP database is deter-
mined during PUF enrollment, stored in the reader and used by the reader to
take the challenge-response pairs.

Controlled PUFs work similarly to strong PUFs. However, to hinder model-
ing attacks, the challenge is hashed on the tag before being given as PUF input,
and the PUF output is hashed before being given as response [6,10]. An attacker
probing the challenge-response pairs being exchanged between tag and reader
cannot directly access the inputs and outputs of the PUF and it is thus much
harder, or impossible, for him to perform a modeling attack by building a model
of the PUF. On the tag, the overhead of controlled PUF is higher compared to
strong PUFs because the hashing algorithms, by definition, have to be imple-
mented on the tag. Moreover, the output of a PUF, for a question of reliability,
is almost never fixed to a certain value, some unreliable bits can change due
to temperature variations, voltage supply variations or other environmental fac-
tors. In a strong PUF, the reader might accept as correct a response which is
“almost” identical to the expected response (i.e. with only some bits difference);
in a controlled PUF, if even a single bit is different in the output of the PUF, the
hashing blocks can generate a completely different response that has no relation
with the original response. Therefore, in a controlled PUF, an error-correction
mechanism [11–13] must be inserted on the chip at the output of the PUF.

1.2 Contribution

There exists an important class of PUF systems, that we call tag-constrained sys-
tems, used for authentication, in which the limitations on the tag are high but the
limitations on the reader are not. This class includes systems in which a portable
smartcard or other passive system has to be authenticated by a fixed reader that
is connected to a network and can have access to large databases and computers

Protecting Ring Oscillator Physical Unclonable Functions 243

to execute algorithms. Guaranteeing high security in tag-constrained authenti-
cation systems is a challenge: we argue that these systems must be implemented
as strong PUFs because the overhead of controlled PUFs is too high. To avoid
modeling attacks, one must thus limit the number of CRPs exchanged between
the reader and the tag and be careful when generating the CRP database.

RO-PUFs are a type of PUF that exploits the frequency oscillation differences
between nominally-identical ring oscillators, well-suited for tag-constrained sys-
tems due to their low hardware overhead [14]. Strong RO-PUFs are also known
for their vulnerability to modeling attacks [6]: to eliminate this vulnerability,
one must eliminate many CRPs, remaining with a low number of them in the
CRP database. As an alternative, several solutions have been proposed to obtain
a high number of independent bits. Unfortunately, these methods (see Sect. 5)
all require that some “complex” algorithm (such as a sort) is run in the tag, a
solution that is often too expensive for tag-constrained systems. We therefore
tried to determine a method to build a CRP database that contains a number
of CRPs which is as high as possible, and that is as secure as possible against
modeling attacks.

We recognize that the number of generated CRPs is moderate and the resis-
tance to modeling attacks comes, at best, in the form: “the attacker can never
guess the response with more than X % probability”. Given the high require-
ments of tag-constrained systems, this is the best we could do: tag-constrained
systems require strong PUFs that can never achieve the same security prop-
erties as controlled PUFs, but we still think that it is important to investigate
how many single-bit challenges can be extracted from a strong RO-PUF without
compromising excessively the resistance to modeling attacks. To the best of our
knowledge no such study has been conducted before.

We think that our solution can at least give a satisfactory level of security
to tag-constrained authentication systems against those attacks in which the
attacker can probe the exchanged CRPs only for a limited period of time.

2 Ring Oscillator Strong PUFs

A RO-PUF [14] is constituted by n nominally-identical ring oscillators (chains
containing an odd number of inverters in a loop) numbered RO0 to ROn−1. Its
structure is shown in Fig. 1.

comparator

0
1

0
1

counter1

counter2
ROn−1

RO
RO

1

0

n−1

n−1

PUF output

PUF input

PUF input

Fig. 1. RO-PUF

244 S.S. Mansouri and E. Dubrova

When manufactured, due to small manufacturing variations, each Ring Oscil-
lator (RO) oscillates with a unique frequency, respectively f0 to fn−1 (in practice,
often slightly influenced by environmental variations, especially by the operating
temperature).

The frequencies fx and fy of ring oscillators ROx and ROy can be compared
by selecting their outputs and feeding them to the two counters: the two selected
ring oscillators are left free to oscillate for a certain comparison time while the
two counters count their oscillations; at the end of the comparison time, the
comparator is used to see which of the two ROs was oscillating faster (the one
with a higher value of the counter).

When RO-PUFs are used as strong PUFs, the challenges correspond to pairs
of ring oscillators, i.e. a single-bit challenge takes the form:

“fx > fy?” with x > y

The response is yes if fx > fy and no if fx < fy. The constraint x > y is
introduced to avoid meaningless challenges such as “f1 > f1?” and duplicate
challenges such as “f2 > f0?” and “f0 > f2?”.

We indicate challenge response pairs with the notation (“fx > fy?”, yes/no),
such as in (“f3 > f2?”, yes).

Multi-bit challenge-response pairs are obtained by providing several single-bit
challenges to the PUF and observing the responses.

Note that in Sect. 5 some alternative RO-PUF systems that use different
challenges and responses are described.

3 Reliability Assumption

To keep the discussion general and be able to treat it mathematically, we do
not consider the effects of reliability, i.e. we assume in this work that given a
pair of ring oscillators one of the ROs is always faster than the other. With this
assumption, the response to any single-bit challenge is fixed and never variates
from run to run.

With this assumption all RO-PUFs are identified by a permutation of fre-
quencies, such as f5 < f0 < f2 < f3 < f1 < f4, which is randomly determined
when the chip is manufactured and then never changes.

Throughout the remainder of the paper, the reader should keep in mind this
basic assumption that we made.

4 Modeling Attacks on RO-PUFs

It has been realized relatively early in the history of PUFs [6,15,16] that mod-
eling attacks using Machine Learning (ML) techniques are a powerful tool to
challenge the security of strong PUFs [16].

A modeling attack is an attack in which the attacker probes the communi-
cation channel between the reader and the tag, observes all exchanged CRPs,

Protecting Ring Oscillator Physical Unclonable Functions 245

stores them in a database and uses the database to build a model of the PUF
with the help of an ML algorithm. When a new challenge is issued, the attacker
uses his model of the PUF to predict the response that the PUF would give. If
the attacker is successfull in his prediction, he can impersonate the tag, fooling
the reader and breaking the system.

4.1 Attacks on RO-PUFs

The number of valid single-bit challenges that can be given to a RO-PUF with
n ring oscillators is equal to the total number of distinct RO pairs

(
n
2

)
= n(n−1)

2 .
However, if the CRP database contains all these challenges, the system can be
easily broken by a modeling attack [6]. A simple proof of the fact that the bits
are not independent is the fact that

(
n
2

)
is way over the entropy of the frequency

ordering, i.e. the maximal number of independent bits that can theoretically be
extracted from it, which with our assumptions (see Sect. 3), is the only element
that determines the responses to the challenges. Since there are only n! possible
frequency orderings, the entropy is log2n!.

Let us see with a simple example how modeling attacks are performed on
strong RO-PUFs: we have a PUF made up by six ROs, numbered from RO0 to
RO5 and oscillating respectively at frequencies f0 to f5, ordered as f5 < f0 <
f2 < f3 < f1 < f4.

We distinguish three types of modeling attacks: deterministicmodeling attacks,
indeterministic modeling attacks and heuristic modeling attacks.

DeterministicModelingAttack. If an attacker observes the challenge response
pairs (“f3 > f0?”, yes) and (“f5 > f0?”, no), when the challenge “f5 > f3” is
given the attacker can predict the correct response (no), because he knows that
f5 < f0 < f3.

The attack consists in determining a partial ordering of frequencies given the
constraints determined by previously-exchanged CRPs, and seeing if the answer
to a new challenge can be deduced from the known ordering. This type of attack is
computationally feasible using a quicksort method and was first proposed in [6].

Indeterministic Modeling Attack. If the attacker observes the CRPs (“f5 >
f0?”, no), (“f3 > f0?”, yes), (“f3 > f1?”, no) and (“f4 > f1?”, yes), then the
attacker can determine that f5 < f0 < f3 < f1 < f4. If now the new chal-
lenge “f4 > f2?” is issued, the attacker can guess the response by making a list
of all the possible orderings of frequencies that satisfy the constraints given by the
previously-exchanged CRPs.

A : f2 < f5 < f0 < f3 < f1 < f4 ; D : f5 < f0 < f3 < f2 < f1 < f4

B : f5 < f2 < f0 < f3 < f1 < f4 ; E : f5 < f0 < f3 < f1 < f2 < f4

C : f5 < f0 < f2 < f3 < f1 < f4 ; F : f5 < f0 < f3 < f1 < f4 < f2

246 S.S. Mansouri and E. Dubrova

Of the 6 possible orderings of frequencies left, only F would result in the response
to the challenge being no. The attacker, by predicting that the response is yes, has
a 5/6 chance of being right.

The attack consists in determining the list of all possible frequency orderings
that satisfy all the constraints determined by previously-exchanged CRPs, and
seeing for how many of them the response to the new challenge would be yes and
for how many it would be no. It can be computationally too hard (NP-complete)
to perform this attack.

HeuristicModelingAttack. Indeterministic modeling attacks are often unfea-
sible due to their computational complexity. However, heuristic methods can still
be used by an attacker and have success. A simple example of heuristic attack is
based on this idea: if an ROROa has proved to be faster than other three other ROs
but no RO faster than ROa has been found yet, than it is probable that ROa will
also be faster than another random RO ROb. However, heuristic modeling attacks
can never be more accurate than indeterministic modeling attacks.

Summary. Summarizing: a deterministic modeling attack (computationally fea-
sible) fails or gives to the attacker an expected response which is 100% correct; an
indeterministic modeling attack (often computationally unfeasible) gives to the
attacker the most probable response and its exact probability; A heuristic mod-
eling attack (computationally feasible) gives to the attacker a guess on the most
probable response and no attached guarantee on its probability to be correct, it
cannot be more accurate than an indeterministic modeling attack.

5 RelatedWork

Work on RO-PUFs often focuses on enhancing the reliability of RO-PUFs in pres-
ence of temperature or voltage variations, such as [11], inwhich theROs are divided
into groups of 8, the biggest and the smallest are determined and the pointer to the
two is given as output.

Other more relevant works have been proposed to build a CRP database of
independent bits for RO-PUFs. In [17], the authors proposed a non-rank-based
method to extract bits, i.e. the bits are not determined only by the frequency order-
ing, but by a mathematical function of the distribution of the RO frequencies them-
selves (allowing a much higher number of bits to be extracted). The authors claim
they can extract 60 K CRPs from only 16 ring oscillators. The authors statistically
study their CRPs to prove that they are hard to attack, but there is no mathemati-
cal guarantee on the independence between CRPs. It remains to see if their method
can be applied to other technologies.

Two rank-based methods (based only on frequency comparisons) have a more
direct relevance to our approach.

The n/2 method [5] consists in never using any ring oscillator in more than one
comparison, so that an attacker having observed the previously exchanged CRPs
cannot have any clue on the response to a new challenge. In a PUF with nROs this

Protecting Ring Oscillator Physical Unclonable Functions 247

method generates only n/2 CRPs (for example, with 6 ROs, “f1 > f0?”, “f3 >
f2?” and “f5 > f4?”).

LISA [18,19] was introduced to maximize bit extraction and is based on group-
ing the ROs into different groups so that the ROs belonging to the same group
have all a minimal frequency difference, higher than a threshold value fth to guar-
antee high reliability in presence of temperature variations. In each group, all ring
oscillators are compared together and the frequency ordering among them is estab-
lished (such as f5 < f0 < f2 < f3 < f1 < f4). With g ROs, in the group there
are g! possible orderings. The ordering is translated into a binary number with
log2(g!) bits and given as the secret. For systems having the reliability assumption
is Sect. 3, the number of CRPs is maximized by making a single group of n ROs:
all n ring oscillator frequencies are extracted and sorted, obtaining a frequency
ordering which is translated to a binary number 0 ≤ o ≤ n! − 1 using a one-to-
one correspondance. A single-bit challenge takes the form: “what is the value of
bit X of o?”. This method can give �log2n!� independent challenge-response pairs,
no other rank-based method can do better. However interesting from a theoretical
point of view, this method (max-LISA) is also extremely unpractical: every time
the response to a challenge must be given, the tag should test all ring oscillator fre-
quencies, quick-sort them, determine their ordering, translate it to a number and
respond with one bit.

Our approach is to introduce two possible algorithms to build the CRP data-
base suring PUF enrollment, with a “low dependency” between CRPs. Both algo-
rithms guarantee that all deterministic modeling attacks will fail, i.e. the attacker
will never be able to obtain a 100 % certitude on the expected response. With
the first algorithm, indeterministic modeling attacks are possible but require an
exhaustive search among all possible orderings of CRPs, with O(n!) complexity;
heuristic attacks can break the system. With the second algorithm, indeterministic
modeling attacks are easy to perform but are guaranteed to never find a response
that has a probability higher than pmax, where pmax is chosen by the designer.
Being always equal or worse in accuracy to indeterministic attacks, heuristic
attacks also have the same limitation on their predicting ability. As pmax decreases,
the number of CRPs also decreases, creating a security-to-number of CRPs
tradeoff.

6 Algorithm 1

Algorithm 1 is very intuitive and works as follows:

1. The algorithm starts with the pool C of all
(
n
k

)
challenges that can be given to

a RO-PUF with n ROs.
2. One challenge in C is choosen randomly, eliminated from C and added at the

end of the CRP database D.
3. The algorithm then ipothesizes that an attacker has observed all CRPs in D

and calculates for which challenges in C he can guess the answer with 100%
probability. These challenges are eliminated from C.

4. The algorithm loops back to step 2 until C is empty.

248 S.S. Mansouri and E. Dubrova

Algorithm 1 guarantees all deterministic modeling attacks will always fail (the
attacker will never be able to guess a response with 100% probability). However,
indeterministic modeling attacks can be performed withO(n!) complexity and the
system might be vulnerable to heuristic attacks.

A complete implementation of Algorithm 1, withO(n4) complexity, is reported
in Appendix A.

7 Algorithm 2

Algorithm 2 starts with a ring oscillator pool P , initialized with all n ring oscilla-
tors. In P , one ring oscillator ROr is picked at random. All challenges “fr > fi?”
(or “fi > fr?”) with 0 ≤ i < n and i �= r are given one after the other, i.e. added to
the database of the challenges that will be given to the PUF (ring oscillator ROr

is compared with all other ring oscillators).
The attacker can never guess the response to any of these challenges with 100 %

certitude: fr is always compared with a frequency fi on which nothing is known
for certain (it has not been compared with anything else before).

After having finished with all challenges, the attacker splits all ring oscillators
(except ROr) into two groups: a slow group Ps, containing all ring oscillators ROi

for which fi < fr, and a fast groupPf , containing all ring oscillatorsROj for which
fj > fr.

The algorithm is recursive: on the second step, the same algorithm is applied
to both Ps and to Pf . In each of the two groups, one ring oscillator is picked at ran-
dom and is compared with all others, resulting in the creation of two new groups.
When the algorithm moves to work on Ps and Pf , knowledge about all previously-
exchanged CRPs is useless for an attacker because members of Ps and Pf have
never been compared among themselves before, which guarantees that a deter-
ministic modeling attack can never succeed.

When pools Ps and Pf have 0 or 1 members only, the algorithm stops because
it is not possible to choose randomly one element and compare it with the others.
The algorithm has O(n log n) complexity.

7.1 Example

As an example, let us consider a RO-PUF with n = 6 ring oscillators RO0 to RO5,
with frequency ordering f5 < f0 < f2 < f3 < f1 < f4.

In the first step, P = {RO0, RO1, RO2, RO3, RO4, RO5}. RO2 is selected ran-
domly and compared with all other ring oscillators in turn, resulting in the chal-
lenges “f2 > f0?”, “f2 > f1?”, “f3 > f2?”, “f4 > f2?” and “f5 > f2?” being
added to the challenge database. Based on the challenge responses, the ring oscil-
lators are divided into the two groups Ps and Pl, containing respectively the ROs
that run slower and faster than RO2: Ps = {RO0, RO5}, Pl = {RO1, RO3, RO4}.
The algorithm is then repeated recursively on Ps and Pl.

OnPs,RO0 is chosen at random and compared withRO5, resulting in the chal-
lenge “f5 > f0?” being added to the challenge database. The two groups of ring

Protecting Ring Oscillator Physical Unclonable Functions 249

Algorithm 2
1: P = set of all ring oscillators
2: generateChallenges(P)
3:
4: function generateChallenges(P)
5: if P is empty or contains only one RO then
6: return;
7: else
8: select one random element ROr ∈ P
9: remove ROr from P

10: Ps = {}
11: Pl = {}
12: for all elements ROi ∈ P do
13: add the challenge “fi > fr?” or “fr > fi?” to the challenge database
14: if fr > fi then
15: add ROi to Ps

16: else
17: add ROi to Pl

18: end if
19: end for
20: generateChallenges(Ps)
21: generateChallenges(Pl)
22: return
23: end if
24: end function

oscillators in Ps faster and slower thanRO5 are respectively constituted by 0 and 1
members, so the algorithm returns. OnPl,RO4 is chosen at random and compared
with RO3 and RO5, resulting in the challenges “f4 > f3?” and “f5 > f4?” being
added to the challenge database. The two groups of ring oscillators in Ps faster and
slower than RO4 are both constituted by 1 member only, so the algorithm returns.
In total, the algorithm generates 8 CRPs.

7.2 Number of CRPs

The expected number of CRPs generated by the algorithm can be calculated math-
ematically.

We define asC(n) the average number of challenges generated by the algorithm
for a pool of n ring oscillators. By definition we have C(0) = 0 and C(1) = 0 (no
pairs can be made with less than two ring oscillators).

When the algorithm is applied to a pool of n+1 ring oscillators, one ring oscil-
lator ROr is picked at random and compared with the other n ring oscillators,
resulting in n CRPs. The n remaining ring oscillators are divided into two groups
Ps and Pl having sizes s and l = n − s. The probability distribution for the value
of s is uniform between 0 and n, because nothing is known about the position of fr
in the frequency ordering among all ring oscillators: with the same probability, fr

250 S.S. Mansouri and E. Dubrova

can be the smallest value in the pool (s = 0, l = n), or the second smallest (s = 1,
l = n − 1), or ..., or the penultimate biggest (s = n − 1, l = 1), or the biggest
(s = n, l = 0). The algorithm is then applied recursively on the two pools that
have been generated, generating on average C(s) and C(l) CRPs. Therefore,

C(0) = C(1) = 0

C(n + 1, n > 0) = n +
1
n

n∑

s=0

(C(s) + C(n − s)) = n +
2
n

n∑

s=0

C(s)

The values of C(n) can then be calculated recursively.

7.3 Indeterministic Modeling Attack

Indeterminstic attacks are easy to perform on a system using CRPs generated by
Algorithm 2, and do not require O(n!) complexity.

When the reader starts working with a new pool of ROs, an attacker does not
have any information on any of the ROs in the pool because they were never com-
pared together before, and because all of them, when compared with other ROs,
always gave the same responses. The attacker has then only 50 % chance to guess
the response to the challenge.

As ring oscillator r is compared with other ring oscillators in the pool, the
attacker can keep track of the number s of ring oscillators for which it is known
that they run at lower frequency than ROr and the number l of ring oscillators for
which it is known that they run at a higher frequency than ROr.

It is known that in the frequency ordering among the s + l + 1 ring oscillators
that have been compared until now (including ring oscillator r), ring oscillator r
occupies the position s (it has s frequencies under it and l frequencies over it).

When comparing ring oscillatorROi withROr, in the frequency ordering among
all s + l + 2 ring oscillators that have already been compared or will now be com-
pared, including ROi and ROr, fi can randomly occupy any position with equal
probability, from position 0 (it is the lowest frequency) to position s + l + 1 (it is
the highest frequency). If it is in the first s+1 positions, then fr > fi, else fr < fi.

The probability to have fr > fi is then given by:

P (fr > fi) =
s + 1

s + l + 2

For example, if in one step of the algorithmP = {RO0, RO1, RO2, RO3, RO4, RO5}
and ROr = RO1 has already been compared with RO2, RO4 and RO5, and if it
was determined that RO2 and RO5 are slower than RO5 but RO4 is faster than
RO5, then s = 2 and l = 1 and the probability to have, for example, f1 > f0 is
(s + 1)/(s + l + 2) = 3/5.

With a simple arithmetic division, the attacker can always determine the most
likely response to the challenge “fr > fi?” and its associated probability. Since
indeterministic modeling attacks are so easy, it is worthless to use any heuristic
attack.

Protecting Ring Oscillator Physical Unclonable Functions 251

We ran an indeterministic modeling attack on a RO-PUF whose challenges
were determined using Algorithm 2 and calculated the average predicition proba-
bility over all the CRPs. Results were averaged over 1000 random PUFs for every
value of n. based on our experiment, an attacker having observed all previously-
exchanged CRPs and performing an indeterministic modeling attack has, on aver-
age, a ∼75% probability to guess the response to a new challenge, instead of the
50% probability he would have by guessing randomly. Although this number is
relatively reasonable, the responses to some of the challenges are easy to guess: for
n = 100, for example, 14% of the CRP responses can be predicted by the attacker
with a probability higher than 90%. Note that since all challenge-response pairs
used in practice are multi-bit, guessing the response to a k-bit challenge can be
done on average with 0.75k probability, which might provide a sufficient level of
security for some applications.

7.4 Protecting Against Indeterministic Modeling Attacks

Since, when the CRP database is generated by Algorithm 2, it is so easy to per-
form an indeterminsitc modeling attack, we propose the following idea: during chip
enrollment, every time a new challenge is about to be added to the CRP database
D, an indeterminstic modeling attack is perfomed to determine what would be the
probability for an attacker having observed all previously-exchanged CRPs to pre-
dict the answer. If this probability is above pmax, the challenge is “skipped” and
not added to the database.

One important thing to note is that the attacker might guess wrong in an inde-
terminstic modeling attack. For example, his model can tell him that, with 90 %
probability, fr > fi, while in reality fi < fr. The enroller (who knows the response)
might be tempted to put the challenge anyhow in the CRP database, because he
knows the attacker will respond wrongly. But the attacker, by seeing that the chal-
lenge has been given although he was guessing the response, will understand what
the reasoning of the reader was and will respond correctly by changing its guess.
Therefore, the enroller should skip all challenges for which the attacker thinks he
has a high probability to guess correctly, regardless of whether he would guess cor-
rectly or not. When the enroller skips a challenge, he can freely announce what the
response to that challenge was.

With pmax = 1 no challenges will be skipped (the system is only tolerant to
deterministic modeling attacks). As pmax decreases towards 0.5, the number of
skipped challenges increases and the number of given challenges decreases.

8 Number of CRPs

Table 1 reports, for different values of n: (a) the entropy; (b) the number of CRPs
generated respectively by Algorithm 1 and Algorithm 2 (the values were obtained
by generating 1000 random RO-PUFs, i.e. permutations of frequencies, for every
value of n, applying the two algorithms, averaging the number of obtained CRPs

252 S.S. Mansouri and E. Dubrova

Table 1. Average number of CRPs generated by the two algorithms, the n/2 method
and the max-LISA method

#ROs n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = 90 n = 100

entropy 22 61 108 159 214 272 332 395 459 525

Alg. 1 17 73 164 203 288 404 477 612 716 847

1 21 55 108 172 250 313 359 467 512 609
0.9 17 49 97 154 216 268 323 393 453 523

Alg. 2 0.8 17 48 86 131 166 218 266 316 376 427
pmax = 0.7 14 40 71 94 123 166 194 217 264 303

0.6 8 26 44 59 74 97 116 148 159 167

max-LISA 22 61 108 159 214 272 332 395 459 525

n/2 5 10 15 20 25 30 35 40 45 50

and rounding to the nearest unit); (c) the number of CRPs generated by the “n/2”
and the “max-LISA” methods described in Sect. 5 (n/2 and �log2n!� CRPs).

The algorithms generate a number of CRPs much higher than the n/2 method
and in the order ofmagnitude of those generated bymax-LISA.However, theCRPs
are not fully-independent as the ones generated by the other two methods. On the
other hand, the max-LISA method is mostly theoretical and too complex to be
applied on a tag-constrained system.

9 Conclusion

In conclusion, we have presented two algorithms to choose CRPs for strong RO-
PUFs so that they are partially-protected against modeling attacks. We recognize
that the level of security and number of CRPs can be unsatisfactory for some appli-
cations, but we think our method can give a satisfactory level of security to tag-
constrained systems, in which the high constraints on the tag make other solutions
impossible to apply.

Future work will be conducted to judge the impact of reliability issues on this
solution.

Acknowledgment. This work was supported in part the research grant No 621-2010-
4388 from the Swedish Research Council and in part by the research grant No SM12-0005
from the Swedish Foundation for Strategic Research.

A Appendix

Algorithm 1 can be implemented with O(n4) complexity.
The algorithm keeps a pool C of available challenges which shrinks as chal-

lenges are selected or become unusable, and an n×n matrix O whose entry at row
i and column j (entry O(i, j)) is 1 if it is known that fi > fj .

Protecting Ring Oscillator Physical Unclonable Functions 253

Algorithm 1
1: for all i, j do
2: O(i, j) = 0
3: end for
4: C = set of all challenges
5: while C �= {} do
6: select a random challenge “fi > fj?”∈ C
7: add the challenge “fi > fj?” to the challenge database
8: remove challenge “fi > fj?” from C
9: if fi < fj then

10: swap i and j
11: end if
12: O(i, j) = 1
13: for k = 0; k < n; k = k + 1 do
14: if O(k, i) = 1 then
15: O(k, j) = 1
16: remove challenge “fj > fk?” or “fk > fj?” from C
17: end if
18: end for
19: for l = 0; l < n; l = l + 1 do
20: if O(j, l) = 1 then
21: O(i, l) = 1;
22: remove challenge “fi > fl?” or “fl > fi?” from C
23: for m = 0; m < n; m = m + 1 do
24: if O(m, i) = 1 then
25: O(m, l) = 1;
26: remove challenge “fm > fl?” or “fl > fm?” from C
27: end if
28: end for
29: end if
30: end for
31: end while

At the beginning of the algorithm, the matrix is initialized with all zeroes and
the pool of available challenges is initialized with all n(n−1)

2 possible challenges.
On the first step of the algorithm, one challenge “fi > fj?” is chosen randomly

among all n(n−1)
2 possible challenges in C. The response determines the relation

between fi and fj and a 1 is inserted in the matrix either at position O(i, j) or at
position O(j, i).

In subsequent steps of the algorithm, when a new randomly chosen CRP deter-
mines that fi > fj , a 1 is written in the matrix at position O(i, j) and also at
position O(i, k), with k being all the values for which matrix entry O(j, k) is 1: for
these entries, the attacker knows that fi > fj and that fj > fk, and therefore can
deduce that fi > fk.

Then the algorithm looks at all frequencies fl which are known to be slower
than fj . A 1 is written in O(i, l): for these entries, the attacker knows that fi > fj
and that fj > fl, and therefore can deduce that fi > fl. A 1 is also written in

254 S.S. Mansouri and E. Dubrova

O(m, l), with fm being all the frequencies that are known to be bigger than fi (for
which O(m, i) is one): for these entries, the attacker knows that fm > fi, that
fi > fj and that fj > fl, and therefore can deduce that fm > fl.

Every time that a 1 is written in O(x, y), the challenge “f(x) > f(y)?” or
“f(y) > f(x)?” is eliminated from the pool C of available challenges because the
attacker can predict the response with 100% certitude.

References

1. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: ACM Conference on Computer and Communications Security, pp. 148–
160. ACM Press (2002)

2. Sadeghi, A.-R., Naccache, D.: Towards Hardware-Intrinsic Security: Foundations
and Practice, 1st edn. Springer, New York (2010)

3. Skorobogatov, S.P.: Semi-invasive attacks - a new approach to hardware security
analysis. University of Cambridge, Computer Laboratory, Techical Report UCAM-
CL-TR-630, April 2005

4. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, New York (2007)

5. Merli, D., Schuster, D., et al.: Semi-invasive EM attack on FPGA RO pufs and coun-
termeasures. In: Proceedings of the Workshop on Embedded Systems Security, ser.
WESS ’11, pp. 2:1–2:9 (2011)

6. Rührmair, U., Sehnke, F., Sölter, J., et al.: Modeling attacks on physical unclonable
functions. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’10, pp. 237–249 (2010)

7. Kumar, S.S., Guajardo, J., Maes, R., et al.: Extended abstract: The butterfly PUF
protecting IP on every FPGA. In: Proceedings of the IEEE International Workshop
on Hardware-Oriented Security and Trust, pp. 67–70 (2008)

8. Selimis, G., Konijnenburg, M., Ashouei, M., et al.: Evaluation of 90nm 6T-SRAM
as physical unclonable function for secure key generation in wireless sensor nodes.
In: IEEE International Symposium on Circuits and Systems, pp. 567–570 (2011)

9. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their
use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 63–80. Springer, Heidelberg (2007)

10. Gassend, B., Clarke, D., et al.: Controlled physical random functions. In: Proceed-
ings of the 18th Annual Computer Security Conference (2002)

11. Yu, M.-D.M., Devadas, S.: Secure and robust error correction for physical unclonable
functions. IEEE Des. Test Comput. 27, 48–65 (2010)

12. Paral, Z., Devadas, S.: Reliable and efficient PUF-based key generation using pattern
matching. In: 2011 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 128–133 (2011)

13. Suh, G.E., O’Donnell, C.W., et al.: AEGIS: A single-chip secure processor. Informa-
tion Security. Techical Report, pp. 63–73 (2005)

14. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: Proceedings of the 44th Annual Design Automation Con-
ference, pp. 9–14 (2007)

15. Lim, D.: Extracting Secret Keys from Integrated Circuits. MIT, Cambridge (2004)
16. Sehnke, F., Osendorfer, C., Sölter, J., Schmidhuber, J., Rührmair, U.: Policy gra-

dients for cryptanalysis. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN
2010, Part III. LNCS, vol. 6354, pp. 168–177. Springer, Heidelberg (2010)

Protecting Ring Oscillator Physical Unclonable Functions 255

17. Maiti, A., Kim, I., Schaumont, P.: A robust physical unclonable function with
enhanced challenge-response set. IEEE Trans. Inf. Forensics Secur. 7(1), 333–345
(2012)

18. Yin, C.-E., Qu, G.: Lisa: Maximizing ro puf’s secret extraction. In: 2010 IEEE Inter-
national Symposium on Hardware-Oriented Security and Trust (HOST), pp. 100–
105 (2010)

19. Yin, C.-E., Qu, G., Zhou, Q.: Design and implementation of a group-based ro puf.
In: Proceedings of the Conference on Design, Automation and Test in Europe, ser.
DATE ’13,pp. 416–421 (2013)

Parallel Implementations of LEA

Hwajeong Seo1, Zhe Liu2, Taehwan Park1, Hyunjin Kim1, Yeoncheol Lee1,
Jongseok Choi1, and Howon Kim1(B)

1 School of Computer Science and Engineering, Pusan National University, San-30,
Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea

{hwajeong,pth5804,moonmaker.k,lycshotgun,jschoi85,howonkim}@pusan.ac.kr
2 Laboratory of Algorithmics, Cryptology and Security (LACS),

University of Luxembourg, 6, Rue R. Coudenhove-Kalergi,
1359 Luxembourg-Kirchberg, Luxembourg

zhe.liu@uni.lu

Abstract. LEA is a new lightweight and low-power encryption algo-
rithm. This algorithm has a certain useful features which are especially
suitable for parallel hardware and software implementations, i.e., sim-
ple ARX operations, non-S-BOX architecture, and 32-bit word size. In
this paper we evaluate the performance of the LEA algorithm on ARM-
NEON and GPUs by taking advantage of both the desirable features
of LEA and a parallel computing platform and programming model by
NEON and CUDA. Specifically, we propose novel parallel LEA imple-
mentations on representative SIMT and SIMD architectures such as
CUDA and NEON. In case of CUDA, we firstly designed a thread-
based computation model to fall into functional parallelism by com-
puting several encryptions over one thread. To alleviate the memory
transfer delay, we allocate memory to satisfy coalescing memory access.
Secondly our method is block cipher implementation written in assem-
bly language, which provides efficient and flexible programming envi-
ronments. With these optimization techniques, we achieved 17.352 and
2.5 GBps (bytes per second) throughput without/with memory trans-
fer. In case of NEON, we adopted pipeline instructions and SIMD-based
execution models, which enhanced encryption by 49.85 % compared to
previous ARM implementations.

Keywords: Low-power encryption algorithm · Single instruction mul-
tiple data · Single instruction multiple threads · NEON · GPGPU ·
Software implementation · Block cipher · ARM

1 Introduction

Recently, various multi-core CPU and GPU processors were introduced by Intel,
AMD and NVIDIA companies, supporting parallel programming libraries

This work was supported by the Industrial Strategic Technology Development Pro-
gram (No. 10043907, Development of high performance IoT device and Open Plat-
form with Intelligent Software) funded by the Ministry of Science, ICT & Future
Planning (MSIF, Korea).

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 256–274, 2014.
DOI: 10.1007/978-3-319-12160-4 16

Parallel Implementations of LEA 257

including Compute Unified Device Architecture (CUDA) and Open Computing
Language (OpenCL). In [22], adopting the parallel computing power improves
previous CPU based AES implementations by 5.92 times. This advanced parallel
computing trend can be extended to representative embedded systems such as
the ARM processors. Modern ARM processors provide a vector instruction set
extensions in order to perform single instruction, multiple data (SIMD) oper-
ations. The platforms include almost all modern smart-phones and tablet PCs
such as iPAD, iPhone, Galaxy Note and Galaxy S. The ARM named their SIMD
model as NEON and it can compute wide word sizes of up to 64- and 128-bit
in a single instruction. This new parallel computing instruction shows that tra-
ditional serialized program can be switched to parallel with high performance
enhancements. In [23], ARM NEON implementation of Grøstl shows that 40 %
performance enhancements than the previous fastest ARM implementation.

In this paper, we exploit parallel computing power into novel block cipher,
LEA, which was released at WISA’13 [6]. The implementation of LEA is effi-
cient in any platforms ranging from low-end embedded microprocessors to high-
end personal computers. Contrary to previous implementations of LEA, mainly
focused on serial computations of embedded processors and parallel computa-
tions of CPU, this paper studies the feasibility of parallel implementation of
LEA on ARM-NEON and GPUs. To improve performance, we exploit SIMD
and SIMT architectures and presented various novel techniques. All these meth-
ods are not limited to LEA implementation but it can be extended to other
cryptography implementations without difficulties.

2 Related Works

2.1 CUDA

Traditionally, GPUs were commonly used for graphical applications by exploit-
ing several parallel cores and graphic APIs. Before the advent of CUDA envi-
ronments, these computation units were only used for limited graphical works
and environments by using OPEN-GL. For this reason, crypto computations
were not efficiently executable using OPEN-GL because crypto operations con-
sist of basic integer arithmetic and logical operations while OPEN-GL does not
provide these operations. Recently, NVIDIA released a programmable GPU
architecture, named CUDA [4,5]. Using this parallel computing environment,
a programmer can use a GPU as a parallel computing unit to execute thou-
sands of operations in a parallel manner. This parallel computing power was
straightforwardly adopted in cryptography implementations and has shown high
performance enhancements. In case of block cipher, some modes of operations
such as CTR and ECB do not have data dependency between each encryption
session, so high parallel implementation is possible by executing several computa-
tions in a parallel way. In [10,13,15,16], many AES results have been reported.
The major optimization techniques exploit multi-core computations and fast
shared memory rather than global, local, or constant to preserve look-up tables.
At AFRICACRYPT’13, a method for high utilization of GPU resources was

258 H. Seo et al.

reported [14]. This method manages CUDA resources such as block, thread,
and register in an optimized way. Recently, assembly language programming has
been made available in CUDA and feasible results have been reported in [17]. As
assembly programming provides flexibility to programmer, we can write optimal
and concise program and improve performance further than high-level languages.

2.2 NEON

NEON is a 128-bit SIMD architecture for the ARM Cortex-A series [1]. One
of the differences between a traditional ARM processor and an ARM-NEON
processor is that NEON offers registers and instructions that support a length
of 64- and 128-bit. Each register is considered as a vector of elements of the
same data type and this data type can be signed/unsigned 8-bit, 16-bit, 32-
bit, or 64-bit. This feature provides a more precise operation and benefit to
various word size computations and instructions, especially when performing
the same operation in all lanes for efficiently computing multiple data. Finally,
NEON technology can accelerate data processing by at least 3X that provided by
ARMv5 and at least 2X that provided by ARMv6 SIMD [1]. This nice structure
can boost previous implementations by converting single instruction single data
model to SIMD. At CHES 2012, NEON-based cryptography implementations
including Salsa20, Poly1305, Curve25519 and Ed25519 were presented in [2]. To
enhance the performance, the authors provided novel bit-rotation, integration
of multiplication and reduction operations exploiting NEON instructions. After
then, lots of practical cryptosystem applications using NEON were presented
[3,23] by using novel vector-wise instructions.

3 Parallel Implementations of LEA

In this section, we provide LEA implementation strategies over SIMT and SIMD
in great detail.

3.1 Memory and Speed Trade-Off

Memory and speed have a trade-off relation. If we choose a speed-first strategy,
the memory is used for saving the full round keys. This method reduces many
arithmetic operations into a single memory access. On the other hand, a size-
optimized strategy minimizes the code size and memory usage, taking decline
of speed factor because round keys are generated during on-line. In this section,
we explore two main LEA implementation algorithms over SIMT and SIMD
architectures.

On-the-Fly Method. The on-the-fly method is a size-optimized method, which
generates the round keys on-the-spot and uses them directly. The advantage of
this method is that we do not need to pre-compute and store the round keys

Parallel Implementations of LEA 259

because the round keys in needs are directly generated during each step. We
tested OFM model on both architectures. First, this method is appropriate for
a CUDA machine because CUDA shows a slow performance in global memory
accesses. For this reason, computing ALU operations is better than computing
memory operations. In the case of NEON, OFM is favorable because an SIMD
machine can compute multiple operands at once, and hence multiple round keys
are computed efficiently.

Separate Encryption Method. The separate encryption method is a speed
optimized model. First, we compute all round-key pairs off-line and then simply
look-up the round key tables during encryption. In a CUDA machine, memory
access is not recommended due to slow PCI transfer speed, but LEA encryption
does not use many memory accesses so it shows better performance even with
multiple memory accesses than OFM does. In the case of NEON, multiple 128-
bit-wise data is accessible at once, so this method shows higher performance gain
than its OFM counterpart.

Fig. 1. Thread design in CUDA-LEA.

3.2 CUDA-LEA

In this section, we provide SIMT implementation techniques on the CUDA
architecture. We tested and evaluated the performance on a computer with
Window 7 operating system, GTX680 GPU, Intel i7-3770 CPU, and 8 GB RAM.

SIMT: Single Instruction Multiple Threads. CUDA consists of lots of
blocks and each block is composed of thousands of threads. In previous work
[13], the author claimed that one encryption per thread is optimal to utilize
GPU but we imposed multiple encryptions on a single thread. To optimize each
thread, we should consider limited resources such as registers that can preserve
variables and provide fast access. Our target board is the Kepler architecture,
which provides 65,535 registers per block. The maximum number of threads in
one block is limited to 1,024. This is also a good parameter for thread scheduling

260 H. Seo et al.

because the maximum warp size is 32 and 1,024 is multiple of 32
(
1,024
32 = 32

)
.

Finally maximum number of registers in one thread is 65,535
1,024 = 64(63 for general

purpose and one for reserved). We designed each thread to exploit the maxi-
mum number of registers. Figure 1 shows our LEA programming architecture.
We programmed seven encryption functions into one thread to provide func-
tional parallelism. First, one round key-scheduling or look-up table access are
conducted. The outputs are directed to seven encryption modules. For this rea-
son, we could save six round key scheduling computations than separate key
scheduling in each thread. The impact of the proposed method is described in
Table 12. The performance is rated according to encryption per thread (E/T).
The performance is significantly improved by increasing the number of factor
(E/T) for both with/without memory transfer. In GPU, the performance bot-
tleneck experienced is memory access because the PCIe bandwidth is about
100 ∼ 200 MBps. This is the main shortcoming of GPU but in near future this
problem would be resolved because heterogeneous CPU and GPU architectures
are being actively studied and this will combine memory architecture of CPU
and GPU. For this reason, memory transfer overheads would disappear in near
future.

PTX: Inline Assembly Capability. For high-performance implementations,
critical parts should be written in low-level assembly languages, which schedule
instructions more efficiently than high-level languages. Recently, low-level par-
allel thread execution (PTX) for CUDA was released [7]. PTX provides a stable
programming model and instruction set for general-purpose parallel program-
ming. In our program, we adopted this effective technology to boost traditional
programs written in high-level languages. The instruction sets, which include
arithmetic and memory access operations, are described in Appendix at Table 5.
The main advantage of PTX is that we can use and schedule arithmetic and
bit operations manually, thereby removing inefficient instructions. To demon-
strate the advantages of PTX, we compared a normal CUDA-C program and
an assembly program in Appendix at Table 6. These results show that assem-
bly programming has a higher performance than CUDA-C programming. The
compiler cannot follow the programmer’s will, and thereby generates inefficient
codes. With the aid of the Nsight tool, we can investigate disassemble codes in
CUDA programming. In Appendix at Table 7, we show a comparison of some
part of LEA operations. This is a simple rotation function, but in CUDA-C
language, additional memory access is conducted, which is expensive in CUDA.
Even though we explicitly declared the variables as register type, the complier
generated a poor source code. Unlike the CUDA-C source code in PTX, we can
use registers rather than memory access to obtain high performance by avoiding
expensive memory access.

Hard-Coded Delta. In round-key scheduling, delta variables are used for gen-
erating round keys. These variables are public parameters and we can pre-compute
them off-line. Since the operations (ROLi(δ[i mod 4]), ROLi+1(δ[i mod 4]),

Parallel Implementations of LEA 261

ROLi+2(δ[i mod 4]),and ROLi+3(δ[i mod 4]);) always generate constant results,
we pre-computed all values listed in Appendix at Table 8 which required
1.536 KBytes of memory. For a GPU with gigabytes of memory, this memory con-
sumption is negligible. The pre-computed delta value is not stored in memory but
is explicitly hard-coded in assembly language. This means memory is not accessed
but we obtained immediate variables from assembly code.

Coalescing Memory. Global memory access is much slower than kernel local
registers. If variables are gathered in a group, they can be dispatched in a sin-
gle access, called a coalesced memory [18]. To assign seven encryptions into
one thread, we first tried to allocate seven 128-bit plaintext struct pointers for
the single thread which is described in Fig. 2(a). However, this is not coalesced
memory and the performance is highly degraded because the first thread TID0
accesses memory P0 0, P0 1, and P0 2. The next thread TID1 accesses memory
by three offsets. This does not satisfy the coalesced memory and performance is
about ten times degraded in our experiments. For better performance, the coa-
lescing memory should be satisfied. We allocated a memory structure as shown
in Fig. 2(b). In this case, thread can access to memory in grouped way such
as grouping (P0 0, P0 1 and P0 2), (P1 0, P1 1 and P1 2) and (P2 0, P2 1 and
P2 2) so this satisfies the coalesced memory and the performance is considerably
improved than non-coalesced memory access. Our CUDA kernel is described in
Table 10, and we assigned each memory pointer to each thread to align memory
access properly.

(a) (b)

Fig. 2. Memory access models for (a) non-coalescing memory (b) coalescing memory

3.3 NEON-LEA

SIMD: Single Instruction Multiple Data. An SIMD machine computes
the single operation on multiple data using instructions listed in Appendix at
Table 9. In the NEON implementation, we also tested both versions, OFM and
SEM. To conduct the single operation on multiple data, we grouped four 32-bit
plaintext having the same index because NEON provides quad-register support-
ing 128-bit wise operations and four 32-bit word can fit into the quad-registers.
For OFM, we assigned each 4-quad-register for delta, round key, message and
temporary, respectively. In the case of SEM, we do not need to maintain delta
variables so we can use the remaining registers as temporary registers or storage

262 H. Seo et al.

for preserving round keys or plaintext. In Fig. 3, we show the implementation
structure. For the SIMD architecture, we assigned the same index of four secret
keys into quad-registers to compute the single operation with multiple data.
After key scheduling, the round keys are generated from secret keys. These val-
ues are inputted into the next encryption process. Plaintexts also have the same
index and these are allocated into the quad-register to compute multiple oper-
ations. In the case of SEM, round keys are pre-computed and then stored into
memory and later simply loaded from the memory rather than straight-forward
computations. Furthermore, multiple data are efficiently accessed using multiple
memory accesses. SEM does not need to preserve delta variables in registers so
we can exploit these registers as temporal registers to load, loading more keys or
plaintext variables. The impact of register usages is analyzed in the evaluation
section.

)b()a(

Fig. 3. Design of NEON-LEA for (a) OFM, (b) SEM.

Interleaving Delta Processing. Interleaving delta processing is derived from
the characteristics of bits in constant delta variables. As we can see in Appendix
at Table 11, there are four constants listed in binary representation for 128-bit
encryption. In the key scheduling process, the delta variable is firstly rotated
to the right or left and the results are used for round key generations. In ARM
processors, the rotation instruction can be simply used to compute a single
rotation instruction. Unlike the ARM processor, NEON (SIMD) does not provide
rotation function so we should compute two shift instructions and one exclusive-
or operation. From our observation, the delta variable has many zero bits that do
not generate carry or borrow. We listed all cases that only need to compute one
shift operation in Table 11, removing the instruction that does not contribute

Parallel Implementations of LEA 263

to final results. In Appendix at Table 13(a), we show one example which is the
second round of key scheduling. The constant variable (0x44626b02) is left-
shifted by one, two, three and four. In this case, the binary representation of
variable is 0b0100, so we can remove the first, third and fourth operations which
are Step 2, 12 and 17 respectively.

Elimination of Interdependency. The NEON performance is highly influ-
enced by interdependency among instructions. If the previous instruction con-
tributes to one register, the next instruction should avoid the register pipelining
the instructions. If each instruction has interdependency, the next instruction
should wait until the previous instruction is completed. In Table 13(b), we show
program codes of normal and pipelined implementations. In a normal case, quad-
register q8 and q1 is used in Step 1, 2 and this is also used in the subsequent
Step 3, so the program is not pipelined due to interdependency of each Step. In
the case of a pipelined implementation, we re-ordered all instructions, so there
is no interdependency between previous and subsequent instructions. In Step 1
to 3, registers are used in this order (q8, q10, q4), (q1, q11, q5), and (q2, q13,
q6). No register is used consecutively and instructions are pipelined.

4 Results

4.1 CUDA-LEA

In this section, we evaluate the performance of the CUDA implementations.
The difficulty of the evaluation of GPU is that all developers’ environments are
different. For this reason, we should generalize our performance in an objective
way. First, we compared our results with the LEA results on computers. Then we
compared our results to previous GPU-based block and stream cipher implemen-
tations. Our target computer was equipped with GTX680, Intel i7-3770 CPU,
and 8 GB RAM and the program was executed on Windows 7 operating system,
visual studio 2012, and CUDA ver 5.5. The execution time is measured by CUDA
event API in milliseconds precision, because host time-stamp function uses the
explicit synchronization barrier cudaDeviceSynchronize() to block CPU exe-
cution and this degrades performance significantly by stalling GPU pipeline. We
tested only memory transfer overheads and it was found to reach to 2.79 GBps
without any other computations. This means that the GPU performance is lim-
ited to less than under 2.79 GBps. In Table 1, proposed GPU implementation
results are summarized. As mentioned in [14], GPU is highly influenced by the
number of block and thread. We tested various combinations and found that
the largest number of blocks showed the highest performance up to 2.5, and
17.352 GBps with, without memory transfer, respectively.

Comparison with CPU Implementations. Table 2 shows the performance
over CPU and its best result is 6.133 GBps when we assume that multiple cores

264 H. Seo et al.

Table 1. CUDA-LEA results on various combinations of (block/thread).

Method 512/1024 256/1024 128/1024 64/1024

OFM

Tp (GBps) (w/m) 2.434 2.426 2.379 2.406

Tp (GBps) (w/o m) 16.145 15.965 15.499 15.215

SEM

Tp (GBps) (w/m) 2.505 2.492 2.450 2.459

Tp (GBps) (w/o m) 17.352 17.109 16.738 16.256

are fully used. To estimate the throughput, we first compute the throughput and
the multiplied number of thread in each model. Particularly, the new Intel proces-
sor provides hyper-threading, so in this case, we multiplied the working threads
by two. For example, in the case of Intel Core i7 2600K, we calculated through-
put using the following equation, 6.133 GBps = 6, 133, 333, 333 = 2,300,000,000×12

4.5(
frequency×thread

cycles/bytes

)
. Even though the GPU performance with memory transfer is

lower than CPU due to slow PCI speed, GPU implementation without memory
transfer shows 2.83 times faster. When we consider that the memory transfer
would be removed by adopting heterogeneous computing model in near future,
comparing CPU results with GPU implementations without memory transfer is
meaningful.

Table 2. Previous LEA SEM implementations on CPU [6], c/b: cycle/byte, T:
Throughput, ‘*’ symbol means the Intel hyper-threading technology which delivers
two processing threads per physical core. Highly threaded applications can get more
work done in parallel, completing tasks sooner [9].

Platform Speed (c/b) T (GBps) Mode

Intel Core 2 Quad Q6600 2.4GHz 4-core 9.29 1.033 Normal

Intel Core i5-2500 3.3GHz 4-core 9.29 1.421 Normal

AMD K10 Phenom II X4 965 3.4GHz 4-core 8.85 1.537 Normal

AMD Opteron 6176SE 2.3GHz 12-core 8.85 3.119 Normal

Intel Core 2 Quad Q6600 2.4GHz 4-core 4.51 2.129 SIMD

Intel Core i7 860 2.8GHz 4-core∗ 4.19 2.673 SIMD

AMD opteron 6176SE 2.3GHz 12-core 4.50 6.133 SIMD

Comparison with CUDA Implementations. We evaluated LEA imple-
mentations on GTX680 and the previous best result obtained using Salsa20/12
stream cipher on GTX590. To evaluate our performance fairly, we should scale
both factors including target cipher and graphic cards. Recently, many reports
argue that performance of GTX680 (Kepler) is at par with GTX580 (Fermi)

Parallel Implementations of LEA 265

[19–21] which means the number of cores does not directly contribute to the
performance. For this reason, we consider that GTX590 and GTX680 have the
same performance in the CUDA computing model. In case of cipher, the pre-
vious result draws performance enhancement in stream cipher Salsa20/12 [14].
This cipher consists of 12 rounds and each round has 16 ARX (addition, rota-
tion, and exclusive-or) operations and the output is 64-byte. In case of LEA,
we should conduct the key scheduling and encryption. Each operation consists
of 24 rounds and each round of key generation and encryption has four ARX
operations, and the output is 16-byte. If we consider that basic instructions such
as addition, rotation, and exclusive-or have same overheads, the throughput of
previous work is 1

9 = 64
12×16×3 and ours is 1

36 = 16
24×8×3 . For fair comparison,

we multiplied our throughput by 4 and our works are scaled to 69.4 GBps and
this is 37.4 % higher performance than previous results [14]. However, our imple-
mentation uses one trick which omits 6 key generation processes, so we scaled
again by multiplying 8

14 to scaled result. Finally, the result is 39.66 GBps, and
this is 8.7 % lower performance than [14]. As we know, LEA and Salsa 20/12 is
different algorithms so it is hard to mention which GPU implementation is faster
than others so we just provided comparison results in straight-forward fashion.
When it comes to other results [10–13], the scaled results are 5.7, 24, 1.64 and
9.3 GBps and these results are lagging behind our results. The second concern
is slow memory transfer. When we measure our memory transfer, without any
operations the performance is 2.8 GBps. This means our PCI-E memory transfer
is limited and memory transfer highly depends on development environments,
so we are not seriously concerned on memory transfer factor in this paper.

4.2 NEON-LEA

Comparison with ARM Implementations. For performance evaluation,
we selected the target device as Cortex-A9 board operated at 1.7 GHz and pro-
grammed source code using the NDK android library. The performance is mea-
sured in system time function. We tested various NEON implementations and
the results are listed in Table 4. First, OFM is implemented in normal and inter-
leaving delta processing. The Interleaving delta processing method shows 13.4 %
enhancement than the normal computation. There are no reference OFM results
reported but key scheduling has a similar complexity of encryption when we
assume that key scheduling has the same overheads of encryption roughly. Com-
pared to the expected results, NEON-based OFM is improved by 25.5 %. In case
of SEM, we tried to load 24- or 16-byte round keys at once because in LEA-128
three round keys are duplicated and 16-byte access is reasonable. However, to
reduce interdependency we tested model to load 24-byte and removed all interde-
pendency among round keys. Interestingly, the 24-byte pipeline method shows a
slower result than the 16-byte model because memory access imposes more over-
heads than benefits from full pipelined code. For this reason, 16-byte round key
access pipeline method shows the fastest results and performance enhancement
is up-to 49.85 % than the previous result. We further implemented encryption

266 H. Seo et al.

Table 3. Comparison of previous CUDA implementations, Tp: Throughput, S-Tp:
Scaled-Tp

D. Stefan S. Neves A. Khalid K. Iwai N. Nishikawa This work

[11] [12] [14] [13]

Algorithm Salsa20/12 Salsa20/12 Salsa20/12 AES AES LEA

Block/stream Stream Stream Stream Block Block Block

Device GTX 295 GTX260 GTX590 GTX285 GTX285 GTX680

Release 08/01/2009 16/06/2008 24/03/2011 15/01/2009 15/01/2009 22/3/2012

Compute 1.3 1.2 2.0 1.3 1.3 3.0

capability

Cores 480 192 512 240 240 1,536

Shader 1,242 1,350 1,215 1,470 1,470 1,006

freq (MHz)

Threads 256 256 320 512 512 1,024

block

Program C C C C C Assembly

language

Tp (GBps) - 1.3 2.8 - 2.8 2.5

(w/m)

Tp (GBps) 5.3 9 43.44 0.78 4.4 17.35

(w/o m)

S-Tp (GBps) 5.7 24 43.44 1.64 9.3 69.4/39.7

(w/o m)

Table 4. Comparison of LEA Implementations on ARM/NEON Instructions, c/b:
cycle/byte, Gbps: Giga bit per second

Methods Speed (c/b) T (Gbps) Instruction

OFM

Previous works [6] 40.12 0.338 ARM

Normal 39.84 0.341 NEON

Interleaving delta processing 34.53 0.394 NEON

SEM

Previous works [6] 20.06 0.678 ARM

Pre-compute (24-byte) 31.34 0.434 NEON

Pre-compute (24-byte)+Pipeline 11.95 1.138 NEON

Pre-compute (16-byte) 15.93 0.853 NEON

Pre-compute (16-byte)+Pipeline 10.06 1.351 NEON

Double Pre-compute (16-byte) 15.93 0.854 NEON

Parallel Implementations of LEA 267

Table 5. The PTX instruction set used in this paper.

Operation Syntax

add Add two values

xor Bitwise exclusive-OR

shl Shift bits left, zero-fill on right

shr Shift bits right, sign or zero fill on left

mov Set a register variable with the value of another register

register variable or an immediate value

ld Load a register variable from an addressable state space variable

st Store a register variable to an addressable state space variable

Table 6. Comparison of PTX and CUDA-C implementations with 65536-bit messages.

No. block No. thread PTX (ms) CUDA-C (ms) Ratio (PTX
CUDA−C

)

1 512 0.064 0.29 0.22

2 256 0.063 0.27 0.23

4 128 0.064 0.24 0.27

8 64 0.066 0.23 0.29

16 32 0.063 0.23 0.28

Table 7. Comparison of program codes in CUDA-C and PTX (temp[1]
= ROL(delta[0], 1)).

CUDA-C PTX

1. ld.local.u32 %r69, [delta 128 + 4]; 1. shl.b32 t1, d0, 1;

2. shr.u32 %r70, %r69, 31; 2. shr.b32 t2, d0, 31;

3. ld.local.u32 %r71, [delta 128 + 4]; 3. xor.b32 t3, t2, t1;

4. shl.b32 %r72, %r71, 1;

5. add.u32 %r73, %r70, %r72;

6. st.local.u32 [temp 64 + 4], %r73;

with double plaintext size (128 × 8) and 16-byte pre-computation by exploit-
ing remaining registers. However, this result shows similar throughput of single
plaintext size (128×4) because performance highly depends on round key access
pattern rather than other factors (Table 3).

Comparison with NEON Implementations. In NEON crypto [2], Salsa-
20/12 is computed within 2.75 cycles/byte. After scaling these results to
compare with LEA, the performance is 11 cycles/byte following previous assump-
tions in GPU evaluation. Compared to our best results 10.06 cycle/byte, our
results are faster than previous Salsa20/12 NEON results by 8.54 %. As we

268 H. Seo et al.

Table 8. Hard coded delta variables.

Hard coded delta

0xc3efe9db, 0x87dfd3b7, 0x0fbfa76f, 0x1f7f4ede, 0x88c4d604,

0x1189ac09, 0x23135812, 0x4626b024, 0xe789f229, 0xcf13e453,

0x9e27c8a7, 0x3c4f914f, 0xc6f98763, 0x8df30ec7, 0x1be61d8f,

0x37cc3b1e, 0x3efe9dbc, 0x7dfd3b78, 0xfbfa76f0, 0xf7f4ede1,

0x8c4d6048, 0x189ac091, 0x31358122, 0x626b0244, 0x789f229e,

0xf13e453c, 0xe27c8a79, 0xc4f914f3, 0x6f98763c, 0xdf30ec78,

0xbe61d8f1, 0x7cc3b1e3, 0xefe9dbc3, 0xdfd3b787, 0xbfa76f0f,

0x7f4ede1f, 0xc4d60488, 0x89ac0911, 0x13581223, 0x26b02446,

0x89f229e7, 0x13e453cf, 0x27c8a79e, 0x4f914f3c, 0xf98763c6,

0xf30ec78d, 0xe61d8f1b, 0xcc3b1e37, 0xfe9dbc3e, 0xfd3b787d,

0xfa76f0fb, 0xf4ede1f7, 0x4d60488c, 0x9ac09118, 0x35812231,

0x6b024462, 0x9f229e78, 0x3e453cf1, 0x7c8a79e2, 0xf914f3c4,

0x98763c6f, 0x30ec78df, 0x61d8f1be, 0xc3b1e37c, 0xe9dbc3ef,

0xd3b787df, 0xa76f0fbf, 0x4ede1f7f, 0xd60488c4, 0xac091189,

0x58122313, 0xb0244626, 0xf229e789, 0xe453cf13, 0xc8a79e27,

0x914f3c4f, 0x8763c6f9, 0x0ec78df3, 0x1d8f1be6, 0x3b1e37cc,

0x9dbc3efe, 0x3b787dfd, 0x76f0fbfa, 0xede1f7f4, 0x60488c4d,

0xc091189a, 0x81223135, 0x0244626b, 0x229e789f, 0x453cf13e,

0x8a79e27c, 0x14f3c4f9, 0x763c6f98, 0xec78df30, 0xd8f1be61,

0xb1e37cc3

Table 9. The NEON instruction set used in this paper.

Operation Syntax

vadd Adds the vector-wise values in the operand registers

veor Performs bitwise logical operations between two registers

vshl Left shift them by an immediate value

vsri Right shifts them by an immediate value,

and inserts the results in the destination vector

vldmia Load multiple register variables from an addressable state space variables

vstmia Store multiple register variables to an addressable state space variables

mentioned before, we only provide comparison results which does not mean that
our implementation is faster than previous results [2] due to different architec-
tures in each algorithm.

Parallel Implementations of LEA 269

Table 10. Coalescing memory call in CUDA kernel, mi j means 32-bit plain text where
‘i’ is message number and ‘j’ is index in a message.

const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

LEA encrypt(&(m0 0[idx]), &(m0 1[idx]), &(m0 2[idx]), &(m0 3[idx]),

&(m1 0[idx]), &(m1 1[idx]), &(m1 2[idx]), &(m1 3[idx]),

&(m2 0[idx]), &(m2 1[idx]), &(m2 2[idx]), &(m2 3[idx]),

&(m3 0[idx]), &(m3 1[idx]), &(m3 2[idx]), &(m3 3[idx]),

&(m4 0[idx]), &(m4 1[idx]), &(m4 2[idx]), &(m4 3[idx]),

&(m5 0[idx]), &(m5 1[idx]), &(m5 2[idx]), &(m5 3[idx]),

&(m6 0[idx]), &(m6 1[idx]), &(m6 2[idx]), &(m6 3[idx]), &(key[0]));

Table 11. Interleaving delta processing method

Hexadecimal Interleaving index

0xc3efe9db 29, 28, 27, 26, 20, 12, 10, 9, 5, 3

0x44626b02 31, 29, 28, 27, 25, 24, 23, 20, 19, 18, 16, 15, 12, 10, 7, 6, 5, 4, 3, 2, 0

0x79e27c8a 31, 26, 25, 20, 19, 18, 16, 15, 9, 8, 6, 5, 4, 2, 0

0x78df30ec 31, 26, 25, 24, 21, 15, 14, 11, 10, 9, 8, 4, 1, 0

Table 12. Performance comparison of encryption per thread, GBps: Giga byte per
second, w/m: with memory transfer, w/o m: without memory transfer.

Encryption/thread 1 2 3 4 5 6 7

Throughput (GBps) (w/m) 2.16 2.29 2.34 2.37 2.39 2.42 2.43

Throughput (GBps) (w/o m) 9.36 12.94 14.52 15.16 15.03 15.82 16.14

270 H. Seo et al.

Table 13. First and second tables denote (a) and (b), respectively, (a) Interleaving
delta processing, in case of computing the second round of constant(0x44626b02), (b)
Normal and pipelined program codes for one round of encryption in NEON instructions.

Normal Interleaving delta

1. vshl.i32 q4, q1, #1 1. vshl.i32 q4, q1, #1

2. vsri.32 q4, q1, #31 2. pass

3. vadd.i32 q12,q4, q12 3. vadd.i32 q12,q4, q12

4. vshl.i32 q4, q12, #1 4. vshl.i32 q4, q12, #1

5. vsri.32 q4, q12, #31 5. vsri.32 q4, q12, #31

6. vshl.i32 q5, q1, #2 6. vshl.i32 q7, q1, #2

7. vsri.32 q5, q1, #30 7. vsri.32 q7, q1, #30

8. vadd.i32 q13,q5, q13 8. vadd.i32 q13,q7, q13

9. vshl.i32 q5, q13, #3 9. vshl.i32 q5, q13, #3

10. vsri.32 q5, q13, #29 10. vsri.32 q5, q13, #29

11. vshl.i32 q6, q1, #3 11. vshl.i32 q6, q7, #1

12. vsri.32 q6, q1, #29 12. pass

13. vadd.i32 q14,q6,q14 13. vadd.i32 q14,q6,q14

14. vshl.i32 q6, q14, #6 14. vshl.i32 q6, q14, #6

15. vsri.32 q6, q14, #26 15. vsri.32 q6, q14, #26

16. vshl.i32 q7, q1, #4 16. vshl.i32 q7, q7, #2

17. vsri.32 q7, q1, #28 17. pass

18. vadd.i32 q15,q7,q15 18. vadd.i32 q15,q7,q15

19. vshl.i32 q7, q15, #11 19. vshl.i32 q7, q15, #11

20. vsri.32 q7, q15, #21 20. vsri.32 q7, q15, #21

Normal Pipeline

1. veor q8, q10, q4 1. veor q8, q10, q4

2. veor q1, q11, q5 2. veor q1, q11, q5

3. vadd.i32 q8,q8,q1 3. veor q2, q13, q6

4. vshl.i32 q1, q8, #9 4. veor q9, q12, q5

5. vsri.32 q1, q8, #23 5. veor q3, q15, q7

6. veor q9, q12, q5 6. veor q0, q14, q6

7. veor q2, q13, q6 7. vadd.i32 q8,q8,q1

8. vadd.i32 q9,q9,q2 8. vadd.i32 q9,q9,q2

9. vshl.i32 q2, q9, #27 9. vadd.i32 q0,q0,q3

10. vsri.32 q2, q9, #5 10. vshl.i32 q1, q8, #9

11. veor q0, q14, q6 11. vshl.i32 q2, q9, #27

12. veor q3, q15, q7 12. vshl.i32 q3, q0, #29

13. vadd.i32 q0,q0,q3 13. vsri.32 q1, q8, #23

14. vshl.i32 q3, q0, #29 14. vsri.32 q2, q9, #5

15. vsri.32 q3, q0, #3 15. vsri.32 q3, q0, #3

Parallel Implementations of LEA 271

5 Conclusion

In this paper, we presented parallel implementation methods of LEA on repre-
sentative SIMT and SIMD architectures such as CUDA and NEON. We achieved
performance enhancement to 17.352 GBps (bytes per second) without memory
transfer, which is 2.83 times faster than the CPU counterparts. In case of NEON,
we achieved 10.06 cycle/byte and 0.84 Gbps (bits per second) which improved
the traditional ARM results by 49.85 %.

Appendix

Algorithm 1. Key Schedule with a 128-bit Key.
Input: master key K, constants δ.
Output: round key RK.
1. T [0] = K[0], T [1] = K[1], T [2] = K[2], T [3] = K[3].
2. for i ← 0 to 23
3. T [0] ← ROL1(T [0] � ROLi(δ[i mod 4])
4. T [1] ← ROL3(T [1] � ROLi+1(δ[i mod 4])
5. T [2] ← ROL6(T [2] � ROLi+2(δ[i mod 4])
6. T [3] ← ROL11(T [3] � ROLi+3(δ[i mod 4])
7. RKi ← (T [0], T [1], T [2], T [1], T [3], T [1])
8. end for
9. return RK

Algorithm 2. Encryption with a 128-bit Key.
Input: plaintext P , round key RK.
Output: ciphertext C
1. X0[0] = P [0], X0[1] = P [1], X0[2] = P [2], X0[3] = P [3].
2. for i ← 0 to 23
3. Xi+1[0] ← ROL9(Xi[0] ⊕ RKi[0]) � (Xi[1] ⊕ RKi[1])
4. Xi+1[1] ← ROR5(Xi[1] ⊕ RKi[2]) � (Xi[2] ⊕ RKi[3])
5. Xi+1[2] ← ROR3(Xi[2] ⊕ RKi[4]) � (Xi[3] ⊕ RKi[5])
6. Xi+1[3] ← Xi[0]
7. end for
8. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3].
9. return C

272 H. Seo et al.

Algorithm 3. On the Fly Mode, 128-bit Key
Input: master key K, constants δ, plaintext P .
Output: ciphertext C.
1. T [0] = K[0], T [1] = K[1], T [2] = K[2], T [3] = K[3].
2. X0[0] = P [0], X0[1] = P [1], X0[2] = P [2], X0[3] = P [3].
2. for i ← 0 to 23
4. T [0] ← ROL1(T [0] � ROLi(δ[i mod 4))
5. T [1] ← ROL3(T [1] � ROLi+1(δ[i mod 4))
6. T [2] ← ROL6(T [2] � ROLi+2(δ[i mod 4))
7. T [3] ← ROL11(T [3] � ROLi+3(δ[i mod 4))
8. Xi+1[0] ← ROL9(Xi[0] ⊕ T [0]) � (Xi[1] ⊕ T [1])
9. Xi+1[1] ← ROR5(Xi[1] ⊕ T [2]) � (Xi[2] ⊕ T [1])
10. Xi+1[2] ← ROR3(Xi[2] ⊕ T [3]) � (Xi[3] ⊕ T [1])
11. Xi+1[3] ← Xi[0]
12. end for
13. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3].
14. return C

Algorithm 4. Separate Encryption Mode, 128-bit Key
Input: master key K, constants δ, plaintext P .
Intermediate: round key RK.
Output: ciphertext C.
1. T [0] = K[0], T [1] = K[1], T [2] = K[2], T [3] = K[3].
2. for i ← 0 to 23
3. T [0] ← ROL1(T [0] � ROLi(δ[i mod 4))
4. T [1] ← ROL3(T [1] � ROLi+1(δ[i mod 4))
5. T [2] ← ROL6(T [2] � ROLi+2(δ[i mod 4))
6. T [3] ← ROL11(T [3] � ROLi+3(δ[i mod 4))
7. RKi ← (T [0], T [1], T [2], T [1], T [3], T [1])
8. end for
9. X0[0] = P [0], X0[1] = P [1], X0[2] = P [2], X0[3] = P [3].
10. for i ← 0 to 23
11. Xi+1[0] ← ROL9(Xi[0] ⊕ RKi[0]) � (Xi[1] ⊕ RKi[1])
12. Xi+1[1] ← ROR5(Xi[1] ⊕ RKi[2]) � (Xi[2] ⊕ RKi[3])
13. Xi+1[2] ← ROR3(Xi[2] ⊕ RKi[4]) � (Xi[3] ⊕ RKi[5])
14. Xi+1[3] ← Xi[0]
15. end for
16. C[0] = X24[0], C[1] = X24[1], C[2] = X24[2], C[3] = X24[3].
17. return C

Parallel Implementations of LEA 273

References

1. NEON. http://www.arm.com/products/processors/technologies/neon.php. Acce-
ssed 2013

2. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012)

3. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON implementation of an attribute-
based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg
(2013)

4. Nvidia: CUDA C programming guide (2012)
5. Nvidia: CUDA best practices guide (2012)
6. Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit

block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig,
A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 1–24. Springer, Heidelberg (2014)

7. Nvidia: Parallel thread execution ISA version 3.1. http://docs.nvidia.com/cuda/
pdf/ptx isa 3.1.pdf. Accessed 2013

8. Scott, M., Szczechowiak, P.: Optimizing multiprecision multiplication for public
key cryptography. IACR Cryptology ePrint Archive 2007:299 (2007)

9. Intel Corporation. http://ark.intel.com/. Accessed 2013
10. Iwai, K., Kurokawa, T., Nisikawa, N.: AES encryption implementation on CUDA

GPU and its analysis. In: 2010 First International Conference on Networking and
Computing (ICNC), pp. 209–214. IEEE (2010)

11. Stefan, D.: Analysis and Implementation of eSTREAM and SHA-3 Cryptographic
Algorithms. Ph.D. dissertation, COOPER UNION (2011)

12. Neves, S., Arajo, F.: Cryptography in GPUs. Ph.D. dissertation, Masters thesis,
Universidade de Coimbra, Coimbra (2009)

13. Iwai, K., Nishikawa, N., Kurokawa, T.: Acceleration of AES encryption on CUDA
GPU. Int. J. Netw. Comput. 2(1), 131 (2012)

14. Khalid, A., Paul, G., Chattopadhyay, A.: New speed records for Salsa20 stream
cipher using an autotuning framework on GPUs. In: Youssef, A., Nitaj, A.,
Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 189–207.
Springer, Heidelberg (2013)

15. Liu, G., An, H., Han, W., Xu, G., Yao, P., Xu, M., Hao, X., Wang, Y.: A program
behavior study of block cryptography algorithms on GPGPU. In: Fourth Interna-
tional Conference on Frontier of Computer Science and Technology, 2009 FCST’09,
pp. 33–39. IEEE (2009)

16. Di Biagio, A., Barenghi, A., Agosta, G., Pelosi, G.: Design of a parallel AES for
graphics hardware using the CUDA framework. In: IEEE International Symposium
on Parallel & Distributed Processing, 2009. IPDPS 2009, pp. 1–8. IEEE (2009)

17. Bernstein, D.J., Chen, H.-C., Cheng, C.-M., Lange, T., Niederhagen, R., Schwabe,
P., Yang, B.-Y.: Usable assembly language for GPUs: a success story. IACR Cryp-
tology ePrint Archive 2012:137 (2012)

18. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Newnes, Boston (2012)

19. Benchmarking the new Kepler (GTX 680). http://blog.accelereyes.com/blog/
2012/04/26/benchmarking-kepler-gtx-680/. Accessed 2013

20. GeForce GTX 680 2 GB review: Kepler sends Tahiti on vacation. http://www.
tomshardware.com/reviews/geforce-gtx-680-review-benchmark,3161-15.html.
Accessed 2013

http://www.arm.com/products/processors/technologies/neon.php
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf
http://ark.intel.com/
http://blog.accelereyes.com/blog/2012/04/26/benchmarking-kepler-gtx-680/
http://blog.accelereyes.com/blog/2012/04/26/benchmarking-kepler-gtx-680/
http://www.tomshardware.com/reviews/geforce-gtx-680-review-benchmark,3161-15.html
http://www.tomshardware.com/reviews/geforce-gtx-680-review-benchmark,3161-15.html

274 H. Seo et al.

21. GPGPU face-off: K20 vs 7970 vs GTX680 vs M2050 vs GTX580. http://wili.cc/
blog/gpgpu-faceoff.html. Accessed 2013

22. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In: IEEE International Conference on Signal Processing and
Communications, 2007, ICSPC 2007, pp. 65–68. IEEE (2007)

23. Holzer-Graf, S., Krinninger, T., Pernull, M., Schläffer, M., Schwabe, P., Seywald,
D., Wieser, W.: Efficient vector implementations of AES-based designs: a case
study and new implemenations for Grøstl. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 145–161. Springer, Heidelberg (2013)

http://wili.cc/blog/gpgpu-faceoff.html
http://wili.cc/blog/gpgpu-faceoff.html

Primitives for Cryptography

Invertible Polynomial Representation
for Private Set Operations

Jung Hee Cheon(B), Hyunsook Hong, and Hyung Tae Lee

CHRI and Department of Mathematical Sciences, Seoul National University,
1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea

{jhcheon,hongsuk07,htsm1138}@snu.ac.kr

Abstract. In many private set operations, a set is represented by a
polynomial over a ring Zσ for a composite integer σ, where Zσ is the
message space of some additive homomorphic encryption. While it is
useful for implementing set operations with polynomial additions and
multiplications, it has a limitation that it is hard to recover a set from a
polynomial due to the hardness of polynomial factorization over Zσ.

We propose a new representation of a set by a polynomial over Zσ,
in which σ is a composite integer with known factorization but a cor-
responding set can be efficiently recovered from a polynomial except
negligible probability. Since Zσ[x] is not a unique factorization domain,
a polynomial may be written as a product of linear factors in several
ways. To exclude irrelevant linear factors, we introduce a special encod-
ing function which supports early abort strategy. Our representation can
be efficiently inverted by computing all the linear factors of a polynomial
in Zσ[x] whose roots locate in the image of the encoding function.

As an application of our representation, we obtain a constant-round
private set union protocol. Our construction improves the complexity
than the previous without honest majority.

Keywords: Polynomial representation · Polynomial factorization ·
Root finding · Privacy-preserving set union

1 Introduction

Privacy-preserving set operations (PPSO) are to compute set operations of
participants’ dataset without revealing any information other than the result.
There have been many proposals to construct PPSO protocols with various tech-
niques such as general MPC [1,9], polynomial representations [7,8,10,12,18],
pseudorandom functions [11], and blind RSA signatures [4,5]. While the last two
techniques are hard to be generalized into multi-party protocols, polynomial rep-
resentations combining with additive homomorphic encryption (AHE) schemes
enable us to have multi-party PPSO protocols for various operations including
set intersection [8,12,18], (over-)threshold set union [12], element reduction [12]

This work includes some part of the third author’s PhD thesis [14].

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 277–292, 2014.
DOI: 10.1007/978-3-319-12160-4 17

278 J.H. Cheon et al.

and so on. Among these constructions, set intersection protocols run in constant
rounds, but others run in linear of the number of participants.

Let us focus on privacy-preserving set union protocols. There are two obsta-
cles to construct constant round privacy-preserving multi-party set union pro-
tocols based on the polynomial representation with AHE schemes. First, in the
polynomial representation set union corresponds to polynomial multiplication,
which is not supported by an AHE scheme in constant rounds. Second, to recover
the union set from the resulting polynomial, we need a root finding algorithm of
a polynomial over Zσ, where Zσ is the message space of the AHE scheme.

Recently, Seo et al. [19] proposed a constant round set union protocol based
on a novel approach in which a set is represented as a rational function using
the reversed Laurent series. In their protocol, each participant takes part in
the protocol with a rational function whose poles consist of the elements of his
set and at the end of the protocol he obtains a rational function whose poles
correspond to the set union. Then each participant recovers the denominator
of the rational function using the extended Euclidean algorithm and finds the
roots of the denominator. Since each rational function is summed up to the
resulting function after encrypted under an AHE scheme, the first obstacle is
easily overcome.

However, a root finding is still problematic on the message space Zσ of the
AHE schemes. Since the message space has unknown order [16] or is not a unique
factorization domain (UFD) [2,15,17] in the current efficient AHE schemes,
there is no proper polynomial factorization or root finding algorithm working on
the message space. To avoid this obstacle, the authors in [19] utilized a secret
sharing scheme. However, it requires computational and communicational costs
heavier than the previous and requires an honest majority for security since
their protocol exploits a secret sharing scheme to support privacy-preserving
multiplications in constant rounds.

Our Contribution. Let σ =
∏�̄

j=1 qj for distinct primes qj , which is larger
than the size of the universe of set elements. We propose a new representation
of a set by a polynomial over Zσ in which a corresponding set can be efficiently
recovered from a polynomial except negligible probability when the factorization
of σ is given.

For a given polynomial f(x) =
∏d

i=1(x − si) ∈ Zσ[x], if the factorization
of σ is given, one can obtain all roots of f in Zqj

for each j by exploiting a
polynomial factorization algorithm over a finite field Zqj

[22]. By reassembling
the roots of f in Zσ using the Chinese Remainder Theorem (CRT), we can obtain
all the candidates. However, the number of candidates amounts to d�̄, which is
exponential in the size of the universe.

We introduce a special encoding function ι to exclude irrelevant candidates
efficiently. For a polynomial f =

∏d
i=1(x − ι(si)) ∈ Zσ[x], our encoding function

aborts most irrelevant candidates without d�̄ CRT computations, by giving a
certain relation among roots of f in Zqj

[x] and roots of f in Zqj+1 [x]. As a

Invertible Polynomial Representation for Private Set Operations 279

Table 1. Comparison with previous set-union protocols

HBC Rounds Communication cost Computational cost # of honest party

[12] O(n) O(n3kτN) O(n4k2τNρN) ≥ 1

[8] O(n) O(n2kτN) O(n2k2τNρN) ≥ 1

[19] O(1) O(n4k2τp′) O(n5k2ρp′) ≥ n/2

Ours O(1) O(n3kτN) O(n3k2τNρN) ≥ 1

Malicious Rounds Communication cost Computational cost # of honest party

[8] O(n) O((n2k2 + n3k)τN) O(n2k2τNρN) ≥ 1

[19] O(1) O(n4k2τp) O(n5k2τpρp) ≥ n/2

Ours O(1) O(n3k2τN) O(n3k2τNρN) ≥ 1

n: the number of participants, k: the maximum size of sets
τN , τp′ , τp: the size of modulus N for Paillier encryption scheme or NS encryption
scheme, the size p′ of representing domain, the order p of a cyclic group for Pedersen
commitment scheme, respectively
ρN , ρp′ , ρp: modular multiplication cost of modulus N for Paillier encryption scheme
or NS encryption scheme, p′ for the size of representing domain, p for the order of a
cyclic group for Pedersen commitment scheme, respectively

result, our encoding function enables us to efficiently recover all the roots of f
with negligible failure probability if they are in the image of ι.

As an application of our representation, combining with Naccache-Stern (NS)
AHE scheme which is the factorization of σ is public, we obtain an efficient
constant round privacy-preserving set union protocol without an honest major-
ity. In Table 1, we compare our set union protocols with the previous main
results [8,12,19].

Organization. In Sect. 2 we look into some components of our privacy-preserving
set union protocol, including polynomial representation and AHE schemes. We
provide our new polynomial representation that enables us to uniquely factor-
ize a polynomial satisfying some criteria in Sect. 3. Our constant round privacy-
preserving set union protocols are presented in Sect. 4. Some supplying materials
including analysis of our representation are given in Appendix.

2 Preliminaries

In this section, we look into the polynomial representation of a set for PPSO
protocols and introduce efficient AHE schemes utilized in PPSO protocols to
support polynomial operations between encrypted polynomials.

2.1 Basic Definitions and Notations

Throughout the paper, let U be the universe, n the number of participants in the
protocol, and k the maximum size of participants’ datasets Si’s. Also, d denotes
the size of (multi-)set union among participants’ datasets in the protocol.

280 J.H. Cheon et al.

Let R[x] be a set of polynomials defined over a ring R and R(x) be a set of
rational functions defined over R, i.e., R[x] = {f(x)|f(x) =

∑deg f
i=0 f [i]xi and

f [i] ∈ R for all i} and R(x) = { f(x)
g(x) |f(x), g(x) ∈ R[x], g(x) �= 0}. For a poly-

nomial f ∈ R[x], we denote the coefficient of xi in a polynomial f by f [i], i.e.,
f(x) =

∑deg f
i=0 f [i]xi ∈ R[x]. For a polynomial f(x) =

∑deg f
i=0 f [i]xi ∈ Zσ[x] and

a factor q of σ, f mod q denotes a polynomial
∑deg f

i=0 (f [i] mod q)xi ∈ Zq[x].
We also define a negligible function as follows: a function g : N → R is

negligible if for every positive polynomial μ(λ), there exists an integer N such
that g(λ) < 1/μ(λ) for all λ > N .

2.2 Polynomial Representation of a Set

Let R be a commutative ring with unity and S be a subset of R. We may
represent a set S by a polynomial or a rational function over R.

Polynomial Representation. In some previous works [7,8,10,12,19], a set S can
be represented by a polynomial fS(x) ∈ R[x] whose roots are the elements of S.
That is, fS(x) :=

∏
si∈S(x−si). This representation gives the following relation:

fS(x) + fS′(x) = gcd(fS(x), fS′(x)) · u(x) for some polynomial u(x) ∈ R[x] and
hence the roots of a polynomial fS(x) + fS′(x) are the elements of S ∩ S′ with
overwhelming probability. Also, the roots of fS(x) · fS′(x) are the elements of
S ∪ S′ as multi-sets.

Rational function Representation. Recently, Seo et al. [19] introduced a novel
representation of a set S ⊂ R by a rational function FS over R whose poles

consist of the elements of S. That is, FS(x) :=
1

∏
si∈S(x − si)

=
1

fS(x)
. This

representation provides the following relation:

FS(x) + FS′(x) =
fS(x) + fS′(x)
fS(x) · fS′(x)

=
gcd(fS(x), fS′(x)) · u(x)

fS(x) · fS′(x)

=
u(x)

lcm(fS(x), fS′(x))

for some polynomial u(x) ∈ R[x] which is relatively prime to lcm(fS(x), fS′(x))
with overwhelming probability. Hence the poles of FS(x)+FS′(x) are exactly the
roots of lcm(fS(x), fS′(x)), which are the elements of S ∪ S′ as sets, not multi-
sets, if u(x) and lcm(fS(x), fS′(x)) have no common roots. This rational function
is represented again by an infinite formal power series, so called a Reversed
Laurent Series (RLS), in [19].

2.3 Additive Homomorphic Encryption

Let us consider a commutative ring R with unity and a R-module G where
r · g := gr for r ∈ R and g ∈ G. Let Encpk : R → G be a public key encryption
under the public key pk. We can define a public key encryption for a polynomial
f =

∑deg f
i=0 f [i]xi ∈ R[x] as follows: Epk(f) :=

∑deg f
i=0 Encpk(f [i])xi.

Invertible Polynomial Representation for Private Set Operations 281

Assume Encpk has an additive homomorphic property. Then one can easily
induce polynomial addition between encrypted polynomials and polynomial mul-
tiplication between an unencrypted polynomial and an encrypted polynomial.

There have been several efficient AHE schemes [15–17]: Under the assumption
that factoring N = p2q is hard, Okamoto and Uchiyama [16] proposed a scheme
with R = Zp and G = ZN , in which the order p of the message space R is hidden.
With the decisional composite residuosity assumption, Paillier scheme [17] has
R = ZN and G = ZN2 for N = pq, in which the size of message spaces is a hard-
to-factor composite integer N . Naccache and Stern [15] proposed a scheme with
R = Zσ and G = ZN under the higher residuosity assumption, where N = pq
is a hard-to-factor integer and σ is a product of small primes dividing φ(N) for
Euler’s totient function φ.

In the above schemes, it is hard to find the roots of a polynomial in R[x]
without knowing a secret key. For the second case, in fact, Shamir [20] showed
that to find a root of a polynomial f(x) =

∏d
i=1(x− si) ∈ ZN [x] is equivalent to

factor N . While, in the NS scheme, it may be possible to compute some roots
of a polynomial in Zσ[x] since the factorization of σ is public. But Zσ[x] is not
a UFD and hence the number of roots of a polynomial f ∈ Zσ[x] can be larger
than deg f . In fact, if f(x) =

∏d
i=1(x−si) ∈ R[x], then the number of candidates

of roots of the polynomial f is d�̄ where �̄ is the number of prime factors of σ.
We will use the NS scheme by presenting a method to efficiently recover all the
roots of a polynomial f ∈ Zσ[x] satisfying some criteria.

3 Invertible Polynomial Representation

In this section, we provide our new polynomial representation that enables us to
efficiently recover the exact corresponding set from the polynomial represented
by our suggestion.

Focus on the fact that the factorization of σ is public in the NS encryption
scheme. Using this fact, given a polynomial f =

∏d
i=1(x − si) ∈ Zσ[x] for a set

S = {s1, . . . , sd}, one can obtain all roots of f mod qj for each j by applying
a polynomial factorization algorithm over a finite field Zqj

such as Umans’ [22].
To recover S, one can perform CRT computation for obtaining less than d�̄

candidates of roots of f over Zσ. In general, however, the number of roots of f
over Zσ is larger than deg f and there is no criteria to determine the exact set
S. To remove irrelevant roots which are not in S, we give some relations among
all roots of polynomials f mod qj ’s by providing an encoding function.

3.1 Our Polynomial Representation

We present our polynomial representation for supporting to recover a set from
a polynomial over Zσ represented by our suggestion.

Parameter Setting. Let us explain parameters for our polynomial representation
and PPSO protocols. First, set the bit size of the modulus N of the NS encryption

282 J.H. Cheon et al.

scheme by considering a security parameter λ. For the given universe U and the
maximum size d of the resulting set union (here, d = nk for the number n
of participants and the maximum size k of participants’ datasets), let d0 =
max{d, �log N	} and set τ = 1

3 (log d + 2 log d0). This setting comes from the
computational complexity analysis of our set union protocol and the value τ will
influence the bit size of prime factors of σ and the size of the message space of
the NS encryption scheme. See Sect. 4 for details.

