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Abstract. Many serious games include computational models that simulate
dynamic systems. These models promote enhanced interaction and respon-
siveness. Under the social web paradigm more and more usable game authoring
tools become available that enable prosumers to create their own games, but the
inclusion of dynamic simulations remains a specialist’s job involving knowl-
edge of mathematics, numerical modeling and programming. This paper
describes a methodology for specifying and running a specific subset of com-
putational models without the need of bothering with mathematical equations.
The methodology comprises a knowledge elicitation procedure for identifying
and specifying the required model components, whereupon the mathematical
model is automatically generated. The approach is based on the fact that many
games focus on optimisation problems that are covered by a general class of
linear programming models. The paper thus sketches the principles of a crea-
tivity tool that removes barriers for harvesting the creative potential of teachers
and students.

1 Introduction

For over 30 years games and simulations have been used in training and education.
Their application is motivated by the engaging interactions and authentic experiences
they offer (e.g. [1, 2]). In 1970 Abt [3] introduced the term ‘serious games’ to indicate
games for job training, such as the training of army personnel or insurance salesmen.
Serious games now span everything from learning to advancing social causes, and from
promoting better health to marketing and cultural engagement [4, 5]. So far, the
adoption of games for learning in formal education has been quite limited. Among
adoption barriers are the limited availability of games and technologies, costs of games,
limited time and resources for implementing games, the intrinsic complexity of games
and their design, the unfamiliarity of teachers with games, the supposed conservative
culture of education, limited empirical evidence for the effectiveness of games, and
difficulties of integrating games into the curriculum [6–12].

Still, in recent years game-based learning has gained popularity among educators
and learners, as the costs of multimedia and graphics went down. Various affordable
game authoring tools have become available ranging from simple puzzle creation tools
to full 3D programmable engines. Game engines have become popular tools in pro-
gramming courses [13–15]. Some game engines are particularly tuned to education and
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learning, e.g. EMERGO [6], Emperor [16], e-Adventure [17], Starlogo and Scratch
(MIT). Hu [18] lists a number of special requirements for educational games. Nadolski
et al. [19] identified over 500 game engines and showed that many engines allow for
educational scenarios: the key of serious games is in game design rather than game
technology. Playing a game means engaging in a process and learning by doing while
influencing the process in a favourable way.

Many games include computational models that simulate dynamic systems, which
procure enhanced interaction and responsiveness. Well-known examples are in man-
agement and business games, where computational models cover the dynamics of
supplies, customer flows, production processes, and sales revenues. Other examples are
in social simulations, ecology or system evolution games, surveillance games, traffic
and logistics games and many other types of games. Games that comprise such
dynamic models provide immediate and relevant feedback, which enables players to
learn from their successes and mistakes.

A common tendency of today’s social web is that users become active contributors
of content, while they are supported by online authoring tools and services that have
become publicly available. Teachers and students increasingly produce and use their
own videos, web pages and interactive stories. Although more and more free game
authoring tools have become available online, self-authored (serious) games are scarce
and hardly exceed the level of simple multiple choice quizzes or puzzle games.
Moreover, whatever brilliant ideas teachers or students may have for creating a serious
game, the development of an appropriate computational model for enhanced dynamics
and interactions seems to remain a specialist’s job that inevitably requires knowledge
of mathematics, numerical modeling and programming.

This paper addresses this problem by providing a methodology for specifying a
computational model without going into mathematical equations. The methodology
comprises a knowledge elicitation procedure for identifying and specifying the required
model components, whereupon the mathematical model is automatically generated.
The approach is based on the fact that many games focus on optimisation problems that
are covered by a general class of linear programming models. The notion of linear
programming is not so much about programming but refers to a mathematical problem
solving method, which is applicable to a wide range of optimisation problems in
different domains and contexts, including operations research, and non-zero sum games
[20–22]. Quite some simulation modeling software based on linear programming is
available on the market, e.g. Vstep, FlexSim, and Siemens Plant Simulation, but in all
cases these tend to specialise in particular domains such as vehicle simulation, logistics,
manufactory planning, crop simulation, and process automation, which are hard to be
used by non-specialists. Also, they are closed solutions that don’t allow for interfacing
with external software. The elicitation methodology proposed in this paper brings the
model parameters, model coefficients and model logic to the surface in a pragmatic
way, without requiring computational modeling skills. The approach benefits from the
generic nature of linear programming and the wide spectrum of optimisation problems
that it covers. In addition, various algorithms such as the simplex method [23] are
available for solving linear programming problems. The optimum solutions that these
algorithms provide can be used as a pedagogical benchmark for providing guidance
and feedback to learners involved in optimisation tasks. The paper is a setup as follows.
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First we will summarise the formal basics of linear programming. Second we will show
how the linear programming framework can be linked with simulation modeling.
Finally we will describe the elicitation approach and explain its implications for serious
game design.

