
A Verification Condition Visualizer

Madiha Jami and Andrew Ireland(B)

School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK

a.ireland@hw.ac.uk

Abstract. When first encountering data structures such as arrays,
records and pointers programmers are often presented with pictorial rep-
resentations. The use of pictures to describe data structures and their
manipulation can help establish basic programming intuitions. The same
is true of program proving where pictures are frequently used within the
literature to describe program properties such as loop invariants. Here we
report on an experimental prototype of a visualization tool that trans-
lates verification conditions arising from array based code into pictures.
While initially aimed at supporting teaching, we have received positive
feedback from users of program proving tools within industry.

1 Introduction

The manifesto of the Verified Software Initiative [9] set out a fifteen year pro-
gramme of research with the aim of demonstrating the viability of formal ver-
ification technologies in the development large-scale bug-free software systems.
Central in this endeavor are the complementary strands of theory, tools and
experiments. Here we focus on tools and the need for tools that increase the
accessible formal verification techniques. Specifically we are interested in tools
that support the teaching of assertion based program proving techniques and
which will help win the hearts-and-minds of the next generation of formal meth-
ods researchers and practitioners.

While the basic notion of program proof via verification condition generation
(VCG) is relatively simple for a toy programming language [4], the approach
quickly becomes much harder to teach when working with an industrial-scale
programming language and applications. Our language of choice is SPARK1 [1],
a programming language derived from Ada and which is supported by a range
of static analysis techniques including formal verification. SPARK has been used
extensively within the development of high-integrity software systems, includ-
ing safety-critical applications such as railway signaling and avionics as well as
security-critical application such as smartcard technologies. We have found that
the high-profile nature of its applications makes SPARK relatively easy to moti-
vate and is attractive to students. However, when introducing program proving,
students find it hard to relate to verification conditions (VCs). Our aim is to use

1 The version based upon Ada 95.

c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 72–86, 2014.
DOI: 10.1007/978-3-319-12154-3 5



A Verification Condition Visualizer 73

pictures where appropriate to help programmers gain insight as to the validity
of VCs.

As a starting point we have focused on VCs arising from code that manip-
ulates arrays. Whether learning how to construct algorithms that manipulate
arrays [3,13] or how to the reason about the correction of such algorithms
[6,8,12], authors typically use pictures in order to initially engage their read-
ers. John Reynolds’ use of so called partition diagrams [12] for reasoning about
array based programs is may be the best example. And to a degree it is Reynolds’
vision of “making program logics intelligible” that motivates our work.

Here we present an experimental tool that dynamically generates pic-
tures from SPARK VCs. We believe that the generated pictures serve three
purposes:

– A picture can more immediately help to identify whether or not a VC is
provable.

– If provable then a picture may give guidance as to how a proof of the VC
might proceed.

– If a VC is unprovable then the picture may give guidance as to where the
bug lies.

While we have emphasized the role of pictures as an aid to teaching, we believe
that the power of pictures is more general. For instance, within an industrial
context verification engineers will be called upon to deal with the VCs that
are not automatically discharged by the proof tools. Deciding whether or not a
VC is provable can be a time consuming process, may be even involve wasted
interactive proof attempts. If by turning the undischarged VCs into pictures
such decisions can be made more quickly then the productivity gains could be
significant.

In Sect. 2 we provide a brief overview of the SPARK programming language.
Our overall approach is motivated in Sect. 3 while Sect. 4 describes our experi-
mental tool. Related and future work is described in Sect. 5 with our conclusions
in Sect. 6.

2 Background on SPARK

As mentioned above, the focus of our initial experiments has been the visualiza-
tion of VCs arising from SPARK programs that manipulate arrays. Here we give
a brief introduction to the structure of SPARK VCs in general and how arrays are
handled specifically. For a more complete description the reader is directed to [1].
SPARK includes an annotation language that supports flow analysis and formal
proof. In the case of formal proof the annotations capture the program specifi-
cation, asserting properties that must be true at particular program points. The
annotations are supplied within regular Ada comments, allowing a SPARK com-
pliant program to be compiled using any Ada compiler. Within the work



74 M. Jami and A. Ireland

presented here we focus on three proof annotations, namely preconditions (--#
pre), postconditions (--# post) and loop invariants (--# assert). When spec-
ifying properties of array based programs quantification is important. SPARK
supports both universal (for all) and existential (for some) quantification.