Set the parameter � and α so that � is the smallest positive integer such
that U ⊆ {0, 1}3τα� for some rational number 0 < α < 1 satisfying 3ατ and
3(1 − α)τ are integers. Note that the proper size of α is 1

3 ,i.e., U ⊆ {0, 1}τ� for
optimization. If α �= 1

3 , the expected computation is in polynomial time only
when the size of the universe is restricted. Details about the proper size of α is
given in the full version of this paper [3].

Then, set the proper size �̄ larger than � and let �′ = �̄ − �. The analysis of
the proper size of �̄ will be discussed at the end of Sect. 3.1. Choose �̄ (3τ + 1)-
bit distinct primes qj ’s and set σ =

∏�̄
j=1 qj . Note that the size of the message

space of the NS encryption scheme is less than N
4 for its security [15]. Hence,

the parameters have to be satisfied the condition σ < N
4 and so �̄ < �log N�−2

3τ .
Also, we assume that �̄ is smaller than d for optimal complexity of our proposed
protocol. In summary, the parameter �̄ is smaller than min{d, �log N�−2

3τ } (Fig. 1).

· · ·
· · ·

· · ·
. . .

(mod q1)

(mod q2)

(mod q�̄)

...
...

...

Fig. 1. Our encoding function ι

Encoding by Repetition. Let h : {0, 1}∗ → {0, 1}2τ and hj : {0, 1}∗ → {0, 1}τ be
uniform hash functions for 1 ≤ j ≤ �′. Parse a message si ∈ U ⊆ {0, 1}τ� into
� blocks si,1, . . . , si,� of τ -bit so that si = si,1|| · · · ||si,�. Let si,�+j = hj(si) for
1 ≤ j ≤ �′ and parse h(si) into two blocks si,�̄+1 and si,�̄+2 of τ -bit. We define
our encoding function ι : U ⊆ {0, 1}τ� → Zσ, in which ι(si) is the unique element
in Zσ satisfying ι(si) ≡ si,j ||si,j+1||si,j+2 mod qj for 1 ≤ j ≤ �̄. Then a set S is
represented as a polynomial fS(x) =

∏
si∈S(x − ι(si)) ∈ Zσ[x].

Decoding Phase. Denote by s
(i)
j := ι(si) mod qj for each message si = si,1|| · · ·

||si,�. For 1 ≤ j ≤ �̄ − 1, we define (s(i)j , s
(i′)
j+1) ∈ Zqj

×Zqj+1 to be a linkable pair

if the last (2τ)-bit of s
(i)
j is equal to the first (2τ)-bit of s

(i′)
j+1, i.e., si,j+1||si,j+2 =

si′,j+1||si′,j+2. Inductively, we also define (s(i1)1 , · · · , s
(ij+1)
j+1) ∈ Zq1 ×· · ·×Zqj+1 to

be a linkable pair if (s(i1)1 , · · · , s
(ij)
j) and (s(ij)

j , s
(ij+1)
j+1) are linkable pairs (Fig. 2).

Invertible Polynomial Representation for Private Set Operations 283

s
(i1)
1 =

s
(i2)
2 =

s
(i3)
3 =

si1,1||si1,2||si1,3

si3,3||si3,4||si3,5

⇒
(
s
(i1)
1 , s

(i2)
2 , s

(i3)
3

)
is a linkable pair.

si2,2||si2,3||si2,4

Fig. 2. Linkable pair

Let ι(si) and ι(si′) be images of elements si and si′ of the function ι with
si �= si′ . We can easily check the following properties:

–
(
s
(i)
1 , · · · , s

(i)
j+1

)
is always a linkable pair.

– When si and si′ are uniformly chosen strings from {0, 1}τ�,

Pr[(s(i)j , s
(i′)
j) is a linkable pair] = Pr [si,j+1||si,j+2 = si′,j+1||si′,j+2]

=
1

22τ
(1)

for a fixed 1 ≤ j ≤ �̄.

At decoding phase, when a polynomial f(x) =
∏d

i=1(x − ι(si)) ∈ Zσ[x] is
given, we perform two phases to find the correct d roots of the polynomial f(x).
In the first stage, one computes all the roots {s

(1)
j , · · · , s

(d)
j } over Zqj

[x] for each
j. For each j sequentially from 1 to �̄ − 1, we find all the linkable pairs among
{s

(1)
j , · · · , s

(d)
j } and {s

(1)
j+1, · · · , s

(d)
j+1} by checking whether the last (2τ)-bit of s

(i)
j

and the first (2τ)-bit of s
(i′)
j+1 are the same. It can be done by d2 comparisons or

O(d log d) computations using sorting and determining algorithms.
After �̄ − 1 steps, we obtain d′ linkable pairs of �̄-tuple, which are candidates

of roots of the polynomial f and elements of the set. It includes the d elements
corresponding to ι(s1), . . . , ι(sd). If d′ is much larger than d, it can be a burden.
However, we can show that the expected value of d′ is at most 3d in Theorem 1.
See the end of this section.

After obtaining d′ linkable pairs of �̄-tuple, in the second phase, we check
whether each pair belongs to the image of ι with the following equalities:

si,�+j = hj(si) for all 1 ≤ j ≤ �′, (2)
si,�̄+1|| si,�̄+2 = h(si). (3)

The linkable pairs of �̄-tuple, corresponding to ι(si) for some i clearly satisfies
the above equations. However, for a random �̄-tuple in Zq1 × · · · × Zq�̄

, the
probability that it satisfies the relation (2) is about 1

2τ�′ and the probability
that it satisfies the relation (3) is about 1

22τ under the assumption that h and
hj ’s are uniform hash functions. Hence, the expected number of wrong �̄-tuples

284 J.H. Cheon et al.

passing both phases is less than d × 1
2τ(2+�′) . It is less than 2−λ for a security

parameter λ if we take the parameter �′ to satisfy

�′ >
3(λ + log d)

log d + 2 log d0
− 2. (4)

For example, when λ = 80 and d ≈ d0 ≈ 210, then �′ is about 8. Therefore,
one can recover a set from the given polynomial represented by our suggestion
without negligible failure probability in the security parameter.

3.2 Analysis of Our Polynomial Representation

Computational Complexity. Let us count the computational cost of our represen-
tation. The encoding phase consists of two steps: (1) the CRT computation per
each element to obtain a value of the encoding function ι and (2) the polynomial
expansion. The first step requires O(d log2 σ) bit operations for d elements and
the second step requires O(d2) multiplications. Hence, the complexity for the
encoding phase is O(d2) multiplications.

The decoding phase may be divided into three steps: (1) finding roots of a
polynomial f in Zqj

for each j, (2) finding all linkable pairs of length �̄, and
(3) checking the Eqs. (2) and (3). These steps require O(�̄d1.5) multiplications,
O(�̄d log d) bit operations, and O(�′d) hash computations, respectively. Hence,
the complexity for the decoding phase is dominated by O(�̄d1.5) multiplications.

The Expected Number of Linkable Pairs. We analyze the expected number of
linkable pairs of �̄-tuple when we recover a set from a polynomial of degree d,
represented by our suggestion. Theorem 1 gives a rigorous analysis of the upper
bound of the expected number of linkable pairs of �̄-tuple. The proof is given in
Appendix A.

Theorem 1. Assume that S = {s1, . . . , sd} is a uniformly and randomly chosen
set in the set of subsets of cardinality d of the set {0, 1}τ�. Define an encoding
function ι : {0, 1}τ� → Zσ so that ι(si) is the unique element in Zσ satisfying
ι(si) ≡ si,j ||si,j+1||si,j+2 mod qj for all 1 ≤ j ≤ �̄ when si = si,1|| . . . ||si,� and
si,j’s are τ -bit. Assume h and hj’s utilized in the encoding function ι are uniform
hash functions. Then the expected number of linkable pairs of �̄-tuple is at most
3d for all polynomials fS =

∏
si∈S(x − ι(si)).

4 Applications: Set Union for Honest-but-Curious Case

In this section, we present our set union protocol based on our polynomial rep-
resentation described in Sect. 3. Our construction exploits the NS AHE scheme
to encrypt a rational function whose denominator corresponds to a participant’s
set. For this we generalize a reversed Laurent series presented in [19] to work
on Zσ with a composite σ, which the domain of the NS scheme. As a result, we
obtain set union protocols which improve the complexity than the previous.

Invertible Polynomial Representation for Private Set Operations 285

4.1 Set Union for Honest-but-Curious Case

Rational Function Representation. We adopt the rational function repre-
sentation presented in [19]. To represent a set as a rational function, the authors
in [19] exploited a reversed Laurent series (RLS): For a positive integer q, a RLS
over Zq is a singly infinite, formal sum of the form f(x) =

∑m
i=−∞ f [i]xi (f [m] �=

0) with an integer m and f [i] ∈ Zq for all i. For a RLS f(x), we denote
f(x)[d1,d2] =

∑d2
i=d1

f [i]xi. For polynomials f, g ∈ Zq[x] with g �= 0, we define
the RLS representation of a rational function f/g by a RLS of f/g. In Fig. 3, we
provide an algorithm which takes polynomials f, g ∈ Zq[x] with deg f < deg g
and an integer k larger than deg g as inputs and outputs k higher-order terms
of the RLS representation of f/g. We also note that if one knows 2 deg g higher-
order terms of the RLS representation of a rational function f/g, one can recover
f ′ and g′ such that f ′

g′ = f
g [19].

Input f(x), g(x) ∈ Zq[x] with deg f < deg g and an integer k > deg g
Output k higher-order terms of the RLS representation of a rational function f/g

1. F (x) ← f(x) · xk

2. Compute Q(x), R(x) such that F (x) = g(x)Q(x) + R(x) and deg R < deg g using
a polynomial division algorithm

3. Return Q(x) · x−k

Fig. 3. RationalToRLS(f, g, k)

While Seo et al.’s constructions work on Zq[x] for a prime q, our constructions
are based on Zσ[x] for a composite σ. Hence, one may doubt a RLS representation
works well on Zσ[x]. In our protocol, we will represent each participant’s set
Si as our polynomial representation fSi

:=
∏

si,j∈Si
(x − ι(si,j)) ∈ Zσ[x] with

our encoding function ι. Then we convert a rational function of 1/fSi
to its

RLS over Zσ. Since Zσ is not a Euclidean domain, one may doubt whether the
RationalToRLS algorithm works on Zσ[x]. However, in our protocol, since the
conversion requires polynomial divisions only by monic polynomials, it works
well on Zσ[x].

After the end of interactions among participants in our protocol, each partic-
ipant obtains the 2nk higher-order terms of the RLS representation of a rational

function
u(x)
U(x)

=
r1
fS1

+
r2
fS2

+ · · · +
rn

fSn

where U(x) = lcm(fS1(x), . . . , fSn
(x))

and ri’s are hidden polynomials. There is no algorithm to recover u′(x) and U ′(x)

in Zσ[x] such that
u(x)
U(x)

=
u′(x)
U ′(x)

. However, from our polynomial representation,

it only requires U ′(x) mod qj for each j and we can obtain U ′(x) mod qj from
the RLS representation modulo qj by running polynomial recovering algorithm
on Zqj

[x]’s.

286 J.H. Cheon et al.

The correctness and the security of our set union protocol are induced from
properties of a RLS representation. We omit the details due to the space limi-
tation. See the full version [3] of this paper for these.

Threshold Naccache-Stern Encryption. For a group decryption, it requires
a semantically secure, threshold NS AHE scheme in our protocol. One can easily
construct a threshold version of the NS encryption scheme using the technique of
Fouque et al. [6], which transforms the original Paillier homomorphic encryption
scheme into a threshold version working from Shoup’s technique [21].

Parameter Setting. Let U be the universe, n be the number of participants,
and k be the maximum size of participants’ datasets. Let d be the possible
maximum size of the set union, i.e., d = nk. Take the bit size of N by considering
the security of the threshold NS AHE scheme, which is the modulus of the
threshold NS AHE scheme. Put d0 = max{d, �log N	} and τ = 1

3 (log d+2 log d0).
Set � so that U ⊆ {0, 1}τ�, a proper size of �′ so that �′ satisfies the relation (4)
and let �̄ = � + �′. Note that �̄ is to be smaller than min

{
d, �log N�−2

3 log log N

}
since

τ ≥ log log N . Generate the parameters of the threshold NS encryption scheme,
including the size of message space σ, which is a product of �̄ (3τ +1)-bit distinct
primes qj ’s.

Our Set Union Protocol for Honest-but-Curious Case. Our set union
protocol against honest-but-curious (HBC) adversaries is described in Fig. 4. In
our set union protocol, each participant computes the 2nk higher-order terms of
the RLS representation of FSi

= 1
fSi

∈ Zσ[x] where fSi
=

∏
si,j∈Si

(x−ι(si,j)) for
our encoding function ι and sends its encryption to all others. With the received
encryptions of FSj

for 1 ≤ j ≤ n, each participant Pi multiplies a polynomial ri,j

using additive homomorphic property, which is a randomly chosen polynomial by
the participant Pi and adds all the resulting polynomials to obtain the encryption
of φi(x) =

∑n
j=1 FSj

· ri,j . Then, he sends the encryption of φi(x) to all others.
After interactions among participants, each participant can obtain the 2nk high-
order term of the RLS representation of F (x) =

∑n
i=1

(∑n
j=1

1
fSj

· ri,j

)
∈ Zσ[x].

Then each participant obtains the 2nk high-order terms of the RLS representa-
tion of F in Zσ[x] with group decryption and recovers polynomials uj(x) and

Uj(x) such that
(

uj(x)
Uj(x)

)

[−2nk,−1]
= (F (x) mod qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1

and gcd(uj(x), Uj(x)) = 1 in Zqj
[x] from these values. Thereafter, each partic-

ipant extracts all roots of Uj(x) over Zqj
for each j and recovers all elements

based on the criteria of our representation.

4.2 Analysis

Security Analysis. Now, we consider the correctness and privacy of our proposed
protocol described in Fig. 4. The following theorems guarantee the correctness

Invertible Polynomial Representation for Private Set Operations 287

Input: There are n ≥ 2 HBC participants Pi with a private input set Si ⊆ U of
cardinality k. Set d = nk. The participants share the secret key sk, to which pk is
the corresponding public key to the threshold NS AHE scheme. Let ι : {0, 1}∗ → Zσ

be the encoding function provided in Section 3.

Each participant Pi, i = 1, . . . , n:

1. (a) constructs the polynomial fSi(x) =
∏

si,j∈Si
(x − ι(si,j)) ∈ Zσ[x], runs

RationalToRLS(1, fSi , (2n+1)k−1) to obtain
(

1
fSi

(x)

)

[−(2n+1)k+1,−k]
, and

computes FSi(x) =
(

1
fSi

(x)

)

[−(2n+1)k+1,−k]
· x(2n+1)k−1.

(b) computes F̃Si , the encrypted polynomial of FSi , and sends F̃Si to all other
participants.

2. (a) chooses random polynomials ri,j(x) ∈ Zσ[x] of degree at most k for all
1 ≤ j ≤ n.

(b) computes the encryption, φ̃i, of the polynomial φi(x) =
∑n

j=1 FSj · ri,j

and sends it to all participants.

3. (a) calculates the encryption of the polynomial F (x) =
∑n

i=1 φi(x).
(b) performs a group decryption with all other players to obtain the 2nk

higher-order terms of F (x).

4. (a) recovers a polynomial pair of uj(x) and Uj(x) in Zqj [x] for all 1 ≤ j ≤ �̄

such that
(

uj(x)

Uj(x)

)

[−2nk,−1]
= (F (x) mod qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1

and gcd(uj(x), Uj(x)) = 1 in Zqj [x], using the 2nk higher-order terms of
F (x) obtained in Step 3 (b).

(b) extracts all roots of Uj(x) in Zqj [x] for all j using a factorization algorithm.
(c) determines the set union using the encoding rule of ι.

Fig. 4. PPSU-HBC protocol in the HBC case

and privacy of our construction in Fig. 4. We provide proofs of the following
theorems in the full version of this paper [3].

Theorem 2. In the protocol described in Fig. 4, every participant learns the set
union of private inputs participating players, with high probability.

Theorem 3. Assume that the utilized additive homomorphic encryption scheme
is semantically secure. Then, in our set union protocol for the HBC case described
in Fig. 4, any adversary A of colluding fewer than n HBC participants learns no
more information than would be gained by using the same private inputs in the
ideal model with a trusted third party.

Performance Analysis. It is clear that our protocol runs in O(1) rounds. Let us
count the computational and communicational costs for each participant.

Step 1 (a) requires Õ(k) multiplications in Zσ for a polynomial expansion
of degree k and O(kd) multiplications to run the RationalToRLS algorithm and
compute FSi

.

288 J.H. Cheon et al.

Step 1 (b) requires O(d) exponentiations for 2d encryptions and O(nd) com-
munication costs.

Step 2 (b) requires O(d2) exponentiations for computing the encryption φ̃i :=∑n
j=1 F̃Sj

· ri,j using additive homomorphic property and O(nd) communication
costs.

Step 3 (a) requires O(nd) multiplications for computing
∑n

i=1 φ̃i.
Step 3 (b) requires O(d) exponentiations for decryption share computation

for 2d ciphertexts and O(�̄
√

dqj) multiplications for solving d DLPs for �̄ groups
of order qj ’s.1 The communication cost is O(nd).

Step 4 (a) requires O(d2) multiplications in Zqj
to recover Uj(x) using

extended Euclidean algorithm for each j.
Step 4 (b) requires O(d1.5+o(1)) multiplications in Zqj

for each j to factor a
polynomial of degree d.

Step 4 (c) requires O(�̄d log d log qj) bit operations for sorting and O(d) hash
computations.

Then the computational complexity is dominated by one of terms O(d2)
exponentiations in Step 2 (b) and O(�̄

√
dqj) multiplications in Step 3 (b). Since

one modular exponentiation for a modulus N requires O(log N) multiplications
and �̄ < min

{
d, �log N�−2

3 log log N

}
, the computational complexity for each participant is

dominated by O(d2) = O(n2k2) exponentiations in ZN and the total complexity
is O(n3k2) exponentiations in ZN . The total communication cost for our protocol
is O(n2d) = O(n3k) (log N)-bit elements.

For the malicious case, we can also obtain the set union protocol using the
techniques in [12,19]. We omit the details about our set union protocol for mali-
cious case due to the space limitation. See the full version [3] of this paper.

5 Conclusion

In this paper, we provided a new representation of a set by a polynomial over Zσ,
which can be efficiently inverted by finding all the linear factors of a polynomial
whose root locates in the image of our encoding function, when the factorization
of σ is public. Then we presented an efficient constant-round set union protocols,
transforming our representation into a rational function and then combining it
with threshold NS AHE scheme.

We showed that our encoding function is quite efficient on average-case, but it
still requires exponential time in the degree of a polynomial to recover a set from
the polynomial represented by our encoding function at worst-case although the
probability of the worst-case is sufficiently small. Hence it would be interesting
to construct an encoding function that enables us to recover a set in polynomial
time even at worst-case.
1 Note that one has to solve �̄ DLPs over a group of order qj for one decryption in

the NS encryption scheme. In Step 3 (b), one has to solve 2d = 2nk DLPs over a
group of order qj for each qj . It requires O(

√
dqj) multiplications to solve d DLPs

over a group of order qj [13] and hence total complexity of this step is O(�̄
√

dqj)
multiplications.

Invertible Polynomial Representation for Private Set Operations 289

Acknowledgements. We thank Jae Hong Seo for helpful comments on our prelim-
inary works and anonymous reviewers for their valuable comments. This work was
supported by the IT R&D program of MSIP/KEIT. [No. 10047212, Development of
homomorphic encryption supporting arithmetics on ciphertexts of size less than 1kB
and its applications].

A Proof of Theorem 1

Let Ej be the expected number of linkable pairs of j-tuple in Zq1×· · ·×Zqj
for j ≥

2. For 1 ≤ j ≤ j′ ≤ �̄, let Sj′−j+1(ij , . . . , ij′) be the event that (s(ij)
j , . . . , s

(ij′)
j′)

is a linkable pair. Then,

E2 =
∑

i1,i2∈{1,...,d}
1 · Pr[S2(i1, i2)]

=
∑

i1,i2∈{1,...,d}
Pr[S2(i1, i2) ∧ (i1 = i2)] +

∑

i1,i2∈{1,...,d}
Pr[S2(i1, i2) ∧ (i1 �= i2)]

= d + d(d − 1)
1

22τ
= d

(
1 +

d − 1
22τ

)

since Pr[S2(i1, i1)] = 1 for i1 ∈ {1, . . . , d} and Pr[S2(i1, i2)] = 1
22τ for distinct

i1, i2 ∈ {1, . . . , d} from the Eq. (1).
Now, we consider the relation between Ej and Ej+1. When (s(i1)1 , . . . , s

(ij)
j) is

a linkable pair, consider the case that (s(i1)1 , . . . , s
(ij)
j , s

(ij+1)
j+1) is a linkable pair.

One can classify this case into the following three cases:

1. ij+1 = ij ,
2. (ij+1 �= ij) ∧ (ij+1 = ij−1),
3. (ij+1 �= ij) ∧ (ij+1 �= ij−1).

At the first case, if ij+1 = ij and (s(i1)1 , . . . , s
(ij)
j) is a linkable pair, then

(s(i1)1 , . . . , s
(ij)
j , s

(ij+1)
j+1) is always a linkable pair. Hence,

E
(1)
j+1 :=

∑

i1,...,ij+1

Pr [Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij)]

=
∑

i1,...,ij

Pr [Sj(i1, . . . , ij)] = Ej .

At the second case, if ij+1 = ij−1 �= ij and (s(i1)1 , . . . , s
(ij)
j) is a linkable pair,

then the relation sij−1,j+1 = sij ,j+1 = sij+1,j+1 is satisfied from the encoding
rule of ι. Hence,2

2 Due to the space limitation, the detailed computation of Eqs. (5) and (6) are given
in the full version of this paper [3].

290 J.H. Cheon et al.

E
(2)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}
Pr[Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij−1 �= ij)]

≤ 1
2τ

∑

i1,...,ij∈{1,...,d}
Pr [Sj(i1, . . . , ij)] =

1
2τ

Ej . (5)

At the last case, we can obtain the following result:

E
(3)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}
Pr[Sj+1(i1, . . . , ij , ij+1) ∧ ((ij+1 	= ij) ∧ (ij+1 	= ij−1))]

≤ d − 1

22τ

∑

i1,...,ij∈{1,...,d}
Pr [Sj(i1, . . . , ij)] =

d − 1

22τ
Ej . (6)

From the above results, we obtain the recurrence formula of Ej as follows:

Ej+1 = E
(1)
j+1 + E

(2)
j+1 + E

(3)
j+1 ≤

(
1 +

1
2τ

+
d − 1
22τ

)
Ej

for j ≥ 2 and hence E�̄ ≤ d
(
1 + 1

2τ + d−1
22τ

)�̄−1
since E2 = d

(
1 + d−1

22τ

) ≤
d

(
1 + 1

2τ + d−1
22τ

)
.

Now, we show that �̄ ≤ 22τ

2τ+d . From the parameter setting, it is satisfied that

�̄ ≤ min{d, �log N�−2
3τ }. When d0 ≥ 8d, it holds

min
{

d,
�log N� − 2

3τ

}
≤ d ≤ d

1/3
0 d2/3

2
.

Consider the case that d0 < 8d. Then, it also holds

min
{

d,
�log N� − 2

3τ

}
≤ �log N� − 2

3τ
≤ d0

3τ
≤ d

1/3
0 d2/3

2

since τ ≥ 3. Hence

�̄ ≤ min
{

d,
�log N� − 2

3τ

}
≤ d

1/3
0 d2/3

2
≤

(
d20d

)2/3

2d0
≤ 22τ

2τ + d

since 2d0 > 2τ + d. Therefore we obtain the following result:

E�̄ ≤ d

(
1 +

1
2τ

+
d − 1
22τ

)�̄−1

< ed < 3d,

where e ≈ 2.718 is the base of the natural logarithm. In other words, the upper
bound of the expected number of linkable pairs of �̄-tuple is 3d. �

Invertible Polynomial Representation for Private Set Operations 291

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) ACM Symposium on Theory of Computing (STOC), pp. 1–10.
ACM (1988)

2. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

3. Cheon, J.H., Hong, H., Lee, H.T.: Invertible polynomial representation for set
operations. Cryptology ePrint Archive, Report 2012/526 (2012). http://eprint.iacr.
org/2012/526

4. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

5. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010)

6. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

7. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

8. Frikken, K.B.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS
2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007)

9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) ACM
Symposium on Theory of Computing (STOC), pp. 218–229. ACM (1987)

10. Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-round privacy
preserving multiset union. Bull. Korean Math. Soc. 50(6), 1799–1816 (2013)

11. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

12. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

13. Kuhn, F., Struik, R.: Random walks revisited: extensions of pollard’s rho algorithm
for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M. (eds.)
SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001)

14. Lee, H.T.: Polynomial Factorization and Its Applications. Ph.D. thesis, Seoul
National University, February 2013

15. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: Gong, L., Reiter, M.K. (eds.) ACM Conference on Computer and Communica-
tions Security (ACM CCS), pp. 59–66. ACM (1998)

16. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

17. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

http://eprint.iacr.org/2012/526
http://eprint.iacr.org/2012/526

292 J.H. Cheon et al.

18. Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set oper-
ations. ACM Trans. Inf. Syst. Secur. 13(1), 9:1–9:35 (2009)

19. Seo, J.H., Cheon, J.H., Katz, J.: Constant-round multi-party private set union
using reversed Laurent series. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 398–412. Springer, Heidelberg (2012)

20. Shamir, A.: On the generation of multivariate polynomials which are hard to factor.
In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) ACM Symposium on Theory
of Computing (STOC), pp. 796–804. ACM (1993)

21. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

22. Umans, C.: Fast polynomial factorization and modular composition in small char-
acteristic. In: Dwork, C. (ed.) ACM Symposium on Theory of Computing (STOC),
pp. 481–490. ACM (2008)

On the Efficacy of Solving LWE by Reduction
to Unique-SVP

Martin R. Albrecht1, Robert Fitzpatrick2(B), and Florian Göpfert3

1 Technical University of Denmark, Kongens Lyngby, Denmark
maroa@dtu.dk

2 ISG, Royal Holloway, University of London, Egham, UK
robert.fitzpatrick.2010@live.rhul.ac.uk

3 CASED, TU Darmstadt, Darmstadt, Germany
fgoepfert@cdc.informatik.tu-darmstadt.de

Abstract. We present a study of the concrete complexity of solving
instances of the unique shortest vector problem (uSVP). In particular,
we study the complexity of solving the Learning with Errors (LWE)
problem by reducing the Bounded-Distance Decoding (BDD) problem
to uSVP and attempting to solve such instances using the ‘embedding’
approach. We experimentally derive a model for the success of the app-
roach, compare to alternative methods and demonstrate that for the
LWE instances considered in this work, reducing to uSVP and solving
via embedding compares favorably to other approaches.

1 Introduction

The Learning with Errors (LWE) problem is a generalisation to large moduli of
the Learning Parity with Noise (LPN) problem. Since its introduction by Regev
[20], it has proved a remarkably flexible base for building cryptosystems. For
example, Gentry, Peikert and Vaikuntanathan presented in [11] LWE-based con-
structions of identity-based encryption and many recent (fully) homomorphic
encryption constructions are related to LWE [2,7,10]. Besides the flexibility of
LWE, the main reason for the popularity of this problem is the convincing the-
oretical arguments underlying its hardness, namely a reduction from worst-case
lattice problems such as GapSVP and SIVP to average-case LWE.

Definition 1 (LWE [20]). Let n, q be positive integers, χ be a probability dis-
tribution on Z and s be a secret vector following the uniform distribution on Z

n
q .

We denote by Ls,χ the probability distribution on Z
n
q ×Zq obtained by choosing a

from the uniform distribution on Z
n
q , choosing e ∈ Z according to χ and return-

ing (a, c) = (a, 〈a, s〉 + e) ∈ Z
n
q × Zq. The LWE problem is then, given a set of

samples, to determine whether they originated from Ls,χ for some s or whether
they follow the uniform distribution on Z

n
q × Zq.

The modulus is typically taken to be polynomial in n and χ is the discrete
Gaussian DZ,α·q with mean 0 and standard deviation σ = α · q/

√
2π for some

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 293–310, 2014.
DOI: 10.1007/978-3-319-12160-4 18

294 M.R. Albrecht et al.

α. For these choices it was shown in [6,21] that if αq > 2
√

n then (worst-case)
GapSVP-Õ(n/α) reduces to (average-case) LWE.

However, while the asymptotic hardness of LWE is well-understood, current
understanding of the concrete hardness of solving particular instances of LWE
leaves much to be desired. In this work, we examine the applicability of
Kannan’s embedding technique [13] to LWE and present the results of experiments
using the Lenstra-Lenstra-Lovasz (LLL) and block Korkine-Zolotarev (BKZ)
algorithms. While the embedding approach has been successfully employed in sev-
eral past works, the approach remains somewhat mysterious with our current
understanding of the efficacy of the approach being comparatively poor.

1.1 Related Work

In [16] Liu et. al. investigate similar questions, though their work lacks an experi-
mental component which, in our opinion, form an indispensable part of any such
work, given the current state of knowledge regarding the concrete complexity
of unique-SVP. The current understanding of how a particular gap is related to
the success of a particular reduction algorithm in disclosing a shortest vector, is
poor. In [9] the results of a number of experiments were reported in which the
authors examined the success of a number of algorithms in disclosing a shortest
vector when (at least) a good approximation to the gap was known (though not
in bounded-distance decoding/LWE cases). A simple model was proposed as a
criterion for the success of a particular algorithm and particular class of lattices,
with ‘explaining the uSVP phenomenon’ being posed as an open question.

1.2 Contribution and Organisation

We provide some background in Sect. 2 and discuss the embedding gap in Sect. 3.1.
In Sect. 4 we apply the embedding approach to lattices derived from LWE
instances. Finally, in Sect. 5 we discuss the limits of the embedding approach and
compare our results with results from the literature.

2 Background and Notation

2.1 Lattices and Discrete Gaussians

A lattice Λ in R
m is a discrete additive subgroup. We view a lattice as being gen-

erated by a (non-unique) basis B = {b0, . . . , bn−1} ⊂ Z
m of linearly-independent

integer vectors:

Λ = L(B) = Z
m · B =

{
m−1∑

i=0

xi · bi : xi ∈ Z

}

The rank of the lattice L(B) is defined to be the rank of the matrix B with
rows consisting of the basis vectors. If m = n we say that L(B) is full-rank.

On the Efficacy of Solving LWE by Reduction to Unique-SVP 295

We are only concerned with such lattices in this work and henceforth assume
that the lattices we deal with are full-rank. In addition, in this work we are only
concerned with q-ary lattices which are those such that qZm ⊆ Λ ⊆ Z

m. Note
that every q-ary lattice is full-rank. Throughout, we adopt the convention that
a lattice is generated by integer combinations of row vectors, to match software
conventions.

Given a lattice Λ we denote by λi(Λ) the i-th minimum of Λ:

λi(Λ) := inf
{
r | dim(span(Λ ∩ B̄m(0, r))) ≥ i

}

where B̄m(0, r) denotes the closed, zero-centered m-dimensional (Euclidean) ball
of radius r.

The determinant det(L) of a full-rank lattice is the absolute value of the
determinant of any basis of the lattice.

Throughout, we work exclusively in the Euclidean norm unless otherwise
stated and omit norm subscripts i.e. ‖x‖ = ‖x‖2. Given a point t ∈ R

m and a
lattice Λ, we define the minimum distance from t to the lattice by dist(t, Λ) =
min {‖t − x‖ | x ∈ Λ}.

The following are some computational problems on lattices which will be of
relevance to our discussion

– ζ-Approx SVP (ζ-Approx-SVP), ζ ≥ 1: Given a lattice L, find a vector v ∈ L
such that 0 < ‖v‖ ≤ ζ · λ1(L)

– κ-Hermite SVP (κ-HSVP), κ ≥ 1: Given a lattice L, find a vector v ∈ L such
that 0 < ‖v‖ ≤ κ · det(L)1/n

– η-Bounded Distance Decoding (BDDη) (η ≤ 1/2): Given a lattice L and a
vector t such that dist(t,L) < ηλ1(L), output the lattice vector y closest to t

– �-Unique Shortest Vector Problem (�-uSVP): Given a lattice L such that
λ2(L) > � · λ1(L), find the shortest non-zero lattice vector in L
If we have an algorithm which solves κ-Hermite SVP for lattices of dimension

n, we say that the algorithm attains a root Hermite factor of δ0 := κ1/n. It
is an experimentally-verified heuristic [9] that the root Hermite factor a given
algorithm attains converges swiftly with increasing dimension. Now, if we have an
algorithm which can solve Hermite-SVP with approximation factor κ, we can use
this algorithm linearly many times [17] to solve Approx-SVP with approximation
factor κ2. Hence, we can use our κ-HSVP algorithm to solve uSVP instances in
which the gap is at least κ2. Similarly, if we have a root Hermite factor δ0
characterising our Hermite-SVP algorithm, we can solve uSVP instances of gap
δ2m
0 . However, one of the conclusions from [9], as we discuss later, is that, as with

the gulf between the theoretical and practical performance of lattice reduction
algorithms, we can generally solve uSVP instances with much smaller gap. More
specifically, the results of [9] indicate that, while an exponential gap is still
required to solve uSVP, the size of the gap only needs to grow on the order of the
Hermite factor rather than its square, as indicated by the theoretical (worst-case)
results. To the best of our knowledge, this behaviour remains unexplained and
the practical performance of lattice reduction algorithms on lattices possessing
a λ2/λ1 gap remains somewhat mysterious.

296 M.R. Albrecht et al.

We always start counting from zero and denote vectors and matrices in lower-
case and upper-case bold, respectively. We always assume that a lattice is gener-
ated by row combinations and that, when treating a collection of LWE samples
as a ‘matrix-LWE’ sample, we assume this takes the form b = AT s + e. Given
a random variable X, E[X] denotes the expected value of X.

All experiments were carried out using the NTL implementation of BKZ and
all LWE instances were generated using the LWE instance generator [3]. BKZ is
parameterised (in part) by the choice of a block-size with higher block-sizes lead-
ing to ‘stronger’ basis reduction. In this work, due to the probabilistic nature
of our experiments (as opposed to one-off reductions), we are constrained to
experiments in relatively low block-size. Here, we report the results of experi-
ments using block-sizes of 5 and 10 (with no pruning) which collectively took
around 2 months on two servers. Partial results for BKZ with a block-size of
20 indicate no discrepancy with our conclusions. While much larger block-sizes,
in particular with pruning, have been achieved, our experiments required the
execution of a large number (100) of reductions for each attempt at a solution.
For simplicity, we assume throughout that enough LWE samples are exposed
by a cryptosystem to allow the employment of the embedding technique in the
optimal lattice dimension. While this may not always be the case in reality, in
this work we are concerned primarily with the LWE problem “in theory” and
note that, as observed in [22], given a fixed polynomial number of LWE samples,
one can generate arbitrarily many additional equations which are (essentially)
as good as the original samples, suffering only a slight increase in the deviation
of the noise distribution.

The discrete Gaussian distribution with parameter s, denoted DΛ,s, over a
lattice Λ is defined to be the probability distribution with support Λ which, for
each x ∈ Λ, assigns probability proportional to exp(−π‖x‖2/s2). When we refer
to the value s in this work with regard to LWE instantiations, we mean a discrete
Gaussian with parameter s over the integer lattice. In an abuse of notation, we
also use DΛ,s to denote a random variable following this distribution.

The following tail bound on discrete Gaussians is needed. This tail bound is
obtained by employing the tail-bound on DZ,s from [5] and then observing that
the product distribution of n copies of this distribution gives DZn,s.

Lemma 1. Let c ≥ 1 and C = c · exp((1 − c2)/2) < 1. Then for any real s > 0
and any integer n ≥ 1 we have

Pr[‖DZn,s‖ ≥ c · s
√

n√
2π

] ≤ Cn.

2.2 The Concrete Complexity of BKZ and BKZ 2.0

A central difficulty which arises in all works which require the use of ‘strong’ lat-
tice reduction (by which we mean BKZ and improved variants) is the prediction
of the concrete complexity of such algorithms. In [8] the authors present a study
of ‘BKZ 2.0’, the amalgamation of three folklore techniques to improve the per-
formance of BKZ: pruned enumeration; pre-processing of local blocks and early

On the Efficacy of Solving LWE by Reduction to Unique-SVP 297

termination. While no implementations of such algorithms are publicly available,
the authors of [8] present a simulator to predict the behaviour of out-of-reach
BKZ computations. In [14] a model for the running time of BKZ 2.0 is proposed
by running a limited set of experiments using the standard NTL implementation
of BKZ and then adjusting the extrapolated running times by a certain factor
to try and account for the improved running times promised by BKZ 2.0. The
model arrived at is

log2 Tsec = 1.8/ log2 δ0 − 110

We note that, while [14] pre-dates [8], the model in [14] aimed to account for
the improvements in running time allowed for by the then-folklore techniques,
later formalised by [8]. In a recent work [15], the authors re-visit this model and
compare the predictions to the BKZ 2.0 simulator of [8] in a few cases. In the
cases examined in [15], the running-time predictions obtained by the use of the
BKZ 2.0 simulator are quite close to those obtained by the model of Lindner
and Peikert.

However, based on the data-points provided in [15] and converting these to
the same metric as in the Lindner-Peikert model, the function

log2 TBKZ2.0
sec = 0.009/ log22 δ0 − 27

provides a close approximation to the running-time output of the simulator for
these particular cases.

This is a non-linear approximation and hence naturally grows faster than the
approximation in [14]. However, given the greater sophistication of the latter
‘BKZ 2.0’ extrapolations derived from the simulator of [8], we expect this model
to provide more accurate approximations of running times than the model of [14].

We note that a BKZ logarithmic running-time model which is non-linear in
log2 δ0 appears more intuitive than a linear model. While, in practice, the root
Hermite factors achievable through the use of BKZ with a particular blocksize
β are much better than their best provable upper bounds, the root Hermite
factor achievable appears to behave similarly to the upper bounds as a function
of β. Namely, the best proven upper bounds on the root Hermite factor are
of the form √

γβ
1/(β−1), where γβ denotes the best known upper bound on the

Hermite constant for lattices of dimension β. Now since, asymptotically, γβ grows
linearly in β, if we assume that the root Hermite factor achievable in practice
displays asymptotic behaviour similar to that of the best-known upper bound,
then the root Hermite factor achievable as a function of β, denoted δ0(β), is
such that δ0(β) ∈ Ω(1/β). Since the running time of BKZ appears to be doubly-
exponential in β, we can derive that log Tsec is non-linear in 1/ log δ0, as is borne
out by the results in [15]. In Sect. 4, we employ both models for completeness
and comparison.

2.3 Alternative Algorithms for Solving LWE

Several previous works examine algorithms for solving LWE instances. The main
methods for solving LWE consist of

298 M.R. Albrecht et al.

1. Using combinatorial methods or lattice reduction to find a short (scaled) dual-
lattice vector, permitting to distinguish LWE samples from uniform [1,19]

2. Employing lattice reduction on the primal lattice then employing Babai’s
nearest-plane algorithm or a decoding variant thereof [14,15]

3. Reduce the problem to noise-free non-linear polynomial system solving as
proposed by Arora and Ge [4].

While, asymptotically, combinatorial methods for finding short (scaled) dual-
lattice vectors are most efficient even for moderate parameter sizes [1], the expo-
nential space requirements of these algorithms imply that lattice-based methods
are more suitable for attacking practical instantiations of LWE. The algorithm
due to Arora and Ge, at present, is largely of theoretical interest and impractical
in its current form.

2.4 Concrete Hardness of uSVP

It is folklore that the presence of a significant gap between the first and second
minima of a lattice makes finding a shortest non-zero vector somewhat easier
than would otherwise be the case, with an exponential gap allowing a shortest
non-zero vector to be disclosed by application of LLL. However, in cases with
sub-exponential gap, the success of lattice reduction algorithms in disclosing
shortest non-zero vectors is poorly understood with a brief investigation in [9]
being (to the best of our knowledge) the only practical investigation of such
effects.

In [9] it was posited that given a lattice-reduction algorithm which we assume
to be characterised by a root Hermite factor δ0 and a (full-rank) m-dimensional
lattice Λ, the algorithm will be successful in disclosing a shortest non-zero vector
with high probability when λ2(Λ)/λ1(Λ) ≥ τ · δm

0 , where τ was taken to be a
constant depending both on the nature of the lattices examined and also on the
lattice reduction algorithm applied. In [9] values of τ ranging between 0.18 and
0.48 were experimentally-derived for various classes of lattices (though not LWE-
derived lattices) and algorithms. However, the phrase ‘with high probability’ was
not elaborated on in [9] and thus it is unclear as to whether a fixed threshold
was used throughout the experiments in [9] or a variable threshold.

3 The Embedding Approach

In this section we outline and examine our application of Kannan’s embedding
technique, the resulting λ2/λ1-gap distributions and the resulting implications
for the success of the approach.

3.1 Construction of Embedding Lattices

Given a set of m LWE samples (ai, ci), we construct a Matrix-LWE instance of
dimension m by constructing a matrix A′ by taking the ai vectors to be the

On the Efficacy of Solving LWE by Reduction to Unique-SVP 299

columns of A′ and form the vector c from the ci’s to obtain c = A′T s + e. We
consider the problem of being given a matrix-LWE instance (A′, c) of dimen-
sion m and forming a lattice basis as follows. We take the matrix A′ ∈ Z

n×m
q

and calculate the reduced echelon form A′′ ∈ Z
n×m
q . For the right permutation

matrix P ∈ Z
m×m, we obtain the form A′′ · P =

(
I A

)
with I ∈ Z

n×n
q and

A ∈ Z
n×(m−n)
q . If we interpret this matrix as a matrix over Z, extend it with(

0 qI
) ∈ Z

(m−n)×m and define

A =
(
I A
0 qI

)
P−1,

A is a basis of the lattice {v ∈ Z
m | ∃x ∈ Z

n
q : xA = v mod q}. Now, given

this A and a target vector t ∈ Z
m
q and attempting to solve the LWE instance

by reducing the embedding lattice basis

B(A,t,t) :=
(
A 0
t t

)

where t > 0 is an embedding factor to be determined. We then define Λe := L(B).
Note that, with overwhelming probability, det(Λe) = t · qm−n, i.e. A′ has full
rank over Zq.

It is well-known [18] that 1/(2γ)-BDD can be reduced to solving γ-USVP by
setting the embedding factor t ≥ dist(t,L(A)). In practice, however, employing
a smaller embedding factor generally allows us to create a unique-SVP instance
with larger λ2/λ1 gap than by setting t = dist(t,L(A)). However, by setting
t < dist(t,L(A)), with non-zero probability there exists a vector v ∈ Λ such
that ‖v + c · [t t]‖ < ‖[e t]‖ where c ∈ Z and, in general, if t < dist(t,L(A)),
we will have λ2(Λe) < λ1(L(A)). Thus when we reduce t, quantification of the
resulting λ2/λ1 gap becomes difficult.

To the best of our knowledge, no good model exists to determine the dis-
tribution of the lattice gap when taking an embedding factor smaller than ‖e‖.
To attempt circumvention of such difficulties, we conduct experiments on LWE-
derived uSVP lattices, examining firstly the λ2/λ1 gap required for success when
we set t = dist(t,L(A))� (where we know λ2/λ1) and then for the case t = 1,
under the assumption that the ‘necessary gap’ is unlikely to change, allowing us
to derive analogous models.

3.2 On the Determination of τ When t = �‖e‖�
As mentioned in 2.4, we employ the simple model of Gama and Nguyen for
predicting the success of a particular basis-reduction algorithm in recovering
a shortest non-zero vector, namely that there exist values of τ such that, for a
given probability, basis-reduction algorithm and lattice class, the basis-reduction
algorithm finds a shortest non-zero vector with probability greater or equal than
the given probability over the random choice of lattices in the class whenever
λ2(Λ)/λ1(Λ) ≥ τ · δm

0 where Λ represents a random choice of lattice in the

300 M.R. Albrecht et al.

class with dimension m. Thus, if we are able to sample such lattices randomly,
determining a particular value of τ requires us to know (at least approximately)
the λ2/λ1 gap of the lattices we are dealing with.

In the q-ary lattices we consider (i.e. lattices of the form L(A)), unfortunately,
there is no known good bound (in the Euclidean norm) on the first minimum
when m < 5n log2 q. The case of m ≥ 5n log2 q is dealt with in [23]. For the case
of random lattices (in the sense of [12]), it is known that with overwhelming
probability the minima of such an n-dimensional lattice are all asymptotically
close to the Gaussian heuristic i.e.

λi(Λ)
vol(Λ)1/n

≈ Γ (1 + n/2)1/n

√
π

.

Now the q-ary lattices (e.g. L(A)) widely employed in lattice-based cryp-
tography are not random in this sense, being instead ‘Ajtai’ or LWE lattices,
endowed with the worst-to-average-case properties. However, in all cases, it
appears that the Gaussian heuristic appears to hold exceedingly well for such lat-
tices (at least for the first minimum and with the added property that we always
have vectors of norm q within the lattice), thus we assume throughout that the
first minimum of such lattices is lower-bounded by the Gaussian heuristic with
overwhelming probability.

For the first minimum of the embedding lattices, we only deal with this
explicitly in the ‘known-λ1’ case where we take this to be λ1(Λe) =

√
2 · ‖e‖.

Then we can state the following lemma.

Lemma 2. Let A ∈ Z
n×m
q , let s > 0 and let c > 1. Let e be drawn from

DZm,s. Under the assumption that λ1(Λ(A)) ≥ GHq,n,m
1 and that the rows of

A are linearly-independent over Zq, we can create an embedding lattice Λe with
λ2/λ1-gap greater than

min
{

q,
q1− n

m Γ (1+m
2)

1
m√

π

}

cs
√

m√
π

≈ min
{
q, q1− n

m

√
m
2πe

}

cs
√

m√
π

with probabillity greater than 1 − (c · exp((1 − c2)/2))m.

Proof. Omitted

We wish to obtain the value of m for which we can expect to gain the largest
gaps (again, probabilistically).

Corollary 1. Under the assumptions stated in Lemma 2 and for a fixed value
of c (c > 1), we can construct embedding lattices with the largest possible gap
when

q =
q1− n

m Γ (1 + m
2)

1
m√

π
.

1 We employ the notation GHq,n,m to denote the application of the Gaussian heuristic
to an LWE lattice formed from m LWE samples of dimension n, with modulus q.

On the Efficacy of Solving LWE by Reduction to Unique-SVP 301

Proof. We assume that the approximation is close enough such that the maxi-
mum occurs for the same value of m. Consider the functions:

– f0(m) =
√

πq1− n
m

√
m
2πe

cs
√

m
where c > 1, s > 0.

– f1(m) = q
√

π
cs

√
m

where c,m > 1 and s > 0.

Then f1(m) is clearly monotonically-decreasing and f0(m) has the form f0(m) =
d ·q1− n

m , where d is a positive constant, hence is clearly monotonically-increasing
under the conditions given. ��

Thus, in our experiments, it appears valid to derive values of τ by assuming
the Gaussian heuristic holds and that the (Euclidean) norm of the noise vector
is equal to the expected value.

3.3 On the Determination of τ When t < �‖e‖�
However, as mentioned, the employment of an embedding factor smaller than
the norm of the noise vector e generally leads to a modest decrease in the size
of the second minimum of the resulting lattice. In all cases observed, however,
this decrease in the second minimum is less than the corresponding decrease in
the first minimum (as a result of making the target vector shorter), leading to a
more effective attack. However, quantification of the resulting gap is not simple
– we know of no efficient method for determining the distribution of the λ2/λ1

gap under such conditions.
In an attempt to circumvent the lack of knowledge of the distribution of the

λ2/λ1 gap when we take an embedding factor t such that t < ‖e‖, we assume that
(for the same probabilistic success of a given basis-reduction algorithm) the same
size of gap is required as in the case where we take t = ‖e‖� and then derive
a modified value for τ . That is, we assume that the basis-reduction algorithm is
in some sense oblivious to the embedding factor, with the size of the gap being
the ‘deciding factor’. While this is a somewhat arbitrary assumption, we believe
it to be reasonable and intuitive. We denote the value of τ when t = ‖e‖� by
τ‖e‖ and the analogous value of τ when t = 1 by τ1. Given a particular value of
n and knowing τ‖e‖, we hence know (approximately) the gap required, denoted
by g‖e‖ and hence a corresponding minimum lattice dimension which we denote
by m‖e‖. Then, denoting by m1 the minimum lattice dimension in the case t = 1
and assuming that the minimum required gap in the second case, denoted by g1,
is the same, we can write

τ1 = min
{

τ‖e‖ · δ
(m‖e‖−m1)
0 , 1

}
.

However, for easier and more intuitive comparison, we wish to express τ
values for the case t = 1 when using the gaps from the t = ‖e‖� cases. For
this comparison, we simply use the λ2/λ1 gaps from the case t = ‖e‖� and
plug in the minimum dimension values from the case t = 1. We denote these
‘illustrative’ values of τ by τ ′.

302 M.R. Albrecht et al.

4 Application to LWE and Comparisons

We now examine in more detail the model of [9] when applied to such unique-SVP
instances. One difficulty with this model is that, while Gama and Nguyen state
that success will occur with ‘high probability’, this probability is not explained.
In the cases examined in this work, it appears to be often impossible to exceed a
certain success probability regardless of the lattice λ2/λ1 gap (when fixing a par-
ticular algorithm and parameterisation) and forms, in our opinion, an interesting
subject for future work. For instance, Fig. 1 demonstrates success probabilities
for LLL for the case of Regev’s parameterisation with n ∈ {35, 40, 45} (t = ‖e‖)
and increasing values of m, with between 50 and 100 cases being run for each
value of m.

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

0

0.5

1

m

S
u
cc

es
s

R
a
te

Regev-LWE, n = 35

Regev-LWE, n = 40

Regev-LWE, n = 45

Fig. 1. Experimental success rates, Regev-LWE, LLL, n ∈ {35, 40, 45}, t = ‖e‖

We treat only the LWE parameterisations proposed by Regev [21] and Lind-
ner/Peikert [14] and view each family of LWE instances as being parameterised
by a value of n, from which values of s and q are derived. We then wish to
examine the conditions under which applying the embedding approach yields a
basis in which the target vector is present (though not necessarily the shortest
vector in this reduced basis).

As in [9], our experiments indicate that the target vector lies in the reduced
basis with some (fixed) probability whenever the gap is large enough such that

λ2(Λm)
λ1(Λm)

≥ τ · δm
0

where τ is some real constant such that 0 < τ ≤ 1 depending on the desired
probability level, the ‘nature’ of the lattices considered and the basis-reduction
algorithm used. Our experiments proceed by fixing values of n to obtain corre-
sponding LWE parameterisations then generating instances with increasing val-
ues of m – using [3] – until finding the minimum such value that recovery of the
target vector is possible with the desired probability. We denote such values of m

by mmin(n). In the t = ‖e‖� case, plugging this value mmin(n) in λ2(Λm)
λ1(Λm) = τ ·δm

0

for m where we use Lemma 2 then recovers τ‖e‖. From this value and experi-

mental data for t = 1 we can then derive τ1 = min
{

τ‖e‖ · δ
(m‖e‖−m1)
0 , 1

}
and τ ′

On the Efficacy of Solving LWE by Reduction to Unique-SVP 303

15 20 25 30 35 40 45 50 55 60 65 70 75

5

6

7

8

n

lo
g
2
m

m
in

Experimental data, LLL

Experimental data, BKZ-5

Experimental Data, BKZ-10

Model, LLL, τ = 0.410

Model, BKZ-5, τ = 0.400

Model, BKZ-10, τ = 0.400

Fig. 2. Minimum lattice dimension, Regev-LWE, success rate 10 %, t = ‖e‖.

15 20 25 30 35 40 45 50 55 60 65 70 75 80

5

6

7

8

n

lo
g
2
m

m
in

Experimental data, LLL

Experimental data, BKZ-5

Experimental data, BKZ-10

Model, LLL, τ ′ = 0.340

Model, BKZ-5, τ ′ = 0.320

Model, BKZ-10, τ ′ = 0.320

Fig. 3. Minimum lattice dimension, Regev-LWE, success rate 10 %, t = 1.

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

1

1.2

1.4

n

lo
g
2
m

m
in

Experimental m‖e‖/m1 Ratio, LLL

Lin. Regression m‖e‖/m1 Ratio, LLL

Experimental m‖e‖/m1 Ratio, BKZ-5

Lin. Regression m‖e‖/m1 Ratio, BKZ-5

Fig. 4. m‖e‖/m1 Ratios, Regev-LWE, LLL and BKZ-5

by solving λ2(Λm)
λ1(Λm) = τ ′ · δm1

0 . Throughout, the experimental data points indicate
the minimum lattice dimension for which the lattice basis reduction algorithm
succeeds in recovering the target vector with success rate 10%.

In all experiments carried out, we artificially force that every ‖e‖ takes value
≈ E[‖e‖]. This allows us to gain a good estimate of the λ2/λ1 gap in the t = ‖e‖
case. In addition, for the mmin calculations, we used the experimentally-derived
root Hermite factors (see Appendix A) with linear interpolation.

4.1 Regev’s Parameters

We firstly examine the case of Regev’s original parameters as proposed in [20].
We take q ≈ n2 and set α = 1/(

√
n · log22 n), s = αq. Figure 2 illustrates the

predicted feasible regions when t = ‖e‖�. Similarly, Fig. 3 gives analogous plots
in the case t = 1, using the ‘illustrative’ values of τ ′ mentioned in Sect. 3.3.

304 M.R. Albrecht et al.

Figure 4 gives the m‖e‖/m1 ratio for LLL and BKZ-5, illustrating the greater
efficiency of using t = 1.

Based on the results as displayed above, we obtain parameters for embed-
ding factors of ‖e‖� and 1, given in Table 2. We note that, while using an
embedding factor t = 1 is most efficient, obtaining τ1 > τ‖e‖ possibly seems
counter-intuitive. However, the assumption of a fixed gap required for success to
occurs (with probability ≈ 0.1) indeed leads to a larger value for τ1.

4.2 Lindner and Peikert’s Parameters

In [14], parameters for an improved LWE-based cryptosystem were proposed. For
more details on this variant, the reader is refered to [14]. For our purposes, the
principal difference from the Regev-LWE case is the smaller moduli employed
by Lindner and Peikert. As in the Regev-LWE case, we choose a series of values
for n and generate parameters accordingly, then apply LLL, BKZ-5 and BKZ-10
to solve such instances as far as is possible. Specifically, Table 1 gives a selection
of the parameters considered as produced by [3].

Table 1. Selected Lindner/Peikert LWE parameters

n 20 30 40 50 60 70 80

q 2053 2053 2053 2053 2053 2053 2053

s 9.026 8.566 8.225 7.953 7.728 7.536 7.369

We proceed similarly to the Regev-LWE case, with minimum lattice
dimensions being given in Fig. 5 for the t = ‖e‖ case and in Fig. 6 for the
t = 1 case. Table 2 also gives the derived values of τ for Lindner and Peikert’s
parameterisation.

We note that the values of τ derived seem consistent and do not vary widely
between parameterisations. Of course, the value of τ may be expected to change
when using ‘stronger’ algorithms than BKZ-10 or BKZ-20, however our limited
experiments, and the results reported in [9] appear to indicate that the use of

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

5

6

7

8

n

lo
g
2
m

m
in

Experimental data, LLL

Experimental data, BKZ-5

Experimental data, BKZ-10

Model, LLL, τ = 0.400

Model, BKZ-5, τ = 0.385

Model, BKZ-10, τ = 0.385

Fig. 5. Minimum lattice dimension, Lindner/Peikert Parameterisation, success rate
10 %, t = ‖e‖

On the Efficacy of Solving LWE by Reduction to Unique-SVP 305

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

5

6

7

8

n

lo
g
2
m

m
in

Experimental data, LLL

Experimental data, BKZ-5

Experimental data, BKZ-10

Model, LLL, τ = 0.330

Model, BKZ-5, τ = 0.310

Model, BKZ-10, τ = 0.310

Fig. 6. Minimum lattice dimension, Lindner/Peikert Parameterisation, success rate
10%, t = 1

Table 2. Parameters for finding e with success rate 10 %, Regev’s and Lindner &
Peikert’s parameters.

Regev Lindner and Peikert

LLL BKZ-5 BKZ-10 LLL BKZ-5 BKZ-10

τ (t = ‖e‖) 0.410 0.400 0.400 τ (t = ‖e‖) 0.400 0.385 0.385

τ (t = 1) 0.467 0.464 0.444 τ (t = 1) 0.435 0.431 0.439

τ ′ (t = 1) 0.340 0.320 0.320 τ ′ (t = 1) 0.330 0.310 0.310

‘stronger’ basis reduction algorithms leads to modest decreases in the values of
τ . Thus, when we project these results in Sect. 5.1, we use the experimentally-
derived τ values and thus expect the resulting complexity predictions to be
somewhat conservative.

5 Limits of the Embedding Approach

Using the above model, we can derive an estimation of the limits of applicability
of the embedding approach. Given a values (δ0, τ), we can define the maximum
value of n for which we can recover the target vector using the embedding app-
roach to be

nmax := max
{

n : ∃m s.t.
λ2(Λe(n,m))
λ1(Λe(n,m))

= τ · δm
0

}

The goal is to determine the values of nmax. Lemma 2 shows that we can con-
struct a gap of size (under the assumption that we use basis-reduction algorithms
with δ0 small enough that q1−(n/m)

√
m/(2πe) < q)

λ2

λ1
≈

q1− n
m

√
1
2e

cs
.

If we want to solve an LWE instance with secret-dimension n, we have to find
m such that

q1− n
m

√
1
2e

cs · τ · δm
0

≥ 1.

306 M.R. Albrecht et al.

In order to determine the optimal m, we want to maximize the function

fn(m) =
q1− n

m

√
1
2e

c · s · τ · δm
0

.

the first derivative of which is zero only when

n log q

m2
= log δ0,

and therefore m =
√

n log q
log δ0

is the optimal sub-dimension. In other words, we
expect the attack to succeed if

q

⎛

⎝1− n
√

n log q
log δ0

⎞

⎠√
1
2e

c · s · τ · δ

√

n log q
log δ0

0

≥ 1

Thus, we only need to consider the optimal sub-dimension to ascertain whether
we can expect the attack to succeed (with the given probability). Since, in our
experiments we force ‖e‖ ≈ E[‖e‖], we increase the value of c to cover all but
the upper-tail of the distribution of ‖e‖. We can then state the following:

Assumption 1. Given a fixed LWE parameterisation and a given value of τ
(derived as above using ‖e‖ ≈ E[‖e‖] instances and also corresponding to a fixed
δ0) corresponding to a fixed success rate ps, we can solve general instances from
the parameterisation with secret-dimension n with a particular value of m with
probability

pc ≥ ps · (
1 − (c · exp((1 − c2)/2))m

)
(1)

if

q

⎛

⎝1− n
√

n log q
log δ0

⎞

⎠√
1
2e

c · s · τ · δ

√

n log q
log δ0

0

≥ 1 (2)

We note that this assumption follows immediately from the above discussion
and Lemma 1. Thus, given a target success probability, we attempt to satisfy
conditions (1) and (2) (Table 3).

5.1 Comparisons

We briefly compare the application of BKZ in both the embedding approach and
the short dual-lattice vector distinguishing approach. For all embedding app-
roach predictions, we take success probability slightly lower than 0.1, employing
Assumption 1 - we choose c such that condition 1 holds for pc ≥ 0.099. While the

On the Efficacy of Solving LWE by Reduction to Unique-SVP 307

Table 3. Estimated cost of finding e with success rate 0.099, Regev’s parameters.

n 64 96 128 160 192 224 256 288 320

δ0 1.0159 1.0111 1.0085 1.0069 1.0058 1.0050 1.0045 1.0040 1.0036

log2(sec) =

1.8/ log2 δ0 − 110

negl. negl. 37.41 71.44 105.74 140.16 167.88 202.54 237.20

log2(sec) =

0.009/ log22 δ0 − 27

negl. negl. 33.36 64.45 102.29 146.83 187.50 244.37 307.85

dual-lattice distinguishing approach is not the best-known attack (the best prac-
tical attacks being that in [14] or modified versions [15]), it is easy to analyse
in comparison to reduction-then-decode algorithms. We consider the applica-
tion of BKZ in both situations. In the distinguishing approach, we can choose
a desired distinguishing advantage ε and set γ = q/s · √

ln(1/ε)/π, from which
we can compute a required root Hermite factor of δ0 = 2log

2
2(γ)/(4n log2 q). So, for

instance, with n = 128, we require δ0 ≈ 1.0077 to gain a distinguishing advantage
of ≈ 0.099, i.e. significantly worse than the 1.0085 required for the embedding
attack. In Table 4 we give comparable estimated costs for distinguishing between
LWE samples and uniformly random samples using the approach of Micciancio
and Regev.

Table 4. Estimated cost of solving decision-LWE, advantage ∼ 0.099, Regev’s para-
meters, dual-lattice distinguisher

n 64 96 128 160 192 224 256 288 320

δ0 1.0144 1.0099 1.0077 1.0063 1.0053 1.0046 1.0040 1.0036 1.0033

log2(sec) =

1.8/ log2 δ0 − 110

negl. negl. 53.15 89.99 126.44 162.56 198.39 234.00 269.38

log2(sec) =

0.009/ log22 δ0 − 27

negl negl 46.93 84.10 128.29 179.35 237.18 301.70 372.81

However, we note that the expression of Lindner and Peikert for the advan-
tage of the dual-lattice distinguishing approach gives an upper-bound on the
advantage obtained through the use of a specific algorithm. While the approx-
imation is close overall, in the high-advantage regime the model is somewhat
optimistic in estimating the advantage obtainable.

More rigorous comparison to the dual-lattice distinguishing attack is difficult,
however, since the optimal strategy for said attack is to run a large number of
low-advantage attacks and we can only analyse the embedding approach for
high-advantages due to the (current) practical component of the analysis. We
also note that if the embedding approach is used with t = ‖e‖ and fails, we can
extract the resulting reduced basis of the lattice Λ and can then we proceed to run
enumeration/decoding procedures, a strategy worthy of further investigation.

308 M.R. Albrecht et al.

In conclusion, we provide evidence that the model of Gama and Nguyen
is applicable to the solution of unique-SVP instances constructed from LWE
instances and experimentally derive the constants which embody the perfor-
mance of the approach. Based on the models used and assumptions made, we
show that the embedding approach outperforms the dual-lattice distinguishing
approach of Micciancio and Regev (in the high-advantage regime).

Open Questions. We view a more in-depth comparison of the efficiency of
the embedding technique and enumeration techniques as a pressing research
question. The practical behaviour of lattice-reduction algorithms on unique-SVP
instances remains mysterious, with (to the best of our knowledge) no recent
progress in explaining the phenomena observed.

A Root Hermite Factors for LWE-Derived Lattices

It is a generally-accepted heuristic that the norms of shortest lattice vectors
found by lattice basis reduction algorithms can be approximated by (Table 5)

‖b1‖ ≈ det(L)1/m · δ0(m)m

where δ0(m) rapidly converges to a constant, denoted δ0, as m grows. The fol-
lowing tables give experimentally-derived root Hermite factors for LLL and some
BKZ algorithms as applied to the LWE-derived lattices studied in this work –
all root Hermite factors being obtained for the minimum dimension in which the
given algorithm solves the LWE-n instance with probability 0.1 (Tables 6 and 7).

Table 5. Root Hermite factors, LLL, Regev’s parameters

n 20 25 30 35 40 45 50

δ0 1.0151 1.0169 1.0178 1.0182 1.0192 1.0204 1.0204

Table 6. Root Hermite factors, BKZ-5, Regev’s parameters

n 20 25 30 35 40 45 50 55 60

δ0 1.0138 1.0146 1.0147 1.0147 1.0148 1.0157 1.0161 1.0159 1.0160

Table 7. Root Hermite factors, BKZ-10, Regev’s parameters

n 20 25 30 35 40 45 50 55 60 65

δ0 1.0121 1.0129 1.0136 1.0139 1.0138 1.0141 1.0145 1.0145 1.0146 1.0143

On the Efficacy of Solving LWE by Reduction to Unique-SVP 309

References

1. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Des. Codes and Cryptogr. 1–30 (2013)

2. Albrecht, M.R., Farshim, P., Faugère, J.-C., Perret, L.: Polly cracker, revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 179–196.
Springer, Heidelberg (2011)

3. Albrecht, M.R., Fitzpatrick, R., Cabracas, D., Göpfert, F., Schneider, M.: A gen-
erator for LWE and Ring-LWE instances (2013). http://www.iacr.org/news/files/
2013-04-29lwe-generator.pdf

4. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

5. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625–635 (1993)

6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of Learning with Errors. To appear STOC 2013 (2013)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, pp. 97–106. IEEE (2011)

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

9. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

10. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 08: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pp. 197–206. ACM (2008)

12. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathe-
maticum 15, 165–189 (2003)

13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

14. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

15. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

16. Liu, M., Wang, X., Xu, G., Zheng, X.: Shortest lattice vectors in the presence of
gaps. Cryptology ePrint Archive, Report 2011/139 (2011). http://eprint.iacr.org/.
Accessed 4 March 2012

17. Lovász, L.: An algorithmic theory of numbers, graphs, and convexity. In: CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics, Philadelphia (1986)

18. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

19. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191.
Springer, Heidelberg (2009)

http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf
http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf
http://crypto.stanford.edu/craig
http://eprint.iacr.org/

310 M.R. Albrecht et al.

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

22. Regev, O.: The learning with errors problem (invited survey). In: IEEE Conference
on Computational Complexity, pp. 191–204. IEEE Computer Society (2010)

23. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

A Family of Cryptographically Significant
Boolean Functions Based on the Hidden

Weighted Bit Function

Qichun Wang(B), Chik How Tan, and Timothy Foo

Temasek Laboratories, National University of Singapore, Singapore 117411, Singapore
{tslwq,tsltch,tslfcht}@nus.edu.sg

Abstract. Based on the hidden weighted bit function, we propose a
family of cryptographically significant Boolean functions. We investigate
its algebraic degree and use Schur polynomials to study its algebraic
immunity. For a subclass of this family, we deduce a lower bound on
its nonlinearity. Moreover, we give an infinite class of balanced functions
with very good cryptographic properties: optimum algebraic degree, opti-
mum algebraic immunity, high nonlinearity (higher than the Carlet-Feng
function and the function proposed by [25]) and a good behavior against
fast algebraic attacks. These functions seem to have the best crypto-
graphic properties among all currently known functions.

Keywords: Boolean function · Hidden weighted bit function · Algebraic
immunity · Nonlinearity

1 Introduction

To resist the main known attacks, Boolean functions used in stream ciphers
should be balanced, with high algebraic degree, with high algebraic immunity,
with high nonlinearity and with good immunity to fast algebraic attacks. It is
hard to construct Boolean functions satisfying all these criteria. Many classes
of Boolean functions with optimum algebraic immunity have been introduced
[3,5,9,10,15,16,20]. However, the nonlinearity of these functions is not good. In
2008, Carlet and Feng studied a class of functions which had been introduced by
[11], and they found that these functions seem to satisfy all the cryptographic
criteria [4]. Based on the Carlet-Feng function, some researchers proposed sev-
eral classes of cryptographically significant Boolean functions [12,22,24–26,29–
31,33]. In [21], the authors construct another class of almost fully optimized
functions with very high nonlinearity and a little worse behavior against fast
algebraic attacks, compared to the Carlet-Feng function.

The hidden weighted bit function which was proposed by Bryant [1], seems
to be the simplest one with exponential BDD size [14]. In [27,32], the authors
investigated the cryptographic properties of the HWBF and found that it could
be a very good candidate for being used in real ciphers. Based on the hidden
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 311–322, 2014.
DOI: 10.1007/978-3-319-12160-4 19

312 Q. Wang et al.

weighted bit function, we propose a family of Boolean functions. We investi-
gate the cryptographic properties of these functions and give an infinite class of
balanced functions with very good cryptographic properties: optimum algebraic
degree, optimum algebraic immunity, high nonlinearity (higher than the Carlet-
Feng function and the functions proposed by [25]) and a good behavior against
fast algebraic attacks.

The paper is organized as follows. In Sect. 2, the necessary background is
established. We investigate the properties of a family of Boolean functions in
Sect. 3. In Sect. 4, we give an infinite class of balanced functions with very good
cryptographic properties. We end in Sect. 5 with conclusions.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the finite field F2. We denote by

Bn the set of all n-variable Boolean functions, from F
n
2 into F2.

Any Boolean function f ∈ Bn can be uniquely represented as a multivariate
polynomial in F2[x1, · · · , xn],

f(x1, . . . , xn) =
∑

K⊆{1,2,...,n}
aK

∏

k∈K

xk,

which is called its algebraic normal form (ANF). The algebraic degree of f ,
denoted by deg(f), is the number of variables in the highest order term with
nonzero coefficient.

A Boolean function f is affine if deg(f) ≤ 1 and the set of all affine functions
is denoted by An.

Let
1f = {x ∈ F

n
2 |f(x) = 1}, 0f = {x ∈ F

n
2 |f(x) = 0},

be the support of a Boolean function f , respectively, its complement. The car-
dinality of 1f is called the Hamming weight of f , and will be denoted by wt(f).
The Hamming distance between two functions f and g is the Hamming weight
of f + g, and will be denoted by d(f, g). We say that an n-variable Boolean
function f is balanced if wt(f) = 2n−1.

Let f ∈ Bn. The nonlinearity of f is its distance from the set of all n-variable
affine functions, i.e.,

nl(f) = min
g∈An

d(f, g).

The nonlinearity of an n-variable Boolean function is bounded above by 2n−1 −
2n/2−1, and a function is said to be bent if it achieves this bound. Clearly, bent
functions exist only for even n and it is known that the algebraic degree of a
bent function is bounded above by n

2 [2,8,23].
For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if

fg = 0, and the algebraic immunity of f , denoted by AI(f), is the minimum
value of d such that f or f +1 admits an annihilator of degree d [19]. It is known

A Family of Boolean Functions Based on the HWBF 313

that the algebraic immunity of an n-variable Boolean function is bounded above
by �n

2 � [7].
To resist fast algebraic attacks, a high algebraic immunity is not sufficient. If

we can find g of low degree and h of algebraic degree not much larger than n/2
such that fg = h, then f is considered to be weak against fast algebraic attacks
[6,13]. To resist fast algebraic attacks, a Boolean function should have a large
distance to bent functions [28].

The Walsh transform of a given function f ∈ Bn is the function over F2n

defined by

Wf (ω) =
∑

x∈F2n

(−1)f(x)+tr(ωx),

where tr(x) =
∑n−1

i=0 x2i

is the trace function from F2n to F2. It is easy to see
that a Boolean function f is balanced if and only if Wf (0) = 0. Moreover, the
nonlinearity of f can be determined by

nl(f) = 2n−1 − 1
2

max
ω∈F2n

|Wf (ω)|.

3 A Family of Boolean Functions

Let 0 ≤ l ≤ 2m − 1. Then l can be uniquely represented as l0 + l1 ∗ 2 + ... +
lm−1 ∗ 2m−1, where li ∈ F2, 0 ≤ i ≤ m − 1. Hence, we can identify l with a
vector (l0, l1, ..., lm−1) ∈ F

m
2 . Let g ∈ Bm. In the following, we use g(l) to denote

g(l0, l1, ..., lm−1) and wt(l) = l0 + l1 + ... + lm−1.
Let h ∈ Bm be the hidden weighted bit function. That is,

h(x) =
{

0 if x = 0,
xwt(x) otherwise,

where x = (x1, x2, ..., xm) and wt(x) = x1 + x2 + ... + xm.

Construction 1. Let α be a primitive element of F2n . We define f , a Boolean
function from F2n into F2 which is defined by

{
f(0) = 0,
f(αi) = h(i mod 2m), 1 ≤ i ≤ 2n − 1,

where 1 ≤ m ≤ n and h ∈ Bm is the hidden weighted bit function.

Clearly, the Carlet-Feng function can be viewed as a special case of the con-
struction for m = 1.

314 Q. Wang et al.

3.1 Algebraic Degree

Theorem 1. The function f is balanced. deg(f) = n − 1 if and only if

2m−1∑

j=1
j∈1h

αj �= 0.

Proof. We have |1h| = 2m−1, since h ∈ Bm is balanced. Therefore,

|1f | = 2n−m ∗ 2m−1 = 2n−1

and f is a balanced function. Let the univariate representation of f be

f(x) =
2n−1∑

i=0

aix
i.

Then a0 = a2n−1 = 0, since f is balanced and f(0) = 0. For 1 ≤ i ≤ 2n − 2, we
have

ai =
2n−2∑

j=0

f(αj)α−ij

=
2n−1∑

j=1
j mod 2m∈1h

α−ij

=
2m−1∑

j=1
j∈1h

α−ij
2n−m−1∑

k=0

α−ik2m

=
1 − α−i

1 − α−i2m

2m−1∑

j=1
j∈1h

α−ij .

Clearly, deg(f) = n − 1 if and only if there exists an i such that wt(i) = n − 1
and ai �= 0. That is, there exists an i satisfying wt(i) = 1 and a2n−1−i �= 0. For
0 ≤ t ≤ n − 1, we have

a2n−1−2t = (
1 − α

1 − α2m

2m−1∑

j=1
j∈1h

αj)2
t

.

Clearly, 1−α
1−α2m �= 0. Therefore, deg(f) = n − 1 if and only if

2m−1∑

j=1
j∈1h

αj �= 0.

A Family of Boolean Functions Based on the HWBF 315

Remark 1. Let p(x) ∈ F2[x] be of degree n and primitive. If p(α) = 0, then f
has the optimum algebraic degree n − 1 if and only if

p(x) �

2m−1∑

j=1
j∈1h

xj .

That is,

p(x) �

2m−1∑

j=1
j∈1h

xj−1.

Remark 2. If m < log2(n+2), then deg(f) = n−1. Moreover, if m < log2(ϕ(2n−
1)+2), then there is a primitive element α such that f has the optimum algebraic
degree, where ϕ is the Euler’s totient function. Particularly, if 2n − 1 is a prime,
then there always exists a primitive element α such that deg(f) = n− 1, for any
1 ≤ m ≤ n.

3.2 Algebraic Immunity

Given a partition

d = d1 + d2 + ... + dt, d1 ≥ d2 ≥ ... ≥ dt,

where each di is a non-negative integer. Let

a(d1+t−1,d2+t−2,...,dt)(x1, ..., xt) = det

⎛

⎜
⎜
⎝

xd1+t−1
1 xd1+t−1

2 ... xd1+t−1
t

xd2+t−2
1 xd2+t−2

2 ... xd2+t−2
t

...

xdt
1 xdt

2 ... xdt
t

⎞

⎟
⎟
⎠ .

The Schur polynomial is defined as follows

s(d1,d2,...,dt)(x1, x2, ..., xt) =
a(d1+t−1,d2+t−2,...,dt)(x1, ..., xt)

a(t−1,t−2,...,0)(x1, ..., xt)
.

Let J = {j|wt(j) < �n
2 �} = {j1, ..., jr}, where r =

∑� n
2 �−1

i=0

(
n
i

)
. Let I1 =

{1 ≤ i ≤ 2n − 1|αi ∈ 1f} = {i1, ..., i2n−1} and I2 = {1, 2, ..., 2n − 1} − I1.

Proposition 1. Let n be odd. Then f ∈ Bn has optimum algebraic immunity if
and only if

s(d1,d2,...,d2n−1)(α
j1 , αj2 , ..., αj2n−1) �= 0,

where s(d1,d2,...,d2n−1) is the Schur polynomial and dk = i2n−1+1−k − 2n−1 + k,
for 1 ≤ k ≤ 2n−1.

316 Q. Wang et al.

Proof. Let g ∈ Bn be of degree < �n
2 � and g(αi) = 0, for i ∈ I1. Denote g(x) as∑

j∈J cjx
j , where cj ∈ F2n . Then we have

⎛

⎜
⎜
⎝

αi1j1 αi1j2 ... αi1j2n−1

αi2j1 αi2j2 ... αi2j2n−1

...
αi2n−1 j1 αi2n−1 j2 ... αi2n−1j2n−1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

cj1

cj2

· · ·
cj2n−1

⎞

⎟
⎟
⎠ = 0.

Clearly, AI(f) = �n
2 � if and only if the above coefficient matrix is nonsingular.

That is, for 1 ≤ k ≤ 2n−1 and dk = i2n−1+1−k − 2n−1 + k, we have

s(d1,d2,...,d2n−1)(α
j1 , αj2 , ..., αj2n−1) �= 0.

Similarly, we have the following proposition.

Proposition 2. Let n be even. Then f ∈ Bn has optimum algebraic immunity
if and only if the following two conditions hold

1) For 1 ≤ k ≤ r, there exist i′1 < i′2 < ... < i′r ∈ I1 such that d′
k =

i′r+1−k − r + k and

s(d′
1,d′

2,...,d′
r)

(αj1 , αj2 , ..., αjr) �= 0.

2) For 1 ≤ k ≤ r, there exist i′′1 < i′′2 < ... < i′′r ∈ I2 such that d′′
k =

i′′r+1−k − r + k and

s(d′′
1 ,d′′

2 ,...,d′′
r)(αj1 , αj2 , ..., αjr) �= 0.

3.3 Nonlinearity

Let χ be the primitive character of F
∗
2n defined by χ(αj) = ζj (0 ≤ j ≤ 2n − 2),

where ζ = e
2π

√−1
2n−1 . Let χ(0) = 0. Then

G(χμ) =
∑

x∈F2n

χμ(x)(−1)tr(x)

is a Gauss sum, where 0 ≤ μ ≤ 2n − 2. We have G(χ0) = −1 and | G(χμ) |= 2
n
2

for 1 ≤ μ ≤ 2n − 2 [17].
From calculus, we have the following lemma.

Lemma 1. For 0 < x < π
4 , we have y = x2 sin x + 5 sin x − 5x > 0. That is,

1
sinx < 1

x + x
5 .

Theorem 2. Let m = 3, n ≥ 5 and f ∈ Bn be the function defined in Con-
struction 1. Then

nl(f) ≥ 2n−1 − (
10n ln 2

3π
− 0.8)2n/2

A Family of Boolean Functions Based on the HWBF 317

Proof. Let q = 2n and ω = αl. Since

(−1)tr(αj) =
1

q − 1

q−2∑

μ=0

G(χμ)χμ(αj),

where 0 ≤ j ≤ q − 2, We have

∑

x∈1f

(−1)tr(ωx) =
1

q − 1

q−2∑

μ=0

G(χμ)
∑

i mod 2m∈1h
1≤i≤q−1

χμ(αl+i)

=
1

q − 1
(
q−2∑

μ=1

G(χμ)
∑

i mod 2m∈1h
1≤i≤q−1

ζ−μ(l+i) − q

2
).

Then,

|
∑

x∈1f

(−1)tr(ωx)| ≤ 1
q − 1

(
√

q

q−2∑

μ=1

|ζ−μ + ζ−3μ + ζ−6μ + ζ−7μ||1 − ζ−μq

1 − ζ−8μ
| +

q

2
)

≤ 2
√

q

q − 1

q−2∑

μ=1

| 1 − ζ−μ

1 − ζ−8μ
| +

q

2(q − 1)

=
√

q

4(q − 1)

q−2∑

μ=1

| 1
cos θ cos 2θ cos 4θ

| +
q

2(q − 1)

≤ 2
√

q

q − 1

q/2−1∑

μ=7q/16

| 1
cos θ cos 2θ cos 4θ

| +
16
31

,

where θ = πμ
q−1 . Since | cos 2θ cos 4θ| > 0.6, for 7qπ

16(q−1) < θ < π
2 , we have

|
∑

x∈1f

(−1)tr(ωx)| ≤ 10
√

q

3(q − 1)

q/2−1∑

μ=7q/16

1
cos θ

+
16
31

,

Then by Lemma 1 and 1 + 1
3 + · · · + 1

2n−3−1 < n−3
2 ln 2 + 0.64, we have

|
∑

x∈1f

(−1)tr(ωx)| ≤ 10
√

q

3(q − 1)

q/2−1∑

μ=7q/16

(
2

π − 2θ
+

π − 2θ

10
) +

16
31

≤ 10
√

q

3(q − 1)
(
2(q − 1)

π
(
n − 3

2
ln 2 + 0.64) +

qπ

2560
) +

16
31

< (
10n ln 2

3π
− 0.8)

√
q.

318 Q. Wang et al.

Table 1. Cryptographic properties of f and nonlinearities of functions in [4,25]

n deg(f) AI(f) nl(f) nl(CF) nl(MCF)

8 7 4 112 112 108

9 8 5 232 232

10 9 5 484 484 476

11 10 6 984 980

12 11 6 1990 1970 1982

13 12 7 4004 3988

14 13 7 8074 8036 8028

15 14 8 16216 16212

Therefore,

|Wf (ω)| = 2|
∑

x∈1f

(−1)tr(ωx)| < (
20n ln 2

3π
− 1.6)2n/2,

and the result follows.
�

4 An Infinite Class of Balanced Functions with Very
Good Cryptographic Properties

Construction 1 provides many functions with good cryptographic properties.
Taking m = 1, we get the Carlet-Feng function. Taking m = n, we can get the
following function f ∈ Bn

{
f(0) = 0,
f(αi) = h(i), 1 ≤ i ≤ 2n − 1,

where h ∈ Bn is the hidden weighted bit function.
In Table 1, we give some cryptographic properties of the function f ∈ Bn.

We also give the nonlinearity of the Carlet-Feng function which is denoted by
nl(CF), and the nonlinearity of the even-variable balanced function proposed
by [25] which is denoted by nl(MCF). Clearly, f has quite good cryptographic
properties: balancedness, optimum algebraic degree, optimum algebraic immu-
nity and high nonlinearity (higher than nl(CF) and nl(MCF)).

We then observe its behavior against fast algebraic attacks.
Let deg(g1) = d < AI(f) and f · g1 = g2. Let deg(g2) = e. To behave well

against fast algebraic attacks, for any g1 of low degree, we expect that e is as
high as possible. For 8 ≤ n ≤ 13, in Table 2, we give the lowest possible values of
(d, e). Clearly, d+e ≥ n−1 for n = 8, 10, 11, 12, 13, and d+e = n for n = 9. This
is the optimum case for a balanced function to resist the fast algebraic attacks
[18]. It seems that f ∈ Bn has optimal resistance to fast algebraic attacks for
any n.

A Family of Boolean Functions Based on the HWBF 319

Table 2. Behavior of the function f against Fast Algebraic Attacks

n 8 9 10 11 12 13

(d, e) (1,6) (1,8) (1,8) (1,10) (1,10) (1,12)

(2,5) (2,7) (2,8) (2,8) (2,9) (2,11)

(3,4) (3,6) (3,7) (3,8) (3,8) (3,10)

(4,5) (4,6) (4,7) (4,8) (4,8)

(5,6) (5,7) (5,8)

(6,7)

min{d+ e} 7 9 9 10 11 12

Example 1. Take n = m = 12. We observe the cryptographic properties of
f ∈ B12. From Tables 1 and 2, we have deg(f) = 11, AI(f) = 6, nl(f) = 1990
and f has optimal resistance to fast algebraic attacks. As a comparison, nl(CF)
is only 1970, and nl(MCF) equals 1982. The function f is balanced and has
optimal algebraic degree, optimal algebraic immunity and optimal resistance
to fast algebraic attacks. It has the highest nonlinearity among all these func-
tions. The truth table of f can be found in Appendix, where it is represented in
hexadecimal.

5 Conclusion

This paper proposes a family of cryptographically significant Boolean functions.
We investigate the cryptographic properties of these functions and give an infi-
nite class of balanced functions with optimum algebraic degree, optimum alge-
braic immunity, high nonlinearity (higher than the Carlet-Feng function and the
functions proposed by [25]) and a good behavior against fast algebraic attacks.
These functions seem to have the best cryptographic properties among all cur-
rently known functions.

Construction 1 contains many Boolean functions with very good crypto-
graphic properties. This work is just a start-up, and we will investigate that
family further in the future work.

Acknowledgment. The first author would like to thank the financial support from
the National Natural Science Foundation of China (Grant No. 61202463) and Shanghai
Key Laboratory of Intelligent Information Processing, China (Grant No. IIPL-2011-
005).