2 Linear Programming

Many processes in business, economy and nature can be described as linear pro-
gramming problems. Linear programming refers to a mathematical methodology for
minimising or maximising linear functions (e.g. minimising costs, maximising profits)
subject to linear constraints (e.g. limited resources, limited time). In their elementary
form such models reflect conversion processes or mappings that link a set of input
variables to a set of output variables (cf. Fig. 1).

Linear programming problems may have very different manifestations, but all rely
on the same mathematical methodology, which offers optimal solutions. Below we will
list some problem examples (e.g. [21]):

• Diet problems: Compose a menu of food products (inputs) at minimum costs, which
preserves the minimal daily doses of nutrients, e.g. proteins, vitamins, minerals,
calories and so on (outputs).

• Shipping problems: Optimising the transportation of products from a series of ware-
houses (inputs) to a series of markets (outputs), while fulfilling market demands.

• Activity planning problems: Distributing a factory’s resources (inputs) e.g.
machines, money, energy, or staff to activities (outputs) that produce highest profits.

• Staff assignment problems: Allocating staff (inputs) to production activities (out-
puts), taking into account the people’s different effectiveness on different tasks.

These examples cover a wide range of optimisation problems that can be varied by
changing the number of inputs and outputs, choosing different types of processes, or
linking multiple problems together.

Fig. 1. A black-box system with input vector X and output vector Y

Generating Computational Models for Serious Gaming 55



2.1 Mathematical Description

The standard minimum problem has the following formal structure: Find the n-vector
X (X1, X2, …, Xn) that minimises the objective function O given by

O ¼
Xn

j¼1

cj � Xj ð1Þ

Minimisation is required under m functional constraints given by

Xn

j¼1

Aij � Xj � pi ð2Þ

Also, n nonnegativity constraints apply:

Xj � 0 ð3Þ

Here cj is an n-dimensional vector of utility coefficients, pi are m constraint coefficients
and Aij is an m × n matrix linking variables to constraints. The equations represent the
standard minimum problem in canonical form [24]. It is technically equivalent with the
standard maximum problem, which aims at maximising the objective function. For
both the standard minimum problem and standard maximum problem solution algo-
rithms are available. The Simplex tableau method is known for its efficiency, although
occasionally cycling degeneration may occur [21, 24]. Calculated solutions could be
used as a benchmark for evaluating user-created solutions. Herein lies its educational
potential: learners working on a task to optimise a simulated process could receive
informative feedback how well they do as compared with the calculated optimum.
Below we will further detail the relevant process variables and coefficients that have to
be specified and explain how practical problems can be translated into standard form.

2.2 Connecting Input and Output Variables

In accordance with Fig. 1 we assume a process or mechanism that connects an input
vector X = (X1, X2, …, Xm) with an output vector Y = (Y1, Y2, …, Yn). These
variables reflect the amounts of each input and output, e.g. (1) the amounts of food
products and nutrients, (2) the quantities of product shipped from a harbour or shipped
to a market, (3) the amount of resources allocated to different activities, or (4) the
amount of time that people are allocated to tasks, and so on. The distinction between
inputs and outputs is not essential: allocating people to tasks is technically the same as
allocating tasks to people.

The characteristics of the process are covered by an m × n matrix aij, which
interconnects the two vectors X and Y. For explaining the nature of these intercon-
nections we need to distinguish between two separate problem classes, each of which
require a different approach. The classes differ by the type of interventions users are
allowed to make, while dealing with the optimisation problem: (1) Adjusting the vector
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X (or Y), or (2) Adjusting the matrix aij. Below we will subsequently elaborate the
model descriptions of the two problem classes.

2.3 Model Class 1: Adjusting the Vector X (or Y)

In this problem class the user has to adjust the input variable X to arrive at an optimal
output Y. Examples are:

• The activity planning problem: The user decides upon the input resources Xi that
produce the best output Y;

• The diet problem: The user decides upon the amounts of food products Xi that offer
required nutrients Yj.

Amount Attribution. The process reflects a mapping of X onto Y, that is, it converts
inputs X into outputs Y, which is defined by the elements of matrix aij. It assumes that
each input variable Xi is related to each output variable Yj by an amount aij, which
describes the attribution of input variable Xi to the output variable Yj. This is expressed
as follows:

Yj ¼
Xm

i¼1

aij � Xi ð4Þ

In the diet case aij would describe the amount of nutrient Yj contained in one unit of
food product Xi.

Assigning Value. The amount of a variable may differ from its value. Indeed kilograms
or cubic meters are different from Euros or Dollars. Since many optimisation problems
are based on value rather than amounts, we have to incorporate value rates. Mostly (but
not necessarily) these will be monetary values (money). We introduce the input value
rate VXi, which is the (monetary) value of one unit of input Xi. In the activity planning
problem VXi would be the value (or costs) of one unit of the factory’s resource Xi. In
the diet problem VXj would be the value (or costs) of one unit of food product Xi.
Alternatively, one might want to define and use the values VYj.