Compliance to the SPARK language is enforced by a static analyser called
the Examiner. In addition, the Examiner performs data flow and information
flow analysis [2]. The Examiner supports formal verification by building directly
upon the Floyd/Hoare style of reasoning. VCs can be generated for proofs of
both partial correctness and exception freedom. In the conventional way, arrays
are modelled as functions in the programming logic of SPARK, where:

– accessing the Ith element of array A is denoted by element(A, [I]), while
– updating the Ith element with the value V is denoted by update(A, [I], V).

3 Our Basic Approach

Our pictures of array related VCs are based upon boxes for individual elements
and rectangles containing ellipses for arbitrary sequences of elements, which we
will refer to as segments. In terms of referencing elements, we place indexes
above the array pictures while properties and relations are depicted using braces
below. By way of illustration, Fig. 1 gives two pictures. The upper picture shows
an array A where all the elements from f to i − 1 are strictly less than the
ith element. The lower picture depicts the swapping of elements within an array.
We also have pictorial representations for updating an element with an arbitrary
value as well as updating with a value from another element within the array,
but space precludes us from presenting them here.

In order to illustrate our basic approach we consider a simple teaching exam-
ple - the Polish Flag Problem. The general idea is to partition a mixture of
coloured objects into distinct colours. In the case of the Polish Flag Problem,
there are two distinct colours, i.e. red and white, corresponding to the colours
of the Polish National Flag2. A solution to the problem, written in SPARK,
is given in Fig. 2. Note that an array Flag is used to represent the mixture of
colours. It is assumed that all the elements of Flag are either Red or White. This
assumption is expressed by the following precondition:

--# pre (for all I in IndexRange => (Flag(I)=Red or Flag(I)=White));

where IndexRange defines the range of valid indices for the array Flag. The required
postcondition takes the following form:

--# post for some P in Integer range (Flag’First) .. (Flag’Last+1) =>

--# ((for all Q in Integer range Flag’First..(P-1) => (Flag(Q)=Red)) and

--# (for all R in Integer range P..Flag’Last => (Flag(R)=White)));

2 This is a simplification of Dijkstra’s Dutch National Flag Problem which requires
three colours.



A Verification Condition Visualizer 75

Fig. 1. Arrays as pictures

This asserts that on termination all the Red elements within Flag will pro-
ceed the White elements, where the existential variable P is used to indicate the
lower bound of the White elements. Note that to accommodate the situation
where Flag contains no White elements, the upper bound of P is defined to be
Flag’Last+1. The basic idea behind the algorithm is that a lower segment of
Red elements and an upper segment of White elements are maintained during
the computation. Two local variables, I and J are used in defining the upper
and lower bounds of each segment respectively during this computation. Sand-
wiched between the lower and upper segments (I..J-1 inclusive) is a mixture of
coloured elements. This “basic idea” is expressed formally by the loop invariant
corresponding to the assert statement in Fig. 2. Note that on termination I=J
and the consequently mixed colours segment (I..J-1) will be empty.

Here we focus on the VCs associated with the loop invariant and the postcon-
dition. With regards to the loop we consider specifically the else-branch, where
the corresponding VC is shown in Fig. 3. Note that both hypotheses and con-
clusions are identified using labels prefixed with H and C respectively. Note also
that only those parts that are required in order to draw pictures of the array are
given. In some sense this is more interesting than the then-branch since the con-
clusion formulas C4 and C5 involve nested updates, making it harder to decide
whether or not the VC is provable. In contrast, we believe that the validity of
the VC is more immediate if presented with the pictorial representation as pro-
vided in Fig. 4. Moreover, we would argue that the picture also provides a strong
hint as to how a proof should proceed. That is, it tells you which parts of the



76 M. Jami and A. Ireland

...
IndexUpper: constant := 4;
IndexLower: constant := 1;
subtype IndexRange is Integer range IndexLower .. IndexUpper;
subtype PointerRange is Integer range IndexRange’First .. IndexRange’Last+1;
type Colour is (Red, White);
type ArrayOfColours is array (IndexRange) of Colour;
...
procedure Partition_Section(Flag: in out ArrayOfColours)
is

subtype JustBiggerRange is Integer range Flag’First .. Flag’Last+1;
I: JustBiggerRange;
J: JustBiggerRange;
T: Colour;
begin

I:=Flag’First;
J:=Flag’Last+1;
loop

--# assert Flag’First<=I and
--# J<=(Flag’Last+1) and
--# I<=J and
--# (for all Q in Integer range Flag’First..(I-1) => (Flag(Q)=Red)) and
--# (for all R in Integer range J..Flag’Last => (Flag(R)=White));
exit when I=J;
if Flag(I)=Red then

I:=I+1;
else

J:=J-1;
T:=Flag(I);
Flag(I):=Flag(J);
Flag(J):=T;

end if;
end loop;

end Partition_Section;

Fig. 2. Solution to Polish Flag problem written in SPARK

goal follow directly from the given, and which parts of the goal must first be
decomposed, i.e. the white segment from j−1 to l must be decomposed into the
(j − 1)th element and the segment from j to l.