320 Q. Wang et al.

Appendix

The truth table of f in Example 1:

7076 C0E7 6DE7 1AE6 C208 2149 EC73 03D3
2F63 777B 91F4 471C 0309 A268 76F6 2A79
7204 E561 C9E6 C229 18ED 19E9 CB48 7D2B
F6B0 BBA4 AAB5 E13E 845A 88C7 D7BB C93A
A0EA 6FC9 03C5 53D8 9F7C 45D2 87D5 B3B5
BEAE 9348 DEAC 1B5A 8672 CD36 516E F3B0
01C7 707F A956 315E 3533 398E 6575 E901
A78D 8E22 A75B 6BC9 6851 B036 6D34 F033
ABBF 01B2 5A24 49B5 99F1 16CE 8878 057D
2406 E617 DEEC 287A 7B50 1DEC 14F9 A98A
7202 2303 1EF0 CF7D 8567 3107 6C10 CCBB
3BD2 5891 090D 7881 D5B8 A782 10B6 50E7
66FE 6BD8 D89D 8480 3325 D481 F06D 5C03
6088 D479 703C 7D8B 875D C0AC 6124 67DC
7741 2E0E 7B9B EA91 BAE4 8CB8 D250 29BC

C3AE 449C 74EF E8A3 4A0E B446 81D9 D479
3B70 1690 7FBC 52E2 8EA2 F3ED EFAD B0A8
BD1E 406C F483 6D8A 3BA7 5939 D954 404A
B5C7 E6A7 0153 65A2 8527 4586 725B A023
E438 44B9 9A8C 1A4F 6DCF 6624 3A38 1B3A
48F3 9972 F2B4 F9E1 FC0A 11B9 2B81 D04E
2FEE C341 60BE DF50 A39F FC9F 2B87 B876
F021 1DD7 AE3F 3C9E FF58 B914 C879 3FE5
0EDC 205F 11D1 37B1 65FD 145A DC9F 6758
83C3 8967 C721 043B 0C7D 3E15 A68B 7BF6
9678 FAEA 6857 B6BE 19FB E594 C40F 9BE9

D2FB 3936 1DAB A634 C06E F84B A01C A610
3E84 889C 07BB 5386 C1F4 F2AB E1D9 1C09
E640 4EFA D18A 7E23 C912 3A38 8213 7CE4
32BB 8A8B 7D16 B97F 9DF1 EA67 733A 309F
0FD2 759A 4EA9 7E17 A05E 1B00 032E AAB0
C611 DB0A B98F ED5B 7F6D 0C18 0CDF D03A

References

1. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-
tions of boolean functions with application to integer multiplication. IEEE Trans.
Comput. 40(2), 205–213 (1991)

2. Carlet, C.: Boolean Models and Methods in Mathematics, Computer Science, and
Engineering. In: Boolean Functions for Cryptography and Error Correcting Codes.
Cambridge University Press, pp. 257–397 (2010). http://www-roc.inria.fr/secret/
Claude.Carlet/pubs.html

http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html
http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html

A Family of Boolean Functions Based on the HWBF 321

3. Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S.: Algebraic immunity for crypto-
graphically significant Boolean functions: analysis and construction. IEEE Trans.
Inf. Theory 52(7), 3105–3121 (2006)

4. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal alge-
braic immunity, good immunity to fast algebraic attacks and good nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008)

5. Carlet, C., Zeng, X., Li, C., Hu, L.: Further properties of several classes of Boolean
functions with optimum algebraic immunity. Des. Codes Cryptogr. 52, 303–338
(2009)

6. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer,
Heidelberg (2003)

7. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer,
Heidelberg (2003)

8. Cusick, T.W., Stǎnicǎ, P.: Cryptographic Boolean Functions and Applications.
Elsevier-Academic Press, Stuanicua (2009)

9. Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically significant Boolean func-
tions: construction and analysis in terms of algebraic immunity. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg
(2005)

10. Dalai, D.K., Maitra, S., Sarkar, S.: Baisc theory in construction of Boolean func-
tions with maximum possible annihilator immunity. Des. Codes Crypt. 40(1), 41–
58 (2006)

11. Feng, K., Liao, Q., Yang, J.: Maximum values of generalized algebraic immunity.
Des. Codes Crypt. 50(2), 243–252 (2009)

12. Fu, S., Li, C., Qu, L.: Generalized construction of Boolean function with maxi-
mum algebraic immunity using univariate polynomial representation. IEICE Trans.
E96.A(1), 360–362 (2013)

13. Hawkes, P., Rose, G.G.: Rewriting variables: the complexity of fast algebraic
attacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004)

14. Knuth, D.E.: The Art of Computer Programming. Fascicle 1: Bitwise tricks &
techniques; Binary Decision Diagrams, vol. 4. Addison-Wesley Professional, Massa-
chusetts (2009)

15. Li, N., Qi, W.-F.: Construction and analysis of boolean functions of 2t+1 variables
with maximum algebraic immunity. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 84–98. Springer, Heidelberg (2006)

16. Li, N., Qu, L., Qi, W., Feng, G., Li, C., Xie, D.: On the construction of boolean
functions with optimal algebraic immunity. IEEE Trans. Inf. Theory 54(3), 1330–
1334 (2008)

17. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, Cambridge (1986)

18. Liu, M., Zhang, Y., Lin, D.: Perfect algebraic immune functions. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 172–189. Springer,
Heidelberg (2012)

19. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 474–491. Springer, Heidelberg (2004)

322 Q. Wang et al.

20. Pasalic, E.: Almost fully optimized infinite classes of boolean functions resistant to
(fast) algebraic cryptanalysis. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 399–414. Springer, Heidelberg (2009)

21. Pasalic, E., Wei, Y.: On the construction of cryptographically significant boolean
functions using objects in projective geometry spaces. IEEE Trans. Inf. Theory
58(10), 6681–6693 (2012)

22. Rizomiliotis, P.: On the resistance of boolean functions against algebraic attacks
using univariate polynomial representation. IEEE Trans. Inf. Theory 56(8), 4014–
4024 (2010)

23. Rothaus, O.S.: On bent functions. J. Comb. Theory - Ser. A 20(3), 300–305 (1976)
24. Tan, C., Goh, S.: Several classes of even-variable balanced boolean functions with

optimal algebraic immunity. IEICE Trans. E94.A(1), 165–171 (2011)
25. Tang, D., Carlet, C., Tang, X.: Highly nonlinear boolean functions with optimal

algebraic immunity and good behavior against fast algebraic attacks. IEEE Trans.
Inf. Theory 59(1), 653–664 (2013)

26. Tu, Z., Deng, Y.: A conjecture about binary strings and its applications on con-
structing Boolean functions with optimal algebraic immunity. Des. Codes Crypt.
60(1), 1–14 (2011)

27. Wang, Q., Carlet, C., Stuanicua, P., Tan, C.H.: Cryptographic properties of the
hidden weighted bit function. Discrete Appl. Math. 174, 1–10 (2014)

28. Wang, Q., Johansson, T.: A note on fast algebraic attacks and higher order non-
linearities. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584,
pp. 404–414. Springer, Heidelberg (2011)

29. Wang, Q., Peng, J., Kan, H., Xue, X.: Constructions of cryptographically sig-
nificant boolean functions using primitive polynomials. IEEE Trans. Inf. Theory
56(6), 3048–3053 (2010)

30. Wang, Q., Tan, C.H.: Balanced Boolean functions with optimum algebraic degree,
optimum algebraic immunity and very high nonlinearity. Discrete Appl. Math.
1673, 25–32 (2014)

31. Wang, Q., Tan, C.H.: A new method to construct boolean functions with good
cryptographic properties. Inform. Process. Lett. 113(14), 567–571 (2013)

32. Wang, Q., Tan, C.H., Stuanicua, P.: Concatenations of the hidden weighted bit
function and their cryptographic properties. Adv. Math. Commun. 8(2), 153–165
(2014)

33. Zeng, X., Carlet, C., Shan, J., Hu, L.: More balanced boolean functions with opti-
mal algebraic immunity, and good nonlinearity and resistance to fast algebraic
attacks. IEEE Trans. Inf. Theory 57(9), 6310–6320 (2011)

Digital Signature

Ambiguous One-Move Nominative Signature
Without Random Oracles

Dennis Y.W. Liu1,2(B), Duncan S. Wong2, and Qiong Huang3

1 School of Professional and Continuing Education,
University of Hong Kong, Pok Fu Lam, Hong Kong

2 Department of Computer Science, City University of Hong Kong,
Kowloon Tong, Hong Kong

dennis.liu@hkuspace.hku.hk, duncan@cityu.edu.hk
3 College of Informatics, South China Agricultural University, Guangzhou, China

csqhuang@gmail.com

Abstract. Nominative Signature is a useful tool in situations where a
signature has to be created jointly by two parties, a nominator (signer)
and a nominee (user), while only the user can verify and prove to a third
party about the validity of the signature. In this paper, we study the
existing security models of nominative signature and show that though
the existing models have captured the essential security requirements of
nominative signature in a strong sense, especially on the unforgeability
against malicious signers/users and invisibility, they are yet to capture
a requirement regarding the privacy of the signer and the user, and this
requirement has been one of the original ones since the notion of nom-
inative signature was first introduced. In particular, we show that it is
possible to build a highly efficient nominative signature scheme which
can be proven secure in the existing security models, while in practice
it is obvious to find out from the component(s) of a nominative signa-
ture on whether a particular signer or user has involved in the signature
generation, which may not be desirable in some actual applications. We
therefore propose an enhanced security property, named “Ambiguity”,
and also propose a new one-move nominative scheme for fulfilling this
new security requirement without random oracles, and among the various
types of nominative signature, one-move is the most efficient type. Fur-
thermore, this new scheme is at least 33 % more efficient during signature
generation and 17 % shorter in signature size when compared with the
existing one-move signature schemes without random oracles even that
the existing ones in the literature may not satisfy this new Ambiguity
requirement.

Keywords: Nominative signature · Undeniable signature · Non-self-
authenticating signature · Security model

1 Introduction

In nominative signature (NS) [13,19], there are two parties: a signer (or nom-
inator) A and a user (or nominee) B. To generate a nominative signature σ,
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 325–341, 2014.
DOI: 10.1007/978-3-319-12160-4 20

326 D.Y.W. Liu et al.

A and B have to work together. However, once σ is generated, no one can ver-
ify its validity unless B and B is the only one who can show the validity or
invalidity of an alleged nominative signature to a third party via running a con-
firmation/disavowal protocol. NS is useful in applications that there is a need in
the division of signing and verifying abilities that two parties have to jointly cre-
ate a non-self-authenticating signature, and only one of them is able to perform
the verification of the signature, both to himself and to any third-parties. In [9],
Huang et al. exemplified a practical application of NS in a healthcare system. In
the system, a hospital may certify some personal medical records for a patient,
for example, after a body checkup. For privacy, the patient would like to control
on who can verify these personal medical records and how many of these records
that a third party, for example, an insurance company, can verify. By using NS,
the hospital and the patient will serve as the signer (or the nominator) and the
user (or the nominee), respectively. Some may note that the hospital may simply
release a medical document without participating in the nominative signature
generation, but the patient can accuse the hospital of making false claims on the
patient’s medical records. The role of NS in this scenario is to produce a mutual
agreement on the validity of the patient’s personal medical records.

Since its introduction in 1996 [13], NS has been refined on its definitions
and security models, and most of the security requirements of NS have been
properly modeled to date [9,16,17,19,20] that include (1 and 2): unforgeability
against malicious signers and users, (3) non-transferrability, (4) invisibility and
(5) user-only conversion. Unforgeability against malicious signers (resp. users)
prevents a signer (resp. user) from generating a nominative signature alone.
A signer and a user have to work together in order to generate a valid one.
Non-transferrability requires that a third party is not able to transfer the proof
transcript of a confirmation/disavowal protocol to further convince other ver-
ifiers on the validity/invalidity of an alleged nominative signature. Invisibility
is another main requirement of NS and restricts any party but the user to tell
the validity of an alleged nominative signature, and user-only conversion is an
optional property of NS that allows only the user to transform a valid nominative
signature to a publicly verifiable one.

Despite the well modeling [9,16,17,19,20] of the five security requirements
above, we have an ingrained view that a nominative signature σ is valid only if
all the components of σ are verified positively. Suppose a nominative signature
σ consists of 5 tuples σ = (α, β,Δ,Λ, θ), the nominative signature verification
carried out by a user always checks the well-formedness and the validity of all
these 5 tuples, and if any of the tuples is found to be invalid, σ is considered
invalid. However, an invalid σ may contain some valid and self-authenticating
components and these components might have already leaked the involvement of
the signer A or the user B in the nominative signature generation. For example,
suppose (α, β) in σ represents a digital signature generated by a signer A. If
the other components (Δ,Λ, θ) in σ are invalid, σ is deemed invalid. However,
from (α, β), one can already tell that A has indeed involved in the generation
of σ regardless whether σ is valid or not, as only the user B can determine its

Ambiguous One-Move Nominative Signature Without Random Oracles 327

validity (note that σ can still be invalid even if (α, β) is a valid digital signature
generated by A as the other components (Δ,Λ, θ) can be invalid while only B can
determine their validity and which makes such a scheme satisfy the invisibility
requirement). More details are given in Sect. 3.2.

Let us use the aforementioned hospital-and-patient scenario as an illustration.
Suppose the above NS is used and there is an alleged nominative signature σ =
(α, β,Δ,Λ, θ) for certifying a patient’s personal medical records. The hospital is
the signer A and the patient is the user B in the NS. When issuing a certificate for
B’s personal medical records, the hospital A works jointly with B and generates
a nominative signature σ. Although the validity of σ is unknown to the public
due to non-transferrability and invisibility of the NS, everyone can check the
validity of the digital signature components (α, β) of the hospital in σ. This may
leak the fact that the hospital A has indeed got involved on issuing a certificate
regarding B’s personal medical records though σ as a whole is not able to be
verified by the public.

Our Results. In this paper, we describe an NS scheme and proves that it
is secure in the existing security models which capture the five conventional
security requirements, namely unforgeability against malicious signers or users,
non-transferrability, invisibility, and user-only conversion. Then we show that
this nominative signature leaks the information on the involvement of a particu-
lar signer A. For capturing that no one, except the user B, is able to tell whether
a particular signer or a user has participated in the generation of a nominative
signature, we formalize a new security model, called “Ambiguity” and show that
any NS scheme which can be proven secure under this new security model would
not contain any sensible components which may leak the involvement of any
particular party.

Besides the new Ambiguity model, we propose a new and highly efficient NS
scheme which is proven secure under the existing models with respect to the
five conventional security requirements. The new scheme is at least 33 % more
efficient, in terms of modular exponentiations during signature generation, and
17 % shorter in signature size when compared with the most efficient NS schemes
in the literature that has been proven secure without the random oracles. Also,
we propose an improved NS scheme which satisfies not only the existing models,
but also the new Ambiguity security requirement.

2 Nominative Signature: Definitions

A One-Move Nominative Signature (NS) consists of six probabilistic polynomial-
time (PPT) algorithms (SystemSetup, SKeyGen, UKeyGen, NSVer, Conv, Ver) and
three protocols (SigGen, Confirmation and Disavowal).

1. SystemSetup: On input a security parameter 1k, where k ∈ N, it outputs a
list of system parameters denoted by param.

2. SKeyGen: On input param, it generates a public/private key pair (pkA, skA)
for the signer (i.e. nominator).

328 D.Y.W. Liu et al.

3. UKeyGen: On input param, it generates a public/private key pair (pkB , skB)
for the user (i.e. nominee).

4. NSVer: On input a message m ∈ {0, 1}∗, a nominative signature σ, a signer
public key pkA and a user private key skB , it outputs valid or invalid.

5. Conv: On input a message-signature pair (m,σ), pkA and skB , it outputs a
standard (publicly verifiable) signature σstd if valid ← NSVer(m,σ, pkA, skB);
otherwise, it outputs ⊥ symbolizing the failure of conversion.

6. Ver: On input (m,σstd, pkA, pkB), it outputs valid or invalid.
7. SigGen Protocol: A one-move protocol in which A makes one-move message

transfer to B only. The common input of A and B is (param,m, pkA, pkB).
A and B take skA, skB as their secret inputs, respectively. At the end of the
protocol, A outputs nothing and B outputs a nominative signature σ. Let
S(pkA, pkB) be the signature space.

8. Confirmation/Disavowal Protocol: On input (m,σ, pkA, pkB), B sets a bit μ
to 1 if valid ← NSVer(m, σ, pkA, skB); otherwise, μ is set to 0. B then sends
μ to C. If μ = 1, Confirmation protocol is carried out; otherwise, Disavowal
protocol is carried out. At the end of the protocol, C outputs either accept
or reject while B has no output.

An NS scheme proceeds as follows. SystemSetup is first invoked. SKeyGen and
UKeyGen are then executed to initialize a signer A and a user B. On a message
m, A and B carries out SigGen protocol. As SigGen is one-move, A generates a
partial nominative signature denoted by σ′ and sends it to B. B then generates
and outputs a nominative signature denoted by σ. Formally, SigGen consists
of two algorithms, (Sign, Receive), which are carried out by signer A (who is
holding (pkA, skA)) and user B (who is holding (pkB , skB)), respectively. SigGen
protocol proceeds as follows:

1. A generates σ′ ← Sign(param, pkB ,m, skA) and sends σ′ to B;
2. B generates σ ← Receive(param, pkA,m, σ′, skB).

At the end of the protocol, B either outputs a nominative signature σ or ⊥
indicating the failure of the protocol run.

Unlike the original definition in [19], the SigGen protocol defined above is
specific to the one-move setting, that is, signer A initiates and generates a partial
nominative signature σ′, then B generates the final nominative signature σ upon
receiving σ′. Note that the signature space should be specified explicitly in each
NS construction.

For a nominative signature σ in the signature space S(pkA, pkB) (defined above
in SigGen), the validity of σ can be determined by B using NSVer. If σ is valid,
B can prove its validity to a third party C using the Confirmation protocol,
otherwise, B can prove its invalidity to C using the Disavowal protocol.

Correctness can be defined naturally. Soundness requires that no PPT user can
convince a third party that an invalid (resp. invalid) nominative signature is
valid (resp. invalid). We defer their formal definitions to the full version of this
paper [18].

Ambiguous One-Move Nominative Signature Without Random Oracles 329

Before describing the security games for NS, we begin with the description of
oracles.

– OCreateSigner: This oracle generates a key pair (pkA, skA) using SKeyGen,
and returns pkA.

– OCreateUser: This oracle generates a key pair (pkB , skB) using UKeyGen, and
returns pkB .

– OCorrupt: On input a public key pk, if pk is generated by OCreateSigner
or OCreateUser, the corresponding private key is returned; otherwise, ⊥ is
returned. pk is said to be corrupted.

– OSign: On input a message m, two distinct public keys, pk1 (signer) and pk2
(user), it returns σ′ where σ′ is a partial nominative signature generated using
Sign.

– OReceive: On input a message m, a partial nominative signature σ′, two dis-
tinct public keys, pk1 (signer) and pk2 (user), it returns a nominative signature
σ.

– OProof: On input a message m, a nominative signature σ and two public keys
pk1 (signer) and pk2 (user), the oracle, acting as the user (prover) and runs
NSVer(m,σ, pk1, sk2) where sk2 is the corresponding private key of pk2. If the
output of NSVer is valid, the oracle returns 1 and carries out the Confirmation
protocol. Otherwise, it returns 0 and runs the Disavowal protocol.

– OConvert: On input (m,σ, pk1, pk2) such that valid ← NSVer(m,σ, pk1, sk2),
it runs Convert and returns σstd.

In all the oracles described above, the public keys in the queries of the oracles
are assumed to be generated by the corresponding OCreateSigner or OCreateUser.
This approach aligns with the multi-user setting and also the usual formalization
under the registered-key model [1] and is based on that of [20].

A secure nominative signature should satisfy the following requirements [9,16,
17,19,20]: (1) Unforgeability Against Malicious Users, (2) Unforgeability
Against Malicious Signers, (3) Invisibility, (4) Non-transferability, and
(5) User-only Conversion. Please refer to Appendix B for details.

3 Nominative Signature Supporting Ambiguity

In this section, we motivate the formalization of a new security requirement,
“Ambiguity”. It helps prevent an adversary from determining whether a signer
A or a user B has involved in the generation of an alleged nominative signature
σ. To the best of our knowledge, although Ambiguity has been considered as
a folklore in the research of nominative signature for all these years since its
first introduction in 1996 [13] and has also been studied in many other related
cryptographic primitives, for example, the Ambiguous Optimistic Fair Exchange
(AOFE) [11], it has never been formalized in the context of nominative sig-
nature, while it is an important and practical requirement. In the following,
we first give a new NS construction that satisfies the existing security models

330 D.Y.W. Liu et al.

(as defined in Sect. 2 above). The new construction is also more efficient, in
terms computational complexity and signature size, than existing NS schemes.
We, however, show that a nominative signature generated using this NS already
leaks the involvement of a particular signer regardless the validity of the nom-
inative signature. We make use of this NS scheme to illustrate the importance
and practicality of this new “Ambiguity” security requirement.

3.1 An Efficient NS Construction (Our Scheme I)

This scheme employs the Boneh-Boyen short signature (BB) [2] and the Huang-
Wong short convertible undeniable signature (HW) [10]. Particularly in SigGen,
a signer A generates a BB signature σ′ = (σBB , rA) and sends it to a user B,
which signs on σ′ using HW convertible undeniable signature.

SystemSetup: Given a security parameter k ∈ N, the algorithm selects a
bilinear group G with generator g of prime order p, and a collision resistant
hash function H : {0, 1}∗ → Zp. It also selects a keyed group hash func-
tion [8] H = (PHF.Gen,PHF.Eval), such that κ ← PHF.Gen(1k) is the key,
and we denote Hκ(m) = PHF.Eval(κ,m), where m ∈ {0, 1}∗. Let param =
(k,H,H, G, g, p).
SKeyGen: On input param, it randomly generates xA1 , xA2 ∈R Z

∗
p and cal-

culates yA1 = gxA1 and yA2 = gxA2 . Set the public key pkA = (yA1 , yA2) and
private key skA = (xA1 , xA2) for signer A.
UKeyGen: On input param, it randomly picks xB1 , xB2 ∈R Zp, η ∈R G and
gets κ ← PHF.Gen(1k). Calculate yB1 = gxB1 , yB2 = g1/xB2 , and set the
public key pkB = (yB1 , yB2 , η, κ) and private key skB = (xB1 , xB2) for user
B.
SigGen Protocol: On input a message m ∈ {0, 1}∗, A and B carry out the
following:
1. A randomly picks rA ∈ Zp \ −{xA1+H(m||yB)

xA2
} where yB = yB1 ||yB2 ||η||κ,

computes σBB =
g1/(xA1+H(m||yB)+xA2rA), and sends σ′ ← (σBB , rA) to B. Here, the
inverse 1/(xA1 + H(m||yB) + xA2rA) is computed modulo p.

2. B verifies if e(g, g) ?= e(σBB , yA1g
H(m||yB)yrA

A2
). B then randomly picks

τ ∈R Zp, computes Δ ← Hκ(σ′)1/(xB1+τ), Λ ← yτ
B2

, θ ← ητ , and sets
σU = (Δ,Λ, θ). The nominative signature is set to σ = (σ′, σU).

Signature Space: σ = (σ′, σU) is said to be in the signature space S(pkA, pkB)
if σ′ is a valid BB signature under pkA on m‖yB and Δ,Λ, θ ∈ G.

NSVer: On input (m,σ, pkA, skB), if e(Δ, yB1Λ
xB2) = e(Hκ(σ′), g) and

e(ΛxB2 , η) = e(g, θ), it outputs valid; otherwise, it outputs invalid.
Confirmation/Disavowal Protocol: If valid ← NSVer(m,σ, pkA, skB), B sends
μ = 1 and carries out the following proof system for showing the validity of
σU to a verifier:

PoK{xB2 : e(Δ,Λ)xB2 = e(Hκ(σ′), g) · e(Δ, yB1)
−1};

Ambiguous One-Move Nominative Signature Without Random Oracles 331

otherwise, B sends μ = 0 and carries out the following proof system with
the verifier:

PoK{xB2 : e(Δ,Λ)xB2 �= e(Hκ(σ′), g) · e(Δ, yB1)
−1}.

There exist efficient (3-move) special honest-verifier zero-knowledge protocols
[4,5] for the instantiation of above proof systems. They can also be transformed
into 4-move perfect zero-knowledge proofs of knowledge [6] so that there exists
a PPT simulator that produces indistinguishable views for any verifier.

Conv: On input (m,σ, pkA, skB) where σ is a valid nominative signature on
m respect to pkA and pkB , the algorithm computes cvt = ΛxB2 and sets
σstd

U = (σU , cvt). It outputs a digital signature as σstd = (σ′, σstd
U).

Ver: On input (m,σstd, pkA, pkB), it outputs valid if (1) e(Δ, yB1cvt) =
e(Hκ(σ′), g), and (2) e(cvt, η) = e(g, θ); otherwise, it outputs invalid.

For Invisibility, we define σinvalid ← NSSim(param, pkA, pkB ,m, σvalid) as fol-
lows. Given σvalid := (σ′, σU), NSSim outputs σinvalid as (σ′, σ∗

U) for randomly
chosen Δ∗, Λ∗, θ∗ ∈R G.

The security analysis for the scheme above will be given in the full version of
this paper [18].

3.2 Security Model: Ambiguity

The existing security model treats a nominative signature σ as a whole when
determining its validity, that is, σ is considered valid if all individual components
of σ are considered valid. However, this security model does not consider the self-
authenticating individual components in σ. Those components may leak cer-
tain important information, for example, a particular signer/user’s involvement
in the signature generation. In our construction given in Sect. 3.1, the signer A
creates a partial NS signature σ′ which is a standard signature on (m‖pkB).
The user B then creates an undeniable signature σU on σ′ to form the final
NS signature σ = (σ′, σU). Note that σ′ can only be generated by A while the
unforgeability property of the NS scheme still holds as neither A nor B is able
to forge the entire signature σ alone. On invisibility, as the second part of σ,
that is, σU , can only be verified by B while the public (including A) cannot tell
whether σU is valid or not, even σ′ is publicly verifiable, no one (including A)
can conclude on whether the nominative signature σ as a whole is valid or not.
However, the partial NS signature σ′ is self-authenticated and already reveals
A’s participation in the signature generation regardless the validity or invalidity
of the second part σU . We believe that this may act against the interest of the
signer/user in real life situations. The hospital-and-patient scenario mentioned
previously provides a good example. Though the certificate (i.e. σ) of a patient’s
personal medical records may not be self-authenticated that public verifiers are
not able to check whether the certificate (as a whole) is valid or invalid, the
first part of the certificate, i.e. σ′, has already leaked the fact that the patient’s

332 D.Y.W. Liu et al.

personal medical records had been signed by a specific hospital. The patient,
however, may not be happy to disclose this fact to the public. In real life sit-
uations, we believe that it is crucial to hide completely the information about
whether a particular signer A or user B has got involved in the generation of an
alleged nominative signature σ.

Informally speaking, given an alleged NS signature, we require that other than
user B, no one (including signer A) can tell whether A or B has been involved
in the signature generation protocol SigGen. Here, we propose two games for
formalizing Signer Ambiguity and User Ambiguity.

Game Signer Ambiguity: The initialization and attacking phases are the same
as that of Game Unforgeability Against Malicious Signers. In particular, the chal-
lenger S runs (pkB , skB) ← UKeyGen(param) and sends pkB to the adver-
sary/distinguisher DA while keeping skB secret. Below are the subsequent phases.

1. (Challenge Selection Phase) DA arbitrarily chooses and sends two distinct
challenge messages m∗

0, m∗
1 and key pairs (pkA0 , skA0) and (pkA1 , skA1) of

two signers to S. DA then further runs σ′
i ← Sign(param, pkB ,m∗

i , skAi
) and

sends σ′
i to S, for i = 0, 1.

2. (Challenge Signature Generation Phase) Upon receiving 〈m∗
0,m

∗
1, (pkA0 ,

skA0), (pkA1 , skA1), σ′
0, σ

′
1〉, S tosses a coin b ∈R {0, 1} and sends σ∗ ←

Receive(param, pkAb
, m∗

b , σ′
b, skB) to DA.

3. (Guess Phase) DA outputs a guess bit b′ for b.

DA wins the game if b′ = b provided that

1. DA has never queried OCorrupt(pkB) for getting skB ;
2. (pkA0 , skA0) and (pkA1 , skA1) are created by querying OCreateSigner;
3. (m∗, σ∗, pkAi

, pkB) has never been queried to OProof or OConvert, for i = 0, 1.

DA’s advantage in this game is defined as P[b′ = b] − 1
2 .

Definition 1. An NS has the property of Signer Ambiguity if no PPT distin-
guisher DA has a non-negligible advantage in Game Signer Ambiguity.

Game User Ambiguity: The initialization and attacking phases are the same as
that of Game Unforgeability Against Malicious Signers. In particular, the challenger
S generates (pkB0 , skB0) ← UKeyGen(param) and (pkB1 , skB1) ← UKeyGen
(param) and sends pkB0 and pkB1 to the adversary/distinguisher DA while keep-
ing skB0 and skB1 secret. Below are the subsequent phases.

1. (Challenge Selection Phase) DA arbitrarily chooses and sends two distinct
challenge messages m∗

0, m∗
1 and a pair (pkA, skA) to S. DA further runs

σ′
i ← Sign(param, pkBi

,m∗
i , skA) and sends σ′

i to S, for i = 0, 1.
2. (Challenge Signature Generation Phase) Upon receiving 〈m∗

0, m∗
1, pkA, skA,

σ′
0, σ′

1〉, S tosses a coin b ∈R {0, 1}, computes σ∗
b ← Receive(param, pkA, m∗

b ,
σ′

b, skBb
), and sends σ∗

b to DA.
3, (Guess Phase) DA outputs a guess bit b′ for b.

Ambiguous One-Move Nominative Signature Without Random Oracles 333

DA wins the game if b′ = b provided that

1. DA has never queried OCorrupt(pkBi
) for getting skBi

for i = 0, 1;
2. (pkA, skA) is created by querying OCreateSigner;
3. (m∗, σ∗, pkA, pkBi

) has never been queried to OProof or OConvert, for i = 0, 1.

DA’s advantage in this game is defined as P[b′ = b] − 1
2 .

Definition 2. An NS has the property of User Ambiguity if no PPT distin-
guisher DA has a non-negligible advantage in Game User Ambiguity.

[16,17] does not satisfy User Ambiguity as the adversary can make use of rA,
which is generated by the adversary as signer A but is not masked in σ∗

b , to tell
whether σ′

0 or σ′
1 is used in the generation of σ∗

b in the Game User Ambiguity
above.

Definition 3. An NS has the property of ambiguity if it satisfies both Signer
Ambiguity and User Ambiguity.

We say that a secure nominative signature (NS) scheme satisfies: (1) Unforge-
ability Against Malicious Users, (2) Unforgeability Against Malicious
Signers, (3) Invisibility, (4) Non-transferability, (5) User-only Conver-
sion and (6) Ambiguity.

4 A New NS Construction Supporting Ambiguity (Our
Scheme II)

We propose a new NS scheme for achieving “Ambiguity”. The scheme is based
on the one in [16,17], and major modifications include the encryption of the
randomness, rA, using ElGamal encryption (EGE), and the inclusion of the
ciphertext in the signature. We will also describe an alternative approach using
Linear Encryption (LE) later in the same section.

SystemSetup: On input a security parameter k ∈ N, the algorithm sets three
cyclic groups G1, G2, and GT of prime order p ≥ 2k and a bilinear map
e : G1 × G2 → GT . It also picks a collision resistant hash function H :
{0, 1}∗ → Zp, and randomly selects generators g1 ∈ G1, g2 ∈ G2, and
g3 ∈ Z

∗
p. Set param = (p,G1, G2, GT , g1, g2, g3,H).

SKeyGen: On input param, it randomly picks xA1 , xA2 ∈R Z
∗
p, and computes

yA1 = g
xA1
2 and yA2 = g

xA2
2 . Set public key pkA = (yA1 , yA2), and private

key skA = (xA1 , xA2) for signer A.

UKeyGen: On input param, it randomly generates xB1 , xB2 , xB3 , xB4 ∈R Z
∗
p, and

computes yB1 = g
xB1
2 , yB2 = g

xB2
2 , yB3 = g

xB3
1 and yB4 = g

xB4
3 . Set public

key pkB = (yB1 , yB2 , yB3 , yB4) and private key skB = (xB1 , xB2 , xB3 , xB4)
for user B.

334 D.Y.W. Liu et al.

SigGen Protocol: On input a message m ∈ {0, 1}∗, A and B carry out the
following.
1. A randomly picks rA ∈R Zp \−{xA1+H(m||yB)

xA2
} where yB = yB1‖yB2‖yB3

‖yB4 , computes σBB = g1
1/(xA1+H(m||yB)+xA2rA), and sends σ′ ← (σBB ,

rA) to B.
2. B checks if e(g1, g2)

?= e(σBB , yA1g
H(m||yB)
2 yrA

A2
). If so, B computes σ1 =

σBByB3
r1 and α1 = g1

r1 where r1 ∈R Zp, then randomly picks rB ∈R

Zp \ −{xB1+H(σ1)

xB2
}, and computes σ2 = g1

1/(xB1+H(σ1)+xB2rB)yB3
r2 and

α2 = g1
r2 where r2 ∈R Zp. B also computes cA = rAyB4

r3 , α3 = g3
r3

where r3 ∈R Zp. The signature is σ = (σ1, σ2, cA, rB , α1, α2, α3).

Signature Space: σ is said to be in the signature space S(pkA, pkB) if σ1, σ2,
α1, α2 ∈ G1, cA, α3 ∈ Z

∗
p, rB ∈ Zp.

NSVer: On input (m,σ, pkA, skB) where σ is in S(pkA, pkB), set r′
A =

cA/α3
xB4 and check if

e(α1, yA1g
H(m‖yB)
2 yrA

A2
)xB3

?= e(σ1, yA1g
H(m||yB)
2 yrA

A2
)/e(g1, g2)

∧ e(α2, yB1g
H(σ1)
2 yrB

B2
)xB3

?= e(σ2, yB1g
H(σ1)
2 yrB

B2
)/e(g1, g2)

If so, output valid; otherwise, output invalid.

Confirmation/Disavowal Protocol: If valid ← NSVer(m,σ, pkA, skB), B sends
μ = 1 and carries out the following zero-knowledge proof of knowledge with
a verifier:

PoK{(xB3, xB4, rA) : g1
xB3 = yB3 ∧ g3

xB4 = yB4

∧ e(α1, yA1g
H(m||yB)
2 yrA

A2
)xB3 = e(σ1, yA1g

H(m||yB)
2 yrA

A2
)/e(g1, g2)

∧ e(α2, yB1g
H(σ1)
2 yrB

B2
)xB3 = e(σ2, yB1g

H(σ1)
2 yrB

B2
)/e(g1, g2)};

otherwise, B sends μ = 0 and carries out the following zero-knowledge proof
of knowledge with the verifier:

PoK{(xB3, xB4, rA) : g1
xB3 = yB3 ∧ g3

xB4 = yB4

∧ (e(α1, yA1g
H(m||yB)
2 yrA

A2
)xB3 �= e(σ1, yA1g

H(m||yB)
2 yrA

A2
)/e(g1, g2)

∨ e(α2, yB1g
H(σ1)
2 yrB

B2
)xB3 �= e(σ2, yB1g

H(σ1)
2 yrB

B2
)/e(g1, g2))}.

Conv: On input (m,σ, pkA, skB) where σ is a valid nominative signature on
m respect to pkA and pkB , the algorithm computes rA = cA/α3

xB4 , then
randomly picks r4 ∈R Zp, and sets δ = (δ1, δ2, rA, r4) where δ1 = σ1/α

xB3
1

and δ2 = g1
1/(xB1+H(δ1)+xB2r4).

Ver: On input (m, δ, pkA, pkB), it outputs valid if e(g1, g2) = e(δ1, yA1g
H(m||yB)
2

yrA
A2

) and e(g1, g2) = e(δ2, yB1g
H(δ1)
2 yr4

B2
); otherwise, it outputs invalid.

Ambiguous One-Move Nominative Signature Without Random Oracles 335

For Invisibility, we define σinvalid ← NSSim(param, pkA, pkB ,m, σvalid) as fol-
lows. Given σvalid := (σ1, σ2, cA, rB , α1, α2, α3), NSSim outputs σinvalid as
(σ∗

1 , σ∗
2 , cA, rB , α1, α2, α3) where σ∗

1 = σ1R1, σ∗
2 = σ2R2 where R1 and R2 are

randomly chosen from G1. An alternative approach is to use Linear Encryption
[3], a natural extension of ElGamal encryption, to encrypt σBB . Linear encryp-
tion (LE) can be secure even in groups where a DDH-deciding algorithm exists.
By using LE, we need to change pkB to a triple of generators gi, gii, giii ∈ G1,
and skB to exponents xi, xii ∈ Zp such that gxi

i = gxii
ii = giii. To encrypt σBB,

we randomly choose a, b ∈R Zp and compute (T1, T2, T3) = (ga
i , gb

ii, σ
BBga+b

iii).
To recover σBB , we compute T3/(T xi

1 T xii
2). LE is semantically secure against

chosen-plaintext attacks, assuming the Decision Linear Problem (DLIN) assump-
tion holds, which is a weaker assumption and the scheme can remain secure
even in groups where a DDH-deciding algorithm exists. This LE-based variant
can therefore provide a potentially larger class of groups to choose from during
implementation, while it is less efficient than the original EGE-based scheme.
A detailed comparison will be given in Sect. 5.

Theorem 1 (Ambiguity). The NS scheme proposed above satifies Ambiguity
(Definition 3) if the scheme is unforgeable and ElGamal encryption satisfies
ANO-CPA and IND-CPA.

The completed proof will be given in the full version of this paper [18]. The
improved NS scheme also satisfies (1) Unforgeability Against Malicious
Users, (2) Unforgeability Against Malicious Signers, (3) Invisibility,
(4) Non-transferability, (5) User-only Conversion. The proof is similar to
that for the scheme in [16,17] and is omitted here.

5 Efficiency Analysis and Comparison

In Table 1, we compare our Scheme I (the one does not satisfy Ambiguity) and
Scheme II (the one supports Ambiguity) with the most efficient NS schemes in
the literature. The comparison includes signature size, signer A and user B key
sizes (termed as AKey and BKey), signature generation efficiency in terms of
modular exponentiation calculation by A (Sign) and B (Receive) individually,
and the security assumptions for unforgeability and invisibility. The table also
shows whether the schemes satisfy Ambiguity, and whether the schemes can
be proven secure without the assumption of random oracles. Our first efficient
scheme is 33 % more efficient, in terms of the number of modular exponentiation
operations during signature generation, and 17 % shorter in signature size than
those in Liu et al’s scheme [16,17], which is known to be the most efficient NS
scheme proven secure without random oracles to date. The schemes [24] and [20]
also satisfy the Ambiguity property, while the scheme in [24] relies on the random
oracle assumption and in [20], the number of components in signer A’s key is
linear to the security parameter. Our Scheme II (EGE), the ElGamal encryp-
tion based variant of Scheme II, has constant size key and is proven without
random oracles. In Scheme II (LE), the linear encryption based variant, though

336 D.Y.W. Liu et al.

Table 1. Comparison with Existing One-Move NS Schemes

Scheme σ AKey BKey SigGena

ZY09 [24] 1G 2G+2Z∗
p 2G+2Z∗

p 1 + 2

SH11 [20] 3G+Zp 2G+(n+2)Zp
b 5G+[2(n+1)+3]Zp 3 + 8

LW12 [16,17] 4G+2Zp 2G+2Zp 3G+3Zp 1 + 5

Our Scheme I 4G+1Zp 2G+2Zp [3+(m+1)]G+2Zp
c 1 + 3

Our Scheme II (EGE) 4G+3Zp 2G+2Zp 3G+5Zp 1 + 7

Our Scheme II (LE) 6G+3Zp 2G+2Zp 6G+5Zp 1 + 9

Unforgeability Invisibility Ambiguity No ROM

ZY09 [24]
√ √ √ ×

SH11 [20]
√ √ √ √

LW12 [16,17]
√ √ × √

Our Scheme I
√ √ × √

Our Scheme II (EGE)
√ √ √ √

Our Scheme II (LE)
√ √ √ √

aNo. of modular exponentiation operations in signature generation (Sign+ Receive)
bn: No. of bits of each message to be signed
cm: The public generators of group G included in the key of the programmable hash

function (PHF)

the performance is slightly lower than Scheme II (EGE), it relies on a weaker
assumption (DLIN) and the scheme will remain secure even in groups where a
DDH-deciding algorithm exists.

6 Conclusion

We proposed a new security notion called Ambiguity to Nominative Signature.
This new notion ensures that a nominative signature will remain anonymous
in the sense that no one (including the signer) but the user can tell whether a
particular signer or user has involved in the generation of an alleged nominative
signature. We no longer restrict ourselves to look into a nominative signature as a
whole, but also require that any individual components of a nominative signature
should not leak any information regarding the involvement of any particular
party with respect to the generation of an alleged nominative signature. We
formalized the Ambiguity notion, showed that it is possible to build a highly
efficient nominative signature secure in the existing model but not satisfying the
ambiguity requirement. We also proposed a new and secure nominative signature
scheme which also satisfies the ambiguity requirement. The new scheme is proven
secure without the random oracle assumption.

Acknowledgements. Q. Huang is supported by National Natural Science Founda-
tion of China (No. 61103232), the Research Fund for the Doctoral Program of Higher
Education of China (No. 20114404120027), Guangdong Natural Science Foundation
(No. S2013010011859), and the Foundation for Distinguished Young Talents in Higher
Education of Guangdong, China (No. LYM11033).

Ambiguous One-Move Nominative Signature Without Random Oracles 337

A Related Work

Nominative Signature (NS) was introduced by Kim et al. [13]. In their seminal
paper, they also proposed the first NS, which was later found insecure [12]. The
notion convertible nominative signature was also introduced in [12] and the first
construction of a convertible nominative signature was proposed. In [21], an
attack against the scheme in [12] was described. Though the attack was later
found invalid [7], new attacks against the scheme in [12] was found in [7,22].

In [19], Liu et al. proposed the first set of formal definitions and security
models for Convertible NS (for simplicity, we use NS to represent convertible
NS as well). They also proposed the first provably secure NS scheme under the
models they defined. Their scheme requires at least four rounds of communica-
tion between the signer and the user during signature generation. More efficient
nominative signature schemes were later proposed [14,15]. The scheme in [14]
requires two rounds during nominative signature generation and the scheme in
[15] is the first one-move (non-interactive) NS in the literature. Later, more one-
move NS schemes [9,23,24] were proposed and proven secure in random oracle
model. In [20], Schuldt et al. proposed a new NS scheme without random ora-
cles, and recently in [16,17], a more efficient NS scheme than that in [20] was
proposed. The new scheme achieved constant-size keys.

B Security Model

B.1 Unforgeability Against Malicious Users

We require that a user cannot forge a nominative signature without the involve-
ment of a signer.

Game Unforgeability Against Malicious Users: Let S be a challenger and F a
forger.

1. (Initialization) Let k ∈ N be a security parameter. S runs param ← System
Setup(1k) and (pkA, skA) ← SKeyGen(param), then invokes F with (param,
pkA).

2. (Attacking Phase) F adaptively queries OCreateSigner, OCreateUser, OCor-
rupt, and OSign.

3. (Output Phase) F outputs (m∗, σ∗, pkB , skB).

F wins the game if valid ← NSVer(m∗, σ∗, pkA, skB) provided that

1. F has never queried OCorrupt(pkA) for getting skA;
2. (pkB , skB) is created through querying OCreateUser;
3. (m∗, pkA, pkB) has never been queried to OSign.

F ’s advantage in this game is defined as the probability that F wins.

Definition 4. An NS is unforgeable against malicious users if no PPT forger F
has a non-negligible advantage in Game Unforgeability Against Malicious Users.

Oracles OProof and OConvert are not provided in the game as F can read-
ily carry out these protocol/algorithm as a (malicious) user by making use of
OCreateUser and OCorrupt oracles.

338 D.Y.W. Liu et al.

B.2 Unforgeability Against Malicious Signers

A malicious signer should not be able to forge a nominative signature without
the help of a user.
Game Unforgeability Against Malicious Signers: Let S be a challenger and F
a forger.

1. (Initialization) On input a security parameter k ∈ N, S runs param ←
SystemSetup(1k) and (pkB , skB) ← UKeyGen(param) and invokes F with
(param, pkB).

2. (Attacking Phase) F adaptively queries OCreateSigner, OCreateUser, OCor-
rupt, OReceive, OProof and OConvert.

3. (Output Phase) F outputs (m∗, σ∗, pkA, skA).

F wins the game if valid ← NSVer(m∗, σ∗, pkA, skB) provided that

1. F has never queried OCorrupt(pkB) for getting skB ;
2. (pkA, skA) is created through OCreateSigner;
3. (m∗, σ′∗, pkA, pkB) has never been queried to OReceive such that σ∗ is the

return.

F ’s advantage in this game is defined as the probability that F wins.

Definition 5. An NS is unforgeable against malicious signers if no PPT forger F
has a non-negligible advantage in Game Unforgeability Against Malicious Signers.

OSign is not provided in the game above as F can readily carry out Sign as
(malicious) signers by making use of OCreateSigner and OCorrupt.

B.3 Invisibility

We require that no verifier C (including signer A) but user B can tell the
validity of a nominative signature. In the formalization, we define an auxil-
iary algorithm called NSSim (Nominative Signature Simulator). The algorithm
takes (param, pkA, pkB ,m, σvalid) as input, where σvalid is a valid nominative
signature for message m under pkA and pkB , outputs σinvalid so that σinvalid ∈
S(pkA, pkB) but σinvalid is no longer a valid nominative signature for m under
(pkA, pkB). The purpose of introducing NSSim is to explicitly define the capabil-
ity of the public to convert a valid nominative signature to an invalid one while
both σvalid and σinvalid should look indistinguishable to C, and only B can tell
which signature is valid and which one is not. Also note that NSSim has to be
explicitly described in the construction of an NS scheme in order to have the
new scheme be proven satisfying the Invisibility requirement.
Game Invisibility: The adversary in the game is a distinguisher D.

1. (Initialization) Same as that of Game Unforgeability Against Malicious Signers.
2. (Attacking Phase) Same as that of Game Unforgeability Against Malicious

Signers.

Ambiguous One-Move Nominative Signature Without Random Oracles 339

3. (Challenge Signature Generation Phase) D chooses and sends a message m∗

and (pkA, pkB) to the challenger while acting as a signer (indexed by pkA) to
carry out a run of SigGen with the challenger which acts as a user (indexed
by pkB). Let σvalid be the nominative signature generated by the challenger
in a SigGen protocol run, that is, valid ← NSVer(m∗, σvalid, pkA, skB). The
challenger then tosses a random coin b ∈R {0, 1}. If b = 1, the challenges sends
σvalid to D; otherwise, the challenge sends σ∗ ← NSSim(param, pkA, pkB ,m,
σvalid) to D.

4. (Guess Phase) D continues querying the oracles until it outputs a guess b′.

D wins the game if b′ = b provided that

1. D has never queried OCorrupt(pkB) for getting skB ;
2. (pkA, skA) is created by querying OCreateSigner;
3. (m∗, σ′∗, pkA, pkB) has never been queried to OReceive such that it returns

σ∗;
4. (m∗, σ∗, pkA, pkB) has never been queried to OProof or OConvert.

D’s advantage in this game is defined as P[b′ = b] − 1
2 .

Definition 6. An NS satisfies invisibility if no PPT distinguisher D has a non-
negligible advantage in Game Invisibility.

B.4 Non-transferability

This security property requires that a verifier C cannot convince other veri-
fiers using a previous confirmation/disavowal proof transcript about the valid-
ity/invalidity of a given nominative signature. For a secure NS scheme, the
Confirmation and Disavowal protocols should be perfect zero-knowledge so that
no PPT verifier (including the signer) can transfer the proof transcript. The per-
fect zero-knowledge property implies non-transferability of proof transcripts as
a verifier C can simulate the proof transcripts that look indistinguishable from
the actual proof transcripts. A third party C can sample a signature from the
signature space and create a proof transcript which looks indistinguishable from
those generated from the Confirmation/Disavowal protocols running between the
corresponding user B and the third party C.

B.5 User-Only Conversion

The following game captures the requirement that no one but the user can
convert a valid nominative signature to a publicly-verifiable one.
Game User-only Conversion: Let C be an adversary.

– (Initialization) Same as that of Game Unforgeability Against Malicious Signers.
– (Attacking Phase) Same as that of Game Unforgeability Against Malicious
Signers.

340 D.Y.W. Liu et al.

– (Challenge Signature Generation Phase) C is given a challenge message-
nominative-signature pair (m∗, σ∗) and the public keys of signer and user,
respectively, (pkA, pkB) such that σ∗ is valid on m∗ under (pkA, pkB).

– (Conversion Phase) C outputs (m∗, σstd).

C wins if valid ← Ver(m,σstd, pkA, pkB) provided that

1. C has never queried OCorrupt(pkB) for getting skB ;
2. (pkA, skA) is created by querying OCreateSigner;
3. (m∗, σ∗, pkA, pkB) has never been queried to OProof or OConvert.

C’s advantage is defined as the probability that C wins.

Definition 7. An NS satisfies user-only conversion if no PPT adversary C has
a non-negligible advantage in Game User-only Conversion.

Theorem 2 ([16,17]). If an NS satisfies invisibility with respect to Definition 6,
the scheme satisfies user-only conversion.

References

1. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195. IEEE Computer
Society, (2004)

2. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

4. Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae
and applications. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433,
pp. 272–288. Springer, Heidelberg (2002)

5. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of dis-
crete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

6. Cramer, R., Damg̊ard, I.B., MacKenzie, P.D.: Efficient zero-knowledge proofs of
knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)

7. Guo, L., Wang, G., Wong, D.S., Hu, L.: Further discussions on the security of
a nominative signature scheme. In: SAM 2007, pp. 566–572. CSREA Press, June
2007

8. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

9. Huang, Q., Liu, D.Y.W., Wong, D.S.: An efficient one-move nominative signature
scheme. IJACT 1(2), 133–143 (2008)

10. Huang, Q., Wong, D.S.: Short and efficient convertible undeniable signature
schemes without random oracles. Theor. Comput. Sci. 476, 67–83 (2013)

11. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer,
Heidelberg (2008)

Ambiguous One-Move Nominative Signature Without Random Oracles 341

12. Huang, Z., Wang, Y.-M.: Convertible nominative signatures. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 348–357.
Springer, Heidelberg (2004)

13. Kim, S.J., Park, S.J., Won, D.H.: Zero-knowledge nominative signatures. In:
PragoCrypt’96, pp. 380–392 (1996)

14. Liu, D.Y.W., Chang, S., Wong, D.S.: A more efficient convertible nominative sig-
nature. In: SECRYPT 2007, pp. 214–221. INSTICC Press (2007)

15. Liu, D.Y.W., Chang, S., Wong, D.S., Mu, Y.: Nominative signature from ring
signature. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 396–411. Springer, Heidelberg (2007)

16. Liu, D.Y.W., Wong, D.S.: One-move convertible nominative signature in the stan-
dard model. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec
2012. LNCS, vol. 7496, pp. 2–20. Springer, Heidelberg (2012)

17. Liu, D.Y.W., Wong, D.S.: One-move convertible nominative signature in the stan-
dard model. Security and Communication Networks, July 2013. http://dx.doi.org/
10.1002/sec.812

18. Liu, D.Y.W., Wong, D.S., Huang, Q.: Ambiguous one-move nominative signa-
ture without random oracles. Cryptology ePrint Archive, Report 2013/711, 2013.
http://eprint.iacr.org/

19. Liu, D.Y.W., Wong, D.S., Huang, X., Wang, G., Huang, Q., Mu, Y., Susilo, W.:
Formal definition and construction of nominative signature. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 57–68. Springer, Heidelberg
(2007)

20. Schuldt, J.C.N., Hanaoka, G.: Non-transferable user certification secure against
authority information leaks and impersonation attacks. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 413–430. Springer, Heidelberg (2011)

21. Susilo, W., Mu, Y.: On the security of nominative signatures. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 329–335. Springer,
Heidelberg (2005)

22. Wang, G., Bao, F.: Security remarks on a convertible nominative signature scheme.
In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.) SEC 2007.
IFIP, vol. 232, pp. 265–275. Springer, US (2007)

23. Zhao, W., Lin, C., Ye, D.: Provably secure convertible nominative signature
scheme. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487,
pp. 23–40. Springer, Heidelberg (2009)

24. Zhao, W., Ye, D.: Pairing-based nominative signatures with selective and universal
convertibility. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS,
vol. 6151, pp. 60–74. Springer, Heidelberg (2010)

http://dx.doi.org/10.1002/sec.812
http://dx.doi.org/10.1002/sec.812
http://eprint.iacr.org/

A Provably Secure Signature and Signcryption
Scheme Using the Hardness Assumptions

in Coding Theory

K. Preetha Mathew1(B), Sachin Vasant2, and C. Pandu Rangan1

1 Theoretical Computer Science Lab, Department of Computer Science
and Engineering, Indian Institute of Technology Madras, Chennai, India

{kpreetha,prangan}@cse.iitm.ac.in
2 Department of Computer Science, Boston University, Boston, USA

sachinv@cs.bu.edu

Abstract. Signcryption is a cryptographic protocol that provides
authentication and confidentiality as a single primitive at a cost lower
than the combined cost of sign and encryption. Code-based cryptogra-
phy, a likely candidate for post-quantum cryptography, provides an excit-
ing alternative to number-theoretic cryptography. Courtois, Finiasz and
Sendrier proposed the only practical code-based signature(CFS signature)
at Asiacrypt 2001. But that signature scheme currently lacks a formal
proof of security due to the existence of the high rate distinguisher
proposed by Faugère et al. In this paper, we make use of an alternate key-
construct for the CFS signature, and thus prove its existential unforge-
ability under chosen message attacks (EUF-CMA). Also, we propose a
code-based signcryption scheme and prove its security. To the best of our
knowledge, this is the first code-based, provably secure signature and sign-
cryption scheme in literature.

Keywords: Signature · Signcryption · Code-based cryptography · CFS
signature · Syndrome decoding

1 Introduction

Authentication and confidentiality of a message are among important security
goals achieved using cryptography. Confidentiality is achieved by encryption and
signature achieves authentication. Signcryption as a primitive, aims at attain-
ing the above goals at a lower cost than individually signing and encrypting
or vice-versa. Zheng [32], in 1997 proposed the first digital signcryption scheme.
Later, a formal model of security for signcryption schemes was provided by Baek
et al. in [2], which includes signcrypted text indistinguishable under chosen
ciphertext attack (SC-IND-CCA2) for confidentiality and signature on the
signcrypted text is existential unforgeable under chosen message attack (SC-
EUF-CMA) for unforgeability. Also, a stronger notion of security called insider

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 342–362, 2014.
DOI: 10.1007/978-3-319-12160-4 21

A Provably Secure Signature and Signcryption Scheme 343

security was introduced by An et al. in [1], which proposed that a signcryp-
tion scheme needs to offer confidentiality even if all the private-keys except the
receiver’s private key are known (the private key of the sender in particular, is
known to the adversary), and it must be unforgeable even if all the private keys
except the private-key of the sender are known (in particular, the private key of
the receiver is known to the adversary).

The notion of code-based cryptography was initiated by the encryption scheme
proposed by McEliece [28] in 1978, which was based on the Bounded Decoding
Problem. The aforementioned problem is NP-complete [5]. Niederreiter [18] pro-
posed an encryption scheme which was effectively on the dual of the code used
in the McEliece encryption scheme. In the Niederreiter system, the security was
based on the hardness of the Syndrome Decoding Problem. The security of the
schemes by McEliece [28] and Niederreiter [18] are shown to be equivalent in [22].
Stern [30] proposed an efficient code-based identification scheme, which does not
require a trapdoor like Goppa codes and its corresponding decoding mechanism,
unlike the above cryptosystems. But, to obtain a signature scheme based on [30] is
practically infeasible as the signature size is very large. Courtois et al.[9] in 2001
proposed a signature scheme (CFS signature scheme) based on the hardness of
Syndrome Decoding Problem. These signatures are practical only for high-rate
linear codes (as the density of non-decodable syndromes is sparse). Although it has
a relatively large signing time, the signature scheme was an exciting breakthrough,
as it laid a foundation-stone for development of many code-based schemes in var-
ious cryptographic primitives. Barreto et al. [4] proposed one-time signature and
Kabatianskii et al. [19] also proposed a signature which is secure only for few sig-
natures. Otmani et al. [25] proved an attack on the above two schemes.

Motivation. The first practical code based signature scheme was reported in
2001 by Courtois et al. [10]. Later the authors added few more details in the
scheme presented in [9]. The running time of the signing algorithm, is estimated
to be O(t2t!log(n)3), where t is the number of errors that can be corrected and
n is the length of the code word. The formal proof for the signature was not
presented in the paper, but to arrive at safe parameter values, the authors con-
sidered the attacks like Canteaut Chabaud (CC) attack [7] and Lee Brickell (LB)
attack [20]. Assuming a threshold of 280 binary work factor for security against
specific attack, (log(n), t) values that would withstand the attacks and the corre-
sponding signing times were estimated. Specifically in order to resist the attacks
like the CC attack and LB attack, [9] suggests that the values such as (15,10),
(16,9) are appropriate for (log(n), t). They have also shown that the running
time of the signature algorithm is reasonable for these choice of parameters.
In 2009, Finiasz et al. [16] considered an attack due to Daniel Bleichenbacher
(communicated through the private communication to the authors of [16], but
never published). The authors of [16] suggested the parameters must be set to
(15,12) or (16,12) etc. for (log(n), t) values in view of this new attack. Subse-
quently, in 2011, Sendrier [29] studied another attack, namely decoding one out
of many. The revised parameters that can be chosen according to [29] are (18,13),
(19,12), (20,11) for (log(n), t). In 2007, a formal proof was given by Dallot [11]

344 K.P. Mathew et al.

assuming the hardness of syndrome decoding and code indistinguishability. In
2010, Faugere et al. [14] cryptanalysed the McEliece variants with compact keys
algebraically, which was subsequently extended in [12]. The analysis of [12] is an
extended analysis of a high rate distinguisher for McEliece encryption in [13].
This result gives that the t values (the error-correcting capacities) must be set
higher than previous estimates to achieve a provably secure system. In particular
if log(n) (n is the length of the code) is chosen as 18, 19 or 20 then t values must
be set to 85, 114, 157 respectively. But, these parameters lead to impractical
signing times (>2220 operations).

Still the distinguisher does not imply a concrete attack on the scheme in [11]
or in [9]. In fact, the randomised CFS signature has widely been conjectured to
be unforgeable, even though a formal security argument does not exist currently.
Hence, we need to explore alternatives to overcome the distinguisher to arrive
at a proof of security.

Signcryption is an important primitive in applications such as e-commerce,
secure and authentic e-mails, etc., because it offers both confidentiality and
authentication simultaneously. However, designing a signcryption scheme using
the paradigm ’sign-then-encrypt’ will lead to an inefficient scheme in code based
scenario.

Our Contribution. In this paper, we alter the key-construct of the CFS sig-
nature [9] (based on the key construct in [17]) and formally argue the security
of the proposed signature in the EUF-CMA model. To do so, we introduce a
new distinguishability assumption, which is weaker than the current Goppa-code
distinguishability assumption. We also propose the first code-based signcryp-
tion scheme (also, the first signcryption not using the classical number-theoretic
assumptions, to the best of our knowledge) using the Niederreiter’s system [18]
and the CFS signature, both using the modified key-construct. The signcryption
scheme is loosely based on the construction in [21]. We formally prove the con-
fidentiality (in the SC-IND-CCA2) and unforgeability (in the SC-EUF-CMA).

Organisation of paper. In the next section we provide some preliminaries. In
Sect. 3, we briefly introduce our weaker distinguishability assumptions. We also
argue (informally) as to why it is weaker than the conventional distinguishability
assumptions. In Sect. 4, we give the proposed signature scheme along with the
security proof. In Sect. 5, we give the proposal for signcryption and provide a
sketch of its security and identify a few secure parameters for the scheme. We
conclude in Sect. 6. The formal proof of security of the signcryption scheme is
given in AppendixA.

2 Preliminaries

Before proceeding to the preliminaries, one should note that negl(n) is a negligi-
ble value with respect to the parameter n. We now enlist some basics of coding
theory and the definitions of the primitives involved.

A Provably Secure Signature and Signcryption Scheme 345

2.1 Coding Theory

A binary linear-error correcting code of length n and dimension k or a [n, k]- code
is a k-dimensional subspace of F

n
2 . If the minimum distance between

code-words is d, then we denote the code as an [n, k, d] code, where d is called
the Hamming distance. The error correcting capability of the code is t = �d−1

2 �.
The generator matrix G ∈ F

k×n
2 of a [n, k] linear code C is a matrix of rank k

whose rows span the code C. The parity-check matrix H ∈ F
n−k×n
2 of a [n, k]

code C is defined as a matrix satisfying HGT = 0. Hence, we can define the
code C as {mG : ∀m ∈ F

k
2} or {c : HcT = 0}. We now proceed to list the hard

problems.

Definition 1 Syndrome Decoding Problem. For some parameters [n, k, 2t+
1] given an a ∈ F

n−k
2 and a random matrix H ∈ F

n−k×n
2 , find a vector e ∈ F

n
2

with weight wt(e) ≤ t such that HeT = a.

The advantage of a probabilistic polynomial time (PPT) algorithm D of solving
the syndrome decoding problem for [n, k, 2t+1] code is denoted by AdvSDD (n, k, t).
Syndrome Decoding Problem is hard (worst-case) for any random code [5].
Hence, AdvSDD (n, k, t) = negl(n). But, for Goppa codes, there is a polynomial
time algorithm for syndrome decoding.

Definition 2 Punctured Codes [31]. Let C be a code of length n and S ⊂ N
where N denotes the set {1, ..., n}. Let CS denote the code which is obtained by
deleting all coordinates of C in N/ S. CS is called punctured code of C in N/ S.

Definition 3 Equivalent Codes [26,31]. Let C and D be two codes over
the same field and of same length n. C and D are called equivalent, if there is a
permutation π : {1, ..., n} → {1, ..., n} such that (c1, ..., cn)
∈ C ⇔ (

cπ(1), ..., cπ(n)

) ∈ D.

The problem of finding code equivalence is proven to be harder than graph
isomorphism problem [27].

Consider the problem with C be a code of length n and D a code of length
m, such that m ≤ n, Does there exist a subset S ⊂ {1, ..., n}, such that CS and
D are equivalent? can be viewed as a punctured code equivalence problem.

Definition 4. Let M be a k × n matrix over a field F with columns m1, ...,mn

and τ : {1, ..., q} → {1, .., n} an injection, such that (q ≤ n). The k × q matrix
consists of the columns mτ(1), ...,mτ(q) (in this order) is denoted by Mτ .

Definition 5 Equivalent Punctured Codes (EPC) [31]. Let M be a k × n
matrix and H be a k × m matrix where m ≤ n over a field F , Does there
exist a non-singular matrix k × k matrix T and an injective map τ such that
(TM)τ = TMτ = H.

The EPC problem was shown to be NP-complete by reducing three dimensional
matching (3DM) problem to Equivalent Punctured code problem [24,31]. In fact,
the hardness of EPC problem is the basis of the encryption scheme given in [31].
Thus we are justified in the following assumption.

346 K.P. Mathew et al.

Assumption 1. There is no PPT algorithm D that can find a non-singular
matrix k × k matrix T and an injective map τ such that (TM)τ = TMτ = H,
given M and H.

In the construction of the signature presented in this paper, the security of
private key is based on Equivalent Punctured Code problem.

2.2 Signature

Definition 6. A signature scheme consists of a triple of algorithms (KeyGen,
Sign,Verify) where,

KeyGen is a PPT algorithm that takes as input the security parameter κ (or 1κ)
to return the key-pair (sk, pk), where sk is the signing-key which is kept as
secret with the signer, and pk is the verification-key which is made public.

Sign is a PPT algorithm that takes as input the secret signing key sk and the
document/message m from the message space and outputs a signature σ.

Verify is a polynomial time algorithm that takes as input the public verification
key pk, the document/message m and the signature σ on the message and
outputs ACCEPT if σ is valid and REJECT otherwise.

Definition 7 (Existential Unforgeability under Chosen Message
Attack). A signature scheme is said to be existentially unforgeable against
chosen-message insider attack (EUF-CMA) if no PPT forger F has a non-
negligible advantage in the following game:

1. The challenger runs KeyGen to generate a key pair (sk, pk). sk is kept secret
while pk is given to the adversary F .

2. The forger F adaptively makes a polynomial number of queries to the signa-
ture oracle and the hash oracles (if any).

3. The forger F produces a signature σ and wins the game if :
– Verify(pk,m,σ) outputs ACCEPT and
– (m,σ) is not the output of any signature oracle, described in step 2.

The probability that, for a parameter n a forger is able to forge a signature is
denoted by Succeuf−cma

F (n).

2.3 Signcryption

We first begin by formally defining a signcryption scheme. This formal definition
is based on the definition given in [21].

Definition 8. A signcryption scheme is a triple of algorithms (UKg, S, U) for
a security parameter 1k.

(sk, pk) ← UKg(1k) is the Key-generation algorithm which takes a security
parameter k to generate the private/public key pair (sk,pk).

A Provably Secure Signature and Signcryption Scheme 347

σ ← S(1k, m, skS , pkR) is the Signcryption is a PPT algorithm which takes
a security parameter k, the message m from a message space M, the sender’s
private key skS and receiver’s public key pkR, to output the signcrypted
text σ.

((m, s),Accept)/Reject ← U(1k, σ, skR, pkS) is the De-signcrypt algorithm.
The De-Signcrypt algorithm is as follows. It takes security parameter k,
the signcrypted text σ and the receiver’s private key skR and sender’s public
key pkS as input to decrypt and get the signed message m, or Reject which
indicates failure of De-signcrypt when message was not encrypted or signed
correctly.

The security notions of confidentiality and unforgeability (that also model the
insider security notion) are described here. The notion is based on the notion
mentioned in [21].

Definition 9 (Confidentiality). A signcryption scheme is semantically secure
against chosen ciphertext attack (SC-IND-CCA2) if no PPT adversary A has a
non-negligible advantage in the following game:

1. The challenger runs UKg to generate a key pair (skU , pkU). skU is kept secret
while pkU is given to the adversary A. For the others users U ′(say), the chal-
lenger runs UKg to generate (skU ′ , pkU ′), and sends the tuple to the adversary.
(Insider security).

2. In the first stage, A makes a polynomial number of queries to the following
oracles:
Signcryption Oracle: A prepares a message m ∈ M and a public key pkR,

and queries the Signcryption Oracle (simulated by the challenger) for the
result of S(m,skU , pkR). The result is returned if pkR �= pkU and pkR is
valid in the sense that pkR is in the range of UKg with respect to the security
parameter. Otherwise, a symbol ‘⊥’ is returned for rejection.

De-signcryption Oracle: A produces a signcrypted text σ and queries for
the result of U(σ, skU , pkS). The message is returned if the de-signcryption
is successful and the signature is valid under the sender’s public key. Oth-
erwise, a symbol ‘⊥’ is returned for rejection.

The queries may be asked adaptively,i.e., each query may depend on the
answers to the previous queries.

3. A produces two messages m0,m1 ∈ M of equal length and a valid private key
skS. The challenger takes a random b

R←− {0, 1} and computes a signcryp-
tion σ∗ = S(mb, skS , pkU) of mb with the sender’s private key skS under the
receiver’s public pkU . σ∗ is sent to A as a challenge.

4. A makes a number of queries as in the first stage with the restriction that it
cannot query the de-signcryption oracle with σ∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as Advind−cca(A) = Pr[b = b′] − 1
2 and the probability

that b = b′ is the probability that A wins the game.

348 K.P. Mathew et al.

Definition 10 (Unforgeability). A signcryption scheme is said to be existen-
tially unforgeable against chosen-message insider attack (SC-EUF-CMA) if no
PPT forger F has a non-negligible advantage in the following game:

1. Follow the first two steps as that of confidentiality game.
2. The forger F produces a signcrypted text σ and a valid key pair (skR, pkR)

and wins the game if :
– U(σ, skR, pkU) returns a tuple (m,s) such that the output of verification on

(m, s) for the verification key pkU is Accept.
– σ is not the output of the signcryption oracle.

3 Weak Distinguishability Assumptions

In this section, we introduce a weak Goppa distinguishability assumption. We
assume that the public key construct using Goppa code is computationally indis-
tinguishable from a random matrix. The public key and private key pair must
be constructed in such a way that given public key, it should not be possible to
reconstruct the private key [8]. Therefore signature scheme is a variant of the
CFS, but uses an alternate public key construction such that the public key is
no longer the permutation equivalent of the private code. The key construct is
some what similar to the one used in [17], but there are subtle differences. The
private keys used for signing are Q,H,P , where Q is an (n−k)× (n−k) invert-
ible matrix, H a Parity Check Matrix of a binary code C of type Goppa(n, k, t),
which is always a nonzero matrix, and a random n×n permutation matrix P as
per the CFS signature. But the public key H̃ used in our scheme is (n−k+1)×n
matrix, unlike (n−k)×n parity check matrix used as the public key in the CFS
signature. Therefore the public key is no longer a permuted randomised parity
check matrix of a Goppa code. Also the matrix Q is computed as a product of
two randomly generated matrices H ′ of size (n − k) × n′, where n′ = n − k + 1
and Q′ of size n′ × (n − k). The process is repeated until Q is invertible. We see
that Q is invertible with probability at least 0.288 [6]. Hence, in roughly 4 trials
we can expect to obtain an invertible Q. Also, a is selected such that H ′aT = 0.
Due to all these differences, we obtain a novel and provably secure signature
scheme.

3.1 Key-Construct

The key generation involves the following steps

– Select H, a Parity Check Matrix of a binary code C of type Goppa(n, k, t).
and a random n × n permutation matrix P .

– Select randomly a H ′ ∈R F
(n−k)×n′

2 and a Q′ ∈R F
n′×(n−k)
2 , such that Q′ is

full-rank and compute matrix Q = H ′Q′. Repeat the step until Q is invertible.
– Select an a ∈ F

n′
2 , such that H ′aT = 0 and Select b ∈R F

n
2 ..

– Compute a parity check matrix H̃ as H̃ = Q′HP ⊕aTb. H̃ is a n′ ×n matrix.
If H̃ is not full-rank, repeat the process with a different random b, until we
obtain a full-rank H̃.

A Provably Secure Signature and Signcryption Scheme 349

3.2 Assumption

For the aforementioned key construct we make the following hardness assump-
tions which is weaker than Goppa code Distinguishability assumption. The
symbols in this section are as defined in the key construct (unless specified
otherwise).

Assumption 2. There is no PPT distinguisher D that can distinguish H̃ from
a parity check matrix R of a random (n, k − 1, 2t + 1) linear code.

Let the advantage of such a distinguisher be AdvDist
D (n, k) = |Pr[D(H̃) → 1] −

Pr[D(R) → 1]|. We consider Assumption 2 to be weaker than the Goppa-code
distinguishability assumption. The reason for this can be explained based on
another assumption based on Equivalent Punctured code Problem and the high
rate code distinguisher.

Assumption 3. Given H̃, it is infeasible to retrieve H, a and b.

Given H̃ it is infeasible to find H ′. The corresponding decisional version of
Assumption 3 is “Given H̃, does there exist a H ′ such that H ′H̃ = QHP for
some Goppa code with parity matrix H, some (n−k)×(n−k) invertible matrix Q
and n×n permutation matrix P”. This is clearly Assumption 2 (if there doesn’t
exists such a H ′ then the input matrix is random). This is a generalisation of
the Equivalent Punctured Code problem. To elaborate, suppose this decision
problem is solved, then we can solve the following problem, For two matrices
M and H does there exist a T and selections S1, S2 ⊆ {1, 2, . . . n} such that
(TM)S1 = HS2 .

Another reason, why we consider this problem to be weaker than the Goppa
distinguishability is based on the equations for the distinguisher. It is seen that
the public key is not a parity check matrix of a permutation equivalent code
of the secret code. We take the generator matrix corresponding to the public
matrix. Hence, to solve the system to obtain the private keys, the following
system of equations have to be solved.

{gi1(Xj
1Y1 +ajb1)+ . . .+ gin(Xj

nYn +ajbn) = 0 | i ∈ {1, . . . , k} & j ∈ {0, . . . , (n−k)}}

where gij is the element of the generator matrix at the ith row and jth column.
Unlike the system in [13], the system here is not trivially linearisable. Hence, the
distinguishing based on the dimension may not hold good.

4 Proposed Signature Scheme

4.1 Scheme

System Parameters(κ). The following system parameters are used:

– Parameters of the code n, k, t for any [n, k, 2t+1] linear code, with n, k deter-
mined by the security parameter κ, and t = (n−k)

log2 n .

350 K.P. Mathew et al.

– We define n′ = n − k + 1.
– Hash function G : Fn

2 × {0, 1}n → F
n′
2 .

Key Generation(κ, parameters). The key generation is as mentioned in Sect. 3
and we have

private key: H,P,Q,H ′; public key: H̃; parameters: [n, k, t], n′,G
Sign(m,H,P,Q,H ′). To sign a message m ∈ {0, 1}l

– repeat

r
R←− F

n
2

m′
1 ← G(r,m)

m1 = H ′m′
1
T

s1 = PT DecodeH(Q−1m1) //If m1 is not decodable for H, the decoding
algorithm sets s1 =⊥.
until(s1 �=⊥ && m′

1 = H̃sT
1)

– The signature is σ = (s1, r)

Verify(m,σ, H̃). Verification of the signature σ = (s1, r) on m is done by check-
ing H̃s1

T ?= G(r,m) and wt(s1) ≤ t. If TRUE then return ACCEPT, else return
REJECT.

Note that m1 is made a syndrome for H ′ for the word m′
1, and m1 also made

a syndrome for code word s1 for QHP . When m′
1 is replaced with H̃sT

1 according
to the signing procedure in m1 = H ′m′

1
T , observe that it becomes a syndrome

for code word s1 for QHP .

Note 1. To elaborate on the scheme, we take two cases.

– In the first case, assume m′
1 is a decodable syndrome for H̃, i.e., there exists an

s1 such that m′
1 = H̃sT

1 and wt(s1) ≤ t. Then it is seen that m1 = H ′m′
1
T =

H ′(Q′HP ⊕ aTb)sT
1 = QHPsT

1 (since Q = H ′Q′ and H ′aT = 0). Hence, it is
possible to decode m1 using the decoding algorithm on H to obtain s1 which
is the solution of syndrome decoding of m′

1 for H̃.
– In the second case, assume m′

1 is not decodable for H̃. Hence, there does
not exist any s1 unlike the first case. But m1 can either be decodable or not
decodable for H. It is the property of any binary linear code of length n′ and
dimension k′, to partition the space Fn′

2 into 2n′−k′
partitions of size 2k′

, using
the syndromes. Hence, for H ′ (which has dimension 1), exactly two values m′

1

and m′
2(say) map to the same syndrome m1. If m1 is not decodable for H then

both m′
1 and m′

2 are not decodable for H̃. But, if m1 is decodable (and can be
decoded to s (say)) , then one of the two the values m′

1 and m′
2 is of the form

H̃sT , whereas the other is not decodable. This can be proved by contradiction.
Assuming both m′

1 and m′
2 are decodable for H̃, into s1 and s2 repsepctively.

Then, H ′m′
1 and H ′m′

2 are also correspondingly decodable into s1 and s2 for
H. But, we know that H ′m′

1 = H ′m′
2 = m1. Hence, it is a contradiction that

m1 decodes into two vectors (both of weight ≤ t). Therefore, only one vector
is decodable, while the other is not decodable.

Hence, the expected time taken [9] for the above signature is O(t!t2m3).

A Provably Secure Signature and Signcryption Scheme 351

4.2 Security of the Scheme

We now proceed to prove the unforgeability of the scheme under the EUF-CMA
security notion in random oracle model. The proof follows the same line as that
of [11].

Theorem 1. The given scheme is EUF-CMA (under the random oracle model)
if the syndrome decoding (SD) is hard to solve and the public key is computa-
tionally indistinguishable from the parity matrix of a random (n, k−1, t) code R.

Proof: We build the proof, by constructing a challenger C through a sequence
of games Game0, Game1,· · · . Game0 is played by using the protocol as men-
tioned in EUF-CMA game. Successive games are obtained by small modifications
of the preceding games, in such a way that the difference of the view in consec-
utive games is easily quantifiable. Let qG , qs be the maximum number of queries
made by the forger F to the hash oracle of G and the signature oracle. We want
to show that the advantage for the adversary F is equivalent to the advantage
of solving the hard problem SD for a random code with parity check matrix R
and some syndrome s.

To answer the hash queries and the signature queries, we maintain the lists,
Glist, σlist and Λ. If there is no value in a list we denote its output by ⊥.

– The list Glist contains a tuple ((x, s), a) indexed by (r,m).
– The σlist (the signature list) consists of entries of the form (m,σ = (s, r)).
– The list Λ consists of indices r of Λ(m) for which the simulator is able to

produce a signature on G(m,Λ(m)),i.e., the list of r for which G(m,Λ(m)) is
a decodable syndrome.

Game 0. Here the challenger employs the actual scheme according to the EUF-
CMA game. The private and public key pair are obtained by running the key
generation algorithm given the scheme, to obtain secret key (Q,H,P,H ′),
where H ← Goppa(n, k) (a binary Goppa code), and the public key H̃ =
Q′HP ⊕ aTb. H̃ is given to F . Also, F is given access to the hash oracle G.
The signature oracle functions as mentioned in the scheme. Let X0 be the
event that F wins Game 0. It is seen that Game 0 runs the EUF-CMA game
on the proposed scheme perfectly. Hence,

Pr[X0] = Succeuf−cma(F)

Game 1. (Simulation of hash oracle) In this game, the hash oracle for G is
simulated, while the rest of the protocol is executed as in the previous game.
The oracle is simulated as follows:
For the query on G of the form (m, r), we have two situations, depending on
whether r ∈ Λ(m). The simulation of the oracle is given below:
Input: A tuple (m, r)
Output: A syndrome x
if r �= Λ(m) then

if s =⊥ then

352 K.P. Mathew et al.

s1
R←− F

n
2 // Since, the challenger may not be able to decode G(m, r),

x ← H̃s1
T // we take a s randomly, and may not have weight < t

s ←⊥ Glist(m, r) ← ((x, s), s1)
end
return G(m, r) = x

else
if x =⊥ then

s1
R←− F

n
2 such that wt(s1) = t

x ← H̃sT
1 // x is decodable, since wt(s1) ≤ t

s ← s1 Glist(m, r) ← ((x, s), s1)
end
return G(m, r) = x

end
It is seen that, while the oracles are simulated in the Game 1, the distribution
of these oracles remain unchanged from Game 0 (i.e., the randomness is
maintained). Let the event that F wins Game 1 be denoted by X1. Hence

Pr[X1] = Pr[X0]

Game 2. (Simulation of the signing oracle.) The signing oracle is simulated as
follows:
Input: the message m of length l Output: A signature σ = (s1, r)
if Λ(m) =⊥ then

r
R←− F

n
2 //Fix a r such that G(m, r) is decodable, and

Λ(m) ← r // s such that H̃sT
1 = G(m, r) and wt(s) ≤ t

end
((x, s1), s1) ← G(m,Λ(m))
if (s1 =⊥) then //Incoherence, as G(m, r) was set earlier, when r �= Λ(m)

ABORT
else

r ← Λ(m)
Λ(m) ←⊥

Return σ = (s1, r).
The signature produced by the signing oracle, is valid according to the ver-
ification algorithm, since, H̃sT

1 = G(m, r) and wt(s1) ≤ t.
In Game 2, incoherence occurs if the oracle to G is queried initially for some
(m, r) such that later r is set to Λ(m). This happens with the probability qs

2n

(since the indices Λ are defined only when the signature oracle is queried).
It can be noted that this incoherence is the only scenario in which F can
distinguish Game 2 from Game 1. Therefore, for the event X2 that F wins
Game 2,

|Pr[X1] − Pr[X2]| ≤ qs

2n

Game 3.(Changing the key generation algorithm) The parity check matrix R,
for which the syndrome decoding problem needs to be solved, is taken as the
private key, i.e., H = R. The public key is H̃ = R′ , where R′T = [RT |zT]

A Provably Secure Signature and Signcryption Scheme 353

where z ∈R F
n
2 . The verification key H̃ is given to the forger F , while C

keeps the remaining secret keys. By Assumption 2

|Pr[X2] − Pr[X3]| ≤ AdvDist
C (n, k)

Game 4. In this game, the challenger modifies the winning condition. The
challenger first gets a random c

R←− {1, . . . , qs + qG + 1}. F wins the Game
if, in addition to the above conditions (as given in the previous game), the
forgery was made on the c-th query to the hash oracle G. This occurs with
the probability 1

qs+qG+1 . For the event that F wins Game 4, X4, we obtain

Pr[X4] =
Pr[X3]

qs + qG + 1

Game 5. In this game the challenger modifies the hash oracle, incorporating
the problem instance (syndrome s) in the c − th query. Since, the key used
is R′ and not R, we require a syndrome of length n′. Hence, a bit generated
uniformly at random, sc, is appended to the end of s. Therefore, the output
of the hash oracle for the c − th query is s′ such that s′T = [sT |sc]. Since,
in game 5, the forger can output a forgery only if the final bit sc has been
guessed correctly (then s′ is consistent with s),

Pr[X5] = Pr[X4]/2

Let s∗ be the signature output by the forger. It is seen that s∗ is the solution
to the bounded decoding problem on the syndrome s′ for H̃. Also, s∗ is
guaranteed to be the solution for the syndrome RsT on R. Hence, we have

Pr[X5] ≤ AdvSD
C (n, k)

Now, combining all results and use of triangular inequality, we have:
Succeuf−cma(F) ≤ qs

2n + AdvDist
C (n, k) +2(qs + qG + 1)AdvSD

C (n, k).
The detailed reduction of the equations to arrive at the final bound is available
in the full version of the paper.

Hence, the success of probability of the forger is bound by the advantage
the challenger has in solving the syndrome decoding problem. This implies the
signature is unforgeable as long as the corresponding syndrome decoding instance
is hard to solve. ��

Since the scheme avoids the distinguisher attack, the parameters that can be
used in this scheme can be as that of the parameters suggested by [29] and the
signing time will be slightly greater than the signing time of the [9].

5 Proposed Signcryption Scheme

The proposed scheme is the first code-based signcryption scheme (to the best of
our knowledge). This scheme, takes into consideration the idea of construction
used in [21,23].

354 K.P. Mathew et al.

5.1 Scheme

System Parameters(κ). The following system parameters are used:

– Parameters of the code n, k, t for any [n, k, 2t+1] linear code, with n, k deter-
mined by the security parameter κ, and t = (n−k)

log2 n .
– We define n′ = n − k + 1.
– Cryptographic Hash functions H : F

n′×n
2 × F

n′
2 × F

n
2 → {0, 1}l (assuming

messages of length l) and G : Fn
2 × {0, 1}n × F

n′×n
2 × F

n′×n
2 → F

n′
2 .

Key Generation(κ,parameters). For a user U the key generation involves the
following steps

– Select HU , a Parity Check Matrix of a binary code C of type Goppa(n, k, t).
– Select randomly a n × n permutation matrix PU .
– Select bU ∈R F

n
2 .

– Select randomly H ′
U of size (n − k) × n′ and Q′

U ∈R F
n′×(n−k)
2 , such that

Q′
U is full-rank and compute the matrix QU = H ′

UQ′
U . Repeat until QU is

invertible.
– Select aU , such that, H ′

Ua
T
U = 0.

– Compute a parity check matrix H̃U as H̃U = Q′
UHUPU ⊕aT

UbU . H̃U is a n′×n

matrix. If H̃U is not a full-rank matrix, we repeat the process with different
random bU until we obtain a full-rank H̃U .

Thus we have

private key: HU , PU , QU ,H ′
U ; public key: H̃U ; parameters: H,G, n, k, t, n′

Signcrypt(m,HS , PS , QS ,H ′
S , H̃R). To signcrypt a message m ∈ {0, 1}n from

a sender S and a receiver R

– repeat

r
R←− F

n
2 , such that wt(r) ≤ t;

m′
1 ← G(r,m, H̃R, H̃S)

m1 = H ′
Sm′

1
T

s1 = PT
S DecodeHS

(Q−1
S m1)

until(s1 �=⊥ && m′
1 = H̃SsT

1)
– Compute U = H̃RrT

– Compute V = m ⊕ H(H̃R, U, r)
– The signcrypted text is σ = (U, V, s1)

De-signcrypt(σ,HR, PR, QR,H ′
R, H̃S).When the signcrypted textσ = (U, V, s1)

is received R does the following:
Compute U ′ = H ′

RUT

r′ = PT
R DecodeHR

(Q−1
R U ′).

if (r′ =⊥ ||U �= H̃Rr′T ||wt(s1) > t)
Return Reject

A Provably Secure Signature and Signcryption Scheme 355

else
Compute m′ = V ⊕ H(H̃R, U, r′)
if (H̃Ss1

T �= G(r′,m′, H̃R, H̃S))
Return Reject

else
Return ((m′, s1),Accept)

end

Note 1: The signcryption scheme is more efficient than individually signing and
encrypting, for the following reasons:

1. The scheme uses the same key-pair for both confidentiality and authentica-
tion.

2. Avoids the use of independently generated randomness and ephemeral keys
while individually signing and authenticating.

3. The scheme avoids the use of additional authenticating mechanism which is
required for non-malleability of the ciphertext.

5.2 Security of the Scheme

The security of the scheme is argued based on the security models given in
Definitions 9 and 10 in random oracle model.

Theorem 2 (Confidentiality). The given scheme is secure in the sense of
SC-IND-CCA2 (under the random oracle model) if the syndrome decoding (SD)
is hard to solve and the public key is computationally indistinguishable from the
parity matrix of a random (n, k − 1, t) code R.

We build the proof, by constructing a challenger C through a sequence of games
Game0, Game1,· · · . The complete proof is in AppendixA.

Theorem 3 (Unforgeability). The given scheme is unforgeable in the sense of
SC-EUF-CMA (under the random oracle model) if the syndrome decoding (SD)
is hard to solve and the public key is computationally indistinguishable from the
parity matrix of a random (n, k − 1, t) code R.

The proof of this theorem, follows the line of proof in theorem 1 and theorem 2.
Hence, we do not elaborate on the same.

5.3 Parameters Selection

We give some of the parameters for which our scheme will be practical and
remain secure. The security proof explains the dependence of the scheme on the
SD problem for security. The best-known attack for the signature is that by
Bleichenbacher which is given in [16]. Also, the best known attack for syndrome
decoding is Information-set decoding. A lower bound of the work factor for the
attack is given in [16]. The parameters are selected according to [29]. In Table 1
we present a few secure parameters and the signing times of our signature scheme.

356 K.P. Mathew et al.

Table 1. Secure parameters for the scheme based on the bounds in [16]

(log2(n), t) Key (Matrix of
size (n−k)×n)

Security factor for
Confidentiality in
log2

Security factor for
Authentication in
(log2

Time complexity
of signing in the
proposed
scheme(in log2)

(18,13) 234×218 102.05 93.7 53.44

(19,12) 228×219 100.34 83.6 49.74

(20,11) 220×220 105.91 87.6 46.2

6 Conclusion

In the paper, we introduced a weaker distinguishability assumption. This results
in a modification of CFS signature, which allows a formal proof of security,
reducing the unforgeability problem to syndrome decoding problem and the
introduced assumption. Hence it overcomes the problems associated with the
high rate distinguisher in [13]. This lays the foundation stone for the use of CFS
schemes in various primitives. Also, existing primitives which have made use of
the CFS signature can now be altered appropriately to achieve provable security.
Also, in this paper we present a signcryption scheme. The scheme can be used
in applications which require both confidentiality and authentication, instead of
individually signing and encrypting, as the efficiency is improved. It can be noted
that the key-construct in [3] can also be used for constructing the signature and
the signcryption scheme. The parameters of the proposed signcryption could be
improved by using the Parallel-CFS [15].

Also, it is interesting to investigate the possibility of using LDPC codes, and
other codes with better decoding properties. The key construct may be suffi-
ciently altered to enable the secure use of such codes. The subsequent improve-
ment in efficiency has to be investigated further.