Objective Function. The total value VXtotal is the summed value of inputs given by:

VXtotal ¼
Xm

i¼1

Xi � VXi ð5Þ

This total value is likely to be the objective function to be minimised or maximised in
the problem solution, e.g. the total costs of a factory’s resources. Alternatively, output
values VYtotal may be calculated likewise, e.g. the profits of products’ sales. Note that
in some cases, users may be required to optimise total amounts rather than total values.
If so, the value rates VX or VY are set to unity.
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Functional Constraints and Nonnegativity Constraints. Constraints refer to lower
or upper boundaries that apply to the input or output variables. We distinguish the
following cases of functional constraints:

1. Inputs are subjected to an upper limit:

Xi � bi for i ¼ 1; . . .;m ð6Þ

2. Inputs are subjected to a lower limit:

Xi � ci for i ¼ 1; . . .;m ð7Þ

3. Outputs are subjected to an upper limit:

Yj � dj for j ¼ 1; . . .; n ð8Þ

4. Outputs are subjected to a lower limit:

Yj � ej for j ¼ 1; . . .; n ð9Þ

These constraints of inputs and outputs can be understood in terms of supplies and
demands: e.g. limited supplies available (constraint 1), reducing supplies (constraint 2),
avoiding overproduction (constraint 3), and meeting output demands (constraint 4). In
addition we have the following nonnegativity constraints:

5. All inputs are nonnegative:

Xi � 0 for i ¼ 1; . . .;m ð10Þ

6. All outputs (amounts) are nonnegative:

Yj � 0 for j ¼ 1; . . .; n ð11Þ

Note that in all cases the input and output vectors represent amounts of entities, which
cannot be negative.

Conversion to Standard Form. The vector problem of minimisation can now be
summarised as follows. Determine an input vector X that has to be adjusted to optimise
the objective function given by Eq. (5), e.g. the costs of the food menu under the
functional constraint of Eq. (9), e.g. minimum daily doses of nutrients, and the non-
negativity constraint of Eqs. (10) and (11). This is in accordance with the standard
minimum form. Similar considerations hold for maximisation problems.

2.4 Model Class 2: Adjusting the Matrix aij

In this class of problems the user adjusts the coefficients aij rather than Xi or Yj for
producing an optimal solution. Examples:
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• The shipping problem:
Distributing product quantities from various warehouses to different markets reflects
decisions about the attributions aij, viz. the amount of product to be shipped from a
location Xi to a destination Yj;

• The staff assignment problem:
Allocating staff Xi to tasks Yj, while taking into account the productivity differences
between people at different tasks.

Amount Attribution. The matrix problems reflect the allocation of each input element
Xi onto the output vector Y: amounts of input entities Xi are distributed over the
outputs Yj. This means that Eq. (4) is no longer valid for describing the attribution of
input vector X to output variable Yj. Instead this attribution is given by:

Xi ¼
Xm

i¼1

aij ð12Þ

and

Yj ¼
Xn

j¼1

aij ð13Þ

Assigning Value. Each attribution aij decided upon by the user goes with a value that is
determined by a value rate matrix Vaij, indicating the (monetary) value per unit of aij. In
the shipping problem Vaij would be the value (or costs) per unit product shipped from
warehouse i to market j. In the job allocation case Vaij would be the value per unit of
time that person Xi is allocated to job Yj.

Objective Function. The total value Vatotal of all decisions is then given by Eq. (14).

Vatotal ¼
Xm

i¼1

Xn

j¼1

aij � Vaij ð14Þ

This is likely to be the objective function to be minimised or maximised, for instance
total value of all shipping, or total value of job allocations. Note that in some cases, the
problem may require optimisation of total amounts rather than monetary value. If so,
the value rates Vaij are all set equal to unity.

Constraints. Constraints refer to lower or upper boundaries that apply to input or
output variables. Options are given by Eqs. (6)–(11).

Conversion to Standard Form. The problem description of this model class can be
demonstrated to correspond with the standard form: it reflects minimisation (or max-
imisation) of an objective function, cf. Eq. (14), subject to functional and nonnegative
constraints.
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3 Model Elicitation

For producing a computational model without bothering about mathematical com-
plexities we have developed a procedure that supports game authors at expressing their
ideas and at the same time extracts the nature, the variables and the coefficients needed
for the model description. Table 1 lists the high level model decisions that have to be
taken, including the intervention variable, the objective dimension, the optimisation
criterion and the constraints.