Now consider the post-loop VC which is given in Fig. 5 and the correspond-
ing pictures shown in Fig. 6. Again we argue that the validity of the VC is more
immediate when considering the pictorial representation. In addition, the pic-
tures strongly suggest how to complete the proof, i.e. instantiate the existential
variable p within the goal to be i (or j since i = j).

The real value of pictures, as hinted in the introduction, is in identifying
when a VC is not provable or where inconsistencies have arisen between the code
and the specification. By way of illustration, consider Fig. 7 which gives a revised
version of the loop associated with our Polish Flag solution. Here we focus on the



A Verification Condition Visualizer 77

procedure_partition_section_5.
...
H3: i <= j .
...
H4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i - 1)) -> (element(flag, [q_]) = red)) .
H5: for_all(r_: integer, ((r_ >= j) and (r_ <=

indexrange__last)) -> (element(flag, [r_]) =
white)) .

...
H12: not (i = j) .
...
H17: not (element(flag, [i]) = red) .
...

->
...
C4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i - 1)) -> (element(update(update(flag, [i], element(
flag, [j - 1])), [j - 1], element(flag, [i])), [
q_]) = red)) .

C5: for_all(r_: integer, ((r_ >= j - 1) and (r_ <=
indexrange__last)) -> (element(update(update(
flag, [i], element(flag, [j - 1])), [j - 1], element(
flag, [i])), [r_]) = white)) .

...

Fig. 3. Polish Flag: Loop invariant VC - else branch

Fig. 4. Polish Flag: Loop invariant VC picture - else branch



78 M. Jami and A. Ireland

procedure_partition_section_12.
H1: indexrange__first <= i .
H2: j <= indexrange__last + 1 .
...
H4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i - 1)) -> (element(flag, [q_]) = red)) .
H5: for_all(r_: integer, ((r_ >= j) and (r_ <=

indexrange__last)) -> (element(flag, [r_]) =
white)) .

...
H12: i = j .

->
C1: for_some(p_: integer, ((p_ >= indexrange__first) and (

p_ <= indexrange__last + 1)) and ((for_all(q_:
integer, ((q_ >= indexrange__first) and (q_ <= p_ - 1)) -> (element(
flag, [q_]) = red))) and (for_all(r_: integer, ((
r_ >= p_) and (r_ <= indexrange__last)) -> (element(
flag, [r_]) = white))))) .

Fig. 5. Polish Flag: Post loop VC

Fig. 6. Polish Flag: Post loop VC picture

verification of the loop invariant with respect to the then-branch. The associated
VC is given in Fig. 8 while the corresponding pictorial perspective is shown in
Fig. 9. Again we argue that the pictures are more effective at communicating that
there are problems, i.e. the contradiction with regards to the colour of element i
within the given hypothesis. This contradiction arises because the loop invariant
is flawed, i.e. the upper bound of the red segment should be (i − 1) but in the
revised loop code it is given as (i + 1).



A Verification Condition Visualizer 79

...
loop
--# assert Flag’First<=I and
--# J<=(Flag’Last+1) and
--# I<=J and
--# (for all Q in Integer range Flag’First..(I+1) => (Flag(Q)=Red)) and
--# (for all R in Integer range J..Flag’Last => (Flag(R)=White));

exit when I=J;
if Flag(I)=White then

J:=J-1;
T:=Flag(I);
Flag(I):=Flag(J);
Flag(J):=T;

else
I:=I+1;

end if;
end loop;
...

Fig. 7. Revised Polish Flag code

procedure_partition_section_4.
...
H3: i <= j .
H4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i + 1)) -> (element(flag, [q_]) = red)) .
H5: for_all(r_: integer, ((r_ >= j) and (r_ <=

indexrange__last)) -> (element(flag, [r_]) =
white)) .

...
H12: not (i = j) .
...
H17: element(flag, [i]) = white .
...

->
...
C4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i + 1)) -> (element(update(update(flag, [i], element(
flag, [j - 1])), [j - 1], element(flag, [i])), [
q_]) = red)) .

C5: for_all(r_: integer, ((r_ >= j - 1) and (r_ <=
indexrange__last)) -> (element(update(update(
flag, [i], element(flag, [j - 1])), [j - 1], element(
flag, [i])), [r_]) = white)) .

...