A Proof of Confidentiality for the Signcryption Scheme

Theorem 4 (Confidentiality). The given scheme is secure in the sense of
SC-IND-CCA2 (under the random oracle model) if the syndrome decoding (SD)
is hard to solve and the public key is computationally indistinguishable from the
parity matrix of a random (n, k − 1, t) code R.

Proof: We build the proof, by constructing a challenger C through a sequence
of games Game0, Game1,· · · . Game0 is the adaptation of the protocol to
the SC-IND-CCA2 game. Successive games are obtained by small modifications
of the preceding games, in such a way that the difference of the adversarial
advantage in consecutive games is easily quantifiable.

Let qH, qG , qs, qu be the maximum number of queries made by the adversary
A to the oracles for the hash queries H,G, the signcryption oracle and the de-
signcryption oracle. We want to show that the advantage for the adversary A is

A Provably Secure Signature and Signcryption Scheme 357

bounded by the advantage of solving the hard problem SD for a random code
with parity check matrix R.

To answer the hash queries and the signcryption and the de-signcryption
queries, we maintain the lists, Glist,Hlist, σlist and Λ. If there is no value in a
list we denote its output by ⊥.

– The list Glist contains a tuple ((x, s), a) indexed by (r,m, H̃R, H̃S).
– The list Hlist consists of strings ρ ∈ {0, 1}l indexed by (H̃R, U, r) where H̃R

and H̃S are (n−k)×n sized parity check matrices, and U ∈ F
n−k
2 and r ∈ F

n
2

such that wt(r) ≤ t.
– The σlist (the signature list) consists of entries of the form (m,σ = (U, V, s)).
– The list Λ consists of indices r of Λ(m) for which the simulator is able to

produce a signature on G(m,Λ(m, H̃R, H̃S)), H̃R, H̃S), i.e., the list of r for
which G(m,Λ(m, H̃R, H̃S)), H̃R, H̃S) is a decodable syndrome.

Game 0. This is the standard SC-IND-CCA2 game. The private and public key
pair are obtained by running the key generation algorithm given the scheme,
to obtain secret key (QU ,HU , PU ,H ′

U), where HU ← Goppa(n, k) (a binary
Goppa code), and the public key H̃U = Q′

UHUPU ⊕ aUbT
U . H̃U is given to

A. Also, A is given access to the hash oracles H and G. The signcryption
oracle and designcryption oracle function as mentioned in the scheme. Let
X0 be the event that A wins Game 0. It is seen that Game 0 runs the SC-
IND-CCA2 game on the proposed scheme perfectly.
Therefore Pr[X0] − 1

2 = Advind−cca
A (n, k).

Game 1. (Simulation of hash oracles) In this game, the hash oracles for G and
H are simulated, while the rest of the protocol is executed as in the previous
game. The two oracles are simulated as follows:
For the query on G of the form (r,m, H̃R, H̃S), we have two situations,
depending on whether r = Λ(m, H̃R, H̃S). The simulation of the oracle is
given below:
Input: A tuple (m, r, H̃R, H̃S)
Output: A syndrome x
if r �= Λ(m, H̃R, H̃S) then

if s1 =⊥ then
s1

R←− F
n
2

x ← H̃SsT
1

Glist(r,m, H̃R, H̃S) ← ((x,⊥), s1)
end
return G(r,m, H̃R, H̃S) = x

else
if x =⊥ then

s1
R←− F

n
2 such that wt(s1) = t

x ← H̃SsT
1

Glist(r,m, H̃R, H̃S) ← ((x, s1), s1)
end

358 K.P. Mathew et al.

return G(r,m, H̃R, H̃S) = x
end
For the query to H of the form (H̃R, U, r), the challenger searches Hlist

for the tuple (H̃R, U, r). If found, the corresponding value from the list
is returned, else return a random string ρ

R←− {0, 1}l and store the tuple
((H̃R, U, r),ρ) in Hlist. Let X1 be the event that A wins Game 1.It is seen
that, while the oracles are simulated in Game 1, the distribution of the out-
put of these oracles remain unchanged (i.e., the randomness is maintained)
from Game 0.
Hence Pr[X1] = Pr[X0]

Game 2. (Simulation of the signcryption oracle.) The signcryption oracle is
simulated as follows:
Input: the tuple (m, H̃R, H̃U) Output: A signcrypted text σ = (U, V, s1)
if Λ(m, H̃R, H̃U) =⊥ then

r
R←− F

n
2 , such that wt(r) ≤ t Λ(m, H̃R, H̃U) ← r

end
((x, s1), s1) ← G(Λ(m, H̃R, H̃U),m, H̃R, H̃U)
if(s1 =⊥) then ABORT
else

r ← Λ(m, H̃R, H̃U) Λ(m, H̃R, H̃U) ←⊥ U = H̃RrT

V = m ⊕ H(H̃R, U, r)
end
Return σ = (U, V, s1).
The simulation of the signcryption is an extension of the signing oracle sim-
ulation presented in the previous proof. It is thus, seen that the s1 is a valid
signature on m for verification key H̃U . Also, the remaining signcrypted text
is also valid, and follows from the signcrypt algorithm given in the scheme.
In Game 2, incoherence occurs if the oracle to G is queried initially for some
(r,m, H̃R, H̃S) such that later r is set to Λ(m, H̃R, H̃S). This happens with
the probability qs

⎛

⎝

n
t

⎞

⎠

(since the indices Λ are defined only when the sign-

cryption oracle is queried). It can be noted that this incoherence is the only
scenario in which F can distinguish Game 2 from Game 1. Therefore, for the
event X2,that A wins the Game 2, we obtain, |Pr[X1] − Pr[X2]| ≤ qs

⎛

⎝

n
t

⎞

⎠

.

Game 3. (Simulation of the designcryption oracle.) For the designcryption
oracle queried on (s1, U, V, H̃U , H̃S) the following is done:
– The challenger searches the Hlist for the tuple (H̃U , U, λ) such that

H̃UλT = U . If it exists in the list, then the corresponding vector X is
given as output. If no such tuple is found (i.e., the hash for such a tuple
has not been queried) then it fixes λ =⊥ and gives the corresponding
output from the hash oracle as X.

– It obtains m′ = V ⊕ X.

A Provably Secure Signature and Signcryption Scheme 359

– The challenger then searches Glist for the tuple of the form (λ,m′, H̃U , H̃S)
where H̃UλT = U or λ =⊥. If the tuple is not in Glist, the challenger adds
it to the list.

– Now the challenger verifies if H̃Us1
T ?= G(λ,m′, H̃U , H̃S). If the condition

holds and H̃UλT = U , then the challenger returns m′ as the message. If
condition holds but λ =⊥ then challenger ABORTS citing failure. If the
condition does not hold at all, then the challenger returns ⊥, as symbol
of rejection of invalid signcrypted text.

In the above game, if the challenger aborts, it implies that the adversary
created the signcrypted text without querying the hash oracles. Hence, the
probability of aborting is qd

2l
., This scenario (of ABORT) would not occur in

Game 2. Hence, for the event X3 that A wins Game 3, we have |Pr[X3] −
Pr[X2]| ≤ qd

2l
.

Game 4. (Changing the key generation algorithm) The adversary has access
to the private keys of all users except the user U . Hence, for the other users,
the keys are generated as in the scheme, and given to the adversary. For the
user U , C selects the private key HU = R. The public key is H̃U = R′,
where R′T = [RT |zT] where z ∈R F

n
2 . The verification key H̃U is given to

the adversary A. It follows from Assumption 2 that |Pr[X3] − Pr[X4]| ≤
AdvDist

C (n, k) where X4 is the event that A wins Game 4.
Game 5. (Challenge ciphertext) The challenger takes the message mb, and

does the following to create the challenge, which would aid the challenger
in solving the problem instance, syndrome s (where wt(s) > 2t + 1). The
challenger wants to find r ∈ F

n
2 with wt(r) ≤ t such that s = RrT . The

challenger generates the challenge cipher-text as follows:
– C sets U∗ = s′, where s′T = [sT |sc] where sc is a randomly generated

bit.
– For the query on H, C sets a special symbol �, randomly generates

a vector y and stores it in Hlist as (H̃U , U∗,�, y). And for the query
on G, again uses the special symbol �, also a random decodable syn-
drome (say x, with the decoded vector s1) is given (just as in the simu-
lation in G oracle and the Signcrypt oracle), and stores in Glist the tuple
(mb,�, H̃U , H̃S , (x, s1), s1). The signing is simulated just as in signcryp-
tion oracle.

– The challenger set V = mb ⊕ y.
Also, the challenger has to now alter the answer to the hash queries in the
following way:

– For the H oracle, for any query (H̃U , H̃UsT , r) where H̃UrT �= H̃UsT ,
some random value is returned. If H̃UrT = U∗ and weight(r) ≤ t, then
the value y is returned, and � is replaced by r in the tuple. The valid r
thus obtained is the solution to the problem instance.

– For the G oracle, for any query (m, r, H̃U , H̃S) if H̃UrT = U∗ and m = mb

output x, else output any random syndrome. The valid r thus obtained
is the solution to the problem instance.

Just as in the proof of unforgeability, the decodability of U∗ depends on cor-
rectly predicting sc, which occurs with probability 1

2 . If X5 be the event that A

360 K.P. Mathew et al.

wins Game 5, we can clearly claim that, |Pr[X4] − Pr[X5]| ≤ AdvSD
C (n, k)/2

where AdvSD
C (n, k) is the advantage that some PPT algorithm C has at solv-

ing the syndrome decoding problem (SD) on R.
Game 6. (Challenge ciphertext) In this game, the challenger C again alters

the procedure of producing the challenge ciphertext. For the ciphertext, the
process of creating U and s is the same, but changes for V . The challenger
C sets V = z,where z

R←− {0, 1}l. Clearly, now the challenge ciphertext gen-
erated is completely random. But, even in game 5, the ciphertext generated
was random as we blinded the message with a completely random compo-
nent. Hence, there is no change in the distribution of the ciphertext space,
i.e., Pr[X5] = Pr[X6], where X6 is the event that A wins Game 6. Also,
it can noted that the probability of correctly guessing the choice b by the
adversary A is exactly half, i.e., Pr[X6] = 1

2 .

Accumulating all the above results and using triangular inequality we have
the following result: Advind−cca2(A) ≤ qs

⎛

⎝

n
t

⎞

⎠

+ qd
2l

+AdvDist
C (n, k)+AdvSD

C (n, k)/2.

Hence, the advantage of the adversary is bound by the advantage of the
challenger in solving the syndrome decoding problem and the weak
distinguishability. ��

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, p. 80. Springer,
Heidelberg (2002)

3. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced public
key security for the McEliece cryptosystem. CoRR, abs/1108.2462 (2011)

4. Barreto, P.S.L.M., Misoczki, R.: One-time signature scheme from syndrome decod-
ing over generic error-correcting codes. J. Syst. Softw. 84(2), 198–204 (2011).
http://dx.doi.org/10.1016/j.jss.2010.09.016

5. Berlekamp, E.R., McEliece, R.J., Vantilborg, H.C.: On the inherent intractability
of certain coding problems. IEEE Trans. Inf. Theory 24, 384–386 (1978)

6. Blake, I.F., Studholme, C.: Properties of random matrices and applications
(2006). http://www.cs.utoronto.ca/∼cvs/coding/random report.pdf. Accessed 15
Dec 2006

7. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

8. Corbella, I.M., Pellikaan, R.: Error-correcting pairs for a public-key cryptosystem.
CoRR, abs/1205.3647 (2012)

9. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001)

http://dx.doi.org/10.1016/j.jss.2010.09.016
http://www.cs.utoronto.ca/~cvs/coding/random_report.pdf

A Provably Secure Signature and Signcryption Scheme 361

10. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. INRIA Report (2001)

11. Dallot, L.: Towards a concrete security proof of courtois, finiasz and sendrier signa-
ture scheme. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS,
vol. 4945, pp. 65–77. Springer, Heidelberg (2008)

12. Faugére, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
McEliece variants with compact keys - toward a complexity analysis. In: SCC ’10:
Proceedings of the 2nd International Conference on Symbolic Computation and
Cryptography, pp. 45–55. RHUL, June 2010

13. Faugère, J-C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher
for high rate McEliece cryptosystems. In: IEEE Information Theory Workshop
(ITW) (2011)

14. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
mceliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

15. Finiasz, M.: Parallel-CFS: strengthening the CFS McEliece-based signature
scheme. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol.
6544, pp. 159–170. Springer, Heidelberg (2011)

16. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

17. Gabidulin, E.M., Kjelsen, O.: How to avoid the Sidel’nikov-Shestakov attack. In:
Chmora, A., Wicker, S.B. (eds.) Information Protection 1993. LNCS, vol. 829, pp.
25–32. Springer, Heidelberg (1994)

18. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Contr. Inform. Theor. 15, 159–166 (1986)

19. Kabatianskii, G., Krouk, E., Smeets, B.J.M.: A digital signature scheme based on
random error-correcting codes. In: Darnell, M.J. (ed.) Cryptography and Coding
1997. LNCS, vol. 1355, pp. 161–167. Springer, Heidelberg (1997)

20. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

21. Li, C.K., Yang, G., Wong, D.S., Deng, X., Chow, S.S.M.: An efficient signcryption
scheme with key privacy. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI
2007. LNCS, vol. 4582, pp. 78–93. Springer, Heidelberg (2007)

22. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Nieder-
reiter’s public-key cryptosystems. IEEE Trans. Inf. Theory 40(1), 271–274 (1994)

23. Malone-Lee, J., Mao, W.: Two birds one stone: signcryption using RSA. In: Joye,
M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 211–225. Springer, Heidelberg (2003)

24. Garey, M., Johnson, D.: Computers and intractability. A guide to the theory of
incompleteness (1979)

25. Otmani, A., Tillich, J.-P.: An efficient attack on all concrete KKS proposals.
In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 98–116. Springer,
Heidelberg (2011)

26. Overbeck, R., Sendrier, N.: Code-based cryptography. pp. 95–137 (2008)
27. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inf.

Theory 43, 1602–1604 (1997)
28. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL

DSN Progress Report, pp. 114–116 (1978)
29. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011.

LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011)

362 K.P. Mathew et al.

30. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

31. Wieschebrink, C.: Two NP-complete problems in coding theory with an application
in code based cryptography. In: IEEE International Symposium on Information
Theory, pp. 1733–1737 (2006)

32. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

An Anonymous Reputation System
with Reputation Secrecy for Manager

Toru Nakanishi(B), Tomoya Nomura, and Nobuo Funabiki

Department of Communication Network Engineering,
Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

nakanisi@cne.okayama-u.ac.jp

Abstract. In anonymous reputation systems, where after an interaction
between anonymous users, one of the user evaluates the peer by giving
a rating. Ratings for a user are accumulated, which becomes the repu-
tation of the user. By using the reputation, we can know the reliability
of an anonymous user. Previously, anonymous reputation systems have
been proposed, using an anonymous e-cash scheme. However, in the e-
cash-based systems, the bank grasps the accumulated reputations for all
users, and the fluctuation of reputations. These are private information
for users. Furthermore, the timing attack using the deposit times is pos-
sible, which makes the anonymity weak. In this paper, we propose an
anonymous reputation system, where the reputations of users are secret
for even the reputation manager such as the bank. Our approach is to
adopt an anonymous credential certifying the accumulated reputation
of a user. Initially a user registers with the reputation manager, and is
issued an initial certificate. After each interaction with a rater, the user
as the ratee obtains an updated certificate certifying the previous repu-
tation summed up by the current rating. The update protocol is based
on the zero-knowledge proofs, and thus the reputations are secret for the
reputation manager. On the other hand, due to the certificate, the user
cannot maliciously alter his reputation.

Keywords: Reputation system · Anonymity · Anonymous credentials ·
Pairings

1 Introduction

Users interact with each other in various services, over the Internet. The popular
example is marketplaces such as eBay. In such P2P services, the anonymity of
users is desirable to protect their privacy for even service providers. However, in
the anonymous situation, it has a problem that a user cannot guess the reliability
of the peer. Some anonymous seller may repeat misbehaviours such as sending
faked items.

One of the solutions is an anonymous reputation system [3,5,11,12]. In the
reputation system, after an interaction between users, an anonymous user evalu-
ates the anonymous peer by giving a rating. Ratings for a user are accumulated,
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 363–378, 2014.
DOI: 10.1007/978-3-319-12160-4 22

364 T. Nakanishi et al.

which becomes the reputation of the user. A user can check the reputations of
anonymous peer candidates to know how much evaluations the candidates have
obtained in the history of interactions.

In [3], an anonymous reputation system was proposed. In this system, using
an anonymous e-cash scheme, the strong anonymity with unlinkability is satis-
fied: It is infeasible to decide a ratee in a rating protocol to send the rating is the
same as one in another rating protocol. In this scheme, a rater withdraws an e-
coin from the bank in advance. After an interaction, the rater anonymously pays
the e-coin to the ratee. Then, the ratee anonymously deposits the e-coin to the
bank, and instead obtains a blind signature to ensure the anonymous deposit.
Finally, the ratee returns the blind signature to the bank, which updates the
database where the ratee’s reputation is increased by the rating. Due to the blind
signature, the unlinkability is satisfied. However, this system has a problem: the
ratee can discard a negative rating to prevent the rating from be accumulated.

In [11], the extended version of the anonymous reputation system [3] based
on the e-cash scheme was proposed. This system uses three types of e-coins:
an interaction coin, a positive rating coin, and a negative rating coin with the
same serial number. Before the interaction between the rater and the ratee, the
rater spends the interaction coin to the ratee, who deposits the coin in the bank.
After the interaction, the rater spends the positive or negative rating coin to the
ratee, and the ratee deposits the coin. The bank can check the consistency, and
if it is inconsistent, the following deposit will be rejected. Thus, the ratee cannot
discard the negative coin.

However, in both the e-cash-based systems, the bank grasps the accumulated
reputations for all users, and the fluctuation of reputations. These are private
information for users. Furthermore, as pointed in [11], the time of deposit may
make the anonymity weak: After the ratee obtains e-coins, he usually deposits
them to the bank without a significant delay. Thus, the bank can decrease the
candidates of users obtaining the e-coins. The countermeasure proposed in [11] is
the batching: e-coin transfers during a fixed time are batched, and the batched
e-coins are deposited to the bank all at once. However, to obtain the strong
anonymity, we need to batch the e-coin transfers in relatively long time. On the
other hand, before the deposit is finished, malicious users can show incorrect
reputations which do not reflect negative ratings.

In this paper, we propose an anonymous reputation system, where the rep-
utations of users are secret for even the reputation manager such as the bank
in the e-cash-based systems. Our approach is to adopt an anonymous credential
certifying the accumulated reputation of a user. Initially a user registers with the
reputation manager (RM), and is issued an initial certificate. After each interac-
tion with a rater, the user as the ratee obtains an updated certificate certifying
the previous reputation summed up by the current rating. The update protocol
is based on the zero-knowledge proofs, and thus the reputations are secret for
RM. On the other hand, due to the certificate, the user cannot maliciously alter
his reputation. Using the show protocol, the user can reveal an integer range
which his reputation rep lies in such as 2�−1 ≤ rep ≤ 2� − 1 for an integer � in
the zero-knowledge fashion. This is why the user’s concrete reputation is kept
secret and the anonymity is preserved.

An Anonymous Reputation System with Reputation Secrecy for Manager 365

Our system counters the issue of negative ratings: The show protocol corre-
sponding to a P2P interaction is numbered by i, which is maintained in a list.
Also, i is embedded into the certificate. In the show protocol, the verifier can
check whether the interactions for all i in the certificate are not rated. This is
why, if the user with a negative rating has not updated the certificate, the user
cannot execute the show protocol.

In our system, the accumulated reputation of the user is revealed via the
range proof. Thus, the verifier cannot grasp the average of ratings. In our system,
the number of ratings is also embedded into the certificate, and the user proves
the range which the number of ratings lies in.

2 Preliminaries

2.1 Bilinear Groups

Our scheme utilizes the following bilinear groups:

1. G and T are multiplicative cyclic groups of prime order p,
2. g is a randomly chosen generator of G,
3. e is an efficiently computable bilinear map: G×G → T , i.e., (1) for all u, v ∈ G

and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g, g) �= 1T .

2.2 Assumptions

The security of our system is based on the SDH (Strong DH) assumption [6],
the q-SFP (Simultaneous Flexible Pairing) assumption [2], and n-DHE (DH
Exponent) assumption [9].

Definition 1 (q-SDH assumption). For all PPT algorithm A , the probability

Pr[A(g, ga, . . . , gaq

) = (b, g1/(a+b)) ∧ b ∈ Zp]

is negligible, where g ∈R G and a ∈R Zp.

Definition 2 (q-SFP assumption). For all PPT algorithm A , the probability

Pr[A(gz, hz, gr, hr, a, ã, b, b̃, {(zj , rj , sj , tj , uj , vj , wj)}q
j=1)

= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7

∧e(a, ã) = e(gz, z
∗)e(gr, r

∗)e(s∗, t∗) ∧ e(b, b̃) = e(hz, z
∗)e(hr, u

∗)e(v∗, w∗)
∧z∗ �= 1G ∧ z∗ �= zj for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj , rj , sj , tj , uj,
vj , wj)}q

j=1) satisfy the above relations.

Definition 3 (n-DHE assumption). For all PPT algorithm A , the probability

Pr[A(g, ga, . . . , gan

, gan+2
, . . . , ga2n

) = gan+1
]

is negligible, where g ∈R G and a ∈R Zp.

366 T. Nakanishi et al.

2.3 Structure-Preserving Signatures (AHO Signatures)

We need the structure-preserving signatures for signing L G-elements, and we
adopt the AHO signature scheme in [1,2].

AHOKeyGen: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g,Gr,Hr ∈R G, and μz, νz, μ1 . . . , μL, ν1, . . . , νL, αa, αb ∈R

Zp. Compute Gz = Gμz
r ,Hz = Hνz

r , G1 = Gμ1
r , . . . , GL = GμL

r ,H1 =
Hν1

r , . . . , HL = HνL
r , A = e(Gr, g

αa), B = e(Hr, g
αb). Output the public

key as pk = (G, T , p, e, g,Gr,Hr, Gz,Hz, G1, . . . , GL,H1, . . ., HL, A,B), and
the secret key as sk = (αa, αb, μz, νz, μ1, . . . , μL, ν1, . . . , νL).

AHOSign: Given a vector of messages M1, . . . , ML together with sk, choose
β, ε, η, ι, κ ∈R Zp, and compute θ1 = gβ , and θ2 = gε−μzβ

∏L
i=1 M−μi

i , θ3 =
Gη

r , θ4 = g(αa−ε)/η, θ5 = gι−νzβ
∏L

i=1 M−νi
i , θ6 = Hκ

r , θ7 = g(αb−ι)/κ.
Output the signature σ = (θ1, . . . , θ7).

AHOVerify: Given the message M and the signature σ = (θ1, . . . , θ7), accept
these if
A = e(Gz, θ1)·e(Gr, θ2)·e(θ3, θ4)·

∏L
i=1 e(Gi,Mi), B = e(Hz, θ1)·e(Hr, θ5)·

e(θ6, θ7) · ∏L
i=1 e(Hi,Mi).

This signature is existentially unforgeable against chosen-message attacks
under the q-SFP assumption [2]. Using the re-randomization algorithm in [2], this
signature can be publicly randomized to obtain another signature (θ′

1, . . . , θ
′
7)

on the same messages. As a result, (θ′
i)i=3,4,6,7 can be safely revealed, while

(θ′
i)i=1,2,5 have to be committed.

2.4 BB Signatures

We utilize Boneh-Boyen (BB) signature scheme [6].

BBKeyGen: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g ∈R G. Select ε ∈R Zp and compute Y = gε. The secret key
is ε and the public key is (p,G, T , e, g, Y).

BBSign: Given message m ∈ Zp, compute A = g1/(X+m). The signature is A.
BBVerify: Given message m and the signature A, check e(A, Y gm) = e(g, g).

BB signatures are existentially unforgeable against weak chosen message attack
under the q-SDH assumption [6]. In this attack, the adversary must choose mes-
sages queried for the oracle, before the public key is given.

2.5 Accumulators

Let U, V be subsets of {1, . . . , n} for some non-negative integer n. Using the
accumulators in [13], a verifier can check U ⊂ V with a pairing relation.

AccSetup: This is the algorithm to output the public parameters. Select bilinear
groups G, T with a prime order p and a bilinear map e. Select g ∈R G.
Select γ ∈R Zp and compute and publish p,G, T , e, g, g1 = gγ1

, . . . , gn =
gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

as the public parameters.

An Anonymous Reputation System with Reputation Secrecy for Manager 367

AccGen: This is the algorithm to compute the accumulator using the public
parameters. The accumulator accV of V is computed as accV =

∏
i∈V gn+1−i.

AccWitGen: This is the algorithm to compute the witness of U ⊂ V using
the public parameters. Given U , V and the accumulator accV , the witness
is computed as W =

∏
j∈U

∏i�=j
j∈V gn+1−i+j .

AccVerify: This is the algorithm to verify U ⊂ V , using the witness and the
public parameters. Given accV , U , and W , accept if

e(
∏

i∈U gi, accV)
e(g,W)

= e(g1, gn)|U |.

The security, i.e., it is infeasible to compute W that AccVerify accepts when
U �⊂ V , is proved under the n-DHE assumption [13].

2.6 Proving Relations on Representations

We adopt zero-knowledge proofs of knowledge (PKs) on representations, which
are the generalization of the Schnorr identification protocol [8]. Concretely we
utilize a PK proving the knowledge of a representation of C ∈ G to the bases
g1, g2, . . . , gt ∈ G, i.e., x1, . . . , xt s.t. C = gx1

1 · · · gxt
t . This can be also constructed

on group T . The PK can be extended to proving multiple representations with
equal parts.

3 System Model for Anonymous Reputation Systems

3.1 Participants and Targets

We consider an interaction system among users, where a user anonymously inter-
acts to another user. The typical example is a marketplace such as eBay, where
a seller offers an item and a buyer buys the item. In this paper, we target such a
type of service. Before the interaction between the users, the anonymous seller
shows his accumulated reputation with the offered item. Based on the reputa-
tion, the buyer chooses the item and interacts with the offering seller. After the
interaction, the buyer rates the behavior of the seller. In our reputation system,
in addition to the users and the service provider (SP) providing the interaction
system, another entity Reputation Manager (RM) is introduced. We assume that
RM is honest-but-curious, that is, it follows the protocol description correctly, as
in the previous systems [3,11]. For simplicity of description, we assume that the
same party is both of the SP and RM, since the separation is easy.

In this paper, we suppose that both users of sellers and buyers anonymously
participate in the system, using some anonymous authentication scheme, such as
anonymous credentials, and the anonymous buyer just submits his rating for the
seller to RM, independently from his other ratings. Thus, since the anonymity of
the buyer is easily satisfied, we omit the process related to the buyer from the fol-
lowing definition of reputation system, and focus on the seller side anonymously
accumulating the obtained ratings.

The definitions of syntax and security requirements are shown in Appendix A.

368 T. Nakanishi et al.

4 Proposed System

4.1 Construction Idea

In the proposed system, instead of the bank maintaining the database of repu-
tations, the certificate certifying the reputation rep and the number of ratings
num is issued by RM to a user. By each Update protocol, the certificate is
updated such that rep is added by the new rating and num is incremented. In
the updating process, rep and num have to be secret for RM, and thus we utilize
the commitments to rep and num. Using the homomorphic property of the com-
mitments, RM updates the secret rep and num. The commitments are signed
by an AHO signature as the certificate. The reason why we adopt the AHO
signature is to sign the multiple group elements of commitments. To achieve the
anonymity, the correctness of the certificate and the updated rep and num in
the commitments is ensured by the zero-knowledge proofs. In Show protocol, we
employ the range proof technique in [7]: In advance, RM issues the BB signatures
for all values in each range. In Show protocol, the user proves the knowledge of
a BB signature for the proved value (i.e., rep or num). Since only signatures for
values in the range are issued, the verifier can confirm that the proved value lies
in the range.

Next, we show the idea to check the certified reputation reflects all ratings
including negative ratings. Since each Show protocol is assigned to an item
ID, RM can check whether each item is rated and whether the corresponding
certificate is updated via the ID. Namely, RM forces the seller to send the IDs
such that the item is rated but the corresponding certificate is not updated. The
set of IDs has to be secret to achieve the anonymity, but the set is embedded
into the certificate to achieve the unforgeability. Let the set of IDs of rated but
non-updated items for all users, which are recorded in RM, be L̃RM. Let the set
of IDs of non-updated items for the seller U be LU. The check is LU �⊂ L̃RM.
To obtain the constant efficiency w.r.t. the set size, we consider the use of the
accumulator in Sect. 2.5. Since the accumulator gives us only the proof of the
subset relation ⊂, we modify the server’s set into LRM that is the set of non-rated
(also non-updated) IDs for all users. In this case, the relation LU ⊂ LRM means
that all the IDs in LU have not been rated yet, that is, the seller does not need
to update the certificate for IDs in LU. On the other hand, when an item with
ID in LU is rated, the ID is deleted from LRM, and thus the seller cannot prove
LU ⊂ LRM unless the ID is deleted from LU in Update protocol for the ID.
Thus, the seller cannot execute Show protocol unless the certificate is updated
for all the rated items of him.

The accumulator verification is e(P, acc)/e(g,W) = e(g1, gn)|LU|, where P =∏
i∈LU

gi and acc =
∏

i∈LRM
gn+1−i. The commitment to the value P for LU is

embedded in the certificate. Since P is a group element, instead of the ordinary
Pedersen commitment, we adopt the commitment of two components: CP =
P · ĝR, CR = gRĝr for randoms r,R. In the accumulator verification, |LU| also
has to be secret, but the value is not fixed, depending on LU. This is why we
consider that the commitment to N = |LU| is also embedded into the certificate,

An Anonymous Reputation System with Reputation Secrecy for Manager 369

where N is secretly incremented (resp, decremented) in Show (resp, Update)
protocol.

For the consistency of the user, the committed user’s secret x is embedded in
the certificate. To protect the re-use of the past certificate, the committed tag
S of the certificate is also embedded in the certificate. By putting all together,
the certificate is

Sig(Cx, CS , Crep, Cnum, CN , CP , CR),

where Sig is the AHO signing, Cx, CS , Crep, Cnum, CN are the commitments to
x, S, rep, num,N , and (CP , CR) is the commitment to P .

4.2 Proposed Construction

Setup: In this algorithm, Reputation Manager (RM) sets up his keys.

1. Select bilinear groups G, T with the same order p > 2l and the bilinear map
e, and g, ĝ ∈R G.

2. Generate public parameters of the accumulator: Select γ ∈R Zp, and compute

pkacc = (g1 = gγ1
, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

).

3. Generate a key pair for the AHO signature:

pkAHO = (Gr,Hr, Gz,Hz, G1, . . . , G7,H1, . . . , H7, A,B),
skAHO = (αa, αb, μz, νz, μ1, . . . , μ7, ν1, . . . , ν7).

4. Generate key pairs for BB signatures: Select ε1, . . . , εL, ε̃1, . . . , ε̃L̃ ∈R Zp, and
compute Y1 = gε1 , . . . , YL = gεL , Ỹ1 = gε̃1 , . . . , ỸL̃ = gε̃L̃ . Define pkBB =
({Yi}i=1,...,L, {Ỹi}i=1,...,L̃).

5. For the range proof, compute sets of BB signatures: F�,i = g1/(ε�+i) for 1 ≤
� ≤ L and 2�−1 ≤ i ≤ 2� − 1, and F̃�,i = g1/(ε̃�+i) for 1 ≤ � ≤ L̃ and
2�−1 ≤ i ≤ 2� − 1.

6. Initialize sets LRM, P and S as empty. Output RM’s public key

rpk =(p,G, T , e, g, pkacc, pkAHO, pkBB, {F�,i}1≤�≤L,2�−1≤i≤2�−1,

{F̃�,i}1≤�≤L̃,2�−1≤i≤2�−1),

and RM’s secret key rsk = skAHO.

Register: In this protocol, U obtains an initial certificate from RM.

1. [U] Select x, S0, rx,0, rS0 ∈R Zp, and compute commitments Cx,0 = gxĝrx,0 ,
CS0 = gS0 ĝrS0 .

2. [U] Send (Cx,0, Cs0) to RM, and conduct

PK{(x, S0, rx,0, rS0) : Cx,0 = gxĝrx,0 , CS0 = gS0 ĝrS0 }.

370 T. Nakanishi et al.

3. [RM] Set rep0 = 0, num0 = 0, N0 = 0, P0 = 1, R0 = 0, rrep0 = rnum0 =
rN0 = rP0 = rR0 = 0, and compute initial commitments Crep0 = grep0 ĝrrep0 ,
Cnum0 = gnum0 ĝrnum0 , CN0 = gN0 ĝrN0 , CP0 = P0ĝ

rP0 , CR0 = gR0 ĝrR0 .
Compute an AHO signature σ0 = (θ01, . . . , θ07) on messages (Cx,0, CS0 , Crep0 ,
Cnum0 , CN0 , CP0 , CR0), and send σ0 to U.

4. [U] Initialize LU as the empty set. Set rep0 = 0, num0 = 0, N0 = 0, P0 =
1, R0 = 0, rrep0 = rnum0 = rN0 = rP0 = rR0 = 0, and compute initial com-
mitments Crep0 = grep0 ĝrrep0 , Cnum0 = gnum0 ĝrnum0 , CN0 = gN0 ĝrN0 , CP0 =
P0ĝ

rP0 , CR0 = gR0 ĝrR0 . Verify the AHO signature σ0. If it is incorrect, abort.
Output rep0, num0 and the initial certificate cert0 = (LU, S0, N0, P0, R0,
Cx,0, CS0 , Crep0 , Cnum0 , CN0 , CP0 , CR0 , rx,0, rS0 , rrep0 , rnum0 , rN0 , rR0 , σ0)
and sec = x.

Show: In this protocol, U shows that his/her accumulated reputation and num-
ber of ratings lie in integer ranges, after RM checks that all the ratings including
negative ones are accumulated in the reputation. Then, RM issues the user an
updated certificate.

The inputs of U are rept−1, numt−1, sec = x, certt−1 = (LU, St−1, Nt−1, Pt−1,
Rt−1, Cx,t−1, CSt−1 , Crept−1 , Cnumt−1 , CNt−1 , CPt−1 , CRt−1 , rx,t−1, rSt−1 , rrept−1 ,
rnumt−1 , rNt−1 , rRt−1 , σt−1). σt−1 is an AHO signature on commitments (Cx,t−1,
CSt−1 , Crept−1 , Cnumt−1 , CNt−1 , CPt−1 , CRt−1), where

Cx,t−1 = gxĝrx,t−1 , CSt−1 = gSt−1 ĝrSt−1 , Crept−1 = grept−1 ĝrrept−1 ,

Cnumt−1 = gnumt−1 ĝrnumt−1 , CNt−1 = gNt−1 ĝrNt−1 , CPt−1 = Pt−1ĝ
Rt−1 ,

CRt−1 = gRt−1 ĝrRt−1 .

RM’s input LRM includes ID numbers of items which are offered by all sellers
but have not been rated yet. U’s input LU includes ID numbers of items which
are offered by U but have not been updated in his/her certificate yet.

1. [RM] Send LRM to U.
2. [U] Re-randomize the commitments: Select r′

x,t−1, r
′
St−1

, r′
rept−1

, r′
numt−1

,

R′
t−1, r′

Nt−1
, r′

Rt−1
∈R Zp, set r′′

x,t−1 = rx,t−1 + r′
x,t−1, r′′

St−1
= rSt−1 + r′

St−1
,

r′′
rept−1

= rrept−1 + r′
rept−1

, r′′
numt−1

= rnumt−1 + r′
numt−1

, r′′
Nt−1

= rNt−1 +
r′
Nt−1

, R′′
t−1 = Rt−1 + R′

t−1, r′′
Rt−1

= rRt−1 + r′
Rt−1

, and compute

C ′
x,t−1 = Cx,t−1ĝ

r′
x,t−1 = gxĝr′′

x,t−1 , C ′
St−1

= CSt−1 ĝ
r′

St−1 = gSt−1 ĝ
r′′

St−1 ,

C ′
rept−1

= Crept−1 ĝ
r′

rept−1 = grept−1 ĝ
r′′

rept−1 ,

C ′
numt−1

= Cnumt−1 ĝ
r′

numt−1 = gnumt−1 ĝ
r′′

St−1 ,

C ′
Nt−1

= CNt−1 ĝ
r′

Nt−1 = gNt−1 ĝ
r′′

St−1 , C ′
Pt−1

= CPt−1 ĝ
R′

t−1 = Pt−1ĝ
R′′

t−1 ,

C ′
Rt−1

= CRt−1 ĝ
r′

Rt−1 = gRt−1 ĝ
r′′

Rt−1 .

Set com1 = (C ′
x,t−1, C

′
St−1

, C ′
rept−1

, C ′
numt−1

, C ′
Nt−1

, C ′
Pt−1

, C ′
Rt−1

).

An Anonymous Reputation System with Reputation Secrecy for Manager 371

3. [U] Re-randomize the AHO signature σt−1 to obtain σ′
t−1 = {θ′

1, . . . , θ
′
7}, and

the commitments {Cθ′
i
}i∈{1,2,5} to {θ′

i}i∈{1,2,5} by Cθ′
i
= θ′

iĝ
rθ′

i for randomly
chosen rθ′

i
∈R Zp. Set comAHO = ({θ′

i}i=3,4,6,7, {Cθ′
i
}i=1,2,5).

4. [U] To check the list, set acc =
∏

i∈LRM
gn+1−i and W =

∏
j∈LU

∏i�=j
i∈LRM

gn+1−i+j . Select rW ∈R Zp, and compute the commitment CW to W by
CW = WĝrW . Select r̃N , and compute the commitment C̃N = g

Nt−1
n ĝr̃N . Set

comacc = (CW , C̃N).
5. [U] For the range proof of 2�−1 ≤ rept−1 < 2�, select BB signature F�,rept−1

on rept−1 s.t. 2�−1 ≤ rept−1 < 2�. Select rF ∈R Zp, and compute the
commitment CF = F�,rept−1 ĝ

rF . Set ξ = rF · rept−1. Furthermore, select
rrF

, rξ ∈R Zp, and compute the auxiliary commitments CrF
= grF ĝrrF and

Cξ = gξ ĝrξ . Set ζ = rξ − rrF
· rept−1. Set comR1 = (CF , CrF

, Cξ).
6. [U] For the range proof of 2�̃−1 ≤ numt−1 < 2�̃, select BB signature F̃�̃,numt−1

on numt−1 s.t. 2�̃−1 ≤ numt−1 < 2�̃. Select rF̃ ∈R Zp, and compute the
commitment CF̃ = F̃�̃,numt−1

ĝrF̃ . Set ξ̃ = rF̃ · numt−1. Furthermore, select
rrF̃

, rξ̃ ∈R Zp, and compute the auxiliary commitments CrF̃
= grF̃ ĝ

rr
F̃ and

Cξ̃ = gξ̃ ĝrξ̃ . Set ζ̃ = rξ̃ − rrF̃
· numt−1. Set comR2 = (CF̃ , CrF̃

, Cξ̃).
7. [U] Set Rt = R′′

t−1 = Rt−1 + R′
t−1, select rRt

∈R Zp, and compute com-
mitment CRt

= gRt ĝrRt . Select St, rSt
∈R Zp, and compute commitment

CSt
= gSt ĝrSt . Set com2 = (CRt

, CSt
).

8. [U] Send RM the commitments (com1, comAHO, comacc, comR1, comR2,
com2) and the tag St−1 of this certificate.

9. [RM] For the verification of the accumulator, generate acc =
∏

i∈LRM
gn+1−i.

10. [U] Conduct the following PK with RM:

PK{(x, St−1, rept−1, numt−1, Nt−1, Rt−1, r
′′
x,t−1, r

′′
St−1 , r′′

rept−1 , r′′
numt−1 , r′′

Nt−1 ,

r′′
Rt−1 , rRt , r

′
x,t−1, r

′
St−1 , r′

rept−1 , r′
numt−1 , r′

Nt−1 , R′
t−1, r

′
Rt−1 , rθ′

1
, rθ′

2
, rθ′

5
, r̃N ,

rW , rF , ξ, rrF , rξ, ζ, rF̃ , ξ̃, rr
F̃

, rξ̃, ζ̃) :

C′
x,t−1 = gxĝr′′

x,t−1 ∧ C′
St−1g−St−1 = ĝ

r′′
St−1 ∧ C′

rept−1 = grept−1 ĝ
r′′

rept−1 (1)

∧ C′
numt−1 = gnumt−1 ĝ

r′′
numt−1 ∧ C′

Nt−1 = gNt−1 ĝ
r′′

Nt−1 (2)

∧ C′
Rt−1 = gRt−1 ĝ

r′′
Rt−1 ∧ CRt = gRt−1+R′

t−1 ĝrRt ∧ C̃N = g
Nt−1
n ĝr̃N (3)

∧ A−1 · e(Gz, Cθ′
1
) · e(Gr, Cθ′

2
) · e(θ′

3, θ
′
4) · e(G1, C

′
x,t−1) · e(G2, C

′
St−1)

· e(G3, C
′
rept−1) · e(G4, C

′
numt−1) · e(G5, C

′
Nt−1) · e(G6, C

′
Pt−1) · e(G7, C

′
Rt−1)

= e(Gz, ĝ)
rθ′

1 · e(Gr, ĝ)
rθ′

2 · e(G1, ĝ)r′
x,t−1 · e(G2, ĝ)

r′
St−1 · e(G3, ĝ)

r′
rept−1

· e(G4, ĝ)
r′

numt−1 · e(G5, ĝ)
r′

Nt−1 · e(G6, ĝ)R′
t−1 · e(G7, ĝ)

r′
Rt−1 (4)

372 T. Nakanishi et al.

∧ B−1 · e(Hz, Cθ′
1
) · e(Hr, Cθ′

5
) · e(θ′

6, θ
′
7) · e(H1, C

′
x,t−1) · e(H2, C

′
St−1)

· e(H3, C
′
rept−1) · e(H4, C

′
numt−1) · e(H5, C

′
Nt−1) · e(H6, C

′
Pt−1) · e(H7, C

′
Rt−1)

= e(Hz, ĝ)
rθ′

1 · e(Hr, ĝ)
rθ′

5 · e(H1, ĝ)r′
x,t−1 · e(H2, ĝ)

r′
St−1 · e(H3, ĝ)

r′
rept−1

· e(H4, ĝ)
r′

numt−1 · e(H5, ĝ)
r′

Nt−1 · e(H6, ĝ)R′
t−1 · e(H7, ĝ)

r′
Rt−1 (5)

∧ e(C′
Pt−1 , acc) · e(g1, C̃N)−1 · e(g, CW)−1

= e(ĝ, acc)−Rt−1−R′
t−1 · e(g1, ĝ)−r̃N · e(g, ĝ)−rW (6)

∧ e(CF , Y�) · e(g, g)−1 = e(ĝ, Y�)
rF · e(CF , g)−rept−1 · e(ĝ, g)ξ (7)

∧ CrF = grF ĝrrF ∧ Cξ = gξĝrξ ∧ Cξ = C
rept−1
rF ĝζ (8)

∧ e(CF̃ , Y�̃) · e(g, g)−1 = e(ĝ, Y�̃)
r

F̃ · e(CF̃ , g)−numt−1 · e(ĝ, g)ξ̃ (9)

∧ Cr
F̃

= gr
F̃ ĝ

rr
F̃ ∧ Cξ̃ = gξ̃ĝ

r
ξ̃ ∧ Cξ̃ = C

numt−1
r

F̃
ĝζ̃} (10)

In this PK, Eqs. (1)–(3) prove the correctness of the commitments, Eqs. (4)
and (5) prove an AHO signature on the commitments, Eq. (6) proves the
accumulator verification of LU ⊂ LRM, and Eqs. (7)–(10) prove BB signa-
tures on rept−1, numt−1.

11. [RM] Check if the tag St−1 has been used in past protocols to search it in
set S. If it has been used, abort. Otherwise, add St−1 to S.

12. [RM] Pick up an integer i from [1, n]\LRM, and add i to LRM. Compute CPt
=

C ′
Pt−1

· gi, where CPt
= Ptĝ

R′′
t−1 for Pt = Pt−1 · gi. Compute CNt

= C ′
Nt−1

· g,

where CNt
= gNt ĝ

r′′
Nt−1 for Nt = Nt−1 + 1.

13. [RM] Compute an AHO signature σt on (Cx,t, CSt
, Crept

, Cnumt
, CNt

, CPt
,

CRt
), where Cx,t = C ′

x,t−1, Crept
= C ′

rept−1
and Cnumt

= C ′
numt−1

. Send
(σt, i) to the user. Output i and LRM.

14. [U] Add i to LU, and compute Pt = Pt−1 · gi, where it holds that Pt =∏
i∈LU

gi.
15. [U] Output i, rept, numt, certt = (LU, St, Nt, Pt, Rt, Cx,t, CSt

, Crept
, Cnumt

,
CNt

, CPt
, CRt

, rx,t, rSt
, rrept

, rnumt
, rNt

, rRt
, σt), where rrept

= r′′
rept−1

,
rnumt

= r′′
numt−1

, rNt
= r′′

Nt−1
, rRt

= r′′
Rt−1

.

Update: In this protocol, RM issues U an updated certificate such that the
accumulated reputation is added by the new rating and the number of ratings
is incremented.

As in Show protocol, the inputs of U are rept−1, numt−1, sec = x, certt−1 =
(LU, St−1,Nt−1, Pt−1, Rt−1,Cx,t−1, CSt−1 , Crept−1 , Cnumt−1 , CNt−1 ,CPt−1 , CRt−1 ,
rx,t−1, rSt−1 , rrept−1 , rnumt−1 , rNt−1 , rRt−1 , σt−1). σt−1 is an AHO signature on
commitments (Cx,t−1, CSt−1 , Crept−1 , Cnumt−1 , CNt−1 , CPt−1 , CRt−1).

1. [U] Send (i,Δrep) to RM.
2. [RM] Check if (i,Δrep) exists in P. If it does not exist, abort.
3. [U] Re-randomize the commitments: Select r′

x,t−1, r
′
St−1

, r′
rept−1

, r′
numt−1

,

R′
t−1, r′

Nt−1
, r′

Rt−1
∈R Zp, set r′′

x,t−1 = rx,t−1 + r′
x,t−1, r′′

St−1
= rSt−1 + r′

St−1
,

An Anonymous Reputation System with Reputation Secrecy for Manager 373

r′′
rept−1

= rrept−1 + r′
rept−1

, r′′
numt−1

= rnumt−1 + r′
numt−1

, r′′
Nt−1

= rNt−1 +
r′
Nt−1

, R′′
t−1 = Rt−1 + R′

t−1, r′′
Rt−1

= rRt−1 + r′
Rt−1

, and compute

C ′
x,t−1 = Cx,t−1ĝ

r′
x,t−1 = gxĝr′′

x,t−1 , C ′
St−1

= CSt−1 ĝ
r′

St−1 = gSt−1 ĝ
r′′

St−1 ,

C ′
rept−1

= Crept−1 ĝ
r′

rept−1 = grept−1 ĝ
r′′

rept−1 ,

C ′
numt−1

= Cnumt−1 ĝ
r′

numt−1 = gnumt−1 ĝ
r′′

St−1 ,

C ′
Nt−1

= CNt−1 ĝ
r′

Nt−1 = gNt−1 ĝ
r′′

St−1 , C ′
Pt−1

= CPt−1 ĝ
R′

t−1 = Pt−1ĝ
R′′

t−1 ,

C ′
Rt−1

= CRt−1 ĝ
r′

Rt−1 = gRt−1 ĝ
r′′

Rt−1 .

Set com1 = (C ′
x,t−1, C

′
St−1

, C ′
rept−1

, C ′
numt−1

, C ′
Nt−1

, C ′
Pt−1

, C ′
Rt−1

).
4. [U] Re-randomize the AHO signature σt−1 to obtain σ′

t−1 = {θ′
1, . . . , θ

′
7}, and

the commitments {Cθ′
i
}i∈{1,2,5} to {θ′

i}i∈{1,2,5} by Cθ′
i
= θ′

iĝ
rθ′

i for randomly
chosen rθ′

i
∈R Zp. Set comAHO = ({θ′

i}i=3,4,6,7, {Cθ′
i
}i=1,2,5).

5. [U] Set Rt = R′′
t−1 = Rt−1 + R′

t−1, select rRt
∈R Zp, and compute com-

mitment CRt
= gRt ĝrRt . Select St, rSt

∈R Zp, and compute commitment
CSt

= gSt ĝrSt . Set com2 = (CRt
, CSt

).
6. [U] Send RM the commitments (com1, comAHO, com2) and the tag St−1 of

this certificate.
7. [U] Conduct the following PK with RM:

PK{(x, St−1, rept−1, numt−1, Nt−1, Rt−1, r′′
x,t−1, r′′

St−1
, r′′

rept−1
, r′′

numt−1
, r′′

Nt−1
,

r′′
Rt−1

, rRt , r′
x,t−1, r′

St−1
, r′

rept−1
, r′

numt−1
, r′

Nt−1
, R′

t−1, r′
Rt−1

, rθ′
1
, rθ′

2
, rθ′

5
) :

C′
x,t−1 = gxĝr′′

x,t−1 ∧ C′
St−1

g−St−1 = ĝ
r′′

St−1 ∧ C′
rept−1

= grept−1 ĝ
r′′

rept−1

∧C′
numt−1

= gnumt−1 ĝ
r′′

numt−1 ∧ C′
Nt−1

= gNt−1 ĝ
r′′

Nt−1 ∧ C′
Rt−1

= gRt−1 ĝ
r′′

Rt−1

∧CRt = gRt−1+R′
t−1 ĝrRt

∧A−1 · e(Gz , Cθ′
1
) · e(Gr, Cθ′

2
) · e(θ′

3, θ′
4) · e(G1, C′

x,t−1) · e(G2, C′
St−1

)

·e(G3, C′
rept−1

) · e(G4, C′
numt−1

) · e(G5, C′
Nt−1

) · e(G6, C′
Pt−1

) · e(G7, C′
Rt−1

)

= e(Gz , ĝ)
rθ′

1 · e(Gr, ĝ)
rθ′

2 · e(G1, ĝ)r
′
x,t−1 · e(G2, ĝ)

r′
St−1 · e(G3, ĝ)

r′
rept−1

·e(G4, ĝ)
r′

numt−1 · e(G5, ĝ)
r′

Nt−1 · e(G6, ĝ)R
′
t−1 · e(G7, ĝ)

r′
Rt−1

∧B−1 · e(Hz , Cθ′
1
) · e(Hr, Cθ′

5
) · e(θ′

6, θ′
7) · e(H1, C′

x,t−1) · e(H2, C′
St−1

)

·e(H3, C′
rept−1

) · e(H4, C′
numt−1

) · e(H5, C′
Nt−1

) · e(H6, C′
Pt−1

) · e(H7, C′
Rt−1

)

= e(Hz , ĝ)
rθ′

1 · e(Hr, ĝ)
rθ′

5 · e(H1, ĝ)r
′
x,t−1 · e(H2, ĝ)

r′
St−1 · e(H3, ĝ)

r′
rept−1

·e(H4, ĝ)
r′

numt−1 · e(H5, ĝ)
r′

Nt−1 · e(H6, ĝ)R
′
t−1 · e(H7, ĝ)

r′
Rt−1 }

8. [RM] Check if the tag St−1 has been used in past protocols to search it in
set S. If it has been used, abort. Otherwise, add St−1 to S.

9. [RM] Compute CPt
= C ′

Pt−1
· g−1

i , where CPt
= Ptĝ

R′′
t−1 for Pt = Pt−1 · g−1

i .

Compute CNt
= C ′

Nt−1
· g−1, where CNt

= gNt ĝ
r′′

Nt−1 for Nt = Nt−1 −
1. Compute Crept

= C ′
rept−1

gΔrep , where Crept
= greptg

r′′
rept−1 for rept =

374 T. Nakanishi et al.

rept−1 + Δrep. Compute Cnumt
= C ′

numt−1
g, where Cnumt

= gnumtg
r′′

numt−1

for numt = numt−1 + 1.
10. [RM] Compute an AHO signature σt on (Cx,t, CSt

, Crept
, Cnumt

, CNt
, CPt

,
CRt

), where Cx,t = C ′
x,t−1. Send σt to the user. Delete (i,Δrep) from P.

11. [U] Delete i from LU, and compute Pt = Pt−1 · g−1
i , where it holds that

Pt =
∏

i∈LU
gi.

12. [U] Output rept, numt, certt = (LU, St, Nt, Pt, Rt, Cx,t, CSt
, Crept

, Cnumt
,

CNt
, CPt

, CRt
, rx,t, rSt

, rrept
, rnumt

, rNt
, rRt

, σt), where rrept
= r′′

rept−1
,

rnumt
= r′′

numt−1
, rNt

= r′′
Nt−1

, rRt
= r′′

Rt−1
.

5 Security

The proofs of the following lemmas and theorems are shown in the full paper.

Lemma 1. The PK in Show protocol proves the knowledge of

– an AHO signature σt−1 on Cx,t−1, CSt−1 , Crept−1 , Cnumt−1 , CNt−1 , CPt−1 ,
CRt−1 , where

Cx,t−1 = gxĝrx,t−1 , CSt−1 = gSt−1 ĝrSt−1 , Crept−1 = grept−1 ĝrrept−1 ,

Cnumt−1 = gnumt−1 ĝrnumt−1 , CNt−1 = gNt−1 ĝrNt−1 , CPt−1 = Pt−1ĝ
Rt−1 ,

CRt−1 = gRt−1 ĝrRt−1 ,

– accumulator witness W s.t. e(Pt−1, acc)/e(g,W) = e(g1, gn)Nt−1 for the above
Pt−1, Nt−1 and accumulator acc known to RM,

– a BB signature F�,rept−1 on above rept−1 w.r.t. public key Y�,
– a BB signature F̃�̃,numt−1

on above numt−1 w.r.t. public key Y�̃.

Lemma 2. The PK in Update protocol proves the knowledge of an AHO sig-
nature σt−1 on Cx,t−1, CSt−1 , Crept−1 , Cnumt−1 , CNt−1 , CPt−1 , CRt−1 , where

Cx,t−1 = gxĝrx,t−1 , CSt−1 = gSt−1 ĝrSt−1 , Crept−1 = grept−1 ĝrrept−1 ,

Cnumt−1 = gnumt−1 ĝrnumt−1 , CNt−1 = gNt−1 ĝrNt−1 , CPt−1 = Pt−1ĝ
Rt−1 ,

CRt−1 = gRt−1 ĝrRt−1 .

Theorem 1. The proposed system is reputation unforgeable.

Theorem 2. The proposed system is seller anonymous.

6 Conclusion

In this paper, we have proposed an anonymous reputation system with the
secrecy of the reputations for even the reputation manager. In our system, a
ratee cannot discard the negative ratings.

In our system, the reputation manager cannot check if the reputation of a user
is accumulated from a few (colluding) ratees. Our future work is the extension
to the system where the number of raters can be checked. The implementation
of our system and the evaluations are also our future works.

An Anonymous Reputation System with Reputation Secrecy for Manager 375

A Syntax and Security Requirements

A.1 Syntax

The algorithms and protocol of the anonymous reputation system are as follows.

Setup(l, n, L, L̃): This is the key setup algorithm for RM. In the inputs, l is the
security parameter, n is the maximum number of items which are offered by
sellers but have not been rated yet, and L is the number of ranges used in
proving for the accumulated reputation. L̃ is the number of ranges used in
proving for the number of ratings. This algorithm outputs RM’s public key
rpk, RM’s secret key rsk, and initialize sets LRM, P and S as empty.

Register: This is an interactive protocol between a joining user U and RM for
the registration of U. The common input is rpk. The input of RM is rsk.
The outputs of U are U’s unique secret sec and an initial one-time certificate
cert0 indicating accumulated reputation rep0 = 0 and the number of ratings
num0 = 0.

Show: This is an interactive protocol between a seller (registered user) U and
RM, where U proves that his/her current reputation rept−1 lies in range
[2�−1, 2� − 1], and proves that the number of ratings numt−1 lies in range
[2�̃−1, 2�̃ −1]. The common input is rpk. The inputs of U are rept−1, numt−1,
the user’s secret sec, and the certificate certt−1. The inputs of RM are rsk,
LRM, and S. The outputs of U are item ID number i and an updated one-
time certificate certt for i, and rept = rept−1, numt = numt−1. The outputs
of RM are updated LRM, and S. The set LRM ⊂ [1, n] consists of ID numbers
of items which are offered by sellers but have not been rated yet. The set S
consists of tags which are included in certificates, to detect the double use
of the certificates. If the certificate certt−1 has been used in a past protocol,
this protocol is aborted.

Rate: This is the algorithm of RM that, on inputs item ID number i, the rating
value Δrep, the pending database P and LRM, deletes i from LRM and adds
(i,Δrep) to P. The set P consists of (i,Δrep) such that the rating Δrep has
not been accumulated to the corresponding certificate yet.

Update: This is an interactive protocol between a seller U and RM to accumu-
late the rating in the certificate. The common inputs are rpk, the target item
ID number i, and the rating Δrep. The inputs of U are rept−1, numt−1, the
user’s secret sec, and the certificate certt−1. The inputs of RM are rsk, P,
LRM, and S. The outputs of U are rept = rept−1+Δrep, numt = numt−1+1,
and the one-time certificate certt. RM deletes (i,Δrep) from P. If the certifi-
cate certt−1 has been used in a past protocol, this protocol is aborted.

Using the above algorithms and protocols, the system flow is as follows.
First of all, RM initializes the system using Setup, where the public key rpk is
published. When a user wants to participate in this system, the user registers
with RM to obtain initial data. When a user wants to offer an item, the user
registers his item and conducts Show protocol with RM. RM publishes the item

376 T. Nakanishi et al.

with the ranges of rept−1, numt−1 of the seller, where buyers can check the
reliability of the seller. After a buyer has an interaction with the seller, the
buyer sends his rating to RM. RM forwards the rating to the seller, who conducts
Update protocol with RM.

A.2 Security Requirements

As the security, we consider the reputation unforgeability and the seller anonymity.

Reputation Unforgeability. Consider the following reputation unforgeability
game. As the proof in [4], in order to identify the user from the Update or
Show protocol transcript, we need a special algorithm, Extract.

Reputation unforgeability game: The challenger runs Setup, and obtains rpk
and rsk. He provides A with rpk, and run A. He initializes the database D with
entries (xi, sumi,rep, sumi,num). In the run, A can query the challenger about the
following queries:

C-Register: To A’s request, the challenger as RM executes Register protocol
with A as a user.

C-Show: To A’s request as the seller, the challenger as RM executes Show
protocol with A.

C-Update: To A’s request for the item ID i and the rating Δrep, using Rate,
the challenger updates P and LRM. Then, the challenger as RM executes
Show protocol on input (i,Δrep) with A as the seller. From the protocol
transcript, using Extract, the challenger extracts the identity xi of the user.
In the database D, the challenger renews sumi,rep = sumi,rep + Δrep, and
sumi,num = sumi,num + 1 in the entry (xi, sumi,rep, sumi,num).

Finally, the challenger as RM executes Show protocol with A as a seller.
Then, A wins if

1. The final Show protocol succeeds for rep∗
t−1 ∈ [2�−1, 2� − 1] and num∗

t−1 ∈
[2�̃−1, 2�̃ − 1] for some �, �̃.

2. For xi∗ extracted by Extract from the final Show protocol, it holds that
sumi∗,rep /∈ [2�−1, 2�−1] or sumi∗,num /∈ [2�̃−1, 2�̃−1] in the entry (xi∗ , sumi∗,rep,
sumi∗,num) in D.

Definition 4. A reputation system is reputation unforgeable if, for any PPT
adversary A involved in the reputation unforgeability game, the probability that
A wins the game is negligible for security parameter l.

Seller Anonymity. As the syntax shows, the pair of Show protocol and
Update protocol for the same item ID are linkable and the rating Δrep is
revealed. Furthermore, each Show protocol reveals the ranges which rep and
num lie in. The seller anonymity means that any adversary can obtain no
information on the user beyond these. Since the adversary can corrupt RM,

An Anonymous Reputation System with Reputation Secrecy for Manager 377

the system with the seller anonymity satisfies the reputation secrecy for even
the manager. In the similar way to the anonymity definition of an anonymous
credential system [4], the seller anonymity is defined as follows: The interaction
of the adversary (corrupting RM) with honest users is indistinguishable from
some ideal game where Show and Update protocol transcripts are indepen-
dent of the user’s identity. Consider the simulators, SimShow, SimUpdate for
Show, Update.

Definition 5. A reputation system is seller anonymous if the following proper-
ties hold:

– No adversary can tell if it is interacting with an honest user with rept−1,
numt−1, sec, certt−1 in Show protocol, or with SimShow which is not given
rept−1, numt−1, sec, certt−1.

– No adversary can tell if it is interacting with an honest user with rept−1,
numt−1, sec, certt−1 in Update protocol, or with SimUpdate which is not
given rept−1, numt−1, sec, certt−1.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010).
http://eprint.iacr.org/

3. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol.
5134, pp. 202–218. Springer, Heidelberg (2008)

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

5. Bethencourt, J., Shi, E., Song, D.: Signatures of reputation. In: Sion, R. (ed.) FC
2010. LNCS, vol. 6052, pp. 400–407. Springer, Heidelberg (2010)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

7. Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

8. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

9. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

10. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

http://eprint.iacr.org/

378 T. Nakanishi et al.

11. Schiffner, S., Clauß, S., Steinbrecher, S.: Privacy and liveliness for reputation sys-
tems. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp.
209–224. Springer, Heidelberg (2010)

12. Schiffner, S., Clauß, S., Steinbrecher, S.: Privacy, liveliness and fairness for rep-
utation. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R.,
Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 506–519. Springer,
Heidelberg (2011)

13. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient proofs of attributes in pairing-
based anonymous credential system. In: Fischer-Hübner, S., Hopper, N. (eds.)
PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011)

Security Protocol

Database Outsourcing with Hierarchical
Authenticated Data Structures

Mohammad Etemad(B) and Alptekin Küpçü

Koç University, İstanbul, Turkey
{metemad,akupcu}@ku.edu.tr

Abstract. In an outsourced database scheme, the data owner delegates
the data management tasks to a remote service provider. At a later time,
the remote service is supposed to answer any query on the database. The
essential requirements are ensuring the data integrity and authenticity
with efficient mechanisms. Current approaches employ authenticated data
structures to store security information, generated by the client and used
by the server, to compute proofs that show the answers to the queries
are authentic. The existing solutions have shortcomings with multi-clause
queries and duplicate values in a column.

We propose a hierarchical authenticated data structure for storing
security information, which alleviates the mentioned problems. We pro-
vide a unified formal definition of a secure outsourced database scheme,
and prove that our proposed scheme is secure according to this defini-
tion, which captures previously separate properties such as correctness,
completeness, and freshness. The performance evaluation based on our
prototype implementation confirms the efficiency of the proposed out-
sourced database scheme, showing more than 50% decrease in proof size
and proof generation time compared to previous work, and about 1–20%
communication overhead compared to the query result size.

1 Introduction

Huge amount of data is being produced everyday due to the widespread use of
computer systems in organizations and companies. Data needs protection, and
most of companies lack enough resources to provide it. By outsourcing data
storage and management, they free themselves from data protection difficulties,
and concentrate on their own proficiency.

An important problem is that by data outsourcing, the owner loses the direct
control over her data and should rely on answers coming from the remote service
provider (who is not fully trusted). Therefore, there should be mechanisms giving
the data owner the ability for checking the integrity of the outsourced data. To
make sure that the server operates correctly, the client should verify the query
answers coming from the servers [8]. The server sends to the client a verification
object (vo) along with the query answer (the result set). The vo enables the
client to verify the authenticity of the answer. Since the client may be a portable
device with limited processing power, the vo should be small, and efficiently
verifiable. The client uses the vo to verify that the response is [8,9,15,24,25]:
© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 381–399, 2014.
DOI: 10.1007/978-3-319-12160-4 23

382 M. Etemad and A. Küpçü

– complete: the result set sent to the client is exactly the set of records that are
the output of executing the query, i.e., no record is added or removed.

– correct: the result set sent to the client is provided by the client already, i.e.,
no unauthorized modification.

– fresh: the result set sent to the client is provided using the most recent data
on the server, and does not belong to old versions, i.e., no replay attacks.

We want to perform authentic queries on all searchable columns (the columns
that can be used to build clauses) of a table. All existing methods have a com-
mon problem with duplicate values in non-PK searchable columns [10,14,18].
The general method is to sort a table by each searchable column, and build
an Authenticated Data Structure (ADS) on the result. In other words, a total
ordering on the values of searchable columns is required, which together with
the fact that the duplicate values belong to different records, make building the
ADS using those values problematic.

We introduce the hierarchical ADS (HADS) for solving this problem. HADS
is also advantageous in proof generation for multi-dimensional (multi-clause)
queries. The HADS can be stored in the same database [2], or separately. Storing
it separately breaks the tie to a specific database and brings more flexibility. This
way, the outsourced data can be changed without affecting the proof system.

The rationale behind this work is to relate everything to the PKs. Since PKs
are unique identifiers of records in a database, we can compare and combine the
results of different queries and check the correctness and completeness at the
same time (freshness is provided by storing a constant-size metadata locally at
the client). We also support dynamic databases where the data owner may apply
modification queries (Insert, Delete, Update), in a provable manner.

1.1 Related Work

Elementary approaches. A simple way for verifying the authenticity of an
answer to an outsourced database query is to sign each table and store the sig-
nature locally [4,25]. This method requires sending the whole table to the client
for verification, and hence, does not scale up. Another method is to compute and
store with each record, a signature that verifies the contents of the record [4].
The problems are that computing a signature (for each record) is an expensive
operation, and this method does not provide completeness.

Approaches based on Verifiable B-tree. Pang and Tan [19] propose using
one or more verifiable B-trees (VB-tree) for each table. The VB-tree is an exten-
sion of B-tree using the Merkle hash tree [12]. The records are sorted by a
column before constructing the VB-tree, and for each table we need VB-trees in
the number of searchable columns. It does not support completeness, and found
insecure for the insecurity of the function used to compute the signatures [14].

A variant of this method, named MB-tree, is used intensively in the literature
[3,13,15,25]. MB-tree is similar to VB-tree except that a light hash function is
used instead of expensive signatures. The client stores locally the root’s digest,
or signs and stores it on the server.

Database Outsourcing with Hierarchical Authenticated Data Structures 383

Approaches based on authenticated skip list. Another line of work is using
an authenticated skip list to store the required information for the verification
[16,24]. Skip list is suitable and efficient enough for this purpose, especially when
we consider dynamic scenarios [24]. Wang and Du [24] prove that skip-list-based
ADS provides soundness and completeness for one-dimensional range queries,
and multiple ADSs are required for multi-dimensional range queries.

Palazzi [16,17] constructs one skip list for each searchable column in each
table. An important problem with this scheme is that for multi-dimensional
queries, only the result of one skip list (determined by the First Column Returned
approach [16], or the fastest one [17]) is used. The result set is sent to the client
who will apply the other clauses. Therefore, the result set contains a larger set
than the real result set of the query, and hence, is not efficient.

Authenticated range query is the method used to prove completeness
(i.e., no extra records and no missing ones) [3,9,14,25]. The server (1) finds the
contiguous records as the result set, and the boundary records (one immediately
before the first record, the before record, and one immediately after the last
record, the after record), (2) selects the values needed for the ordered ADS
membership proof of the boundary records, and (3) puts all these values into
the verification object and sends it to the client. The set {before record, result set,
after record} is guaranteed by the ordered ADS to be a sorted and contiguous
set of records, with no extra or missing record between them [11,24].

A common problem with all these methods [3,8,9,13–19,25] is the dupli-
cate values in non-PK columns that make building the ADSs problematic since
distinct values are required. Pang et al. [18] and Li et al. [10] propose apply-
ing the standard geometric perturbation method, guaranteeing a total ordering.
Although this solution works for static data, it is not suitable for a dynamic
case, since perturbing a duplicate value may result again in duplicate values.
Narasimha and Tsudik [14] propose appending a value, i.e., the record ID, to
solve the problem; but then searching on the column will be problematic, i.e., we
cannot search by only the real values of the column. Palazzi et al. [17] appends
to each value, hash of the record the value belongs to, and builds the ADSs using
these values. In our performance results, we show that these solutions that keep
all duplicate values in the same ADS result in significantly slower systems.

2 Preliminaries

Notation: We use N to denote the number of records of a table, |Ci| to denote
the number of distinct values in column i, and t to denote the number of records
in the result set. The ‘|’ denotes the concatenation, and PPT denotes proba-
bilistic polynomial time. ‘PK’ denotes ‘primary key’ in a database table, and
‘pk’ stands for ‘public key’. A function ν(k) : Z+ → [0, 1] is called negligible if
∀ polynomials p, ∃ constant k0 s.t. ∀ k > k0, ν(k) < |1/p(k)|. Overwhelming
probability is greater than or equal to 1−ν(k) for some negligible function ν(k).

Aone-way accumulator is defined as a family of one-way, quasi-commutative
hash functions. A function f : X × Y → X is quasi-commutative if ∀x ∈ X, y1,

384 M. Etemad and A. Küpçü

(a) ADS for a PK column. (b) A membership proof.

Fig. 1. (a) A regular (non-hierarchical) ADS storing the PK column of the Student

table, and (b) the membership proof for a query whose result set is {106, 107, 108}.

y2 ∈ Y : f(f(x, y1), y2) = f(f(x, y2), y1). Benaloh and de Mare [1] propose a
one-way accumulator based on an RSA modulus and prove its security.

An authenticated data structure (ADS) is a scheme for data authentica-
tion, where untrusted responders answer queries on the data structure and pro-
vide extra information used to produce a cryptographic proof that the answers
are valid [20,22,23]. The client uses the proof to reconstruct the ADS locally and
verify correctness of the answer [20]. Each node of the ADS is assigned a value
that is computed as a function of some neighboring nodes in the structure. We
provide a formal definition in Appendix A.

Authenticated skip list is an ADS constructed using a collision resistant
hash function. Labels from the queried node to the root make a proof of member-
ship [6]. Figure 1a and b present an authenticated skip list storing a PK column,
and the membership proof for the result set {106, 107, 108}, respectively.

Papamanthou et al. [21] introduce the authenticated hash table, that is
a hierarchy of one-way accumulators in a way that provides constant proof size
and verification time. It also keeps either query or update time constant while
providing the other with sub-linear complexity.

3 Hierarchical Authenticated Data Structures

Hierarchical ADS (HADS) is an ADS consisting of multiple levels of ADSs. Each
ADS at level i is constructed on top of a number of ADSs at level i + 1. Each
element of an ADS at level i stores the digest of and a link to an ADS at level
i+1. Therefore, multiple ADSs with different underlying structure can be linked
together to form a hierarchical ADS with multiple levels. The only restriction
is that all ADSs at level i must be of the same underlying structure to have
consistent proofs.1 The elements of last level ADSs contain data items (without
links to other ADSs). The client stores the digest of the first level ADS as
metadata. Figure 2a presents a two-level HADS instantiation using authenticated
skip list at the first, and Merkle hash tree at the second level, and Fig. 2b shows
a general four-level HADS architecture (the ADSs are represented like trees for
simplicity of presentation, but they can be of any type).

1 We can handle the heterogeneous case as well, but it complicates the presentation.

Database Outsourcing with Hierarchical Authenticated Data Structures 385

(a) A two-level HADS. (b) A general four-level HADS.

Fig. 2. (a) A two-level HADS using authenticated skip list and Merkle hash tree, and
(b) a general construction of a four-level HADS for storing the whole database.

An HADS scheme is an ADS scheme defined with three PPT algorithms
(HKeyGen, HCertify, HVerify) for the sake of distinguishing them from non-
hierarchical versions. All definitions for the ADS (the Appendix A), using HADS
algorithm names, directly provide a formal framework for HADS schemes.

3.1 HADS Construction

We construct HADS using (possibly different) ADSs at multiple levels in a hier-
archical structure. The modification or proof generation is a recursive operation
that needs to traverse the ADSs in a top-down manner. We provide the input as
a series of (key, value) pairs in such a way that the pairs needed for the upper
levels appear first. The command execution will begin on the first-level ADS,
and be directed by the data provided in the form of (key, value) pairs, which are
parsed to proper sub-ADSs at each level. For a query command, only the keys
will be used, but for the modifications, both key and value will be used.

The HKeyGen algorithm generates a public and private key pair for each
level, combines all public keys into pk, and all private keys into sk, and outputs
the result as the private and public key pair of the HADS (Algorithm 3.1).

Algorithm 3.1. HKeyGen, run by the client.
Input: security parameter k, number of levels n, and type of each level.
Output: the private and public keys of the HADS

1 skHADS = {}; //private key of the HADS.

2 pkHADS = {}; //public key of the HADS.

3 for i = 1 to n do

4 (sk, pk) = ADSi.KeyGen(1k); //Ask the level i ADS to produce its keys.

5 skHADS = skHADS ∪ sk;

6 pkHADS = pkHADS ∪ pk;

7 return (skHADS , pkHADS);

The modification and proof generation on HADS are recursive operations,
starting at the root ADS, and repeating on all affected ADSs in the hierarchy.
Each level’s ADS generates its own proof. The ADSs are tied to each other in a

386 M. Etemad and A. Küpçü

way that each leaf node of an ADS at level i stores the digest of and a link to an
ADS at level i + 1, thus the HADS proof will combine all required ADS proofs
(Algorithm 3.2). To simplify this operation, we use another PPT algorithm as a
helper method to find the sub-ADSs of a given ADS:

Find(key,value) → ({(ADS′, {(key′,value′)})}): This algorithm is used
(inside the HCertify) to interpret the input data and find the corresponding
part for each level, as we traverse the levels. It first finds the ADS at the
next level by traversing the current ADS with the provided key. Then, it
extracts the data inside the value as a set of {(key′, value′)} pairs. Finally,
it outputs the set of next ADSs and their associated {(key′, value′)} pairs.
An example showing this process is given in Sect. 4.1.

Algorithm 3.2. HCertify, run by the server.
Input: the public key pk, the command cmd, the data given as a (key, value) pair.
Output: the generated proof

1 Pown = {}; // Proof of the current ADS.

2 Pchild = {}; // Proof of all children combined together.

3 {(ADS ′, {(key ′, value ′)})} = Find(key, value); // Null for the last level.

4 for each element in {(ADS ′, (key ′, value ′)}) do

5 P = element.ADS′.HCertify(pk, cmd, element.(key′, value′)); //Ask each

child to compute its proof.

6 Pchild = Pchild|P ; // Combine the proofs.

7 Pown = Certify(pk,OP, (key, value)); // Current ADS proof (not

hierarchical).

8 return Pchild|Pown;

The verification is also a recursive process. The client reconstructs the
required parts of the HADS in a bottom-up manner, i.e., she verifies the last
level, then uses its digest and the next level proof to verify the above level, and
so forth. Finally, when the client reaches the upper-most level and obtains a
single digest, she compares it with the local metadata for verification.

4 Outsourced Database Scheme

Fig. 3. The ODB model.

Model. The outsourced database (ODB)
model, as depicted in Fig. 3, is composed of
three parties: the data owner, the querier,
and the service provider. The data owner per-
forms required pre-computations, uploads the
database, and gives the querier(s) the secu-
rity information she needs for verification.
The data owner then may perform modi-
fications (insertion, deletion, or update) on
the outsourced database. The service provider
(or simply, the server) has the required
equipment (software, hardware, and network

Database Outsourcing with Hierarchical Authenticated Data Structures 387

resources) for storing and maintaining the database in a provable manner. The
internal structure of the server is transparent to the outside, i.e., the server may
use some levels of replication and distribution to increase the performance and
availability. The querier (or the user) issues a query (either select or modifi-
cation) to the server, who executes the query, collects the result set, computes
the corresponding proof, and sends all back to the querier. The querier then
verifies the answer using the security information given by the data owner. It is
possible to have multiple queriers or data owners, and data owners can also act
as queriers. For simplicity, we will refer to them simply as the client. This paper
considers only single-client case.

We decouple the real data from the authentication information on the server.
The DBMS is a regular database management system responsible for storing
and updating the data, and executing queries and giving back the answers. The
DBAS (Database Authentication System) stores the authentication information
about the data, and generates the proofs to be sent to the client. Thus, a DBAS
can be used together with any DBMS to constitute an ODB. The focus of this
work is to construct an efficient and secure DBAS.

Adversarial Model. We assume that the remote server is not fully trusted:
he can either act maliciously, or subverted by attackers to do so, or may suffer
failures. He may cheat by attacking the integrity of the data (modifying the
records) and giving fake responses to the client’s queries (executing the query
processing algorithm incorrectly, or modifying the query results), or by perform-
ing unauthorized modifications on the data, while trying to be undetected.

4.1 Generic ODB Construction

A generic way to construct an ODB is to employ a regular DBMS, together with
a DBAS based on an ADS. The HADS can be used to construct the DBAS,
solving the problem of duplicate values. If the query has a clause on a non-
PK column, say coli, containing duplicate values, the result set of the query
includes all records with the specified value(s) in coli. The way we can identify
these records and compare them with the result set of the other clauses is to
relate each record to its corresponding (unique) PK. For each distinct value in
a non-PK column, we define a PK set as:

Definition 1. PK Set. For each value vi in a non-PK column, the set of all PK
values corresponding to vi in all records of a table T is called the
PK set of vi, and represented as PK(vi), i.e., PK(vi) = {kj ∈ PK(T) :
∃ record R ∈ T s.t. kj ∈ R ∧ vi ∈ R}.

Note that the PK set includes only the PK values, not the whole records. Any
membership scheme can be used for assigning the PK set to a non-PK value,
regarding the client and server processing power, and communication require-
ments of the application under construction. The only difference is the type of
corresponding proof that is generated by the server and verified by the client.
This brings the flexibility to support multiple membership schemes, and select

388 M. Etemad and A. Küpçü

one based on the state of the system at that time. We will discuss applicable
membership schemes in detail, and compare their efficiency in Appendix B.

We use a two-level HADS for implementing an OBD scheme. To store a non-
PK column, the distinct values are located in the first level (i.e., each duplicate
value will be stored once), and the PK set of each value is located in the second
level. The (membership) proof for this scheme consists of two parts: one for
proving the existence (or non-existence) of the value in the non-PK column, and
one for proving the association of the corresponding PK set with that value.

In our scheme, the client constructs a separate HADS for each searchable
column. A one-level HADS (a regular ADS) will be used to store the PK column,
similar to the ones presented in the previous work [16,24]. An example ADS for
storing a PK column using an authenticated skip list is presented in Fig. 1a. For
non-PK columns, a two-level HADS will be used. A sample HADS for storing
the column major is illustrated in Fig. 2a. It uses an authenticated skip list at
the first level, and a Merkle hash tree at the second level. Each modification
on the column leads to an update in both ADSs in the hierarchy.

The client stores security information of each searchable column of each table
in a separate HADS, keeps the digests of these HADSs locally as metadata. Later,
she checks the authenticity of server’s answers against these digests. These values
also guarantee the freshness of the answer. If there are s searchable columns in
the database, this method requires the client to store s digests. As an alternative
design, the client can put the digests of each searchable column in another ADS
(the table ADS), and on top of them make another ADS consisting of ADSs for
each table in the database (the database ADS). Then, she needs storing only
the digest of this new (four-level) HADS as metadata. One may further extend
this idea to multiple databases a user owns, and then multiple users in a group,
and so forth. By increasing the number of levels of the HADS, it is possible to
always make sure the client stores a single digest. This presents a nice trade-off
between the client storage and the proof-verification performance. For the sake
of simple presentation, we will employ two-level HADS constructions.

Using the authenticated range query for proof generation ensures complete-
ness. To provide correctness, we store along with each record, the hash of that
record, h(record). In flat ADSs like the accumulator, the hash values are tied
to the elements, while in tree-structured ADSs the hash values are stored at
leaves. (The computation of the values of the intermediate nodes, if there exists
any, depends on the underlying structure of the ADS in use.) For a PK col-
umn, we store h(record), and for non-PK searchable column, we store h(h(vi)|
h(record)|h(digest of the corresponding PK set)), where vi values are the dis-
tinct values of that column. Storing these hashes together with the elements,
binds each PK set to the corresponding value in the column, and to the record.

Upon receipt of a result set (and proof), the client verifies it using the infor-
mation provided in the proof and hashes of received records. If all records are
used and the computed digests are equal to the stored ones, then the client
accepts the answer.

Database Outsourcing with Hierarchical Authenticated Data Structures 389

Therefore, our construction provides the three properties required for a secure
ODB scheme: freshness (by storing digests of the HADSs locally as metadata),
correctness, and completeness (guaranteed by the HADSs, as discussed). We
prove this formally in Appendix A.

Proof Generation. This section provides details on how the DBAS generates
proofs. We consider different cases where the query has only one clause, or mul-
tiple clauses. For each case we discuss how the proof is generated, and what is
included in the proof.

One-dimensional queries: contain one clause. There are two possible cases:

– The clause is on the PK column: For example, the query is SELECT *
FROM Student WHERE stdID > 105. This case presents a simple range query.
The server asks the PK HADS of the Student table to compute and return
his proof, and sends it back to the client. The proof includes the before and
after records, and all intermediate nodes’ values required for reconstructing
the proof sub-list by the client. (Note that we need to employ an ADS which
supports efficient range query.) Figure 1b depicts an example, using authenti-
cated skip list as the underlying ADS, where the result set is (106, 107, 108),
and the boundary records are 105 and +∞.

– The clause is on a non-PK column: A sample query is SELECT * FROM
Student WHERE major = ‘CE’. The server finds the PK set of the value ‘CE’
using the HADS storing the major column, and adds it to the verification
object followed by the proof of membership of the ‘CE’ itself (in the first level
ADS of the major column). The client verifies the HADS using the values in
the verification object and the answer (the query result set).

Multi-clause queries. For each clause, the server asks the corresponding HADS
to give its proof, collects them into the verification object vo, and sends the
resulting vo to the client. Upon receipt, the client verifies all proofs one-by-one,
and accepts if all are verified. If the clauses were connected by ‘OR’, then each
proof verifies a subset of the received records, and the answer should be the
union of all these verified records. For ‘AND’ connectors, each proof verifies a
superset of records in the result set. To prevent leakage of records not in the
result set, the server sends their hashes to enable the client to verify the proofs.
Possible scenarios for the two-clause case are:

– One clause on the PK, the other on a non-PK column: For exam-
ple, the query is SELECT * FROM Student WHERE StdID > 105 AND major
= ‘CE’. Since the order in which the clauses are applied is not important for
the proof, we can consider the non-PK clause first, then apply the PK clause
on the results of the first step. Therefore, the server first applies the non-PK
clause on the first level ADS of the non-PK column’s HADS. Then, he applies
the PK clause on second level ADSs of the results of the first step. Finally, he
adds them both to the vo, and sends it to the client.

– Both clauses on non-PK columns: A sample query is SELECT * FROM
Student WHERE BCity = ‘Istanbul’ AND major = ‘CE’. In this case, the

390 M. Etemad and A. Küpçü

server generates two proofs (one for each clause), each containing the first level
ADS proof for the value itself and the corresponding PK set, puts them into
the vo, and sends the resulting vo to the client. If the clauses were connected
by ‘AND’, he also puts the hash of missing records into the vo. Missing records
in this context are the ones that contain either BCity = ‘Istanbul’ or major
= ‘CE’ but not both. Note that, we only add hashes of the missing records
to the vo, but the answer sent by the DBMS does not contain those records
and is thus optimal.

Queries with more than two clauses can be handled using a similar logic,
depending on whether one of the columns is a PK column or none of them are.
Note that in all our proofs, we do not require any additional records to be sent
to the client on top of the result set of the original query.

An Illustrative Example. To better understand our construction, we provide
a simple example. Assume the we use a four-level HADS using the authenticated
skip lists to store a database. The first level ADS is the database ADS that stores
the table names. Each leaf node of this ADS is connected to a table ADS at
the second level. A table ADS stores the names of a table’s searchable columns.
Each leaf of a table ADS is connected to a column ADS at the third level storing
distinct values of that column. Each leaf of the column ADS is linked to a PK
ADS at fourth level, storing the PK set. This is illustrated in Fig. 2b.

The SQL query SELECT * FROM Student WHERE major in (‘CE’, ‘CS’)
and BCity = ‘Istanbul’ is converted into: (Student, {(major, {CE, CS}),
(BCity, {Istanbul})}), by the DBAS. With the help of the Find algorithm of
the HADS that decomposes key-value pairs into the proper parts, the HCertify
algorithm works as follows: First, it looks for the leaf node at the database ADS
storing the Student table. That node contains a link to the table ADS storing
list of its columns. The algorithm, then, investigates this Student table ADS
with the input {(major, {CE, CS}), (BCity, {Istanbul})}. Now, it should
find the leaf nodes storing the values major and BCity. Using the column ADSs
for the major and BCity columns (one by one), it goes forward to search for
values CE and CS in the ADS of major, and Istanbul in the ADS of BCity.
Finally, each column ADS asks all his found PK ADSs (the last level ADSs
storing the PK set) to give their proofs. In our example, the major column ADS
asks to retrieve the PK sets of CE and CS, and the BCity column ADS asks
to retrieve the PK set of Istanbul. The column ADSs then compute their own
membership proofs, concatenate them with the PK sets, and return the result to
the table (upper level) ADS who performs the same recursive operations. This is
repeated until the top level ADS (the database ADS) is reached, resulting in the
full proof to be sent to the client. Verification works similarly, in a bottom-up
manner, by verifying the PK set proofs first, followed by the column ADS proofs,
then table ADS proof, and finally the database ADS proof. If all proofs verify
employing all records in the answer, the client accepts the answer as authentic.

Efficient ODB Construction. In Appendix B, we compare the existing
ADSs and investigate their eligibility to be used in each level for a two-level

Database Outsourcing with Hierarchical Authenticated Data Structures 391

construction. It shows that using an authenticated skip list in both levels is the
efficient choice. Other alternatives can be chosen regarding the requirements of
applications, such as the database being static or dynamic.

5 Performance Analysis

Setup. To evaluate our proposed ODB scheme, we implemented a prototype
with the efficient HADS construction which uses a two-level HADS with authen-
ticated skip list at both levels. All experiments were performed on a 2.5 GHz
machine with 4 cores (but running on a single core), with 4 GB RAM and Ubuntu
11.10 operating system. The performance numbers are averages of 50 runs.