It follows that the total number of options is 192 (neglecting the dimensionalities m
and n of X and Y, respectively), which means that the mathematics described above
allow for the specification of 192 different model types. Based on this set of decisions
we have developed a structured elicitation procedure, which comprises a sequence of
standardised questions, e.g.:

• “What type of process do you want to define?” (discriminating between matrix and
vector model)

• “How would you qualify the output of your process?” (making explicit the sort of
outcome)

• “What different types of outputs do you consider?” (extracting outputs Yj and
associated labels)

• “What units would you use to express the respective output types?” (required
standards for calculations)

• “What is the value of one unit of Yj?” (converting amounts to monetary values)
• Etcetera.

A prototype of the elicitation procedure was implemented as an Excel form. A for-
mative test procedure included interviews with five volunteers. Model elicitation took
typically 20 to 30 min. After each interview weaknesses in the elicitation procedure
were identified and discussed, whereupon the form was improved. After completion of
an elicitation session, the Excel prototype generated the model, which allowed for
testing and making adjustments (cf. Fig. 2).

Figure 2 shows the Excel-representation of a fictitious shoe factory using 4 inputs
(materials: leather, rubber, string, sewing rope) constrained to upper limits (e.g. limited
supplies) and 4 outputs (running shoes, tennis shoes, soccer shoes, golf shoes) aiming
for maximizing total output value by deciding about the output volumes.

Table 1. Successive decisions to be taken

Decisions Options Number of options

Intervention variable X, Y, aij 3
Objective dimension X, Y 2
Optimisation criterion minimise, maximise 2
Constraints on Y lower, upper, both, none 4
Constraints on X lower, upper, both, none 4
Total number of options 192
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4 Discussion and Outlook

The implementation of the elicitation procedure and the associated mathematics in
the Excel prototype was quite straightforward. The model was tested against a wide
range of input conditions and proved to produce the required outputs, which demon-
strated the feasibility of the approach. Test persons lacking any mathematical back-
ground were pleased to see how their verbalised ideas were immediately brought to life
as a working simulation model. Also, the prototype made use of Excel’s equation
solver, which provided approximate solutions of the optimisation problem. This yields
a benchmark for player performance that can be used for providing feedback to gamers.

Two main findings led to a readjustment of the elicitation procedure. First, although
test persons demonstrated to be able to specify process models, it turned out to be very
hard for them to imagine any process just from scratch. It was very difficult for them to
make substantiated choices, for example between a matrix model and a vector model,
even though quite common terms were used to guide the decision (e.g. “allocation”,
“production”, “composing”). Specifying constraints also appeared quite difficult.
Adding instructional materials appeared helpful, but not in all cases. Secondly, from
the tests we found that the elicitation procedure sometimes produced degenerated
models, that is, the models either don’t allow for solutions, have trivial solutions, or
don’t reflect an optimisation problem. For instance, in case of upper limit output
constraints any output minimisation problem will have a trivial solution of zero output.
Analysis has shown that 154 out of the 192 model options that follow from the decision
tree (cf. Table 1) are degenerate models. This leaves 36 valid model types, which can
all be covered by a basic set of 12 model templates. For avoiding degenerate models we
aim to use this basic set of templates as a starting point for guiding the elicitation
process. We will attach concrete examples to each of the templates in order to promote
a better understanding and informed decision making by game authors.

The approach explained in this paper allows for the easy extraction of model
variables, coefficients and relationships, provided that the optimisation process fits in
the class of linear programming problems. This opens up possibilities for developing
simplified computational model builders that can be used for creating models in games
and simulations. A next step would be the development of an authoring tool that

Fig. 2. Example screenshot of the Excel simulation prototype.
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implements the elicitation dialogue and model composition as a user-friendly, com-
puter-guided service, preferably using sprites and other graphical objects for visualising
the process. It should also contain a Simplex equation solver for making available a
performance feedback reference. So far the problem set explained in this paper reflects
single-shot problems that don’t take into account progression over time. However,
there are two ways to transform the approach into a time-dynamic challenge. First, in a
game or simulation environment players may be asked to continue their optimisation
task and repeatedly enter new inputs to find a better solution. Adding time constraints
and associated scores may help enhancing the dynamic experience. Second, the models
can be easily adapted to allow for a progressive accumulation of variables, e.g. sales,
supplies, costs over time, which would reflect a history that contributes to the narrative
of the player’s performance in a game. Such accumulation may be well understood as a
discrete time Markov chain, which would preserve the linear programming model as
single shot, while only reformulating the constraints and objective function in the
course of time. In addition, problem cases need not be restricted to a single linear
problem core but could be composed of multiple cascaded or interlinked processes,
each covering a single problem issue: outputs of one process acting as inputs of follow-
up models in the process chain. In all cases standard linear programming models
remain the heart of the description. Eventually, there are no principal barriers for using
an elicitation dialogue for more complex linear, probabilistic or even nonlinear (e.g.
exponential, logarithmic or power law) models.
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