Fig. 8. Polish Flag: Loop invariant VC - then branch (revised code)



80 M. Jami and A. Ireland

Fig. 9. Polish Flag: Loop invariant VC picture - then branch (revised code)

4 Experimental Implementation and Results

We now describe how the basic approach outlined above has been implemented in
an experimental tool called Auto-VCV. As shown in Fig. 10, Auto-VCV involves
three phases:

Parser: given a raw VCG file all information relating to arrays is extracted.
Translator: from the extracted information the relative ordering of array ele-

ments and segments is determined.
Picture Generator: the relative ordering information is mapped onto the

absolute positioning of the array pictures.

Fig. 10. Auto-VCV architecture

We focus in particular on the core algorithm which extracts information from
VCs that is relevant to drawing pictures of arrays. The algorithm takes three
input files:

vcg: contains all the VCs related to a specific procedure.
fdl: records type information as well as the variables and constants associated

with the procedure. Any user defined proof functions that are used within
assertions are also recorded.



A Verification Condition Visualizer 81

Fig. 11. Auto-VCV screenshot

Fig. 12. Auto-VCV: Polish Flag loop invariant VC picture - else branch

rul: contains the definition of proof functions supplied by the user.

Parsing the raw VCs, along with the information in the fdl3 and rul files, the
algorithm performs the following four tasks for each VC:

1. Identification of the arrays that are explicitly referenced within the given
hypotheses and conclusions.

3 FDL stands for Functional Description Language [1].



82 M. Jami and A. Ireland

Fig. 13. Auto-VCV: Polish Flag loop invariant VC picture - then branch (revised code)

subtype Index_Type is Integer range 1 .. 9;
type Array_Type is array (Index_Type)
of Integer;

...
procedure Bubble_Max(Table: in out Array_Type)

is
R: Index_Type;
T: Integer;

begin
R:= 1;
loop

--# assert (for all I in Integer range Table’First .. (R-1) => (Table(I) <= Table(R)));
exit when R = Index_Type’Last;

R:=R+1;
if Table(R-1) > Table(R) then

T:= Table(R);
Table(R):= Table(R-1);
Table(R-1):= T;

end if;
end loop;

end Bubble_Max;

Fig. 14. Bubble Max code

2. Extraction of properties and relations with respect to elements and segments
that are contained within the identified arrays, including constraints on index
variables and upper and lower bounds.

3. Ordering the elements and segments that are explicitly identified above, this
may involve elementary reasoning with regards to the constraints extracted
for index variables.

4. Positioning the elements and segments, i.e. determining if segments (and ele-
ments) are (i) adjoining, (ii) non-adjoining, (iii) overlapping. Implicit gaps
and overlaps are calculated, i.e. either a fixed number of consecutive elements
of a segment.



A Verification Condition Visualizer 83

procedure_bubble_max_3.
H1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r - 1)) -> (element(table, [i_]) <= element(
table, [r]))) .

...
H18: element(table, [r + 1 - 1]) > element(table, [r + 1]) .
...

->
C1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r + 1 - 1)) -> (element(update(update(
table, [r + 1], element(table, [r + 1 - 1])), [r + 1 - 1], element(
table, [r + 1])), [i_]) <= element(update(update(
table, [r + 1], element(table, [r + 1 - 1])), [r + 1 - 1], element(
table, [r + 1])), [r + 1]))) .

...

Fig. 15. Bubble Max: Loop invariant VC - then-branch (true)

Fig. 16. Auto-VCV: Bubble Max loop invariant VC picture - then-branch (true)

The basic tasks outlined above can be applied in two distinct modes within
Auto-VCV. Firstly, in what is called debug mode pictures are extracted from
individual hypotheses (or conclusions) one at a time for each VC. Secondly, in
integrated mode all the individual pictures are combined to give a single picture
for the given VC. The actual picture drawing aspect of the system maps the
abstract information extracted from the VCs onto concrete positions within the
Auto-VCV interface panels.



84 M. Jami and A. Ireland

procedure_bubble_max_4.
H1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r - 1)) -> (element(table, [i_]) <= element(
table, [r]))) .

...
H18: not (element(table, [r + 1 - 1]) > element(table, [r + 1])) .

->
C1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r + 1 - 1)) -> (element(table, [i_]) <= element(
table, [r + 1]))) .

...

Fig. 17. Bubble Max: Loop Invariant VC - then-branch (false)

Fig. 18. Auto-VCV: Bubble Max loop invariant VC picture - then-branch (false)

Auto-VCV has an object oriented design and is implemented in Java SDK 1.7
version using AWT and Swing utilities along with the Java 2D graphics library
[7]. The GUI for Auto-VCV is shown in Fig. 11, note that as well as displaying
pictures of arrays it also allows the user to view the related VC (bottom panel)
and FDL file (bottom right panel). Mode selection and other navigation options
are shown in the panel on the right.