We use a database containing three tables: Student and Course tables, each
with 105 randomly-generated records, and S2C table storing the courses taken
by students, with 106 randomly-generated records. There are two scenarios: each
registered student has taken 10 courses in the first scenario, and 100 courses in
the second scenario, on average. (Not all students are taking courses since we
have 106 S2C records in total.) Each distinct StdId is used as a foreign key in S2C
10 times in the first scenario, and 100 times in the second scenario, on average.

We observe the system behavior (proof generation time and proof size) in
multiple cases. Since in our scheme proofs are generated using only hashes of
values of the column(s) forming the clause (not the whole records), the proof
size is independent of the record size. Our scheme enhances the efficiency
by reducing the computation and proof size, confirmed by experimental results.

One-clause queries. There is only one clause that is on the PK column, or a
non-PK column. Since the number of distinct values in the non-PK column is
less than that of the PK column, the first level ADS of the non-PK column is
smaller than the ADS of the PK column. (We do not count the second level ADSs
in the one-clause case, since they are included in whole, without any computation
to find and select some). The proof generation time and proof size for a non-PK
clause is thus smaller compared to the PK clause, as depicted in Fig. 4a and b.
The figures show that the required time and proof size increase very slightly with
the result size, for both PK and non-PK columns, if range queries are used.

Two-clause queries. We treat the case with one PK and one non-PK clauses
separately from the case with two non-PK clauses. In the first case, we can
apply both clauses on the HADS of the non-PK column, by applying the non-
PK clause on the first level ADS and the PK clause on the second level ADSs.
This is equivalent to applying the non-PK clause first, then applying the PK
clause on the results of the first step.

In the second case where both clauses are on non-PK columns, all values of
the second level ADSs are included in the result (without further computation),
therefore, the dominant factors are the proof generation time and proof size
of the first level ADSs. We apply each non-PK clauses on its own HADS and
generate two proofs to put in the verification object. Figure 5a and b show the
proof generation time and proof size for both cases.

392 M. Etemad and A. Küpçü

(a) Proof size. (b) Proof generation time.

Fig. 4. Proof generation time and proof size for queries with one clause.

Comparison to previous work. Several solutions [10,14,17,18] proposed to
make the duplicate values unique, so they can be stored in a regular ADS.
Following these solutions, the ADSs of non-PK columns will have the same size,
and hence, very close operation costs, as the PK column, since they store the
same number of records. Comparing the costs in Fig. 4a and b, confirms the
advantages of the HADS. For one-clause queries, the proof size is reduced about
10 %, even with range queries, and the proof generation time is dropped about
50 % when HADS is used. Comparing two-clause queries in Fig. 5a and b for the
case with one PK and one non-PK clauses, we observe about 25 % reduction in
proof size and 40 % decrease in proof generation time, and for the case with two
non-PK clauses, we observe about 40 % reduction in proof size and 65 % decrease
in proof generation time, when HADS is used.

Multi-clause queries. There are more than two clauses in this case, and the
two-clause case is a special case of this one. Again, we can separate this case
into two cases depending on whether one of the clauses is on the PK column or
none of them are. The server asks each HADS sequentially to give its first-level
proof. The total proof generation time and proof size of the server is summation
of the corresponding values taken by all HADSs.

Communication overhead. Another important factor is the overhead of our
scheme on the communication, i.e., how much does the proof increase the traffic.
As the proof size is independent from the record size, for tables with small
record size (<1/2KB) the overhead is close to the query result size. But, for
tables with reasonable record size (≥1/2KB), the proof size falls down (about
1–20 %) compared to the result size, and gets smaller as the record size increases.

Boolean combination of clauses. Our ODB construction can provably han-
dle selection queries with one or multiple clauses connected by ‘OR’ or ‘AND’
connectors. Besides, with reduced use of boundary records, we can easily support
clauses formed using the SQL ‘IN’ operator. This allows us to present proofs for
a wide range of database queries.

Database Outsourcing with Hierarchical Authenticated Data Structures 393

(a) Proof size. (b) Proof generation time.

Fig. 5. Proof generation time and proof size for queries with two clauses.

Acknowledgements. The authors would like to acknowledge the support of
TÜBİTAK, the Scientific and Technological Research Council of Turkey, under project
numbers 111E019 and 112E115, as well as European Union COST Action IC1206. We
also thank Ertem Esiner, Adilet Kachkeev, and Ozan Okumuşoǵlu for their contribu-
tions during performance evaluation.

A ADS Definitions and Security Analysis

Definition 2. ADS scheme consists of three polynomial-time algorithms [20]:

KeyGen(1k) → (sk,pk): is a probabilistic algorithm executed by the client to
generate a private and public key pair (sk, pk) given the security parameter
k. The client then shares the public key pk with the server.

Certify(pk, cmd) → (ans, π): is run by the server to respond to a command
issued by the client. The public key pk and the command cmd is given as
input. If cmd is a query command, it outputs a verification proof π that
enables the client to verify the validity of the answer ans. If cmd is a modi-
fication command (insertion, update, or deletion), then the ans is null, and
π is a consistency proof enabling the client to update her local metadata.

Verify(sk,pk, cmd,ans, π, st) → ({accept, reject}, st′): is run by the client
upon receipt of a response to verify it. The public and private keys (pk, sk),
the answer ans, the proof π, and the client’s current metadata st are given as
input. It outputs an accept or reject based on the result of the verification.
Moreover, if the command was a modification command and the proof is
accepted, then the client updates her metadata accordingly (to st′).

Definition 3. ADS correctness: For all valid proofs π and answers ans
returned by the server in response to a command issued by the client, the verify
algorithm accepts with overwhelming probability.

Definition 4. The ADS security game: Played between the challenger who
acts as the client and the adversary who plays the role of the server.

394 M. Etemad and A. Küpçü

Key generation: The challenger runs KeyGen(1k) to generate the private and
public key pair (sk, pk), and sends the public key pk to the adversary.

Setup: The adversary specifies a command cmd, and sends it together with an
answer ans and proof π to the challenger. The challenger runs the algorithm
Verify, and notifies the adversary about the result. If the command was a
modification command, and the proof is accepted, then the challenger applies
the changes on her local metadata accordingly. The adversary can repeat this
interaction polynomially-many times. Call the latest version of the HADS,
constructed using all the commands whose proofs verified, D.

Challenge: The adversary specifies a command cmd, an answer ans′, and a
proof π′, and sends them all to the challenger. The adversary wins if the
answer ans′ is different from the result set of running cmd on D, and
cmd, ans′, π′ are verified as accepted by the challenger.

Definition 5. Security of ADS: We say that the ADS is secure if no PPT
adversary can win the ADS security game with non-negligible probability.

Definition 6. An outsourced database scheme (ODB) consists of three
probabilistic polynomial-time algorithms (OKeyGen, OCertify, OVerify) where:

OKeyGen(1k) → (sk,pk): is a probabilistic algorithm run by the client to
generate a pair of secret and public keys (sk, pk) given the security parameter
k. She keeps both keys, and shares only the public key with the server.

OCertify(pk, cmd) → (ans, π): is run by the server to respond to a command
cmd issued by the client. It produces an answer ans and a proof π proving the
authenticity of the answer. If the command is a modification command, the
answer is empty, and the proof proves that the modification is done properly.

OVerify(pk, sk, cmd,ans, π, st) → ({accept, reject}, st′): is run by the client
upon receipt of the answer ans and proof π, to be verified using the public and
private key pair. It outputs an ‘accept’ or ‘reject’ notification. If the command
was a modification command and the verification result is ‘accept’, then, the
client updates her local metadata (to st′), according to the proof.

Definition 7. ODB security game: This game is similar to the ADS game
(Definition 4), except that proper algorithm names (from ODB scheme) is used.

Definition 8. ODB Security: We say that an ODB scheme is secure if no
PPT adversary can win the ODB security game with non-negligible probability.

Since the algorithm OCertify is used to execute both query and modifica-
tion commands, the server utilizes it to generate and update the authentication
information. It starts with an empty structure, and updates it according to the
received modification commands (e.g., the SQL ‘Insert’ command).

Note that the ODB security game covers all previously separate guarantees:
correctness, completeness, and freshness. This is simply due to the fact that the
game requires that no adversary can return a query answer together with a valid
proof such that the returned answer is different from the answer that would have
been produced by the actual database. If any one of the freshness, completeness,

Database Outsourcing with Hierarchical Authenticated Data Structures 395

or correctness guarantees were to be invaded, the adversary would have won
the game. Looking ahead, in our proofs, the challenger keeps a local copy of the
database, and can detect whether or not the adversary succeeded. If he succeeds,
our reduction shows that we break some underlying security assumption.

Theorem 1. The ADS scheme is secure according to Definition 5.

Proof. It is proved for different schemes separately by different researchers.
Papamanthou et al. [21] proved the security of the authenticated hash tables,
Goodrich et al. [7] proved the security of the RSA one-way accumulator [1] based
ADS, and Papamanthou and Tamassia [20] proved the security of the ADSs con-
structed using authenticated skip list or red black tree.

Theorem 2. Our HADS construction is secure according to Definition 5
(employing HADS algorithm names) if the underlying ADSs are secure.

Proof. We reduce security of the HADS scheme to the security of the underlying
ADSs. If a PPT adversary A wins the HADS security game with non-negligible
probability, we can use it to construct a PPT algorithm B who breaks the security
of at least one of the ADS schemes used, with non-negligible probability. B
acts as the server in the ADS game played with the ADS challenger C, and
simultaneously, B plays the role of the challenger in the HADS game with the
adversary A. He receives the public key of an ADS from C, and himself produces
n − 1 pairs of ADS public and private keys. Then, he puts the received key in
ith position, and puts the n public keys as a public key of an n-level HADS, and
sends it to A. During the setup phase, B builds a local copy of the HADS for
herself. Note that this is invisible to the adversary A, and thus will not affect
his behavior. After the setup phase, A selects a command, generates the answer
and proof for the command, and sends them to B. For the adversary to win, the
answer must be different from the real answer in at least one location, with its
verifying sub-proof πij . B can find it since she maintains a local copy. When B
receives them, she selects the related command, answer and proof parts for the
ith position, and forwards them to C. If the guess of i was correct, then B would
succeed. If A passes the verification with non-negligible probability p, then B
passes the ADS verification with probability greater than or equal to p/n.

Since we employ secure ADSs, p/n must be negligible, which implies that p is
negligible, and hence, A has negligible probability of winning the HADS game.
Therefore, if the underlying ADSs are secure, then the HADS scheme is secure.

Theorem 3. Our ODB scheme is secure according to Definition 8, provided
that the underlying HADS scheme is secure.

Proof. We reduce security of the ODB scheme to the security of underlying
HADSs. If a PPT adversary A wins the ODB security game with non-negligible
probability, we can use it to construct a PPT algorithm B who breaks the security
of HADS scheme with non-negligible probability. B acts as the server in the
HADS game played with the HADS challenger C, and simultaneously, B plays
the role of the challenger in the ODB game with the adversary A. He receives the

396 M. Etemad and A. Küpçü

public key of an HADS from C, and relays it to A (note that all HADSs built for
each searchable column will use the same key). During the setup phase, B builds
a local database for herself (which does not change the adversary’s view). After
the setup phase, A selects a query, generates the answer and proof for the query,
and sends them to B. For the adversary to win, the adversary’s answer must
be different from the real answer on at least one location, but with a verifying
proof. On receipt, B selects the related command, answer and proof parts for
the answer that differs from the real answer (she can find it since she maintains
a local copy), and forwards them to C. If A passes the ODB verification with
non-negligible probability p, then B can also pass the HADS verification (i.e.,
break HADS security) with non-negligible probability p.

Since we employ a secure HADS, p must be negligible, which implies that
the adversary has negligible probability of breaking ODB. Therefore, our ODB
scheme is secure (and provides correctness, completeness, and freshness), if the
underlying HADS is secure.

B Efficient ODB Construction

For each level in an HADS, an ADS can be chosen subject to the requirements of
that level and the application. Our construction is a two-level HADS, each level
having a special role and posing special considerations. We compare the existing
ADSs and investigate their eligibility to be used in each level. We consider three
classes of ADSs: logarithmic (e.g., authenticated skip list [5,6]), sublinear (e.g.,
authenticated hash tables [21]), and linear (e.g., one-way accumulator [1]).

First level: This level stores the distinct values of a column, and generates
the first part of the proof to be sent to the client. Proof generation is based on
the authenticated range queries, which implies that this level should use an ADS
who preserves the order of values it stores. One-way accumulator and hash tables
does not support this property efficiently, and cannot be used for this level.

Therefore, we choose the authenticated skip list (alternatively, the Merkle
hash tree) to be used in the first level. It requires O(log(|Ci|)) and O(log(|Ci|)+
|t|) time/size for the update and query proofs, respectively. There are |Ci| distinct
values, on average, in the first level ADS (stored at leaves), therefore, the storage
complexity is 2|Ci|, which is O(|Ci|).
Second level: This level stores the PK set of values in the first level, where
the order of PKs is not a matter of importance (although it can be useful for
comparing the PK sets of multiple clauses connected with AND). Thus, any
ADS can be used with time/space trade-offs discussed below.

Accumulator: For each distinct value in the first level ADS, an accumulated
value is computed using all values in its PK set, and is stored together with
the value itself. For each PK value, a witness is computed which proves that it
belongs to the specified PK set. If we need to select all PK values, it suffices to
have only the accumulated value (not the witnesses) to check the integrity. But,
if want to select a subset of the PK values, then their witnesses are also required.

Database Outsourcing with Hierarchical Authenticated Data Structures 397

For each distinct value in the first level ADS, N/|Ci| PK values and witnesses
should be computed and stored, on average, where N is the total number of
records in the table. In total, 2|Ci|+ |Ci| ∗N/|Ci| = 2|Ci|+N (which is O(|Ci|+
N)) storage is required (including the 2|Ci| space for the first level ADS).

A proof for each value is made up of two parts, one for the first level ADS
(e.g., for authenticated skip list, a path from the leaf up to the root, which is
O(log |Ci|)), and the other is the accumulated value along with all the values
in the PK set, which is N/|Ci| (the accumulated value is already included in
the hash value stored at the corresponding leaf of the first level ADS). The
client herself can check the validity of the PK set against the accumulated value.
Therefore, for a result set of size t, the asymptotic size of the verification object
will be (O(log |Ci|) + (t|Ci|/N)(1 + N/|Ci|))
 O(log |Ci| + t).

The main problem with the accumulator is the cost of update: with each
update, all witnesses should be updated, which is expensive.

Authenticated hash table: This is a sublinear membership scheme with con-
stant query and verification time, making it an interesting scheme for clients
with resource-constrained devices. It is a good choice if the data is static. For a
leaf node storing vi, we put the PK set of vi in an authenticated hash table, and
store its root at the leaf node itself.

On average, N/|Ci| PK values linked to each leaf node, therefore, we require
O(|Ci|+(1+ε)N/|Ci|∗|Ci|) = O(|Ci|+(1+ε)N)) ≈ O(|Ci|+N) storage in total
(including the O(|Ci|) space for the first level). Here 0 < ε < 1 is a constant.

The first level ADS proof is the same, but the authenticated hash table
requires only constant proof size ε [20], reaching (O(log |Ci|)+1)) for one record,
and (O(log |Ci|) + t) for t records in the result set. Moreover, hash operations
are much faster than accumulator operations using modular exponentiation.

Authenticated Skip list: This is a membership scheme with logarithmic height
and proof size. The way the second-level membership schemes are modified, or
the proofs are generated, are the same as for the first-level ADS.

Table 1. A comparison of membership schemes for the second level where the first
level is a logarithmic ADS. Proof size and verification time is given for one-dimensional
queries. The s, t, t1, and t2 denote the number of searchable columns in a table, size of
the result set, and number of records in the first and second level ADSs, respectively.

Accumulator Authenticated hash table
Storage 2N + (s − 1)(2|Ci| + 2N) 2N + (s − 1)(2|Ci| + N)
Proof size 2 log |Ci| + t + t ∗ N/|Ci| 2 log |Ci| + t + t ∗ N/|Ci|
Verification t(log |Ci| + N/|Ci| + 1) t(log |Ci| + N/|Ci|)
Update (logN + (s − 1)(log |Ci| + N/|Ci|) (logN + (s − 1)(log |Ci| + N/|Ci|)

Authenticated skip list
Storage 2N + (s − 1)(2|Ci| + 2N)
Proof size 2 log |Ci| + t1 + t1(2 log |N/Ci| + t2)
Verification t1(log |Ci| + t2(logN/|Ci|))
Update (logN + (s − 1)(log |Ci| + logN/|Ci|) ≈ s logN

398 M. Etemad and A. Küpçü

Each node requires ≈ 2(N/|Ci|) storage to store the PK set, therefore, 2|Ci|+
2|Ci| ∗N/|Ci| = 2(|Ci|+N) = O(|Ci|+N) storage is required to store a column
(including the 2|Ci| space for the first level ADS). The proof size and time for
one value are both O(log |Ci| + log(N/|Ci|)) = O(log N), and for t values are
O(log |Ci| + t log(N/|Ci|)) and O(log |Ci| + t), respectively.

A comparison of these schemes is given in Table 1, where the first level is a
logarithmic ADS and the second levels are shown in the table. The s, t, t1, and
t2 denote the number of searchable columns in a table, size of the result set, and
number of records in the first and second level ADSs, respectively. Note however
that unit operations in the accumulator are more costly than those in the others.

References

1. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

2. Celko, J.: Joe Celko’s Trees and Hierarchies in SQL for Smarties. Morgan
Kaufmann, Washington (2004)

3. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.: Authentic third-party data
publication. In: Thuraisingham, B., van de Riet, R., Dittrich, K.R., Tari, Z. (eds.)
Data and Application Security. IFIP, vol. 73, pp. 101–112. Springer, Heidelberg
(2001)

4. Di Battista, G., Palazzi, B.: Authenticated relational tables and authenticated skip
lists. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS,
vol. 4602, pp. 31–46. Springer, Heidelberg (2007)

5. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: CCS’09, pp. 213–222. ACM (2009)

6. Goodrich, M., Tamassia, R.: Efficient authenticated dictionaries with skip lists and
commutative hashing. US Patent App, 10(416,015) (2000)

7. Goodrich, M.T., Tamassia, R., Hasić, J.: An efficient dynamic and distributed
cryptographic accumulator. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 372–388. Springer, Heidelberg (2002)

8. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-efficient verification of
dynamic outsourced databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol.
4964, pp. 407–424. Springer, Heidelberg (2008)

9. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: ACM SIGMOD, pp. 121–132 (2006)

10. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index structures
for aggregation queries. TISSEC 13(4), 32 (2010)

11. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.: A
general model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)

12. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

13. Mykletun, E., Narasimha, M., Tsudik, G.: Providing authentication and integrity
in outsourced databases using merkle hash trees. UCI-SCONCE Technical report
(2003)

14. Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signa-
ture aggregation and chaining. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.)
DASFAA 2006. LNCS, vol. 3882, pp. 420–436. Springer, Heidelberg (2006)

Database Outsourcing with Hierarchical Authenticated Data Structures 399

15. Nuckolls, G.: Verified query results from hybrid authentication trees. In: Jajodia,
S., Wijesekera, D. (eds.) Data and Applications Security 2005. LNCS, vol. 3654,
pp. 84–98. Springer, Heidelberg (2005)

16. Palazzi, B.: Outsourced Storage Services: Authentication and Security Visualiza-
tion. Ph.D. thesis, Roma Tre University (2009)

17. Palazzi, B., Pizzonia, M., Pucacco, S.: Query racing: fast completeness certification
of query results. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security
and Privacy XXIV. LNCS, vol. 6166, pp. 177–192. Springer, Heidelberg (2010)

18. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: ACM SIGMOD, pp. 407–418 (2005)

19. Pang, H., Tan, K.: Authenticating query results in edge computing. In: Interna-
tional Conference on Data Engineering, pp. 560–571. IEEE (2004)

20. Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party
authenticated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.
LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg (2007)

21. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
CCS’08, pp. 437–448. ACM (2008)

22. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

23. Tamassia, R., Triandopoulos, N.: On the cost of authenticated data structures.
Technical report, Center for Geometric Computing, Brown University (2003)

24. Wang, J., Du, X.: Skip list based authenticated data structure in das paradigm.
In: GCC’09, pp. 69–75. IEEE (2009)

25. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing
in outsourced databases. In: ACM SIGMOD, pp. 5–18. ACM (2009)

Information-Theoretically Secure Entity
Authentication in the Multi-user Setting

Shogo Hajime, Yohei Watanabe(B), and Junji Shikata

Graduate School of Environment and Information Sciences,
Yokohama National University, Yokohama, Japan
{hajime-shogo-vm,watanabe-yohei-xs}@ynu.jp,

shikata@ynu.ac.jp

Abstract. In this paper, we study unilateral entity authentication
protocols and mutual entity authentication protocols with information-
theoretic security in the multi-user setting. To the best of our knowledge,
only one paper by Kurosawa studied an entity authentication protocol
with information-theoretic security, and an unilateral entity authentica-
tion protocol in the two-user setting was considered in his paper. In this
paper, we extend the two-user unilateral entity authentication protocol
to the multi-user one. In addition, we formally study an information-
theoretically secure mutual entity authentication protocol in the multi-
user setting for the first time. Specifically, we formalize a model and
security definition, and derive tight lower bounds on size of users’ secret-
keys, and we show an optimal direct construction.

1 Introduction

1.1 Background

The security of current major cryptographic protocols is based on the assump-
tion of difficulty of computationally hard problems such as the integer factoring
problem or the discrete logarithm problem. In this case, it is assumed that an
adversary has polynomial-time computational powers. This kind of security is
often called computational security. On the other hand, information-theoretic
security (a.k.a. unconditional security) is based on information theory or proba-
bility theory, and it is assumed that an adversary has unlimited computational
powers in this kind of security. From a viewpoint of the recent development of
algorithms and computer technologies, cryptographic protocols with computa-
tional security might not maintain sufficient long-term security, since some com-
putationally hard problems are getting more feasible (e.g., recently, the world
record of integer factoring is periodically updated) and some new computational
mechanism more powerful than the current one may appear (e.g., quantum com-
puters). Therefore, it is interesting and important to further develop the study
of cryptographic protocols with information-theoretic security.

The entity authentication schemes are fundamental protocols to confirm the
identity of a communication partner, and can be classified into two types: uni-
lateral entity authentication schemes and mutual entity authentication schemes.
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 400–417, 2014.
DOI: 10.1007/978-3-319-12160-4 24

Information-Theoretically Secure Entity Authentication 401

In unilateral entity authentication schemes, a user (called a prover) can prove
himself to another user (called a verifier). In mutual entity authentication
schemes, the purpose of two users having communication is to prove and verify
the identities of themselves each other, and the user who starts the protocol
is called an initiator and the other one is called a responder. Therefore, we
consider the roles of the prover and the verifier in unilateral entity authentica-
tion protocols, and the roles of the initiator and the responder in mutual entity
authentication protocols.

In this paper, we study both unilateral and mutual entity authentication
protocols with information-theoretic security. In cryptographic protocols with
information-theoretic security, it is usual that each entity of the protocols needs
to have some secret key (i.e., secret information). Therefore, for each of unilateral
and mutual entity authentication protocols, we consider two types of protocols
depending on that the roles are determined or not before secret keys are distrib-
uted to users: we call the entity authentication protocols role-invariable, if the
roles are determined in advance before secret keys are distributed to users; we
call the entity authentication protocols role-variable, if the roles can be flexibly
determined even after secret keys are distributed to users. In this paper, we study
role-variable entity authentication protocols: in the unilateral entity authentica-
tion protocols, any user can become a prover and a verifier after secret keys
are distributed; and in the mutual entity authentication protocols, any user can
become an initiator and a responder after secret keys are distributed.

Up to date, there have been many research papers about entity authentica-
tion (or identification) protocols with computational security, where there are
three kinds of setting: the zero-knowledge setting, the public-key setting, and
the symmetric-key setting. In the first line of research (i.e., the zero-knowledge
setting), by using the mechanism of zero-knowledge interactive proof systems,
several zero-knowledge-based identification schemes are provided. In particular,
Fiat and Shamir [5] provided an identification scheme whose security is based
on the difficulty of solving the integer factoring problem (other such protocols
include Feige-Fiat-Shamir identification protocol [4], Schnorr identification pro-
tocol [10], and GQ identification protocol [6]). In the second line of research
(i.e., the public-key setting), to realize entity authentication protocols, public-
key encryption and/or digital signatures are used as building blocks (e.g., see
[3]). In the third line of research (i.e., the symmetric-key setting), symmetric-key
encryption and/or MAC are used as primitives for constructing entity authenti-
cation protocols. In particular, Bird et al. [2] introduced parallel session attacks
and interleaving attacks, and provided the mutual entity authentication protocol
which was secure against these attacks. After that, Bellare et al. [1] gave the first
formal definition of entity authentication, and provided the first provably secure
mutual entity authentication protocol.

To the best of our knowledge, until now, only the paper [7] studies an entity
authentication protocol with information-theoretic security, and in [7] an uni-
lateral entity authentication protocol in the two-user setting was considered. In
this paper, we extend the two-user unilateral entity authentication protocol to

402 S. Hajime et al.

the multi-user one. In addition, we formally study a mutual entity authentica-
tion protocol in the multi-user setting for the first time, since merely combining
unilateral entity authentication protocols twice does not always imply a mutual
one, as demonstrated in [2].

1.2 Our Contribution

In the real-world, authentication protocols including entity authentication are
actually used by many users through the Internet. Therefore, it is desirable to
realize entity authentication protocols in the multi-user setting. Hence, in this
paper we first propose two kinds of authentication protocols in the multi-user
setting: unilateral and mutual authentication protocols. In the multi-user setting,
we newly need to consider the insider security (i.e., security against an adversary
who corrupts several users). Therefore, it should be noted that, technically, our
entity authentication protocols in the multi-user setting are not merely the trivial
combination of protocols in the two-user setting. Specifically, our contribution
is as follows.

– We propose an information-theoretically secure, role-variable, unilateral entity
authentication (UEA for short) protocol in the multi-user setting. Specifically,
we define a model and formalize security of UEA. We also derive tight lower
bounds on size of user’s secret-keys and responses required for UEA, and we
propose an optimal direct construction of UEA. In addition, we show that our
protocol is regarded as an extension of Kurosawa’s one [7].

– We propose an information-theoretically secure, role-variable, mutual entity
authentication (MEA for short) protocol in the multi-user setting for the first
time. Specifically, we define a model and formalize security of MEA. We also
derive tight lower bounds on size of user’s secret-keys and responses required
for MEA, and propose an optimal direct construction of MEA.

Throughout this paper, we use the following notations. For any finite set Z,
let P(Z) := {Z ⊂ Z} be the family of all subsets of Z (i.e. P(Z) = 2Z). Also, for
any finite set Z and any non-negative integer z, let P(Z, z) := {Z ⊂ Z | |Z| ≤ z}
be the family of all subsets of Z whose cardinality is less than or equal to z. And,
in order to formally define security, we use the notion of matching conversations
in [1].

2 UEA: Unilateral Entity Authentication

2.1 The Model

We show a model of unilateral entity authentication (UEA for short) protocols.
For simplicity, we assume that there is a trusted authority (or a trusted initial-
izer) TA whose role is to generate and to distribute secret-keys of entities. We
call this model the trusted initializer model as in [8]. In UEA, there are n + 1
entities, n users U1, U2, . . . , Un and a trusted authority TA, where n is a positive

Information-Theoretically Secure Entity Authentication 403

integer with n ≥ 2. In this paper, we assume that the identity of each user Ui is
also denoted by Ui. In our model, any user Ui can prove “I am Ui” to any user
Uj so that Uj is convinced of it by interactive communications with Ui. And, in
this scenario, we call the role of Ui a prover and the role of Uj a verifier.

Informally, UEA is executed as follows. First, TA generates secret-keys of all
users and sends them their corresponding keys individually via secure channels.
Then, TA deletes them from his own storage. Any user can be either a prover
or a verifier. Suppose that Ui is a prover and Uj is a verifier. Our model of UEA
requires only two-move communications, namely a verifier Uj sends a transcript,
called a challenge, to Ui in the first transmission, and Ui next replies a transcript,
called a response, to Uj in the second transmission. Finally, the verifier Uj verifies
whether Ui is a supposed user or not by using information which Uj has.

Formally, we give a definition of UEA as follows.

Definition 1 (UEA). A unilateral entity authentication (UEA) protocol Π in
the multi-user setting involves n + 1 entities, TA, U1, U2, . . . , Un and consists of
a four-tuple of algorithms (Gen, Chal, Res, Vrfy) with three finite spaces, K, X
and Y, where Res and Vrfy are deterministic. In addition, Π is executed with
four phases as follows.

- Notation
- Entities: TA is a trusted authority, Ui (1 ≤ i ≤ n) is a user. Let U =

{U1, U2, . . . , Un} be a set of all users.
- Spaces: Ki is a finite set of possible Ui’s secret-keys. For simplicity, we
assume K := Ki for every i. X is a finite set of possible challenges. Y is
a finite set of possible responses.

- Algorithms: Gen is a key generation algorithm which takes a security
parameter 1λ as input and outputs users’ secret-keys. Chal is a chal-
lenge generation algorithm: it takes two identities as input and outputs
a random challenge. Res is a response generation algorithm: it takes a
prover’s secret-key, a challenge and the verifier’s identity as input, and
then outputs a response. Vrfy is a verification algorithm: it takes as input
a verifier’s secret-key, challenges and a response, and the prover’s iden-
tity, and then it outputs 1 (meaning “accept”) or 0 (meaning “reject”).

(1) Key Generation and Distribution. TA generates Ki ∈ K for each user
Ui (1 ≤ i ≤ n) by using Gen, and he distributes them to corresponding users,
respectively, via secure channels.

(2) Challenge Generation. Suppose that Ui is a prover and Uj is a verifier.
Then, Uj generates a challenge X = Chal(Uj , Ui) ∈ X by using the identities
Uj and Ui, and sends M1 := (Uj , Ui,X) to Ui.

(3) Response Generation. Suppose that Ui has received M1 = (Uj , Ui,X)
from Uj. Ui generates a response Y = Res(Uj ,Ki,X) ∈ Y and sends M2 :=
(Ui, Uj ,X, Y) to Uj.

(4) Response Verification. Suppose that Uj has received M2 = (Ui, Uj ,X
′, Y ′)

from Ui. Uj checks the validity of Y ′ and X ′: If V rfy(Ui,Kj ,X,X ′, Y ′) = 1,
then Uj accepts Ui as a prover; If V rfy(Ui,Kj ,X,X ′, Y ′) = 0, then Uj

rejects Ui.

404 S. Hajime et al.

In the above definition, for a predefined positive integer t > 0, we assume that
the number of execution of the protocol Π is at most t. Namely, in the protocol
Π, we assume that t ≥ #M1 ≥ #M2. In addition, if t ≥ 2 and the protocol is
executed by Ui and Uj more than once, we assume that challenges sent from Uj

to Ui (and from Ui to Uj) are all different (see Remark 1 for details).

2.2 Security Definition

We formalize a security definition for UEA. Let W ∈ P(U , ω) be a set of
dishonest users such that W ’s cardinality is at most ω ≤ n − 2. And, for
W = {Ul1 , Ul2 , . . . , Ulj} ∈ P(U , ω), KW := Kl1 × Kl2 × · · · × Klj (= Kj) denotes
the set of possible secret-keys held by W . If W = ∅, we understand that there is
an adversary outside the group of n users. The goal of W is, for some Ui, Uj �∈ W ,
to impersonate Ui and to succeed in that Uj finally accepts it.

Remark 1. If t ≥ 2 and the protocol is executed by Ui and Uj more than once, we
assume that challenges sent from Uj to Ui (and from Ui to Uj) are all different.
In the following, we explain why this assumption is necessary and reasonable:
First, consider the case that a verifier Uj sends a challenge Xj,i to a prover Ui

and Ui sends a response Yi,j to Uj . Next, in contrast, let’s consider the case
that a verifier Ui sends a challenge Xi,j to a prover Uj and Uj sends a response
Yj,i to Ui. In order to consider role-variable UEA, it is sufficient to realize the
mechanism such that Yi,j = Yj,i if Xj,i = Xi,j , and this is a simple approach to
realize role-variable UEA. On the other hand, role-invariable UEA is sufficient
to realize that mechanism such that Yi,j �= Yj,i if Xj,i = Xi,j . However, in this
mechanism, it is necessary to assume that challenges sent from Uj to Ui (and
from Ui to Uj) are all different, since it is trivial to succeed in impersonation
attack by sending the same response which the adversary already obtained if the
challenges are the same, and such an attack is unavoidable.

And, we give a formal security definition as follows.

Definition 2. A UEA protocol Π with n users is said to be (ε, t, ω, n)-secure,
if the success probability of impersonation attacks P satisfies P ≤ ε, where P is
defined as follows. First, for any W ∈ P(U , ω) and any Ui, Uj �∈ W , we define a
random variable Z(W,Ui, Uj) and an event Cheat(W,Ui, Uj) by

1. Z(W,Ui, Uj): W behaves as the verifier Uj and communicates with Ui in
which W sends M1 of W ’s arbitrary choice to Ui and then Ui sends M2 to
W . As a result, W obtains a pair of challenges and responses Z(W,Ui, Uj) :=
(M1,M2).

2. Cheat(W,Ui, Uj): W behaves as the prover Ui and communicates with Uj.
Finally, Uj accepts it.

Note that, by the condition t ≥ #M1 ≥ #M2, W can obtain Z(W,Ui, Uj) at
most t − 1 times, and we denote

Z(W,Ui, Uj)t−1 := (Z1(W,Ui, Uj), Z2(W,Ui, Uj), . . . , Zt−1(W,Ui, Uj)),

Information-Theoretically Secure Entity Authentication 405

where Zk(W,Ui, Uj) = (M (k)
1 ,M

(k)
2) is the k-th pair of challenges and responses.

In this case, we also note that M
(k)
1 �= M

(l)
1 if k �= l by the assumption (see

Remark 1). Then, the success probability of impersonation attacks P is given by

P := max
W

max
Ui,Uj /∈W

max
KW

max
Z(W,Ui,Uj)t−1

Pr(Cheat(W,Ui, Uj) | kW , Z(W,Ui, Uj)t−1),

where the maximum is taken over all W ∈ P(U , ω), Ui, Uj /∈ W , KW , and
Z(W,Ui, Uj)t−1.

Remark 2. In addition to Z(W,Ui, Uj) above, one might consider the following
attacking model that W is allowed to perform:

(1-1) For any user Uj /∈ W , W behaves as a prover Uj and communicates with
any user Ui /∈ W .

(1-2) W intercepts the valid communications between any (not corrupted) two
users, say Ui and Uj .

However, we do not need to consider the above two attacking models
(1-1) and (1-2), since these are not more powerful attacks than Z(W,Ui, Uj):
In (1-1), W only obtains M1 which is independent of Ui’s secret-key, For (1-
2), communication information by intercepting can be obtained in Z(W,Ui, Uj)
where W behaves as a verifier Uj by communicating with Ui.

2.3 Lower Bounds

We show tight lower bounds on size of users’ secret-keys and responses. In the
following, Y

(r)
i denotes a random variable which takes values of the r-th response

generated by a prover Ui, and X
(r)
j denotes a random variable which takes values

of the r-th challenge generated by a verifier Uj .
First, we show a lower bound on the success probability of impersonation

attacks. We can prove it in a similar way as Theorem 3.1 in [9], and we omit it
here. The proof will be given in the full version of this paper.

Theorem 1. For any (ε, t, ω, n)-secure UEA protocol Π, the success probability
of impersonation attacks P satisfies the following inequality. For any adver-
sary W ∈ P(U , ω), any users Ui, Uj �∈ W , and any positive integer r(≤ t), it
holds that

P ≥ 2−I(Y
(r)
i ;Kj |KW ,Y

(1)
i ,...,Y

(r−1)
i ,X

(1)
j ,...,X

(r)
j),

Next, we show lower bounds on size of users’ secret-keys and responses, and
its proof is given in Appendix A.

Theorem 2. For any (ε, t, ω, n)-secure UEA protocol Π, we have

log |K| ≥ t(ω + 1) log ε−1, log |Y| ≥ log ε−1.

406 S. Hajime et al.

As we will see, our construction for the UEA in Sect. 2.4 satisfies all the above
lower bounds with equalities. Therefore, the above lower bounds are tight. In
addition, we define optimality of constructions for the UEA as follows.

Definition 3. A construction for an (ε, t, ω, n)-secure UEA protocol is optimal,
if it satisfies every lower bound in Theorem 2 with equality.

2.4 Construction

In this section, we provide an optimal construction for (ε, t, ω, n)-secure UEA.
The detail of the construction is given as follows.

1. Gen. Gen picks a λ-bit prime power q, where q > max(n, t), and constructs
the finite field Fq with q elements. We assume that the identity of each user
Ui is encoded as Ui ∈ Fq\{0}. And, Gen chooses uniformly at random a
polynomial over Fq:

f(x, y, z) =
ω∑

h=0

ω∑

i=0

t−1∑

j=0

ah,i,jx
hyizj ,

where ah,i,j ∈ Fq such that ah,i,j = ai,h,j for all h, i, j. Then, Gen outputs
secret-keys Ki := f(Ui, y, z) for Ui (1 ≤ i ≤ n).

2. Chal. It takes identities Ui and Uj as input, and then chooses X ∈ Fq uni-
formly at random and outputs it.

3. Res. It takes X from M1, verifier’s identity Uj and a secret-key of the prover
Ui, Ki = f(Ui, y, z), as input, and then outputs Y := f(Ui, y, z)|y=Uj ,z=X .

4. Vrfy. It takes (X ′, Y ′) from M2, X, the prover’s identity Ui, and a secret-key
of the verifier Uj , Kj = f(Uj , y, z), as input, and then, it outputs 1 if and
only if X ′ = X and Y ′ = f(Uj , y, z)|y=Ui,z=X .

The security and optimality of the above construction are stated as follows, and
its proof is given in Appendix B.

Theorem 3. The resulting UEA protocol Π by the above construction is (1/q,
t, ω, n)-secure and optimal.

2.5 Comparison of Our Result with Kurosawa’s One

To the best of our knowledge, until now, only the paper [7] studies an entity
authentication protocol with information-theoretic security, and it is the role-
variable UEA in the two-users setting. Although we have studied the UEA pro-
tocol in the multi-users setting, we can compare our UEA with Kurosawa’s
one in [7] by setting n = 2 in our model. As a result, we can see that our
protocol UEA is regarded as an extension of Kurosawa’s one. For the detailed
discussion about similarity and difference between ours and Kurosawa’s one, see
Appendix C.

Information-Theoretically Secure Entity Authentication 407

3 MEA: Mutual Entity Authentication

3.1 The Model

We show a model of mutual entity authentication (MEA for short) protocols. As
in Definition 1 for UEA, in our model of MEA there are n + 1 entities, n users
U1, U2, . . . , Un and a trusted authority TA, where n ≥ 2.

The purpose of MEA is that two users mutually prove their identities each
other by their communications. Therefore, each user takes the roles of both a
prover and a verifier. For any two users who authenticate each other, we call a
user who starts communications an initiator and the other a responder in our
model.

Informally, MEA is executed as follows. First, an initiator sends a responder
some information (called the first challenge) in the first transmission. Next, the
responder sends a response to the first challenge (called the first response) back
and some information (called the second challenge) to the initiator in the second
transmission. After that, the initiator checks the validity of the first response,
and if it is accepted, then he sends a response to the second challenge (called
the second response) back to the responder in the final transmission. Finally, the
responder checks the validity of the second response.

Formally, we give a definition of MEA as follows.

Definition 4 (MEA). A mutual entity authentication (MEA) protocol Θ in
the multi-user setting involves n + 1 entities, TA, U1, U2, . . . , Un and consists of
a seven-tuple of algorithms (Gen, Chal1, Chal2, Res1, Res2, V rfy1, V rfy2)
with three finite spaces, K, X , Y where Res1, Res2, V rfy1, and V rfy2 are
deterministic. In addition, Θ is executed with five phases as follows.

- Notation
- Entities: TA and Ui(1 ≤ i ≤ n) are the same as those in Definition 1.
- Spaces: K, X , and Y are the same as those in Definition 1.
- Algorithms: Gen is a key generation algorithm which takes a security

parameter 1λ as input and outputs each user’s secret-keys. Chal1 and
Chal2 are probabilistic algorithms for generating challenges: each of
them takes two identities as input and outputs a random challenge. Res1
and Res2 are deterministic algorithms for generating responses: Res1
(resp., Res2) takes a user’s secret-key, the first (resp., second) challenge,
and another’s identity as input, and then outputs the first (resp., sec-
ond) response. V rfy1 (resp., V rfy2) is a verification algorithm: V rfy1
(resp., V rfy2) takes a user’s secret-key, a pair of the first challenges and
responses (resp., the second challenges and responses), and another’s
identity as input, and then it outputs 1 (meaning “accept”) or 0 (mean-
ing “reject”).

(1) Key Generation and Distribution. TA generates Ki ∈ K for each user
Ui (1 ≤ i ≤ n) by using Gen, and he distributes them to corresponding users
via secure channels, respectively.

408 S. Hajime et al.

(2) Generation for the 1st Challenge. Suppose that Uj is an initiator and Ui

is a responder. Then, Uj generates the first challenge X1 = Chal1(Uj , Ui) ∈
X by using the identities Uj and Ui, and sends M1 := (Uj , Ui,X1) to Ui.

(3) Generation for the 1st Response and 2nd Challenge. Suppose that
Ui has received M1 := (Uj , Ui,X1) from Uj . Ui generates the first response
Y1 = Res1(Uj ,Ki,X1) ∈ Y and the second challenge X2 = Chal2(Ui, Uj) ∈
X . Then, Ui sends M2 := (Ui, Uj ,X1, Y1,X2) to Uj .

(4) Verification for the 1st Response and Generation for the 2nd
Response. Suppose that Uj has received M2 = (Ui, Uj ,X

′
1, Y

′
1 ,X2) from

Ui. Uj checks the validity of Y ′
1 and X ′

1: if V rfy1(Ui,Kj ,X
′
1, Y

′
1 ,X1) = 0,

Uj rejects Ui and aborts the protocol; if V rfy1(Ui,Kj ,X
′
1, Y

′
1 ,X1) = 1, Uj

accepts Ui as the supposed responder, then generates the second response
Y2 = Res2(Ui,Kj ,X2) ∈ Y, and then sends M3 := (Uj , Ui,X2, Y2) to Ui.

(5) Verification for 2nd Response. Suppose that Ui has received M3 =
(Uj , Ui,X

′
2, Y

′
2) from Uj . Ui checks the validity of Y ′

2 and X ′
2 as follows.

If V rfy2(Uj ,Ki,X
′
2, Y

′
2 ,X2) = 1, Ui accepts Uj as the supposed initiator. If

Vrfy2(Uj ,Ki,X
′
2, Y

′
2 ,X2) = 0, Ui rejects Uj .

In the above definition, for a predefined positive integer t > 0, we assume
that the number of execution of the protocol Θ is at most t. Namely, in the
protocol Θ, we assume that t ≥ #M1 ≥ #M2 ≥ #M3. In addition, if t ≥ 2
and the protocol is executed by Uj and Ui more than once, we assume that: the
first challenges sent from Uj to Ui (and from Ui to Uj) are all different; and the
second challenges sent from Ui to Uj (and from Uj to Ui) are all different. For
details, see Remark 3.

3.2 Security Definition

We formalize a security definition for MEA. We consider the following reasonable
attacking scenario. When W (∈ P(U , ω)) wants to impersonate Ui, W tries to
get some information which is related to Ui’s secret-key. Specifically, we can
consider two situations: first, W behaves as the initiator Uj and sends M1 of
W ’s arbitrary choice to Ui, and then, W gets M2 corresponding M1 from Ui

and aborts the protocol; secondly, W intercepts the communication between
the initiator Ui and the responder Uj , and then W gets transmissions between
them, (M1,M2,M3). Note that we do not consider the case that W intercepts the
communication between the initiator Uj and the responder Ui (see Remarks 4
and 5) Finally, by using the information which W has obtained, W impersonates
Ui and communicates with Uj hoping that Uj would accept W as Ui.

Remark 3. Suppose that an initiator Uj sends the first challenge Xj,i,1 to a
responder Ui and Ui sends the first response Yi,j,1 to Uj . Next, suppose that the
responder Ui sends the second challenge Xi,j,2 to the initiator Uj and Uj sends
the second response Yi,j,2 to Ui. In order to simply realize role-variable MEA, it is
sufficient to realize the mechanism such that (i): Yi,j,1 = Yj,i,1 if Xj,i,1 = Xi,j,1;
and (ii) Yi,j,2 = Yj,i,2 if Xj,i,2 = Xi,j,2. As we explained in Remark 1, this

Information-Theoretically Secure Entity Authentication 409

mechanism is also a simple approach to realize role-variable MEA, and it is
reasonable by the same reason in Remark 1.

Based on the above consideration, our formal security definition is stated as
follows.

Definition 5. An MEA protocol Θ with n users is said to be (ε, t, ω, n)-secure,
if it holds that

max(Pr(Cheat1),Pr(Cheat2)) ≤ ε,

where Pr(Cheat1) and Pr(Cheat2) are defined as follows.

Information gathering phase: For any W ∈ P(U , ω) and any Ui,Uj /∈ W ,
we define random variables ZSes(W,Ui, Uj) and Z Int(W,Ui, Uj) by

1. ZSes(W,Ui, Uj): W behaves as the initiator Uj and communicates with the
responder Ui; W sends M1 of W ′s arbitrary choice to Ui, and then Ui sends
M2 to W ; and W aborts the protocol. As a result, W obtains information
ZSes(W,Ui, Uj) := (M1,M2).

2. Z Int(W,Ui, Uj): W intercepts transmissions between the initiator Ui and the
responder Uj; Ui sends M1 to Uj, then Uj sends M2 to Ui, and then Ui sends
M3 to Uj. As a result,W obtains information Z Int(W,Ui, Uj) := (M1,M2,M3).

Impersonation phase: For any W ∈ P(U , ω) and any Ui, Uj /∈ W , we define
two events Cheat1(W,Ui, Uj) and Cheat2(W,Ui, Uj) by

3. Cheat1(W,Ui, Uj): W behaves as the responder Ui and communicates with the
initiator Uj. Then, Uj accepts the first response.

4. Cheat2(W,Ui, Uj): W behaves as the initiator Ui and communicates with the
responder Uj. Finally, Uj accepts the second response.

Note that, by the condition t ≥ #M1 ≥ #M2 ≥ #M3, W can obtain ZSes

(W,Ui, Uj) t1 times and Z Int(W,Ui, Uj) t2 times such that t1 + t2 = t − 1, and
we denote

ZSes(W,Ui, Uj)t1 := (ZSes
1 (W,Ui, Uj), ZSes

2 (W,Ui, Uj), . . . , ZSes
t1 (W,Ui, Uj)),

Z Int(W,Ui, Uj)t2 := (Z Int
1 (W,Ui, Uj), Z Int

2 (W,Ui, Uj), . . . , Z Int
t2 (W,Ui, Uj)),

where ZSes
k (W,Ui, Uj) = (M (k)

1 ,M
(k)
2) is the k-th random variable ZSes(W,Ui, Uj),

Z Int
k (W,Ui, Uj) = (M (k)

1 ,M
(k)
2 ,M

(k)
3) is the k-th random variable Z Int(W,Ui, Uj).

In these cases, we also note that M
(k)
1 �= M

(l)
1 if k �= l by the assumption. Then,

Pr(Cheat1) and Pr(Cheat2) are given as follows.

(i) Cheat against the initiator Uj. Pr(Cheat1) is defined by

Pr(Cheat1) := max
W

max
Ui,Uj /∈W

max
kW

max
ZSes(W,Ui,Uj)t−1

Pr(Cheat1(W,Ui, Uj) | kW , ZSes(W,Ui, Uj)t−1),

where the maximum is taken over all possible W ∈ P(U , ω), Ui, Uj /∈ W ,
kW , and ZSes(W,Ui, Uj)t−1 (see Remark 4 for details).

410 S. Hajime et al.

(ii) Cheat against the responder Uj. Pr(Cheat2) is defined by

Pr(Cheat2) := max
W

max
Ui,Uj /∈W

max
kW

max
Z Int(W,Ui,Uj)t−1

Pr(Cheat2(W,Ui, Uj) | kW , Z Int(W,Ui, Uj)t−1),

where the maximum is taken over all W ∈ P(U , ω), Ui, Uj /∈ W , kW , and
Z Int(W,Ui, Uj)t−1 (see Remark 5 for details).

Remark 4. In Cheat against the initiator Uj , we do not have to consider the
case that W intercepts the communication between the initiator Uj and the
responder Ui by the following reason: the information obtained by perform-
ing Z Int(W,Ui, Uj) is not more than the information obtained by performing
ZSes(W,Ui, Uj) in which W can arbitrarily choose challenges.

Remark 5. In Cheat against the responder Uj , we do not need to consider the
case that W behaves the responder Uj and performs ZSes(W,Ui, Uj), since in
this case W only obtains M1 which is independent of Ui’s secret-key unless the
initiator Ui accepts the first response generated by W (i.e., unless W succeeds
in the impersonation attack against the initiator Ui).

3.3 Lower Bounds

We show tight lower bounds on size of user’s secret-keys and responses. In the
following, Y

(r)
i,α means: a random variable which takes values of the r-th first

(resp., second) response generated by Ui, if α = 1 (resp., α = 2). And, X
(r)
j,α

means: a random variable which takes values of the r-th first (resp., second)
challenge generated by Uj , if α = 1 (resp., α = 2). In addition, for a positive
integer r and α ∈ {1, 2}, we define X

[r]
j,α := (X(1)

j,α,X
(2)
j,α, . . . , X

(r)
j,α) and Y

[r]
i,α :=

(Y (1)
i,α , Y

(2)
i,α , . . . , Y

(r)
i,α).

First, we show lower bounds on the success probabilities of impersonation
attacks, and the proof is given in a similar way as in Theorem 1.

Theorem 4. For any (ε, t, ω, n)-secure MEA protocol Θ, the success probabil-
ities of impersonation attacks Pr(Cheat1) and Pr(Cheat2) satisfy the following
inequalities. For any adversary W ∈ P(U , ω), any users Ui, Uj �∈ W , and any
positive integer r(≤ t), it holds that

Pr(Cheat1) ≥ 2−I(Y
(r)
i,1 ;Kj |KW , Y

[r−1]
i,1 , X

[r]
j,1),

Pr(Cheat2) ≥ 2−I(Y
(r)
i,2 ;Kj |KW , Y

[r]
j,1 , X

[r]
i,1, Y

[r−1]
i,2 , X

[r]
j,2).

Next, we show lower bounds on size of secret-keys and responses, and its
proof is given in Appendix D.

Theorem 5. For any (ε, t, ω, n)-secure MEA protocol Θ, we have

log |K| ≥ 2t(ω + 1) log ε−1, log |Y| ≥ log ε−1.

Information-Theoretically Secure Entity Authentication 411

As we will see, our construction for MEA in Sect. 3.4 satisfies all the lower
bounds in Theorem 5 with equalities. Therefore, the lower bounds in Theorem 5
are tight. In addition, we define optimality of constructions for MEA as follows.

Definition 6. A construction for an (ε, t, ω, n)-secure MEA protocol is optimal,
if it satisfies every lower bound in Theorem 5 with equality.

3.4 Construction

In this section, we propose an optimal construction for an (ε, t, ω, n)-secure MEA
protocol. The detail of the construction is given as follows.

1. Gen. It picks a λ-bit prime power q, where q > max(n, t), and constructs
the finite field Fq with q elements. We assume that the identity of each user
Ui is encoded as Ui ∈ Fq\{0}. And, Gen chooses uniformly at random two
polynomials over Fq:

f(x, y, z) =
ω∑

h=0

ω∑

i=0

t−1∑

j=0

ah,i,jx
hyizj , g(x, y, z) =

ω∑

h=0

ω∑

i=0

t−1∑

j=0

bh,i,jx
hyizj ,

where ah,i,j , bh,i,j ∈ Fq such that ah,i,j = ai,h,j and bh,i,j = bi,h,j for all h, i, j.
Gen outputs secret-keys Ki := (f(Ui, y, z), g(Ui, y, z)) for Ui(1 ≤ i ≤ n).

2. Chal1. It chooses X1 ∈ Fq uniformly at random and outputs it.
3. Res1. It takes X1 from M1, the initiator’s identity Uj , and a secret-key of

the responder Ui, Ki := (f(Ui, y, z), g(Ui, y, z)), as input, and then outputs
Y1 = f(Ui, y, z)|y=Uj ,z=X1 .

4. Chal2. It chooses X2 ∈ Fq uniformly at random and outputs it.
5. V rfy1. It takes (X ′

1, Y
′
1) from M2, X1, the responder’s identity Ui, and a

secret-key of the initiator Uj , Kj := (f(Uj , y, z), g(Uj , y, z)), as input, and
then, it outputs 1 if and only if X ′

1 = X1 and Y ′
1 = f(Uj , y, z)|y=Ui,z=X1 .

6. Res2. It takes X2 from M2, the responder’s identity Ui, and a secret-key of
the initiator Uj , Kj := (f(Uj , y, z), g(Uj , y, z)), as input, and then outputs
Y2 = g(Uj , y, z)|y=Ui,z=X2 .

7. V rfy2. It takes (X ′
2, Y

′
2) from M3, X2, the initiator’s identity Uj , and a secret-

key of the responder Ui, Ki := (f(Ui, y, z), g(Ui, y, z)), as input, and then, it
outputs 1 if and only if X ′

2 = X2 and Y ′
2 = g(Ui, y, z)|y=Uj ,z=X2 .

The security and optimality of the above construction are stated as follows, and
its proof is given in Appendix E.

Theorem 6. The resulting MEA protocol Θ by the above construction is (1/q,
t, ω, n)-secure and optimal.

Acknowledgements. We would like to thank anonymous reviewers for their valuable
comments.

412 S. Hajime et al.

A Proof of Theorem 2

First, we show the second inequality. By Theorem 1, we have H(Y (r)
i) ≥ log ε−1

for any i ∈ {1, 2, . . . , n} and r ∈ {1, 2, . . . , t}. Thus, it follows that log |Y| ≥
log ε−1.

Next, we show the first inequality. Without loss of generality, we suppose
that V := {U1, . . . , Uω+1} and Ui, Uj /∈ V . Then, we obtain

H(Kj) ≥I(K1, . . . , Kω+1;Kj | X
(1)
j , . . . , X

(t)
j)

=H(K1, . . . , Kω+1 | X
(1)
j , . . . , X

(t)
j)

− H(K1, . . . , Kω+1|Kj ,X
(1)
j , . . . , X

(t)
j). (1)

Now, we have the following inequalities.

H(K1, . . . , Kω+1|X(1)
j , . . . , X

(t)
j)

=
ω+1∑

s=1

H(Ks|K1, . . . , Ks−1,X
(1)
j , . . . , X

(t)
j)

=
ω+1∑

s=1

{I(Y (1)
s , . . . , Y (t)

s ;Ks|K1, . . . , Ks−1,X
(1)
j , . . . , X

(t)
j)

+ H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,X
(1)
j , . . . , X

(t)
j)}

=
ω+1∑

s=1

{H(Y (1)
s , . . . , Y (t)

s |K1, . . . , Ks−1,X
(1)
j , . . . , X

(t)
j)

− H(Y (1)
s , . . . , Y (t)

s |K1, . . . , Ks,X
(1)
j , . . . , X

(t)
j)

+ H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)}

=
ω+1∑

s=1

{H(Y (1)
s , . . . , Y (t)

s |K1, . . . , Ks−1,X
(1)
j , . . . , X

(t)
j)

+ H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)}

=
t∑

r=1

ω+1∑

s=1

H(Y (r)
s |K1, . . . , Ks−1,X

(1)
j , . . . , X

(t)
j , Y (1)

s , . . . , Y (r−1)
s)

+
ω+1∑

s=1

H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j). (2)

On the other hand, we get

H(K1, . . . , Kω+1|Kj ,X
(1)
j , . . . , X

(t)
j)

=
ω+1∑

s=1

H(Ks|Kj ,K1, . . . , Ks−1,X
(1)
j , . . . , X

(t)
j)

Information-Theoretically Secure Entity Authentication 413

=
ω+1∑

s=1

{I(Y (1)
s , . . . , Y (t)

s ;Ks|K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)

+ H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)}

=
ω+1∑

s=1

{H(Y (1)
s , . . . , Y (t)

s |K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)

− H(Y (1)
s , . . . , Y (t)

s |K1, . . . , Ks,Kj ,X
(1)
j , . . . , X

(t)
j)

+ H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)}

=
ω+1∑

s=1

{H(Y (1)
s , . . . , Y (t)

s |K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)

+ H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j)}

=
t∑

r=1

ω+1∑

s=1

H(Y (r)
s |K1, . . . , Ks−1,Kj ,X

(1)
j , . . . , X

(t)
j , Y (1)

s , . . . , Y (r−1)
s)

+
ω+1∑

s=1

H(Ks|Y (1)
s , . . . , Y (t)

s ,K1, . . . , Ks−1,Kj ,X
(1)
j , . . . , X

(t)
j). (3)

Then, from (1), (2) and (3), we have

H(Kj) = H(K1, . . . , Kω+1 | X
(1)
j , . . . , X

(t)
j) − H(K1, . . . , Kω+1|Kj , X

(1)
j , . . . , X

(t)
j)

=
t∑

r=1

ω+1∑

s=1

H(Y (r)
s |K1, . . . , Ks−1, X

(1)
j , . . . , X

(t)
j , Y (1)

s , . . . , Y (r−1)
s)

+

ω+1∑

s=1

H(Ks|Y (1)
s , . . . , Y (t)

s , K1, . . . , Ks−1, Kj , X
(1)
j , . . . , X

(t)
j)

−
t∑

r=1

ω+1∑

s=1

H(Y (r)
s |K1, . . . , Ks−1, Kj , X

(1)
j , . . . , X

(t)
j , Y (1)

s , . . . , Y (r−1)
s)

−
ω+1∑

s=1

H(Ks|Y (1)
s , . . . , Y (t)

s , K1, . . . , Ks−1, Kj , X
(1)
j , . . . , X

(t)
j)

=

t∑

r=1

ω+1∑

s=1

I(Y (r)
s ; Kj |K1, . . . , Ks−1, X

(1)
j , . . . , X

(t)
j , Y (1)

s , . . . , Y (r−1)
s)

≥ t(ω + 1) log ε−1,

where the last inequality follows from Theorem 1. �	

B Proof of Theorem 3

For simplicity, we describe the outline of the proof of P ≤ 1/q. The full proof will
appear in the full version of this paper. Without loss of generality, we suppose

414 S. Hajime et al.

that W = {U1, . . . , Uω} and Ui, Uj �∈ W . To succeed in the impersonation attack
such that Ui is a prover and Uj is a verifier, the adversary W will generate a
fraudulent response Y ∈ Fq for a given challenge X under the following con-
ditions: the adversary has ω secret-keys, and at most t − 1 pairs of challenges
and responses Z(W,Ui, Uj)t−1. However, the degrees of f(x, y, z) with respect
to variables x, y, and z is at most ω, ω, and t − 1, respectively, the adversary
cannot guess at least one coefficient of f(x, y, z) with probability larger than 1/q.
Therefore, W cannot guess the response which Uj will accept with probability
more than 1/q. Hence, we have P ≤ 1/q.

Finally, it is straightforward to see that the construction satisfies all the lower
bounds in Theorem 2 with equalities. �	

C Comparison to Previous Results

We compare our UEA in the two-users setting (i.e., the special case of n = 2)
with Kurosawa’s one in [7] in details, and we show that our protocol is regarded
as an extension of Kurosawa’s one. In the following discussion, let n = 2, ω = 0
and t = N + 1 in our model. Then, we can consider similarity and difference
between ours and Kurosawa’s one as follows.

Similarity

(1) Models: The two models are essentially the same except for the differences
(3) and (4) below.

(2) Constructions: Our construction and Kurosawa’s one are the same.

Difference

(3) Secret-keys in the models: Two users’ secret-keys in our model may be dif-
ferent (i.e., asymmetric), while in [7] they are the same (i.e., symmetric).
Thus, our model is more general than the one in [7].

(4) The way of counting M1 and M2 in the protocols: The following difference
exists in adversarial models. The adversary is allowed to attack only once
after performing Z(W,Ui, Uj) t − 1 times in our security definition, whereas
the adversary is allowed to attack t times after performing Z(W,Ui, Uj) t−1
times in the security definition in [7].
In [7], the maximum number of protocol execution is defined by the number
up to which each user can execute, and each user needs to count the number
of having generated M1 and M2. On the other hand, in our model, the
maximum number of protocol execution is defined by the number up to
which all users can execute, and it is necessary that it counts the total
number of having generated M1 and M2 in the protocol.

(5) Security definitions: When Ui wants to prove his identification to Uj more
than once, the possibility that challenges sent from Uj to Ui are the same is
considered and evaluated in [7]. On the other hand, we have assumed that
challenges sent from Uj to Ui are all different (see also Remark 1), since we
would like to consider the worst case (i.e., the adversary will take the best
strategy).

Information-Theoretically Secure Entity Authentication 415

Moreover, we have formalized the success probability of Cheat when the
adversary obtains best information to succeed in the attack by performing
Z(W,Ui, Uj) t−1 times. On the other hand, in [7] the case is not considered,
namely, by gathering t − 1 responses for randomly chosen t − 1 challenges,
the adversary randomly repeats the impersonation attack t times, and the
success probability is defined by that at least one of the attacks is successful.
Therefore, from the above aspects, our security definition is stronger than
the one in [7].

(6) Lower bounds. Since our security definition is different from the one in [7],
it is natural that our lower bound on the success probability of attacks is
different from the one in [7]. Technically, our lower bound on secret-keys has
been derived from that of the success probability of attacks, while in [7] his
lower bound was derived from the number of responses, and these two proof
techniques are different. However, the construction of ours and his (note that
constructions are the same) meets both lower bounds with equalities.

From the above discussion, we can consider that our protocol is an extension
of Kurosawa’s one [7] for the multi-user setting.

D Proof of Theorem 5

First, we prove the second inequality. From Theorem 4, we have H(Y (t)
i,α) ≥

log ε−1. Thus, it follows that log |Y| ≥ log ε−1.
Next, we show the first inequality. Without loss of generality, we suppose

that V := {U1, . . . , Uω+1} and Ui, Uj /∈ V . Let K[s] = (K1 . . . Ks), X
[t]
j,1 =

(X(1)
j,1 , . . . , X

(t)
j,1), and Y

[t]
i,1 = (Y (1)

i,1 , . . . , Y
(t)
i,1).

H(Kj)

≥I(K[ω+1]; Kj |X [t]
j,1)

=

ω+1∑

s=1

I(Ks; Kj |K[s−1], X
[t]
j,1)

=

ω+1∑

s=1

H(Kj |K[s−1], X
[t]
j,1) −

ω+1∑

s=1

H(Kj |K[s], X
[t]
j,1)

=

ω+1∑

s=1

I(Y
[t]

s,1; Kj |K[s−1], X
[t]
j,1) +

ω+1∑

s=1

H(Kj |K[s−1], X
[t]
j,1Y

[t]
s,1) −

ω+1∑

s=1

H(Kj |K[s], X
[t]
j,1)

≥
ω+1∑

s=1

t∑

r=1

I(Y
(r)

s,1 ; Kj |K[s−1], X
[t]
j,1, Y

[r−1]
s1) +

ω+1∑

s=1

H(Kj |K[s−1], X
[t]
j,1, X

[t]
j,2, Y

[t]
s,1)

−
ω+1∑

s=1

H(Kj |K[s], X
[t]
j,1)

=

ω+1∑

s=1

t∑

r=1

I(Y
(r)

s,1 ; Kj |K[s−1], X
[t]
j,1, Y

[r−1]
s,1) +

ω+1∑

s=1

I(Y
[t]

s,2; Kj |K[s−1], X
[t]
j,1, X

[t]
j,2, Y

[t]
s,1)

416 S. Hajime et al.

+

ω+1∑

s=1

H(Kj |K[s−1], X
[t]
j,1, X

[t]
j,2, Y

[t]
s,1, Y

[t]
s,2) −

ω+1∑

s=1

H(Kj |K[s], X
[t]
j,1)

=

ω+1∑

s=1

t∑

r=1

I(Y
(r)

s,1 ; Kj |K[s−1], X
[t]
j,1, Y

[r−1]
s,1)

+

ω+1∑

s=1

t∑

r=1

I(Y
(r)

s,2 ; Kj |K[s−1], X
[t]
j,1, X

[t]
j,2, Y

[t]
s,1, Y

[r−1]
s,2)

+

ω+1∑

s=1

{H(Kj |K[s−1], X
[t]
j,1, X

[t]
j,2, Y

[t]
s,1, Y

[t]
s,2) − H(Kj |K[s], X

[t]
j,1)}

≥
ω+1∑

s=1

t∑

r=1

I(Y
(r)

s,1 ; Kj |K[s−1], X
[t]
j,1, Y

[r−1]
s,1)

+

ω+1∑

s=1

t∑

r=1

I(Y
(r)

s,2 ; Kj |K[s−1], X
[t]
j,1, X

[t]
j,2, Y

[t]
s,1, Y

[r−1]
s,2)

≥2t(ω + 1) log ε−1, (4)

where (4) follows from that Kj is independent from (K[s],X
[t]
j,1,X

[t]
j,2, Y

[t]
s,1, Y

[t]
s,2)

and the last inequality follows from Theorem 4. �	

E Proof of Theorem 6

For simplicity, we describe the outline of the proof of max(Pr(Cheat1),
Pr(Cheat2)) ≤ 1/q. The full proof will appear in the full version of this paper.
Without loss of generality, we suppose that W = {U1, . . . , Uω} and Ui, Uj /∈ W .

1. We show Pr(Cheat1) ≤ 1/q. To succeed in the impersonation attack such
that Ui is a responder and Uj is an initiator, the adversary W will generate a
fraudulent response Y1 ∈ Fq for a given challenge X1 under the following con-
ditions: the adversary W has ω secret-keys, and obtains ZSes(W,Ui, Uj)t−1,
namely, t − 1 pairs of M1 and M2. However, the degrees of f(x, y, z) with
respect to variables x, y and z is at most ω, ω and t − 1, respectively, and
W cannot guess at least one coefficient of f(x, y, z) with probability larger
than 1/q.

2. We show Pr(Cheat2) ≤ 1/q. To succeed in the impersonation attack such
that Ui is an initiator and Uj is a responder, the adversary W will generate
a fraudulent response Y2 ∈ Fq for a given challenge X2 under the following
conditions: the adversary W has ω secret-keys, and obtains Z Int(W,Ui, Uj)t−1,
namely, t − 1 (M1,M2,M3). However, the degree of g(x, y, z) with respect to
variables x, y and z is at most ω, ω and t − 1, respectively, and W cannot
guess at least one coefficient of g(x, y, z) with probability larger than 1/q.

Therefore, we have max(Pr(Cheat1),Pr(Cheat2)) ≤ 1/q.
Finally, it is straightforward to see that the construction satisfies all the lower

bounds in Theorem 5 with equalities. �	

Information-Theoretically Secure Entity Authentication 417

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

2. Bird, R.S., Gopal, I., Herzberg, A., Janson, P., Kutten, S., Molva, R., Yung, M.:
Systematic design of two-party authentication protocols. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 44–61. Springer, Heidelberg (1992)

3. Diffie, W., Van Oorschot, P., Wiener, M.: Authentication and authenticated key
exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)

4. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2),
77–94 (1988)

5. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

6. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 216–231. Springer, Heidelberg (1990)

7. Kurosawa, K.: Unconditionally secure entity authentication. In: 1998 IEEE Inter-
national Symposium on Information Theory, Proceedings, p. 298, Aug 1998

8. Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes
using private channels and a trusted initializer (1999)

9. Safavi-Naini, R., Wang, H.: Multireceiver authentication codes: models, bounds,
constructions and extensions. Inf. Comput. 151, 148–172 (1998)

10. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990)

Practical Receipt-Free Sealed-Bid Auction
in the Coercive Environment

Jaydeep Howlader(B), Sanjit Kumar Roy, and Ashis Kumar Mal

National Institute of Technology, Durgapur, India
jaydeep.howlader@it.nitdgp.ac.in, sanjit it@yahoo.co.in,

ashis.mal@ece.nitdgp.ac.in

Abstract. Sealed-Bid auction is an efficient and rational method to
establish the price in open market. However sealed-bid auctions are sub-
ject to bid-rigging attack. Receipt-free mechanisms were proposed to
prevent bid-rigging. The prior receipt-free mechanisms are based on two
assumptions; firstly, existence of untappable channel between bidders
and auction authorities. Secondly, mechanisms assume the authorities
to be honest (not colluding). Moreover the bandwidth required to com-
municate the receipt-free bids is huge. This paper presents a sealed-bid
auction mechanism to resist bid-rigging. The proposed method does not
assume untappable channel nor consider the authorities to be necessarily
honest. The proposed mechanism also manages the bandwidth efficiently,
and improves the performance of the system.

1 Introduction

Sealed-bid is a form of auction mechanism where bids are submitted in sealed-
envelop. The bids are remained sealed until the schedule time of opening. No bids
are accepted after the schedule time of opening. During opening the sealed-bids
are opened and the winning price and/or winner(s) are determined. It is rather
delicate to implement a sealed-bid auction in the electronic media as there are
various essential security requirements to be realized. Moreover, the adversarial
behavior of the entities (insider or outsider) may lead to the failure of a naively
implemented system. Unlike the outsiders’ threat, the adversarial behavior of
the insiders are often difficult to counter. For example:

– Auctioneer (insider) opens the bid prior to the schedule opening and conveys
the bid-values to the adversary [4,14]. Thus fails to meet the confidentiality
of bid property.

– Auctioneer allows certain bidder(s) to withdraw or submit unlawfully. Thus
fails to meet the fairness property.

– Auctioneer deliberately suppresses some of the valid bids to make a certain
bidder to be the winner. Thus fails to meet the correctness property.

– Auctioneer discloses all the bidding prices and the identity of the correspond-
ing bidders after the opening. Thus fails to meet the privacy of the bidder [29]
property.

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 418–434, 2014.
DOI: 10.1007/978-3-319-12160-4 25

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 419

– Coercer (insider entity) used to corrupt the authorities to retrieve critical
information which may yield to bid-rigging [18]. Thus fails to meet the unco-
ercibility property.

During the last couple of decades sealed-bid auction mechanisms were stud-
ied and analyzed in various literatures. In spite of satisfying various security
requirements (confidentiality, privacy, fairness, correctness etc.), sealed-bid auc-
tion mechanisms are subject to bid-rigging attack. Bid-rigging is a form of coerc-
ing where the powerful adversary (e.g. mafia) commands the other bidders to
bid as per his choice so that he could win the auction by bidding unreasonably
low value. Though the bids are submitted securely, coercer used to enforce the
bidders to disclose all the private parameters (e.g. secret randomness, keys etc.)
correspond to their secret bids. Thus coercer verifies whether the bidders obey
his command. The coercer may corrupt some of the authorities and retrieves
vital information that would indulge coercing.

1.1 Related Work

There have been substantive research works on sealed-bid auction. Franklin
and Reiter [14] first proposed a protocol for secure electronic auction. Kikuchi
et al. [16] proposed the multi-round auction protocol for tie-breaking. Naor
et al. [20] proposed a two-server auction mechanism that protected the privacy
of the bidders. In the sequel we include the recent works as [3,6,9,27]. However,
those mechanisms have no protection to reveal the private inputs if the bidder is
willing to do so. In spite of satisfying variety of security requirements, the prior
mechanisms are unable to provide bid-rigging.

Abe and Suzuki [18] first introduced the receipt-free mechanism to counter
bid-rigging problem. The mechanism was based on threshold encryption [1], with
n number of auctioneers. Chen et al. [28] argued that Abe and Suzuki’s mech-
anism [18] could not provide receipt-freeness to the winning bidder. Moreover,
the mechanism failed to provide receipt-freeness in the presence of colluding auc-
tioneer(s). Chen et al. proposed another receipt-free auction mechanism [28]. In
their mechanism, seller along with the bidder jointly constructed the receipt-free
bid. They argued that, seller would not be colluded due to benefit collision. Her
et al. countered their argument and showed that seller could also be colluded
when she tried to make a special bidder to be the winner. Her et al. further pro-
posed another receipt-free auction mechanism [29] based on anonymous channel
and pseudo ID. The mechanism required prior bidders’ registration. Nevertheless,
their mechanism failed to provide receipt-freeness if the registrar was dishonest.
Huang et al. [30] proposed some improvement of Abe and Suzuki’s mechanism
[18] while reducing the bandwidth of bids, but could not overcome the prob-
lem related to dishonest auctioneer(s). Later on Howlader et al. [10] attempted
another receipt-free mechanism based on multi-party computation. However the
mechanism failed to provide receipt-freeness as the bidders’ verification process
carried the receipt of the bid.

420 J. Howlader et al.

Table 1. The physical constrains and assumptions made in various sealed-bid auction
mechanisms. l denotes the length of the price list, n denotes the number of auctioneers
and c denotes constant

Constraints Abe and Chen Her Huang Howlader Gao
& Assumptions Suzuki [18] et al. [28] et al. [29] et al. [30] et al. [10] et al. [8]

Untappable channel One way Both way One way One way One way Not
specified

Anonymity × × √ × ×
Honest authority All honest Honest Honest All honest At least one Honest

auctioneer seller registrar auctioneer honest sealer auctioneer

Bandwidth O(l × n) O(l) O(c) O(log l × n) O(l) O(c)

Some Impractical Assumptions: The above mechanisms are based on the
two assumptions:

Firstly, the availability of untappable channel1 between bidders and authori-
ties (auctioneers, seller, sealer etc.). However, untappable channel is often impr-
actical and difficult to deploy. However, some techniques based on deniable
encryption [12,21] ware proposed in [13,24] to relax the untappable channel.
The notion of deniability allows the bidders to plausibly evade the coercer. How-
ever, those techniques fail in the presence of colluding authorities [11]. Later on
Howleder et al. introduced ‘Coercing Resistant Mix (CRM)’ [11] which inte-
grated deniability with anonymity to transients the physical requirement of
untappable channel.

Secondly, the prior receipt-free mechanisms consider the authorities to be
honest. More specifically, the authorities not only execute the protocol honestly,
but also avoid any such conspiracy that may leak certain information to the
coercer.

1.2 Our Contribution

We withdraw the untappable channel, henceforth coercer can intercept the public
transcripts at any extend. Furthermore, we consider a broader notion of coercive-
ness rather than only receipt-freeness. Coercer may collude some of the author-
ities who execute the protocol correctly but reveal certain information to the
coercer in order to indulge coercing. We replace the untappable channel with
CRM [11]. CRM allows the adversary to intercept the public transcripts, but
provides the bidders to formulate ‘fake bids’ such that, adversary could not able
to distinguish between the fakes and the trues. On the other hand, untraceable
delivery of messages restricts the recipient (authority) to link ‘who-bids-what’.
Though the recipient receives decrypted messages, but unable to determine ‘who-
bids-what’.

Based on the cryptographic techniques, the receipt-free auction mechanisms
are categorized in two classes. The mechanisms [18,30] are based on threshold

1 A channel that provides perfect security in an information-theoretic sense. Even
encryption does not provide an untappable channel.

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 421

secret sharing which outputs committed transcripts. However, those mechanisms
fail to provide receipt-freeness if any one of the authority reveals his share. Whereas
the mechanisms [28,29] are based on designated-verifiability of re-encryption proof
[2], where bidder and authority (either seller, auctioneer) collaboratively form the
receipt-free bids. Nevertheless, those schemes also fail if the entities are not trust-
worthy.

The proposed mechanism is based on secure multi-party computation [5,25].
The sealing operation is done with respect to a private key which is distributed
among a set of qualifying sealers. A quorum of qualifying sealers performs the
sealing operation form the sealed-bids. Unlike the prior mechanisms the proposed
scheme guarantees receipt-freeness even at least one of the authority remain
honest (not colluded).

2 Preliminaries

Three main building blocks are used in the proposed receipt-free mechanism.
They are Deniable Encryption, Coercer Resistant MIX and Distributed Key
Generation.

A Plan-Ahead Deniable Encryption (PDE) [12,21] outputs the cipher cd

such that, the encryption of the fake and the true messages look alike. The PDE
consists of three algorithms PDE(Enc,Dec, ϕ). The encryption (Enc) is defined
as Enc−(mt, pk, rt), where mt is the true message, pk is the public key and rt is
the true randomness, and outputs a cipher c. However, Enc produces deniable
cipher cd when executed with another parameter called fake message mf , as
Encmf (mt, pk, rt). PDE allows the sender to evade coercion by producing mf

instead of mt. The decryption (Dec) is defined as Dec(c or cd, sk), where sk is the
private key and outputs the plaintext mt with negligible decryption error. The
faking algorithm(ϕ) is defined as ϕ(cd,mt,mf) and outputs the fake randomness
rf such that Enc−(mt, pk, rt) and Enc−(mf , pk, rf) look alike.

MIX (MIX-cascade) is a system consists of a finite number of nodes and
provides anonymous communication [15,17,19]. MIX takes a list of ciphertexts as
input and outputs a random permutation of the plaintexts. Every node performs
a cryptographic transformation and a random permutation, and forwards the list
to the next node. We denote MIX operation as MIX(Encpk[m1, . . . , mN]) →∏

[m1, . . . , mN] where pk is the public key of the MIX and
∏

denotes a random
permutation of the list. Unlike the general MIXes those take non-probabilistic
ciphers [25,26]2 as input, CRM takes deniable ciphers as input. Deniability allows
the sender to plausibly deny the true message while anonymity restricts the
dishonest recipients to retrace the senders of individual messages.

Distributed Key Generation (DKG) allows a set of n entities to gener-
ate jointly a pair of public-private key according to the distribution defined by

2 Probabilistic encryption uses randomness in encryption so that, when encrypting
the same message several times it will, in general yield different ciphertexts.

422 J. Howlader et al.

the underlying cryptosystem. The public key is output in the clear, the private
key is secretly shared among the n entities via a threshold encryption scheme.
A robust and efficient DKG protocol is proposed by Gennaro et al. [23] to share
the secret x amongst a set of qualifying entities and the makes y = gx public.
The protocol is able to identify the malicious entities and computes the public-
private values with the inputs of the qualifying entities. DKG is denoted as
DKGP (s1, . . . , sn) → (h, x,P), where P is the set of n entities, si is the random
secret initiated by the entity Pi ∈ P , h = gx is the public value, x = fsi∈P(si)
is the secret shared amongst the entities Pi ∈ P and P is the set of qualifying
entities.

3 Receipt-Free Sealed-Bid Auction

The receipt-freeness is proposed to prevent bid-rigging in sealed-bid auction.
Following are the entities of the proposed receipt-free auction:

3.1 Entities

– There is a finite set of bidders denoted as B = {B1, B2, . . . , Bm}.
– There is a finite set of sealers denoted as S = {S1, S2, . . . , Sk}. Sealer is an

authority who executes sealing operation and forms the receipt-free bid.
– There is a single auctioneer. The auctioneer is responsible to open the bids

(with the cooperation of sealers) and determines the winning price and winner.
– Coercer is an adversary who indulges bid-rigging. Coercer is able to impel the

bidders to reveal all their private data (keys and randomnesses). Furthermore
the coercer is allowed to intercept the public transcripts and also corrupts
some of the sealers to retrieve critical information that may yield coercing.

– We use a Bulletin Board (BB). This is a publicly accessible memory with
read and appendive-write access.

– We integrate CRM in place of untappable channel.

3.2 System Setting

Let p, q be large primes such that q divides p − 1, Gq be the unique subgroup of
Z

∗
p of order q, and g ∈ Z

∗
p is an element of order q. Following we define the keys

of different entities. The operations are closure to the multiplicative group Z
∗
p.

• Bidder Bi’s private key be xBi
∈ Z

∗
p and public key be hBi

= gxBi .
• Auctioneer’s private key be xA ∈ Z

∗
p and public key be hA = gxA .

• The sealers execute the Distributed Key Generation (DKG) protocol [22,23]
that outputs a set of qualifying sealers denoted as QUAL (of k sealers)
with the public key hS . Each member Si ∈ QUAL has his private key as
xi such that any quorum of t > k/2 sealers denoted as QRM ⊆ QUAL are
able to seal the bidders’ encrypted bid-vectors. Without loss of generality, we

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 423

Algorithm 1. Bidder Bi bidding operation
begin

for k = d − 1 to 0 do
for j = 9 to 0 do

Bi randomly selects ri,(k,j), r̂i,(k,j) ∈R Z
∗
p and computes

(

Xi,(k,j), Yi,(k,j)

)

Xi,(k,j) = g
ri,(k,j)

Yi,(k,j) =

{

(hA.hS)
ri,(k,j) .Gi,(k,j) if j = δk

(hA.hS)
ri,(k,j) otherwise

// where Gi,(k,j) = r̂i,(k,j)G
ri,(k,j)
i represents the Yes mark, Gi = g

xBi
y

Bi outputs the encrypted bid-vector 〈Xi, Yi〉 corresponds to the price list P

assume that QRM = {S1, S2, . . . , St}. Sealer Si ∈ QRM configures his seal-
ing key as xSi

= fi(0) where fi(x) = λijxi is a polynomial of degree t. λij
3 is

the Lagrange interpolation coefficient for the sealer Si.
• After configuring the QRM each sealer Si ∈ QRM publishes his public key

for sealing as hSi
= gxSi . We denote hS/S1,S2,...,Sr

= hS(hS1hS2 . . . hSr
)−1.

Intuitively hS/S1,...,St
= 1.

• gy ∈ Z
∗
p be an element of order q indicates the YES Mark.

• Let the maximum estimated price of the item is lesser the 10d. Auctioneer
publishes the price list P consisting of d ordered vectors. We denote P :=
Pd−1,Pd−2, . . . ,P0 where every Pi consists of 10 elements and denoted as
Pi := Pi9, Pi8, . . . , Pi0. The element Pij represents the value j × 10i. Thus the
decimal value of δd−1δd−2 . . . δ0 has an equivalent representation as

∑d−1
i=0 Piδi .

Figure 1 describes the bid-vector representation of the decimal value (bid
value).

0

5

3

7

0

5

7

0

7

3

7

3

1

7
0
0
0

3

7
3
0
0

5

3

7
3
5
0

0

5

3

7

7
0
0
0

7

3

3

7
3
0
0

1

7

3

3

1

7350

7331

102

101

100

P3 opening P2 opening P1 opening

103

102

101

100

103

Bidding price on a
Price List

B1’s bid

B2’s bid

Fig. 1. Opening of two bid-vectors B1 : 7350 and B2 : 7331. During the opening of P1

the bid-vector B1 is extracted while B2 is excluded as P1,5 appears before P1,3.

3 Lagrange interpolation coefficient for the ith sealer is λij =
∏
i�=j

1≤j≤t

x−j
i−j

.

424 J. Howlader et al.

Algorithm 2. Sealing operation
begin

if (Sl=1 is the first Sealer ∈ QRM) then
Sl receives 〈Xi, Yi〉 and computes 〈XSli

, YSli
〉 as follows

for k = d − 1 to 0 do
for j = 9 to 0 do

Sl randomly selects rSli,(k,j), r̂Sli,(k,j) ∈R Zp and computes

XSli,(k,j) =g
rSli,(k,j)Xi,(k,j)

YSli,(k,j) =r̂Sli,(k,j).h
rSli,(k,j)
A .h

rSli,(k,j)
S/Sl

.(Xi,(k,d))
−xSl .Yi,(k,d)

(1)

// We denote G� =

{

Gi,(k,j) if Bi has marked P(k,j) with YES

1 otherwise

Sl=1 forwards the partially sealed bid-vector 〈XSli
, YSli

〉 corresponds to 〈Xi, Yi〉
to the next Sealer

else if (Sl �=1 is the intermediate Sealer ∈ QRM) then
Sl receives the partially sealed bid-vector from Sl−1 as 〈XSl−1i, YSl−1i〉 and

computes 〈XSli
, YSli

〉 as follows

for k = d − 1 to 0 do
for j = 9 to 0 do

XSli,(k,j) =g
rSli,(k,j) .XSl−1i,(k,j)

YSli,(k,j) =r̂Sli,(k,j).h
rSli,(k,j)
A .(hS/S1,...,Sl

)
rSli,(k,j) .

(XSl−1i,(k,d))
−xSl .YSl−1i,(k,d)

(2)

if (Sl=t is the last sealer ∈ QRM) then
Sl=t publishes the sealed bid-vector 〈XSti, YSti〉 on the BB

else
Sl forwards the partially sealed bid-vector to the next sealer

4 Receipt-Free Sealed-Bid Auction Mechanism

The receipt-free sealed-bid auction mechanism is consisting of four phases: bid-
ding, sealing, opening and trading.

Bidding: Every bidder Bi ∈ B determines his bidding price and constructs the
encrypted bid-vector as follows:

– Let δd−1δd−2 . . . δ0 (0 ≤ δi ≤ 9) be the decimal representation of the bidding
price. Bi executes Algorithm 1 to output the encrypted bid-vector 〈Xi,Yi〉.

– Bi marks the price indices Pkδk (0 ≤ k ≤ d − 1) with Yes while encrypting
the price list P.

Bi constructs a fake encrypted bid-vector as 〈X̄i, Ȳi〉 and forwards the deniable
cipher Enc〈X̄i,Ȳi〉(〈Xi,Yi〉, pkCRM , rt) to the CRM. CRM accumulates a batch
of deniable ciphers and anonymously delivers the batch to the QUAL.

Sealing: A quorum of sealers (denoted as QRM ⊂ QUAL), possessing the
public key as hS , performs the sealing operation. The encrypted bid-vectors are
processed by at least t > k/2 sealers from the QRM . Every sealer Sl ∈ QRM

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 425

executes the Algorithm 2 and outputs the partially sealed bid-vector. During
sealing, every sealer Sl engraves his secret randomness, rSli,(k,j) & r̂Sli,(k,j) and
nullifies his key component, hSl

(in Algorithm 2, Eqs. 1 and 2) from the partially
sealed bid-vector. After t sealing operation sealer St publishes the sealed-bid on
the BB.

Bid Verification (BV): The inherent property of receipt-freeness is the inabil-
ity to prove to anyone how a bidder has bid. However, receipt-freeness allows the
bidder to verify the correctness of the sealing operation. Algorithm3 describes
the BV mechanism. The BV does not reveal the secret value i.e., even the coercer
observes the process of BV, bidder can execute the BV correctly without reveal-
ing any partial information related to his secret. BV is done with respect to the
cumulative response RStik computed by every sealers.

Opening: At the schedule Opening, bids are opened. Bids are opened in decreas-
ing order (starting from the highest price). We define two subprocesses: Evalu-
ating Yes Mark (EYM) for the price vector Pk and Extracting Bids having Yes
Mark (EBY) on price index Pk,j .

– EYM: Auctioneer and sealers jointly execute the process. EYM takes input a
price vector Pk and output the highest price index Pk,j that contains some
Yes Marks. Algorithm 4 describes the process.

– EBY: After EYM outputs an index Pk,j , EBY extracts and outputs a list of
bids (sealed-bids) that contains the sealed-bids having Yes Marks on the Pk,j

index.

The opening phase is initiated with the construction of the list L containing
all the sealed bids followed by invoking the subprocess EY M(L,Pd−1). EY M
will output the price index Pd−1,wd−1 and the list Ld−1 containing those sealed
bids which possess Yes Mark on the index Pd−1,wd−1 . Auctioneer sets the win-
ning price as w = wd−1xxx. Auctioneer subsequently iterates the subprocess
EY M(Lk,Pk) (for k = d−2, . . . 0) and finally the winning price w = wd−1 . . . w0

and the list of winning bids L0 is determined.

Trading: The auction mechanism determines the winning bids, but not the
winner. The winning bidder claims his winning and executes a zero-knowledge
(ZK) protocol with the auctioneer to substantiate his winning. Let Bi be the
winning bidder and w = wd−1 . . . w0 be the winning price. Bidder Bi proves Gi

and hBi
have common exponent over gy and g respectively.

For k = d − 1, . . . 0, Bi discloses all r̂i,(k,wk) and proves that Xi,(k,wk) and
Gi,(k.wk).(r̂i,(k,wk))

−1 have common exponents over g and Gi respectively.
The details of the ZK protocol is presented in the Appendix.

5 Security Analysis

In this section we present the security properties of the proposed scheme:

426 J. Howlader et al.

Receipt-Freeness: If A is an auction protocol and simulated as

A
�
=Bid(∀iBi, bi, rBi

)|Seal(∀tSt, rSt
, r̂St

)|out(sbi)|
Rev(Bc, rBc

)|!Rev(∃hSh, rSh
, r̂Bh

)|Rev(∀tSt, rSt
, r̂St

)

Algorithm 3. Bid Verification
begin

for ∀Sl ∈ QRM do
if (Sl=1 is the first Sealer ∈ QRM) then

Sl=1 computes the response-vector RSli,k
as follows

for k = d − 1 to 0 do

RSli,k
=
(9
∏

j=0
r̂Sli,(k,j)

)

Sl=1 appends the response-vector with the partially sealed bid-vector as
〈XSli,(k,−), YSli,(k,−)〉RSli,k

(for 0 ≤ k ≤ d − 1) and forwards.

else if (Sl �=1 is the intermediate Sealer ∈ QRM then
Sl receives 〈XSl−1i,(k,−), YSl−1i,(k,−)〉RSl−1i,k and computes his

response-vector RSlik
as follows

for k = d − 1 to 0 do

RSli,k
=
(9
∏

j=0
r̂Sli,(k,j)

)

.RSl−1i,k =
(9
∏

j=0

l
∏

t=1
r̂Sti,(k,j)

)

Sl overwrites the preceding response-vector RSl−1i,k with his response-vector

as 〈XSli,(k,−), YSli,(k,−)〉RSli,k
(for 0 ≤ k ≤ d − 1) and forwards.

if Sl=t is the final sealer ∈ QRM then
St publishes 〈XSti,(k,−), YSti,(k,−)〉RSti,k on BB

// After all sealers compute their responses, Auctioneer blindly signs the response
as follows

for ∀i sealed-bid vectors 〈XSti,(k,−), YSti,(k,−)〉RSti,k Auctioneer computes do
for k = d − 1 to 0 do

Xi,k =

(

9
∏

j=0
XSti,(k,j)

)xA

= h

9
∑

j=0

(

ri,(k,j)+
t
∑

l=1
rSli,(k,j)

)

A

Auctioneer appends the blind signature with the sealed bid-vectors as
〈XSti,(k,−), YSti,(k,−)〉RSti,k,Xi,k (for 0 ≤ k ≤ d − 1) and publishes on BB.

// After Auctioneer publishes the blind signatures, Bidder Bi verifies his sealed
bid as follows

for l = 1 to m do
Bidder Bi set V EFY = TRUE
for k = d − 1 to 0 do

if
(9
∏

j=0
YStl(k,j)! = RStlk.Xlk.

9
∏

j=0
Gi,(k,j)

)

then

V EFY = V EFY ∩ FALSE

if (V EFY == TRUE) then
Bi verifies and RETURN

if V EFY == FALSE then
Bi raises a complain

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 427

where every bidder Bi encrypts his bid bi with the randomness rBi
, every sealer

St seals the bids with randomness rSi
, r̂Si

and produces the sealed bids sbi,
thereafter, the coerced bidder Bc and all sealers except the honest sealer Sh

reveal their secrets. The protocol still conceals the private values. We show that,
adversary who may compute buy could not resolve the secret as the private
values are

YStc,(k,j).
(t∏

l=1l �=h

r̂Slc,(k.j).h

(
rc,(k,j)+

t
∑

l=1l �=h

rSlc,(k,j)

)

A

)−1

= r̂Shc,(k,j).G�

428 J. Howlader et al.

blinded with the honest bidder’s randomness (r̂Shc(k,j)). Similarly, bidder Bc

could flip the Yes-to-No and vice-versa. The proposed mechanism ensures
receipt-freeness as adversary could not distinguish between a situation where
Bc reveals his true secret and the situation where he produces fake secret.

Correctness: The auction mechanism declares the winning price and keeps all
the loosing bids secret. The correctness defines the ability to verify the outcome
of the auction by any entity. Let auctioneer declared w = wd−1wd−2 . . . w0 as the
winning price. Therefore during opening the subprocesses ProcS() and ProcA()
have published all VSi(k,j) and V(k,j) & Y(k,j) (0 ≤ k ≤ d − 1, 9 ≥ j ≥ wk) on
BB on the BB. Anyone who wants to verify the correctness of the auction result
can examine the result with the information published on the BB.

Nonrepudiation: We assume that bidder bids honestly. The opening of bids
only determines the winning price and the list of winning bids, but winner is
not determined. Bidder executes the ZK protocol to substantiate his winning.
However, the odd may happen, when the winning bidder does not respond. We
present the mechanism to identify the winning bidder while he has not responded.
Let w = wd−1wd−2 . . . w0 be the winning price and L0 be the list of sealed-bids
extracted as the winning bid(s). Let 〈XSti,YSti〉 ∈ L0 be an winning bid. In the
opening phase, procedure ProcSwap() computes the Yes Mark on every Pk,wk

of the winning bid. Let G = {Gi(k,wk) | 0 ≤ k ≤ d − 1} be the set of Yes Marks
computed by ProcSwap() during opening. Now auctioneer has to identify the
bidder(s) who had bid with the above set of Yes Marks. Auctioneer initiates the
following:

– Auctioneer asks all sealer Sl ∈ QRM to publish the initial encrypted price-
vectors on BB. Thus all 〈Xi,Yi〉 (for i = 1, 2, . . . m) appears on the BB.

– Auctioneer asks the bidders to substantiate their encrypted bids for every
Pk,wk

indices. That is, all the losing bidder Bi will show that:
1. he knows the discrete logarithm of Xi(k,wk) (say ri(k,wk)) and
2. shows that Yi(k,wk) = (hShA)ri(k,wk) .
However, the winning bidder Bw will fail to establish the second as he had
computed Yw(k,wk) = (hShA)rw(k,wk) .Gw(k,wk).

6 Performance

The proposed scheme improves the performance by reducing the bandwidth of
the receipt-free bids. The existing receipt-free auction mechanisms e.g. [10,18,28]
require huge bandwidth to communicate the encrypted bids. Table 1 presents the
bandwidth requirement for various auction mechanisms. In this section we ana-
lyze the bandwidth requirement, communication overhead and computational
complexity of the proposed mechanism. Let L, n and m represent the number of
bidding price, number of auctioneer/sealer and number of bidder respectively.

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 429

Table 2. Number of message exchanges in various auction mechanisms

No. of
Rounds

Abe &
Suzuki [18]

Huang
et al. [30]

proposed
mechanism

No. of
rounds)

Chen
et al. [28]

Her
et al. [29]

During
Bidding

nmL nm(log L) m(log10 L) During
Bidding

at least mnL at least mn

During
Opening

t ≥ n/2 t ≥ n/2 worst case
10d and
dm

During
Opening

at most L at most L

Table 3. Time latency for Bidding and Sealing operation

Howlader et al. [10] Proposed mechanism

Key size (bits) Bidding time in sec. Sealing time in sec. Bidding time in sec. Sealing time in sec.

Price list length Price list length Price list length Price list length

5,000 10,000 5,000 10,000 5,000 10,000 5,000 10,000

512 14 29 37 75 0.22 0.22 0.48 0.48

1024 98 195 248 495 1.48 1.48 2.76 2.76

1536 308 615 766 1515 4.63 8.45 5.69 10.24

We represent the price list as a d-tuples of constant length ordered-vectors.
A price list of d vectors is capable to represent the value up to 10d. Reduction
in the size of price list decreases the bandwidth requirement and computational
overhead. We estimate bandwidth of every receipt-free bid is O(log10 L).

Moreover, The proposed mechanism defines less number of message exchange
between the entities. Table 2 presents the number of message exchanges required
to execute the proofs & verification. We also present the average time latency
of bidding and sealing operation with varying key size and number of bidding
price. Table 3 shows the comparison of time latency between to mechanisms.

7 Conclusion

The proposed auction scheme attempts to solve two existing problems; firstly,
it provides receipt-freeness without any untappable channel and secondly, it
ensures uncoerciveness even in the presence of colluding authorities. The mecha-
nism guarantees uncoerciveness even all the sealer except one are dishonest. No
prior registration of bidder is required. So any one who possesses the required
key may participate in the auction. Bidders are not necessarily be present dur-
ing opening i.e. ensures ‘bid-and-go’ concept. The proposed mechanism improves
the performance and efficiency by reducing the bandwidth and communication
round.

430 J. Howlader et al.

Appendix

Proof of Sealing

Sealer Sl receives the partially sealed bid-vector 〈XSl−1i,YSl−1i〉 from the preced-
ing sealer Sl−1, selects r̂Sli,(k,j), rSli,(k,j) ∈R Zp randomly, performs the sealing
operation and forwards the partially sealed bid-vector to the next sealer Sl+1.
Figure 2 describes the process. The sealing operation of the Sl is as follows:

QRM

〈XS2i,YS2i〉〈XS1i,YS1i〉
Bi

〈Xi,Yi〉 〈XSti,YSti〉 BBS2 StS1

Fig. 2. Sequence of sealing operation

XSli,(k,j) = grSli,(k,j) .XSl−1i,(k.j)

= grSli,(k,j) .g
(ri,(k,j)+

l−1
∑

t=1
rSti,(k,j))

= g
(ri,(k,j)+

l
∑

t=1
rSti,(k,j))

YSli,(k,j) = r̂Sli,(k,j).h
rSli,(k,j)

A .(hS/S1,...Sl
)rSli,(k,j) .

(
XSl−1i,(k,j)

)−xSl .YSl−1i,(k,j)

= r̂Sli,(k,j).h
rSli,(k,j)

A .(hS/S1,...Sl
)rSli,(k,j) .

l−1∏

t=1

r̂Sti,(k,j).h
(ri,(k,j)+

l−1
∑

t=1
rSti,(k,j))

A .(hS/S1...Sl
)
(ri,(k,j)+

l−1
∑

t=1
rSti,(k,j))

.G�

=
l∏

t=1

r̂Sti,(k,j).h
(ri,(k,j)+

l
∑

t=1
rSti,(k,j))

A .(hS/S1...Sl
)
(ri,(k,j)+

l
∑

t=1
rSti,(k,j))

.G�

After t sealing operation the bid-vector is reduced to

XSti,(k,j) = g
(ri,(k,j)+

t
∑

l=1
rSli,(k,j))

YSti,(k,j) =
t∏

l=1

r̂Sli,(k,j).h
(ri,(k,j)+

t
∑

l=1
rSli,(k,j))

A .(hS/S1...St
)
(ri,(k,j)+

t
∑

l=1
rSli,(k,j))

.G�

=
t∏

l=1

r̂Sli,(k,j).h
(ri,(k,j)+

t
∑

l=1
rSli,(k,j))

A .G�

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 431

Algorithm 6. ZK1(Bi, Gi, gy, hBi
, g)

begin

Bidder Bi selects a, b ∈R Zp and computes α = ga, β = gb
y. Bidder Bi sends α and β to

the auctioneer
Auctioneer selects c ∈R Zp and sends to Bi

Bidder Bi computes r = a + cxBi
and sends to the auctioneer

Auctioneer verifies

g
r ?
= α.h

c
Bi

(3)

g
r
y

?
= β.G

c
i (4)

if (relation 3 &4 are TRUE) then
Returns TRUE

Algorithm 7. ZK2(Bi, QUAL,w)
begin

Bidder Bi compute R̂i =
d−1
∏

k=0
r̂i,(k,wk) and sends to the auctioneer

All sealer Sl ∈ QRM computes R̂Sl
=

d−1
∏

k=0
r̂Sli,(k,wk) and RSl

=
d−1
∑

k

rSli,(k,wk) and

sends to the auctioneer
Auctioneer computes

Xi =

d−1
∏

k=0

XSti,(k,wk).
(

g

t
∑

l=1
RSl
)−1

= g

d−1
∑

k=0
ri,(k,wk)

G =

d−1
∏

k=0

Gi,(k,wk).
(

R̂i

)−1
= G

d−1
∑

k=0
ri,(k,wk)

i

Bidder Bi and auctioneer execute ZK1(Bi,G, Gi,Xi, g)

ZK Protocol

Zero-Knowledge (ZK) protocol [7] is a tool by which the prover can prove to
another party (the verifier) that a function has been correctly computed, without
revealing the secret parameters of the computation. The auction mechanism uses
the ZK protocol to determine the winning bidder. Let w = wd−1 . . . w0 be the
winning price and Bi responds as the winner. The bidder Bi have to prove the
following:

– Bi publishes Gi = g
xBi
y and proves that Gi and hBi

having common exponent
(xBi

) over gy and g respectively, without disclosing the secret xBi
. Algorithm 6

describes the proof.
– For k = 0, 1, . . . d− 1, Bi publishes the product of all r̂i,(k,wk) and proves that

he knows the common exponents over Xi,(k,wk)s and Gi,(k,wk)s. The proof
would not be carried on individual items but exercised on the product of all
Xi,(k,wk) (for k = 0, 1, . . . d − 1). The Algorithm 7 describes the proof.

432 J. Howlader et al.

Does ProcSwap() vulnerable

The subprocess EBY () is a recursive process that partitions the list L into two
halves and invokes the ProcSwap(). Figure 3 shows the process of partitioning

swap

T1

T1

T2

T2

stack of 8 sealed bits

reduced stack of
4 sealed bids

Fig. 3. Process of EBY ()

ans swapping operation.
EBY () divides the list
into some stacks of
sealed bids. Every stack
contains only two sealed
bids where at least one
of them must contains
the Yes Mark on the
Pk,wk

index. However,
ProcSwap() procedure
takes a stack (size 2)
and demands additional

information to determine the bid containing the Yes Mark. We claim that the
additional information that is published in order to execute ProcSwap() does
not compromise the receipt-freeness property.

Lemma 1. Let a, b, c & d ∈ Zp such that;

a.b = k1 c.d = k2

a.c = k3 b.d = k4

Though the values of k1, k2, k3 & k4 are known, it is computationally infeasible
to find the unique solution of a, b, c & d.

Proof. In the above set of equation, any one of the equation is derivable from
the other three equations. Let a.b = k1, c.d = k2 and a.c = k3 are given,
the fourth equation can be derivable from the given three equations, that is,
b.d = (a.b).(c.d).(a.c)−1 = k1.k2.k

−1
3 . Therefore the above system is effectively

consists of three equations with four unknown variables. Henceforth infeasible
to determine the unique solution of the a, b, c & b. If p is sufficiently big any
random search is inefficient to get the solution of a, b, c, & d �.

Let T1 be a stack containing two bids B1 and B2. Also let T2 be another stack
containing two void bids V1 and V2. Therefore the BB already contains the values

k1 = r̂S1B1,(k,j).r̂S1B2,(k,j)

k2 = r̂S1V1,(k,j).r̂S1V2,(k,j)

(The procedure ProcS(T1, S1, Pk,j) and ProcS(T2, S1, Pk,j) publish the values).
The call to the procedure ProcSwap(T1,T2) demands

k3 = r̂S1B1,(k,j).r̂S1V2,(k,j)

k4 = r̂S2V1,(k,j).r̂S1V2,(k,j)

Knowing the values k1, k2, k3 & k4 adversary would not able to resolve the secrets
r̂S1B1,(k,j) and r̂S1B2,(k,j) without better than any random guess.

Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment 433

References

1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
2. Lee, B., Kim, K.: Receipt-free electronic voting scheme with a tamper-resistant

randomizer. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 389–
406. Springer, Heidelberg (2003)

3. Bárász, M., Ligeti, P., Mérai, L., Nagy, D.A.: Anonymous sealed bid auction pro-
tocol based on a variant of the dining cryptographers’ protocol. Periodica Math.
Hung. 65(2), 167–176 (2012)

4. Boyd, C., Mao, W.: Security issues for electronic auctions. HP Laboratories Tech-
nical report, Hewlett-Packard Laboratories (2000)

5. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science, SFCS ’82, pp. 160–164. IEEE Computer Society
(1982)

6. Wu, C.-C., Chang, C.-C., Lin, I.-C.: New sealed-bid electronic auction with fairness,
security and efficiency. J. Comput. Sci. Technol. 23(2), 253–264 (2008)

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

8. Gao, C., an Yao, Z., Xie, D., Wei, B.: Electronic sealed-bid auction with inco-
ercinility. In: Wan, X. (ed.) Electronic Power Systems and Computers. LNEE, vol.
99, pp. 47–54. Springer, Heidelberg (2011)

9. Xiong, H., Qin, Z., Zhang, F., Yang, Y., Zhao, Y.: A sealed-bid electronic auction
protocol based on ring signature. In: ICCCAS, pp. 480–483. IEEE (2007)

10. Howlader, J., Ghosh, A., Pal, T.D.R.: Secure receipt-free sealed-bid electronic auc-
tion. In: Ranka, S., Aluru, S., Buyya, R., Chung, Y.-C., Dua, S., Grama, A., Gupta,
S.K.S., Kumar, R., Phoha, V.V. (eds.) IC3 2009. CCIS, vol. 40, pp. 228–239.
Springer, Heidelberg (2009)

11. Howlader, J., Kar, J., Mal, A.K.: Coercion resistant MIX for electronic auction.
In: Venkatakrishnan, V., Goswami, D. (eds.) ICISS 2012. LNCS, vol. 7671, pp.
238–248. Springer, Heidelberg (2012)

12. Howlader, J., Basu, S.: Sender-side public key deniable encryption scheme. In:
ARTCom, pp. 9–13. IEEE Computer Society (2009)

13. Howlader, J., Nair, V., Basu, S., Mal, A.K.: Uncoercibility in e-voting and e-
auctioning mechanisms using deniable encryption. IJNSA 3(2), 97–109 (2011)

14. Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction
service. IEEE Trans. Softw. Eng. 22(5), 302–312 (1996)

15. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

16. Kikuchi, H., Hakavy, M., Tygar, D.: Multi-round anonymous auction protocols.
Inst. Electron. Inf. Commun. Eng. Trans. Inf. Syst. E82-D(4), 769–777 (1999)

17. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

18. Abe, M., Suzuki, K.: Receipt-free sealed-bid auction. In: Chan, A.H., Gligor, V.D.
(eds.) ISC 2002. LNCS, vol. 2433, pp. 191–199. Springer, Heidelberg (2002)

19. Jakobsson, M.: A practical mix. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 448–461. Springer, Heidelberg (1998)

20. Noar, M., Pinkas, B., Sumner, R.: Privacy preserving auction and mechanism
design. In: ACM Conference on Electronic Commerce, pp. 129–139. ACM (1999)

434 J. Howlader et al.

21. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

22. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

24. Rjas̆ková, Z.: Electronic voting schemes. Master’s thesis, Department of Computer
Science Faculty of Mathematics, Physics and Informatics Comenius University,
Bratislava (2002)

25. Goldwasser, S., Micali, S.: How to play any mental game or a completeness theorem
for protocols with honest majority. In: 19th Annual ACM Symposium on Theory
of Computing, pp. 365–377. ACM (1982)

26. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

27. Ham, W., Kim, K., Imai, H.: Yet another strong sealed-bid auctions. In: SCIS, pp.
11–16 (2003)

28. Chen, X., Lee, B., Kim, K.: Receipt-free electronic auction schemes using homo-
morphic encryption. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 259–273. Springer, Heidelberg (2004)

29. Her, Y.-S., Imamoto, K., Sakurai, K.: Receipt-free sealed-bid auction based on
mix-net and pseudo ID (2004)

30. Huang, Z., Qiu, W., Guan, H., Chen, K.: Efficient receipt-free electronic auction
protocol. In: SITIS, pp. 1023–1028. IEEE Computer Society (2007)

Revocable Group Signatures with Compact
Revocation List Using Accumulators

Toru Nakanishi(B) and Nobuo Funabiki

Department of Communication Network Engineering, Okayama University,
Okayama City, Japan

{nakanisi,funabiki}@cne.okayama-u.ac.jp

Abstract. Group signatures allow a group member to anonymously sign
a message on behalf of the group. One of the important issues is the
revocation, and lots of revocable schemes have been proposed so far. The
scheme recently proposed by Libert et al. achieves that O(1) or O(logN)
efficiency except for the revocation list size (also the revocation cost), for
the total number of members N and the number of revoked members R.
However, since a signature is required for each subset in the used subset
difference method, the size is about 900RBytes in the 128-bit security.
In the case of R = 100,000, it amounts to about 80 MB. In this paper,
we extend the scheme to reduce the revocation list (also the revocation
cost). In the proposed scheme, an extended accumulator accumulates T
subsets, which is signed for the revocation list. The revocation list size
is reduced by 1/T , although the public key size, membership certificate
size and the cost of a witness computation needed for signing increase
related to T .

Keywords: Anonymity · Group signatures · Revocations · Accumula-
tors

1 Introduction

The group signature scheme [13] allows a group member to anonymously sign
a message on behalf of the group. In the group signature scheme, two types of
trusted parties participate: A group manager (GM) has the authority to add a
user to the own group. An opener can identify the signer from a signature. One of
important issues in the group signature schemes is a revocation that the signing
capability of a user is revoked. The revocation may happen, when the user leaves
the group voluntarily or the account is banned due to the illegal usage, etc.

Lots of revocable group signature schemes have been proposed (e.g., [6–8,10–
12,16,17,19,20]). Hereafter, let N be the total number of group members, and
R be the number of revoked members. In the early scheme [7], the signature
size is O(R) (also, the costs of signing and verification). Then, the accumulator-
based scheme has been proposed in [12], which is followed in [11], to achieve

This work was supported by JSPS KAKENHI Grant Number 25330153.

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 435–451, 2014.
DOI: 10.1007/978-3-319-12160-4 26

436 T. Nakanishi and N. Funabiki

the constant-size signature with the constant verification costs. However, each
member has to update a secret key (a witness for the accumulator) using the
revocation data, which implies that signing costs is O(R) in the worst case.

In [19], revocable schemes with the costs of constant signing and verifica-
tion have been proposed. The demerit of the schemes is the long public key
size. The basic scheme needs O(N) size, and the extended one needs O(

√
N) in

exchange for the extra signing cost. Recently, in [17], Libert et al. proposed an
elegant scalable scheme using Naor et al.’s broadcast encryption framework [21].
This scheme achieves the constant verification cost, and the polylogarithmic
public and secret key sizes. Finally, the same authors proposed the extended
version with O(1) secret key size [16], as achieving O(1) signature size, O(1)
signing/verification costs and O(log N) public key size.

In this paper, we consider reducing the revocation list size. In [16], to indicate
the revoked members, O(R) size is needed for the revocation list. Furthermore,
in the list, a signature is required for each subset in the used subset difference
(SD) method, and the number of the signatures is bounded by 2R − 1. The
signature is an AHO signature [2], which needs 7 elements of a bilinear group.
Assuming 128-bit security, the signature size is 448 Bytes. Thus, the revocation
list size is about 900R Bytes or more. In an example of R = 10,000, the size
amounts to 8 MB or more, and in case of R = 100,000, it becomes 80 MB or
more. Note that the signer has to fetch all data of the latest revocation list every
revocation epoch, as noted in [3]. This is because fetching a part of the list can
reveal the information to trace the signer. Therefore, the large data may cause
a delay in mobile environments.

In this paper, we propose a revocable group signature scheme with a compact
revocation list as the extension of the state-of-the-art scheme [16]. In our scheme,
using an extended accumulator based on [4], GM accumulates T subsets in
the SD method, and signs the accumulated value. This is why the number of
signatures is reduced by 1/T . The revocation cost is similar. In case of R =
100,000, the size of the signature data including the accumulated value is reduced
to 1,000 KB if T = 100. The compensation is increasing the public key size, the
membership certificate size, and the cost of a witness computation needed for
signing. Nevertheless, in case of T = 100, the public key size is 2,500 KB and
the membership certificate size is 13 KB. In real applications, the public key
and the certificate are not often distributed. On the other hand, the revocation
list has to be distributed every revocation epoch. Thus, we consider that it
is sufficiently practical to decrease the revocation list size while increasing the
public key and the membership certificate sizes. The witness computation cost
is about 120 exponentiations in case of T = 100. This cost is comparable to the
computation cost of commitments in the original signing. This computation is
needed only once every revocation epoch. As shown in Sect. 5, we can reduce the
cost by computing only the modified parts from the previous epoch. Therefore,
we consider that the extra costs are not a serious issue.

Revocable Group Signatures with Compact Revocation List 437

Due to the page limitation, the preliminary section reviewing the bilinear
map and utilized primitives is in AppendixA.

2 Extended Accumulator

In [11], an efficient pairing-based accumulator is proposed. The accumulator is
generated from a set of values, and we can verify that a single value is included
in the set. In [22], the extended version is proposed, where we can verify that
multiple values are included in the specified set, all at once. In [4], another
extension is proposed, where we can verify that, for a set U , for all multiple
sets V1, . . . , VT , a value from U is included in each Vt, i.e., U ∩ Vt �= ∅, all at
once. This is applied to the verification for CNF formulas on attributes in the
anonymous credential system of [4]. For a CNF formula (a1 ∈ U ∨ · · · ∨ aL′ ∈
U) ∧ (b1 ∈ U ∨ · · · ∨ bL ∈ U) · · · , setting V1 = {a1, . . . , }, V2 = {b1, . . .}, . . ., we
can verify the formula by checking U ∩ Vt �= ∅ for all t.

This paper furthermore extends the accumulator in [4], since our group signa-
ture scheme also needs the CNF-type verification. The scheme requires the ver-
ification of the logical formula as (at1 ∈ U ∧ · · · ∧ atLt

∈ U) ∧ (bt1 ∈ U ∨
· · · ∨ btL ∈ U) for some t, given Vt = {at1, . . . , atLt

}, Ṽt = {bt1, . . . , btL} for all
1 ≤ t ≤ T . The length of the AND relation is variable, but the length of the
matched AND relation has to be hidden in the group signature scheme. Thus, we
introduce a dummy parameter SP. The other point of extension is to unbind the
limitation of the number of given sets (V1, Ṽ1), . . . , (VT , ṼT), i.e., 2T . In the previ-
ous accumulator, the number is bounded by the order p of the bilinear groups.
In our construction, for any K,D s.t. T = K · D, the target sets are divided
to ((V1,1, Ṽ1,1), . . . , (V1,D, Ṽ1,D)), . . . , ((VK,1, ṼK,1), . . . , (VK,D, ṼK,D)). Using ran-
domized public parameters (gk,1, . . .) for each 1 ≤ k ≤ K, although D is bounded
by p, T = K · D becomes unbounded.

2.1 Proposed Construction

For all 1 ≤ k ≤ K and all 1 ≤ d ≤ D, define Vk,d and Ṽk,d as subsets of {1, . . . , n}.
Define V = {(Vk,d, Ṽk,d)}k=1,...,K,d=1,...,D. Let U be a subset of {1, . . . , n} satis-
fying U ∩Vk̃,d̃ = Vk̃,d̃ and U ∩ Ṽk̃,d̃ �= ∅ for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K.
In this construction, we assume that the maximum of |Vk,d| and |Ṽk,d| is ζ for all
1 ≤ k ≤ K and all 1 ≤ d ≤ D. In addition, we assume (U ∩Vk,d) = (U ∩Ṽk,d) = ∅
for all 1 ≤ k ≤ K and all 1 ≤ d ≤ D except some k′ and d′. If U ∩Vk̃,d̃ = Vk̃,d̃ and
U ∩ Ṽk̃,d̃ �= ∅, then it implies k′ = k̃ and d′ = d̃. These assumptions hold in our
application to the revocable group signatures. We introduce mutually different
special elements SPk,d ∈ N for all k, d such that SPk,d /∈ Vk′,d′ for all k′, d′. We
assume that SPk̃,d̃ ∈ U but SPk,d /∈ U for any k �= k̃, d �= d̃.

AccSetup: This is the algorithm to output the public parameters. The inputs
are the security parameter l and n,K,D, {SPk,d}1≤k≤K,1≤d≤K , ζ. Select bilin-
ear groups G, T with a prime order p > 2l and a bilinear map e. Select

438 T. Nakanishi and N. Funabiki

g ∈R G. Select γ, η1, . . . , ηK ∈R Zp, and compute g1 = gγ1
, . . . , gn =

gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, and gk,1 = gηk

1 , . . . , gk,n = gηk
n , gk,n+2 =

gηk

n+2, . . . , gk,2n = gηk

2n zk = e(g, g)ηkγn+1
for all 1 ≤ k ≤ K. For all 1 ≤ d ≤ D,

compute cd = (ζ+1)2d−2, c̃d = (ζ+1)2d−1 and set C = ((c1, c̃1), . . . , (cD, c̃D)).
We assume that (ζ+1)cD < p. Publish n,K,D, {SPk,d}1≤k≤K,1≤d≤K , ζ, C, p,
G, T , e, g, (g1, . . . , gn, gn+2, . . . , g2n), {gk,1, . . . , gk,n, gk,n+2, . . . , gk,2n, zk}K

k=1

as the public parameters.
AccGen: This is the algorithm to compute the accumulator using the public

parameters. The accumulator accV of V is computed as

accV =
∏

1≤k≤K

∏

1≤d≤D

((
∏

j∈Vk,d

gk,n+1−j)
cd · (

ζ−|Vk,d|∏

j=1

gk,n+1−SPk,d)cd · (
∏

j∈Ṽk,d

gk,n+1−j)
c̃d).

AccWitGen: This is the algorithm to compute the witness that U ∩Vk̃,d̃ = Vk̃,d̃

and U ∩ Ṽk̃,d̃ �= ∅ for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K, using the
public parameters. Given U , V, and the accumulator accV , the witness is
computed as

W =
∏

i∈U

∏

1≤k≤K

∏

1≤d≤D

((

j �=i∏

j∈Vk,d

gk,n+1−j+i)
cd · (

ζ−|Vk,d|,i�=SPk,d∏

j=1

gk,n+1−SPk,d+i)
cd ·

(

j �=i∏

j∈Ṽk,d

gk,n+1−j+i)
c̃d).

Furthermore, the auxiliary parameters are set as k̃, d̃, δk̃,d̃ = |U ∩ Ṽk̃,d̃|.
AccVerify: This is the algorithm to verify that U ∩Vk̃,d̃ = Vk̃,d̃ and U ∩ Ṽk̃,d̃ �= ∅

for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K, using the witness, the auxiliary
parameters, and the public parameters. Given accV , U , W k̃, d̃ and δk̃,d̃,
accept if

e(
∏

i∈U gi, accV)
e(g,W)

= zk̃
ζcd̃+δk̃,d̃c̃d̃ , 1 ≤ δk̃,d̃ ≤ ζ. (1)

2.2 Security

We can show the correctness and the security. The proofs are shown in the full
paper.

Theorem 1. Assume that AccSetup, AccGen, AccWitGen correctly com-
pute all parameters. Then, AccVerify accepts U, accV ,W, k̃, d̃ and δk̃,d̃ that they
outputs.

Theorem 2. Under the n-DHE assumption, any adversary cannot output (U,V,
W , k̃, d̃, δk̃,d̃), on inputs n,K,D, {SPk,d}1≤k≤K,1≤d≤K , ζ, C, p, G, T , e, g, (g1, . . . ,
gn, gn+2, . . . , g2n), {gk,1, . . . , gk,n, gk,n+2, . . . , gk,2n, zk}K

k=1 s.t. AccVerify
accepts U, accV ,W, k̃, d̃, δk̃,d̃ but U ∩ Vk′,d′ �= Vk′,d′ or U ∩ Ṽk′,d′ = ∅ for some
k′, d′, assuming the following preconditions.

Revocable Group Signatures with Compact Revocation List 439

1. (U ∩ Vk,d) = (U ∩ Ṽk,d) = ∅ for all 1 ≤ k ≤ K and all 1 ≤ d ≤ D except
k = k′ and d = d′,

2. only SPk′,d′ is included in U (other SPk,d is not included).

3 Syntax and Security of Revocable Group Signatures

3.1 Syntax

Setup(l, N,K,D): Given the security parameter l ∈ N, the maximum number
of group members N ∈ N, and the efficiency parameters K,D ∈ N, this
algorithm outputs a group public key gpk, a GM ’s secret key gsk, and an
opener’s secret key osk. This algorithm initializes a public state St compris-
ing a set data structure Stusers = ∅ and a string data structure Sttrans = ε.

Join: This is an interactive protocol between the group manager GM and a
joining user Ui. The interactive Turing machines are denoted as JGM and JUi ,
respectively. After the protocol [JGM (l, St, gpk, gsk), JUi(l, gpk)] is executed,
JUi outputs a membership secret seci and a membership certificate certi. The
protocol is successful, JGM updates St by setting Stuser = Stuser ∪ {i} and
Sttrans = Sttrans‖〈i, transcripti〉.

Revoke(gpk, gsk, τ,Rτ): Given gpk, gsk, epoch τ and Rτ ⊂ {1, . . . , N} that is
the identities of revoked members at the epoch τ , this algorithm outputs the
revocation list RLτ .

Sign(gpk, τ, RLτ , certi, seci,M): Given gpk, τ, RLτ , the signing member’s certi,
seci, and the message M to be signed, this algorithm outputs ⊥ if i ∈ Rt or
the signature σ otherwise.

Verify(gpk, τ, RLτ , σ,M): Given gpk, τ, RLτ , the signature σ and message M ,
this algorithm outputs 1 if the signature is valid and not revoked for the
revocation list RLτ , or 0 otherwise.

Open(gpk, τ, RLτ , σ,M, St, osk): Given gpk, τ, RLτ , σ,M as in Verify, the state
St in Join, and the opener’s secret key osk, this algorithm outputs i ∈
Stusers ∪ {⊥} which means the identity of the signer of σ or a symbol of an
opening failure.

3.2 Security Model

The security of the revocable group signature scheme consists of security against
misidentification attacks, security against framing attacks, and anonymity. The
security against misidentification attacks requires that the adversary cannot
forge a signature that is identified to one outside the set of corrupted and non-
revoked members. The security against framing attacks requires that a signature
of an honest member cannot be computed by other members and even GM . The
anonymity captures the anonymity and the unlinkability of signatures. The for-
mal definitions are described in the full paper.

440 T. Nakanishi and N. Funabiki

4 A Revocable Group Signature with Compact
Revocation List and Constant Verification Time

4.1 Construction Idea

The proposed scheme is based on the previous scheme [16]. The approach of the
previous scheme is as follows. The subset cover framework with the SD method
is used. To each member, a leaf node v in the binary tree with the height L
for N = 2L is assigned. Every node in the tree is assigned to a unique number.
In Join, to the member, a membership certificate is issued, which is an AHO
signature on a public key and an accumulated data for the node numbers on the
path from the root to v, ID1, . . . , IDL. For the accumulation, they adopt a vector
commitment [18] that is similar to the accumulators. In Revoke, GM publishes
the revocation list, where each entry consists of accumulated values for primary
and secondary nodes in each Si in the SD method, and the AHO signature on
them and the current time epoch τ . In the group signature, to show that the
signer is not a revoked member, she proves

1. an AHO signature binds between τ and the primary node with number ˜IDi,φi

of level φi and the secondary node ˜IDi,ψi
of level ψi in an Si,

2. for IDφi
with level φi and IDψi

with level ψi in the membership certificate, it
holds that IDφi

= ˜IDi,φi
and IDψi

�= ˜IDi,ψi
.

The second relation means that the primary node ˜IDi,φi
is an ancestor of v

and the secondary node ˜IDi,ψi
is not, i.e., the subset Si includes v, which implies

that the member is not revoked due to the subset cover framework. In this app-
roach, an AHO signature is needed for each subset Si. Each signature needs long
data (448 Bytes in 128-bit security), and thus the revocation list becomes long
as R increases.

In our approach, to accumulate the revocation list, we adopt the extended
accumulator in Sect. 2. Although the same tree structure in the subset cover
framework is used, a different coding is used. In the tree, for the edge to the left
(resp., right) child in the depth j, use index (j, 0) (resp, (j, 1)). Then, for the leaf
v assigned to the member, let (1, x1), . . . , (L, xL) be the path from the root to the
leaf v, where x	 ∈ {0, 1}. Similarly, for the subset Si, let (1, si,1), . . . , (φi, si,φi

)
denote the path from the root to the primary root and let (1, si,1), . . . , (ψi, si,ψi

)
denote the path to the secondary root, where φi, ψi ∈ {1, . . . , L} and si,j ∈
{0, 1}. To prove the non-revocation, the signer prove that ((1, x1) = (1, si1)) ∧
· · · ∧ ((φi, xφi

) = (φi, sφi
)) (i.e., the primary node is an ancestor v) and ((φi +

1, xφi+1) �= (φi +1, sφi+1))∨· · ·∨ ((ψi, xψi
) �= (ψi, sψi

)) (i.e., the secondary node
is not an ancestor of v). The latter relation can be rewritten as ((φi +1, xφi+1) =
(φi + 1, sφi+1)) ∨ · · · ∨ ((ψi, xψi

) = (ψi, sψi
)).

Using the accumulator, we can prove the relations. Let T be the number of
accumulated Si. For T , given K,D such that T = K · D. For all 1 ≤ t ≤ T ,
consider function It mapping {(�, b)}1≤	≤L,b∈{0,1} to {T + 1, . . . , n} such that
{It(�, b)}1≤	≤L,b∈{0,1} ∩ {It′(�, b)}1≤	≤L,b∈{0,1} = ∅ for any pair 1 ≤ t, t′ ≤ T .

Revocable Group Signatures with Compact Revocation List 441

Set SPk,d = D · (k − 1) + d for all 1 ≤ k ≤ K and 1 ≤ d ≤ D. Note that
SPk,d ∈ {1, . . . , T}. The relation is required to satisfy the precondition of the
accumulator. Define Ut = {It(1, x1), . . . , It(L, xL),SPk,d} for all 1 ≤ t ≤ T ,
where k = �t/D� and d = t mod D. The accumulated Pt =

∏
i∈Ut

gi is embedded
into a membership certificate for all t. As for the revocation list, for w = �m/T �,
divide S1, . . . , Sm into w sequences:

S1 = (S1, . . . , ST),S2 = (ST+1, . . . , S2T), . . . ,Sw = (S(w−1)T+1, . . . , Sm),

where S1, . . . ,Sw−1 contain T elements and Sw contains T or less elements.
Here, we can connect any Si to the corresponding sequence Sω by the relation
ω = �i/T �. For each Sω, do the following. Compute t = i mod T to determine the
position of Si in Sω. Transform t to the corresponding (k, d) in the accumulator,
by k = �t/D� and d = t mod D. For all (k, d) correspondent 1 ≤ t ≤ T
in Sω (i.e., (ω − 1)T + 1 ≤ i ≤ ωT), set Vk,d = {It(1, si,1), . . . , It(φi, si,φi

)}
and Ṽk,d = {It(φi + 1, si,φi+1), . . . , It(ψi, si,ψi

)}. As the revocation list, GM

publishes the accumulator accV for V = {(Vk,d, Ṽk,d)}k=1,...,K,d=1,...,D together
with the AHO signature. By accumulating Si’s into Sω, the number of published
signatures is reduced by 1/T .

In the group signature, for some t̃, the signer proves that Ut̃ ∩Vk̃,d̃ = Vk̃,d̃ and
Ut̃ ∩ Ṽk̃,d̃ �= ∅ for some 1 ≤ d̃ ≤ D and some 1 ≤ k̃ ≤ K, using the accumulator
verification. The former relation means the AND relation ((1, x1) = (1, si1))∧· · ·
and the latter means that OR relation ((φi + 1, xφi+1) = (φi + 1, sφi+1)) ∨
· · · . In the verification relations (1) of the accumulator, the right hand reveals
the indexes k̃, d̃ via zk̃, cd̃, c̃d̃. To hide the indexes, we utilize the technique of
membership proof using signatures [9]. Also, we utilize the technique to prove
1 ≤ δk̃,d̃ ≤ ζ in the accumulator.

4.2 Proposed Construction

Setup. The inputs are the security parameter l, the maximum number of group
members N , and the efficiency parameters K,D.

1. Select bilinear groups G, T with the same order p > 2l and the bilinear map
e, and g ∈R G.

2. Set parameter T = K · D.
3. Generate public parameters of the extended accumulator: Set ζ = L. Set

SPk,d = D · (k − 1) + d for all 1 ≤ k ≤ K and 1 ≤ d ≤ D. Note
that SPk,d ∈ {1, . . . , T}. Select γ, η1, . . . , ηK ∈R Zp, and compute g1 =
gγ1

, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, and gk,1 = gηk

1 , . . . , gk,n =
gηk

n , gk,n+2 = gηk

n+2, . . . , gk,2n = gηk

2n zk = e(g, g)ηkγn+1
for all 1 ≤ k ≤ K.

For all 1 ≤ d ≤ D, compute cd = (ζ + 1)2d−2, c̃d = (ζ + 1)2d−1 and set
C = ((c1, c̃1), . . . , (cD, c̃D)). Set

pkacc = ({SPk,d}1≤k≤K,1≤d≤D, ζ, C, (g1, . . . , gn, gn+2, . . . , g2n),
{gk,1, . . . , gk,n, gk,n+2, . . . , gk,2n, zk}K

k=1).

442 T. Nakanishi and N. Funabiki

4. Define n1 = n3 = n4 = 2, n2 = 1. Generate four key pairs for the AHO
signature:

pk
(d)
AHO = (G(d)

r ,H(d)
r , G(d)

z ,H(d)
z , {G

(d)
i ,H

(d)
i }nd

i=1, A
(d), B(d)),

sk
(d)
AHO = (α(d)

a , α
(d)
b , μ(d)

z , ν(d)
z , μ, ν),

where d ∈ {1, 2, 3, 4}.
5. Generate a CRS for the GS NIWI proof: select f = (f1,f2,f3), where

f1 = (f1, 1, g), f2 = (1, f2, g), f3 = f ξ1
1 · f ξ2

2 for ξ1, ξ2, y1, y2 ∈R Z∗
p and

f1 = gy1 , f2 = gy2 . Set f̃ = f3 · (1, 1, g).
6. Define set Φ = {(gcd

k,1, g
c̃d

k,1)|1 ≤ k ≤ K, 1 ≤ d ≤ D}, where |Φ| = K · D = T .
For every (gcd

k,1, g
c̃d

k,1) ∈ Φ, generate the AHO signature on two messages

(gcd

k,1, g
c̃d

k,1), using sk
(1)
AHO. The signature is denoted as σ̃t = (θ̃t1, . . . , θ̃t7),

where t = D · (k − 1) + d.
7. For every 1 ≤ δ ≤ ζ, generate the AHO signature on message gδ

n, using
sk

(2)
AHO. The signature is denoted as σ̂δ = (θ̂δ1, . . . , θ̂δ7).

8. Select U ,V ∈R G for a pubic encryption.
9. Select a strongly unforgeable one-time signature ΣOTS = (SetupOTS,

SignOTS, VerifyOTS).
10. Output the group public key gpk=(K,D, p,G, T , e, g, pkacc, {pk

(i)
AHO}i=1,2,3,4,

f , f̃ , {σ̃t}t∈Φ, {σ̂δ}1≤δ≤ζ , (U ,V), ΣOTS), the GM ’s secret key gsk =
({sk

(i)
AHO}i=1,2,3,4) and the opener’s secret key osk = (y1, y2).

Join. The common inputs of JGM and JUi are l, gpk. The additional inputs of
JGM are St, gsk.

1. JUi selects x ∈R G, computes X = gx and send X to JGM . If X is already
registered in database Sttrans, JGM halts and returns ⊥ to JUi .

2. JGM assigns to the user a leaf v in the tree. Let (1, x1), . . . , (L, xL) be the path
from the root to the leaf v. Define Ut = {It(1, x1), . . . , It(L, xL),SPk,d} for all
1 ≤ t ≤ T , where k = �t/D� and d = t mod D. JGM computes Pt =

∏
i∈Ut

gi

for all 1 ≤ t ≤ T .
3. JGM generates an AHO signature σt = (θt,1, . . . , θt,7) on (X,Pt) for all 1 ≤

t ≤ T , using sk
(3)
AHO.

4. JGM sends v, {Pt}1≤t≤T to JUi . JUi checks the correctness of Pt’s. If these are
incorrect, JUi aborts. Otherwise, JUi sends JGM the ordinary digital signature
sigi on (X, v).

5. JGM verifies sig. If it is incorrect, JGM aborts. Otherwise, JGM sends the
AHO signature σt to JUi , and stores 〈i, transcripti = (v,X, {Pt, σt}1≤t≤T , sigi)〉
in the database Sttrans.

6. JUi outputs the membership certificate certi = (v,X, {Ut, Pt, σt}1≤t≤T) and
the membership secret seci = x.

Revocable Group Signatures with Compact Revocation List 443

Revoke. The inputs are gpk, gsk, the epoch τ and the revocation members Rτ .

1. By the subset covering of the SD scheme, find a cover of the unrevoked users,
S1, . . . , Sm. Set w = �m/T �. Divide S1, . . . , Sm into w sequences:

S1 = (S1, . . . , ST),S2 = (ST+1, . . . , S2T), . . . ,Sw = (S(w−1)T+1, . . . , Sm),

where S1, . . . ,Sw−1 contain T elements and Sw contains T or less elements.
Here, we can connect any Si to the corresponding sequence Sω by the relation
ω = �i/T �. For the sub-tree Si, let (1, si,1), . . . , (φi, si,φi

) denote the path from
the root to the primary root and let (1, si,1), . . . , (ψi, si,ψi

) denote the path
to the secondary root, where φi, ψi ∈ {1, . . . , L} and each si,j ∈ {0, 1}.

2. For Sω with all 1 ≤ ω ≤ w, do the following.
(a) To determine the position of Si in Sω, compute t = i mod T . Transform

t to the corresponding (k, d) in the accumulator, by k = �t/D� and d =
t mod D. For all (k, d) correspondent 1 ≤ t ≤ T in Sω (i.e., (ω−1)T +1 ≤
i ≤ ωT), set Vk,d = {It(1, si,1), . . . , It(φi, si,φi

)} and Ṽk,d = {It(φi +
1, si,φi+1), . . . , It(ψi, si,ψi

)}, where si,	 is the negation of si,	.
(b) Compute accω =

∏
1≤k≤K

∏
1≤d≤D((

∏
j∈Vk,d

gk,n+1−j)cd ·
(
∏ζ−|Vk,d|

j=1 gk,n+1−SPk,d
)cd · (

∏
j∈Ṽk,d

gk,n+1−j)c̃d).
3. For all 1 ≤ ω ≤ w, compute the AHO signature on pair (gτ , accω): Θω =

(Θω,1, . . . , Θω,7), using sk
(4)
AHO.

4. Output the revocation list: RLτ = (τ,Rτ , {Si}m
i=1, {accω, Θω}w

ω=1).

Sign. The inputs are gpk, τ, RLτ , certi, seci and the message M .

1. Using SetupOTS, generate a key pair (SK,VK) of the one-time signature.
2. Using RLτ , find the set Sı̃ including the signing user. For the subset Sı̃, let

(1, sı̃,1), . . . , (φı̃, sı̃,φı̃
) denote the path from the root to the primary root and

let (1, sı̃,1), . . . , (ψı̃, sı̃,ψı̃
) denote the path to the secondary root. Then, find

Sω̃ including Sı̃ by ω̃ = �ı̃/T �. To determine the position of Sı̃ in Sω̃, compute
t̃ = ı̃ mod T . Furthermore, find the corresponding (k̃, d̃) by k̃ = �t̃/D� and
d̃ = t̃ mod D satisfying t̃ = D · (k̃ − 1) + d̃ − 1.

3. Pick up accω̃, Θω̃ = (Θω̃,1, . . . , Θω̃,7) from RLτ , and Ut̃, Pt̃, σt̃ = (θt̃,1, . . . , θt̃,7)

from certi. For t̃, k̃, d̃, pick up the AHO signature on (Jt̃1, Jt̃2) = (gcd̃

k̃,1
, g

c̃d̃

k̃,1
),

i.e., σ̃t̃ = (θ̃t̃1, . . . , θ̃t̃7) from gpk. In the same way to Revoke, set Vk,d and
Ṽk,d for all (k, d) in Sω̃. Compute δk̃,d̃ = |Ut̃ ∩ Ṽk̃,d̃|. Pick up the AHO signa-

ture on Qδk̃,d̃
= g

δk̃,d̃
n , i.e., σ̂δk̃,d̃

= (θ̂δk̃,d̃1
, . . . , θ̂δk̃,d̃7

) from gpk.
4. Compute the witness of Ut̃ ∩ Vk̃,d̃ = Vk̃,d̃ and Ut̃ ∩ Ṽk̃,d̃ �= ∅, as follows.

W =
∏

i∈U

∏
1≤k≤K

∏
1≤d≤D((

∏j �=i
j∈Vk,d

gk,n+1−j+i)cd · (
∏ζ−|Vk,d|,i �=SPk,d

j=1

gk,n+1−SPk,d+i)cd · (
∏j �=i

j∈Ṽk,d
gk,n+1−j+i)c̃d).

5. Compute GS commitments comPt̃
, comaccω̃

, comW , comJt̃1
, comJt̃2

, comQδ
k̃,d̃

,

comX to Pt̃, accω̃,W , Jt̃1, Jt̃2, Qδk̃,d̃
,X. Then, re-randomize the AHO signa-

tures σt̃, σ̃t̃, σ̂δk̃,d̃
, Θω̃ to obtain σ′

t̃
= {θ′

1, . . . , θ
′
7}, σ̃′

t̃ = {θ̃′
1, . . . , θ̃′

7}, σ̂′
δk̃,d̃

=

444 T. Nakanishi and N. Funabiki

{θ̂′
1, . . . , θ̂′

7}, Θ′
ω̃ = {Θ′

1, . . . , Θ
′
7}, and compute GS commitments

{comθ′
i
}i∈{1,2,5}, {comθ̃′

i
}i∈{1,2,5}, {comθ̂′

i
}i∈{1,2,5}, {comΘ′

i
}i∈{1,2,5} to

{θ′
i}i∈{1,2,5}, {θ̃′

i}i∈{1,2,5}, {θ̂′
i}i∈{1,2,5}, {Θ′

i}i∈{1,2,5}.
6. Generate {πi}9i=1 s.t.

1T = e(Pt̃, accω̃) · e(g,W)−1 · e(Jt̃1, g
ζ
n)−1 · e(Jt̃2, Qδk̃,d̃

)−1, (2)

A(1) · e(θ̃′
3, θ̃

′
4)

−1 = e(G(1)
z , θ̃′

1) · e(G(1)
r , θ̃′

2) · e(G(1)
1 , Jt̃1) · e(G(1)

2 , Jt̃2), (3)

B(1) · e(θ̃′
6, θ̃

′
7)

−1 = e(H(1)
z , θ̃′

1) · e(H(1)
r , θ̃′

5) · e(H(1)
1 , Jt̃1) · e(H(1)

2 , Jt̃2), (4)

A(2) · e(θ̂′
3, θ̂

′
4)

−1 = e(G(2)
z , θ̂′

1) · e(G(2)
r , θ̂′

2) · e(G(2)
1 , Qδk̃,d̃

), (5)

B(2) · e(θ̂′
6, θ̂

′
7)

−1 = e(H(2)
z , θ̂′

1) · e(H(2)
r , θ̂′

5) · e(H(2)
1 , Qδk̃,d̃

), (6)

A(3) · e(θ′
3, θ

′
4)

−1 = e(G(3)
z , θ′

1) · e(G(3)
r , θ′

2) · e(G(3)
1 ,X) · e(G(3)

2 , Pt̃), (7)

B(3) · e(θ′
6, θ

′
7)

−1 = e(H(3)
z , θ′

1) · e(H(3)
r , θ′

5) · e(H(3)
1 ,X) · e(H(3)

2 , Pt̃), (8)

A(4) · e(Θ′
3, Θ

′
4)

−1 · e(G(4)
1 , gτ)−1 = e(G(4)

z , Θ′
1) · e(G(4)

r , Θ′
2) · e(G(4)

2 , accω̃), (9)

B(4) · e(Θ′
6, Θ

′
7)

−1 · e(H(4)
1 , gτ)−1 = e(H(4)

z , Θ′
1) · e(H(4)

r , Θ′
5) · e(H(4)

2 , accω̃). (10)

In the GS proofs, the Eq. (2) shows the accumulator verification, the Eqs. (3),
(4) shows the AHO signature verification on (Jt̃1, Jt̃2), the Eqs. (5), (6) shows
the AHO signature verification on Qδk̃,d̃

, the Eqs. (7), (8) shows the AHO
signature verification on (X,Pt̃), and the Eqs. (9), (10) shows the AHO sig-
nature verification on (gτ , accω̃).

7. The remaining process is as the same as in [16]. Using VK as a tag, compute
a tag-based encryption [15] of X. Namely, select z1, z2 ∈ Zp, and compute

(Γ1, Γ2, Γ3, Γ4, Γ5) = (fz1
1 , fz2

2 ,X · gz1+z2 , (gVK · U)z1 , (gVK · V)z2).

8. Generate NIZK proofs that comX = (1, 1,X) · frX,1
1 · frX,2

2 · frX,3
3 and

(Γ1, Γ2, Γ3) is a BBS ciphertext of X, as in [16]. For f3 = (f3,1, f3,2, f3,3),
we can write comX = (frX,1

1 · frX,3
3,1 , f

rX,2
2 · frX,3

3,2 ,X · grX,1+rX,2 · frX,3
3,3). Thus,

we have

comX · (Γ1, Γ2, Γ3)−1 = (fχ1
1 · fχ3

3,1, fχ2
2 · fχ3

3,2, gχ1+χ2 · fχ3
3,3), (11)

where χ1 = rX,1 − z1, χ2 = rX,2 − z2, χ3 = rX,3. Compute GS commitments
comχi

to the exponent χi for i = 1, 2, 3 using f̃ , and generate the NIZK
proofs π10, π11, π12 satisfying the three linear relations (11).

9. Compute a weakly secure BB signature σVK = g1/(x+VK) on VK and the
commitment comσVK

to σVK. Next, generate the NIZK proof π13 satisfying
e(σVK,X · gVK) = e(g, g).

10. Compute a one-time signature

σOTS = SignOTS(SK, (M,RLτ , {Γi}5i=1, {θ′
i, θ̃

′
i, θ̂′

i, Θ
′
i}i=3,4,6,7, com,Π)),

where com = (comPt̃
, comaccω̃

, comW , comJt̃1
, comJt̃2

, comQδ
k̃,d̃

, comX ,

{comχi
}3i=1, {comθ′

i
}i∈{1,2,5}, {comθ̃′

i
}i∈{1,2,5}, {comθ̂′

i
}i∈{1,2,5},

Revocable Group Signatures with Compact Revocation List 445

{comΘ′
i
}i∈{1,2,5}, comσVK

), Π = {πi}13i=1. Output the signature σ =
(VK, {Γi}5i=1, {θ′

i, θ̃
′
i, θ̂′

i, Θ
′
i}i=3,4,6,7, com,Π, σOTS).

Verify. The input are gpk, τ, RLτ , σ,M . If

VerifyOTS(VK, (M,RLτ , {Γi}5i=1, {θ′
i, θ̃

′
i, θ̂′

i, Θ
′
i}i=3,4,6,7, com,Π)) = 0

or {Γi}5i=1 is not a valid tag-based encryption, output 0. Then, output 1 if all
proofs are accepted. Otherwise, output 0.

Open. The inputs are gpk, τ, RLτ , σ,M, St, osk. If Verify on σ and M outputs
0, output ⊥. Otherwise, using osk = (y1, y2), decrypt X̃ = Γ3 · Γ

−1/y1
1 · Γ

−1/y2
2 .

Search the database Sttrans to find a record 〈i, (transcripti, v,X, {Pt, σt}1≤t≤T ,

sigi)〉 with X = X̃. If the search fails, output ⊥. Otherwise, output i.

4.3 Security

The proofs of the security are in the full paper.

5 Efficiency

We compare the efficiency of our scheme to the previous scheme [16]. In addition
to parameters N,R, the efficiency of our system depends on n, T,K,D, where
T = K · D, and n ≈ T log N . Here, as in [16], we consider the 128-bit security
level, and we assume that the element in G can be represented by 512 bits.

We compare the constant signature size. The signature in the previous scheme
needs 144 G-elements and the size is 9 KB. In our scheme, the signature needs
143 G-elements, whose size is also 9 KB.

In the proposed scheme, we have the trade-off: Decreasing the revocation
list size leads to increasing the sizes of public key and membership certifi-
cate. Consider the revocation list size. The revocation list consists of a non-
cryptographic part related to IDs of revoked members (i.e., Rτ , {Si}m

i=1) and
a cryptographic part of accumulators and the signatures (i.e., {accω, Θω}w

ω=1).
The non-cryptographic part is bounded by 5 · log N · R bits. The cryptographic
part in our scheme is bounded by 512 · 8�(2R − 1)/T � bits, while the part needs
at most 512 · 7�(2R − 1)� bits in [16]. Thus, by increasing T , this part is greatly
reduced. However, the other efficiency becomes worse as follows. The public key
size of our scheme is approximately 2K · T · log N · 512 bits. The membership
certificate size is approximately 8 · 512 · T bits.

Next, we compare the signing costs. The computational cost of signing is
comparable except for the computation of W . As discussed in AppendixB, T
exponentiations (and 2D exponentiations) are the extra cost compared to [16].
However, note that the computation of W is required once every revocation
epoch in practice. Namely, after W is computed in an epoch, the following signing
does not need the extra cost during the same epoch. Furthermore, we can reduce
the computation of W by using W in the previous epoch. Thus, we consider that
the extra costs are not a serious issue.

446 T. Nakanishi and N. Funabiki

Now we consider concrete examples. We assume N/R = 10. To balance K
and D, we set K = D ≈ √

T . Table 1 shows the comparisons of the revocation
list size between the previous scheme [16] and the proposed scheme using T =
49, T = 100, in cases of N = 10,000, N = 100,000, N = 1,000,000. As for the
cryptographic part ({accω, Θω}w

ω=1), the size is greatly reduced, as T is increased.
Since the non-cryptographic part cannot be reduced, we ignore cases of T > 100.
Similarly, for N � 1,000,000, due to the huge data of the non-cryptographic part,
any revocable group signatures are essentially impractical.

Table 1. Comparisons of the revocation list size.

Rτ , {Si}m
i=1 {accω, Θω}w

ω=1

[16] Proposed (T = 49) Proposed (T = 100)

N = 10,000(R = 1,000) 6.8KB 880KB 21KB 10KB

N = 100,000(R = 10,000) 83KB 8,800KB 210KB 100KB

N = 1,000,000(R = 100,000) 980KB 88,000KB 2,100KB 1,000KB

Table 2 shows the comparisons of the public key size and the membership
certificate size, where N = 1,000,000 and R = 100,000. Since the public key size
depends on only log N , the size in cases of the other N,R is similar to this table.
The membership certificate size is the same when N,R are changed. Compared
to [16], the extra sizes in public key and membership certificate are needed, and
are increased when T is increased. In real applications, the public key and the
certificate are not often distributed. On the other hand, the revocation list has
to be distributed every revocation epoch. Thus, we consider that it is sufficiently
practical to decrease the revocation list size while increasing the public key and
the membership certificate sizes.

As for the signing cost, in our scheme, the extra cost of about 120 expo-
nentiations is required in case of T = 100. The extra cost is comparable to the
computations of commitments com with about 140 exponentiations. As shown
above, the cost can be reduced in the implementation.

Table 2. Public key size and membership certificate size for T (N = 1,000,000, R =
100,000).

[16] Proposed (T = 49) Proposed (T = 100)

Public key size (gk,j ’s) 2.6 KB 860 KB 2,500 KB

Membership certificate size 0.20 KB 25 KB 50 KB

A Preliminaries

A.1 Bilinear Groups

Our scheme utilizes the following bilinear groups:

Revocable Group Signatures with Compact Revocation List 447

1. G and T are multiplicative cyclic groups of prime order p,
2. g is a randomly chosen generator of G,
3. e is an efficiently computable bilinear map: G×G → T , i.e., (1) for all u, v ∈ G

and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g, g) �= 1T .

A.2 Assumptions

As in the underlying scheme [16], the security of our system is based on the
DLIN (Decision LINear) assumption [6], the SDH (Strong DH) assumption [5],
and the q-SFP (Simultaneous Flexible Pairing) assumption [2]. We also adopt
n-DHE (DH Exponent) assumption [11] for the accumulator.

Definition 1 (DLIN assumption). For all PPT algorithm A, the probability

|Pr[A(g, ga, gb, gac, gbd, gc+d) = 1] − Pr[A(g, ga, gb, gac, gbd, gz) = 1]|
is negligible, where g ∈R G and a, b, c, d, z ∈R Zp.

Definition 2 (q-SDH assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(g, ga, . . . , gaq

) = (b, g1/(a+b)) ∧ b ∈ Zp]

is negligible, where g ∈R G and a ∈R Zp.

Definition 3 (q-SFP assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(gz , hz , gr, hr, a, ã, b, b̃, {(zj , rj , sj , tj , uj , vj , wj)}q
j=1) = (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7

∧e(a, ã) = e(gz , z
∗)e(gr, r

∗)e(s∗, t∗) ∧ e(b, b̃) = e(hz , z
∗)e(hr, u

∗)e(v∗, w∗)

∧z∗ �= 1G ∧ z∗ �= zj for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj , rj , sj , tj , uj,
vj , wj)}q

j=1) satisfy the above relations.

Definition 4 (n-DHE assumption). For all PPT algorithm A , the probabil-
ity

Pr[A(g, ga, . . . , gan

, gan+2
, . . . , ga2n

) = gan+1
]

is negligible, where g ∈R G and a ∈R Zp.

A.3 Structure-Preserving Signatures (AHO Signatures)

We utilize the structure-preserving signatures, since the knowledge of the sig-
nature can be proved by Groth-Sahai proofs. As in [16], we adopt the AHO
signature scheme in [1,2]. Using the AHO scheme, we can sign multiple group
elements to obtain a constant-size signature.

448 T. Nakanishi and N. Funabiki

AHOKeyGen: Select bilinear groups G, T with a prime order p and a bilinear
map e. Select g,Gr,Hr ∈R G, and μz, νz, μ, ν, αa, αb ∈R Zp. Compute Gz =
Gμz

r ,Hz = Hνz
r , G = Gμ

r ,H = Hν
r , A = e(Gr, g

αa), B = e(Hr, g
αb). Output

the public key as pk = (G, T , p, e, g, Gr,Hr, Gz,Hz, G,H,A,B), and the
secret key as sk = (αa, αb, μz, νz, μ, ν).

AHOSign: Given message M together with sk, choose β, ε, η, ι, κ ∈R Zp, and
compute θ1 = gβ , and θ2 = gε−μzβM−μ, θ3 = Gη

r , θ4 = g(αa−ε)/η, θ5 =
gι−νzβM−ν , θ6 = Hκ

r , θ7 = g(αb−ι)/κ. Output the signature σ = (θ1, . . . ,
θ7).

AHOVerify: Given the message M and the signature σ = (θ1, . . . , θ7), accept
these if
A = e(Gz, θ1)·e(Gr, θ2)·e(θ3, θ4)·e(G,M), B = e(Hz, θ1)·e(Hr, θ5)·e(θ6, θ7)·
e(H,M).

This signature is existentially unforgeable against chosen-message attacks
under the q-SFP assumption [2]. Using the re-randomization algorithm in [2], this
signature can be publicly randomized to obtain another signature (θ′

1, . . . , θ
′
7) on

the same message. As a result, in the following Groth-Sahai proof, (θ′
i)i=3,4,6,7

can be safely revealed, while (θ′
i)i=1,2,5 have to be committed.

A.4 Groth-Sahai (GS) Proofs

To prove the secrets in relations of the bilinear maps, we utilize Groth-Sahai
(GS) proofs [14]. As in [16], we adopt the instantiation based on DLIN assump-
tion. For the bilinear groups, the proof system needs a common reference string
(f1,f2,f3) ∈ G3 for f1 = (f1, 1, g),f2 = (1, f2, g) for some f1, f2 ∈ G. The
commitment to an element X is computed as C = (1, 1,X) · fr

1 · fs
2 · f t

3 for
r, s, t ∈R Z∗

p . In case of the CRS setting for perfectly sound proofs, f3 = f ξ1
1 ·f ξ2

2

for ξ1, ξ2 ∈R Z∗
p . Then, the commitment C = (fr+ξ1t

1 , fs+ξ2t
2 ,Xgr+s+t(ξ1+ξ2)) is

the linear encryption in [6]. On the other hand, in the setting of the witness
indistinguishability, f1,f2,f3 are linearly independent, and thus C is perfectly
hiding. The DLIN assumption implies the indistinguishability of the CRS.

The commitment to an exponent x ∈ Zp is computed as C = f̃x · fr
1 · fs

2 for
r, s ∈R Z∗

p , for a CRS f̃ ,f1,f2. In the setting of perfectly sound proofs, f̃ ,f1,f2

are linearly independent (As in [16], for example, we can set f̃ = f3 · (1, 1, g)
with f3 = f ξ1

1 ·f ξ2
2). In the WI setting, f̃ = f ξ1

1 ·f ξ2
2 provides a perfectly hiding

commitment.
To prove that the committed variables satisfy the pairing relations, the prover

prepares the commitments, and replaces the variables in the pairing relations by
the commitments. An NIWI (non-interactive witness indistinguishable) proof
allows us to prove the set of pairing product equations:

n∏

i=1

e(Ai,Xi) ·
n∏

i=1

n∏

j=1

e(Xi,Xj)aij = t,

Revocable Group Signatures with Compact Revocation List 449

for variables X1, . . . , Xn ∈ G and constants A1, . . . , An ∈ G, aij ∈ Zp, t ∈ T .
NIWI proofs also exist for multi-exponentiation equations:

m∏

i=1

Ayi

i ·
n∏

j=1

X
bj

j ·
m∏

i=1

n∏

j=1

X
yiγij

j = T,

for variables X1, . . . , Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . , Am ∈ G,
b1, . . . , bn, γij ∈ Zp. For the multi-exponentiation equations, we can obtain the
NIZK (non-interactive zero-knowledge) proofs with no additional cost.

A.5 Subset Cover Framework for Broadcast Encryption

As in [16], we adopt the subset cover framework for broadcast encryption in
[21]. In this framework, a binary tree is used, where each leaf is assigned to each
receiver (its secret key). Namely, for N = 2L receivers, the height of the tree is
L. Let N be the universe of users and R ⊂ N be the set of revoked receivers.
In this framework, the set of non-revoked users is partitioned into m disjoint
subsets S1, . . . , Sm such that N\R = S1 ∪ · · · ∪ Sm.

In the framework, there are mainly the complete subtree (CS) method and
the subset difference (SD) method. In the revocable group signature scheme of
[16], the SD method is adapted to achieve O(|R|) revocation list. In this method,
the disjoint set Si is determined by two nodes in the tree, primary node vi,φi

and secondary node vi,ψi
that is a descendant node of vi,φi

, and Si consists of
the leaves of the subtree rooted by vi,φi

that are not in the subtree rooted by
vi,ψi

. The number of subsets is bounded by m = 2 · |R| − 1, as proved in [21].

B Evaluation of Witness Computation

In Sect. 5, the efficiency of our scheme is compared to the underlying scheme [16].
Here, we show the detailed efficiency discussion of the witness computation. The
computation of W can be replaced:

W =
∏

1≤d≤D

((
∏

i∈U

∏

1≤k≤K

(
j �=i∏

j∈Vk,d

gk,n+1−j+i) · (
ζ−|Vk,d|,i �=SPk,d∏

j=1

gk,n+1−SPk,d+i))cd

·(
∏

i∈U

∏

1≤k≤K

j �=i∏

j∈Ṽk,d

gk,n+1−j+i)c̃d).

Then, the number of exponentiations by cd, c̃d is 2D. The number of multipli-
cations is T · log2 N . As discussed in [16], log2 N multiplications is bounded
by the cost of a single exponentiation. This is why T exponentiations (and 2D
exponentiations) are the extra cost compared to [16].

As mentioned in Sect. 5, the witness computation can be reduced by using
W in the previous epoch. In the case that the modification to the revocation

450 T. Nakanishi and N. Funabiki

list does not influence Sω̃ including Sı̃ (i.e., revocations happens in the other
covers), the signer does not need to compute W . In the other cases, we can also
reduce the cost: For only modified covers Si correspondent (k, d), divide W by
the old terms for (k, d) and multiply it by the new terms. Thus, we consider that
the extra costs are not a serious issue.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010).
http://eprint.iacr.org/

3. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003)

4. Begum, N., Nakanishi, T., Funabiki, N.: Efficient proofs for CNF formulas on
attributes in pairing-based anonymous credential system. In: Kwon, T., Lee, M.-K.,
Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 495–509. Springer, Heidelberg
(2013)

5. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Pro-
ceedings of the 11th ACM Conference on Computer and Communications Security
(ACM-CCS ’04), pp. 168–177 (2004)

8. Bresson, E., Stern, J.: Group signature scheme with efficient revocation. In: Kim,
K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

9. Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

10. Camenisch, J.L., Groth, J.: Group signatures: better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

12. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

13. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

14. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

http://eprint.iacr.org/

Revocable Group Signatures with Compact Revocation List 451

15. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

16. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012)

17. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012)

18. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 499–517. Springer, Heidelberg (2010)

19. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009)

20. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

21. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

22. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient proofs of attributes in pairing-
based anonymous credential system. In: Fischer-Hübner, S., Hopper, N. (eds.)
PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011)

Cyber Security

Semantic Feature Selection for Text
with Application to Phishing Email Detection

Rakesh Verma(B) and Nabil Hossain

Department of Computer Science, University of Houston,
4800 Calhoun Road, Houston, TX, USA

rmverma@cs.uh.edu, nabilhossain@gmail.com

Abstract. In a phishing attack, an unsuspecting victim is lured,
typically via an email, to a web site designed to steal sensitive infor-
mation such as bank/credit card account numbers, login information for
accounts, etc. Each year Internet users lose billions of dollars to this
scourge. In this paper, we present a general semantic feature selection
method for text problems based on the statistical t-test and WordNet,
and we show its effectiveness on phishing email detection by designing
classifiers that combine semantics and statistics in analyzing the text in
the email. Our feature selection method is general and useful for other
applications involving text-based analysis as well. Our email body-text-
only classifier achieves more than 95 % accuracy on detecting phishing
emails with a false positive rate of 2.24 %. Due to its use of semantics, our
feature selection method is robust against adaptive attacks and avoids
the problem of frequent retraining needed by machine learning classifiers.

Keywords: Security · Phishing · Natural language detection · Semantic
classification · Feature selection for text

1 Introduction

Phishing is an attack in which an unsuspecting victim is lured to a web site
designed to steal sensitive information (e.g., login names, passwords and financial
information). Every year money, time and productivity are lost by Internet users
and businesses to this plague. Hence, phishing is a serious threat to societies and
economies based on the Internet. Several communication channels are available
to phishers for initiating attacks, but since email is the most popular medium,
we focus on detecting phishing attacks launched through emails.

As [1] observed, detecting phishing email messages automatically is a non-
trivial task since phishing emails are designed cleverly to look legitimate. Besides
attachments, an email can be decomposed into three main components: a header,
a text body, and links. While the header and links have been well studied by

Research supported in part by NSF grants DUE 1241772 and CNS 1319212.

c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 455–468, 2014.
DOI: 10.1007/978-3-319-12160-4 27

456 R. Verma and N. Hossain

phishing detection methods previously, unsupervised natural language process-
ing (NLP) techniques for text analysis of phishing emails have been tried by
only a few researchers. In [2], rudimentary analysis of the anchor text was used
to enhance detection. In [3], hand-crafted patterns and some scoring functions
for verbs in the email were designed using trial and error.

In contrast to the unsupervised techniques mentioned above, several machine
learning approaches have been tried previously. The latest attempt to use machine
learning techniques is [4], which uses probabilistic latent dirichlet allocation,
ensemble methods such as Adaboost and cotraining. The last two methods men-
tioned above differ in the use of unsupervised NLP technique in [3] versus the use
of machine learning requiring labeled data in [4], which is somewhat alleviated by
cotraining. Besides the need for labeled training data, supervised machine learning
methods have two additional disadvantages: the problem of overtraining and the
need for retraining due to model mismatch with the new data over even short peri-
ods of time. For instance, some researchers retrain their logistic regression scheme
for identifying phishing web-sites every day.

1.1 Feature Selection

A well-known problem in text classification is the extremely high dimensional fea-
ture space, which sometimes makes learning algorithms intractable [5].
A popular method, called feature selection, to deal with this intractability reduces
the dimensionality of the feature space. Many feature selection methods have
been studied earlier including document frequency, information gain, mutual
information, chi-square test, Bi-Normal Separation, and weighted log-likelihood
ratio [6–8]. The problem with comparing these methods is that they are typically
based on different assumptions or measurements of the data sets. For example,
mutual information and information gain are based on information theory, while
chi-square is based on statistical independence assumption. Empirical studies
that compare these methods are heavily affected by the datasets.

Moreover, as [5] states, in real applications, choosing an appropriate feature
selection method remains hard for a new task because too many methods exist.
In an early survey paper [9], eight methods are mentioned for dealing with dif-
ferent text classification tasks, but none is shown to be robust across different
classification applications. Therefore, [5] proposed a framework for theoretical
comparison of six popular feature selection methods for text classification.

In contrast to [5], we show a semantic feature selection method based on
the statistical t-test that is simple, robust, and effective. The t-test is a well-
known statistical hypothesis test. Using it, we determine whether a feature’s
variance between two corpora is of a statistically significant degree. We use a
two-tailed, two samples of unequal variances t-test since usually the corpora are
not even of the same size let alone same variance. Instead of a purely syntactic
feature selection method, we use semantics based on WordNet. We apply our
semantic feature selection technique to phishing email detection and show that
our classifiers significantly outperform the best previous comparable method.

Semantic Feature Selection for Text Data with Application to Phishing 457

As explained below, due to our use of semantics, our classifiers are robust against
adaptive attacks, and they avoid the need for frequent retraining.

1.2 Our Contributions and Results

Our primary contributions include: a careful study of the t-test method for
feature extraction, a comparison with the previous method of [3] on the same,
public phishing email database, and more extensive testing of our approach on
public good databases of 3,000 Enron inbox emails1 and 4,000 Enron sent emails
as opposed to the private database of 1,000 good emails used in [3]. Note that
we keep the good databases separate in order to use the Enron sent emails only
for testing purposes to evaluate how our classifier adapts to a different domain.
This is the first detailed comparison of human-intuition based and statistical
NLP based methods for phishing detection. We can also develop a comprehensive
and effective NLP based phishing detection method by combining the link and
header analysis as suggested in [3] and in [10].

Specifically, our statistical email text-only classifier, achieves detection rates
above 95 % for phishing emails with an accuracy higher than 97 % on the non-
phishing emails. This is an increase in effectiveness of over 20 % versus the best
previous work [3] on phishing emails on the same dataset, and of over 10 % on
two larger non-phishing public email datasets.

Besides beating the text-based classification method of [3], our method, when
combined with header and link analysis, gives comparable performance to the
best machine learning methods in the literature, such as [4], without the problem
of retraining frequently, since our methods are not purely statistical, but they
use semantics as well. In addition, our semantic feature selection method has the
advantage of robustness against adaptive attacks.

The adaptive phisher may try to defeat our method by varying the email’s
syntax, e.g. by using different words that have similar meanings to those used
in previous attacks, or by varying sentence structures, while keeping the same
sense of urgency in driving the recipient to precipitate action in clicking a link.
However, since we combine semantics with statistics, this will be a very difficult
exercise to carry out since it would require deep examination of WordNet and a
thesaurus that is richer than WordNet to come up with such an email. The effort
involved would rise significantly in the process and the payoff may be little since
the resulting email will sound artificial, pedantic and stilted to the reader. The
overall effect will be to reduce the return on the phisher’s investment drastically
since phishing websites typically last only a few days before they are shut down.

The rest of this paper is organized as follows: the next section introduces nec-
essary natural language preliminaries. Section 3 outlines our hypotheses, goals,
and gives a preview of our classifiers. Section 4 presents four different classifiers
with varying use of semantics to give an idea of the performance gain due to
semantics. The subsequent section presents our results and analysis. Section 6
presents relevant related work on phishing detection, and Sect. 7 concludes.
1 http://www.cs.cmu.edu/∼enron/

http://www.cs.cmu.edu/~enron/

458 R. Verma and N. Hossain

2 Natural Language Preliminaries

Some of our classifiers apply the following NLP techniques on the email text:

(i) lexical analysis: to break the email text into sentences and to further split
these sentences into words

(ii) part-of-speech tagging: to tag each word with its part-of-speech using
the Stanford POS tagger

(iii) named entity recognition: to identify the named entities, which include
proper nouns such as names of organizations, people, or locations

(iv) normalization: conversion of words to lower case
(v) stemming: to convert each word to its stem using the Porter Stemmer [11]

(e.g. reducing the verb “watching” to “watch”)
(vi) stopword removal: to remove frequently occurring words such as ‘a’, ‘an’,

etc., using a list of stopwords.

As opposed to purely syntactic or statistical techniques based on feature
counting, some of our classifiers also make use of semantic NLP techniques by
incorporating the WordNet lexical database and word-sense disambiguation. The
latter is used to derive the appropriate sense or meaning of a word based on the
context in which the word occurs. For example, the word “bank” might exhibit
the sense of a financial institution in one context and a shore in another.

2.1 WordNet

WordNet is a lexical database, which exhibits properties of both a dictionary
and a thesaurus [12]. In WordNet, all the words that exhibit the same concept
are grouped into a synset, in other words a set of synonyms. The synsets can
be considered as WordNet’s building blocks, forming the fundamental seman-
tic relation in the lexical database through synonymy. The hyponymy relation
between synsets is the semantic relation that inter-connects and organizes all
the nouns into a hierarchy, building a graph of nouns. The hypernymy and
hyponymy relations are viewed as the relations of subordination, in other words
subsumption or class inclusion, defined as follows: A is a hypernym of B if the
meaning of A encompasses the meaning of B, which is called the hyponym of
A. For instance, “red” is a hyponym of “color” since red is a type of color.
Here, “color” is the hypernym of “red”, since “color” broadly captures or gener-
alizes the meaning of “red”. Nouns usually have a single hypernym [12], and the
WordNet noun hierarchy graph is acyclic, having a tree-like structure. All Word-
Net nouns are encompassed by the word entity, which is the root of this tree.
The more we proceed down this tree, the more specific the nouns become. For
instance, the hyponym set of entity is {physical entity, thing, abstract entity},
and the hyponym set of physical entity include object, substance, etc. However,
the hypernymy structure for verbs is not acyclic [13]. Although the hypernym
relation for verbs is captured in a similar hierarchical structure, this structure is
“forest-like.” Note that it is not really a forest as it contains cycles.

Semantic Feature Selection for Text Data with Application to Phishing 459

As mentioned earlier, a word can exhibit different meanings or senses in
different contexts. Because each synset is designed to capture a unique concept,
the proper sense of a word must be used to obtain its appropriate synset from
WordNet. Hence, we perform word sense disambiguation using SenseLearner [14]
prior to invoking any WordNet inquiry.

3 Our Hypotheses, Goals and Preview of Classifiers

As mentioned in [3], NLP by computers is well-recognized to be a very chal-
lenging task because of the inherent ambiguity and rich structure of natural lan-
guages. This could explain why only a few researchers have used NLP techniques
for phishing email detection. In this paper, we investigate two basic questions:

(i) Can statistical techniques applied to the text of an email differentiate phish-
ing emails from benign emails?

(ii) Do NLP techniques such as part-of-speech (POS) tagging and the use of
semantics help improve the statistical methods, and if so, by how much?

We explore methods for feature extraction based on statistical tests per-
formed on the email’s text with and without the use of semantics, and our
results demonstrate that statistical methods based on semantics can achieve a
somewhat surprisingly high degree of accuracy in detecting phishing emails. We
show that NLP techniques such as part-of-speech tagging and the use of seman-
tics through WordNet enhance the performance of the classifier, but there is not
much room for improvement left after applying the statistical methods alone
for these techniques to make a huge difference in performance. However, these
methods are still important since they give our classifier a robustness against
attacks, for instance, attacks by the active phisher mentioned earlier.

Our methods for statistical analysis focus on the key differences between a
phishing and a legitimate email. First, a phishing email is designed to motivate
the reader to take some action. The action typically requires the reader to visit
a malicious site created with the goal of stealing personal sensitive information.
Second, since phishing web sites are on the Internet for a week or two typically
before they are discovered and either blacklisted or removed, the phisher must
convey a sense of urgency or give a short deadline to the target in taking the
action. In a previous paper [3], we also tried to take advantage of this combination
of action and urgency to detect phishing emails. However, there an intuition-
based NLP component was used, which could not reach detection rates better
than 70 % with accuracy of no more than 80 % on non-phishing emails. The
statistical methods presented here significantly outperform the previous detector
on tests involving two larger, public databases of emails from Enron.

4 Phishing Classifiers

In this section, we discuss our dataset and describe four classifiers for phishing
email detection, with particular emphasis on the feature selection criteria.

460 R. Verma and N. Hossain

Dataset: Our dataset comprised of 4,550 public phishing emails from [15] and
10,000 legitimate emails from the public Enron inbox email database. We ran-
domly selected 70 % of both the phishing and the legitimate emails for statistical
analysis, hereafter called the analysis sets, and the remaining 30 % for testing
purposes. We also used a set of 4,000 non-phishing emails obtained from the
“sent mails” section of the Enron email database as a different domain to test
our classifiers. We now describe the four classifiers we designed.

4.1 Classifier 1: Pattern Matching (PM) Only

This is the most basic classifier, which relies only on simple pattern matching.
Here we design two subclassifiers: Action-detector and Nonsensical-detector.

Action-detector: We analyzed random emails from our analysis sets and
observed that phishing emails had a tendency to focus on the recipient. One
observation was the frequent use of the possessive adjective “your” in phishing
emails. In the analysis sets, 84.7 % of the phishing emails had the word “your”, as
opposed to 34.7 % of the legitimate emails. This trend occurred because in order
to raise concern, phishers often talk about the breach in security of properties
in the user’s possession, such as a bank account owned by the user.

Next we performed a statistical analysis of the unigrams next to all the
occurrences of “your.” Our goal here was to detect those properties belonging
to the recipient that the phisher often declares as compromised, e.g. “amazon”
(indicating the amazon.com account of an online shopper). However, many of the
unigrams were adjectives describing the property, defeating our purpose. Hence
we chose to analyze bigrams following “your” instead. Bigrams allowed us to
detect patterns such as “your credit card,” where we are more interested in the
word ‘card,’ which indicates a secure property owned by the user.

Feature selection and justification: We constructed frequency data for all
bigrams following “your” for both phishing and legitimate databases. Based on a
2-tailed t-test and an α value of 0.01 (the probability of a Type I error), we chose
a bigram as a possible feature if the t-value for the bigram exceeded the critical
value based on α and the degrees of freedom of the word. Then we calculated
weights for each bigram b, denoted w(b), using the formula:

w(b) =
pb − lb

pb
,where

– pb = percentage of phishing emails that contain b
– lb = percentage of legitimate emails that contain b.

Features that had weights less than 0 were discarded (and also features that
appear in less than 5 % of the emails) as these features were significant for legit-
imate emails. Observe that the remaining features have weights in the interval
[0,1], where features with higher weights allow better detection rate per phishing
email encountered. Note that the denominator in the weight formula priori-
tizes a feature that is present in 20 % phishing and 1 % legitimate emails over

Semantic Feature Selection for Text Data with Application to Phishing 461

a feature that is present in 80 % phishing and 61 % legitimate emails. Next, we
computed a frequency distribution of the selected bigrams using their weights
and then selected those bigrams that had weights greater than m−s, where m is
the mean bigram weight, and s is the standard deviation of the distribution. We
call this set PROPERTY as it lists the possible set of user’s properties, which
the phisher tends to declare as compromised. Note that from now on, the term
t-selection will refer to the same statistical feature selection used to filter features
for PROPERTY.

So far, we have designed a feature selection method for detecting the property
which the phisher falsely claims to have been compromised. The next task is to
detect the pattern that calls for an action to restore security of this property.
For this purpose, we checked the email for the presence of words that indicated
the user to click on the links. First, we computed statistics of all the words in
sentences having a hyperlink or any word from the set {“url”,“link”, “website”}.
Here we performed the same t-selection, as mentioned above, to choose the fea-
tures. We call the resulting set of words ACTION, which represents the intent
of the phisher to elicit an action from the user.

At this point, we are set to design the Action-detector subclassifier: for each
email encountered, we mark the email as phishing if it has:

(i) the word “your” followed by a bigram belonging to PROPERTY (e.g. “your
paypal account”), and

(ii) a word from ACTION in a sentence containing a hyperlink or any word from
{“url”,“link”, “website”} (e.g. “click the link”),

Nonsensical-detector. If Action-detector fails to mark any email as phish-
ing, control passes to the Nonsensical-detector. After analyzing some phishing
emails incorrectly classified by Action-detector, we discovered that many of these
phishing emails involved dumping words and links into the text, making the
text totally irrelevant to the email’s subject. This observation motivated the
Nonsensical-detector subclassifier whose purpose is to detect emails where:

(i) the body text is not similar to the subject, and
(ii) the email has at least one link.