Returning to our running example, the pictures generated by Auto-VCV for
the VC given in Fig. 3 are shown in Fig. 12, while the pictures generated for the
VC given in Fig. 8 are shown in Fig. 13. In order to illustrate pictures involving
relations, consider the Bubble Max procedure given in Fig. 14 - a procedure in



A Verification Condition Visualizer 85

which the largest value within an array “bubbles” up to the top, i.e. the element
with the largest index. The VC associated with the then-branch is given in Fig. 15
while the corresponding Auto-VCV generated picture is shown in Fig. 16. The
VC and pictures associated with the path that avoids the then-branch are given
in Figs. 17 and 18 respectively. Again we would argue that the validity of these
VCs is more immediate when viewed as pictures.

5 Related and Future Work

We are unaware of any other work that directly addresses the visualization of
array based VCs. As part of a previous project, which focused on separation logic
[11], we built an animation tool [10] which supports the visualization of programs
that manipulate the heap. The spatial operators associated with separation logic
makes it particularly amenable to extracting pictures from formulas.

Further testing and development of the Auto-VCV tool is required. For
instance we need to develop the tool so that it can represent relations between
distinct pictures, e.g. when proving sorting algorithms one needs to specify that
the output array is a permutation of the input array. Moreover, to deal effectively
with more comprehensive functional specifications definitions become important.
Handling definitions is currently under development, and accounts for the rul
(file) input to our algorithm discussed above. Multi-dimensional arrays as well
as records are also part of our future work plans. Following the motivations of
Reynolds [12] mentioned in the introduction, we are also keen to explore the role
of pictures within proof.

In terms of SPARK users, we have received positive feedback on Auto-VCV
from software engineers within BAE Systems that use SPARK. We also intend
to make use of our work within a MSc programme which covers SPARK and
program proof. Another potential direction will be to target Boogie, a generic
verification condition generator [5]. Following the Boogie route would allow our
approach to be more easily applied to other programming languages.

6 Conclusion

We have presented an approach to visualizing VCs associated with array based
code. The core of the approach has been demonstrated via our Auto-VCV pro-
totype tool which extracts pictures from SPARK VCs. While still very much an
experimental tool, we believe that it demonstrates the value of visualizing VCs
as pictures, both as an aid to proof as well as debugging code and specifications.

Acknowledgements. This research was supported by EPSRC Platform Grant EP/
J001058. Our thanks go to Alan Bundy, Gudmund Grov, Paul Jackson, Jacques Fleu-
riot, Ewen Maclean for their feedback on the work, as well as to John Moore and Ben
Gorry (BAE Systems, Warton UK) for their feedback on an early prototype of Auto-
VCV. We also thank three anonymous VSTTE 2014 referees for their constructive
feedback.



86 M. Jami and A. Ireland

References

1. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, Reading (2003)

2. Bergeretti, J.-F., Carré, B.A.: Information-flow and data-flow analysis of while-
programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 7(1), 37–61 (1985)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

4. Gordon, M.J.: Programming Language Theory and its Implementation. Interna-
tional Series in Computer Science. Prentice-Hall, Upper Saddle River (1988)

5. Le Goues, C., Leino, K.R.M., Moskal, M.: The boogie verification debugger (Tool
Paper). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 407–414. Springer, Heidelberg (2011)

6. Gries, D.: The Science of Programming. Springer, New York (1981)
7. Hardy, V.J.: Java 2D API graphics. Sun Microsystems Press Java series. Sun

Microsystems Press, Palo Alto (2000)
8. Hoare, C.A.R.: Proof of a program: find. CACM 14(1), 39–45 (1971)
9. Hoare, C.A.R., Misra, J., Leavens, G.T., Shankar, N.: The verified software initia-

tive: a manifesto. ACM Comput. Surv. 41(4), 1–8 (2009)
10. Maclean, E., Ireland, A., Grov, G.; The core system: animation and functional

correctness of pointer programs. In: Proceedings of the 16th IEEE Conference
on Automated Software Engineering (ASE 2011): Tool Demonstration Paper,
Lawrence, Kansas. IEEE (2011)

11. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001)

12. Reynolds, J.C.: The Craft of Programming. Prentice-Hall, Englewood Cliffs (1981)
13. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Engelwood

Cliffs (1976)


	A Verification Condition Visualizer
	1 Introduction
	2 Background on SPARK
	3 Our Basic Approach
	4 Experimental Implementation and Results
	5 Related and Future Work
	6 Conclusion
	References