Definition 1. An email body text is similar to its subject if all of the words in
the subject (excluding stopwords) are present in the email’s text.

First, we removed stopwords from the subject and selected features from the
subject using t-test on the remaining words. The goal here is to filter words that
imply an awareness, action or urgency, which are common in subjects of phishing
emails. We call this set PH-SUB. The Nonsensical-detector subclassifier is then
designed as follows: for each email encountered, if the email subject has at least:
a named-entity, or a word from PH-SUB, then we mark the email as phishing if:

(i) it contains at least one link, and
(ii) its text is not similar to the subject,

462 R. Verma and N. Hossain

Fig. 1. Flowchart showing how the classifier is trained.

This detector requires a named-entity in the subject since the body of the
email is completely tangential and irrelevant. Thus the phisher is relying on
the subject of the email to scare the user into taking action with respect to
some property of the user, which implies the presence of a named entity in
the subject. In emails of this nature with irrelevant information in the email’s
body, we assume the named-entity in the subject to be the property of the user
under threat (e.g. “KeyBank”, when the subject reads: “KeyBank security”).
A flowchart for building the classifier is shown in Fig. 1.

4.2 Classifier 2: PM+POS Tagging

This classifier builds on Classifier 1. Here we make use of part-of-speech tags in
an attempt to reduce the error in classification that occurs when simple pattern
matching techniques are used. When the bigrams following the word “your”
are extracted, we perform the additional check to discard bigrams that do not
contain a noun or a named-entity since the user’s property, that the phisher
tends to focus on, has to be a noun. When we perform statistical analysis on the
words in sentences having a link, we discard words that are not verbs. Recall
that the word we are looking for indicates the user to click on the link, and
this word has to be a verb as it represents the action from the user’s part. For
the Nonsensical-detector, we impose the restriction of detecting named-entities,
nouns, verbs, adverbs and adjectives only when selecting features for PH-SUB.
Furthermore, for the similarity check, we select only named-entities and nouns
from the subject and look for the absence of corresponding nouns and named
entities in the email’s text. We expect that the use of appropriate POS tags
in Classifier 2 will improve accuracy over Classifier 1. For instance, among the
patterns “press the link below” and “here is the website of the printing press,”
we are only interested in the presence of the word “press” in the former, but
Classifier 1 sees both the occurrences of “press” as belonging to ACTION.

Semantic Feature Selection for Text Data with Application to Phishing 463

4.3 Classifier 3: PM+POS+Word Senses

We extend Classifier 2 by extracting the senses of words using SenseLearner [14]
and taking advantage of these senses to improve classification. The goal is to
reduce errors that result from ambiguity in the meaning of polysemous key-
words. For instance, when “your account” appears, we are only interested in
financial accounts and not in someone’s account of an event. Toward this end,
we performed statistical analysis on words with their POS tags and senses to
train the classifier. Then we designed this classifier to look for patterns that
match selected features up to their senses whenever the classifier analyzed an
email.

4.4 Classifier 4: PM+POS+Word Senses+WordNet

So far our analysis has selected a certain set of features biased to the analysis
dataset. This is very similar to the way training works in machine learning based
classifiers. A better way to extend the features and improve the robustness and
generalization capability of our feature selection method is to find words closely
associated with them so that similar patterns can be obtained. To this end, we
incorporate WordNet in this classifier.

In Classifier 4, we extend the sets PROPERTY, ACTION and PH-SUB into
ext-PROPERTY, ext-ACTION and ext-PH-SUB respectively by computing first
the synonyms and then direct hyponyms of all synonyms of each selected fea-
ture (with its POS tag and sense), expanding the corresponding sets. Note that
PROPERTY contains bigrams and we only extract the nouns and add their syn-
onyms and the direct hyponyms of all the synonyms to the set. In addition, we
modify the classifier as follows:

(i) When we look for properties, we check to see whether the bigram that follows
the word “your” includes a noun that belongs to ext-PROPERTY, instead of
looking for the occurrence of the whole bigram in ext-PROPERTY.

(ii) In order to detect actions, we check each sentence, that indicates the pres-
ence of a link, for the occurrence of a verb from ext-ACTION.

(iii) When we check for similarity, for each noun in the email’s subject, we look
in the email’s text for the presence of a hyponym or a synonym of the noun.

5 Analysis and Results

In this section, we present the results obtained using each of the classifiers. We
also compare our classifiers to existing phishing email filters, and we present
insights into the nature of our datasets.

As shown in Table 1,2 the results demonstrate that Classifier 4 performs the
best among all the classifiers in marking both phishing and legitimate emails
accurately. We used the same phishing corpus as PhishNet-NLP [3], and we

2 The ‘Other’ category is explained in Table 2.

464 R. Verma and N. Hossain

Table 1. Results of using the classifiers on the test set.

Classifier P I S

Classifier 1 92.88 4.96 4.17

Action-Detector 73.6 1.92 1.96

Nonsensical-Detector 12.84 2.87 2.21

Other 6.44 0.17 0

Classifier 2 92.01 4.88 3.9

Action-Detector 72.23 1.4 1.76

Nonsensical-Detector 13.34 3.31 2.14

Other 6.44 0.17 0

Classifier 3 94.8 2.16 2.37

Action-Detector 75.1 0.5 0.72

Nonsensical-Detector 13.3 1.49 1.65

Other 6.44 0.17 0

Classifier 4 95.02 2.23 2.42

Action-Detector 75.82 0.57 0.77

Nonsensical-Detector 12.74 1.5 1.65

Other 6.44 0.17 0

P= % phishing detected on 1365 phishing
emails
I= % false positives on 3000 non-phishing
Enron Inbox emails
S = % false positives on 4000 non-phishing
Enron Sent emails

tested our classifiers on 1365 phishing emails. Classifier 4 has 95.02 % phishing
email detection as opposed to 77.1 % by the text analysis classifier of
PhishNet-NLP. Of the 3000 legitimate emails tested, Classifier 4 marked 97.76 %
of the emails as legitimate compared to 85.1 % for the text analysis classifier of
PhishNet-NLP. We tested on the public Enron email database whereas the legit-
imate email database of PhishNet-NLP was not revealed. Furthermore, on the
database of 4,000 non-phishing emails from Enron’s sent mails section used only
for testing, Classifier 4 obtains an accuracy of 97.58 %, exhibiting potential for
adaptation to a new domain. Its performance also justifies the use of semantics
in classification in addition to the robustness as explained above.

PILFER [16], based on machine learning, correctly marked 92 % of the 860
phishing emails and 99.9 % of the 6950 non-phishing emails it was tested on.
Using probabilistic Latent Dirichlet Allocation, ensemble machine learning meth-
ods and cotraining, [4] claimed an F-score of 1. All these methods use features
from the entire email, i.e., the header, the body text and the links in the email
whereas our classifiers relied on the text in the body of the email only.

Semantic Feature Selection for Text Data with Application to Phishing 465

5.1 Performance Analysis

Dataset Characteristics. After filtering the phishing emails from the analysis
set using Action-detector and Nonsensical-detector, we analyzed the emails that
were not detected by both of these subclassifiers. We sorted most of these emails
into the following categories and took measures to correctly label them:

– Spam Flagged: Detected by checking if the Spam-Flag field of the email
header reads YES.

– Emails in Foreign Language: In these emails, the text cannot be analyzed
in English. So we looked for frequent occurrences of the foreign language
translations of any of the words from {of, the, for, a, an} that are not present
in the English vocabulary. If this check is successful, then successful detection
involves finding a link.

– Emails containing only links: These emails do not have sufficient text for
processing. We chose not to create a subclassifier that checks for validity of
links as it defeats our purpose of creating an independent NLP classifier. We
marked these emails as phishing, which gave rise to some false positives.

– Emails with no subject, no text, no link and no attachment: Here,
we checked whether both the subject line and the text were missing.

Evaluation. Table 2 shows frequency of emails triggering each subclassifier of
Classifier 4 on both the legitimate and phishing email test sets.

6 Related Research on Phishing

Phishing has attracted significant research interest as a social engineering threat.
Solutions to this problem have included angles such as: education or training,

Table 2. Analyzing performance of Classifier 4 on test set.

Subclassifier P L

Action-detector 1035 17

Nonsensical-detector 174 45

Other 88 5

Spam-flagged 42 0

Foreign emails 20 1

Emails with only links 18 4

No subject and no text 8 0

Total 1297 67

P - # Phishing emails detected in 1365
phishing email dataset
L - # Legitimate emails misclassified in
3000 Enron inbox email database.

466 R. Verma and N. Hossain

server-side and browser-side techniques, evaluation of anti-phishing tools, detec-
tion methods, and studies that focus on the reasons for the success of phishing
attacks. Since [3,4] represent the best unsupervised and supervised techniques,
we refer to them for related work on these approaches for phishing email detec-
tion. Some existing works making use of these approaches include [2,16–24].
Since discussing the vast literature on phishing is not feasible, we focus on prior
research directly related to our work.

We can identify two ways of classifying phishing detection methods. The first
classification considers the information used for detection. Here, there are two
kinds of methods: those that rely on analyzing the content of the target web
pages (targets of the links in the email) and methods that are based on the
content of the emails. The second classification is based on the domain of the
technique employed for detecting phishing attacks (emails and web pages). Here,
there are detection methods based on: information retrieval, machine learning,
and string/pattern/visual matching.

Applications of machine learning known as content-based filtering methods,
on a feature set, are designed to highlight user-targeted deception in electronic
communication [16,19–23]. These methods, deployed in much phishing email
detection research, involve training a classifier on a set of features extracted
from the email structure and content within the training data. When training
is completed, the resulting classifier is then applied to the email stream to filter
phishing emails. The key differences in content-based filtering strategies are the
number of features selected for training, and the types of these features.

Incorporating NLP and machine learning, [4] uses a 3-layered approach to
phishing email detection. A topic model is built using Probabilistic Latent Seman-
tic Analysis in the first layer, then Adaboost and Co-training are used to develop
a robust classifier, which achieves an F-score of 1 on the test set, raising the possi-
bility of overfitting the data. Machine learning phishing detection methods have
to be updated regularly to adapt to new directions taken by phishers, making
the maintenance process expensive. See [24] for a comparison of machine learn-
ing methods for detecting phishing. A non-machine learning based classifier is
PhishCatch [2], which uses heuristics to analyze emails through simple header
and link analyses, and a rudimentary text analysis that looks for the presence
of some text filters. In [3], the authors create three independent classifiers: using
NLP and WordNet to detect user actions upon receiving emails, building on the
header analysis of [2], and a link analysis classifier that checks whether links in
the email are fraudulent. The evolution of phishing emails is analyzed by [1], the
authors classify phishing email messages into two categories: flash and non-flash
attacks, and phishing features into transitory and pervasive.

In [25], a stateless rule-based phishing filter called Phishwish is proposed,
which uses a small set of rules and does not need training. Although Phishwish
obtains a high detection accuracy with low false positives, it is tested only on
a small data set of 117 emails (81 phishing and 36 valid). For more details on
phishing, please see the books by [26–28]. Turner and Housley [29] present a
detailed treatment of email operational details and security.

Semantic Feature Selection for Text Data with Application to Phishing 467

7 Conclusions

We presented a robust and effective semantic feature selection method for text
data that is based on the t-test and generally applicable to text classification.
This method was applied to automatic classification of phishing emails. We cre-
ated four classifiers of increasing sophistication starting with simple pattern-
matching classifiers and then designing more sophisticated ones by combining
statistical methods with part-of-speech tagging, word sense, and the WordNet
lexical database. Our classifiers perform significantly better than the best pre-
vious body text-based phishing classifier. When combined with header and link
information it is comparable in performance with the best and most sophisti-
cated machine learning methods that also use all the information in the email.
This demonstrates the efficacy and robustness of our feature selection method.
Cross-validation of results is left for the future.

References

1. Irani, D., Webb, S., Giffin, J., Pu, C.: Evolutionary study of phishing. In: 3rd
Anti-Phishing Working Group eCrime Researchers Summit (2008)

2. Yu, W., Nargundkar, S., Tiruthani, N.: Phishcatch - a phishing detection tool.
In: 33rd IEEE International Computer Software and Applications Conference, pp.
451–456 (2009)

3. Verma, R., Shashidhar, N., Hossain, N.: Detecting phishing emails the natural
language way. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 824–841. Springer, Heidelberg (2012)

4. Ramanathan, V., Wechsler, H.: Phishgillnet - phishing detection using probabilistic
latent semantic analysis. EURASIP J. Inf. Secur. 2012, 1 (2012)

5. Li, S., Xia, R., Zong, C., Huang, C.R.: A framework of feature selection methods
for text categorization. In: ACL/AFNLP, pp. 692–700 (2009)

6. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-
rization. In: ICML, pp. 412–420 (1997)

7. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.M.: Text classification from
labeled and unlabeled documents using EM. Mach. Learn. 39(2/3), 103–134 (2000)

8. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

9. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002)

10. Herzberg, A.: Combining authentication, reputation and classification to make
phishing unprofitable. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT,
vol. 297, pp. 13–24. Springer, Heidelberg (2009)

11. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
12. Fellbaum, C. (ed.): WordNet an Electronic Lexical Database. MIT Press, Cam-

bridge (1998)
13. Richens, T.: Anomalies in the WordNet verb hierarchy. In: COLING, pp. 729–736

(2008)
14. Mihalcea, R., Csomai, A.: Senselearner: word sense disambiguation for all words

in unrestricted text. In: ACL (2005)

468 R. Verma and N. Hossain

15. Nazario, J.: The online phishing corpus (2004). http://monkey.org/∼jose/wiki/
doku.php

16. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proceed-
ings of the 16th International Conference on World Wide Web, ACM, pp. 649–656
(2007)

17. Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness of techniques
to detect phishing sites. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007.
LNCS, vol. 4579, pp. 20–39. Springer, Heidelberg (2007)

18. Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., Zhang, C.: An empirical
analysis of phishing blacklists. In: Proceedings of the 6th Conference on Email and
Anti-Spam (2009)

19. Chandrasekaran, M., Narayanan, K., Upadhyaya, S.: Phishing email detection
based on structural properties. In: NYS CyberSecurity Conference (2006)

20. Bergholz, A., Chang, J., Paaß, G., Reichartz, F., Strobel, S.: Improved phishing
detection using model-based features. In: Proceedings of the Conference on Email
and Anti-Spam (CEAS) (2008)

21. Basnet, R., Mukkamala, S., Sung, A.: Detection of phishing attacks: a machine
learning approach. In: Prasad, B. (ed.) Soft Computing Applications in Industry.
Studies in Fuzziness and Soft Computing, vol. 226, pp. 373–383. Springer, Heidel-
berg (2008)

22. Bergholz, A., Beer, J.D., Glahn, S., Moens, M.F., Paaß, G., Strobel, S.: New fil-
tering approaches for phishing email. J. Comput. Secur. 18(1), 7–35 (2010)

23. Gansterer, W.N., Pölz, D.: E-mail classification for phishing defense. In:
Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS,
vol. 5478, pp. 449–460. Springer, Heidelberg (2009)

24. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning
techniques for phishing detection. In: Proceedings of the Anti-Phishing Working
Group’s 2nd Annual eCrime Researchers Summit, ACM, pp. 60–69 (2007)

25. Cook, D.L., Gurbani, V.K., Daniluk, M.: Phishwish: a simple and stateless phishing
filter. Secur. Commun. Netw. 2(1), 29–43 (2009)

26. Jakobsson, M., Myers, S.: Phishing and Countermeasures: Understanding the
Increasing Problem of Electronic Identity Theft. Wiley-Interscience, Hoboken
(2006)

27. James, L.: Phishing Exposed. Syngress Publishing, Rockland (2005)
28. Ollmann, G.: The phishing guide. Next Generation Security Software Ltd. (2004)
29. Turner, S., Housley, R.: Implementing Email and Security Tokens: Current Stan-

dards, Tools, and Practices. Wiley, Hoboken (2008)

http://monkey.org/~jose/wiki/doku.php
http://monkey.org/~jose/wiki/doku.php

Who Is Sending a Spam Email: Clustering
and Characterizing Spamming Hosts

Jiyoung Woo, Hyun Jae Kang, Ah Reum Kang, Hyukmin Kwon,
and Huy Kang Kim(&)

Graduate School of Information Security, Korea University, Seoul, Korea
{jywoo,trifle19,armk,hack,cenda}@korea.ac.kr

Abstract. In this work, we propose a spam analyzing system that clusters the
spamming hosts, characterizes and visualizes the spammers’ behaviors, and
detects malicious clusters. The proposed system integrates behavior profiling in
IP address level, IP address based clustering, characterizing spammer clusters,
examining the maliciousness of embedded URLs, and deriving visual signatures
for future detection of malicious spammers. We classify spamming hosts into
botnet, worm, or individual spammers and derive their characteristics. We then
design a clustering scheme to automatically classify the host IP addresses and to
identify malicious groups according to known characteristics of each type of
host. For rapid decision making in identifying botnets, we derive visual signa-
tures using a parallel coordinates. We validate the proposed system using these
spam email data collected by the spam trap system operated by the Korea
Internet and Security Agency.

Keywords: Spam email � Spamming host � Botnet � Clustering � Visualization

1 Introduction

In 2012, unsolicited email messages, generally called “spam”, comprised 69 % of all
email traffic, according to the Symantec 2013 Internet Security Threat Report [16]. The
proportion of spam email sent from botnets was 77 % of all spam. A botnet is a
network of compromised computers, called bots, which are commanded and controlled
by a botnet owner from a command-control server. When infected, they are driven to
connect to malicious websites that embed malicious code through download forms or
to send emails with malicious code attached. Bots are used for various kinds of cyber
attacks by spreading malicious code to steal passwords, log keystrokes, and act as a
proxy server to conceal the attacker’s identity or by performing distributed denial-of-
service (DDoS) attacks. The largest botnets were taken down by US government for
several years; however, the total spam rate and the proportion attributed to botnets are
still high. Because botnets are typically used to perform DDoS attacks, we can extract
useful information about botnets from these attacks. However, evaluating network
traffic during a DDoS attack is passive, because the botnet attacks after its size has
expanded significantly. In addition, network traffic data is difficult to obtain, because
DDoS attacks do not occur often. On the other hand, detecting botnets through email
spam is proactive and more efficient than through other types of attacks, because daily

© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 469–482, 2014.
DOI: 10.1007/978-3-319-12160-4_28

data regarding botnet activity is easier to obtain, and the botnet could be detected
before it expands significantly. Thorough analysis of spam email enables us to detect
messages sent by bots in botnets and to identify the bots that belong to the same botnet.

Against spam email, current IP address-based blacklisting or content-based filtering
expose many limitations. Spammers evade the text-based filter using image spam and
obfuscating the words and they also evade IP blacklisting by changing the sender’s IP
addresses in a low cost. To overcome these shortcomings, we need a behavior-based
method, which is difficult for spammers to evade. Furthermore, it is impossible to
respond all incoming spams, so if we can group spam email and distinguish it from
botnets, we can make more flexible incident response policy and react some
spam email need with priority. In this study, we propose a framework that performs
clustering spam email and identifies malicious groups. The proposed system integrates
behavior profiling in IP address level, IP address based clustering, characterizing
spammer clusters, examining maliciousness of embedded URLs, and deriving visual
signatures by visualizing behavior profiles using a parallel coordinate diagram.

2 Literature Review

Recent research studies on botnet detection focused on inspecting network traffics for
anomalous patterns during a DDoS attack. We reviewed the studies that used visual-
ization to detect the botnet. The visualization of traffic flow exposes anomalous events,
such as unusual high traffic volume or drastic changes in traffic volume within a time
period. To detect malicious activities, these studies mainly adopted a visual layout that
illustrates the traffic volume among hosts, ports, and protocols and highlights the
changes in network attributes.

The parallel coordinate diagram is widely used, which can represent a multi-
dimensional dataset and can display the coverage of a variable and the frequency of its
attributes. In Tricaud’s work [1], the network flow variables that were selected as axes
are the timeline, source IP address, destination IP address, source port, and destination
port; in Choi’s work [2], the source IP address, destination IP address, port, and packet;
in Itoh’s [3] hierarchical display, the agent, IP address, URL, and request; in Yin’s
work [4], the internal sender domain, internal host, and external receiving domain
within a time period; and in Conti’s work [5], the internal/external IP address and port.
These studies explored variable selection and variable layouts to find the best coor-
dinates to detect anomalies in network traffic using visual patterns.

Recent studies examined the spam email as a data source for botnet detection. We
reviewed the key papers from these studies according to the data source, metric, and
technique. The data feed to the detection system was prepared at the message level or
the user level. The contents of spam email including URLs, attached files, and message
contents are used as features for clustering and classification. The network traffics are
also used as features to measure pollution level of messages and similarity between
messages. Previous studies used classification method to detect malicious groups when
they are able to build ground truth. In the lack of ground truth, the scoring or clustering
methods are generally applied. Similar to the approaches for detecting email spam, the

470 J. Woo et al.

message content can be measured in terms of the degree of obfuscation and pollution
level to search for messages from a botnet (Table 1).

Through a systematic literature review on botnet detection, we identified the fol-
lowing research gaps: (1) Most of the previous studies on botnet utilized network traffic
to isolate DDoS attacks that were performed primarily by botnets. (2) Studies that used
spam as a data source mainly used the clustering and classification methods excluding
visualization as techniques. (3) The features used in user behavior analysis are limited
and temporal features and ratio features are excluded. (4) Previous works on the
spamming botnet do not characterize other spamming sources. In this study, we will
extend the previous studies by enriching the features of user behaviors to detect
malicious spamming groups and providing systematic behavior profiles of malicious
groups. The behavior profiling makes spammers have more difficulties in evading the
detection method than text-based methods. We will also apply a visualization method
on the user behavior profile to detect malicious groups. The lightweight clustering and
visualization method for spammer detection will enable instant reaction to spammers
through a fast and efficient analysis.

3 Analyzing Spam Mail Data

3.1 Spamming Group Characteristics

Spam by botnet: In a botnet, bots become the hosts that send malicious URLs inside
spam emails to others. The aim of the botnet is to control bots, so the bots remains in
contact with victims. These programmed bots exhibit regular patterns in terms of the
frequency of spam bursts, and bots that belong to a same botnet have similar delivery
behaviors.

Spam by worms: The major characteristics of the worm are self-propagating and
spreading malicious codes. Because of self-propagating nature of the worm, emails sent
by the worm often include malicious attached files. The victims (sender) send spam

Table 1. Key papers based on data sources, metrics, and techniques

Data sources Metrics Techniques Key
papers

Message
level

Content URL, attachment,
message content

Obfuscation,
similarity,
pollution
level

Clustering,
classification

[6, 7,
13]

Network
traffic

Protocol, IP
address, port

Similarity,
pollution
level

Clustering,
classification,
scoring

[6–8]

User
level

User
behaviors

Sending/receiving,
login/logout,
membership

Burstiness,
distribution,
similarity

Clustering,
classification,
anomaly
detection

[8–12]

Coordination IP address, user Similarity Graph theory [10]

Who Is Sending a Spam Email: Clustering and Characterizing Spamming Hosts 471

containing malicious codes to collect email accounts (receivers). While bots in the
botnet exhibit similar behaviors, the computers infected by a worm have individual and
independent behaviors. The worm makes one-time interactions with victims. After a
host infects other victims, it does not need to maintain contact with them; therefore, the
worm’s behavior is less regular.

Spam by individual spammer: Individual spammers send various unsolicited bulk
emails to many unspecified receivers; they hold different email accounts to avoid
detection and blocking. While the botnet and the worm aim to infect others with
malicious code, the individual spammers send messages that contain advertisement
URLs.

3.2 System Design

We designed a visual spam analyzing system that builds spammers’ behavior profiles,
clusters the spammers, characterizes and visualizes their behaviors, and detects mali-
cious clusters. The spam trap is a honey pot system designed to collect spam emails.
The proposed system extracts the data from collected spam, organizes them by IP
address, and derives the delivery behaviors from the data. To build spammers’ behavior
profiles, we designed systematic features in terms of volume, diversity, and regularity.
IP addresses are clustered based on the similarity of sending behaviors. We designed a
clustering module to group spammers into the most homogeneous groups in sending
spam emails. We then analyze the behavior patterns of the cluster and judge the
cluster’s maliciousness based on the spamming group characteristics. The system also
evaluates the clustering results based on behavior profiles by checking the mali-
ciousness of IP addresses. An IP address is identified as malicious when it sends spam
emails that link malicious URLs. Finally, the representative IP addresses from each
cluster are feed to the visualization module. The visualizer displays the behavior profile

Fig. 1. System design

472 J. Woo et al.

using a parallel coordinate diagram. The statistics and the visual signatures help the
decision maker to classify the spammer into botnets, worms or individual spammers
(Fig. 1).

User Behavior Profiling. We consider the following characteristics in deriving user
behavior profiles.

Number of sender accounts vs. number of receiver accounts: The bot and the worm
use a limited number of sender accounts and fewer receiver accounts. The individual
spammer uses a large number of sender accounts; the receiver accounts are fewer than
sender accounts but still many.

Characteristics of URLs in the messages: The bot and the worm have few embedded
URLs in their messages, whereas the individual spammer embeds diverse URLs in
messages.

Time diversity: The worm and the individual spammer have irregular patterns in
sending spam emails, but the bot is programmed to send out messages regularly.

We designed the clustering scheme to use the IP address as the identity of the host
because a host controls many sender accounts. To represent the email-delivery
behaviors of hosts, we extracted the following metadata from the email headers and
performed clustering based on the extracted information:

Email metadata = (sender IP address, sender account, receiver account, title,
embedded URL, attached file, time)

The email metadata were accumulated during a specific time period and sorted into
tuples according to the IP address. A tuple consists of the following: number of sender
accounts, number of receiver accounts, number of email titles, number of embedded
URLs in spam messages for the time interval Δ, and time ratio.

(IPi, Δ) = (# of sent messages, # of sender accounts, # of receiver accounts, # of titles, #
of URLs, time_ratio)

Bots/worms/individual spammers are classified in terms of volume, diversity and
regularity. The spamming botnet sends the significant volume of messages, which
embed limited URLs, from limited accounts to limited accounts regularly. The volume
is measured as the number of sending frequency. The diversity is measured as the
number of sender accounts, the number of receiver accounts, the number of URLs, and
the number of titles. The temporal regularity is calculated with the following proposed
light comparison ratio, which shows the changes in the sending frequency within
sequential time intervals.

R time ratioð Þ ¼ sending frequency at time t
sending frequency at time t � 1

Additionally, we use a ratio tuple by dividing the original tuple by sending fre-
quency. The number of sending messages, accounts, titles, and URLs are highly cor-
related with sending frequency. The ratio over sending frequency shows normalized
sending patterns. Finally, we diversify the clustering features by adding following

Who Is Sending a Spam Email: Clustering and Characterizing Spamming Hosts 473

ratios: the ratio of sender accounts over receiver accounts, and the ratio of the number
of URLs over the number of subjects.

IPi; Dð Þ =Freq ¼ # of sent messages
sending frequency

;
of sender accounts
sending frequency

;
of receiver accounts

sending frequency
;

�

of titles
sending frequency

;
of URLs

sending frequency

�

Clustering the Spam Email Data and Detecting Malicious Groups. From previous
research and domain expert’s knowledge, we found that bots, worms, and individual
spammers have different spam-delivery patterns. To identify suspected malicious
groups from the spam emails collected in the spam trap system, we design the clus-
tering scheme. This clustering scheme reduces the processing time compared to manual
examination of individual IP addresses. Moreover, because bots in different botnets
have different spam-delivery patterns, and the different groups can be separated through
clustering based on the significant differentiators. Each email flow is transformed to a
high-dimensional feature space through the predefined feature set. We then measure the
similarity of behaviors of IP addresses. Since the feature set consists of numeric data
derived from the email flow, the similarity between IP addresses is calculated easily by
measuring the Euclidean distance between tuples. The k-means algorithm, one of
representative of clustering methods, divides data set into k clusters based on distance
between a data point and typical k points, named centroid. Repeating the process of
searching new centroids that minimizes the sum of squares of errors (SSE) between the
points and the centroids, the method finds optimal k different clusters [17]. We use
k-means algorithm to cluster the IP addresses to enable the decision maker to set the
number of clusters. After the clusters are formed, we examine the clusters’ behavior
profiles considering the characteristics of spammer groups as described in 3.1. Our
study should be ideally validated by comparing detected malicious groups against
botnet hosts and worm hosts. In the absence of such ground truth for spammer groups,
botnet/worm/individual spammer, the maliciousness test of URLs in email data will
provide an objective validation. To check whether suspected clusters are malicious, we
calculate ratios of malicious IP addresses in each cluster. Malicious URLs induce
receivers to download malicious code. URL also can be determined malicious when the
URL is on a spam blacklist. We conclude an IP address is malicious, when corre-
sponding IP address sends messages including any malicious URLs.

Visualization. To derive visual signatures for future botnet detection, we implement
the visualization system. We employ the parallel coordinate diagram to develop visual
signatures. The parallel coordinate diagram can express multi-dimensional variables
into two-dimensional space, and it shows the flow pattern by representing the coor-
dinates of attributes of variables in adjacent lines. We use the email flow as a unit of
visualization for easy and instant detection of malicious groups. We set the IP address
as the first coordinates because we aim to detect the IP addresses of bots. To get an
intuitive illustration of the email flow, we set the sequence of parallel lines as follows:
sender account (from_email), receiver account (to_email), subject, URL, and time ratio.

474 J. Woo et al.

4 Experiments

4.1 Clustering with K-means Algorithm

The KISA is the Korean national organization in charge of Internet security. The
organization developed a honeypot spam trap that stores the email header data,
including sender IP address, sender account, sender domain, sender mailer, receiver
account, email title, embedded URL, attached file, and time. We analyzed the spam
email data collected on December 6th, 2011. Following is an overview on spam traffics
of the day. There are total 1,097,936 spam emails collected by the spam trap, that were
sent from 135,552 distinct accounts using 21,085 different IP addresses to 53,117
distinct recipient accounts with 6,682 unique email titles and 30,137 different
embedded URLs. 93.01 % of spam emails embedded URLs in their messages and 1 %
of the spam emails attached files.

Figure 2 shows pseudo-F statistic and cubic clustering coefficient values when the
number of clusters varies. The pseudo-F statistic describes the ratio of between cluster
variance to within cluster variance [14]. The clusters are more separated with other
clusters and more closely concentrated in each clusters, when Pseudo-F statistic
increases. The cubic clustering coefficient (CCC) is also used to estimate the number of
clusters to minimize the within-cluster sum of squares [15]. It is based on the
assumption that data was obtained from a uniform distribution. If CCC gets larger
value, clusters differ from a uniform distribution (no clusters).

After deciding the number of clusters as 6 and performing the IP address clustering,
we performed the impact analysis of each feature in the categorization of clusters.
Table 2 represents the importance ratio of corresponding attribute name, and expla-
nations of attributes in detail. As shown in the table, attributes in ratio tuple primarily
acts on our clustering process. We can see the ratio attributes which are not influenced
by sending frequency, have significant effects on clustering groups based on sending
patterns. The importance value indicates a relative role of a variable in splitting clusters
and measures how much the error reduces when the variable is used as a main splitting
rule. After the clustering is performed, the tree rules composed of variables are gen-
erated to classify the data according to cluster results. It is the sum of square of the

0

100

200

300

400

500

600

0

5000

10000

15000

20000

25000

3 4 5 6 7 8 9
C

ub
ic

 c
lu

st
er

in
g

co
ef

fic
ie

nt

F-
st

at
is

tic
s

The number of clusters

F-statistic

cubic clusteirng
coefficient

Fig. 2. F statistic and cubic clustering coefficient values

Who Is Sending a Spam Email: Clustering and Characterizing Spamming Hosts 475

product of the variable’s agreement in a rule and the reduction of the sum of square of
error from the clusters generated by the rule. As the importance value of a variable
increases, the variable is considered more importantly in generating clusters.

On Table 3, we listed the behavior profiles of clusters. The number of IP addresses
means the number of IP addresses in corresponding cluster. Attached is the ratio of
messages containing attached files. Ratio is the mean of each IP adderess’ R (time_ratio)
value explained in chapter 3. Other attributes are average values of the features in
Table 2. Based on the characteristics of each cluster, we identified malicious groups as
follows.

Table 2. The importance values of features for clustering

Name Importance Detail

Freq 0 Sending count
Sub 0 Number of subjects (titles)
From 0 Number of sender accounts
To 0 Number of receiver accounts
Attached 0 Number of email with attached files
URL 0.22 Number of URLs
URL_YN 0 Number of email embedding URLs
From/Freq 0.67 Ratio of sender accounts to sending count
To/Freq 0.26 Ratio of receiver accounts to sending count
From/To 0 Ratio of sender accounts to receiver accounts
URL/Freq 0.76 Ratio of email with URLs to sending count
URL_YN/Freq 0.89 Ratio of number of emails with URLs to sending count
URL/Sub 0 Ratio of number of URLs to number of subjects
Sub/Freq 1 Ratio of number of subjects to sending count

Table 3. The behavior characteristics of clusters

476 J. Woo et al.

First, we analyzed sending patterns of cluster 3, cluster 6, and cluster 2. Most of the
messages sent by the IP addresses in cluster 3 do not include URLs or attached files,
and the number of the messages was low. If it is a botnet group, the number of the
messages will be more sizable and the messages will contain URLs or files. Cluster 3
seems to be a normal user group with low rates of embedded URLs and files. Cluster 6
holds many interesting attributes. It includes only 181 IP addresses but they sent a large
number of messages. Also the sender accounts and the receiver accounts were
excessively diverse. We guess that cluster 6 is a professional individual spammer
group, since the botnet or the worm uses limited number of sender accounts and
receiver accounts. Cluster 2 had some different characteristics. The messages sent by IP
addresses in cluster 2 mostly contained attached files, while other clusters have low
attachment rates. Since emailing worms usually attach malicious code, we guessed
cluster 2 as a worm group. Cluster 1, 4, and 5 had similar sending patterns. They have
limited number of sender accounts, subjects, receiver accounts, and URLs. The ratio of
sender accounts, receiver accounts, and subjects over sending count are lower than 1.
This indicates that the messages in those clusters were sent from same accounts and
with subjects in limited range.

We validated our judgment based on the distance between clusters. We performed
the multidimensional scaling to derive two principal dimensions formed by combina-
tions of variables and measured the distances between clusters. The first principal
dimension is derived so that it explains the variance of data maximally, and the second
principal dimension is selected as the vertical axis against the first dimension. Figure 3
displays the clusters centers on the two principal dimensions. We found that botnet
clusters locate within a close distance and the worm is close to the botnets.

4.2 The Ratio of Malicious IP Addresses

As an alternative validation to confirm the reputation of the IP addresses, we used
“VirusTotal (http://www.virustotal.com)” to inquire the maliciousness history of the IP
addresses. VirusTotal is a world-largest free online service that analyzes files, URLs

Fig. 3. The proximity map of clusters.

Who Is Sending a Spam Email: Clustering and Characterizing Spamming Hosts 477

http://www.virustotal.com

and IP addresses enabling the identification of viruses, worms, Trojans and other kinds
of malicious contents detected by antivirus engines and website scanners. We checked
the 30,137 URLs by performing submission to VirusTotal, and retrieved URL scan
reports. We collected whole reports of 19,620 URLs, and 4,713 URLs were diagnosed
malicious. The time gap between when the spam email is collected and when the
embedded URLs are tested makes the number of tested URLs less than the number of
feed URLs. However, the current lists are sufficient to compare how different the
clusters are. We got 6,582 malicious IP addresses among 21,085 different IP addresses.
Table 4 summarized the evaluation results.

Comparing the percentages of malicious IP addresses, the results indicated that
there are substantial differences between each cluster, especially when considering with
cluster categories. Three botnet clusters include about 30.2 * 63.8 % of malicious IP
addresses. Bots send spam emails to infect other machines or to gain profits by running
spam campaigns. Thus, spam emails from botnets naturally contain many malicious
URLs and IP addresses. Considering the time gap between the testing time and the data
collecting, the botnet clusters’ results were meaningful. The cluster of normal users is
expected to have no malicious IP addresses. It is acceptable to determine cluster 3 as a
normal user group since cluster 3 shows nearly zero malicious URL rate with 0.6 % of
error. Cluster 2, which is a worm group, have a low rate of malicious IP addresses. The
messages of the worm cluster contained many attachments but only few messages
included URLs. The individual spammer group has 100 % of malicious IP addresses.
The individual spammers are professional spammers, and they send large volume of
spam emails. Even they do not contain infected URLs, the embedded URLs are on the
spam blacklist.

4.3 Visual Signatures

We visualized the email flow of top sender accounts or IP addresses in terms of sending
volume. The representative cases are displayed to derive visual signatures for future
botnet/worm/professional spammer detection. We plotted parallel coordinate diagrams
with choosing 5 sender accounts in each botnet group and a worm group, and choosing

Table 4. The test results of maliciousness of IP addresses in each cluster

Cluster # of IP
address

of malicious IP
address

Percentage
(%)

Cluster
category

1 5729 1927 33.6 Bot
2 2165 26 1.2 Worm
3 2670 17 0.6 Normal user
4 6451 1948 30.2 Bot
5 3890 2483 63.8 Bot
6 181 181 100 Individual

spammer

478 J. Woo et al.

5 IP addresses in the individual spammer group. To get ratio, we put t = 12 h in R
(time_ratio). The diagram of worm is similar to the diagram of botnet except the
diagram of worm has less URLs and diverse time ratio for an IP address. The bots in a
botnet have similar and regular sending patterns, so botnet diagrams have the fixed time
ratio. On the contrary to this, those values in worm diagrams vary. To represent the
individual spammer diagram, we plotted it by choosing top five IP addresses to
emphasize the complexity of sending behavior. The diagram showed a large volume of
messages, numerous sender accounts/receiver accounts/URLs, and diverse ratios. With
the visualization system plotting parallel coordinate diagrams, and simply choosing
appropriate elements to plot, they can be used as visual signatures to decide botnet/
worm/individual spammer group (Fig. 4).

4.4 Behavior Profiling

So far, we validated our judgment on malicious groups. We then built profiles of
botnet/worm/individual spammer for future detection of botnet. The important features
derived from clustering are examined to derive discriminators of malicious group
species. We derived one standard deviation range of important features and derive the
botnet profiles with features that have no overlapped ranges with normal user, worm,

(a) Bot (b) Worm

(c) Individual spammer

Fig. 4. Parallel coordinate diagrams of malicious groups

Who Is Sending a Spam Email: Clustering and Characterizing Spamming Hosts 479

and individual spammer (see Appendix Table 5). The botnet profiles are derived as
follows.

Botnet profiles: 0.44<URL<378, From/Freq<0.61, 0.75<To/Freq<0.89, 0.94<URL_
YN/Freq<1

5 Conclusion

In this study, we proposed spam analyzing system that clusters the spammers, char-
acterizes and visualizes the spammers’ behaviors, and detects malicious clusters.
We classified the sending hosts into botnet, worm, or individual spammers, and used a
wide range of characteristics to map out the behavior of botnets, worms and individual
spammers. We then designed a clustering scheme to automatically classify the sending
IP addresses and to identify malicious groups according to known characteristics of
spamming hosts. Since pseudo F-statistics reveals the tightness of each cluster and
cubic clustering coefficient captures the deviation from a uniform distribution, com-
bining both to determine the number of clusters gives a good clustering scheme for
huge datasets such as email spams. We used two validations steps for the results
obtained from analyzing clustering which reaffirm the categorization of the clusters.
The cluster also reveals normal user traffic which acts as a control variable for the
experiment. The visual signature further reveals the variations between the types of
spammers i.e. botnets, worms and individual spammers. The visual signatures using a
parallel coordinate enable the rapid decision making in identifying malicious spam-
ming groups. The issue of common fate of likely honest users in the detection and
group mechanism when the infrastructure (IP addresses) are used as part of the features
can be solved when white-list IP addresses are maintained.

The proposed system was evaluated using a large-scale spam dataset collected by a
spam trap system operated by KISA. We confirmed that the botnet and the worm
cluster have high rates of malicious URLs embedded in emails. In addition, we con-
firmed that the visual patterns of representative cases of each cluster are differentiable
from each cluster. In the next stage, we will expand our study to use the one-year spam
dataset. Second, we will explore the diverse combination of axes in the visual chart to
improve visual signatures.

Acknowledgement. This research was supported by the MKE (The Ministry of Knowledge
Economy), Korea, under the ITRC (Information Technology Research Center) support program
(NIPA-2013-H0301-13-1003) supervised by the NIPA (National IT Industry Promotion
Agency). This research was supported by Korean Ministry of Environment as the Eco-Innovation
project (Global Top project). (GT-SWS-11-02-007-3).

480 J. Woo et al.

Appendix

References

1. Tricaud, S., Saadé, P.: Applied parallel coordinates for logs and network traffic attack
analysis. J. Comput. Virol. 6, 1–29 (2010)

2. Choi, H., Lee, H., Kim, H.: Fast detection and visualization of network attacks on parallel
coordinates. Comput. Secur. 28, 276–288 (2009)

3. Itoh, T., Takakura, H., Sawada, A., Koyamada, K.: Hierarchical visualization of network
intrusion detection data. Comput. Graph. Appl. IEEE 26, 40–47 (2006)

4. Yin, X., Yurcik, W., Treaster, M., Li, Y., Lakkaraju, K.: VisFlowConnect: netflow
visualizations of link relationships for security situational awareness. In: Proceedings of the
2004 ACM Workshop on Visualization and Data Mining for Computer Security, pp. 26–34
(2004)

5. Conti, G., Abdullah, K.: Passive visual fingerprinting of network attack tools. In:
Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for
Computer Security, pp. 45–54 (2004)

6. Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming botnets:
signatures and characteristics. ACM SIGCOMM Comput. Commun. Rev. 38, 171–182
(2008)

7. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying spamming botnets
using botlab. In: NSDI’09 Proceedings of the 6th USENIX Symposium on Netwoked
Systems Design and Implementation, vol. 9, pp. 291–306 (2009)

8. Li, F., Hsieh, M.-h.: An empirical study of clustering behavior of spammers and groupbased
anti-spam strategies. In: CEAS 2006 Third Conference on Email and AntiSpam (2006)

9. Zhuang, L., Dunagan, J., Simon, D.R., Wang, H.J., Tygar, J.: Characterizing botnets from
email spam records. In: Proceedings of the 1st Usenix Workshop on Large-Scale Exploits
and Emergent Threats (2008)

10. Zhao, Y., Xie, Y., Yu, F., Ke, Q., Yu, Y., Chen, Y., Gillum, E.: BotGraph: large scale
spamming botnet detection. In: NSDI’09 Proceedings of the 6th USENIX Symposium on
Netwoked Systems Design and Implementation, vol. 9, pp. 321–334 (2009)

11. Sroufe, P., Phithakkitnukoon, S., Dantu, R., Cangussu, J.: Email shape analysis for spam
botnet detection. In: Proceedings of IEEE Consumer Communications and Networking
Conference, 2009 (2009)

Table 5. Statistics of important features according to host species

Feature Botnet Worm Normal user Individual
spammer

μ − σ μ + σ μ − σ μ + σ μ − σ μ + σ μ − σ μ + σ

URL 0 64.73 0 0.44 0 0.17 378.04 951.75
From/Freq 0.29 0.94 0.18 0.45 0.68 1.09 0.44 0.61
To/Freq 0.46 1.02 0.29 0.75 0.89 1.06 0.40 0.56
URL/Freq 0.17 0.89 0 0.03 0 0.04 0.44 0.61
URL_YN/
Freq

0.94 1.05 0 0.11 0 0.05 1.00 1.00

Sub/Freq 0.22 0.90 0.03 0.32 0.60 1.10 0.25 0.40

Who Is Sending a Spam Email: Clustering and Characterizing Spamming Hosts 481

12. Pathak, A., Qian, F., Hu, Y.C., Mao, Z.M., Ranjan, S.: Botnet spam campaigns can be long
lasting: evidence, implications, and analysis. In: Proceedings of the Eleventh International
Joint Conference on Measurement and Modeling of Computer Systems, pp. 13–24 (2009)

13. Jeong, H., Kim, H.K., Lee, S., Kim, E.: Detection of Zombie PCs based on email spam
analysis. KSII Trans. Internet Inf. Syst. (TIIS) 6, 1445–1462 (2012)

14. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theor.
Methods 3, 1–27 (1974)

15. Sarle, W.: SAS Technical Report A-108 (1983)
16. Symantec Corporation: Internet Security Threat Report 2013, vol. 18 (2013)
17. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C.,

Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg
(2006)

482 J. Woo et al.

Dark Side of the Shader: Mobile GPU-Aided
Malware Delivery

Janis Danisevskis(B), Marta Piekarska, and Jean-Pierre Seifert

Security in Telecommunications, Technische Universität Berlin, Berlin, Germany
{janis,marta,jpseifert}@sec.t-labs.tu-berlin.de

Abstract. Mobile phones are the most intimate computing devices of
our time. We use them for private and business purposes. At the same
time lax update habits of manufacturers make them accumulate dis-
closed vulnerabilities. That is why smartphones have become very attrac-
tive targets for attackers. Until today Graphics Processing Units (GPU)
were not considered an interesting mean of payload delivery in mobile
devices. However, in this paper, we present how the Direct Memory
Access (DMA) capabilities of a mobile GPU can be abused for a privilege
escalation attack. We describe a successful and real-world GPU-based
attack, discuss problems that the GPU’s different programming model
poses, and techniques that lead to a successful attack. We also show
a proof-of-concept exploit against a very popular smartphone line. We
conclude that DMA-based malware is a serious threat to mobile devices.

Keywords: DMA · GPU · Mobile malware · Privilege escalation

1 Introduction

One of the key pillars of today’s smartphones is their stunning graphics per-
formance, which is improved with every new mobile generation. Compared to
early cellular phones, which offered only text capabilities, their animated graph-
ics along with their shiny displays allows for a huge zoo of different applications,
including valuable and sensitive applications. Since the underlying graphics hard-
ware and software is very complex, it comes as no surprise that the underlying
GPU technology raises some obvious security questions due to their heavy DMA
usage. Examples like [5,15] support those security concerns. For this reason we
consider the risk of modern GPUs as a new attack vector for smartphones.
Towards this, the presented paper makes the following contributions for a better
understanding of the security of modern GPUs:

– Mobile GPU Malware. We show, to the best of our knowledge, the first
GPU malware running on a mobile device.

– Attack Vector. We design an innovative attack vector that allows to abuse
the DMA of a GPU for copying user-chosen data.

– Exploit. We present a real life exploit that effects millions of devices.

For its novelty claims we now consider the related work on GPU or DMA-
assisted malware research.
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 483–495, 2014.
DOI: 10.1007/978-3-319-12160-4 29

484 J. Danisevskis et al.

GPU-Assisted Malware. Until now little research has been done on the topic
of GPU-assisted malware. Vasiliadis et al. [16] demonstrate how the general
purpose computing facilities of modern GPUs can be used to increase malware
robustness against detection. With their method polymorphic code versions are
generated on the GPU, but the malicious payload is still executed on the CPU.
Their work not only shows that GPU-assisted malware is a feasible concept, but
also how big the potential of using a GPU in general purpose computing is, as
well as in malicious code spreading. Moreover the authors anticipate the possible
attack vectors that can accrue from unrestricted access to the frame-buffer.

Carlson [3] examines the potential of using coprocessors, such as the GPU, for
both defensive and offensive purpose on mobile devices in particular. He shows
techniques for using the mobile GPU for signature verifications, encryption and
decryption, memory tracking and dynamic disassembly.

In their work Ladakis et al. [7] describe a GPU-based keylogger. The authors
monitor the systems’ keyboard buffer directly from the GPU, making use of its
DMA capabilities. They used a CPU process to control the execution of their
malware. However, unlike our method, their prototype implementation requires
root privileges to initialize the environment.

DMA Attacks. We have seen various DMA based memory acquisition tech-
niques through peripheral buses such as FireWire, PCI [4] and Thunderbolt [14].
In 2004 Dornseif [5] showed the first Firewire-based DMA attack. The author
used an iPod with modified firmware to obtain unrestricted access to the main
memory of a PC. Boileau [1] extended the attack to Windows XP in 2006. The
concept was further turned into a tool [10]. Breuk and Spruyt [2] presented
multiphase attacks with direct access to the machine.

The first paper to introduce the term DMA malware was written by Stewin
and Bystrov [15]. They present a keylogger, which abuses the DMA engine of
dedicated hardware to launch undetectable attacks against the host.

The Rest of the Paper is structured as follows. In the next section we will
give the background and terminology, describe some aspects of the SoC (system
on chip) architecture, have a brief look on what direct memory access is, and
discuss a typical GPU pipeline. In Sect. 3, we present the design of our attack
vector, and what threat model we assumed. In Sect. 4, we reveal the details of
the proof-of-concept exploit. We conclude with Sects. 5 and 6, where we give
insight into the research we would like to conduct in the future, and summarize
our findings.

2 Background

In this section we describe the background and the terminology which is impor-
tant to understand the rest of the paper. We explain some essentials of con-
temporary smartphone systems on chip (SoC), followed by a short glance on

Dark Side of the Shader: Mobile GPU-Aided Malware Delivery 485

direct memory access (DMA). Last, in this section, we cover the basics of GPU
programming.

2.1 SoC Architecture

A typical smartphone SoC combines multiple building blocks on a single sili-
con substrate. This consolidation of integrated circuits is very efficient, both in
terms of manufacturing cost and in terms of integration size. In Fig. 1 we show a
very simplified sketch of an SoC, with focus on the communication between the
building blocks. The system bus connects all the building blocks, and the main
memory which is usually not part of the SoC itself. On a real SoC the system
bus is usually divided, and comprises many physical interfaces and protocols.
Everything that is connected to the system bus including each byte of the main
memory is addressable through a unique physical address. An entity that can put
addresses on the bus, and then read from, or write to the addressed resource is
called a bus master. On one hand the distinguishing feature that makes a smart-
phone the versatile gadget it is, is the capability to run third party applications.
These applications, however, can be buggy or intentionally malevolent, and must
be considered untrustworthy. The CPU, which executes them, is, on the other
hand, the most prominent bus master in the SoC. To confine potentially mis-
behaving entities, the operating system provides each application with a virtual
address space by means of a memory management unit (MMU). The operating
system of a smartphone carefully abstracts from the peripherals in the system.
There is one building block, however, which can be programmed by user appli-
cations, and act as bus master at the same time: the graphics processing unit
(GPU). As depicted in Fig. 1 the GPU also deploys an MMU to restrict access to
the system bus, thus confining user jobs. The GPU’s MMU must be very tightly
controlled by the operating system so as to not jeopardize the integrity of the
system.

Fig. 1. Sketch of a typical system on chip (SoC) that can be found in a smartphone.

2.2 DMA

The technique of letting certain devices access the main memory directly is very
commonly used to offload high-bandwidth memory transfers by these devices off

486 J. Danisevskis et al.

the CPU. In Sect. 1 we have presented resources that show how this powerful fea-
ture was used for debugging, forensics and as an attack vector. With the advent
of virtualization technologies we have seen the introduction of input/output
memory management units (IOMMUs). They allow to both restrict the memory
regions a device can access and partition the memory flexibly. This development
can now also be witnessed in the embedded domain. From a security perspective
IOMMUs as well as their CPU-bound counterparts must be tightly controlled
by the device’s operating system.

2.3 Graphics Processing Unit

GPUs are used to offload computationally intensive graphics rendering tasks
off the CPU. They are designed to process large amounts of data with low
entropy. This allows massive parallelism and long pipelines, thus trading latency
for bandwidth. Giesen [6] and Luebke and Humphreys [9] give good insight into
the workings of contemporary GPUs.

The programmer uses a high level API such as OpenGL or Direct3D to
program the GPU. The primitives that comprise an OpenGL program are rid-
dled with terms stemming from the field of computer graphics. Figure 2 shows
a typical graphics processing pipeline (GPP). The input to the GPP is a set of
attributes, uniforms and textures. Attributes are user-defined and hold per vertex
meta-information. Vertices are three dimensional vectors that denote endpoints
of lines or corners of polygons. The set of vertices represents the geometry of
the scene to be rendered. Uniforms hold per scene meta-information provided by
the user such as for example a rotational matrix. Textures are used to increase the
level of detail by mapping images on to the geometry’s surface. Recent versions
of the graphics programming APIs allow the use of shaders, user provided pro-
grams that are loaded into the programmable stages of the GPP. Shaders are
written in an extension specific language (e.g. GLSL in case of OpenGL [12] or
HLSL in case of Direct3D) and compiled into an architecture specific instruc-
tion set by the GPU driver. The first stage of the GPP operates on the geometry
of the scene. Here the user-defined vertex-shader is used. On recent GPUs this
might be accompanied by either, or both, geometry and tessellation shaders. As
a result a set of primitives, triangles on a 2D plane with additional meta-data,
is produced. In the following rasterization phase meta-information about each
sample of the rendered scene is generated through interpolation along the prim-
itives. These samples-called fragments-are processed in the last programmable
stage—the fragment-shader. The result is written into the output buffer.

3 The Attack Vector

The scheme of our attack is based on the idea that an attacker gains control
over the memory protection mechanism of the GPU and misuses it to read from
or write to otherwise inaccessible locations of the main memory of the system.

Dark Side of the Shader: Mobile GPU-Aided Malware Delivery 487

Fig. 2. A typical graphics processing pipeline.

We thought it conceivable that, if OpenGL can be used to render an image
onto the screen without any transformation, the same mechanism could be used
to make an exact copy of binary data. We will now discuss how this identical
scene can be rendered using OpenGL and under which circumstances this would
mimic the C-library function memcpy.

Fig. 3. The attack vector.

3.1 Identical Scene Rendering

From an OpenGL programmer’s perspective, the geometry of the identical scene
is a flat square that fills the whole viewport1. So we compose a single square
using a set of four vertices. There is no need to alter the geometry in the ver-
tex processing phase of the GPP, thus, in the vertex shader, we just pass the
vertex’ position on to the next stage, as can be seen in Line 6 of Listing 1.1.
In order to add the details to the scene which comprise the actual data that
shall be copied, we interpret the input as a texture and map it onto the square.
To fit it into the correct position we pass the texture coordinates to the GPP
as attributes. Line 7 of Listing 1.1 shows how this coordinate is assigned to
the varying2 texture coord in the vertex shader. This coordinate is then used
to sample the texture using the sampling function texture2D in the fragment
shader (Listing 1.2, Line 6). Given that the output area has the same aspect
1 The visible part of a scene.
2 Varyings carry meta-information from the geometry phase to the fragment phase of

the GPP, and are subject to interpolation in the rasterization phase.

488 J. Danisevskis et al.

Listing 1.1. Vertex Shader code used for copying Textures.

1 attribute vec4 in_vertex;
2 attribute vec2 in_texture_coord;
3 varying vec2 texture_coord;
4 void main()
5 {
6 gl_Position = in_vertex;
7 texture_coord = in_texture_coord;
8 }

Listing 1.2. Fragment Shader code used for copying Textures.

1 precision highp float;
2 varying vec2 texture_coord;
3 uniform sampler2D in_texture;
4 void main()
5 {
6 gl_FragColor = texture2D(in_texture , texture_coord);
7 }

ratio and number of pixels as the input texture, this results in a copy of each
texel3 to the corresponding pixel of the rendered scene. The attack model is
presented in Fig. 3. In case of copying random data the pixel format must be
defined for all possible values stored in memory. RGBA8888 comprises four 8 bit
channels: red, green, blue and alpha, and all of the possible values 0x0 through
0xFFFF FFFF are valid colors. Using this as the input and output pixel format,
we should get an exact binary copy. One could argue, that the GPU renders into
the frame buffer, thus this copy mechanism is of no use for our purpose. But as
for the SoC architecture of Sect. 2.1 the frame buffer is just another region in
main memory. Thus the output of the GPU can be redirected anywhere in the
main memory as we will show in Sect. 4.

3.2 The Threat Model

We will now discuss the threat model of the attack. On a very high level we want
to evade the memory isolation with all well-known consequences. We assume an
Android smartphone with its integrity and memory isolation mechanisms intact.
The goal of the attacker shall be arbitrary code execution in privileged mode on
the CPU. The entry point to the device shall be that of a trojan. That is, the
attacker tricks the unsuspecting user to install an application. Moreover, this
application shall not raise suspicion by requesting unreasonable access rights. In
fact the application shall not need any access right that can—on Android—only
be granted if specified in the application’s manifest.
3 Texture pixel.

Dark Side of the Shader: Mobile GPU-Aided Malware Delivery 489

Listing 1.3. The payload.

0: 0xe52de004 | push {lr} ; (str lr, [sp, # -4]!)
4: 0xe3a00000 | mov r0, #0
8: 0xe59f1010 | ldr r1, [pc, #16] ; 20 <.text+0x20 >
c: 0xe12fff31 | blx r1

10: 0xe59f100c | ldr r1, [pc, #12] ; 24 <.text+0x24 >
14: 0xe12fff31 | blx r1
18: 0xe3a00000 | mov r0, #0
1c: 0xe49df004 | pop {pc} ; (ldr pc, [sp], #4)
20: 0xc038dc44 | placeholder for prepare_kernel_cred
24: 0xc038ddd8 | placeholder for commit_cred

4 The Proof-of-Concept Attack

In Sect. 3 we described how we planed to gain read and write access to arbitrary
main memory locations. We will now explain the detail of our exploit.

The exploit was targeted at a very popular smartphone model running
Android, which employs an ARM Mali MP 400 GPU. We found that several
firmware versions were vulnerable to our attack. Even more, the successor of the
targeted model was vulnerable as well. The goal of our proof-of-concept exploit
was to elevate the privileges of a normal user-space application by means of
patching the kernel’s text section. Once write access to the kernel memory is
established this is fairly straightforward and has been described before [8,13].

In this section we will briefly describe the payload that we delivered using
the GPU. Then, we will introduce the bug in the kernel that made this exploit
possible. Next, we will focus on the delivery of the payload. We conclude this
section with a discussion of pitfalls that we encountered during our work.

4.1 Payload

As we wanted to perform privilege escalation by patching a system call we needed
a piece of code that changes the caller’s user id to 0 or root. We used a well
established method as presented by McAllister [11]. The C-code equivalent of
the payload was:

commit_creds(prepare_kernel_cred(NULL));

Listing 1.3 shows the compiled assembly as well as the word-wise hexadecimal
representation of the payload. Figure 4 shows the payload when interpreted as
texture. We leave a detailed inspection of the object code to the reader.

4.2 The Bug

The Mali driver stack is split into a part that resides in the Linux kernel and a set
of user-space libraries. The kernel driver exposes its interface to the user through
the device node /dev/mali. Access to this device node is not restricted. This is
not a problem as the kernel driver provides abstractions that allow, in principle,

490 J. Danisevskis et al.

Fig. 4. The payload as 4 by 4 texture padded with 6 words of 0 when interpreted as
RGBA pixel format.

safe usage by multiple users. Most notably, for our cause, it provides each user
session with a private address space that is controlled by means of the GPU’s
MMUs4. The user-space libraries make up the larger part of the driver. They
provide common APIs such as the embedded graphics library (EGL) and the
open graphics library (OpenGL). The lower end of this part of the driver stack
connects to the user-kernel interfaces of the frame buffer and the Mali driver.
Their task is to populate the session address space, layout graphics processing
jobs in the allocated memory and submit them to the kernel driver. It shall be
noted that the values written to the registers of the Mali GPU come directly from
the user space. With the above mentioned we can state the following assumption,
that must hold for the driver stack to sustain the kernel enforced memory space
isolation.

It is not important what the user runs on the GPU as long as the session
address space of the GPU does not violate the memory isolation imposed by the
kernel.

The Mali kernel driver provides the user with three mechanisms to populate
the session address space of the GPU. The user can (1) call mmap on the open
session, which will allocate physical memory tiles, map them into the caller’s
address space and, at the same time, into the session address space of the GPU.
The Mali driver is accompanied by the universal memory provider (UMP) kernel
driver, which allows the user to allocate physical memory buffers. Applying mmap
on the UMP session the user can have those buffers mapped into her process’
address space. As the Mali driver is UMP aware the user can also (2) attach
UMP buffers to the session address space. The third mechanism allows the user
to (3) supply the kernel driver with physical addresses. This mechanism was
introduced to map the frame-buffer memory into the GPU’s session address
space. As long as the driver performs a range check on the supplied addresses,
this is a viable technique. But in the case of the driver we assessed, this range
check was misconfigured so as to include all of the physical memory. This allowed
any user to map any part of the main memory into the GPU’s session address
space. Thus the assumption we stated above was violated.5

4 The Mali MP 400 GPU has one geometry processor (GP) and up to four pixel
presenters (PP). Each of these processing cores has its own MMU.

5 The OEM was informed about our findings and fixed the bug.

Dark Side of the Shader: Mobile GPU-Aided Malware Delivery 491

Listing 1.4. ioctl–call to insert arbitrary physical mappings into the GPU’s virtual
address space.

mali uk map external mem s map = { 0 } ;

map . phys addr = sysc phys & ˜0 x f f f ; // round down by masking t h e l ower 12 b i t s

map . s i z e = 0x2000 ; // map two con t i g uou s pages

map . ma l i addre s s = sy s c ma l i v i r t p a g e ; // addr e s s by which t h e Mali ” s e e s ”

// th e mapped memory

// perform the a c t u a l o p e r a t i on

i o c t l (< f i l e d e s c r i p t o r /dev/mali>, Mali IOC MEM MAP EXT, &map) ;

4.3 Exploit

Having the attack vector (Sect. 3) and a bug (Sect. 4.2), we were able to construct
an exploit that would elevate the privileges of a process, by patching a system
call in the kernel’s text section, and then calling said system call. In Sect. 4.1 we
described the payload that we wanted to deliver. In this section we first discuss
how we determined the physical address of the location to be patched and how,
using the above mentioned bug, we attached it to the session address space of
the Mali GPU. Next, we show how we configured the GPU to write the output
to the desired location. Finally, we explain what was necessary to combine all
the details to form a rendering job that could be submitted to the Mali kernel
driver.

Finding the Patchable Location. Since we wanted as few side effects on
the running system as possible, we decided on patching sys reboot. Because
sys reboot is only called on power down the only side effect would be that the
phone would simply not power off unless the battery was drained or yanked from
the device. To determine the physical address we consulted /proc/kallsyms
once more but because this pseudo file provides virtual addresses we needed
to translate the address using a fixed offset of 0x80000000. We shall call this
address sysc phys for future reference.

Attaching the Patchable Location. This is where we actually used the bug
we have just described above. It was as simple as calling an ioctl call on the
device node /dev/mali. As mappings can only be created with page granular-
ity, we had to round our physical address down to the nearest page boundary.
Because our target system call may cross a page boundary, we decided to always
map two contiguous pages. We chose the target address for the mapping as
sysc mali virt page.

Configuring the Write-Back-Unit. The write-back-unit of the Mali GPU has
an address register that denotes the target buffer where the GPU will output
the result of the GPP. Here we specify the address of the syscall to be patched

492 J. Danisevskis et al.

in terms of the Mali-virtual address. That is sysc mali virt page plus the
information that we lost by rounding earlier: sysc phys & 0xfff.

Devising the GPU Job. To copy our payload into the kernel text section we
used the identical scene rendering (see Sect. 3). We found that the smallest scene
we could render had a size of four by four pixels so we padded our payload with
another six words to a total of 16 words and used it as a texture.

Running the GPU Job. The previous steps in themselves are fairly straight-
forward. However we were using functionality that is not exposed by the APIs
visible to the common graphics programmer such as EGL and OpenGL. To
administer the fine grained control over the session address space, as well as
the write-back-unit of the GPU, we had to bypass EGL and OpenGL and work
with the kernel-user interface of the Mali directly. To trick EGL and OpenGL
into generating the desired GPU job would have meant a fair amount of binary
patching. Instead we employed the ongoing effort by Verhagen et al.6 to produce
an open source driver for the Mali GPU. The driver—yet far from usable for
the casual user—provided all we needed to customize our memory layout of the
Mali session and let our job run on the GPU.

4.4 Caveats

We encountered a couple of pitfalls on our way to a working exploit. For once,
we found out that for very small output regions, as in our case, the range of
memory that was modified by the write-back-unit was larger than the configured
output region. 236 bytes beyond the end of the output region where initialized
with the configured background color. We did not find out what caused this.
It may be that we simply did not configure the GPU correctly. It might also
be possible, that such small output regions were simply not anticipated by the
GPU designers. This limited our choice of patchable locations to functions that
were long enough not to write beyond their end. If the input texture and output
buffer where chosen large enough the effect, however, ceased to exist.

To be able to modify arbitrary bits of code in the kernel text section despite
the effect we just described, we considered copying large chunks of kernel mem-
ory, then modifying them and copying them back. This, however, was jeopardized
by another effect we did not anticipate. At certain positions in the output image,
certain values were distorted and offset by one. The distortions followed a regular
and predictable spacial pattern as depicted in Fig. 5. Each cell represents a single
pixel. In the marked pixels, every byte, or every color channel, was distorted in
the following way: in case of the pixels marked with diagonal lines, the copied
value was increased by one, as long as it belonged to the range—in hexadecimal
notation—[F0-F8;D0-D8;B0-B8;90-98;78;68;58;48]. At the positions marked with
the vertical lines, bytes from range [E9-EF;C9-CF;A9-AF;89-8F] were decreased

6 http://limadriver.org

http://limadriver.org

Dark Side of the Shader: Mobile GPU-Aided Malware Delivery 493

by one. It turned out, that our copy was not so exact after all. Simply copying
code sections back and forth would have broken the running kernel most cer-
tainly. We do not know where these distortions came from. They may have been
caused by misconfiguration on our side, a bug, a precision-performance trade-off
or some kind of watermarking. But this is pure speculation.

Even though the copying was not as exact as we anticipated the exploit
worked flawlessly. In Fig. 5 we show a 16 by 16 texture. Note however that the
payload texture we show in Fig. 4 is only 4 by 4 pixels in size. Therefore the
distortion rules apply as if it was fit into the top left corner of Fig. 5. Thus only
the fourth word would have been subject to distortions, but only if its value
were in the effected range, which it is not. If it were, however, we would have
incorporated a branch instruction to skip the distorted memory location.

Fig. 5. Pixel distortion during copy.

5 Future Work

We successfully applied the concept of the identical scene to an OpenGL ES 2.0
capable GPU. It would be interesting to see if the same can be done with earlier
fixed function GPUs. There is still a big field of research in the domain of GPU
malware or GPU-assisted malware. With a better understanding of the GPU we
exploited in this work, we might be able to perfect the memory copying capabil-
ity. As a next step we could apply filters and search for patterns instead of just
copying. Finally it should be investigated whether the work of Ladakis et al. [7]
can be replicated with GPUs without general purpose computing capabilities.
As future work we also plan on investigating methods for secure mapping of
DMA memory regions into the user-space such as Linux’ direct rendering man-
ager (DRM), UMP and the DMA buffer-sharing API. These techniques were
designed to prevent attacks like the one we have just presented. With the gained
experience we plan on applying similar techniques to more distributed micro-
kernel based system designs with very strong isolation demands.

494 J. Danisevskis et al.

6 Conclusion

In this paper we argued that by the concept of the identical scene rendering
it should be possible to perform a copy operation with a GPU on an embed-
ded device. Using this concept we exploited a bug that we found in a popular
Android smartphone’s GPU driver. The bug we found allowed us to manipu-
late the memory protection of the GPU and thus to evade the kernel-imposed
memory isolation. We succeeded in patching the running Linux kernel of the
device and thus gained superuser privileges starting off with no more privileges
than even the simplest Android application has. We also showed once more that
keeping large parts of a driver stack closed source is, from a security perspec-
tive, no replacement for a thorough kernel-user interface. The considerably high
impact of our proof-of-concept exploit arises from the popularity of the targeted
smartphones and the low hurdle for it to be applied.

The bug that enables us to abuse the GPU is fairly easy to fix. Also, it is
unclear whether our approach can be applied to other smartphones. But given
the history of discovered bugs in third party kernel drivers and the fast product
cycles of smartphones this notion can not simply be dismissed.

Acknowledgements. We would like to thank Luc Verhagen and his team for their
work on the open source Mali GPU driver. We would also like to acknowledge the
contribution of Christian Ludwig in the discovery of the bug presented in this paper.
This research was partially funded by the BMWF grant 01IS12032.

References

1. Boileau, A.: Hit by a bus: physical access attacks with firewire. Ruxcon (2006)
2. Breuk, R., Spruyt, A.: Integrating DMA attacks in exploitation frameworks (2012).

http://staff.science.uva.nl/delaat/rp/2011-2012/p14/report.pdf
3. Carlson, J.: GPUs for mobile malware mitigation and more. Recon (2012)
4. Carrier, B.D., Grand, J.: A hardware-based memory acquisition procedure for

digital investigations. Digit. Investig. 1(1), 50–60 (2004). http://dx.doi.org/
10.1016/j.diin.2003.12.001

5. Dornseif, M.: 0wn3d by an iPod: Firewire/1394 issues. In: PacSec (2004)
6. Giesen, F.: A trip through the graphics pipeline (2011). http://fgiesen.wordpress.

com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/, blog: The ryg
blog

7. Ladakis, E., Koromilas, L., Vasiliadis, G., Polychonakis, M., Ioannidis, S.: You can
type, but you can’t hide: a stealthy GPU-based keylogger. In: Proceedings of the
European Workshop on System Security (EuroSec) (2013)

8. Lineberry, A.: Malicious code injection via /dev/mem. In: Proceedings of Blackhat
Europe (2009)

9. Luebke, D., Humphreys, G.: How GPUs work. Computer 40(2), 126–130 (2007)
10. Maartmann-Moe, C.: Ftwautopwn. http://www.breaknenter.org/projects/ftwau

topwn/, source code
11. McAllister, K.: Writing kernel exploits (2012). http://ugcs.net/keegan/talks/

kernel-exploit/talk.pdf

http://staff.science.uva.nl/delaat/rp/2011-2012/p14/report.pdf
http://dx.doi.org/10.1016/j.diin.2003.12.001
http://dx.doi.org/10.1016/j.diin.2003.12.001
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
http://www.breaknenter.org/projects/ftwautopwn/
http://www.breaknenter.org/projects/ftwautopwn/
http://ugcs.net/keegan/talks/kernel-exploit/talk.pdf
http://ugcs.net/keegan/talks/kernel-exploit/talk.pdf

Dark Side of the Shader: Mobile GPU-Aided Malware Delivery 495

12. Munshi, A., Ginsburg, D., Shreiner, D.: OpenGL(R) ES 2.0 Programming Guide,
1st edn. Addison-Wesley Professional, Reading (2008)

13. Piegdon, D.R.: Hacking in physically addressable memory - a proof of concept. In:
Seminar of Advanced Exploitation Techniques (2006)

14. Sevinsky, R.: Funderbolt. adventures in thunderbolt dma attacks (2013).
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-
Thunderbolt-DMA-Attacks-Slides.pdf

15. Stewin, P., Bystrov, I.: Understanding DMA malware. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013)

16. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: GPU-assisted malware. In: Pro-
ceedings of the 5th International Conference on Malicious and Unwanted Software
(MALWARE) (2010)

https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf

Industry-Wide Misunderstandings of HTTPS

Stephen Bono(&) and Jacob Thompson(&)

Independent Security Evaluators, Baltimore, USA
{sbono,jthompson}@securityevaluators.com

Abstract. In a survey of 30 sites that serve sensitive content over an HTTPS-
protected connection, we found that over 70 % of them failed to appropriately
prevent disk caching, and left unencrypted sensitive content behind on end-
users’ machines, at risk for later exposure. Moreover, over half of the sites that
failed to prevent disk caching appeared to have attempted to do so using out-
dated, non-standard, or erroneous methods, some of which failed entirely, while
others were only successful at preventing disk caching in certain browsers, but
not all.

In an effort to explain this wide-spread failure, our research has uncovered
drastically inconsistent behavior across browsers, inconsistent support of stan-
dard and non-standard anti-disk caching directives, and even inconsistent and
incorrect recommendations from authoritative sources in the security commu-
nity. Through this history we show that web developers are not solely to blame,
and that web browser developers, web server developers, security professionals
and authors of online sources, and perhaps even the standards bodies should
share in this failure.

In this paper, we identify the disk caching behaviors of all major browsers,
and describe how to reliably prevent disk caching for each of them. We present
the results of our site survey, demonstrating wide-spread failures to prevent disk
caching of sensitive data. We introduce a tool for Firefox users to reliably
prevent disk caching of HTTPS protected content, despite failures by the web
application, and we provide an online tool to help web developers identify how
to reliably prevent disk caching across multiple browsers. Lastly, we make
recommendations to the various parties with a hand in this failure on how to
address these issues going forward.

1 Introduction

Users often visit the same web pages more than once. While some of the page contents
change, the vast majority of the page and associated resources (such as images) remain
static. To re-download this unchanged content on every visit to the page is a waste of
time and bandwidth [1]. Consequently, when a user accesses a web page, the web
browser caches most content locally on the user’s machine. This content can either be
saved in temporary memory (RAM), which is lost as soon as the user exits the browser,
or on disk, which persists even after the user exits the browser or reboots the computer.
When a user visits a page repeatedly, the content is retrieved from cache instead of over
the Internet. Memory caches are lost when the browser exits, so the browser uses the
disk cache whenever possible.

© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 496–513, 2014.
DOI: 10.1007/978-3-319-12160-4_30

Secure web sites use the HTTPS and SSL/TLS protocols to encrypt information as it
travels over the Internet, to prevent an eavesdropper or man-in-the-middle from recovering
or modifying the communication. Although there are no technical constraints preventing
content sent over an encrypted connection from being decrypted and written to disk, it is
logical to presume that if content is too sensitive to be sent over a network without
encryption, then it may also be too sensitive to store unprotected on a hard drive [2].

When HTTPS was first introduced, there was no standard, unambiguous way for a
web server to mark content as too sensitive to store in cache. As a result, web browser
authors created their own mechanisms for a web server to restrict disk caching [2].
Some browser authors chose to, by default, never write content transferred over HTTPS
to disk [3], or did not disk cache content unless a server explicitly allowed it (“opt-in”)
[4], while others chose to write this content to the disk cache, unless a server header
explicitly prohibited it (“opt-out”) [5].

We surveyed 30 sites that serve sensitive content over HTTPS, and found that 21 of
those sites failed to appropriately prevent disk caching across all browsers. Of those 21,
over half appear to have attempted to prevent disk caching using outdated, non-standard,
or erroneous methods, while the remainder simply made no attempt. The sites surveyed
included banks and other financial institutions, insurance companies, and utility com-
panies. The sites served content that we deemed sensitive such as bank account state-
ments, credit reports, check images, pay stubs, health and vehicle insurance information,
and prescription names and dosages.

Our research found that despite the existence of reliable methods to prevent disk
caching, the diversity and inconsistency across browsers in how disk caching is handled,
as well as general misunderstandings within the security community, including respected
sources such as OWASP, have led to wide-spread failure of web applications to reliably
prevent disk caching of sensitive data. In this paper, we provide a history of inconsistent
browser behavior and an understanding of that behavior as evidenced through our own
verification and online references. We identify and catalog six different behaviors and
techniques that effectively prevent disk caching for various versions of Internet Explorer,
Firefox, Chrome, and Safari, as well as obsolete browsers such as Netscape and Mozilla
(for reference purposes) – to our knowledge, no such catalog exists. We provide the best
recommended actions a web developer can make to most effectively prevent disk caching
across all browsers, as well as make recommendations to the security community,
browser developers, and standards bodies. Lastly, we introduce a Firefox extension that
end-users can install to effectively prevent disk caching, and an online resource for web
application developers to test browser behaviors.

2 A Brief History

In 19971, the first HTTP/1.1 [6] standard was published, which standardized the header
that a server must set to prevent content from being written to a disk cache. By that time,
all web browser authors had already adopted either an “opt-in” HTTPS disk caching

1 The current RFC 2616 was published in 1999, but obsoleted this older RFC 2068 which already
defined Cache-control: no store.

Industry-Wide Misunderstandings of HTTPS 497

policy, or an “opt-out” policy with multiple, non-standard ways to opt out. Despite the
new standard, web developers could continue to use the old, non-standard methods and
they would continue to work only in the browsers that recognized them [2].

Between the release of Netscape Navigator 3.0 in 1996, and 2008, when Google
Chrome was released, the only browser with a significant market share that used an
“opt-out” HTTPS disk caching policy was Internet Explorer. Internet Explorer has
always been very forgiving in determining a web server’s intention that a response not
be written to the disk cache. We identified four separate ways [2] that a web developer
can prevent a response from being cached to disk. Only one of those ways, the header
Cache-Control: no-store, is actually standard [6].

Encrypted web servers (HTTPS) have higher overhead and lower performance than
unencrypted servers due to the need to perform encryption, and in the past this overhead
was much more pronounced. For this reason, many web sites used HTTPS only when
absolutely necessary, such as for sending a password or credit card information. After
the sensitive transaction was completed, the sites would switch back to an unencrypted
connection. Two examples are Gmail, which transmitted e-mails over unencrypted
connections until 2010 [7], and Facebook, which continued to use unencrypted con-
nections until 2012 [8]. Since HTTPS was reserved for only the most sensitive infor-
mation, an “opt-in” disk caching policy was a reasonable design.

By 2011, many sites had begun using HTTPS even for non-sensitive content, and
Mozilla Corporation recognized [9] that the “opt-in” HTTPS disk caching policy in
Firefox was introducing a performance penalty compared to other browsers, including
Google Chrome, which uses an “opt-out” policy. As a result, Firefox 4.0 and all later
versions use an “opt-out” HTTPS disk caching policy [9]. A Firefox 3.6 user would be
unaffected by this issue, even when browsing HTTPS sites that fail to set the necessary
header, but would become affected as soon as that user updated to Firefox 4 or later.

Online banking, which is among the most security-sensitive uses of a web browser,
exploded in popularity in the early 2000s. At this time, Internet Explorer had over 90 %
market share, and Safari and Chrome did not exist. Internet Explorer’s only significant
competitors at the time (Netscape 3.0 and later, Mozilla, and Firefox) either did not
disk cache HTTPS content at all (unless a user manually modified a configuration
parameter), or used an “opt-in” policy, and thus required no special treatment to
prevent caching of encrypted bank pages. Many of the web sites that we tested
responded with sufficient headers to prevent caching in all versions of Internet
Explorer, all versions of Safari, and Firefox 3.6 and earlier, but not Firefox 4.0 and
later, or any version of Chrome. We believe that ensuring that sensitive content is not
cached on disk by the browser was a design goal in these web applications. While this
anti-disk cache functionality worked correctly in the past, it no longer works in two of
today’s most popular browsers: Chrome, and Firefox 4.0 and later. Since this has been
an issue in Chrome since its release in 2008, and in Firefox since 2011, the maintainers
of HTTPS sites do not appear to perform regression testing for this issue.

Today, Internet Explorer continues to follow the same HTTPS disk caching policy
as it always has: enable disk caching by default, but allow four different ways to disable
it. Google Chrome and Firefox, in contrast, enable disk caching by default, but allow
only one way to prevent it—the one given in the standard, the header Cache-
Control: no-store.

498 S. Bono and J. Thompson

Google Chrome and Mozilla Firefox, together, now have over a 60 % market share
on non-mobile devices [10], but many web sites still use antiquated, non-standard
methods to prevent disk caching of sensitive HTTPS content that only function in
Internet Explorer.

3 The Evolution of Caching Policies

Prior to HTTP/1.1 being standardized in 1997, there was no unambiguous way for a
web server to instruct a client that a response should not be cached to persistent storage.
Indeed, the HTTP/1.0 RFC noted [11]:

Some HTTP/1.0 applications use heuristics to describe what is or is not a “cacheable”
response, but these rules are not standardized.

The cache controlling mechanisms that did exist, such as the “Expires” header,
were intended to prevent a user agent from displaying stale content, and were unrelated
to security. It is unnecessary to totally block the client from retaining a copy of
sensitive content in memory for later reuse, instead, the objective is only to prevent the
information from being written to disk.

When Netscape 1 introduced SSL and HTTPS in 1995, the browser never wrote
HTTPS content to the disk cache [3]. A web server could not override this for non-
sensitive content, nor could a user alter this behavior in the preferences.

This behavior changed in Netscape 2, which introduced an “opt-out” policy.
Whether content was delivered over HTTP or HTTPS no longer factored into the
caching decision; instead, the browser introduced a non-standard Pragma: no-
cache response header allowing a server to prohibit the disk caching of a response.
In the standard [11], Pragma was originally intended to be a request header, allowing
a client to override any cached copies stored on intermediate proxy servers; nonethe-
less, introducing it as a response header at least created a way to prevent disk storage of
sensitive data. However, Netscape also allowed the Pragma: no-cache header to be
specified as a meta http-equiv HTML tag in the document. This was a bad design
choice for two reasons: first, caching code must read the response and parse the HTML
before the caching decision can be made, lowering performance; second, the tag can
only be used in HTML files, and not images, JavaScript files, and so on. This “opt-out”
HTTPS caching policy was incorporated by Microsoft into Internet Explorer 3 as
well [2].

Possibly recognizing the potential security issue of web developers neglecting to
mark sensitive data with the Pragma header, Netscape 3 reverted to the previous
behavior of never caching HTTPS responses to disk; We verified this behavior
by testing Netscape Navigator 3.04 Gold. Disk caching of HTTPS data could be
re-enabled by the user in the preferences dialog, but there was still no way for a server
to explicitly “opt-in” to caching of non-sensitive HTTPS content. In contrast to Net-
scape 3, Microsoft continued to use “opt-out” HTTPS caching in later Internet Explorer
versions. Thus Netscape 3 marked the beginning of inconsistent HTTPS disk caching
policies between browsers, which remains unresolved even today.

Industry-Wide Misunderstandings of HTTPS 499

In addition to the non-standard Pragma header introduced by Netscape, Microsoft
added support for new, standardized caching headers to Internet Explorer as they came
into existence. Internet Explorer 4 added support for the Cache-Control: no-
store header introduced in the HTTP/1.1 standard. But it also added new quirks:

• IE 4 through 9 treated the Cache-Control: no-cache header, intended to
prevent stale responses and not a security measure, identically to the Cache-
Control: no-store header. In version 10, Cache-Control: no-cache
no longer prevents disk caching.

• If IE 4 through 8 made a request using HTTP/1.1, and the server responded using
HTTP/1.0, any Cache-Control headers in the server’s response would be ignored.
This was resolved in version 9, where Cache-Control headers are recognized even
when sent by an HTTP/1.0 server. Despite the fix, all Windows XP and 2003
systems contain version 8 or earlier of Internet Explorer, and are affected by this
issue.

• The above HTTP/1.0 behavior is triggered by a configuration change introduced in
Apache mod_ssl in 2000 (version 2.6.5) that forces a downgrade from HTTP/1.1 to
HTTP/1.0 whenever the server responds to Internet Explorer over HTTPS. This
configuration was intended to work around a bug in IE 5’s handling of HTTP/1.1
keep-alive connections. In 2010, long after the Internet Explorer bug was patched in
version 6, Apache finally updated the workaround to exclude unaffected relea-
ses [12]. However, this configuration change has not yet percolated to all Linux
distributions’ standard branches of Apache, including the latest version of CentOS2

as of this writing, 6.4.

Netscape continued with the policy of not disk caching HTTPS content by default
throughout versions 3 and 4 of their browser, the last release of which occurred in
2002. Despite this, Netscape retained vestigial support for the Pragma: no-cache
header introduced in version 2—in case the user modified the preferences to enable
persistent HTTPS caching. This support was dropped when the Mozilla project began a
browser rewrite in 1998, but with little consequence at the time, since the rewritten
browser never cached HTTPS content by default [13].3

After these changes in the mid-1990s, browser caching policies, while still
inconsistent and only partially following standards, did stabilize. Apple released Safari
in 2003, which to this day never writes HTTPS content to the disk cache. The iOS
version also follows this policy.

The stability came to an end in 2008, when Google released the Chrome browser.
Chrome, and its mobile variant, Android Browser, have the most aggressive HTTPS
disk caching policy ever created at the time. Content is always written to the disk cache
unless one of two conditions are met: (1) the response includes the header Cache-
Control: no-store, or (2) the server has an invalid certificate [14]. No support is
included for non-standard headers supported by Internet Explorer (i.e., Pragma:

2 http://mirror.umd.edu/centos/6.4/updates/i386/Packages/mod_ssl-2.2.15-28.el6.centos.i686.rpm
3 This page [13] shows that browser.cache.disk_cache_ssl was set to false in revision 1.1
when Netscape first released source.

500 S. Bono and J. Thompson

http://mirror.umd.edu/centos/6.4/updates/i386/Packages/mod_ssl-2.2.15-28.el6.centos.i686.rpm

no-cache and Cache-Control: no-cache), which at the time of Chrome’s
release, was the only other web browser that even cached HTTPS content at all by
default.

Concurrent with the release of Chrome, Mozilla began loosening the Firefox
HTTPS disk caching policy as well. In Firefox 3, Mozilla introduced a unique caching
policy, that in our opinion represented the best trade-off between security and per-
formance. HTTPS continued to be treated as an indicator that content should not be
disk cached, but Firefox now allowed servers to explicitly “opt-in” to caching, by
including the header Cache-Control: public [3]. While originally intended for
multiuser caching proxies, Cache-Control: public is defined as:

Indicates that the response is cacheable by any cache, even if it would normally be
non-cacheable or cacheable only within a non-shared cache.

Thus the presence of this header is a good indicator that content is non-sensitive
and safe to cache.

Still, Mozilla modified the HTTPS caching policy once again in Firefox 4, this time
to cache all HTTPS content unless it is explicitly labeled as sensitive using Cache-
Control: no-store, effectively reversing the behavior of Firefox 3. Paradoxically,
this meant that the original functionality of the Pragma: no-cache header intro-
duced by Firefox’s ancestral Netscape browser was now only supported by Internet
Explorer.

All of the different ways we found to control disk caching of HTTPS content are
shown in Table 1.

4 Current Caching Policies by Browser

Disk caching of HTTPS-delivered web pages varies by web browser. Here, we discuss
the policies of four browsers that we tested.

Internet Explorer. Microsoft Internet Explorer caches HTTPS-delivered content to
disk, unless one or more of the following are present [2]:

• The HTTP header Cache-Control: no-store.
• In version 9 and earlier only, The HTTP header Cache-Control: no-cache.
• The HTTP header Pragma: no-cache.

Table 1. Variants of headers or HTML meta tags used to enable or prevent disk caching of
HTTPS content, and listings of browsers that support each one.

Header or tag Supporting browsers

None needed—No HTTPS disk caching by default Netscape 1, 3 + , Firefox 1-3.5, Safari
Pragma: no-cache header (opt-out) Netscape 2, IE 3+
Pragma: no-cache meta tag (opt-out) Netscape 2, IE 3+
Cache-Control: no-cache header (opt-out) IE 4-9
Cache-Control: no-store header (opt-out) IE 4 + , Firefox 4 + , Chrome 1+
Cache-Control: public header (opt-in) Firefox 3-3.5

Industry-Wide Misunderstandings of HTTPS 501

• The HTML tag <META HTTP-EQUIV=“Pragma” CONTENT=“no-cache”>.
Microsoft discourages the use of this method; it may not work properly for pages
larger than 32 kb [13].

Note that the Cache-Control header cannot be set using an HTML <META HTTP-
EQUIV> tag. Additionally, Internet Explorer interprets some of these headers differ-
ently, depending upon whether the page was delivered using HTTPS or HTTP [2].

We verified that using the 32-bit version of Internet Explorer 10.0.9200.16635 on
64-bit Windows 7, HTTPS content is disk cached unless the server sends the Pragma:
no-cache header or Cache-Control: no-store header, or the document
contains the Pragma: no-cache header in an HTML meta http-equiv tag. We
verified that using the 32-bit version of Internet Explorer 9.0.8112.16421, HTTPS
content is disk cached unless the server sends the Cache-Control: no-cache
header, or the response employs either of the two methods described for IE 10.

Firefox. Prior to version 4.0, Mozilla Firefox (and its predecessors, including Mozilla
and Netscape) either never cache HTTPS pages to disk at all [3] or cache only pages
sent with:

• The HTTP header Cache-Control: public.

Firefox contains a hidden browser preference, browser.cache.dis-
k_cache_ssl, that when set to true, switches Firefox from the previous, cautious
policy above, to a new policy that strictly follows the HTTP standard, disk caching all
content unless specifically instructed not to do so by the server. In 2011, the default
value of this preference was switched from false to true [9]. As a result, Firefox
4.0 and all later versions cache HTTPS-delivered content to disk, unless the following
is present:

• The HTTP header Cache-Control: no-store.

We verified that using the 32-bit version of Mozilla Firefox 3.6.28 on 64-bit
Windows 7 (and earlier), HTTPS content is not disk cached unless the server sends the
Cache-Control: public header. We verified that using the 32-bit version of
Mozilla Firefox 21.0 on 64-bit Windows 7, Mozilla Firefox 21.0 on Mac OS X 10.7.5,
and Mozilla Firefox 21.0 on Android 2.3.6, HTTPS content is disk cached unless the
server sends the Cache-Control: no-store header.

Chrome. Google Chrome caches HTTPS-delivered content to disk, unless the fol-
lowing is present:

• The HTTP header Cache-Control: no-store.

We verified that when using Google Chrome 27.0.1453.94 m on Windows 7, or the
Browser app in Android 2.3.6 (which is based on Chrome), HTTPS content is disk
cached unless the server sends the Cache-Control: no-store header.

Safari. Apple Safari does not cache HTTPS-delivered content to disk, regardless of any
headers sent by the server. We tested the mobile version of Safari on an iPad 2, and the
HTTPS caching behavior was identical to the desktop version.

502 S. Bono and J. Thompson

We verified that using Safari 6.0 (7536.25) on Mac OS X 10.7.5, and Mobile Safari
on iOS 5.1.1, HTTPS content is never disk cached.

A word about private browsing modes. Virtually all web browsers now include a
“private browsing” mode, that in addition to preventing browsing history from being
retained, disables the disk cache entirely. While sufficient for a user to avoid this issue,
we do not consider advising users to use private browsing to be a reasonable solution
for several reasons. First, private browsing modes are not the default, and must man-
ually be enabled by a user. Second, other aspects of private browsing, such as not
retaining persistent cookies, break useful functionality in web sites, such as remem-
bering usernames or remembering the computer to avoid answering security questions
on each login. Third, since private browsing disables the disk cache entirely, it has
negative side effects on the performance of the Internet as a whole, since even unen-
crypted HTTP content must be re-downloaded if the browser has been closed.

5 Reliably Preventing Disk Caching

Due to the historical inconsistency and confusion surrounding HTTPS and disk
caching, it is worth briefly mentioning how to most reliably prevent disk caching of an
HTTPS response. To do so, the web server should be configured to send the following:

• The response header Pragma: no-cache.
• The response header Cache-Control: no-store.

The Pragma header covers the special case of HTTP/1.0 servers and Internet
Explorer 8. The Cache-Control header, as specified in the HTTP standard, covers all
other cases, including standards-compliant browsers that may begin caching HTTPS
content in the future (e.g., Safari). As both older Apache servers and IE 8 browsers are
decommissioned over time, the Pragma header will no longer be needed.

6 Site Survey

Methodology. We tested thirty secure, password-protected sites that displayed sensi-
tive personal information in a web browser. This involved accessing SSL-protected
websites as an authorized user, logging out of the site, and closing the browser. Then,
we reopened the browser, placed it in offline mode, and checked the disk cache for
entries containing sensitive data.

Initial Results. As of April 25, 2013, twenty-one of the thirty sites tested were not
sending the Cache-Control: no-store header required by the HTTPS standard
to prevent disk caching of sensitive data. Some were not sending any caching-related
headers at all, while others were sending caching headers that prevent disk caching
only in Internet Explorer, or other headers not relevant to web browser caches.

Industry-Wide Misunderstandings of HTTPS 503

The sites shown in Table 2 sent sensitive information with both of the headers
Cache-Control: no-cache, and Pragma: no-cache, which together, prevent
disk caching in Internet Explorer, but not Firefox or Chrome.

The sites shown in Table 3 sent sensitive information with the header Cache-
Control: no-cache which prevents disk caching in Internet Explorer 9 and earlier,
but not Internet Explorer 10, Firefox or Chrome.

The sites shown in Table 4 sent sensitive information with the header Cache-
Control: private, which has no effect on whether or not a web browser caches
the information to disk.

Lastly, the sites shown in Table 5 sent sensitive information without any cache-
related HTTP headers at all.

Figures 1, 2, 3, 4, 5, and 6 in Appendix A show screenshots of some of the sensitive
data we recovered from the disk cache.

Table 2. Sites sending sensitive data with the headers Pragma: no-cache and Cache-Control:
no-cache.

Site Sensitive data

ADP Partial SSN, name, address, financial data
BGE Name, address, account number, account balance
M&T Bank Wealthcare Name, account number, account balance
Scottrade Account number, account balance
TreasuryDirect Partial SSN, name, address, phone number
Verizon Wireless Call details

Table 3. Sites sending sensitive data with the header Cache-Control: no-cache.

Site Sensitive data

BB&T Name, partial account numbers, account balances
Liberty Mutual Name, policy number, policy limits, account balances
PayPal Name, address, phone number

Table 4. Sites sending sensitive data with the header Cache-Control: private.

Site Sensitive data

Allstate Auto insurance policies
eBillity Worker summary reports
eRenterPlan Name, address, phone number

504 S. Bono and J. Thompson

7 Updates

We notified each company in April, 2013, by email to the security- or phishing-related
email address, or when email was not available, using a web-based contact form. The
following companies acknowledged our advisories with a non-automated response:

• Argus Health.
• M & T Bank.
• PayPal.

Only BB&T has made any identifiable progress in over four months since notification
toward implementing proper cache control behavior. The account summary page is
now sending Cache-Control: no-store, but check images are still sent with
inadequate protections.

8 Observations and Concerns

We believe that the amount of personal data that is currently being written to the disk
cache when visiting these sites is alarming. It is important to note the distinction
between a user consciously selecting a “save to disk” option, e.g., to save a bank
statement, and content silently being written to the disk cache without users’ knowl-
edge. Non-technical users likely believe that if, after visiting a site and viewing per-
sonal data, they logout and close their browsers, that their data will be purged. Our
findings prove this assumption incorrect in 70 % of the cases tested.

Based on the quantity of sites (twelve of twenty-one) that sent at least one cache-
related header, even if it was not the one mandated by the standard to prevent disk
caching, we do not believe that it is intended by these industries that this content be
written to the disk cache. More significantly, the maintainers of these sites may erro-
neously believe that they have set the required headers to prevent disk caching, based
on outdated and incorrect information published on the Internet. One tutorial [14]
correctly states the purpose of all of these headers, but does not put them in the proper
context with regard to HTTPS, stating “SSL pages are not cached (or decrypted) by

Table 5. Sites sending sensitive information without cache-related headers.

Site Sensitive data

Argus Health Prescription claims
Boscov’s Charge Card Statements, full account numbers
Equifax Full credit reports
GEICO Partial SSN, DOB, name, address
MetLife Name, policy number, policy amount, beneficiaries
PNC Bank Check images
T. Rowe Price 401(k) balances
Toyota Financial Name, address, account number, VIN
Trade King Account number, balance

Industry-Wide Misunderstandings of HTTPS 505

proxy caches,” which, while true for proxies, does not address the behavior of
browsers. An OWASP page [15] incorrectly asserts that “If a web page is delivered
over SSL, no content can be cached.” When even the security community makes
outdated and incorrect assumptions about this issue, it is unrealistic that more gener-
ally-focused web developers will do better.

Web browser authors, with the most striking example being Mozilla, seem to
dismiss the current reality of servers sending sensitive information without the header
needed to prevent it from being cached to disk. A comment on the bug report involving
the change to Firefox 4’s SSL caching policy by a member of Mozilla Corporation’s
security team stated [9]:

Among sites that don’t use cache-control:no-store, the correlation between “SSL” and
“sensitive” is very low.

Our findings show that this assertion does not hold when real-world sites are
examined, even two years after the change.

The fact that the unencrypted, disk cached data is only stored on the user’s personal
machine should not be discounted. The possibilities for this information to be exposed
are numerous: malware infections, theft of laptops and mobile devices, theft of physical
backup media or compromise of “cloud” backup services, shared machines and user
accounts [17], and of course, shared computers in libraries, hotels, and Internet cafes. An
Intel-sponsored Ponemon Institute study estimated the cost of recovering from the loss
or theft of a single laptop as $49,246 [16], and a Lookout Mobile Security study
estimated that lost and stolen phones cost consumers more than $30 billion in 2012 [17].

9 Recommendations

To Web Developers and Web Framework Authors. Developers of web applications
and web frameworks should audit all existing code to ensure that sensitive data is
labeled with the appropriate caching directives. Professionals in these fields must
become more familiar with the fine details of the HTTP standard, and assume that
browser software will always make performance vs. security trade-offs against security.
Proper security assessments of sites containing sensitive information should be con-
ducted regularly, and an examination of disk cached content across all supported
browsers should be part of that assessment process.

To the Security Community. All existing guidance and advice in regard to the HTTPS
caching issue should be revised to reflect the reality of the HTTP standard. Security
professionals should be cautious in making assertions or recommendations based on
working knowledge alone, and be sure to consult the relevant standards and perform
testing to back up their beliefs.

To Web Browser Authors. In a time where security threats and identity theft are
rampant, all browsers should adopt an “opt-in” only policy for caching sensitive data to
disk; and further, users should have an easily accessible option to refuse any or all “opt-
in” directives. At the very least, we recommend that browsers with a very strict “opt-
out” HTTPS disk caching policy, such as Firefox and Chrome, consider interpreting the

506 S. Bono and J. Thompson

Pragma HTTP header and meta tag supported by Internet Explorer, as well. Internet
Explorer has been disk caching HTTPS content for far longer than either of these
browsers, so many sites seem to have been developed with IE-centric security
assumptions in mind.

To Standards Committees. We recommend that standards bodies incorporate sound
security principles, such as secure-by-default, defense-in-depth, and fail safe, into
future standards. Traditionally, standards authors have attempted to maintain the lay-
ered architecture of Internet standards, and avoid tightly coupling an application-layer
protocol like HTTP to the layers below. Indeed, RFC 2616 [put back ref?], the latest
version of HTTP/1.1, mentions “SSL” once and does not mention “HTTPS” at all.
While avoiding any consideration of whether an encrypted or unencrypted connection
is used might make for a cleaner design with fewer special cases, it has practical
security consequences. If HTTP/1.1 had simply specified that persistent caching was
disabled by default on encrypted connections, and specified a header allowing a server
to mark content as non-sensitive, then this entire issue could have been avoided.

To End-Users. Users should make the following configuration changes, depending on
each browser, keeping in mind there may be performance trade-offs associated with
these actions:

Internet Explorer. Internet Explorer already abides by most web application attempts to
prevent disk caching. To further restrict what can be cached, a user can open Internet
Options, choose the “Advanced” tab, and under “Security,” check “Do not save encrypted
pages to disk.” This option may have unwanted side effects, such as interfering with file
downloads from HTTPS sites. Alternatively, use “InPrivate Browsing” mode.

Firefox. Install our “HTTPS Caching Controller” Firefox add-on,4 which adds a toolbar
button allowing disk caching of SSL content to be disabled or enabled at any time. This
add-on works only on the desktop version of Firefox. Manually, or on the mobile
version, navigate to about:config, locate the preference browser.cache.
disk_cache_ssl, and set the value to false. Alternatively, use “Private
Browsing” mode.

Chrome. Google Chrome does not appear to have configurable functionality to limit the
disk caching of HTTPS content (without affecting HTTP content) without modifying
the source code. A workaround is to use “Incognito” mode, which prevents all disk
caching.

The mobile Android Browser is similar. Android users can switch to another
browser, such as the mobile version of Firefox, or use “Incognito” mode.

Safari. Safari users (both desktop and mobile) need not take any action, since, as of this
writing, Safari does not cache any content transferred over HTTPS.

General. In addition to taking these precautions, never log into account-related or other
security-sensitive sites from a computer or other device you do not own and control.

4 http://securityevaluators.com/content/case-studies/caching/extension.jsp

Industry-Wide Misunderstandings of HTTPS 507

http://securityevaluators.com/content/case-studies/caching/extension.jsp

10 Conclusions and Future Work

We have shown here, through direct verification and through online investigation, that
the history of web browser caching behavior is a complicated one. The inconsistency
across browser platforms and even across individual browser versions, has caused
security and development communities much confusion, as evidenced by online
sources and the alarming results of our study: that over 70 % of HTTPS-protected sites
containing highly sensitive data fail to properly prohibit disk caching, and of them over
50 % appear to desire such prohibition.

We have identified the actual disk caching behavior of the four most popular web
browsers, and suggest to web developers the most effective ways to prevent disk
caching of sensitive content across all browsers.

For end-users, we have provided a Firefox extension that effectively prohibits disk
caching of user-chosen sensitive data, rather than relying on the web application itself
to make the appropriate decisions.

Moving forward, standards bodies should consider updating the HTTP standard so
that the persistent caching of HTTPS data follows an “opt-in” policy, that is, the
standard should recommend never caching HTTPS-protected content unless the web
application specifically indicates that data is safe to cache.

Our data set consisted of 30 web sites, and additional statistical study could be
performed to determine how many sites fail to properly prohibit the disk caching of
sensitive data. Furthermore, given the lack of response to our disclosure of this
information, it would be interesting to statistically gauge the response time of these
organizations.

Appendix A

Fig. 1. Check image from PNC.

508 S. Bono and J. Thompson

Fig. 2. Full credit report from Equifax.

Industry-Wide Misunderstandings of HTTPS 509

Fig. 4. Credit card account statement from Boscov’s

Fig. 3. Prescription information from Argus

510 S. Bono and J. Thompson

Fig. 5. Paystub from ADP.

Industry-Wide Misunderstandings of HTTPS 511

References

1. Barish, G., Obraczke, K.: World Wide Web caching: trends and techniques. Commun. Mag.
38(5), 178–184 (2000)

2. Microsoft: How to prevent caching in Internet Explorer, Microsoft. http://support.microsoft.
com/kb/234067. Accessed 26 July 2013

3. Appel, S.: Secure sockets layer discussion list FAQ v1.1.1, faqs.org, 16 November 1998.
http://www.faqs.org/faqs/computer-security/ssl-talk-faq/. Accessed 26 July 2013

4. Mozilla: Firefox ignores “Cache-control: public” header on TLS connections, Mozilla, 19
July 2006. https://bugzilla.mozilla.org/show_bug.cgi?id=345181. Accessed 26 July 2013

5. Microsoft: Cannot open files on secure servers, Microsoft. http://support.microsoft.com/kb/
254324. Accessed 26 July 2013

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext Transfer Protocol
– HTTP/1.1 (RFC 2068), IETF (1997)

7. Schillace, S.: Default https access for Gmail, Google, 12 January 2010. http://gmailblog.
blogspot.com/2010/01/default-https-access-for-gmail.html. Accessed 25 July 2013

8. Rice, A.: Keeping users safe, Facebook, 13 May 2011. https://developers.facebook.com/
blog/post/499/. Accessed 26 July 2013

Fig. 6. Account information from Treasury Direct.

512 S. Bono and J. Thompson

http://support.microsoft.com/kb/234067
http://support.microsoft.com/kb/234067
http://www.faqs.org/faqs/computer-security/ssl-talk-faq/
https://bugzilla.mozilla.org/show_bug.cgi?id=345181
http://support.microsoft.com/kb/254324
http://support.microsoft.com/kb/254324
http://gmailblog.blogspot.com/2010/01/default-https-access-for-gmail.html
http://gmailblog.blogspot.com/2010/01/default-https-access-for-gmail.html
https://developers.facebook.com/blog/post/499/
https://developers.facebook.com/blog/post/499/

9. Mozilla: Should cache SSL content to disk even without Cache-Conrol: public, Mozilla, 30
November 2009. https://bugzilla.mozilla.org/show_bug.cgi?id=531801. Accessed 26 July
2013

10. Everyone: Usage share of web browsers, Wikipedia. http://en.wikipedia.org/wiki/Browser_
market_share. Accessed 25 July 2013

11. Berners-Lee, T., Fielding, R., Frystyk, H.: Hypertext transfer protocol - HTTP/1.0 (RFC
1945), IETF (1996)

12. The Apache Software Foundation: Revision 966055, The Apache Software Foundation, 20
July 2010. http://svn.apache.org/viewvc?view=revision&revision=966055. Accessed 26
July 2013

13. Microsoft: “Pragma: No-cache” tag may not prevent page from being cached, Microsoft.
http://support.microsoft.com/kb/222064. Accessed 26 July 2013

14. Nottingham, M.: Caching tutorial for web authors and webmasters, 06 May 2013. http://
www.mnot.net/cache_docs. Accessed 26 July 2013

15. OWASP: OWASP Application Security FAQ, OWASP, 22 April 2007. https://www.owasp.
org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_
directives.3F. Accessed 26 July 2013

16. Ponemon Institute: The billion dollar lost laptop problem, Ponemon Institute, (2010)
17. Lookout: Lookout projects lost and stolen phones could cost U.S. consumers over $30

billion in 2012, 21 March 2012
18. Chromium: Contents of /releases/1.0.154.53/src/net/http/http_cache.cc, Chromium, 26 July

2008. http://src.chromium.org/viewvc/chrome/releases/1.0.154.53/src/net/http/http_cache.
cc?revision=14. Accessed 26 July 2013

Industry-Wide Misunderstandings of HTTPS 513

https://bugzilla.mozilla.org/show_bug.cgi?id=531801
http://en.wikipedia.org/wiki/Browser_market_share
http://en.wikipedia.org/wiki/Browser_market_share
http://svn.apache.org/viewvc?view=revision&revision=966055
http://support.microsoft.com/kb/222064
http://www.mnot.net/cache_docs
http://www.mnot.net/cache_docs
https://www.owasp.org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_directives.3F
https://www.owasp.org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_directives.3F
https://www.owasp.org/index.php/OWASP_Application_Security_FAQ#Am_I_totally_safe_with_these_directives.3F
http://src.chromium.org/viewvc/chrome/releases/1.0.154.53/src/net/http/http_cache.cc?revision=14
http://src.chromium.org/viewvc/chrome/releases/1.0.154.53/src/net/http/http_cache.cc?revision=14

Public Key Cryptography

Efficient Code Based Hybrid and Deterministic
Encryptions in the Standard Model

K. Preetha Mathew1(B), Sachin Vasant2, and C. Pandu Rangan1

1 Theoretical Computer Science Lab, Department of Computer Science
and Engineering, Indian Institute of Technology Madras, Chennai, India

{kpreetha,prangan}@cse.iitm.ac.in
2 Department of Computer Science, Boston University, Boston, USA

sachinv@cs.bu.edu

Abstract. In this paper, we propose an IND-CCA2 secure Key-Enca-
psulation (KEM) in the standard model using the Niederreiter Encryp-
tion scheme. Also, we propose a PRIV-1CCA secure deterministic variant
of the Niederreiter encryption scheme in the standard model. The secu-
rity of these constructions are reduced to the hardness of the Syndrome
Decoding problem and the Goppa Code Distinguishability problem. To
the best of our knowledge, the proposed constructions are the first of its
kind under coding-based assumption in the standard model that do not
use the κ-repetition paradigm initiated by Rosen and Segev at Theory
of Cryptography Conference (TCC), 2009.

Keywords: Standard model · Deterministic encryption · KEM-DEM ·
Neiderreiter cryptosystem · Syndrome decoding · Code indistinguisha-
bility

1 Introduction

The notion of code-based cryptography originated with the seminal paper by
McEliece [31] in 1977. McEliece proposed an encryption scheme based on the
hardness of the bounded decoding problem, which uses the generator matrix of
a Goppa code (for which efficient decoding algorithms exist [27]) as the secret
key, and the generator matrix blinded with a random non-singular matrix and a
permutation matrix is the public key. Niederreiter [17] proposed the dual of the
McEliece cryptosystem. The security of the Niederreiter encryption scheme relied
on the hardness of syndrome decoding. The currently existing provably secure
systems are based on number theoretic assumptions. As per Shor’s algorithm [33]
the underlying hard problems upon which the systems are built will be broken by
the advent of quantum computers. Therefore it is desired to have cryptographic
primitives based on different security assumptions other than number theoretic
assumptions only, because if one such system fails it is possible to make a shift
easily to other assumptions. Hence, code-based cryptography is attaining more
significance now a days.
c© Springer International Publishing Switzerland 2014
H.-S. Lee and D.-G. Han (Eds.): ICISC 2013, LNCS 8565, pp. 517–535, 2014.
DOI: 10.1007/978-3-319-12160-4 31

518 K. Preetha Mathew et al.

Hybrid encryption is concerned with building encryption schemes with the
help of both asymmetric cryptosystems and symmetric key cryptosystems.
A symmetric encryption scheme is used to overcome the problems associated
with encrypting long messages using the pure asymmetric key encryptions.
A hybrid encryption can be obtained by generating a random symmetric key
using asymmetric encryption. The message is encrypted using symmetric key
encryption with symmetric key obtained by decrypting the key encrypted by
asymmetric encryption. This is the approach used in a number of schemes like
[7,15,20,21] etc. The current approach of hybrid encryption schemes was initi-
ated and developed by Cramer and Shoup [7,34], which is termed as the KEM-
DEM model. The KEM-DEM model consists of two components namely a Key
Encapsulation Mechanism (KEM) which is an asymmetric encryption and a
Data Encapsulation Mechanism (DEM), which uses a symmetric key encryption
to encrypt long messages. Cramer and Shoup also showed that a secure KEM,
combined with an appropriately secure symmetric-key encryption scheme, yields
a hybrid encryption scheme which is IND-CCA2 secure. Kurosawa and Desmedt
[20] showed that a key encapsulation mechanism (KEM) does not have to be
IND-CCA2 secure in the construction of hybrid encryption schemes. The above
method is used in hybrid encryption schemes proposed by Kiltz et al. [19] for
coining a new paradigm for hybrid encryption in which they used the technique
of randomness extraction in the symmetric key derivation of KEM before the
authenticated encryption (DEM). Hofheinz et al. [18] put forward a new para-
digm for building hybrid encryption schemes from constrained chosen-ciphertext
secure (CCCA) key-encapsulation mechanisms (KEMs) plus authenticated sym-
metric encryption. CCCA has less demanding security requirements than stan-
dard chosen-ciphertext (CCA) security. Hofheinz et al. proved that CCCA KEM
along with an one-time authenticated encryption is sufficient for secure hybrid
encryption.

Cui et al. [8] presented efficient constructions of deterministic encryption from
hybrid encryption based on McEliece assumptions in the random oracle model.
An encryption scheme is deterministic, if Enc(m) always maps to the same value,
i.e., encryption does not use a random tape. A deterministic encryption can be
used for efficiently indexing and searching an encrypted database. Therefore,
it serves the purpose of efficiently searchable encryption. Efficiently searchable
encryption (ESE) was introduced as a primitive by Bellare et al. [2], for the
purpose of securing remote databases. While other primitives for securing remote
databases like Encryption-with-keyword search allows searching the database in
time linear to the number of records in the database, an ESE allows creation of
index structures for encrypted records just like index structures that could be
created for an unencrypted database.

It is seen that the notion of indistinguishability cannot be used to define the
security of deterministic encryption (or ESEs) [2]. Therefore Bellare et al. [2]
proposed a new security models for ESEs, namely, security against a privacy
adversary (PRIV security). An ESE is PRIV-secure if given the ciphertext-block
c of a message-block, no probabilistic polynomial time (PPT) adversary has
a non-negligible advantage on computing some function on the corresponding

Efficient Code Based Hybrid and Deterministic Encryptions 519

encrypted message-block m. It is to be noted that PRIV security is meaning-
ful only if the distribution of the messages selected from the message space has
a high min-entropy. Such an assumption is practical in the sense of securing
indexable fields such as the SSN numbers, phone numbers or the primary keys.
For a ESE scheme, if any PRIV-adversary having access to a decryption oracle
(for polynomially bounded number of decryption queries) has only a negligible
advantage in finding the target value in bounded polynomial time, the scheme
is said to be PRIV-CCA secure. PRIV-CCA secure systems in the random ora-
cle model were provided in [2,8]. Secure systems and different PRIV notions
were presented and analysed in [3,5]. Fuller et al. [16] presented different PRIV
notions and provided the first CCA secure deterministic Niederreiter variant in
the standard model. Their proposal uses the κ-repetition paradigm initiated by
Rosen and Segev [32].

Motivation. A secure and anonymous hybrid encryption was proposed by
Edoardo Persichetti using Niederreiter encryption [29] recently. The proposal
is in the random oracle model. Cryptosystems proved secure under the assump-
tion of random oracles assume that output of the hash functions follows a uni-
form distribution. But Canneti et al. [6] revealed that replacing random oracles
with existing hash functions may lead to insecure implementation of the scheme.
Thus, it is now preferred that the scheme be proven secure without the random
oracle assumption (i.e., in the standard model). Also an efficiently searchable
encryption is a requirement for construction of a secure and efficient remote
database. A deterministic encryption serves the purpose in an efficient manner.
The existing detrministic encryption based on McEliece assumption is in random
oracle model.

Fuller et al. [16] constructed a q-bounded PRIV-CCA secure Niederreiter
variant using the κ-correlation property. In the paper lossy trapdoor functions
and its applications [28] the authors presented a black box construction of IND-
CCA2 secure encryption scheme based on lossy TDFs and all-but-one trapdoor
functions, with a witness recovering decryption algorithm. The decryption first
recovers the randomness that was used to create the ciphertext, and then tests
the validity of the ciphertext simply by re-encrypting the message under retrieved
randomness. The κ-repetition paradigm initiated by Rosen and Segev [32], states
that if a function consisting of κ instances of a one-way trapdoor function is an
one-way trapdoor function, then it is κ-correlation secure. Dowsley et al. [10]
showed that a randomized version of the CPA secure McEliece cryptosystem
can be used to construct CCA2 secure scheme in the standard model using κ-
repetition paradigm. The construction that adhere more to the construction of
Rosen and Segev [32] is given by Persichetti [30]. Freeman et al. [14] showed that
the Niederreiter encryption is κ- correlation secure provided the parameters are
chosen such that broadcast attack [25] is to be avoided. It can be seen that, for
Niederreiter system to remain κ-correlation secure, very large parameters are
required. Therefore such schemes might not be practical. A code-based hybrid
encryption and also a code based deterministic encryption that is secure in the

520 K. Preetha Mathew et al.

standard model, without the use of κ-repetition paradigm, has practical signifi-
cance.

Our Contributions. In this paper, we propose the following:

1. A Key Encapsulation Mechanism using the Niederreiter encryption scheme.
The scheme proven to be IND-CCA2 secure in the standard model. The hard-
ness assumptions are based on Syndrome decoding and Goppa-code indistin-
guishability.

2. A deterministic variant of the Niederreiter encryption scheme. We prove the
PRIV-1CCA security in standard model. PRIV-1CCA is a weaker security
model than the q-bounded PRIV-CCA model used by Fuller et al. [16]. It is a
practical model as shown in [5], as it can be used if the field to be encrypted
does not display dependencies between values in different records (for example
phone numbers).

The essential idea is the use of two trapdoors, one for the decryption in the
scheme and the other to simulate the decryption oracle (in the proof). The use
of two trapdoors was employed in the construction of a (H)IBE using lattices
by Agrawal et al. [1] and IND-CCA2 Niederreiter variant in the standard model
by Mathew et al. [22]. In this paper, the target collision resistant (TCR) hash
functions is used as in [5] instead of one time signature as in [22] because TCR
hash function can be efficient than one time signature. According to [5] full
witness recovery can also be achieved by using TCR hash function.

The proposed scheme use two polynomially computable injective functions
that map a commitment in the ciphertext to the space of corresponding matrices
and the fact that the product of a parity-check matrix with the corresponding
generator matrix is zero, to obtain all-but-one trapdoor (with the ciphertext
commitment being used as the branch). The construction is based on the generic
construction by Boldyreva et al. in [5] using code-based assumptions. We use
witness recovery in our constructs, like in [19,22,28]. It can be noted that the
proposed IND-CCA2 KEM along with an authenticated DEM results in an IND-
CCA2 secure hybrid encryption.

Organisation of the paper. Section 2 lists the preliminaries which include the
security notions and the hardness assumptions used in the paper. Section 3 gives
the proposed KEM construction and its proof of security. Section 4 elaborates on
the deterministic encryption scheme and formally argues the PRIV-1CCA con-
struction in the standard model (Proof given in appendix). Concluding remarks
are offered in Sect. 5.

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while |S| represents the cardinality
of the set S. κ ∈ N denotes security parameter. s ∈R S denotes the operation

Efficient Code Based Hybrid and Deterministic Encryptions 521

of choosing an element s from a set S uniformly at random. w ← A(x, y, ...)
represents the running of algorithm A with inputs x, y, ... and producing output
w. We write w ← AO(x, y, ...) for representing an algorithm A having access to
oracle O.

We denote by Pr[E] the probability that the event E occurs. For a random
variable X we denote PrX [x] as the probability that the random variable X
takes the value x, in other words, PrX is the probability distribution of X. X|E
denotes the random variable X conditioned on an event E and the distribution
is denoted by PrX|E . The statistical distance between two random variables X

and Y is denoted by Δ(X,Y) = 1
2 (

∑
x |PrX [x] − PrY [x]|). Minimum entropy

for a random variable X refers to the value H∞(X) = − log2(maxx PrX [x]).
The minimum conditional entropy for X conditioned over Y denotes the value
H∞(X|Y) = − log2(maxx,y PrX|Y =y[x]). The average min-conditional entropy
is defined by H̃∞(X|Y) = − log2(

∑
y(PrY [y](maxxPrX|Y =y[x]))).

For a matrix M , its transpose is represented by MT and its inverse (if it
exists) is represented by M−1. If a and b are two bit strings of same length, we
denote their bitwise XOR by a ⊕ b.

The notations used for coding theory in this paper are as follows. A binary
linear-error correcting code of length n and dimension k or a [n, k]- code is
a k-dimensional subspace of F

n
2 . The rate of a code can be calculated as k

n .
A code is high-rate if k

n → 1. If the minimum hamming distance between any
two codewords is d, then the code is a [n, k, d] code. The hamming weight of
a codeword x, wt(x), is the number of non-zero bits in the codeword. For t ≤
�d−1

2 �, the code is said to be t-error correcting if it detects and corrects errors
of weight at most t. Hence, the code can also be represented as a [n, k, 2t + 1]
code. The generator matrix G ∈ F

k×n
2 of a [n, k] linear code C is a matrix of

rank k whose rows span the code C. The parity-check matrix H ∈ F
n−k×n
2 of a

[n, k] code C is a matrix satisfying HGT = 0. Hence, code C can be defined as
{mG : ∀m ∈ F

k
2} or {c : HcT = 0}.

2.2 Hybrid Encryption

We adhere to the definitions and notations given in [18,20].

Key Encapsulation Mechanism. A key-encapsulation mechanism KEM con-
sists of the triple (KEM.Kg, KEM.Enc,KEM.Dec) of algorithms. KEM.Kg is a
PPT algorithm that takes the security parameter κ as input to output the tuple
(pk, sk), where pk is the public key of the entity and sk is the corresponding
secret key. KEM.Enc is a PPT algorithm that takes as input the security para-
meter κ and pk. It selects the symmetric encryption key uniformly at random
and outputs an encapsulation of the key c. KEM.Dec is a deterministic polyno-
mial time algorithm that takes as input the encapsulation c and sk to output the
symmetric key K or the rejection symbol ⊥ in case the encapsulation is invalid.

The IND-CCA2 security of a KEM (with the key-space of the symmetric
keys being K) against a PPT adversary AD(.) having access to a decapsulation
oracle is associated with the following experiment:

522 K. Preetha Mathew et al.

ExpIND−CCA2
KEM,A (κ)

(pk, sk) ← KEM.Kg(κ)
K† ∈R K
(K∗, c∗) ← KEM.Enc(κ, pk)
b ∈R {0, 1}
if (b == 1) then K = K∗

else K = K†

b′ ← AD(.)(pk,K, c∗)
if (b == b′) return 1
else return 0

Let Pr[AD(.)] be the probability that A wins the experiment (i.e., 1 is returned).
Then the advantage of the adversary is defined by AdvIND−CCA2

KEM,A (κ) =
|Pr[AD(.)] − 1

2 |. A KEM is IND-CCA2 secure if for all PPT adversaries A the
advantage is negligible with respect to the security parameter κ.

Authenticated Encryption. (Data Encapsulation Mechanism (DEM)) An
authenticated encryption scheme AE consists of the tuple (AE.Enc,AE.Dec) of
deterministic polynomial time algorithms. AE.Enc takes as input a message m
from the message space and the symmetric key K from the key-space to output
a ciphertext χ. AE.Dec takes the ciphertext χ and the key K as input to out-
put the message (in case the ciphertext is valid) or the rejection symbol ⊥. The
decryption algorithm must satisfy the soundness requirement, i.e., the output
of AE.Dec(K,AE.Enc(K,m) must be m with overwhelming probability for all
messages m in the message space.

For any authenticated encryption scheme to be one-time secure, any adversary
PPT adversary B (allowed exactly one query to encryption and the decryption
oracle each) must have only a negligible advantage in distinguishing ciphertexts
of two messages m0 and m1.

Hybrid Encryption. A hybrid encryption scheme can be constructed from
a KEM and a DEM as follows: According to the composition theorem in [7]
an IND-CCA2 secure Hybrid encryption scheme can be constructed using an
IND-CCA2 secure KEM and an one-time authenticated encryption as a DEM.

KeyGen(κ)
(pk, sk) ← KEM.Kg(κ)
return ((pk, sk))

Encrypt(pk, m)
(K, c) ← KEM.Enc(pk, κ)
χ ← AE.Enc(K, m)
return C = (c, χ)

Decrypt(sk, C = (c, χ))
(Kor ⊥) ← KEM.Dec(sk, c)
m′ = (mor ⊥) ← AE.Dec(K, χ)
return m′

2.3 Deterministic Encryption

The definitions and notations adopted in this paper are based on [5].
A deterministic encryption scheme DET consists of the triple (DET.Kg,DET.

Enc,DET.Dec) of algorithms. DET.Kg is a PPT algorithm that takes the security
parameter κ as input to output the tuple (pk, sk), where pk is the public key of
the entity and sk is the corresponding secret key. DET.Enc is a deterministic

Efficient Code Based Hybrid and Deterministic Encryptions 523

polynomial time algorithm that takes as input the message m from the message
space M of large min-entropy and pk and outputs the ciphertext c. KEM.Dec is a
deterministic polynomial time algorithm that takes as input the ciphertext c and
sk to output the message m′ or the rejection symbol ⊥ in case the encapsulation
is invalid.

A DET is PRIV-CCA secure against any PPT adversary AD(.) having access
to a decryption oracle, any function f and a block M of n messages from a
message space M where the min-entropy that M [i] = m is high, the PRIV
advantage defined as follows

Advpriv−cca
PKE,A (κ) = |RealAE(A,M, f) − IdealAE(A,M, f)|

is negligible with respect to a security parameter κ. Here,

RealAE(A,M, f) = Pr[f(M) ← AD(.)(pk,DET.Enc(pk,M)]

and
IdealAE(A,M, f) = Pr[f(M) ← AD(.)(pk,DET.Enc(pk,M ′)]

where pk is a public key selected from the public-key space and M,M ′ are blocks
of length n from message space M.

It is shown in [5] that PRIV security for block sources is equivalent to PRIV
security for single hard to guess message and is introduced as PRIV1 security.
Therefore PRIV-1CCA security is defined for message blocks of size one.

2.4 Hash Functions-Security Notions

Target Collision Resistance [5]. A hash function h is target collision resistant
if for every polynomial time adversary, the TCR advantage defined as probability
any value x1, the hashing key K and a value x2 such that h(K,x1) = h(K,x2)
is negligible.

AdvTCRH (A) = Pr[H(K,x1) = H(K,x2) : (x1, st) ←R A,K ←R K, x2 ←R A(K, st)] (1)

Generalised Leftover Hash Lemma [9]. The generalised hash lemma states
that the output of an universal hash function is statistically close to random
provided the entropy of the input space conditioned over any random variable
(independent of the distribution defining the key-generation) is large.

Lemma 1. Let h be an universal hash function using the key-space K and input
domain {0, 1}l with range R. Let K be a random variable describing the key
generation from K, and U be an uniform distribution over R. Then for any
random variable X over the input domain {0, 1}l and any random variable Z,
both independent of K, satisfying H̃∞(X|Z) ≥ log |R| + 2 log(1/ε), the output
of the hash function is statistically close to U , i.e., Δ((Z,K, h(K,X)),
(Z,K,U)) ≤ ε.

524 K. Preetha Mathew et al.

2.5 Security Assumptions

The following are some of the hard problems on which the security of the pro-
posed cryptosystems are based.

Definition 1 (Syndrome Decoding Problem). For some parameters [n, k,
2t + 1] given an a ∈ F

n−k
2 and a matrix H ∈ F

n−k×n
2 , find a vector e ∈ F

n
2 with

weight wt(e) ≤ t such that HeT = a.

The advantage of a PPT algorithm D of solving the problem is denoted by
AdvSDD (n, k, t).

Assumption 1. For any probabilistic polynomial time algorithm F , AdvSDF (C) <
ε1(n, k) where ε1(n, k) is a negligible value with respect to n and k.

For Goppa codes, there is a polynomial time bounded decoding/syndrome decod-
ing algorithm [27]. Thus, there is a preference for most code-based cryptosystems
to use the Goppa code as a trapdoor.

Definition 2 (Goppa code-distinguishability). For parameters [n, k, 2t+1]
given a matrix H ∈ F

n−k×n
2 , output 1 if H is a parity check matrix of a Goppa

code, 0 if H is not a parity check matrix of any Goppa code.

The advantage of a PPT algorithm D of solving the problem is denoted by
AdvCDD (n, k).

Assumption 2. For any probabilistic polynomial time distinguisher D, AdvCDD
(n, k) < ε2(n, k) where ε2(n, k) is a negligible function if it is not a high rate
Goppa code, [11].

|Pr[D(H) = 1] − Pr[D(M) = 1]| < ε2(n, k)

where H is the parity check matrix of the Goppa code and M ∈R F
n−k×n
2 .

3 Hybrid Encryption

3.1 Proposed KEM

System Parameters. Let D(n,t) be the domain of the set of all binary error
vectors (of weight ≤ t) of length n. The system parameters for the security
parameter κ are as follows:

– Target Collision Resistant hash functions h1 : F
(n−k)
2 → {0, 1}κ.

– An injective function f1 : {0, 1}κ → F
n−k×n−k
2 which takes binary vectors

from a sufficiently large space as input, and outputs the a full-rank matrix H.
– An injective function f2 : {0, 1}κ → Pn×n which takes binary vectors from a

sufficiently large space as input and output a n × n permutation matrix P ,
for the Niederreiter cryptosystem.

Efficient Code Based Hybrid and Deterministic Encryptions 525

Table 1. Parameters for proposed hybrid encryption scheme, and its security as per [4].

(n, k, t) Security factor

(216, 1744, 36) 84.88

(217, 2480, 46) 107.41

(218, 3480, 68) 147.94

(219, 4624, 97) 191.18

The parameters(n, k, t) are listed in Table 1. Note that the parameters are
selected in such a way that function f1, f2 are injective and h1 is target col-
lision resistant. One cannot use enumerative coding to find the input to h1.

Key Generation. For the security parameter 1κ, the KeyGen is as follows:

– Randomly select two distinct [n, k, 2t+1] Goppa codes with parity check matri-
ces H1,H2 respectively.

– Randomly select an invertible matrix Q1 ∈R F
n−k×n−k
2 and n×n permutation

matrices P1, P2.
– Define H̃1 = Q1H1P1 and H̃2 = H2P2 ⊕ H1P1.

Thus, we have:

– Public Keys: H̃1 & H̃2

– Secret Keys: H1, H2, Q1, P1, P2

Key-Encapsulation:

– Generate r ∈R D(n,t) such that r = r1||K where r1 is of length n1 and K is
of length n2 such that n = n1 + n2.

– Generate c1 ← h1(H̃1r
T).

– Compute Hc1 = f1(c1) and Pc1 = f2(c1).
– Define K1 = H̃1Pc1 and K2 = Hc1H̃2Pc1 .
– Define c2 = K1r

T , and c3 = K2r
T .

The ciphertext that is sent is c = (c1, c2, c3).
Thus, K would be the required information for symmetric key which can be

used inside a hard core function.

Key Decapsulation. The decryption on the ciphertext c = (c1, c2, c3) is done
as follows:

Compute, Hc1 ← f1(c1), Pc1 ← f2(c1).
if (DecodeH1(Q

−1
1 c2) →⊥)

return ⊥.
else

r′ ← PT
c1P

T
1 DecodeH1(Q

−1
1 c2)

if(c3 �= Hc1H̃2Pc1r
′T ||c1 �= h1(H̃1r

′T)) // Witness Validation
return ⊥.

526 K. Preetha Mathew et al.

else
return K from r.

end

Correctness. For decapsulation of a valid encapsulation, Hc1 & Pc1 can be
computed. c is sent to the receiver. If encapsulation is valid, then c2 and c3 are
decodable syndromes for the error vector r′ for K1 and K2 respectively. Thus,
as long as the decoding algorithm is correct, the decryption is correct for a valid
ciphertext. If the ciphertext is invalid, the ciphertext is either rejected by the
decoding algorithm (if c2 is not a decodable syndrome), the consistency checking
mechanism (if c2 and c3 are not the syndromes of the same error vector for K1

and K2 respectively) or the integrity check mechanism (if the obtained key is
not committed in c1).

3.2 IND-CCA2 Security of KEM

As the scheme uses the semantic secure encryption of Nojima et al. [26] the
following theorem is used in proof. Also witness recovery is used for the scheme
as in [22]. So the proof follows the same pattern as in [22].

Theorem 1. [26] If there exists an algorithm D which runs in time τ , such that

Pr[r ∈R F
n
2 , wt(r) = t, R ∈R F

n−k×n
2 |D(RrT , R) = 1] −

Pr[s ∈R F
n−k
2 , R ∈R F

n−k×n
2 |D(s,R) = 1] ≥ δ

then one can construct an algorithm D′ running in time τ ′ = O(n2(τ + n2)/δ2),

such that 4 3
√

n · AdvSDD′ (n, k) ≥ δ.

Theorem 2. The proposed KEM is IND-CCA2 secure as long as h1 is a TCR
hash function, and the Goppa-code distinguishability and syndrome decoding of
the corresponding parameters are hard to solve.

Proof: The proof is presented as a sequence of games, Game 0, Game 1
While, Game 0 fits the scheme exactly as in the IND-CCA2 game. Subsequent
games change the environment, such that the view of the adversary in discrim-
inating between two consecutive games is at best negligible in κ or reduces to
the solution of a hard-problem instance. We denote the challenger/simulator as
a PPT algorithm C and the adversary of the system as a PPT algorithm A.

Game 0. C adapts the proposed KEM directly to the IND-CCA2 game. The
system parameters are set as in the proposed scheme, with the security para-
meter κ. The key-generation oracle and the decapsulation oracle is run using
the described scheme. C computes K∗ and c∗ = (c∗

1, c
∗
2, c

∗
3) using Enc(κ). c∗

is the encapsulation of the challenge key given to A, i.e., given c∗, A must
identify if the valid key has been encapsulated. A outputs b′, b′ ← AD(.)(c∗).
A wins if where b == b′.

Efficient Code Based Hybrid and Deterministic Encryptions 527

Let the event that the adversary A wins the game be quantified by the
random variable X0. Then,

Advcca2
KEM,A(κ) = |Pr[X0] − 1

2
| (2)

Game 1. Decapsulation Oracle is simulated by C as follows:
Input: The ciphertext c = (c1, c2, c3)
Output: The key K.
if (c1 == c∗

1)
Return ⊥

else
Hc1 ← f1(c1), Pc1 ← f2(c1)

Compute c′
2 = Q−1

1 c2
Compute c′′

2 = Hc1c
′
2

Compute y = c3 ⊕ c′′
2

Compute Q′ = Hc1

if (DecodeH2(Q
′−1y) →⊥) // Invalid encapsulation

Return ⊥
else

Compute r′ = PT
c1P

T
2 DecodeH2(Q

′−1y)
if (c2 �= H̃1Pc1r

′T ||c3 �= Hc1H̃2Pc1r
′T)

Return ⊥ // Witness inconsistency
else

if(c1 �= h1(H̃1r
′T))

Return ⊥
else

Return K from r′

end

Let the event that the adversary A wins in this game be quantified by the
random variable X1. The difference in the distribution (or view of the adver-
sary) between X0 and X1 is the situation in which C returns ⊥ if c1 = c∗

1 in
this game, during the decapsulation oracle. The simulator returns ⊥ imply-
ing the ciphertext is invalid (as the integrity check will not hold). But, it can
be seen that A may have given a valid ciphertext (that is not the challenge
ciphertext), i.e., a ciphertext for some K ′ �= K∗. Clearly, this would violate
the target collision resistance of h1. Hence,

|Pr[X0] − Pr[X1]| ≤ AdvTCRA (h1) (3)

Game 2. Key Generation: The public key-generation process is altered. C
replaces the Goppa parity-check matrix of H1 with the parity check matrix R
of a random [n, k, 2t+1] code. Thus H1 ← R. C computes c∗ = (c∗

1, c
∗
2, c

∗
3) =

Enc(κ∗). It can be noted that only in the case that c∗
1 is used, the decryp-

tion oracle will fail. But this remains consistent with the decryption oracle
described in the previous game.

|Pr[X2]| = |Pr[X1]| (4)

528 K. Preetha Mathew et al.

Game 3. Key for Challenge text and construct challenge: The Public key
generated is again altered. Replace H2 with parity check of random matrix
R2 so that now H̃1 and H̃2 are parity-check matrices of random codes.

Thus, for the event that A wins Game 3, X3, C can construct a Goppa-
code distinguisher based on the difference in the distributions of X2 and X3

is distinguishing Goppa code with random code. Also C uses the challenge
K† and computes c∗ using the altered public keys. The winning of this game
is by syndrome decoding of random code and Code Distinguishability. If the
event that A wins this game be X3, then by Theorem 1 (application to K1

and K2 individually), we have

|Pr[X2] − Pr[X3]| ≤ 4(3
√

n · AdvSDD′ (n, k, t)) + AdvCDC (n, k) (5)

Also, it can be noted that no information of K† is revealed in c∗, therefore,
generating a random c∗

1 does not affect the validity of the ciphertext.

Pr[X3] =
1
2

(6)

Hence,
AdvIND−CCA2

KEM,A (κ) = |Pr[X0] − Pr[X3]|
by repeatedly applying the difference lemma and using the Eqs. (2)–(4), we get,

AdvIND−CCA2
KEM,A (κ) ≤ AdvTCRA (h1) + AdvCDC (n, k) + 4(3

√
n · AdvSDD′ (n, k, t))

Thus, the advantage of the PPT adversary A in the IND-CCA2 game is bounded
by the target-collision resistance of h1, the Goppa-distinguishability of H1 and
the hardness of syndrome decoding. Hence, the proposed scheme is IND-CCA2
secure as long as h1 is a TCR hash function, and the Goppa-code distinguisha-
bility and syndrome decoding of the corresponding parameters are hard to
solve. �

Using the IND-CCA2 secure KEM proposed above and any authenticated
one-time symmetric encryption, an IND-CCA2 secure Hybrid encryption scheme
can be constructed in the standard model (using the composition theorem in [7]).

4 Deterministic Encryption

The deterministic encryption is constructed in a manner similar to the KEM
in the previous section. Instead of selecting the key uniformly at random, the
security of the scheme is based on the large entropy of the message space. If m
has enough min entropy, then, intuitively, the Left Over Hash Lemma (LHL)
implies that each of the hashes are close to uniform, independent of the specific
distribution of m, bounding A′s advantage to be small. As per Generalised Left
Over Hash Lemma (LHL), TCR smooths out an input distribution (distribution
of m in this paper) to nearly uniform on its range, provided that the input
distribution has sufficient minimum entropy, since TCR comes under universal
one-wayness [24].

Efficient Code Based Hybrid and Deterministic Encryptions 529

4.1 Proposed Scheme

System Parameters. Let D(n,t) be the domain of the set of all binary error
vectors (of weight ≤ t) of length n. The scheme uses the same technique as that
of hybrid encryption. The system parameters for the security parameter κ are
as follows:

– Target Collision Resistant hash functions h1 : F
(n−k)
2 → {0, 1}κ and h2 :

{0, 1}n → D(n,t).
– A hard-core function h : D(n,t) → {0, 1}n where {0, 1}n is the message space.
– An injective function f1 : {0, 1}κ → F

n−k×n−k
2 which takes binary vectors

from a sufficiently large space as input, and outputs a full rank matrix H.
– An injective function f2 : {0, 1}κ → Pn×n which takes binary vectors from a

sufficiently large space as input and output a n × n permutation matrix P ,
for the Niederreiter cryptosystem.

Key Generation. For the security parameter 1κ, the KeyGen is as follows:

– Randomly select two distinct [n, k, 2t+1] Goppa codes with parity check matri-
ces H1,H2 respectively.

– Randomly select an invertible matrix Q1 ∈R F
n−k×n−k
2 and a n × n permu-

tation matrices P1, P2.
– Define H̃1 = Q1H1P1 and H̃2 = H2P2 ⊕ H1P1.

Thus, we have:

– Public Keys: H̃1 & H̃2.
– Secret Keys: H1, H2, Q1, P1, P2.

Encryption: On a message m ∈ F
n
2 with wt(m) ≤ t, the following steps consti-

tute the encryption algorithm:

– Generate c1 ← h1(H̃1m
T) and r ← h2(m),

– Compute Hc1 = f1(c1) and Pc1 = f2(c1).
– Define K1 = H̃1Pc1 and K2 = Hc1H̃2Pc1 .
– Define c2 = K1r

T , and c3 = K2r
T .

– c4 = m ⊕ h(r).

The ciphertext that is sent is c = (c1, c2, c3, c4).

Decryption. The decryption on the ciphertext c = (c1, c2, c3, c4) is done as
follows:
Compute, Hc1 ← f1(c1), Pc1 ← f2(c1).
if (DecodeH1(Q

−1
1 c2) →⊥)

return ⊥.
else

r′ ← PT
c1P

T
1 DecodeH1(Q

−1
1 c1)

if(c3 �= Hc1H̃2Pc1r
′T)

return ⊥.

530 K. Preetha Mathew et al.

else
m′ ← c4 ⊕ h(r′)
if(c1 �= h1(H̃1m

′T)||r′ �= h2(m′))
return ⊥.

else
return m′.

end

Correctness. For decryption of a valid ciphertext, Hc1 & Pc1 can be computed
as c1 is sent as the ciphertext. If the ciphertext is valid, then c2 and c3 are
decodable syndromes for the error vector r′ for K1 and K2 respectively. The
knowledge of r′ can be used to obtain m′ from c4 due to the property of the X-
OR operation. Thus, as long as the decoding algorithm is correct, the decryption
is correct for a valid ciphertext. If the ciphertext is invalid, the ciphertext is
either rejected by the decoding algorithm (if c2 is not a decodable syndrome),
the consistency checking mechanism (if c2 and c3 are not the syndromes of the
same error vector for K1 and K2 respectively) or the integrity check mechanism
(if the decrypted message is not the message committed in c1 or the encrypted
key r′ is not a commitment on m′).

4.2 Security of the Scheme

Theorem 3. The proposed scheme is PRIV-1CCA secure as long as h1, h2 are
TCR hash functions, and the Goppa-code distinguishability and syndrome decod-
ing of the corresponding parameters are hard to solve.

The proof is given appendix due to space constraints. The proof is similar to the
proof of hybrid encryption.

4.3 Parameters

From the previous sections, we have seen that the selection of parameters is
important in defining the negligible advantage an adversary has, in solving the
syndrome decoding problem and Goppa indistinguishability problem. Since, the
required codes need not have a very high rate, the distinguisher attack [12]
does not hold. Also these parameters ensures the target collision resistance of
the hash functions. It also ensures that the functions f1 and f2 both injective.
The parameters shown in Table 1 achieves a security greater than 280, which
is the desired security bound. The schemes proposed by Edoardo Persichetti
using Niederreiter encryption [29] and Cui et al. [8] using McEliece assumptions
are in the random oracle model. The scheme presented by Fuller et al. [16]
constructed a q-bounded PRIV-CCA secure Niederreiter variant in standard
model using the κ repetition, which requires the more cipher text components
and therefore have communication overhead. Our scheme is efficient as it requires
only three cipher text components for hybrid encryption and four components
for deterministic encryption. Comparing the schemes with κ repetition the size
of cipher text is approximately κ × (n − k) whereas the cipher text size of our
scheme is κ + 2 × (n − k).

Efficient Code Based Hybrid and Deterministic Encryptions 531

5 Conclusion

In this paper, we have proposed efficient construction for a KEM and a determin-
istic encryption. The KEM was shown to be IND-CCA2 secure based on the syn-
drome decoding and the Goppa-code distinguishability hardness assumptions in
the standard model. The deterministic encryption achieves PRIV-1CCA security
based on the aforementioned assumption in the standard model. Both schemes
avoided the use of κ-repetition paradigm. Hence, such schemes can be instan-
tiated in practice using practical parameters as in [13]. Thus the KEM can be
used to obtain a IND-CCA2 secure code-based hybrid encryption in the standard
model. Also, the deterministic encryption can be used as an efficiently search-
able encryption for securing remote databases. Bounded multi-message security
(q bounded PRIV-CCA2) and its instantiation without κ-repetition paradigm
using code-based assumptions remains open.

A Appendix

A.1 Proof of Security for Deterministic Encryption

Proof: The proof is presented as a sequence of games, Game 0, Game 1
While, Game 0 fits the scheme exactly as in the PRIV-1CCA game. Subsequent
games change the environment, such that the view of the adversary in discrim-
inating between two consecutive games is at best negligible in κ or reduces to
the solution of a hard-problem instance. We denote the challenger/simulator as
a PPT algorithm C and the adversary of the system as a PPT algorithm A.

Game 0. C adapts the proposed scheme directly to the PRIV-1CCA game.
The system parameters are set as in the proposed scheme, with the security
parameter κ. The key-generation oracle and the decryption oracle is run
using the described scheme. Let M be a random variable over the message
space with a min-entropy. Let m∗ $← M and the function to be computed
on m∗ be f . C computes c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) = Enc(m∗). c∗ is the “challenge

ciphertext” given to A,i.e., given c∗, A must compute f(m∗). A outputs t,
t ← AD(.)(M,f, c∗). A wins if where t == f(m∗).
Let the event that the adversary A wins the game be quantified by the
random variable X0. Then,

RealAE(A,M, f) = Pr[X0] (7)

Game 1. Decryption Oracle is simulated by C as follows:
Input: The ciphertext c = (c1, c2, c3, c4)
Output: The message m.
if (c1 == c∗

1)
Return ⊥

else
Hc1 ← f1(c1), Pc1 ← f2(c1)

532 K. Preetha Mathew et al.

Compute c′
2 = Q−1

1 c2
Compute c′′

2 = Hc1c
′
2

Compute y = c3 ⊕ c′′
2

Compute Q′ = Hc1

if (DecodeH2(Q
′−1y) →⊥) // Invalid ciphertext

Return ⊥
else

Compute r′ = PT
c1P

T
2 DecodeH2(Q

′−1y)
if (c2 �= H̃1Pc1r

′T OR c3 �= Hc1H̃2Pc1r
′T)

Return ⊥ // Ciphertext inconsistent
else

m′ ← c4 ⊕ h(r′).
if(c1 �= h1(H̃1m

′T)||r′ �= h2(m′))
Return ⊥

else
Return m′

end

Let the event that the adversary A wins in this game be quantified by the
random variable X1. The difference in the distribution (or view of the adver-
sary) between X0 and X1 is the situation in which C returns ⊥ if c1 = c∗

1 in
this game, during the decryption oracle. The simulator returns ⊥ implying
the ciphertext is invalid (as the integrity check will not hold). But, it can
be seen that A may have given a valid ciphertext (that is not the challenge
ciphertext), i.e., a ciphertext for some m′ �= m∗. Clearly, this would violate
the target collision resistance of h1 or of h2. H is target collision resistant if
for every polynomial time adversary A the TCR advantage is

AdvTCR
H (A) = Pr[H(K, x1) = H(K, x2) : (x1, st) ←R A, K ←R K, x2 ←R A(K, st)]

(8)
of A against H is negligible(ε). That is in TCR the adversary must commit
to an element in collision before seeing the hash key. As per Generalised Left
Over Hash Lemma(LHL), TCR smooths out an input distribution (distrib-
ution of m in this paper) to nearly uniform on its range, provided that the
input distribution has sufficient minimum entropy, since TCR comes under
universal one-wayness [5,24]. Let AdvTCRh1

(A) = ε1,Adv
TCR
h2

(A) = ε2. Hence,

|Pr[X0] − Pr[X1]| ≤ ε1 + ε2 (9)

Game 2. Key Generation: The key-generation process is altered. C replaces
the Goppa parity-check matrix of H1 with the parity check matrix R of a
random [n, k, 2t + 1] code. Thus H1 ← R. Also, the knowledge of the target
message m∗ is made use of. C computes c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) = Enc(m∗). The

remainder of the key-generation process remains unchanged.

|Pr[X2] = Pr[X1]| (10)

Efficient Code Based Hybrid and Deterministic Encryptions 533

There is consistency with the decryption oracle described in the previous
game. The only difference is the use of a random code instead of a Goppa
code for H1.

Game 3. Key for Challenge text and construct challenge: The Public key
generated is again altered. Replace H2 with parity check of random matrix
R2 so that now H̃1 and H̃2 are parity-check matrices of random codes.
Thus, for the event that A wins Game 2, X2, C can construct a Goppa-
code distinguisher based on the difference in the distributions of X2 and X3

is distinguishing Goppa code with random code. C uses the challenge K†

and computes c∗ using the altered public keys. The winning of this game
is only by syndrome decoding of random code Thus, for the event that A
wins Game3, X3, C can construct a Goppa-code distinguisher based on the
difference in the distributions of X2 and X3. Also compute challenge c∗ using
the new public keys. The winning of this game is solving syndrome decoding.

|Pr[X3] − Pr[X2]| ≤ AdvCDC (n, k) + 4(3
√

n · AdvSDD′ (n, k)) (11)

Also, it can be noted that no information of m∗ is revealed in c∗. It can
be noted that generating a random c∗

4 does not affect the validity of the
ciphertext. This is due to the us of the Generalised Left-over Hash Lemma
on all three functions h1, h2 (as the entropy of the message space is large),
and the resultant use of the hash lemma on h3 (the domain of which is the
same as the range of h2). Therefore,

IdealAE(A,M, f) = Pr[X3] (12)

Since,
Advpriv−1cca

PKE,A (κ) = |RealAE(A,M, f) − IdealAE(A,M, f)|
Substituting Eqs. (6) and (10), we have

Advpriv−1cca
PKE,A (κ) ≤ |Pr[X0] − Pr[X3]|

By repeatedly applying the difference lemma and using the Eqs. (7)–(9), we get,

Advpriv−1cca
PKE,A (κ) ≤ ε1 + ε2 + AdvCDC (n, k) + 4(3

√
n · AdvSDD′ (n, k))

Thus, the advantage of the PPT adversary A in the PRIV-1CCA game is boun-
ded by the target-collision resistance of h1 and h2, the Goppa-distinguishability
of H1 and the hardness of syndrome decoding. Thus, the proposed scheme is
PRIV-1CCA secure as long as h1 and h2 are TCR hash functions, and the Goppa-
code distinguishability and syndrome decoding of the corresponding parameters
are hard to solve. �

534 K. Preetha Mathew et al.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes [23], pp. 535–552

3. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner
[35], pp. 360–378

4. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

5. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner [35], pp. 335–
359

6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

7. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33,
167–226 (2003)

8. Cui, Y., Morozov, K., Kobara, K., Imai, H.: Efficient constructions of determin-
istic encryption from hybrid encryption and code-based PKE. In: Bras-Amorós,
M., Høholdt, T. (eds.) AAECC-18 2009. LNCS, vol. 5527, pp. 159–168. Springer,
Heidelberg (2009)

9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

10. Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 secure public key
encryption scheme based on the McEliece assumptions in the standard model.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 240–251. Springer,
Heidelberg (2009)

11. Faugére, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
McEliece variants with compact keys - toward a complexity analysis. In: SCC ’10:
Proceedings of the 2nd International Conference on Symbolic Computation and
Cryptography, RHUL, June 2010, pp. 45–55 (2010)

12. Faugère, J.-C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher
for high rate McEliece cryptosystems. In: Information Theory Workshop (ITW).
IEEE (2011)

13. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

14. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

16. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

Efficient Code Based Hybrid and Deterministic Encryptions 535

17. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Contr. Inf. Theor. 15, 159–166 (1986)

18. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes [23], pp. 553–571

19. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction par-
adigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 590–609. Springer, Heidelberg (2009)

20. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

21. Lucks, S.: A variant of the Cramer-Shoup cryptosystem for groups of unknown
order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 27–45. Springer,
Heidelberg (2002)

22. Preetha Mathew, K., Vasant, S., Venkatesan, S., Pandu Rangan, C.: An efficient
IND-CCA2 secure variant of the Niederreiter encryption scheme in the standard
model. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372,
pp. 166–179. Springer, Heidelberg (2012)

23. Menezes, A. (ed.): CRYPTO 2007. LNCS, vol. 4622. Springer, Heidelberg (2007)
24. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic

applications. pp. 33–43 (1989)
25. Niebuhr, R., Cayrel, P.-L.: Broadcast attacks against code-based schemes. In:

Armknecht, F., Lucks, S. (eds.) WEWoRC 2011. LNCS, vol. 7242, pp. 1–17.
Springer, Heidelberg (2012)

26. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece
cryptosystem without random oracles. Des. Codes Cryptogr. 49(1–3), 289–305
(2008)

27. Patterson, N.: The algebraic decoding of Goppa codes. IEEE Trans. Inf. Theor.
21(2), 203–207 (1975)

28. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork,
C. (ed.) STOC, pp. 187–196. ACM (2008)

29. Persichetti, E.: Secure and anonymous hybrid encryption from coding theory.
In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer,
Heidelberg (2013)

30. Persichetti, E.: On a CCA2-secure variant of McEliece in the standard model. In:
IACR Cryptology ePrint Archive (2012). http://eprint.iacr.org/2012/268

31. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report, pp. 114–116 (1978)

32. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

33. Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a
quantum computer. In: ANTS, p. 289 (1994)

34. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 275. Springer,
Heidelberg (2000)

35. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)

http://eprint.iacr.org/2012/268

Author Index

Albrecht, Martin R. 293
AlTawy, Riham 175
Avoine, Gildas 144

Bono, Stephen 496

Canard, Sébastien 49
Carpent, Xavier 144
Chabanne, Hervé 34
Chen, Hua 227
Cheon, Jung Hee 277
Choi, Jongseok 256
Cohen, Gérard 34

Danisevskis, Janis 483
Devigne, Julien 49
Dubrova, Elena 241

Etemad, Mohammad 381

Fan, Limin 227
Fitzpatrick, Robert 293
Foo, Timothy 311
Funabiki, Nobuo 363, 435

Göpfert, Florian 293

Hajime, Shogo 400
Hao, Ronglin 158
Hong, Hyunsook 277
Hossain, Nabil 455
Howlader, Jaydeep 418
Huang, Qiong 325

Jae Kang, Hyun 469
Jia, Keting 123

Kang Kim, Huy 469
Kang, Ah Reum 469
Küpçü, Alptekin 381
Kim, Howon 256
Kim, Hyunjin 256
Kim, Yongdae 109
Kircanski, Aleksandar 175
Ko, Haengseok 109

Kutzner, Sebastian 91
Kwon, Hyukmin 469

Le, Kim 3
Lee, Hyung Tae 277
Lee, Yeoncheol 256
Li, Bao 158
Li, Xiaoqian 158
Lin, Li 203
Liu, Dennis Y.W. 325
Liu, Zhe 256

Ma, Bingke 158
Mal, Ashis Kumar 418
Mansouri, Shohreh Sharif 241

Nakanishi, Toru 363, 435
Nguyen, Phuong Ha 91
Nomura, Tomoya 363

Park, Taehwan 256
Patey, Alain 34
Piekarska, Marta 483
Poschmann, Axel 91
Preetha, K. Mathew 342, 517

Ramanathan, Parmesh 3
Rangan, C. Pandu 517
Roy, Sanjit Kumar 418

Saluja, Kewal K. 3
Sasaki, Yu 189
Seifert, Jean-Pierre 483
Seo, Hwajeong 256
Shikata, Junji 400

Tan, Chik How 311
Thompson, Jacob 496
Toft, Tomas 20

Vasant, Sachin 342, 517
Verma, Rakesh 455

Wang, Lei 189
Wang, Qichun 311

Wang, Yanfeng 203
Watanabe, Yohei 400
Wong, Duncan S. 325
Woo, Jiyoung 469
Wu, Wenling 158, 203

Xu, Jing 67

Yang, Kang 67
Youssef, Amr M. 175
Yu, Xiaoli 158

Zhang, Lei 203
Zhang, Zhenfeng 67
Zheng, Xuexin 123

538 Author Index

	Preface
	The 16th International Conference on Information Security and Cryptology ICISC 2013
	Organization
	Contents
	Secure Multiparty Computation
	Privacy Assurances in Multiple Data-Aggregation Transactions
	Abstract
	1 Introduction
	2 Motivation and Problem Formulation
	2.1 Motivation
	2.2 Problem Formulation
	2.2.1 Security Model
	2.2.2 Problems

	2.3 Notations

	3 Proposed Solution for WSUM
	3.1 Certification Challenge
	3.2 Single WSUM Transaction Protocol
	3.3 WSUM Privacy Assurance Certificate
	3.3.1 Certification When Only a Is Honest-But-Curious
	3.3.2 Certification When A and m Users are Honest-But-Curious
	3.3.3 Certification in General Case

	4 Related Research
	5 Conclusions
	References

	A Secure Priority Queue; Or: On Secure Datastructures from Multiparty Computation
	1 Introduction
	2 The Basic Model of Secure Computation
	2.1 The Arithmetic Black-Box
	2.2 Complexity

	3 Extending the Arithmetic Black-Box
	3.1 Secure Comparison
	3.2 Secure Conditional Swap
	3.3 Secure Merging

	4 The Goal: A Secure Priority Queue
	5 The Secure Bucket Heap
	5.1 The Intuition of the Secure Bucket Heap
	5.2 Invariants
	5.3 The Operations
	5.4 Correctness
	5.5 Complexity
	5.6 Security
	5.7 Hiding Whether an Operation Is Performed

	A An ABB Realization
	References

	Towards Secure Two-Party Computation from the Wire-Tap Channel
	1 Introduction
	2 Wire-Tap Channel II and Linear Coset Coding
	2.1 Linear Coset Coding
	2.2 The Wire-Tap Channel I
	2.3 The Wire-Tap Channel II
	2.4 Generalized Hamming Distances

	3 Our Protocol for Secure Two-Party Computation
	3.1 The Setting
	3.2 From the Wire-Tap Channel to Secure Two-Party Computation
	3.3 Choosing the Code
	3.4 Our Protocol
	3.5 Privacy
	3.6 Examples

	4 Intersecting Codes and Minimal Codes
	4.1 The Binary Case
	4.2 The q-Ary Case

	5 Conclusion
	References

	Proxy Re-encryption
	Combined Proxy Re-encryption
	1 Introduction
	2 Combined Proxy Re-encryption
	2.1 Syntactic Definition
	2.2 Security

	3 Generic Results on Combined-PRE
	3.1 Combined-PRE -3mu BPRE + UPRE
	3.2 BPRE + encrypted token -3mu Combined-PRE

	4 Practical Construction
	4.1 General Intuition
	4.2 Our Combined PRE

	5 Details on the Application to Cloud Storage
	6 Conclusion and Acknowledgments
	A Proof of Lemma1
	B Generic Results on Combined-PRE
	B.1 Definition of a BPRE
	B.2 BPRE + UPRE -3mu Combined-PRE?
	B.3 BPRE + encrypted token -3mu Combined-PRE
	B.4 Proof of Theorem2
	B.5 Proof of Theorem3

	C Security Proofs for Our Practical Construction
	References

	Certificateless Proxy Re-Encryption Without Pairings
	1 Introduction
	1.1 Technical Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Security Model for Single-Hop Unidirectional CLPRE

	3 Analysis of Xu et al.'s CLPRE Scheme
	3.1 Review of Xu et al.'s Scheme
	3.2 Attack Against Confidentiality

	4 Our Single-Hop Unidirectional CLPRE Schemes
	4.1 A Chosen Plaintext Secure Scheme (CLPRE1)
	4.2 A Chosen Ciphertext Secure Scheme (CLPRE2)
	4.3 Comparisons

	5 Conclusions
	A Single-Hop Unidirectional CLPRE
	B Security Model
	C Security Proof of Theorem 1
	References

	Side Channel Analysisand Its Countermeasures
	Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes
	1 Introduction
	2 Threshold Implementation
	2.1 Threshold Implementation Countermeasure
	2.2 3-Share TI for Cubic 4-Bit S-Boxes

	3 The Decomposition Stage
	3.1 Decomposition of 4-Bit S-Boxes Using a Sequential Structure
	3.2 Decomposition of 4-Bit S-Boxes Using a Factorization Structure
	3.3 Decomposition of 4-Bit S-Boxes Using a Hybrid Structure
	3.4 Application to Important S-Boxes in B16

	4 The Sharing Stage
	4.1 Sharing Stage Using a Sequential Structure
	4.2 Sharing Stage Using a Factorization Structure

	5 Experiments
	6 Conclusion
	A Appendix: 3-Share TIs of S-Boxes in B16
	References

	Using Principal Component Analysis for Practical Biasing of Power Traces to Improve Power Analysis Attacks
	1 Introduction
	2 Principal Component Analysis
	2.1 Theoretical Basis of PCA
	2.2 Side-Channel Attacks Using PCA

	3 Power Traces Selection Method
	3.1 Conventional Method
	3.2 Proposed Method

	4 Experimental Results
	4.1 DES Implementation Result
	4.2 AES Implementation Result
	4.3 Utilize Different Principal Components
	4.4 Variance of the Measured Trace

	5 Conclusion
	References

	Cryptanalysis 1
	Impossible Differential Attack on Reduced-Round TWINE
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Description of TWINE

	3 Observations and 14-Round Impossible Differentials of TWINE
	4 Impossible Differential Cryptanalysis of 23-Round TWINE-80
	4.1 Analysis of Suzaki et al.'s Attack on TWINE-80
	4.2 Impossible Differential Attack on 23-Round TWINE-80

	5 Impossible Differential Attack on 24-Round TWINE-128
	6 Conclusion
	A
	B
	C
	D
	References

	Optimal Storage for Rainbow Tables
	1 Introduction
	2 Time-Memory Trade-Offs
	2.1 Context
	2.2 Precomputation Phase
	2.3 Online Phase
	2.4 Rainbow Tables
	2.5 Memory in Time-Memory Trade-Offs

	3 Bounds for Endpoint Storage
	4 Decomposition of the Endpoints in Prefix and Suffix
	4.1 Description
	4.2 Analysis and Optimality

	5 Compressed Delta Encoding of the Endpoints
	5.1 Description
	5.2 Analysis and Optimality
	5.3 Example

	6 Compressing the Startpoints
	7 Experiments and Comparison
	7.1 Choice of the L Parameter
	7.2 Measure of the Gain

	8 Conclusion
	References

	First Multidimensional Cryptanalysis on Reduced-Round PRINCEcore
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Brief Description of PRINCE

	3 Multidimensional Linear Cryptanalysis
	3.1 Estimated Correlation of One-Dimensional Linear Approximation
	3.2 Multidimensional Linear Approximation for Key-Alternating Block Cipher
	3.3 The Convolution Method

	4 New Methodologies for Linear Cryptanalysis
	4.1 Classification of Linear Trails
	4.2 Classification Technique in Calculating Capacity for Multiple Linear Approximations

	5 A Multidimensional Linear Distinguisher on 8-Round PRINCEcore
	5.1 Pattern Successions for 8-Round PRINCEcore
	5.2 Capacity Estimates of Multiple Linear Approximations for PRINCEcore

	6 Multidimensional Linear Cryptanalysis of PRINCEcore
	6.1 Break 10-Round PRINCEcore Using Matsui's Algorithm 2
	6.2 Break 9-Round PRINCEcore Using 8-Round Distinguisher

	7 A Multidimensional Linear Distinguisher on 1-Step LED
	8 Conclusion
	A An Example of a Pattern Succession over 8-Round PRINCEcore
	B Compute the Average Capacity for R-Round Key-Alternating Cipher
	References

	Cryptanalysis 2
	Rebound Attacks on Stribog
	1 Introduction
	2 Specification of Stribog
	2.1 Notation

	3 The Rebound Attack
	4 Attacks on the Internal Block Cipher (E)
	4.1 5-Round Free-Start Collision
	4.2 8-Round Collision and 7.75-Round Near Collision Attacks

	5 Attacks on Stribog Compression Function
	6 Conclusion
	References

	Bitwise Partial-Sum on HIGHT: A New Tool for Integral Analysis Against ARX Designs
	1 Introduction
	2 Bitwise Partial-Sum
	3 Improved Integral Analysis on HIGHT
	3.1 Specification of HIGHT
	3.2 Previous Integral Analysis on 22-Round HIGHT
	3.3 Exploiting Linearly for Optimizing Matching Position
	3.4 Improved Integral Analysis on 22-Round HIGHT
	3.5 New Integral Analysis on 26-Round HIGHT

	4 Concluding Remarks
	References

	General Model of the Single-Key Meet-in-the-Middle Distinguisher on the Word-Oriented Block Cipher
	1 Introduction
	2 Definitions and Attack Scheme
	2.1 The SPN Block Cipher
	2.2 Definitions
	2.3 Attack Scheme

	3 General Model of the Single-Key Meet-in-the-Middle Distinguisher
	3.1 Distinguisher on the SPN Block Cipher
	3.2 Algorithm To Solve Problem1
	3.3 Applied to the Feistel Structure
	3.4 The Distinguisher Using Efficient Tabulation

	4 Distinguishers and Attacks on Crypton and mCrtpton
	4.1 Basic Distinguisher on Crypton
	4.2 Basic Distinguisher on mCrypton
	4.3 Distinguishers on Crypton and mCrypton Using Efficient Tabulation
	4.4 Basic Attack on Crypton and mCrypton Using Efficient Tabulation

	5 Basic Distinguisher on LBlock
	6 Conclusion and Further Works
	A The Number of -Sets
	A.1 The Number of -Sets for Crypton
	A.2 The Number of 2--Sets for mCryptonp
	A.3 The Number of Multisets of the AES Distinguisher and 5-Round Distinguisher in [8]
	A.4 The Basic Model of Distinguisher using Efficient Tabulation

	B Basic Attacks on Crypton and mCrypton Using Efficient Tabulation
	B.1 Attacks on Crypton
	B.2 Attacks of mCrypton

	C Algorithms
	References

	Embedded System Securityand Its Implementation
	Integral Based Fault Attack on LBlock
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Brief Description of LBlock
	2.3 Properties of LBlock

	3 Fault Attack on 24th round of LBlock
	4 Fault Attack on 23th round of LBlock
	5 Data Complexity and Computer Simulation
	6 Conclusion and Future Work
	References

	Protecting Ring Oscillator Physical Unclonable Functions Against Modeling Attacks
	1 Introduction
	1.1 Types of PUFs
	1.2 Contribution

	2 Ring Oscillator Strong PUFs
	3 Reliability Assumption
	4 Modeling Attacks on RO-PUFs
	4.1 Attacks on RO-PUFs

	5 Related Work
	6 Algorithm 1
	7 Algorithm 2
	7.1 Example
	7.2 Number of CRPs
	7.3 Indeterministic Modeling Attack
	7.4 Protecting Against Indeterministic Modeling Attacks

	8 Number of CRPs
	9 Conclusion
	A Appendix
	References

	Parallel Implementations of LEA
	1 Introduction
	2 Related Works
	2.1 CUDA
	2.2 NEON

	3 Parallel Implementations of LEA
	3.1 Memory and Speed Trade-Off
	3.2 CUDA-LEA
	3.3 NEON-LEA

	4 Results
	4.1 CUDA-LEA
	4.2 NEON-LEA

	5 Conclusion
	References

	Primitives for Cryptography
	Invertible Polynomial Representation for Private Set Operations
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions and Notations
	2.2 Polynomial Representation of a Set
	2.3 Additive Homomorphic Encryption

	3 Invertible Polynomial Representation
	3.1 Our Polynomial Representation
	3.2 Analysis of Our Polynomial Representation

	4 Applications: Set Union for Honest-but-Curious Case
	4.1 Set Union for Honest-but-Curious Case
	4.2 Analysis

	5 Conclusion
	A Proof of Theorem 1
	References

	On the Efficacy of Solving LWE by Reduction to Unique-SVP
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Organisation

	2 Background and Notation
	2.1 Lattices and Discrete Gaussians
	2.2 The Concrete Complexity of BKZ and BKZ 2.0
	2.3 Alternative Algorithms for Solving LWE
	2.4 Concrete Hardness of uSVP

	3 The Embedding Approach
	3.1 Construction of Embedding Lattices
	3.2 On the Determination of When t="4264306 "026B30D e"026B30D "5265307
	3.3 On the Determination of When t < "4264306 "026B30D e"026B30D "5265307

	4 Application to LWE and Comparisons
	4.1 Regev's Parameters
	4.2 Lindner and Peikert's Parameters

	5 Limits of the Embedding Approach
	5.1 Comparisons

	A Root Hermite Factors for LWE-Derived Lattices
	References

	A Family of Cryptographically Significant Boolean Functions Based on the Hidden Weighted Bit Function
	1 Introduction
	2 Preliminaries
	3 A Family of Boolean Functions
	3.1 Algebraic Degree
	3.2 Algebraic Immunity
	3.3 Nonlinearity

	4 An Infinite Class of Balanced Functions with Very Good Cryptographic Properties
	5 Conclusion
	References

	Digital Signature
	Ambiguous One-Move Nominative Signature Without Random Oracles
	1 Introduction
	2 Nominative Signature: Definitions
	3 Nominative Signature Supporting Ambiguity
	3.1 An Efficient NS Construction (Our Scheme I)
	3.2 Security Model: Ambiguity

	4 A New NS Construction Supporting Ambiguity (Our Scheme II)
	5 Efficiency Analysis and Comparison
	6 Conclusion
	A Related Work
	B Security Model
	B.1 Unforgeability Against Malicious Users
	B.2 Unforgeability Against Malicious Signers
	B.3 Invisibility
	B.4 Non-transferability
	B.5 User-Only Conversion

	References

	A Provably Secure Signature and Signcryption Scheme Using the Hardness Assumptions in Coding Theory
	1 Introduction
	2 Preliminaries
	2.1 Coding Theory
	2.2 Signature
	2.3 Signcryption

	3 Weak Distinguishability Assumptions
	3.1 Key-Construct
	3.2 Assumption

	4 Proposed Signature Scheme
	4.1 Scheme
	4.2 Security of the Scheme

	5 Proposed Signcryption Scheme
	5.1 Scheme
	5.2 Security of the Scheme
	5.3 Parameters Selection

	6 Conclusion
	A Proof of Confidentiality for the Signcryption Scheme
	References

	An Anonymous Reputation System with Reputation Secrecy for Manager
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Assumptions
	2.3 Structure-Preserving Signatures (AHO Signatures)
	2.4 BB Signatures
	2.5 Accumulators
	2.6 Proving Relations on Representations

	3 System Model for Anonymous Reputation Systems
	3.1 Participants and Targets

	4 Proposed System
	4.1 Construction Idea
	4.2 Proposed Construction

	5 Security
	6 Conclusion
	A Syntax and Security Requirements
	A.1 Syntax
	A.2 Security Requirements

	References

	Security Protocol
	Database Outsourcing with Hierarchical Authenticated Data Structures
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Hierarchical Authenticated Data Structures
	3.1 HADS Construction

	4 Outsourced Database Scheme
	4.1 Generic ODB Construction

	5 Performance Analysis
	A ADS Definitions and Security Analysis
	B Efficient ODB Construction
	References

	Information-Theoretically Secure Entity Authentication in the Multi-user Setting
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 UEA: Unilateral Entity Authentication
	2.1 The Model
	2.2 Security Definition
	2.3 Lower Bounds
	2.4 Construction
	2.5 Comparison of Our Result with Kurosawa's One

	3 MEA: Mutual Entity Authentication
	3.1 The Model
	3.2 Security Definition
	3.3 Lower Bounds
	3.4 Construction

	A Proof of Theorem 2
	B Proof of Theorem 3
	C Comparison to Previous Results
	D Proof of Theorem 5
	E Proof of Theorem 6
	References

	Practical Receipt-Free Sealed-Bid Auction in the Coercive Environment
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Receipt-Free Sealed-Bid Auction
	3.1 Entities
	3.2 System Setting

	4 Receipt-Free Sealed-Bid Auction Mechanism
	5 Security Analysis
	6 Performance
	7 Conclusion
	Appendix
	Proof of Sealing
	ZK Protocol
	Does ProcSwap() vulnerable

	References

	Revocable Group Signatures with Compact Revocation List Using Accumulators
	1 Introduction
	2 Extended Accumulator
	2.1 Proposed Construction
	2.2 Security

	3 Syntax and Security of Revocable Group Signatures
	3.1 Syntax
	3.2 Security Model

	4 A Revocable Group Signature with Compact Revocation List and Constant Verification Time
	4.1 Construction Idea
	4.2 Proposed Construction
	4.3 Security

	5 Efficiency
	A Preliminaries
	A.1 Bilinear Groups
	A.2 Assumptions
	A.3 Structure-Preserving Signatures (AHO Signatures)
	A.4 Groth-Sahai (GS) Proofs
	A.5 Subset Cover Framework for Broadcast Encryption

	B Evaluation of Witness Computation
	References

	Cyber Security
	Semantic Feature Selection for Text with Application to Phishing Email Detection
	1 Introduction
	1.1 Feature Selection
	1.2 Our Contributions and Results

	2 Natural Language Preliminaries
	2.1 WordNet

	3 Our Hypotheses, Goals and Preview of Classifiers
	4 Phishing Classifiers
	4.1 Classifier 1: Pattern Matching (PM) Only
	4.2 Classifier 2: PM+POS Tagging
	4.3 Classifier 3: PM+POS+Word Senses
	4.4 Classifier 4: PM+POS+Word Senses+WordNet

	5 Analysis and Results
	5.1 Performance Analysis

	6 Related Research on Phishing
	7 Conclusions
	References

	Who Is Sending a Spam Email: Clustering and Characterizing Spamming Hosts
	Abstract
	1 Introduction
	2 Literature Review
	3 Analyzing Spam Mail Data
	3.1 Spamming Group Characteristics
	3.2 System Design

	4 Experiments
	4.1 Clustering with K-means Algorithm
	4.2 The Ratio of Malicious IP Addresses
	4.3 Visual Signatures
	4.4 Behavior Profiling

	5 Conclusion
	Acknowledgement
	Appendix
	References

	Dark Side of the Shader: Mobile GPU-Aided Malware Delivery
	1 Introduction
	2 Background
	2.1 SoC Architecture
	2.2 DMA
	2.3 Graphics Processing Unit

	3 The Attack Vector
	3.1 Identical Scene Rendering
	3.2 The Threat Model

	4 The Proof-of-Concept Attack
	4.1 Payload
	4.2 The Bug
	4.3 Exploit
	4.4 Caveats

	5 Future Work
	6 Conclusion
	References

	Industry-Wide Misunderstandings of HTTPS
	Abstract
	1 Introduction
	2 A Brief History
	3 The Evolution of Caching Policies
	4 Current Caching Policies by Browser
	5 Reliably Preventing Disk Caching
	6 Site Survey
	7 Updates
	8 Observations and Concerns
	9 Recommendations
	10 Conclusions and Future Work
	Appendix A
	References

	Public Key Cryptography
	Efficient Code Based Hybrid and Deterministic Encryptions in the Standard Model
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Hybrid Encryption
	2.3 Deterministic Encryption
	2.4 Hash Functions-Security Notions
	2.5 Security Assumptions

	3 Hybrid Encryption
	3.1 Proposed KEM
	3.2 IND-CCA2 Security of KEM

	4 Deterministic Encryption
	4.1 Proposed Scheme
	4.2 Security of the Scheme
	4.3 Parameters

	5 Conclusion
	A Appendix
	A.1 Proof of Security for Deterministic Encryption

	References

	Author Index

